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Chapter 1

Introduction

1.1 Introduction (English)

In Nature, two kinds of elementary particles can be found: fermions and bosons, differing from

their spin (half-integer spin for fermions and integer spin for bosons). Elementary fermions

are also classified in quarks and leptons, depending on the dominant interactions - strong

interactions for quarks and electromagnetic interactions for leptons.

The Standard Model (SM) [1, 2] of the electroweak and strong interactions describes with

extreme good precision the physics of elementary particles from atomic scales down to the

shortest currently probed scales, about 10−18 m. The SM provides a unified framework to

describe three of the four forces of Nature: electromagnetic, weak and strong interactions.

The high-precision measurements, performed at the per mille level accuracy and carried

out during the last two decades at LEP, SLC and Tevatron, have firmly established the

Standard Model as the correct description of the strong and electroweak interactions at

present energies. This description is done by gauge theories, meaning that they model the

forces between fermions by coupling them to gauge bosons, which mediate the forces. The

gauge group of the strong interactions is SU(3)C , and the gauge group of the electroweak

interaction is SU(2)L×U(1)Y . The couplings of quarks and leptons to the electroweak gauge

bosons have been measured precisely and agree with those predicted by the model. However,

the electroweak symmetry breaking mechanism that generates particle masses has not been

tested yet. And this is one of the main objectives of the next generation of High Energy

experiments, like LHC at CERN.

The origin of gauge boson masses and fermion masses is explained in the SM with the
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8 Introduction

electroweak symmetry breaking (EWSB) mechanism. This spontaneous symmetry breaking

is implemented by means of the Higgs mechanism [3]. This mechanism introduces a scalar

SU(2)L doublet, H = (H+,H0). The interactions of H with the fermions are given by

Yukawa couplings, whereas the Higgs potential describes the self interactions of H in such

a way that H0 adquires a vacuum expectation value (vev), breaking the gauge symmetry

SU(2)L ×U(1)Y and giving masses to the fermions and the gauge bosons (Z and W ±). This

leads to just one physical Higgs particle in the spectrum: the SM Higgs boson. The discovery

of the Higgs boson is of great importance. However, there is not experimental evidence for

the SM Higgs, so the Higgs mechanism has not been tested yet. From direct searches and

from precision electroweak data at LEP, the mass of the Higgs boson is restricted to be in

the range 114.4 GeV < mh < 219 GeV at 95 % C.L. [4].

From the experimental perspective, the Standard Model will be completed with the dis-

covery of the Higgs boson. Nevertheless, this model poses a number of unsolved questions

and some theoretical problems that indicate that the SM is only a succesful low-energy de-

scription of a more fundamental underlying theory. One of the fundamental problems of

the Standard Model is the “hierarchy problem” [5]. This is the naturalness problem on the

Higgs mass. From experimental data the Higgs mass must be of the order of the electroweak

scale (∼ 100 GeV), but from the naturalness perspective this mass should be much larger

than the electroweak scale. This is due to the large radiative corrections to the Higgs mass,

which imply an unnatural tuning between the tree-level Higgs mass and the radiative correc-

tions in order to stabilize the Higgs mass at ∼ 100 GeV. These radiative corrections diverge

quadratically, indicating a quadratic sensitivity to the largest scale in the theory.

Solutions to this hierarchy problem imply new physics beyond the SM. New physics must

be able to compensate the dangerously large corrections to the Higgs mass, and this can be

obtained with the presence of new symmetries and particles. The hierarchy problem is the

main motivation for the existence of new physics, but not the only one. In fact, there are some

other important open questions within the SM: why three generations of quarks and leptons

and the mass hierarchies between them?, what is the explanation of the necessary matter-

antimatter asymmetry in the universe?, how can gravity be included within the framework

of quantum physics?....

In addition to the above theoretical problems in the SM, there is experimental evidence

that suggests the existence of new physics: the observation of neutrino oscillations [6]. This

observation attests that neutrinos have masses, although very small. When the SM was

formulated, there was no evidence of neutrino masses and, in consequence, it forbids neutrino
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masses at all orders in perturbation theory. Due to the small neutrino masses compared

with the other fermions, the origin of these masses seems to differ from the standard Higgs

mechanism. The most natural explanation for this lightness is given in the minimal Seesaw

model in which right-handed neutrino singlets are introduced with Majorana masses M much

larger than the electroweak scale. However, as we will see in this thesis, this model does not

solve the hierarchy problem associated to the Higgs mass, quite the contrary. Now, besides

the usual SM radiative corrections to the Higgs mass, there are others coming from the very

massive right-handed neutrinos that couple to the Higgs. This represents a new manifestation

of the hierarchy problem, suggesting the existence of new physics in addition to the right-

handed neutrinos (being supersymmetry the favourite candidate).

The most popular candidate of physics beyond the SM is Supersymmetry (SUSY) [7].

This elegant symmetry relates fermions and bosons in such a way that there are the same

number of bosonic and fermionic degrees of freedom, and their coupling are related. With

these features, the quadratically divergent contributions from new particles (the sparticles)

cancel exactly the contributions from SM particles, technically solving the hierarchy problem.

However, no sparticle has been found yet, so Supersymmetry must be a broken symmetry.

This SUSY breaking leads to other dangerous logarithmic and finite contributions to the Higgs

mass from sparticles, introducing a new fine-tuning problem: the supersymmetric fine-tuning

problem.

Among the various candidates of new physics there is a recent proposal that tries to solve

the hierarchy problem, the Little Higgs models [8]. This kind of scenarios is based on the

idea of making the Higgs a pseudo-Goldstone boson, whose mass is protected at one-loop

order from quadratically divergent corrections by a global symmetry. According to their

proponents, these models are valid up to a cut-off scale of around 10 TeV with no fine-tuning

price. Beyond this cut-off these models need an UV completion.

The present work focusses on these fine-tuning problems in the electroweak symmetry

breaking that are present when the Higgs mass suffers from dangerous contributions which

tend to destabilize the electroweak scale. First, we have revised the hierarchy problem in the

SM, and then we have studied what happens with specific scenarios of physics beyond the

SM, mentioned above.

As explained above, in the SM the Higgs mass receives important quadratically divergent

contributions, so the requirement of no fine-tuning between these divergent contributions and

the tree-level mass sets an upper bound of a few TeV on the scale where new physics should

appear. If the scale of new physics is a large scale, e.g the Planck scale (1019 GeV), this
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fine-tuning is huge, leading to the so called Big Hierarchy problem. On the other hand, if

the considered scale is ∼ 10 TeV (the scale given by the experimental lower bound on the

effective scale of some higher order operators), the fine-tuning is around 1%; this is known

as the Little Hierarchy problem. In this thesis, these two arguments are re-examined and

we also show the limitations of the hierarchy problem argument to estimate the scale of new

physics. We will see that, although the estimate of a few TeV for the upper bound given by

the SM hierarchy problem could be evaded in the pure SM, quantitatively, this estimate turns

out to work reasonably well in most of the cases and it should be considered as a conservative

bound. This leads to an optimistic prospect, as it sets the scale of new physics on the possible

reach of LHC. This subject is presented in chapter 2.

It could happen, however, that no new physics (apart from the Higgs) is found in LHC, in

spite of the naturalness arguments based on the SM Hierarchy Problem. Likewise, it could also

happen that a heavy Higgs would be found (out from the range consistent with electroweak

precision tests). Both possibilities can be understood in the SM plus higher order operators.

But they could also point out to modifications of the ordinary SM Higgs sector. The simplest

one is to include a second Higgs doublet. In chapter 3 we examine the naturalness properties

in some types of two Higgs doublet models (2HDM) [9]. In that chapter we also analyze

the possibility of having a mirror symmetry, in which the entire SM is replicated in a mirror

world. This mirror world communicates with our world through a mixing in the Higgs sector.

These modified Higgs sectors can be studied with a very particular type of 2HDM and in the

literature it has been suggested that they can improve the naturalness SM upper bounds on

the scale of new physics.

Chapters 4-6 are devoted to physically relevant examples of new physics. In chapter 4

we study the case of right-handed neutrinos with a seesaw mechanism and show that the

case of the non supersymmetric SM plus right-handed seesaw neutrinos suffers from a very

important fine-tuning problem, which calls for the existence of additional new physics, being

a supersymmetric seesaw the optimal candidate to alleviate this problem.

Supersymmetry and some relevant supersymmetric scenarios are considered in chapter 5.

In SUSY, the cancellation of quadratic divergent corrections takes place to all orders of

pertubation theory. However, as we have seen above, the logarithmic and finite radiative

corrections to the Higgs mass lead to another fine-tuning problem: the supersymmetric fine-

tuning problem. According to the usual analyses, in the minimal supersymmetric standard

model (MSSM), the absence of fine-tuning requires an abnormally stringent upper bound in

the masses of the sparticles of ∼200 GeV. On the other hand, radiative corrections to the
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Higgs mass (needed to have a Higgs mass consistent with the LEP lower bound) together

with experimental data, give a lower bound on the sparticle masses of around 300 GeV, which

implies that the ordinary MSSM is fine-tuned at the few percent level. The reasons for this

abnormally acute tuning of the MSSM are reviewed and updated in this work. Moreover,

we discuss how other SUSY scenarios, in particular those with low-scale SUSY breaking, can

evade the problematic aspects of the MSSM, saturating the general bound of a few TeV of

the Hierarchy Problem of the SM.

Little Higgs models are examined using fine-tuning arguments in chapter 6. It will be

shown that the fine-tuning associated to the electroweak breaking in Little Higgs scenarios

is much higher than suggested by the rough estimates usually made in the literature. These

scenarios have been proposed to solve the Little Hierarchy problem, since they are valid

to a cut-off scale of 10 TeV with the Higgs mass protected from quadratically divergent

contributions only at the one-loop order. Analyzing the fine-tuning in a rigourous way, we

have found that the fine-tuning is essentially comparable to or worse than that of the Little

Hierarchy problem of the SM (and higher than in many supersymmetric models). We identify

the main sources of potential fine-tuning in this kind of scenarios that should be considered

in order to construct a successful Little Higgs model.
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1.2 Introducción (Castellano)

En la naturaleza existen dos tipos de part́ıculas elementales, los fermiones y los bosones,

que se diferencian por el spin (spin entero los bosones y spin semientero los fermiones).

Además los fermiones elementales se clasifican en dos tipos: quarks y leptones, dependiendo

de la interacción dominante que obedecen (las interacciones fuertes para los quarks y las

interacciones electromagnéticas para los leptones).

El Modelo Estándar (MS) de las interacciones electrodébiles y fuertes describe de manera

precisa la f́ısica de part́ıculas elementales desde las escalas del átomo hasta las escalas más

bajas accesibles experimentalmente, alrededor 10−18 m. El Modelo Estándar proporciona un

escenario unificado en el cual se describen tres de las cuatro fuerzas de la Naturaleza: las

interacciones electromagnéticas, débiles y fuertes.

Las medidas de alta precisión de las dos últimas decadas llevadas a cabo en los exper-

imentos LEP, SLC y Tevatron han confirmado el Modelo Estándar como la teoŕıa correcta

para describir las interacciones electrodébiles y fuertes hasta las enerǵıas accesibles actual-

mente. Esta descripción se realiza a través de teoŕıas gauge, que conforman las interacciones

entre fermiones acoplándolos a los bosones de gauge, que son los que median las fuerzas. El

grupo gauge de las interacciones fuertes es SU(3)C , y el grupo gauge de las interacciones

electrodébiles es SU(2)L ×SU(1)Y . Los acoplos de leptones y quarks a los bosones de gauge

electrodébiles han sido medidos experimentalmente y coinciden con los que predice el modelo

de manera teórica. Sin embargo, todav́ıa queda una pieza del Modelo Estándar por compro-

bar de manera experimental; el mecanismo de ruptura de la simetŕıa electrodébil que genera

las masas de las part́ıculas. Este es uno de los objetivos principales de la próxima generación

de experimentos de altas enerǵıas como el LHC en el CERN.

El origen de las masas de los bosones gauge y los fermiones se explica en el MS a través

del mecanismo de ruptura de la simetŕıa electrodébil. Esta ruptura espontánea de simetŕıa

se lleva a cabo por medio del mecanismo de Higgs. Este mecanismo introduce un doblete

escalar en la teoŕıa, H = (H+,H0). Las interacciones de este doblete con los fermiones vienen

dadas por los acoplos de Yukawa mientras que el potencial de Higgs describe las interacciones

propias del doblete H de tal manera que H0 adquiere un valor esperado en el vaćıo, rompiendo

aśı la simetŕıa gauge electrodébil SU(2)L × U(1)Y y originando masas para los fermiones y

los bosones de gauge Z y W±. Este proceso da lugar a una part́ıcula escalar f́ısica en el

espectro: el bosón de Higgs del Modelo Estándar. El descubrimiento del bosón de Higgs es

extremadamente importante en la f́ısica de part́ıculas, pero hasta la fecha no hay evidencia
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experimental de la existencia de este bosón, y por lo tanto el mecanismo de Higgs no ha sido

probado. Lo que śı se conoce de las busquedas directas del Higgs y de los datos de precisión

electrodébil en LEP es que la masa del Higgs está restringida al rango 114.8 GeV < mh <

219 GeV al 95% de nivel de confianza.

Desde el punto de vista experimental, el Modelo Estándar se confirmaŕıa con el des-

cubrimiento del bosón de Higgs. Sin embargo, algunos problemas teóricos y varias cuestions

sin resolver parecen indicar que el MS es sólo una descripción efectiva de baja enerǵıa de

una teoŕıa subyacente. Uno de los problemas fundamentales del MS es el “problema de las

jerarqúıas”, esto es el problema de naturalidad de la masa del Higgs. De los datos experimen-

tales sabemos que la masa del Higgs debe ser de orden la escala electrodébil (∼ 100 GeV),

pero desde la perspectiva de la naturalidad esta masa debeŕıa ser mucho mayor. Esto se debe

a las grandes correciones radiativas a la masa del Higgs, que nos conducen a un ajuste artifi-

cial entre la masa del Higgs a nivel árbol y las correciones radiativas si queremos que la masa

se estabilice alrededor de los 100 GeV. Estas correciones radiativas divergen cuadráticamente

con la escala, indicando una sensibilidad cuádratica a la escala mayor de la teoŕıa.

Las soluciones propuestas a este problema de las jerarqúıas implican f́ısica más allá del

MS. La nueva f́ısica debe ser capaz de compensar las correciones peligrosas a la masa del

Higgs. Esto puede conseguirse con la presencia de nuevas simetŕıas y part́ıculas. Una de

las motivaciones principales para suponer la existencia de nueva f́ısica es el problema de las

jerarqúıas, pero no la única. En realidad, hay otras cuestiones sin respuesta dentro del MS: el

porqué de tres generaciones y la jerarqúıa de masa entre ellas, la explicación de la asimetŕıa

de mateŕıa-antimateŕıa en el universio, la incorporación de la gravedad en un escenario de

f́ısica cuántica,.....

Además de los problemas teóricos anteriormente nombrados, hay una evidencia experi-

mental que sugiere la existencia de nueva f́ısica: la observación de las oscilaciones de neutrinos.

Esta observación demuestra que los neutrinos tienen masa, aunque muy pequeña (< 1 eV).

Cuando el Modelo Estándar se formuló, no hab́ıa evidencia experimental de las masas de

los neutrinos, por lo que se prohib́ıan las masas para los neutrinos a todo orden en teoŕıa

de pertubaciones. Debido a que la masas de los neutrinos son muy pequeñas comparadas

con las masas de los otros fermiones, el origen de las masas de los neutrinos parece diferir

del mecanismo de Higgs ordinario. La explicación más natural a estas pequeñas masas se da

posiblemente en el modelo mı́nimo de “seesaw”, en el cual se introducen neutrinos singletes

dextrógiros con masas de tipo Majorana, M , mucho mayores que la escala electrodébil. Sin

embargo, como veremos en esta tesis, este modelo “seesaw” no da una solución al problema
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de las jerarqúıa asociado a la masa del Higgs, más bien al contrario. Ahora, además de las

correciones radiativas usuales a la masa del Higgs, tenemos las originadas por los neutrinos

dextrógiros muy masivos que también se acoplan al Higgs. Esto nos da una nueva mani-

festación del problema de las jerarqúıas, y nos sugiere la existencia de nueva f́ısica aparte de

los neutrinos dextrógiros, siendo supersimetŕıa el candidato favoratorio.

El candidato más común de f́ısica más allá del MS es supersimetŕıa. Supersimetŕıa es una

elegante simetŕıa que relaciona fermiones y bosones de tal manera que hay el mismo número

de grados de libertad bosónicos y fermiónicos con acoplos relacionados entre śı. De este modo,

las contribuciones cuadráticamente divergentes debidas a la nuevas part́ıculas supersimétricas

cancelan exactamente las contribuciones de las part́ıculas del MS, resolviendo aśı el problema

de las jerarqúıas. Sin embargo, hasta el momento no se ha encontrado ninguna part́ıcula

supersimétrica, indicándonos que si existe, la supersimetŕıa debe ser una simetŕıa rota. La

ruptura de la supersimetŕıa da lugar a nuevas contribuciones peligrosas a la masa del Higgs,

esta vez contribuciones finitas y logaŕıtmicas, introduciendo un nuevo problema de ajuste

fino o fine-tuning: el problema del fine-tuning supersimétrico.

Entre los candidatos a nueva f́ısica, existe una propuesta reciente que intenta resolver el

problema de las jerarqúıas: los modelos de Little Higgs. Estos escenarios están basados en la

idea de hacer el Higgs un boson pseudo-Goldstone, cuya masa esté protegida de correcciones

cuadráticamente divergentes al nivel de un loop. Según sus partidarios, estos modelos son

válidos hasta una escala de cut-off de alrededor 10 TeV, hasta la cual no habŕıa problema de

fine-tuning. A partir de esta escala se necesitaŕıa una teoŕıa ultravioleta que los completara.

El presente trabajo se centra en estos problemas de ajuste fino o fine-tuning en la ruptura

electrodébil que son debidos a las contribuciones peligrosas a la masa del Higgs que tienden a

desestabilizar la escala electrodébil. En primer lugar, se revisará el problema de las jerarqúıas

del Modelo Estándar, y a continuación se estudiará lo que ocurre con escenarios concretos de

f́ısica más allá del Modelo Estándar, como los mencionados.

Como se comentó anteriormente, en el Modelo Estándar la masa del Higgs recibe contribu-

ciones cuadráticamente divergentes, de tal modo que el requisito de que no exista fine-tuning

entre estas contribuciones divergentes y la masa a nivel árbol, establece un ĺımite superior

para la escala de nueva f́ısica de unos pocos TeV. Si como escala de nueva f́ısica consideramos

escalas fundamentales, como la escala de Planck (∼ 1019 GeV), el fine-tuning que se tiene

en la masa del Higgs es enorme: esto se conoce como el “gran” problema de las jerarqúıas.

Por otro lado, si la escala considerada es ∼ 10 TeV (el ĺımite experimental inferior en la

escala efectiva de algunos operadores de orden superior), el fine-tuning que se tiene es del
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1% y este fine-tuning es el llamado “pequeño” problema de las jerarqúıas. En esta tesis,

estos dos argumentos se volverán a examinar y se mostrarán la limitaciones del uso del prob-

lema de las jerarqúıas para dar una estimación sobre la escala de nueva f́ısica. Veremos que,

aunque la estimación de unos pocos de TeV para el ĺımite superior dada por el problema de

las jerarqúıas podŕıa ser evadido dentro del MS, se tiene que, de manera cuantitativa, esta

estimación funciona razonablemente bien en la mayoŕıa de los casos y debe ser considerado

como un ĺımite conservador. Esto nos lleva a una perspectiva optimista, ya que establece la

escala de nueva f́ısica dentro del alcance del LHC. Este tema será presentado en el caṕıtulo 2.

A pesar de estas buenas perspectivas, puede ocurrir que llegado el momento y a pesar

del argumento de naturalidad en el que se basa el problema de las jerarqúıas del Modelo

Estándar, en el LHC no se encuentre nueva f́ısica aparte del Higgs. Asimismo, puede ocurrir

que se encuentre un Higgs pesado que no concuerde con el rango dado por los test de precisión

electrodébil. Ambas posibilidades pueden ser explicadas en el MS más operadores de orden

superior. Pero también podŕıan sugerir una modificación al sector de Higgs usual del Modelo

Estándar. La modificación más simple es incluir un segundo doblete de Higgs. En el caṕıtulo 3

se examinan las propiedades de naturalidad de algunas clases de modelos con dos dobletes

de Higgs. En este caṕıtulo también se analizará la posibilidad de la existencia de un mundo

“espejo” replica del MS. La manera de comunicar ambos mundos seŕıa a través de una simetŕıa

que permitiera la mezcla entre los bosones de Higgs. Estas modificaciones en el sector de

Higgs pueden dar lugar a mejoras en los ĺımites superiores de naturalidad en la escala de

nueva f́ısica, y esto es lo que se estudiará dentro del caṕıtulo 3.

Los caṕıtulos del 4 al 6 están dedicados a ejemplos relevantes de nueva f́ısica. En el

caṕıtulo 4 se estudiará el caso de neutrinos dextrógiros, mostrando como el mecanismo de

seesaw da lugar a un problema de fine-tuning importante que reclama la existencia de nueva

f́ısica adicional a los neutrinos dextrógiros.

La supersimetŕıa y algunos escenarios supersimétricos relevantes son considerados en el

caṕıtulo 5. En el caso supersimétrico la cancelación de correciones cuadráticamente diver-

gentes tiene lugar a todo orden de teoŕıa de perturbaciones. Sin embargo, como se ha co-

mentado, en el modelo supersimétrico mı́nimo la correciones finitas y logaŕıtmicas a la masa

del Higgs dan lugar a un nuevo problema de fine-tuning: el problema de fine-tuning super-

simétrico. Siguiendo los análisis usuales de fine-tuning, en el modelo supersimétrico mı́nimo

(MSSM) la ausencia de fine-tuning requiere una cota superior muy estricta para las masas

supersimétricas de aproximadamente 200 GeV. Por otro lado, las correciones radiativas a la

masa del Higgs (necesarias para hacerla consistente con la cota inferior experimental) junto a



16 Introduction

los ĺımites experimentales directos, nos dan una cota inferior para las masas supersimétricas

de aproximadamente 300 GeV, con lo que el MSSM está ajustado al nivel de aproximada-

mente el 4 %. Las razones de este ajuste o tuning acentuado para el MSSM serán revisadas y

actualizadas en este trabajo. Y se tratarán otros escenarios supersimétricos que pueden eludir

los aspectos problemáticos del MSSM. En particular, se mostrará como modelos con escala

baja de ruptura de supersimetŕıa (no muy lejos del TeV) pueden saturar el ĺımite general de

unos pocos TeV dado por el problema de las jerarqúıas del Modelo Estándar.

Los modelos de Little Higgs, son examinados en el caṕıtulo 6. Se mostrará cómo el fine-

tuning asociado a la ruptura electrodébil en escenarios de Little Higgs es mucho mayor que lo

que sugieren las primeras estimaciones realizadas en la literatura. Estos escenarios se crearon

para resolver el “pequeño” problema de las jerarqúıas, ya que sólo son válidos hasta una

escala de cut-off de 10 TeV y la masa del Higgs está protegida de correciones cuadráticamente

divergentes hasta esta escala. Si se analiza el fine-tuning de manera rigurosa, se encuentra que

éste es similar o peor que el fine-tuning del “pequeño” problema de las jerarqúıas del MS y

mayor que en muchos modelos supersimétricos. Además, en este caṕıtulo se identificarán las

principales fuentes de fine-tuning en este tipo de escenarios, para que puedan ser consideradas

a la hora de construir un modelo de Little Higgs satisfactorio.



Chapter 2

Hierarchy Problem

The “Hierarchy problem” [5] of the Standard Model is a theoretical problem that arises when

one assumes that the SM remains valid beyond the scales at which it has been directly tested.

What happens is that the SM is not a stable theory if a second energy scale (Planck scale,

Grand Unified Theories scale,...) is introduced. This is due to the large radiative corrections

to the Higgs mass. These corrections diverge quadratically with the largest scale in the theory,

indicating a quadratic sensitivity to this scale. But from the classic constraints of unitarity,

triviality and vacuum stability and from precision electroweak constrains, the Higgs mass in

the SM should be of the order of the electroweak scale (∼ 100 GeV). Therefore, this requires

unnatural adjustments between the tree-level Higgs mass and the radiative corrections. These

adjustments are known as a “fine-tuning” problem of the SM. This is rather unsatisfactory,

unless it may be cured by means of some new physics able to compensate the dangerously

radiative corrections to the Higgs mass.

2.1 Big and Little Hierarchy Problem

The Hierarchy Problem of the SM motivates the existence of new physics beyond the SM at

scale Λ <∼ few TeV. What is the argument?.

If the SM is considered as an effective theory valid below a scale Λ, the Higgs mass in the

lagrangian, m2, receives quadratically-divergent contributions. The most significant of these

divergences come from the one-loop diagrams of fig. 2.1 involving the top quark, the gauge

bosons and the Higgs itself. These quadratic divergences at one-loop are given by:

17
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Figure 2.1: The most significant quadratically divergent contributions to the Higgs mass in the Standard

Model.

δqm
2 =

3

64π2
(3g2 + g′2 + 8λ − 8λ2

t )Λ
2 , (2.1)

where g, g′, λ and λt are the SU(2)×U(1)Y gauge couplings, the quartic Higgs coupling and

the top Yukawa coupling respectively. In terms of masses

δqm
2 =

3

16π2v2
(2m2

W + m2
Z + m2

h − 4m2
t )Λ

2 , (2.2)

where m2
W = g2v2/4, m2

Z = (g2 + g′2)v2/4, m2
h = 2λv2 and m2

t = λ2
t v

2/2, with v = 246 GeV.

These radiative corrections to the Higgs vacuum expectation value (vev) tend to destabilize

the electroweak scale. The requirement of no fine-tuning between the tree-level and the one-

loop contribution to m2 sets an upper bound on Λ. E.g for a Higgs mass mh = 115−200 GeV,

and imposing that one-loop contributions are not bigger than 10 times the value of m2
h

1,

δquadm2

m2
≤ 10 ⇒ Λ <∼ 2 − 3 TeV, (2.3)

where we have implicitly used v2 = −m2

λ and m2
h = 2m2. With this argument, new physics

should appear to modify the ultraviolet behaviour of the SM. This is known as the ”Big

Hierarchy” problem [10], since other fundamental scales (MP lanck, MGUT ) are larger than

this upper bound on Λ.

1Obviously, if one is stricter about the maximum acceptable size of δqm
2, then Λ2 decreases in the same

proportion.
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This “Big Hierarchy” argument gives an optimistic point of view for physics beyond the

SM, as it predicts that New Physics (NP) will be detected at future high energy colliders,

such as the LHC in CERN.

The previous upper bound, Λ <∼ few TeV, is in some tension with the experimental lower

bounds on the suppression scale of dimension 6 operators [11]. Below Λ, the effective theory

is the SM plus non-renormalizable operators that parametrize the effects of new physics

beyond Λ. Adding only operators that preserve all local and global SM symmetries, the

typical experimental limits on ΛLH (defined as the effective scale of the new dimension six

operators) are ΛLH
>∼ 10 TeV. Then, if we set the scale of NP to be around 10 TeV, there is

still a difference of one order of magnitude between this scale, ΛLH, and the no-fine-tuning

upper bound (Λ <∼ few TeV), resulting in a fine-tuning of order 1%. This is known as the

“Little Hierarchy” problem [10, 11], and it implies that NP at Λ should be “clever” enough

to be consistent with the constraints of the dimension 6 operators: non-strongly-interacting,

flavour-blind NP is favoured.

As we have seen above, the Hierarchy argument sets an upper bound on the scale of new

physics, that would be on the reach of LHC. However, following Veltman [12], one can note

that if the Higgs mass lies (“by accident”) close to the value that cancels δqm
2 in eq. (2.2),

this scale could be much larger without a fine-tuning price. At one-loop, Veltman’s condition

is,

3g2 + g′2 + 8λ − 8λ2
t ' 0 , (2.4)

which is satisfied for mh ' 313 GeV. If Veltman’s condition is fulfilled, this will tell us that

there is no (one-loop) fine-tuning problem in the SM. At higher order this condition becomes

cut-off dependent [13, 14],

3g2(Λ) + g′2(Λ) + 8λ(Λ) − 8λ2
t (Λ) ' 0 . (2.5)

This last condition resums leading-log corrections to all orders. Hence, we write:

m2(Λ) = m2
0 + δqm

2
∣∣
Λ

, (2.6)

where m2
0 is the tree-level value of the mass parameter at the scale Λ, and δqm

2 is as in

eq. (2.1) but with couplings evaluated at Λ.

2.2 Quantifying the fine-tuning

In this chapter, we re-examine the use of the Hierarchy problem to extract information about

the size of Λ from naturalness arguments and we also consider the possibility of living near
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Veltman’s condition [15]. In order to do this, one needs a sensible criterion to quantify the

degree of fine-tuning, which should be applied to all the models (SM and models of NP), to

allow a fair comparison. Here we follow the standard Barbieri & Giudice criterion [16]. This

method follows the next steps:

The Higgs vev, v2, is written as a function of the fundamental parameters of the model, pi.

Then, one defines ∆pi , the fine-tuning parameters associated to pi, by

δM2
Z

M2
Z

=
δv2

v2
= ∆pi

δpi

pi
, (2.7)

where δv2 is the change induced in v2 by a change δpi in pi. Therefore, |∆−1
pi

| measures the

probability of a cancellation among terms of a given size to obtain a result which is |∆pi |
times smaller 2. Absence of fine-tuning requires that ∆pi should not be larger that O(10).

In cases where there are dangerous quadratic divergences to the mass parameter, m, as

it happens in the SM, we can approximate the tuning in v2 by the tuning in m2

δv2

v2
' δm2

m2
' δ{δqm

2}
m2

∣∣∣∣
Λ

, (2.8)

where we have evaluated δm2/m2 at the Λ scale and used eq. (2.6). This choice simplifies the

computation and quantitatively the differences are negligible. Furthermore, it makes sense

since the actual cancellation between the tree-level and the radiative contributions to m2

occurs at that scale, as shown in eq. (2.6).

In order not to have unnatural cancellations among parameters to obtain the correct

electroweak scale (v = 246 GeV), it is imposed that the total amount of fine-tuning, ∆, is

less than a certain quantity, c. Due to the statistical meaning of ∆pi , it is sensible to define

the total fine-tuning as:

∆ =

√∑
i
∆2

pi
. (2.9)

If ∆ ≤ c, a percentage variation of any of the parameteres pi corresponds to a percentage

variation of v2 less than c-times larger. For example, c = 10 tolerates cancellations among

parameteres of at most one order of magnitude, so this corresponds to a 10% fine-tuning. If

c = 100, the total fine-tuning is of 1%.

2Strictly speaking, ∆pi
measures the sensitivity of v2 against variations of pi, rather than the degree of

fine-tuning [17, 18]. However, for the EW breaking it is a perfectly reasonable fine-tuning indicator [17, 19]:

when pi is a mass parameter, ∆pi
is large only around a cancellation point.



2.2 Quantifying the fine-tuning 21

1 10 100

100

200

300

400

500

600

Λ (TeV)

m
  (

G
eV

)
h

10010

Figure 2.2: Fine-tuning contours corresponding to ∆ = 10 and 100.

Alternative definitions of ∆, such as ∆ = Max{∆pi}, are possible and have been used in

the literature. Although in many cases both definitions give very similar results (typically

one single ∆pi dominates ∆) we believe that definition (2.9) is more satisfactory conceptually.

As an (extreme) example we can consider the case of an observable O that depends on a large

number N of input parameters, say O =
∑

i αipi with the αi of O(1) and random signs, and

with the measured value of O and the natural values of the pi being of the same order. In

such case all ∆2
pi

∼ 1 but the fine-tuning is O(
√

N) (this example would correspond to a

random walk where one expects such wandering of O away from 1).

Now, we go back to the SM. The “Big Hierarchy” problem and Veltman’s condition

concern the dependence of v2 on the scale Λ. We can plot ∆Λ in the (mh,Λ) plane, as

shown in fig. 2.2. In this plot the lines of ∆Λ = 10, 100 correspond to lines of 10% and 1%

fine-tuning, respectively. This plot shows a throat, sometimes called the “Veltman’s throat”,

that suggests that if mh ∼ 195−215 GeV, Λ could be larger than 10 TeV without fine-tuning

(and no “Little Hierarchy” problem). On the negative side, this means that if mh is in this

range, new physics could escape detection at LHC. But this is not the actual situation if we

evaluate the fine-tuning in a complete way taking into account all the parameters in the SM,

besides Λ, that are not known or not yet measured with good precision.

Take for instance the top mass. According to the most recent experimental data [20], this

mass is

Mt = 172.5 ± 2.3 GeV. (2.10)
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Figure 2.3: Same as fig. 2.2 for ∆ = 10 and three different values of the top mass.

This uncertainty in the top mass is remarkably small, but it should not be ignored for fine-

tuning analyses. In fig. 2.3 we see three curves with ∆Λ = 10, corresponding to Mt = 170.2,

172.5 and 174.8 GeV. Because fine-tuning arguments are based on statistical considerations,

the conclusions depend on our partial knowledge of the relevant parameters of the theory. In

this case, we have to average our ignorance of the top mass, and this leads to a cut on the

throat at Λ ' 10 TeV.

This effect can be reproduced by adding the two fine-tuning parameters ∆Λ and ∆λt in

quadrature:

∆ =
(
∆2

Λ + ∆2
λt

)1/2
. (2.11)

Since λt should only vary within the experimentally allowed range, the definition of ∆λt must

be modified as [19] (see Appendix C):

∆λt =
∂v2

∂λt

λt

v2
× δexpλt

λt
. (2.12)

With this new ∆ we can repeat the plot of fig. 2.2, obtaining the plot in the left side

of fig. 2.4. We indeed see a cut at Λ ' 10 TeV for ∆ = 10. All this means that fine-

tuning arguments will always set an upper limit on the acceptable value of Λ, and living near

Veltman’s condition does not raise significantly this upper bound.

The other remark concerns the fact that mh itself (and thus the quartic Higgs coupling, λ)

is not known at present. Therefore the previous results, in particular the left plot in fig. 2.4,

correspond to a future time when mh will be known. For instance, if LEP’s inconclusive
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Figure 2.4: Contour plots of ∆ = 10, 100. Left: with ∆ as defined in eqs. (2.11, 2.12). Right: with ∆ as

defined in eq. (2.13).

evidence for mh ' 115 GeV [4] gets confirmed, then one expects Λ <∼ 1.4 TeV. But at present

one should consider the uncertainty in the Higgs mass and average over all the possible values

of mh, say in the range 115 GeV ≤ mh ≤ 600 GeV. This gives the result of an upper bound of

Λ <∼ 2.5 TeV, shown in the right side of fig. 2.4. This average can be implemented by adding

in quadrature ∆λ to obtain the global fine-tuning,

∆ =
(
∆2

Λ + ∆2
λt

+ ∆2
λ

)1/2
. (2.13)

The corresponding curve for ∆ = 10 is shown in the right plot of fig. 2.4, which corresponds

to the present status of the problem. Λ depends slightly on mh, being always below 4 TeV.

In average we can conclude that Λav <∼ 2.5 TeV from fine-tuning arguments.

As some authors have pointed out [23], it could happen that the New Physics (NP) that

cancels the quadratically divergent corrections is different for the loops involving the top, the

Higgs, etc. In that case, the coefficient Λ in front of eq. (2.1) would be different for each term

inside the parenthesis:

δqm
2 =

3

64π2

[
(3g2 + g′2)Λ2

g + 8λΛ2
h − 8λ2

t Λ
2
t

]
. (2.14)

Then one should consider ∆Λt and ∆Λh
(the most relevant fine-tuning parameters) separately.

Fig. 2.5 shows the contour plots ∆Λt ,∆Λh
= 10 in the {mh,Λ} plane (red and blue dashed

lines). Notice that ∆Λt decreases with increasing mh (or, equivalently, for fixed ∆Λt , the

larger mh, the larger may Λt be). This follows trivially from v2 = −m2/λ and the one-loop
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Figure 2.5: SM contour plots of ∆ = 10 in the {mh, Λ} plane with ∆ = ∆Λt
(red dashed), ∆Λh
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dashed), (∆2
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+ ∆2
Λh

)1/2 (solid green). The black lines show the corresponding contour plots when a single

cut-off, Λ, is used: ∆ = ∆Λ (black dashed), (∆2
Λ + ∆2

Λλ
)1/2 (black solid).

expression for δqm
2, eq. (2.1). Then,

∆Λt '
3λ2

t

4π2

Λ2
t

λv2
=

3λ2
t

2π2

Λ2
t

m2
h

. (2.15)

This fact has been used sometimes to suggest that a heavy Higgs behaves better for natu-

ralness than a light one. A similar reasoning would indicate that ∆Λh
is independent of mh.

However, the actual behaviour is not that. We can see from fig. 2.6 that for larger mh, ∆Λh

increases (especially if Λ is large). This is a consequence of the increase of λ when ran from

mh to the Λ scale (where δqm
2 is evaluated). Due to the RGE of λ, this increase is more

important for larger λ (and thus m2
h). This important feature [24] (sometimes not recognized

in the literature) is lost if δqm
2 is used at the lowest order, as given by eq. (2.1), without

leading log corrections. The combined ∆ = (∆2
Λt

+∆2
Λh

)1/2 is dominated, at large mh, by the

∆Λh
contribution (see the solid green line ∆ = 10 in fig. 2.5). Notice that, although Λt and

Λh are independent parameters, they have been taken to be numerically equal in this figure.

On the other hand, it is perfectly possible that the new physics that cancels the quadratic

divergences associated to the top loops is the same that cancels the Higgs loops. In that

case one should take Λt ∼ Λh. Then, one has to evaluate a single ∆Λ, as in fig. 2.2; the

corresponding contour plot ∆Λ = 10 is shown by the black dashed line in fig. 2.5, and the
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Figure 2.6: Fine-tuning in Λh as a function of the Higgs mass in the SM with three different cut-offs Λ =

3,5 and 10 TeV.

combined ∆ = (∆2
Λ+∆2

λ+∆2
λt

)1/2 = 10 contour plot is shown by the solid black line in fig. 2.5,

where Veltman’s throat has become much less deep, as we have seen in fig. 2.4 (right). In

summary, the solid lines of fig. 2.5 show the degree of fine-tuning of the SM for given {Λ,mh}
under the assumption of independent3 or correlated Λt and Λh cut-offs.

Another possibility is that the cut-offs of all quadratically divergent contributions are

correlated, but not all equal. In that case, Λ2
t = ζΛ2

h with some ζ = O(1) factor of pro-

portionality, which depends on the unknown NP. This should be plugged in eq. (2.1) to

re-evaluate δqm
2 and the fine-tuning ∆. Obviously, varying ζ, even slightly, shifts the value

of λ (and thus of mh) where the approximate cancellation of the quadratic contributions

takes place. Consequently, the position of Veltman’s throat changes, as shown in fig. 2.7,

where the plotted cut-off is always the smallest one. Interestingly, taking a modest ζ = 1/2

the throat is around mh = 150 GeV, with Λ ∼ 3 TeV. In this situation NP could escape

LHC detection with no fine-tuning. It is quite remarkable the way in which correlated, but

slightly different, cut-offs change in a physically significant form the ordinary expectations

about the (approximate) cancellation of the quadratically divergent contributions [which can

3In the case of independent cut-offs the total fine-tuning should also include the ∆λ contribution, but this

does not modify substantially the result.
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mean detection or non-detection of NP at LHC]. In that sense, and as we will see in the next

section, fine-tuning arguments can only be performed reliably when a particular scenario of

NP is assumed.

Finally, let us look at the fine-tuning associated to the Little Hierarchy problem in the

SM: i.e. the fine-tuning for Λ = 10 TeV. Fig. 2.8 shows this fine-tuning, with the value of

∆Λ vs. mh given by the (bottom) black line. As we have seen in fig. 2.2 for Λ = 10 TeV,

“Veltman’s throath” is at mh ∼ 220 GeV. This results in the deep throath of the black line of

fig. 2.8. This throat is cut when the fine-tuning parameter associated to the top mass (∆λt)

is added in quadrature as explained above, giving the (middle) red line. Finally, once the

fine-tuning parameter associated to the Higgs mass itself (∆λ) is included as well, the value

of ∆ is given by the (top) blue line, which thus represents the fine-tuning associated to the

Little Hierarchy problem: 0.4-1 % tuning. Scenarios of new physics that attempt to solve

the Little Hierarchy problem, such as the Little Higgs models, should be able to improve this

situation.
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Figure 2.8: Total fine-tuning as a function of the Higgs mass in the SM with a cut-off Λ = 10 TeV. This

can be considered as the fine-tuning of the Little Hierarchy problem in the SM. Different curves correspond to

progressively more sophisticated definitions of ∆ (from black [bottom line] to red to blue [top line], see text

for details).

2.3 Limitations of the use of the hierarchy problem to esti-

mate the scale of New Physics

Besides the previous remarks about the shape of Veltman’s throat, there are more general

caveats about using the hierarchy problem to estimate the scale of New Physics (NP) [15].

The “Hierarchy problem” argument implicitly assumes that the quadratically divergent

contributions evaluated in the effective theory below Λ (i.e. the SM in this case) remain

uncancelled (except for artificial tunings or fortunate accidents) and the job of new physics is

to cancel the dangerous contributions of the SM diagrams for momenta above Λ. However, the

effects of new physics do not enter in such an abrupt and sharp way, and the new diagrams give

non-negligible contribution already below Λ, and do not cancel exactly the SM contributions

above Λ [25]. This is what happens with the finite and logarithmic contributions from NP,

which are not simply given by the SM divergent part cut off at the scale Λ.

We can just look at the Minimal Supersymmetric Standard Model (MSSM), where the

cancellation of quadratically divergent contributions between the SM particles and their su-

perpartners takes place at all scales. Due to this fact, Veltman’s condition in this case is

irrelevant for establishing the value of Λ. In SUSY the quadratically-divergent contributions

to m2 are cancelled anyway, with or without Veltman’s condition, but there are dangerous
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Figure 2.9: Schematic representation of the spectra associated to the various scales of the theory: Standard

Model (SM), New Physics (NP) beyond the Standard Model and the high energy cut-off.

logarithmic and finite contributions from new physics, which do not cancel (in principle), and

are totally unrelated to Veltman’s condition.

We can generalized this argument in a straightforward way. For this we write the general

one-loop effective potential using a momentum cut-off regularization, V = V0 +V1 + · · · , with

V0 =
1

2
m2h2 +

1

4
λh4 , (2.16)

V1 =
1

64π2
Str

[
2Λ2M2 + M4

(
log

M2

Λ2
− 1

2

)]
+ O

(M6

Λ2

)
, (2.17)

where h is the (real and neutral) Higgs field, the supertrace Str counts degrees of freedom

with a minus sign for fermions, and M2 is the (tree-level, h−dependent) mass-squared matrix.

The one-loop contribution to the Higgs mass parameter is

δm2 =
∂2V1

∂h2

∣∣∣∣
h=0

=
1

32π2
Str

[
∂2M2

∂h2

(
Λ2 + M2 log

M2

Λ2

)
+

(
∂M2

∂h

)2(
log

M2

Λ2
+ 1

)]

h=0

. (2.18)
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The supertraces can be written as sums over the SM states and the new physics states

separately, with the masses of the lightest new physics states acting as the effective SM cut-

off, Λ. However, since the new physics may not be the fundamental theory, we should consider

the possible existence of a High-Energy cut-off, ΛHE
4. This is schematically represented in

fig. 2.9. And the separation in the supertraces is given by

δm2 =
1

32π2

SM∑

a

Na

[
∂2m2

a

∂h2

(
Λ2 + m2

a log
m2

a

Λ2

)]

h=0

+
1

32π2

NP∑

b

Nb

[
∂2m2

b

∂h2

(
Λ2 + m2

b log
m2

b

Λ2

)
+

(
∂m2

b

∂h

)2(
log

m2
b

Λ2
+ 1

)]

h=0

, (2.19)

where ma, Na (mb, Nb) represent the mass and multiplicity, with negative sign for fermions,

of the SM (NP) states, and Λ ≡ ΛHE. From the SM contributions only the quadratically

divergent ones are dangerous. The other terms are vanishing, except for the contribution of

the Higgs field itself, which is not large. On the other hand, all NP contributions (quadratic,

logarithmic and finite) are potentially dangerous. Now, we can consider several situations

that might take place:

i) There are no special cancellations among the different contributions in eq. (2.19). In that

case the Hierarchy argument, based on the size of the quadratic contributions, and the

corresponding bound Λ <∼ 2− 3 TeV, apply. The argument is clearly a conservative one

due to the presence of extra contributions, which are discussed below.

ii) We are close to the Veltman’s condition., i.e. the SM quadratically divergent contribu-

tions cancel (maybe approximately) by themselves. This situation was discussed in the

previous section and there we concluded that, in the absence of a fundamental reason

for the exact cancellation, one expects NP not far from the TeV scale from fine-tuning

arguments. However, the new states of the second line of eq. (2.19) re-introduce a new

fine-tuning problem, which is the situation discussed in the next points.

4In this argument we are assuming that the four-dimensional scalar Higgs field continues to be a funda-

mental degree of freedom up to the High-Energy cut-off. This set-up can change if, above Λ, the Higgs shows

up as a composite field and/or new space-time dimensions open up. However one might expect that the new

degrees of freedom would play a similar role as the NP states considered here, so that the conclusions might

not differ substantially.
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iii) The SM and NP quadratically divergent contributions cancel each other, i.e.

SM∑

a

Na
∂2m2

a

∂h2

∣∣∣∣
h=0

+

NP∑

b

Nb
∂2m2

b

∂h2

∣∣∣∣
h=0

= 0 . (2.20)

This is the case of SUSY and Little-Higgs models. But, again, the logarithmic and

finite NP contributions in eq. (2.19) remain uncancelled and give another fine-tuning

problem. Notice also that these contributions (unlike the quadratic ones) show up in

any regularization scheme, differing only in the value of the finite pieces. In the MS

scheme these contributions are

δMS
NP m2 =

NP∑

b

Nb

32π2

[
∂2m2

b

∂h2
m2

b

(
log

m2
b

Q2
− 1

)
+

(
∂m2

b

∂h

)2

log
m2

b

Q2

]

h=0

, (2.21)

where Q is the renormalization scale, to be identified with the cut-off scale, Λ. Quantita-

tively, these contributions are of the same magnitude as the SM quadratically-divergent

one, replacing Λ → mb ≡ ΛSM. This gives the basis for the estimate of the “naive” Hier-

archy argument discussed previously. However, new parameters not present in the SM

might enter through the mb masses and, moreover, the presence of the logarithmically-

enhanced terms makes the new contributions typically more dangerous than the SM es-

timate (as happens for instance in the supersymmetric case commented above). Hence,

from fine-tuning arguments we can keep mb ≡ ΛSM
<∼ 2 − 3 TeV, as a conservative

bound.

Of course, if the new physics is itself an effective theory derived from a more funda-

mental one, further extra states [which could have O(Mp) masses] would be even more

dangerous, unless their contributions are under control for some reason. The only clear

example of this desirable property occurs when the theory is supersymmetric.

iv) It may happen that, besides the cancellation of quadratic contributions, the other dan-

gerous contributions also cancel or are absent. In the MS scheme this means that

eq. (2.21) vanishes. This could happen by accident or for some fundamental reason,

allowing the scale of new physics to be much larger than a few TeV. But, unluckily, not

such fundamental reason has been formulated yet. In its absence, one has to average

over the possible ranges of variation of the parameters defining the new physics (e.g.

the soft masses for the MSSM). In this way the usual result Λ <∼ 2−3 TeV is generically

recovered.

However, one should not disregard completely the possibility that unknown fundamental

physics is smart enough to implement naturally a cancellation like that of eq. (2.21),
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as SUSY does with quadratic divergences. In that case Λ could be very large and any

fine-tuning argument would be inappropriate.

In sum, what we can conclude is that the consideration of the SM quadratically-divergent

contribution in order to estimate the scale of new physics works reasonably well in most

cases. Because this procedure neglects unknown contributions, it is a conservative one but,

because of the same reason, we cannot make more detailed statements. In order to derive

more accurate implications for new physics from fine-tuning arguments, one should consider

specific examples of physics beyond the SM.

2.4 Conclusions

In this chapter we have re-examined the use of the Hierarchy Problem of the SM to esti-

mate the scale of New Physics (NP). The common argument is based on the size of the

quadratically-divergent contributions to the squared Higgs mass parameter, m2. Treating

the SM as an effective theory valid below Λ, and imposing that those contributions are not

much larger than m2 itself, one obtains Λ <∼ 2 − 3 TeV.

Because this argument predicts the scale of NP to be in the range of detection of future

high energy colliders (such as the LHC at CERN), the future prospects for particle physics,

both experimental and theoretical, are optimistic about the possibility of finding NP in the

next years.

It has been argued in the literature [14] that, if mh lies (presumably by accident) close to

the value that cancels the quadratic contributions (i.e. the famous Veltman’s condition), Λ

could be much larger. However, we have shown with a rigorous fine-tuning evaluation (which

should include the sensitivity to the top Yukawa coupling and the Higgs self-coupling) that

this is not the case at present and, in average, the upper bound of Λ <∼ 2 − 3 TeV is still

kept [15].

We have also studied the case where the scale of NP that cancels the SM quadratic

divergences is different for the loops involving the top, the Higgs, etc. Then, when the cut-

offs are considered separately and analyzing the fine-tuning in the most relevant parametes

(i.e., the cut-off on the momenta of virtual top quarks, Λt, and the one for virtual Higgses,

Λh), we have seen that the total fine-tuning is typically a bit stronger than in the case of an

unique cut-off. It could also happen that the cut-offs are not equal but correlated. In that

situation, the Veltman’s condition is satisfied for different mh depending on the correlation
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factor, and this shows that the use of the hierarchy problem to estimate the scale of New

Physics should be done carefully.

As pointed above, the use of “Hierarchy problem” to estimate the scale of NP has its limi-

tations. Its reasoning is arguably too naive, as it implicitly assumes that the SM quadratically

divergent contributions, cut off at Λ, remain uncancelled by the effect of NP, except for ac-

cidents or artificial tunings. However, the NP diagrams give a non-negligible contribution

already below Λ, and do not cancel exactly the SM contributions above Λ. Remnants of this

imperfect cancellation are finite and logarithmic contributions from NP, which are not simply

given by the SM divergent part cut off at Λ. The general analysis presented here, based on

a model-independent study of the one-loop effective potential, shows that, quantitatively,

these contributions are typically more dangerous than the estimate of the “naive” Hierarchy

argument, where these contributions were neglected. Therefore, Λ <∼ 2 − 3 TeV is indeed

a conservative bound. In conclusion, the consideration of the SM quadratically-divergent

contribution in order to estimate the scale of new physics works reasonably well in most

cases.



Chapter 3

Modified Higgs Sectors

There are a number of reasons to consider possible modifications of the minimal Higgs sector

of the Standard Model. The first one is the “Little Hierarchy” problem. Second, one should

be prepared to interpret the possible situation in which no new physics is found at LHC, apart

from the Higgs boson, in spite of the naturalness “Big Hierarchy” argument based on the

SM Higgs sector. Finally, it could happen that the Higgs found at LHC is beyond the range

consistent with electroweak precision test (EWPT), i.e. mh ≥ 220 GeV. Both situations

can be interpreted in the SM as an effective theory, where the effects of New Physics are

parametrized by higher order operators, but below the effective scale the spectrum of the

theory is the SM one [24]. But they can also suggest some modification to the ordinary SM

Higgs sector.

One of the simplest modifications of the SM Higgs sector one can think is to add a extra

Higgs doublet, giving us a two Higgs doublet model (2HDM) [9, 26]. These 2HDMs, in a

suitable setting, could raise the expected scale of new physics above the LHC reach or they

could give a heavy Higgs consistent with EWPT [21, 22, 23]. We consider in this chapter three

specific settings proposed in the literature and their properties from fine-tuning arguments.

3.1 Two Higgs Doublet Model (2HDM) description

Here we consider a generic scenario where the Higgs sector consists of two SU(2)L doublets

of opposite hypercharge, H1 and H2 [9, 26]. The most general Higgs potential for such two

Higgs doublet models (2HDM) is, at tree-level:

33
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V = m2
1|H1|2 + m2

2|H2|2 −
[
m2

3H1 · H2 + h.c.
]

+
1

2
λ1|H1|4 +

1

2
λ2|H2|4 + λ3|H1|2|H2|2 + λ4|H1 · H2|2

+

[
1

2
λ5(H1 · H2)

2 + λ6|H1|2H1 · H2 + λ7|H2|2H1 · H2 + h.c.

]
. (3.1)

In most discussions of 2HDMs, the terms proportional to λ6 and λ7 are absent. This can be

implemented by imposing a discrete symmetry H1 → −H1 on the model. Such a symmetry

would also require m3 = 0 unless we allow a soft violation of this discrete symmetry by

dimension-two terms. The fields will develop non-zero vacuum expectation values (vevs) if

the mass matrix m2
ij has at the origin at least one negative eigenvalue. Assuming that CP

invariance and U(1)EM gauge symmetry are not spontaneously broken, the minimum of the

potential is

〈H1〉 =

(
0

v1/
√

2

)
, 〈H2〉 =

(
0

v2/
√

2

)
, (3.2)

where the vi can be chosen real. The vevs have been normalized so that M 2
W = 1

4g2(v2
1 + v2

2).

We introduce the following notation:

v2 = v2
1 + v2

2 , tan β = v2/v1, (3.3)

with v = 246 GeV. From the original eight scalar degrees of freedom, three Goldstone bosons

are “eaten” by the W± and Z. The remaining five physical Higgs particles are two CP-even

scalars (h0 and H0 with mh0 ≤ mH0), one CP-odd scalar (A0) and a charged Higgs pair

(H±). The mass parameters m2
1 and m2

2 can be eliminated by the minimization of the scalar

potential,

m2
1 − m2

3

v2

v1
+

1

2
(λ1v

2
1 + λ̃v2

2 + 3λ6v1v2 + λ7
v3
2

v1
) = 0,

m2
2 − m2

3

v1

v2
+

1

2
(λ2v

2
2 + λ̃v2

1 + 3λ7v1v2 + λ6
v3
1

v3
) = 0, (3.4)

where λ̃ = λ3 + λ4 + λ5. After minimization, the resulting squared masses for the CP-odd

and the charged Higgs states are

m2
A0 =

m2
3

sinβ cos β
− 1

2
v2(2λ5 + λ6 tan β−1 + λ7 tan β),

m2
H± =

m2
3

sinβ cos β
− 1

2
v2(λ4 + λ5 + λ6 tan β−1 + λ7 tanβ) . (3.5)
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The two CP-even Higgs states mix according to the following squared mass matrix:

M2
H0 = m2

3

(
tβ −1

−1 t−1
β

)

+
1

2
v2sβcβ

(
2λ1t

−1
β + 3λ6 − λ7t

2
β 2λ̃ + 3(λ6t

−1
β + λ7tβ)

2λ̃ + 3(λ6t
−1
β + λ7tβ) 2λ2tβ + 3λ7 − λ6t

−2
β

)
, (3.6)

where sβ = sinβ, cβ = cos β and tβ = tanβ. The corresponding mass eigenvalues are

m2
H0,h0 =

1

2
[M11 + M22 ±

√
(M11 −M22)2 + 4M2

12], (3.7)

and the mixing angle α is obtained from

cos 2α =
M11 −M22√

(M11 −M22)2 + 4M2
12

, (3.8)

sin 2α =
2M12√

(M11 −M22)2 + 4M2
12

. (3.9)

In the case of a non-supersymmetric 2HDM, the mass parameters m2
1 and m2

2 receive

quadratically divergent contributions. We obtain these corrections in the same way as in the

SM case, but now the Higgs sector is slighty more complicated. The quadratically divergent

radiative corrections in the effective potential at one-loop are:

δqV =
Λ2

32π2
Str[M2], (3.10)

where the supertrace Str counts degrees of freedom with a minus sign for fermions and M2 is

the (tree-level, higgs-dependent) mass-squared matrix (note that in the 2HDM all the mass

matrices for the Higgs sector must be taken in account). We must be careful to compute the

corrections before the minimization. Assuming that H1 (H2) couples exclusively to down-

type (up-type) fermions 1, then, the quadratically divergent corrections to m2
1 and m2

2 in

2HDM are given by:

δqm
2
1 =

3Λ2

64π2

{
(3g2 + g′2) + 4λ1 +

4

3
(2λ3 + λ4)

}
,

δqm
2
2 =

3Λ2

64π2

{
(3g2 + g′2) + 4λ2 +

4

3
(2λ3 + λ4) − 8λ2

t

}
. (3.11)

In the next non-supersymmetric 2HDMs, the way to evaluate the fine-tuning is as in (2.8),

but in this case, because there are two mass parameters that receive quadratically divergent

1In the specific settings we are going to study, the Higgs-fermion interactions are different in each case,

giving rise to different quadratically divergent corrections from the top-loop contribution.
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corrections, the two fine-tunings associated to the two mass parameters must be considered:

∣∣∣∆(m1)
pi

∣∣∣ '
∣∣∣∣

pi

δpi

∣∣∣∣
∣∣∣∣
δ{δqm

2
1}

m2
1

∣∣∣∣
Λ

,
∣∣∣∆(m2)

pi

∣∣∣ '
∣∣∣∣

pi

δpi

∣∣∣∣
∣∣∣∣
δ{δqm

2
2}

m2
2

∣∣∣∣
Λ

. (3.12)

The Renormalization Group Equations (RGEs) in this 2HDM are given in Appendix A.

3.2 The Inert Doublet Model

This model has been presented in [23] with the general aim of improving the naturalness of

the SM by raising the Higgs mass, mh. This must be done preserving perturbativity and

consistency with electroweak precision test (EWPT), and, in this particular case, it has been

done in a way as economical as possible. The model, called the “Inert Doublet Model” (IDM),

is a particular 2HDM with parity

H2 → −H2 , (3.13)

while H1 and the other fields are invariant. This imposes natural flavor conservation and

makes H1 the only Higgs field coupled to matter 2. The scalar potential is

V = m2
1|H1|2 + m2

2|H2|2 +
λ1

2
|H1|4 +

λ2

2
|H2|4 + λ3|H1|2|H2|2

+ λ4|H†
1H2|2 +

λ5

2
[(H†

1H2)
2 + h.c.] . (3.14)

The next assumption is that the parameters of the potential are such that only H1 acquires

a vev. The doublet H1 is identified as the SM Higgs doublet and H2 does not couple to

fermions and does not get a vev (thus the name “inert doublet”) but it couples through weak

and quartic interactions, playing an active role for EWPT. The Higgs vev, v =
√

2〈H1〉 is

given by

v2 = −2m2
1

λ1
. (3.15)

Parametrizing

H1 =

(
φ+

(v + h + iχ)/
√

2

)
, H2 =

(
H+

S + (h + iA)/
√

2

)
, (3.16)

where φ+, χ are Goldstones, h is the SM-like Higgs and H+, S and A are a charged, scalar

and pseudoscalar extra Higgs states, the corresponding masses are

m2
h = λ1v

2

m2
I = m2

2 + λIv
2, I = {H,S,A}, (3.17)

2We can still use the formulas of previous section and appendix A by reversing the usual roles of H1 and H2.
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with

λH = λ3

λS = λ3 + λ4 + λ5

λA = λ3 + λ4 − λ5. (3.18)

As mentioned above, this model is conceived to accommodate a heavy SM-like Higgs,

mh ' 400 − 600 GeV, consistent with the EWPT, particularly with the experimental T

parameter (T exp ' 0.1 ± 0.15). The Higgs mass induces a contribution to T :

T ' − 3

8πc2
ln

mh

MZ
, (3.19)

which for mh = 400 GeV is excluded at 99.9% C.L. However, the inert doublet induces an

additional contribution [23]

∆T ' 1

12π2αv2
(mH − mA)(mH − mS), (3.20)

which compensates the too negative contribution of eq. (3.19) if ∆T ' 0.25 ± 0.1. This

typically requires mH > mA,mS , with

(mH − mA)(mH − mS) = M2, M = 120+20
−30 GeV . (3.21)

Besides this, there are additional constraints to ensure the stability of the vacuum and

the perturbativity of the λi couplings [23]. First, we assume that the potential of eq. (3.14)

is bounded from below, which happens if and only if

λ1,2 > 0; λL ≡ λ3 + λ4 − |λ5| > −(λ1λ2)
1/2. (3.22)

Under this assumption, the minimum is stable and global, as long as all masses squared

are positive. Since the inert parity, eq. (3.13), is unbroken, the lightest inert particle (LIP)

will be stable.

Of the two dimensionless couplings, λ2 only affects the self-interactions between the inert

particles. To avoid additional problems with perturbativity, we assume that it is quite small,

λ2 . 1 . (3.23)

The perturbativity of the other couplings can be derived from their RGEs 3, in such a way

that no coupling becomes stronger (i.e., it does not grow by 30% from its value in the IR).

3We can use the RGEs of Appendix A, taking into account that now it is H1 the one that couples to the

top.
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From these requirements, we get the constraint [23]

|2λ3(λ3 + λ4) + λ2
4 + λ2

5| . 50. (3.24)

Between the two possibilities that satisfy this contraint, the one that lead to ∆T > 0 (as

needed to compensate for the heavy Higgs) is chosen. This choice is that |λ4| becomes large,

while λ5 stays relatively small. Then, from vacuum stability, eq. (3.22), λ3 must also become

large, λ3 & |λ4|. This way we get

|λ4| . λ3 . 7 (λ4 < 0, λ5 small). (3.25)

This model represents an interesting example of how to interpret the possible detection

of a heavy Higgs in LHC. On the other hand, the authors of the model [23] stress that the

heavy Higgs mass relaxes the SM Hierarchy Problem, since it allows a larger Λt. The price

would be that the New Physics (NP) responsible for the cancellation of the SM quadratic

divergences could escape LHC (though we could observe a modified Higgs sector). We would

like to discuss this last aspect here. As shown in sect. 2 of chapter 2 (fig. 2.6), a large mh does

not necessarily imply less fine-tuning. In the SM context, although ∆Λt decreases with mh,

∆Λh
increases (as a result of the increasing of the Higgs self-coupling at Λ) and eventually

dominates the total fine-tuning. This happened because of the RG increasing of λ from mh

to Λ, where the quadratic radiative correction δqm
2 to the Higgs mass parameter is to be

computed. In the present case something similar is likely to take place. From eq. (3.15) the

relevant mass parameter for EW breaking is m2
1, which receives the quadratically-divergent

radiative correction

δqm
2
1 =

3

64π2

{
−8λ2

t Λ
2
t + (3g2 + g′2)Λ2

g + 4λ1Λ
2
H1

+
4

3
(2λ3 + λ4)Λ

2
H2

}
, (3.26)

where, following the assumption of the authors of ref.[23], we have allowed independent cut-

offs for the various contributions. Eq. (3.26) has a structure very similar to the SM equation

(2.1), with the role of λ played by λ1. The two main differences are the presence of the ∝ Λ2
H2

term and the RGE for λ1:

dλ1

d lnµ2
=

1

16π2

(
6λ2

1 + 2λ2
3 + 2λ3λ4 + λ2

4 + λ2
5 + ...

)
. (3.27)

The first term in this RGE is as in the SM, but the additional terms cause λ1 to grow with

the scale more quickly than λ in the SM. Both differences contribute to a larger fine-tuning

than in the SM for a given mh (although, of course, the EWPT are now under control). The

best case for both effects will occur for small λ3,4,5. On the other hand, the λi couplings cannot



3.2 The Inert Doublet Model 39

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

Λ (TeV)

∆

m  = 400
hm  = 600 h

m  =
 11

5 (
SM

)

h

m  = 400h

m  = 210 (SM)

h

L(m  = 150)

∆=(∆   + ∆   )Λ λi i
2 2 1/2

Figure 3.1: Total fine-tuning, ∆ versus the cut-off Λ in the Inert Doublet Model (see text) for mh = 400

and 600 GeV using mL = mh GeV, ∆m = 50 GeV (red and green solid lines); and mh = 400 GeV using

mL = 150 GeV, ∆m = 50 GeV (purple dotted). The dashed black lines show the total SM fine-tuning for

mh = 115 GeV, 210 GeV, using uncorrelated cut-offs.

be chosen at will. They have to be consistent with the desired ∆T and the perturbativity

constraints explained above. It is useful to have a parametrization in terms of the masses

of the two neutral inert particles, mL for the lightest and mNL for the next-to-lightest. We

consider the general case when ∆m = mNL − mL can be sizeable. The charged scalar is

always heavier than both neutrals, and using eq. (3.21), we have

mH − mNL =

√
M2 +

(∆m)2

4
− ∆m

2
. (3.28)

The couplings λ4,5 can be also expressed via mL,mNL using eq. (3.28) and eq. (3.17), giving

λ4 = − 2

v2

(
M2 + (mL + mNL)

√
M2 +

(∆m)2

4

)
< 0

|λ5| =
m2

NL − m2
L

v2
< |λ4|. (3.29)

The sign of λ5 depends on whether it is the scalar S or the pseudoscalar A which is the

heavier. The coupling λ3 (or λL ≡ λ3 +λ4 − |λ5|) is the only free parameter and it should be

chosen in agreement with the perturbativity, naturalness and vacuum stability constraints.
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Figure 3.2: Same as fig. 3.1, but now using a unique cut-off, Λ, in both cases, the IDM and the SM.

Being more rigourous in the fine-tuning analysis of this model, we must compare with

the one of the SM following the steps of sect. 2.2. Fig. 3.1 shows the total fine-tuning

∆ = (
∑

a=t,H1,H2
∆2

Λa
+
∑

i=1,3,4 ∆2
λi

)1/2 versus the cut-off Λ (for simplicity we show the

results when the cut-offs are numerically equal) for mh = 400 and 600 GeV (red and green

solid lines) with mL = mh GeV, ∆m = 50 GeV and λL = −0.5. Notice that the mh = 400

GeV behaves better, as we expected from our previous arguments (but not in [23]). The

purple dotted line corresponds to mh = 400 GeV, mL = 150 GeV, ∆m = 50 GeV and

λL = −0.5. This is a case which leads to small λ3,4,5, and the fine-tuning is sensibly smaller,

in agreement with the above discussion. Hence, this line is close to the optimal situation in

this scenario. In any case, it is clear that to reach Λ > 2 TeV requires a substantial (∆ > 10)

fine-tuning. To see if this situation improves the SM one, we have plotted the SM fine-tuning

∆ = (∆2
Λt

+ ∆2
Λλ

+ ∆2
λ)1/2 for the lower and upper bounds mh = 115 GeV, 210 GeV (dashed

black lines). Clearly, the situation of the IDM can be hardly considered as an improvement

in naturalness, especially if the SM Higgs is close to its experimental upper bound. This

conclusion is strengthened if one assumes a universal cut-off for all the contributions in δqm
2

and δqm
2
1

4. The corresponding fine-tuning curves are shown in fig. 3.2, where the SM (for

mh not far from 200 GeV) is in a much better position, even if the optimal choice (mL = 150

4As discussed in sect.2.2 this is a perfectly reasonable situation.
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Figure 3.3: IDM contour plots of ∆ = 10 in the {mL, Λ} plane with ∆ = ∆(m1), ∆(m2) (solid blue). The

red dashed line shows the limit of perturbativity (λ1 = 4π).

GeV, ∆m = 50 GeV) is used for the IDM.

Our conclusion at this point is therefore that the IDM offers an appealing explanation for

an hypothetical detection of a heavy Higgs. However, it does not improve the naturalness of

the SM with respect to quadratic radiative corrections. This conclusion is softened if i) one

assumes independent cut-offs, or ii) if one requires ∆ to be O(1). Notice that in the latter

case Λ is smaller, and thus the effect of the RG running on ∆ΛH
(which is harmful for the

fine-tuning) is less important. Both assumptions were taken in ref.[23], which also diminishes

the error introduced in their estimate by ignoring the RG running of δqm
2
1. However, we

find that requiring ∆ = 1 is excessively severe, especially taking into account that a small Λ

generically leads to problems with EWPT.

The δqm
2
1 contribution is not the only source of potential fine-tuning in the IDM: δqm

2
2

can be also the source of an (independent) fine-tuning , being

δqm
2
2 =

3Λ2

64π2

{
(3g2 + g′2) + 4λ2 +

4

3
(2λ3 + λ4)

}
. (3.30)

Let us call the corresponding fine-tunings ∆(m1) and ∆(m2). Notice from eq. (3.17) that

a small mL (the optimal situation for ∆(m1)) typically requires small m2
2. Then a large

δqm
2
2 would make this possibility somewhat unnatural. Fig. 3.3 shows ∆(m2) (evaluated in
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a fashion similar to ∆(m1)) as a function of mL for a representative case (mh = 400 GeV,

∆m = 50 GeV, λL = −0.5). We have also plotted the perturbativity limit, defined as the

scale, ΛNon−P, beyond which λ1 ≥ 4π. As expected, ∆(m2) increases for smaller mL (i.e. the

cut-off of ∆=10 is smaller for smaller mL ), which balances the behaviour of ∆(m1). In fact

one should multiply both fine-tunings, as they correspond to different quantities, but, even

if one does not, it is clear that the improvement gained in ∆(m1) by going to small mL is lost

by this additional source of fine-tuning in m2.

From the previous discussion we finally conclude that i) although the IDM model is very

interesting, it does not improve the naturalness of the SM; ii) the structure of the model

requires additional fine-tunings in m2
2 of a size similar to that required for a correct EW

breaking (i.e. the tuning associated to m2
1). This fact is ordinarily present in models with

a structure more complicated than the SM. Normally intricacy is penalized in naturalness

estimates (which is somehow satisfactory). This happens e.g. in Little Higgs Models [27] and

also here, though in a less dramatic way. Therefore the possibility that the NP responsible

for the cancellation of the dangerous quadratic divergences could escape LHC detection is

similar in the IDM and in the SM. In the IDM case, however, a Higgs sector different from

the SM one would be observed.

3.3 The Barbieri-Hall Model

This model, presented in [22], consists of another particular version of the 2HDM aimed at

improving the naturalness of the SM. The idea here was to maintain the lightest (SM-like)

Higgs within the SM experimental range (mh
<∼ 220 GeV), but coupling the top mainly to

the heaviest Higgs, so that ∆Λt can be much smaller than in the SM.

The Higgs potential has the form of eq. (3.14), but now the various parameters are chosen

so that both H1 and H2 get vevs: 〈Hi〉 = vi/
√

2, with v2
1 + v2

2 = (246 GeV)2. More precisely,

the minimization conditions read

m2
1 +

λ1

2
v2
1 +

λ̃

2
v2
2 = 0,

m2
2 +

λ2

2
v2
2 +

λ̃

2
v2
1 = 0, (3.31)

where λ̃ = λ3 + λ4 + λ5. In addition a discrete symmetry is imposed so that only H2 couples

to the up-quarks, in particular to the top quark. The squared mass matrix for the two neutral
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Higgs bosons is (
λ1v

2
1 λ̃v1v2

λ̃v1v2 λ2v
2
2

)
(3.32)

Assuming that the 22 entry is the largest and the off-diagonal entry is small, the two mass

eigenvalues m2
± are

m2
+ ' λ2v

2
2 , m2

− '
(

λ1 +
λ̃

λ2

)
v2
1 . (3.33)

The important point is that, in this case, the lightest and the heaviest neutral Higgs

bosons are mainly along the h1 and h2 directions respectively: h− = cos α h1 − sinα h2,

h+ = cos α h2 + sinα h1, with a small mixing angle:

α ' λ̃

λ2 tan β
, (3.34)

where tan β = v2/v1. Therefore the lightest Higgs, h−, has almost no coupling to the up-

quarks, and in particular to the top. The quadratically divergent corrections to the m2
i mass

parameters are

δqm
2
1 =

3Λ2

64π2

{
(3g2 + g′2) + 4λ1 +

4

3
(2λ3 + λ4)

}
,

δqm
2
2 =

3Λ2

64π2

{
(3g2 + g′2) + 4λ2 +

4

3
(2λ3 + λ4) − 8λ2

t

}
, (3.35)

where we have taken a universal cut-off for simplicity, but each term can be multiplied by a

different cut-off if desired. It is explicit from eq. (3.35) that the λt coupling only introduces

corrections to m2
2.

Before analyzing the naturalness of this model, we see how large can be m+ from EWPT.

We must consider the contributions of the scalars to the S and T parameters [28]. Approxi-

mating β − α by β because α is small, EWPT give the following constraint:

m+ < m−

(
mEW

m−

) 1
sin2 β

, (3.36)

where mEW is the present upper bound on the SM Higgs mass from EWPT for the SM (i.e.

186-219 GeV [4]). Then, if m− < mEW , the bound on m+ gets exponentially relaxed as sinβ

is reduced, but v2 cannot be reduced too much as we have assumed that λ2v
2
2 is the largest

term in the Higgs boson mass matrix, so that reducing v2 leads to a large λ2 beyond its

perturbativity limit (λ2
<∼ 4π). With these considerations, for m− close to the direct search

limit of 115 GeV, a value of sinβ = 0.6—0.7 is sufficient to raise the bound on m+ to near a

TeV.
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Let us focus for the moment on the impact of δqm
2
2 on the fine-tuning issue, as the authors

of [22] do. From eqs. (3.31) and the smallness of α, we see that v2
2 = v2 sin2 β ' (−2m2

2/λ2).

So, the fine-tuning associated to Λt is given by

∆Λt '
3λ2

t

2π2

Λ2
t

λ2v2
2

=
3λ2

t

2π2

Λ2
t

m2
+

. (3.37)

Hence, ∆Λt is suppressed for large m+, even if the SM-like Higgs, h−, is light. This trick

was used in [22] to push Λt to quite high values: taking m+ ' 500 − 1000 GeV (consistent

with EWPT as we have seen in the last paragraph), Λt can be as large as 2 TeV, even if one

demands ∆Λt ≤ 1.

The previous analysis, however, does not take into account the running of λ2 (which is

very important due to the large size assumed for m+) and the other couplings. As we have

seen in the SM [see sect.2.2], the RG increase of λ2 from m+ to Λ enhances the corresponding

contribution to δqm
2
2, and thus the value of ∆ΛH2

(not considered in [22]). And it is this fine-

tuning which puts the strongest constraint on the scale of NP. Actually, λ2 eventually reaches

a Landau Pole and, at a slightly lower scale, ΛNon−P, it gets non-perturbative values, say

λ2 ≥ 4π. Beyond ΛNon−P the model enters a strong-coupling regime. This sets a peturbativity

limit on Λ that, for some choices of the parameters, is even below the previous estimates of Λt.

In any case, the cut-off scale can be determined as the one which produces a total fine-tuning

∆ ≤ 10 (or any other sensible value).

Of course, the effect of the RGE (see App.A) for λ2 depends on the values of other

couplings, especially on λ3,4,5. Explicitly,

dλ2

d ln µ2
=

1

16π2

[
6λ2

2 + λ2
3 + (λ3 + λ4)

2 + λ2
5 + ...

]
. (3.38)

Notice that the extra couplings always contribute to strengthen the RG increase of λ2, so a

good choice for fine-tuning purposes is to minimize their effect by taking their values as small

as possible, which also minimizes the quadratically-divergent corrections, δqm
2
1,2, as given by

eqs.(3.35). Taking into account that the masses of the charged and the pseudoscalar Higgs

[see eq. (3.5)], given in this case by

m2
H+ = −(λ4 + λ5)

v2

2
m2

A0 = −λ5v
2, (3.39)

it seems that λ3 = λ4 = 0 can be an optimal choice. Then λ5 must be negative, with a lower

bound (in absolute size) given by the lower bound on mH+. For tan β = 0.8 − 1 (which is
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Figure 3.4: Contour plots of ∆ = 10 (with ∆ = ∆(m1), ∆(m2)) in the {mL, Λ} plane for the BH Model with

λ3 = λ4 = 0 (solid blue). The ΛNon−P (red dashed) line gives the perturbativity limit (λ2 = 4π). The vertical

(pink dashed) line corresponds to the upper limit on m+ (at 95% C.L.) from EWPT.

the preferred range to be consistent with EWPT as we have seen above [22]), this bound is

about 200 − 250 GeV.

Using a unique cut-off, Λt ≡ ΛHi ≡ Λ, the corresponding fine-tuning for m− = 115 GeV

is shown in fig. 3.4 as the contour plot ∆(m2) =
[
(∆

(m2)
Λ )2 +

∑5
i=1(∆

(m2)
λi

)2
]1/2

= 10 in the

{m+,Λ} plane. The perturbativity limit, ΛNon−P, is also represented. The origin of the lower

bound m+ > 310 GeV visible in fig. 3.4 is the following. For tan β = 1 and a given value of

m2
− [i.e. (115 GeV)2 in this figure], the minimal value of m2

+ occurs for λ2 = λ1, and |λ̃| as

small as possible. More precisely

(m2
+)min = m2

− + |λ̃|v2 = m2
− + 2m2

H+ , (3.40)

where we have used λ3 = λ4 = 0 and eq. (3.39). Then, using mH+ ≥ 200 − 250 GeV, we

get the above lower bound on m2
+. Besides this lower bound, there is the upper bound from

EWPT [see eq. (3.36)], represented as well in the figure. For comparative purposes we show

in the same figure the naturalness cut-off of the SM for the same Higgs mass (see solid green

line of fig. 2.5).

Clearly, no substantial improvement is gained with respect to the SM. The only improve-

ment of this model is that Λt can be much higher than usual, as it is clear from eq. (3.37).
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Figure 3.5: The same as fig. 3.4, but using λ4 = 0, λ̃ = 0. The two pink dashed lines correspond to the m+

upper bounds from EWPT.

Actually, it is clear from fig. 3.4 that, although ∆(m2) increases with m+, the fine-tuning

associated to m2
1, i.e. ∆(m1), goes the opposite way. The situation is similar to that in the

IDM (see fig. 3.3) reversing the behaviours of ∆(m1) and ∆(m2) : the improvement gained in

∆(m2) by going to small m+ is counterbalanced by the ∆(m1) fine-tuning. Again, we should

multiply both fine-tunings, but even if we do not (i.e. if we are conservative) it is clear again

how models with more structure are penalized in naturalness considerations.

In order to relax the lower bound on m+, one can prove to change the λ3 = λ4 = 0

assumption. A convenient procedure is to keep λ4 = 0 and adjust λ3 to get λ̃ = 0. The

result is shown in fig. 3.5, where a kind of Veltman’s cancellation is found around m+ ∼ 180

GeV. But once more is clear that the improvement gained in ∆(m2) by going to small m+ is

counterbalanced by the ∆(m1) fine-tuning.

Finally, one can calculate the fine-tuning using uncorrelated Λt and ΛHi cut-offs. This

does not improve the naturalness since the accidental cancellation in ∆(m2) around m+ ∼ 180

GeV is now absent. This is illustrated in fig. 3.6, where the parameters of the model have

been taken with the same values as in fig. 3.5. In fig. 3.6 Λt = ΛHi are numerically equal, but

one could take different values for the different cut-offs. Then Λt can be much higher than

usual, as already discussed around eq. (3.37). So the NP coupled to the Higgs in a fashion
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Figure 3.6: Same as fig.3.5, but now using uncorrelated cut-offs, Λt and ΛHi
.

similar to the top could be beyond LHC reach, as stressed in ref.[22]. However, the NP that

compensates the large quadratic corrections associated to the Higgs sector itself, should show

up at much lower scales5.

In summary, this 2HDM model shows how Λt could be much larger than ΛH even if the

light Higgs is within the experimentally preferred range. However, the global fine-tuning is

not improved and we generically expect NP to be on the LHC reach.

3.4 Twin Higgs Model

This model, originally proposed by Chacko, Goh and Harnik in ref. [29], postulates the

existence of a mirror world: a Z2 replica of the SM. Calling H1 the SM Higgs and H2 its

mirror copy, the Higgs sector of this model is a very particular kind of 2HDM with potential

V = µ2(|H1|2 + |H2|2) + λ(|H1|2 + |H2|2)2 + γ(|H1|4 + |H2|4) , (3.41)

5In that circumstance, there exists the caveat of how rigorous is to work with the SM as the effective

theory (for top couplings) below Λt. But even if one decides to be conservative (i.e. one does not consider the

effective theory beyond the smallest cut-off scale), these results give at least an indication in the sense that

strongly coupled NP might appear at higher scales than other kinds of NP.
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that respects the Z2 parity but allows communication with the mirror world through a mixed

term |H1|2|H2|2. The naturalness of electroweak symmetry breaking in this model was dis-

cussed already by ref. [29] and later on by [21] in more detail. For γ > 0 and µ2 > 0 this

potential has a minimum that breaks the electroweak symmetry with 〈H 0
1 〉 = 〈H0

2 〉 = v/
√

2

[21]. Three of the four degrees of freedom of each doublet are eaten by the longitudinal

components of the SU(2)×U(1) gauge bosons of our world and the mirror world. Two scalar

degrees of freedom remain as physical Higgses with a squared mass matrix that reads

(
2(λ + γ)v2 2λv2

2λv2 2(λ + γ)v2

)
, (3.42)

with eigenvalues

m2
− = 2γv2 ,

m2
+ = 2(2λ + γ)v2 . (3.43)

and eigenvectors h0
± = Re(H0

1 ± H0
2 ). We see that the Higgs mass eigenstates are mixtures

with 50% H1 component and 50% H2 component so that they have reduced couplings to

matter and gauge bosons in our world. The mass m+ corresponds to the Higgs excitations

along the breaking direction and therefore is the parameter that plays a similar role to mh in

the SM (in fact, m2
+ = −2µ2). With γ = 0, the global SU(4) symmetry of the (|H1|2 + |H2|2)

terms would result in a massless Goldstone boson in the direction transverse to the breaking,

i.e. m− = 0. Having γ � λ gives naturally a light Higgs in the spectrum [29].

Let us examine the structure of quadratically divergent corrections to the Higgs mass

parameters in this model, µ. As the Z2 symmetry is not broken both H1 and H2 receive the

same corrections, given by

δqµ
2 =

Λ2

8π2

[
3

8
(3g2 + g′2) + 5λ + 3γ − 3λ2

t

]
. (3.44)

Notice that this formula assumes all the couplings in the mirror world take exactly the

same values as in our world. We can write eq. (3.44) in terms of particle masses by writing

5λ + 3γ = (5m2
+ + m2

−)/(4v2). Then we find a result very similar to the SM case with the

replacement m2
h → (5m2

+ + m2
−)/6. If we fix m− to a low value, say m− = 115 GeV, the

quadratic correction in (3.44) as a function of m2
+ behaves a bit better than the SM quadratic

correction as a function of m2
h.

A second difference with respect to the SM behaviour comes from a different RG evolution

of the couplings in this case. We should compare the RGE for (5λ + 3γ) in this model with
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Figure 3.7: Upper bound on the scale Λ of New Physics from the requirement of less than 10% tuning of

EWSB in the Twin Higgs model with m = 0 and m− = 115 GeV. Shown by the dashed lines are the EWPT

upper bounds on m+. For comparison, the arrow marks the SM naturalness upper bound on Λ for mh = m−

that for (3λ) in the SM. Again we find a very similar result except for the replacement

4(3λ)2 → (16/5)(5λ + 3γ)2 + 4(3γ)2. We therefore conclude that RG effects in the quadratic

corrections of this model are a bit softer than in the SM.

Finally, as happened in the models discussed before, the constraints on the Higgs masses

derived from EWPT are modified with respect to the SM ones. Now one has [21]

m+m− < m2
EW , (3.45)

where mEW = {186, 219} GeV is the EWPT indirect upper bound on the SM Higgs mass.

As a result of all the effects just discussed, this model is able to improve over the natural-

ness of the SM Higgs sector. Fig. 3.7 shows the upper bound on the scale of New Physics, Λ,

imposing that the fine-tuning in µ2 (calculated as discussed in previous sections) is smaller

than 10 and choosing m− = 115 GeV. For comparison, the SM bound Λ < 1.32 TeV (for

mh = 115 GeV) is also indicated. However it is more instructive to compare the bound on Λ

as function of m+ with the SM curve as a function of mh (black solid line of fig. 2.5). Then

we see that the current curve has a very similar shape to the SM one, but it is a slightly bit

higher. Moreover, the range of m+ compatible with EWPT is also wider, fully including the

maximum of the curve. Nevertheless, the improvement with respect to the SM situation is
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not dramatic.

Let us finally discuss the case in which one introduces a small breaking of the Z2 symmetry

by considering different masses for H1 and H2. More explicitly we add to the potential (3.41)

a term [21]

δV = m2(|H1|2 − |H2|2) . (3.46)

With such modification, the minimum of the potential moves away from tan θ ≡ 〈H 0
1 〉/〈H0

2 〉 ≡
v1/v2 = 1 (although we still have to keep v1 = 246 GeV), with

cos 2θ = −m2

µ2

2λ + γ

γ
. (3.47)

The squared mass matrix for the two Higgses takes now the form

(
2(λ + γ)v2

1 2λv1v2

2λv1v2 2(λ + γ)v2
2

)
, (3.48)

with eigenvalues

m2
− ' 2γ(v2

1c
2
θ + v2

2s
2
θ) ,

m2
+ ' 2λ(v2

1 + v2
2) + 2γ(v2

1s2
θ + v2

2c
2
θ) , (3.49)

where we have expanded in γ/λ. The eigenvectors are defined as h+ =
√

2Re(sαH0
1 + cαH0

2 )

and h− =
√

2Re(cαH0
1 − sαH0

2 ). From (3.48)

tan 2α =
λ

λ + γ
tan 2θ . (3.50)

For γ � λ, one has α ' θ, so that h+ is still aligned with the breaking direction and its mass

is still of direct relevance for the naturalness of electroweak breaking (again m2
+ ' −2µ2).

Before presenting the results for the fine-tuning in the case m 6= 0, notice that λ and γ

in (3.48) can be obtained in terms of m+ and m− as

λ = ± 1

2v1v2

√
(m2

+s2
θ − m2

−c2
θ)(m

2
+c2

θ − m2
−s2

θ) ,

γ =
m2

+ + m2
−

2(v2
1 + v2

2)
− λ . (3.51)

It follows that, for fixed m+, m− and θ, there are two different solutions for λ and γ with

different signs for λ (the region λ < 0 is accesible provided |λ| < γ/2 to avoid an instability

in the scalar potential). It can be shown that the best case for naturalness corresponds to

λ > 0 and we restrict our analysis to that case.
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Figure 3.8: Contour lines of the 10% naturalness upper bounds on the scale of New Physics Λ (in TeV) in

the Twin Higgs model with m 6= 0 and m− = 115 GeV. The dashed lines show the EWPT upper bounds on

m+.

We can also see from eqs. (3.51) that the parameter space is limited to the region m+ ≥
Max{m− tan θ,m−/ tan θ}. This is shown in fig. 3.8 which corresponds to fixing m− =

115 GeV: the accesible parameter space lies inside the “fish” profile. The minimal value of

m+ corresponds to taking λ = 0 in the matrix (3.48). In this limit, H1 is the SM Higgs with

mass m2
h = 2γv2

1 and H2 is the Higgs boson of the mirror world, with mass m2
h′ = 2γv2

2 . In

fig. 3.8 the last limit corresponds to the boundary of the allowed region of parameter space.

Along the upper limit, with tan θ > 1 one has m+ ≡ mh > m− ≡ mh′ . Therefore, along that

line m+ plays the role of the mass of the SM Higgs boson. For the lower limit of parameter

space, with tan θ < 1, one has instead m+ ≡ mh′ > m− ≡ mh and therefore, along that line

m+ is simply the mass of the mirror Higgs, totally decoupled from our world, which has a

Higgs mass fixed to mh = 115 GeV. We have also marked in fig. 3.8 the line θ = π/4, which

corresponds to m = 0.

The above comments are very useful to understand the behaviour of the fine-tuning

associated to EWSB in the general case with m 6= 0. Before discussing them, let us remark

that, in the case with v1 6= v2 we are really interested in the tuning associated with electroweak

breaking in our world, and therefore in the tuning necessary to get right v1, which is fixed
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by the minimization condition

v2
1 = − µ2

2λ + γ
− m2

γ
. (3.52)

The upper bounds on Λ coming from requiring less than 10% tuning are shown by fig. 3.8 in

the parameter space {m+, θ} for m− = 115 GeV. We can recognize the SM numbers along

the upper limit of the allowed region of parameter space, along which m+ is precisely the

SM Higgs mass. Along the line θ = π/4 we can recognize the numbers corresponding to the

m = 0 case shown by fig. 3.7. Finally, along the lower limit of the allowed parameter space

we recover the upper bound Λ ' 1.3 TeV, corresponding to the SM case with m− = 115

GeV. The plot also shows the constraint on m+ and m− from EWPT, which reads now [21]

m+ < m−

(
mEW

m−

)1+1/ tan2 α

. (3.53)

Eq. (3.53) generalizes to (3.45) for the case of m 6= 0. The region above these lines (corre-

sponding to the two cases mEW = 186 GeV and 219 GeV) is disfavoured. From this plot we

again conclude that, even though the upper bound on the scale of New Physics can be higher

than in the SM, the global effect is never dramatic.

3.5 Conclusions

Solutions to the Hierarchy problem imply New Physics (NP) capable to implement a cancella-

tion of the dangerous quadratic divergences to the Higgs mass. From the general naturalness

arguments based on the SM Higgs physics, the NP should be at a scale around a few TeV,

hopefully at the reach of LHC. However, it could happen that LHC would not find NP apart

from the Higgs, in spite of the previous naturalness arguments. Likewise, it could happen

that the Higgs found at LHC is beyond the range consistent with EWPT (mh
<∼ 219 GeV).

Both situations could be understood by modifying the ordinary SM Higgs sector 6.

In this chapter, we have considered three specific settings of two Higgs doublet models

(2HDMs), that have been proposed in the literature with the general aim of improving the

naturalness of the SM.

The first case is the Inert Doublet Model, where the SM is extended to include a second

Higgs doublet that has neither a vev nor couplings to fermions (thus the name “inert dou-

blet”), but couples through weak and quartic couplings. This model allows a heavy SM-like

6But this is not mandatory: if the SM is considered as an effective theory, the two situations can be

accomodated by the effects of higher order operators.
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Higgs while keeping consistency with EWPT, thanks to the contributions of the inert dou-

blet to the T parameter. However, contrary to what their authors have claimed, we have

found that this model does not improve the naturalness of the SM with respect to quadratic

radiative corrections. On the other hand, the structure of this model is more complicated

than the SM, which introduces new sources of fine-tuning. Therefore, the usual (SM based)

estimate for the scale of NP is still valid in this model [24].

The second model is another particular version of the 2HDM. Here there are two Higgses,

a light one (∼ 115 GeV) and a heavy one (∼ 500 GeV), and the top couples mainly to the

heavy one. Due to this fact, the new physics that cancels the top quadratic divergence of the

SM-like Higgs could be at a scale larger than other cut-off scales (if these cut-offs could be

different), and then outside the LCH reach. Nevertheless, the global fine-tuning is again not

improved with respect to the SM.

In the third model the entire SM is replicated in a mirror world, and the SM and its

mirror world communicate through a mixing term between the Higgses. We have found that

the naturalness upper bound on the scale of NP can be a bit larger than the SM, but the

improvement with respect to the SM is not significant.

We conclude that for these 2HDMs the estimate of the NP scale coming from naturalness

arguments is inside the LHC reach, similar to that in the SM [24]. The claims of improved

naturalness are not justified after a detail fine-tuning analysis.
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Chapter 4

Neutrinos

When the Standard Model was formulated, there was no indication of neutrino masses. Then,

B−L is an exact symmetry of the SM, forbidding neutrino masses at all orders in pertubation

theory. However, the evidence of neutrino oscillations provided by solar, atmospheric, accel-

erator and reactor neutrino experiments proved the existence of small but non-zero neutrino

masses [6]. Therefore, the Standard Model must be extended to incorporate neutrino masses.

The lightness of neutrinos compared to the other fermions strongly suggests an origin for

their masses different from the standard Higgs mechanism. The simplest extension of the SM

is obtained by adding right-handed neutrino singlets (one per family). Neutrino masses can

be due to conventional Yukawa couplings or to a seesaw mechanism. The latter is probably

the most elegant mechanism to explain the smallness of neutrino masses. However, the new

contributions of right-handed neutrinos to the Higgs mass give a clear manifestation of the

hierarchy problem of the SM, as we are going to analyze in this chapter

4.1 Neutrinos masses and Physics beyond the Standard Model

At present, experimental data on neutrino oscillation provide a firm evidence for neutrino

masses. The neutrino oscillation experiments together with cosmological bounds indicate

that at least one type of neutrino has mass 0.05 eV ≤ mν ≤ 1.0 eV. This indication of

very small neutrino masses implies that the SM should be enlarged to incorporate neutrino

masses. Usually this requires a new physics scale, M , where B −L is broken. Because B −L

is an accidental global symmetry of the SM and not a fundamental piece, it can be broken

in order to fit the new data on neutrino masses. Indeed, not only neutrino masses result in

the breaking of this symmetry, but also the generation of the matter-antimatter asymmetry
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of the universe at scales higher than the electroweak scale.

Below M one can typically has the B − L dimension d = 5 operator

−δL =
c

M

(
LH

)2
+ h.c , (4.1)

where c is a constant, L is the SU(2)L leptonic doublet and H the Higgs doublet. When the

Higgs takes a vev, v, this operator gives a Majorana neutrino mass:

mν =
v2

2

c

M
. (4.2)

These masses are suppressed by a factor v
M with respect to the charged fermions of the SM.

Small neutrino masses of the right order of magnitude (mν ≤ 1 eV) can be obtained in a

natural way (c ∼ O(1)) if M � v, suggesting a new physics scale of order

1013 GeV ≤ M ≤ 1015 GeV. (4.3)

This points to the scale of Grand Unified Theories (GUT’s) [30]. Despite the fact that this

scale arises from naturalness arguments for small neutrino masses, it is not a natural scale

for new physics taking into account the hierarchy argument discussed in chapter 2.

There are other mechanisms to obtain renormalizable neutrino masses, such as adding to

the SM a triplet scalar or via the Higgs mechanism with Dirac neutrino masses. The last

one implies neutrino Yukawa couplings of O(10−11), i.e. many orders of magnitude smaller

than those of the charged leptons of the SM, which, unless a fundamental underlying theory

explains this difference, seems unplausible. There is another way to obtain small neutrino

masses, the seesaw mechanism, which is probably the most elegant way. The next section

will be devoted to it.

4.2 Seesaw mechanism

The simplest extension of the SM that incorporates neutrino masses is obtained by adding

right-handed neutrinos, νR (one per family). The SM lagrangian is enlarged with

Lν = i νR ∂/ νR −
(

λν L H̃ νR − 1

2
MR νR

c νR

)
+ h.c. , (4.4)

where Lν contains a kinetic term and a Majorana mass term MR for the right-handed neu-

trinos as well as neutrino Yukawa couplings λν . The Majorana mass, MR, for right-handed

neutrinos is not protected by any symmetry, and, then, it could be much larger than the
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electroweak scale. When EWSB occurs and the Higgs takes a vev, v, we can write the mass

term in eq. (4.4) in this way:

−Lmass
neutrino =

1

2
nL

cM∗nL + h.c. , (4.5)

where

nL =

(
νL

νR
c

)
, (4.6)

and the Majorana mass matrix M for 3 leptonic generations is:

M =

(
0 mD

mT
D MR

)
. (4.7)

Here mD is the 3×3 Dirac neutrino mass matrix, related to the 3×3 neutrino Yukawa coupling

matrix λν by mD = λνv and MR is a 3×3 diagonal Majorana matrix for the right-handed

neutrinos. Assuming that the matrix elements of MR are much larger than v, the neutrino

mass matrices are approximately given by:

mν ' −mDM−1
R mT

D ,

mN ' MR . (4.8)

After diagonalization, one gets 3 light Majorana neutrino mass eigenstates νi (with small

masses mνi) and 3 heavy ones Ni (with large masses mNi). This is known as the seesaw

mechanism [31].

The dimension 5 operator of eq. (4.1) results from the above seesaw mechanism by in-

tegrating out the heavy Majorana neutrinos Ni, giving rise to the same masses as in (4.8).

Therefore, if the Yukawa couplings are of O(1), the estimate on the scale MR given in (4.3)

applies to seesaw neutrinos.

4.3 The fine-tuning problem with seesaw neutrinos

The seesaw mechanism results in 3 light mass eigenvalues and 3 heavy ones given by eq. (4.8).

The lightest eigenstates are part of the effective low-energy theory and do not contribute

radiatively to the Higgs mass parameter, as it is apparent from eq. (2.19). The heaviest

ones, however, contribute not only to the quadratic divergence, but also to the finite and

logarithmic parts of δm2:

δνm
2 = − λ2

ν

16π2

[
2Λ2 + 2M2

R log
M2

R

Λ2

]
. (4.9)
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Figure 4.1: In Supersymmetry the quadratically divergent diagrams coming from heavy neutrinos loops

cancel exactly with those of sneutrinos loops.

This equation is a particularly simple example of the second line of eq. (2.19) and illustrates

the general discussion of sect.3 of chapter 2. In particular, even if the quadratically divergent

contributions of the SM cancel the one of eq. (4.9) (which, incidentally, means that Veltman’s

condition is modified by undetectable physics), there are other dangerous contributions which

do not cancel. In other words, this represents a new manifestation of the hierarchy problem

[15, 32]. A cancellation between the quadratic and the logarithmic and finite contributions

would be completely artificial and depends on the choice of renormalization scheme.

The logarithmic and finite contributions are especially disturbing as their size is associated

to MR (which is expected to be very large) and show up in any renormalization scheme. In

the MS scheme [see eq. (2.21)]

δMS
ν m2 = − λ2

ν

8π2
M2

R

[
log

M2
R

Λ2
− 1

]
, (4.10)

where we have already set Q = Λ. Now it is easy to obtain a lower bound on the size of MR

from the request of no fine-tuning. Demanding

∣∣∣∣
δνm2

m2

∣∣∣∣ ≤ ∆ , (4.11)

requires

MR < 107 GeV ∆1/3
( mh

200 GeV

)2/3
(

mν

5 × 10−2 eV

)−1/3 [
log

Λ2

M2
R

+ 1

]−1/3

. (4.12)

Hence, for any sensible value of ∆, we obtain a quite robust bound [32]

MR
<∼ 107 GeV , (4.13)
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which can only be satisfied if the neutrino Yukawa coupling is very small, λν
<∼ 10−4. This is

possible, but undermines the plausibility of the seesaw mechanism as an explanation of the

smallness of mν .

The previous bound has been obtained under the assumption that right-handed neutrinos

are the only new physics beyond the SM. In a supersymmetric scenario, this electroweak

fine-tuning problem could be much softened. The large contributions from heavy right-

handed neutrinos are cancelled by those of their scalar partners (sneutrinos, ν̃) [see fig. 4.1],

rendering δνm
2 small and not dangerous. With the previous arguments we can conclude

that the seesaw mechanism in the SM suffers from a very important fine-tuning problem

which cannot be evaded by invoking e.g. a Veltman-like cancellation of the quadratically

divergent contributions to m2, but can be softened by the introduction of new physics, such

as supersymmetry.

4.4 Conclusions

The evidence of neutrino oscillations in neutrino experiments have proved the existence of

small neutrino masses. The simplest extension of the SM to incorporate neutrino masses

is obtained by adding right-handed neutrinos, νR, with a large Majorana mass, MR. The

smallness of neutrino masses can be explained with a seesaw mechanism, where for each

generation there are two neutrino eigenstates, one very light (mν < 1 eV) and the other very

heavy (say MR ∼ 1013 GeV). The heaviest eigenstate contributes to the quadratic divergence

to the Higgs mass, and also to the finite and logarithmic contributions. These finite and

logarithmic contributions are specially dangerous as their size is associated to MR (expected

to be very large). Demanding that these finite and logarithmic corrections are not much larger

than m2 itself translates into the upper bound MR
<∼ 107 GeV, which spoils the naturalness

of the seesaw mechanism to explain the smallness of mν . Therefore, in the context of the

SM, the seesaw mechanism suffers a very important fine-tuning problem which calls for the

existence of additional NP, besides right-handed neutrinos. In this sense, Supersymmetry is

the favourite framework to accommodate the seesaw mechanism.
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Chapter 5

Supersymmetry

The most familiar example of physics beyond the SM and many theorists’ favorite candidate

for new physics is Supersymmetry (SUSY) [7]. Supersymmetry provides a solution to the Big

Hierarchy problem, since in SUSY the quadratically divergent radiative corrections to the

Higgs mass are cancelled. Unlike for many of its competitors, perturbativity is maintained to

an arbitrary high-energy scale because the cancellation of quadratic divergences takes places

at all orders of pertubation theory, i.e. at any scale, even after the breaking of SUSY.

To ensure the desired cancellations, SUSY relates bosons and fermions, in such a way

that in the spectrum of a supersymmetric theory there are the same number of bosonic and

fermionic degrees of freedom, and it also relates couplings (e.g. quartic couplings depend

on gauge and Yukawa couplings). In the supersymmetric extension of the SM, we have new

scalar fields, which are superpartners of the SM fermions, and new fermionic fields, which are

superpartners of the SM gauge bosons and the Higgs boson. This is done by organizing the

particles into a superfield , with contains fields differing by one-half unit of spin. Chirality is

attached to the bosons by their association with the fermions.

These new superparticles (sparticles) would have the same quantum numbers and the

same masses as their SM partners. Thus, now there are two types of contributions to the

Higgs mass, one from the fermionic loops and other from the bosonic loops, and because

the scalar and fermionic interactions have the same couplings, the cancellation of quadratic

divergence occurs automatically in SUSY.

The supersymmetric SM connects particles of differing spin, but with all other charac-

teristics remaining the same. Then it is clear that SUSY must be a broken symmetry, since

there is no observed sparticle with the same mass as the correspondending particle of the
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SM. This non-degeneracy of masses between the particles of a superfield is a signal for SUSY

breaking. Even though the mechanism of SUSY breaking is still unknown to date, it has to

be implemented without introducing new quadratic divergences that would spoil the solution

provided by SUSY to the hierarchy problem. This breaking is done by a set of specific SUSY

breaking terms, called soft-supersymmetry-breaking-terms [33]. These soft terms provide both

the masses of the sparticles (heavier than their corresponding SM particle) and the required

spontaneous Electroweak symmetry breaking (EWSB) at low energies.

In this chapter, after describing briefly the minimal supersymmetric extension of the SM

(MSSM) we analyze the supersymmetric fine-tuning problem. We then discuss other super-

symmetric scenarios, such as those with low-scale SUSY breaking, which have the potential

of improving significantly the naturalness of EWSB.

5.1 Minimal Supersymmetric Standard Model (MSSM)

5.1.1 MSSM description

The MSSM [34] respects the same SU(3)×SU(2)L×U(1)Y gauge symmetries as the SM. As in

any supersymmetric theory there is a superpartner for each SM particle, with the same mass

and the same quantum numbers, but differing by one-half unit of spin. The superpartners of

quarks and leptons are called squarks and sleptons (of spin zero). The superparners of the

gauge bosons are the gauginos (fermions of spin 1/2), and the ones of the higgses are the

higgsinos (spin 1/2).

In the MSSM the choice of the Higgs sector is crucial. One needs at least two scalar fields,

H1 with hypercharge Y = −1 and H2 with Y = 1. The reasons for this choice are mainly

two. The first one is due to anomaly cancellation. A model with one single Higgs doublet

superfield has non-vanishing gauge anomalies associated with fermion triangle diagrams, since

the contribution from the fermionic partner of the Higgs doublet remains uncancelled. This

is solved with a second Higgs doublet of opposite hypercharge and its fermionic partner. The

second reason is related to the chirality of fermions. Because the masses of chiral fermions

must be supersymmetric, they have their origin from terms in the superpotential. As the

superpotential has to be analytic, it is not allowed to introduce the hermitian conjugate of

Higgs superfields. It is then not possible to introduce U(1)Y invariant terms that give masses

to both up and down-type quarks without introducing a second Higgs doublet superfield.

Contrary to what happens in the SM, the baryon and lepton number, B and L, are
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not conserved quantum numbers in the MSSM. In order to get them preserved, a discrete

symmetry is imposed. This symmetry, called R-parity, is a multiplicative quantum number

defined such that R = 1 for SM and Higgs particles and R = −1 for their spartners. The main

phenomenological implication of the assumption of R-parity conservation is that spartners

can only be produced in pairs from SM particles and, therefore, the lightest supersymmetric

particle is stable.

We can now look at the MSSM lagrangian, and in particular at the scalar potential, that

we will need for our fine-tuning analysis.

The Higgs sector of the MSSM is a CP-conserving two-Higgs-doublet model (2HDM)

[see section 1 of chapter 3], with a Higgs potential whose dimension-four terms respect su-

persymmetry and with restricted Higgs-fermion couplings in which H1 couples exclusively

to down-type fermions while H2 couples exclusively to up-type fermions. Then, the SUSY-

preserving part of the MSSM Higgs potential is given by,

VSUSY = |µ2|(|H1|2 + |H2|2) +
1

8
(g2 + g′2)(|H1|2 − |H2|2)2 +

1

2
g2|H∗

1H2|2, (5.1)

where the mass parameter µ is a supersymmetric Higgs mass. The self-couplings in the Higgs

sector are given in terms of the gauge couplings g and g ′. The potential (5.1) is positive and

presents a trivial minimum, then it can not produce the correct EWSB. The introduction

of appropiate explicit SUSY breaking terms in the Higgs potential is mandatory in order to

implement both SUSY breaking and EWSB.

Because the SUSY breaking mechanism is not yet known, the SUSY breaking lagrangian

is not completely determined and one usually assumes a set of breaking terms of the most

general form that are fixed by demanding SU(3)×SU(2)×U(1) invariance and by requiring

them to be soft in order that the cancellation of quadratic divergences is maintained. These

soft SUSY breaking terms are classified into four different types [33]: Majorana mass terms

for gauginos, scalar mass terms for sfermions and Higgs particles, interaction terms among

three scalar particles with trilinear couplings and scalar-scalar bilinear terms. In the MSSM

this soft susy breaking potential for the Higgs sector is:

Vsoft = m2
H1

|H1|2 + m2
H2

|H2|2 − m2
3 (H1 · H2 + h.c.) , (5.2)

where m2
3 ≡ Bµ, with µ the mass parameter introduced in (5.1) and B is a bilinear soft

SUSY breaking parameter.

Once the mH1 , mH2 and m3 mass terms are included in the Higgs potential, the tree-level

scalar potential for the neutral components, H 0
1,2, of the Higgs doublets is:
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V MSSM(H0
1 ,H0

2 ) = m2
1|H0

1 |2 + m2
2|H0

2 |2 − 2m2
3H

0
1H0

2 +
1

8
(g2 + g′2)(|H0

1 |2 − |H0
2 |2)2, (5.3)

with m2
1,2 = µ2 + m2

H1,2
. Minimization of V MSSM leads to a vacuum expectation value (vev)

v2 ≡ 2(〈H0
1 〉2 + 〈H0

2 〉2) and thus to a mass for the Z0 gauge boson, M 2
Z = 1

4(g2 +g′2)v2, given

by
M2

Z

2
= −µ2 +

m2
H1

− m2
H2

tan2 β

tan2 β − 1
. (5.4)

5.1.2 Analyzing the fine-tuning in the MSSM

The minimization equation relevant to us in order to analyze the fine-tuning is the one of

eq. (5.4). This condition is the only equation that quantitatively relates some soft breaking

masses at the electroweak scale to a measured value, MZ . The quantities in the right hand

side of eq. (5.4) are quantities evaluated at low energy. These quantities are related to

more fundamental parameters at a higher scale, i.e. the initial UV parameters, via the

renormalizations group equations (RGEs).

The MSSM RGEs for the mass parameters in eq. (5.4) are coupled to those of other soft

terms, e.g. gaugino masses, stop masses, trilinear terms, etc., so MZ can be expressed as

a linear combination of the initial UV mass-squared parameters with coefficients that can

be calculated by integrating the RGEs. For example, for large tanβ and ΛUV = MGUT =

1.4 × 1016 GeV [35]:

M2
Z ' −2.02µ2 + 3.57M 2 + 0.07m2 + 0.22A2 + 0.75AM , (5.5)

where M,m,A are the gaugino mass, scalar soft mass and trilinear soft term respectively.

We have used universality at the GUT scale for simplicity. In eq. (5.5) we can see that even

for soft masses smaller than 1 TeV, some terms in the sum can be much larger than M 2
Z , so

a non-trivial cancellation among terms in the sum would be needed in order to obtain the

correct value for M 2
Z . Hence, this leads to a fine-tuning problem [16, 36, 17, 18, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48] : the supersymmetric fine-tuning problem.

There are two ways to escape from this fine-tuning: 1) the cancellation among terms

occurs naturally in a fundamental theory underlying the MSSM ; 2) each term in the sum of

the right hand side of eq. (5.5) is not larger than a few times M 2
Z . The first way is difficult

to imagine, because the cancellation involves the sizes of all the soft breaking terms and the

µ-parameter, and also the different magnitudes of the coefficients in front of the soft masses,
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which have to do with the RG running between the initial and the low energy scale. These

quantities have such a different physical origin that it is difficult to imagine a fundamental

reason why they should be correlated in the correct way to enforce a cancellation. As a matter

of fact, the analyses in the literature [41, 46] of many superstring, superstring-inspired and

supergravity models do not find such correlations.

The second way is ruled out by the experimental lower bounds for the sparticles masses.

The problem is especially acute for the LEP bound on the Higgs mass, mh ≥ 115 GeV [4] as

has been stressed by a number of authors [39, 40, 41, 42]. This can be seen if we consider the

tree-level and the dominant one-loop correction [49] to the theoretical upper bound on mh in

the MSSM:

m2
h ≤ M2

Z cos2 2β +
3m4

t

2π2v2
log

M2
SUSY

m2
t

+ ... (5.6)

where mt is the (running) top mass (' 165 GeV for Mt = 173 GeV) and MSUSY is an

average of stop masses. Since the experimental lower bound on mh exceeds the tree-level

contribution (M 2
Z cos2 2β), the radiative corrections must be responsible for the difference,

and this translates into a lower bound on MSUSY:

MSUSY
>∼ e−2.2 cos2 2βe(mh/61 GeV)2mt

>∼ 3.7 mt , (5.7)

where the last figure corresponds to mh = 115 GeV and large tanβ. What eq. (5.7) shows

us is that M 2
SUSY must be more than 40 times bigger than M 2

Z and this number increases

exponentially for larger (smaller) mh (tanβ). On the other hand MSUSY is itself a low energy

quantity that has a dependence on the initial soft masses analogous1 to eq. (5.5):

M2
SUSY ' 3.36M 2 + 0.49m2 − 0.05A2 − 0.19AM + m2

t + (D − terms) . (5.8)

Roughly, M 2
SUSY has a magnitude similar to the main positive contribution in the r.h.s.

of (5.5), which then implies that some of the terms in that sum are at least ∼ 45 times larger

than M2
Z , showing up the fine-tuning.

In the previous discussion, we have used dimensional arguments to explain the fine-tuning

in the MSSM. Now, we want to quantify this fine-tuning in a more detailed way, following

Barbieri and Giudice [16] (as explained in chapter 2 and Appendix A.2). We can remember

here the definition of the fine-tuning parameters, ∆pi,

δM2
Z

M2
Z

=
δv2

v2
= ∆pi

δpi

pi
. (5.9)

1We have approximated in eq. (5.8) the geometric average of the stop masses by the arithmetic one, which

is sufficiently precise for the argument.
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We focus here on the fine-tuning on µ2, ∆µ2 , since it is the parameter that usually requires

the largest fine-tuning. This happens because, due to the negative sign of its contribution

in eqs. (5.4, 5.5), the µ2 term has to compensate the (globally positive and large) remaining

contributions.2

As an example, we can evaluate ∆µ2 for large tanβ and mh = 115 GeV. In this case,

eqs.(5.6, 5.8) imply that the universal soft masses must be m = M = A ' 325 GeV. With this

requirement and using the tree-level potential of eq.(5.3), we get ∆µ2 ∼ 55. If one includes

the dominant logarithmic corrections at one-loop from the top-stop sector (see Appendix

A.2), ∆µ2 gets down [17, 50] to ∼ 35. This fine-tuning could be lower if more radiative

corrections are added. In the optimal case it can brought down to 20 [41, 40, 51]. This gives

an abnormally large fine-tuning for the MSSM, since one could naively expect that if the soft

parameters had a size m2
soft ∼ av2, the fine-tuning would be ∆ ∼ a, but what one gets is

∆ >∼ 20a.

Why is this fine-tuning larger than expected?. To understand the reasons for this, let us

write the generic Higgs potential along the breaking direction as

V =
1

2
m2v2 +

1

4
λv4 , (5.10)

where λ and m2 are functions of the pα parameters and tan β, in particular

m2 = c2
β m2

1(pα) + s2
β m2

2(pα) − s2β m2
3(pα) . (5.11)

Minimization of (5.10) leads to

v2 =
−m2

λ
. (5.12)

Then, the fine-tuning is ∆ ∼ m
2

i
/(λv2), where m

2

i
are the individual contributions to m2.

Clearly from this, the fine-tuning will increase if the size of the individual m2
i

are large and λ

is small. In the MSSM, λ is at tree-level:

λMSSM =
1

8
(g2 + g′2) cos2 2β ' 1

15
cos2 2β , (5.13)

which already implies a fine-tuning ∼ 15 times larger (for the most favorable case of large

tan β) than the above naive expectations. The previous λMSSM was evaluated at tree-level but

radiative corrections can make λ larger, thus reducing the fine-tuning. The ratio λtree/λ1−loop

is basically the ratio (m2
h)tree/(m

2
h)1−loop, so for large tan β and mh = 115 GeV the previous

2As pointed out in ref. [19], it is more sensible to use µ2 rather than µ for the fine-tuning parameter, since

this is the form in which it appears in the sum.
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Figure 5.1: Fine-tuning in the MSSM (measured by ∆µ2 ) as a function of the Higgs mass (in GeV) for

tan β = 10.

factor 15 is reduced by a factor M 2
Z/m2

h down to ∼ 9. Finally, for the MSSM (with large

tan β and ΛUV = MGUT ), m2 is:

m2 = m2
1c

2
β + m2

2s
2
β − m2

3s2β ' 1.01µ2 − 2.31m̃2 , (5.14)

where we have set A = M = m = m̃ for simplicity. For a given value of m̃2, the large

renormalization group (RG) coefficient in front of m̃2 implies that the required cancellation

must be (in this case) ∼ 2.31 times more accurate than naive expectations so, finally the

factor 9 is enhanced to ∼ 20. Notice that those large RG coefficients are a consequence of

the radiative mechanism of EW breaking.

From the above discussion it is important to notice that, although for a given size of

the soft terms the radiative corrections reduce the fine-tuning, the requirement of sizeable

radiative corrections implies itself large soft terms, which in turn worsens the fine-tuning.

More precisely, for the MSSM δradλ ∝ log(MSUSY/mt), so λ can only be radiatively enhanced

by increasing MSUSY, and thus the individual m2
i
. A given increase in MSUSY reflects linearly

in m
2

i
and only logarithmically in λ, so the fine-tuning ∆ ∼ m

2

i
/(λv2) gets usually worse. As

discussed previously, for the MSSM (mh)tree < (mh)exp, hence sizeable radiative corrections

are in fact mandatory and the fine-tuning is consequently aggravated. As a consequence, the



68 Supersymmetry

2 4 6 8 10 12 14 16

100

1000

∆

tanβ

µ
²

20

Figure 5.2: Lower bound on the MSSM fine-tuning (∆µ2) as a function of tan β from the LEP bound

mh ≥ 115 GeV.

fine-tuning increases exponentially for increasing (decreasing) mh (cos2 2β) as indicated by

eq. (5.7).

Now we can illustrate the MSSM fine-tuning with some figures. In fig. 5.1 ∆µ2 at one-loop

is plotted as a function of the Higgs boson mass, mh, for tanβ = 10. A large value of tanβ

has been chosen, because the fine-tuning in this case is smaller, as we have seen before. Only

the dominant one-loop correction to mh is included, as in eq.(5.6), and the soft parameters

are assumed to be universal at the GUT scale. Although the fine-tuning can be made smaller

in non-universal cases, figure 5.1 shows the typical size of ∆µ2 in the MSSM. As expected,

∆µ2 grows exponentially for increasing mh.

The dependence of ∆µ2 with tanβ is shown in fig. 5.2 for mh at the LEP bound, mh = 115

GeV (the optimal choice for the fine-tuning). The curve for ∆µ2 increases exponentially for

decreasing cos2 2β, again as expected. This curve can be interpreted as a LEP lower bound

on the MSSM fine-tuning.

Finally, fig. 5.3 shows contour lines of constant ∆µ2 in the (m̃, tan β) plane, where m̃

is the universal soft mass at ΛUV . We also plot dashed contour lines of constant mh and

the LEP lower bound on mh. Again, it is clear how the fine-tuning is greater for smaller
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Figure 5.3: Fine-tuning in the MSSM (measured by ∆µ2 , solid lines) in the (m̃, tan β) plane. Dashed lines

are contour lines of constant Higgs mass.

tan β and how it grows, together with mh, for larger m̃. The upper horizontal line and the

mh = 115 GeV contour line correspond to figs. 5.1 and 5.2 respectively. As an example, if we

follow the ∆µ2 = 10 line (there is no fine-tuning below this region), we will conclude that one

cannot obtain m̃ larger than ∼ 175 GeV (which translates into upper bounds on superpartner

masses) nor Higgs masses larger than ∼ 103 GeV, already ruled out by LEP.

However, in general, trying to have a very accurate determination of the fine-tuning does

not make much sense, as we have seen in sects. 2.2-2.3. There is also the experimental

uncercainty on the top quark mass, eq.(2.10), which translates into a significant uncercainty

on the fine-tuning parameters. For these reasons, in our numerical one-loop estimates of ∆µ2

we have just included the logarithmic correction to m2
h given in eq.(5.6). And also because

our purpose is to compare the fine-tuning of the MSSM with that of other scenarios of physics

beyond the SM.

How can we reduce the MSSM fine-tuning in other SUSY models?. As we have seen,

the fine-tuning problem of the MSSM is due to the smallness of the tree-level Higgs quartic

coupling, λtree. The problem is worsened by the fact that sizeable radiative corrections (and

thus sizeable soft terms) are needed to satisfy the experimental bound on mh. This is also

a consequence of the smallness of λtree: if it were bigger, radiative corrections would not be
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necessary. Therefore, the most efficient way of reducing the fine-tuning is to consider super-

symmetric models where λtree is larger than in the MSSM. Let us compute the corresponding

improvement in the fine-tuning.

The value of ∆p for a generic parameter p of a given model has the form [see Appendix A.2]

∆p =
p

m2

[
∂m2

∂p
+

v2

2

∂λ

∂β

dβ

dp
+ v2 ∂λ

∂p

]
. (5.15)

If we focus on the µ2 parameter, we can write

∆µ2 ' µ2

m2

∂m2

∂µ2
' − µ2

λv2
' −2

µ2

m2
h

, (5.16)

where the last two terms of eq.(5.15) are neglected to get (5.16), because they are suppressed

by a factor O(v2/µ2). In eq.(5.16) it is used that the dependence of the low-energy m2 on

the inital (UV) µ parameter is dominated by the tree-level contribution and m2
h is the Higgs

mass matrix element along the breaking direction, but in many cases it is very close to one

of the mass eigenvalues. Therefore,

∆µ2 ' ∆MSSM
µ2

[
mMSSM

h

mh

]2 [
µ

µMSSM

]2

. (5.17)

In this equation we can see how a theory can improve the MSSM fine-tuning: increasing

mh and/or decreasing µ. The first way corresponds to increasing λ. The second, for a given

mh, corresponds to reducing the size of the soft terms, which is only allowed if radiative

contributions are not essential to raise mh. Both improvements indeed concur for larger

λtree.

It should be said that it is not difficult to come up with alternative SUSY models which

perform better than the MSSM concerning the fine-tuning of the EWSB. One popular model

is the Next-to-Minimal Supersymmetric SM (NMSSM) which adds a singlet chiral multiplet

to the MSSM [52]. In this models the Higgs quartic coupling gets larger thanks to additional

F -term contributions from the singlet. One can also consider scenarios in which the breaking

of SUSY takes place at a low-scale [53, 54, 55, 56] (not far from the TeV scale), where a

tree-level quartic Higgs couplings larger than in the MSSM occurs in a natural way. These

low-scale SUSY breaking scenarios are developed in detail in the next section.
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5.2 Low-scale SUSY breaking

5.2.1 Low-scale SUSY breaking description

As we have seen for the MSSM, phenomenological studies of supersymmetric models are

done with a supersymmetric lagrangian, adding a set of supersymmetry breaking (��
��

SUSY )

terms that parameterize the effect of the breaking, without making any assumption about

the nature of the breaking itself. These terms must be soft terms (they do not generate

quadratic divergences in the renormalization of scalar masses), and in many SUSY breaking

approaches, this breaking takes place at a very high energy scale.

In any realistic breaking of SUSY, there are two scales involved: the �
�

��SUSY scale, say
√

F , which corresponds to the vevs of the relevant auxiliary fields in the �
�

��

SUSY sector; and

the messenger scale, M , associated to the interactions that transmit the breaking (through

effective operators suppressed by powers of M) to the observable sector. These operators

give rise to soft terms (such as scalar soft masses), but also hard terms (such as quartic scalar

couplings):

m2
soft ∼

F 2

M2
, λ

�
�SUSY ∼ F 2

M4
∼ m2

soft

M2
. (5.18)

Phenomenology requires msoft = O(1TeV), but this does not fix the scales
√

F and M

separately. The MSSM assumption is that there is a hierarchy of scales: msoft �
√

F � M ,

so that the hard terms are negligible and the soft ones are the only observable trace of �
�

��

SUSY .

However, there is no real need for such a strong hierarchy, so the scales
√

F and M could well

be of similar order (thus not far from the TeV scale). This happens in the so-called low-scale

�
�

��

SUSY scenarios. In this framework, the hard terms of eq. (5.18), are not negligible anymore

and hence the �
�

��

SUSY contributions to the Higgs quartic couplings can be easily larger than

the ordinary MSSM value (5.13). As discussed in the previous section, this is exactly the

optimal situation to ameliorate the fine-tuning problem.

It is convenient to describe these models using an effective field theory approach [54, 56].

If one tries to break supersymmetry in a renormalizable model, one finds that the supertrace

of the mass matrix is identically zero even when SUSY is broken. This means that the

sum of the masses of fermions is equal to the sum of the masses of bosons. So if we try to

break supersymmetry using only the MSSM fields and a renormalizable lagrangian we will

always find sparticles lighter than some ordinary particles. These difficulties are overcome

in models in which the transmission of �
�

��SUSY to MSSM particles can be described using

an effective non-renormalizable lagrangian (that is valid only up to some high energy scale
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Figure 5.4: Higgs soft masses and hard quartic couplings that arise from the Kähler operator (5.19).

M). In this spirit, the approach that we will follow is to describe the transmission of �
�

��

SUSY

using effective interactions, without relying on any specific microscopic dynamics that can

generate it. This messenger scale M should be now close to the electroweak scale. E.g. there

could be some massive fields responsible for the �
�

��

SUSY mediation (like in gauge mediation)

with masses ∼ M ; or there could be a more fundamental reason, as in models with large

extra-dimensions or in supersymmetric Randall-Sundrum models. This scale of new physics,

although close to the electroweak scale, still has to be somewhat larger than it, so it makes

sense to consider the effective theory [54, 56] below it (but above the electroweak scale) instead

of sticking to one of these particular examples. Denoting by T the superfield responsible for

�
�

��

SUSY , 〈FT 〉 6= 0, and assuming that, apart from the T field, the spectrum is minimal (i.e.

the same as in the MSSM), the effective theory is like the SUSY part of the MSSM, plus some

effective interactions which include couplings between T and the observable fields, suppressed

by powers of M . These effective interactions can appear in the superpotential, W , as well as

in the Kähler potential, K, or the gauge kinetic function.

As a simple example, suppose that the Kähler potential contains the operator

K ⊃ − 1

M2
|T |2|H|2 + · · · (5.19)

where H denotes any Higgs superfield. Once FT takes a vev, the above non-renormalizable

interaction produces soft terms as well as hard terms, as schematically represented in the

diagrams of fig. 5.4. Notice that m2
soft ∼ |FT |2/M2, λ

�
�SUSY ∼ |FT |2/M4 ∼ m2

soft/M
2, in

agreement with (5.18).

The Higgs potential has the structure of a generic two Higgs doublet model (2HDM),
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2 the origin of the Higgs potential can be destabilized or

not. Absence of UFB directions impose additional constraints on the Higgs masses for the MSSM.

with T -dependent coefficients [56],

V = V0(T̄ , T ) + m2
1(T̄ , T )|H1|2 + m2

2(T̄ , T )|H2|2 −
[
m2

3(T̄ , T )H1 · H2 + h.c.
]

+
1

2
λ1(T̄ , T )|H1|4 +

1

2
λ2(T̄ , T )|H2|4 + λ3(T̄ , T )|H1|2|H2|2 + λ4(T̄ , T )|H1 · H2|2

+

[
1

2
λ5(T̄ , T )(H1 · H2)

2 + λ6(T̄ , T )|H1|2H1 · H2 + λ7(T̄ , T )|H2|2H1 · H2 + h.c.

]

+ . . . (5.20)

where we have truncated at O(H4), which makes sense whenever v2/M2 is small. The

quantities m2
i , λi can be expressed in terms of the parameters appearing in W and K (explicit

expressions can be found in ref. [56]). If the T field is heavy enough it can be integrated out

and one ends up with a truly 2HDM. The previous potential is to be compared with the

MSSM one [eq. (5.3)] with λ1,2 = 1
4(g2 + g′2), λ3 = 1

4 (g2 − g′2), λ4 = −1
2g2, λ5,6,7 = 0.

With the form of the Higgs potential in eq. 5.20 we can make some general observations

on the possible patterns of EWSB. There are two neccesary conditions for EWSB in a general

2HDM. The first one is that the Higgs-field space must be a minimum, a saddle point or a

maximum, depending on the mass parameters m2
i :

m2
1m

2
2 − |m2

3|2 > 0 , m2
1 + m2

2 > 0 , [Minimum] (5.21)
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m2
1m

2
2 − |m2

3|2 < 0 , [Saddle Point] (5.22)

m2
1m

2
2 − |m2

3|2 > 0 , m2
1 + m2

2 < 0 . [Maximum] (5.23)

These equations define three regions in the {m2
1,m

2
2}-plane, labelled by ‘Min’, ‘Saddle’ and

‘Max’ in fig. 5.5. Such regions are separated by the upper and lower branches of the hyperbola

m2
1m

2
2−|m2

3|2 = 0. Electroweak breaking can take place in the regions ‘Saddle’ or ‘Max’, while

the region ‘Min’ is excluded. The second condition is the abscence of unbounded from below

(UFB) directions along which the quartic part of the potential gets destabilized. In the MSSM

the quartic couplings receive only contributions from D-terms, namely λ1,2 = 1
4(g2 + g′2),

λ3 = 1
4 (g2 − g′2), λ4 = −1

2g2, λ5,6,7 = 0. Then the potential is indeed stabilized by the

quartic terms, except along the D-flat directions |H1| = |H2|. It is then required that the

quadratic part of V be positive along these directions:

m2
1 + m2

2 − 2|m2
3| > 0 . [Potential bounded from below] (5.24)

This condition applies only to the MSSM and corresponds to the region of fig. 5.5 above the

straight line tangent to the upper branch of the hyperbola, that it is a subset of the region

“Saddle” and is labelled by “MSSM”.

However, when SUSY is broken at a moderate low scale, the λi couplings in the potential

(5.20) also receive sizeable O(F 2/M4) contributions, besides the O(g2) ones. Hence, the

condition (5.24) is no longer mandatory to avoid UFB directions, since the boundedness of

the potential can be ensured by imposing appropriate conditions on the λi parameters. This

turns out in new possibilities for EWSB. In particular, both alternatives (5.22, 5.23) are now

possible. This means that most of the {m2
1,m

2
2} plane can in principle be explored: only

the region ‘Min’ is excluded. This gives rise to important applications to the phenomenology

of this scenario. For example, the universal case m2
1 = m2

2 is now allowed, as well as the

possibility of having both m2
1 and m2

2 negative (with m2
3 playing a minor role). In addition,

and unlike in the MSSM, there is no need of radiative corrections to destabilize the origin,

and EW breaking generically takes places already at tree-level, which is just fine since the

effects of the RG running are small as the cut-off scale is M .

Finally, the fact that quartic couplings are very different from those of the MSSM changes

dramatically the Higgs spectrum and properties. In particular, the MSSM upper bound on

the mass of the lightest Higgs field no longer applies, which has also an important and positive

impact on the fine-tuning problem, as is clear from the discussion in the previous section.
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5.2.2 Fine-tuning in a low-scale SUSY breaking example.

In this section a particular example with low-scale �
�

��SUSY is considered, evaluating numer-

ically the fine-tuning involved in the EWSB and comparing it with that of the MSSM [36].

We choose a model first introduced in [56] and analyzed there for its own sake. We show now

that the fine-tuning problem is greatly softened in this model even if it was not constructed

with that goal in mind.

The superpotential is given by

W = Λ2
ST + µH1 · H2 +

`

2M
(H1 · H2)

2 , (5.25)

and the Kähler potential is

K = |T |2 + |H1|2 + |H2|2

− αt

4M2
|T |4 +

α1

M2
|T |2

(
|H1|2 + |H2|2

)
+

e1

2M2

(
|H1|4 + |H2|4

)
. (5.26)

All parameters are real with αt > 0. Here T is the singlet field responsible for the

breaking of supersymmetry, ΛS is the �
�

��SUSY scale and M the ‘messenger’ scale. The typical

soft masses are ∼ m̃ ≡ Λ2
S/M . In particular, the mass of the scalar component of T is O(m̃)

and, after integrating this field out, the effective potential for H1 and H2 is a 2HDM, like

(5.20), with very particular Higgs mass terms:

m2
1 = m2

2 = µ2 − α1m̃
2 , m2

3 = 0 , (5.27)

and Higgs quartic couplings like those of the MSSM plus contributions of order µ/M and

m̃2/M2:

λ1 = λ2 =
1

4
(g2 + g′2) + 2α2

1

m̃2

M2
,

λ3 =
1

4
(g2 − g′2) +

2

M2
(α2

1m̃
2 − e1µ

2) ,

λ4 = −1

2
g2 − 2

(
e1 + 2

α2
1

αt

)
µ2

M2
,

λ5 = 0 ,

λ6 = λ7 =
`µ

M
. (5.28)

The symmetry of the potential under H1 ↔ H2 allows to solve the minimization conditions

explicitly not only for v but also for tan β. Depending on the value of the parameter l, one



76 Supersymmetry

gets either3 tan β = 1 or tanβ > 1. The explicit expressions for v and sin 2β, and the

spectrum of Higgs masses, can be found in [56], but they are written here for completeness.

Concerning the value of tan β, we have the two possible solutions

| tanβ| = 1 , (5.29)

and

sin 2β =
`µ/M

(g2 + g′2)/4 + 2ê1µ2/M2
, (5.30)

where we use ê1 ≡ e1 + α2
1/αt

The explicit expressions for v and the Higgs masses are the following.

tanβ = 1 : tanβ 6= 1 :

v2 =
−2(m2

1 + m2
3)

(1/2)(λ1 + λ3 + λ4 + λ5) + 2λ6
, v2 =

2(λ6m
2
3 − (1/2)(−λ1 + λ3 + λ4 + λ5)m

2
1

(1/2)(−λ1 + λ3 + λ4 + λ5)λ1 − λ2
6

,

m2
h = 2

(
α2

1

m̃2

M2
− ê1

µ2

M2
+

`µ

M

)
v2 , m2

h =

[
1

4
(g2 + g′2) + 2α2

1

m̃2

M2
+

`µ

M
s2β

]
v2 ,

m2
H =

[
1

4
(g2 + g′2) + 2ê1

µ2

M2
− `µ

M

]
v2 , m2

H = −
[
1

4
(g2 + g′2) + 2ê1

µ2

M2

]
v2c2

2β ,

m2
A = − `µ

M
v2 , m2

A = −
[
1

4
(g2 + g′2) + 2ê1

µ2

M2

]
v2 ,

m2
H± =

[
1

4
g2 + (2ê1 − e1)

µ2

M2
− `µ

M

]
v2 , m2

H± = −
(

1

4
g′2 + e1

µ2

M2

)
v2 .

(5.31)

One important difference with respect to the MSSM spectrum is that all Higgs masses are

now of order v. The CP-even scalars h,H can be in the region accessible to LEP searches.

Although the charged Higgs, H±, and the pseudoscalar, A0, are usually too heavy for detec-

tion at LEP, in some regions of parameter space they might also be light and their possible

production must be considered too. Limits on the parameter space of this model that result

from Higgs searches at LEP are discussed in Appendix B and will be explicitly shown later

in the fine-tuning analysis.

3One has sgn(tanβ) = −sgn(lµ/M). We are implicitly taking parameters such that tan β > 0.
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To evaluate the fine-tuning in this model we simply plug (5.27) and (5.28) in the general

expression for ∆µ2 given in Appendix A:2 [eq. (A.14)] to obtain

∆µ2 = − µ2

λv2

[
1 + v2

(
ls2β

2µM
− 1

M2
ê1s

2
2β

)]
, (5.32)

where λ is the quartic scalar coupling along the breaking direction, explicitly given in eq. (A.9)

and ê1 ≡ e1 + α2
1/αt. This expression is valid both for tanβ = 1 and tanβ > 1 and is

dominated by the first term. Equation (5.32) is a tree-level result, useful for understanding

most of the parametric dependence of ∆µ2 , but we use for the numerical comparison with

the MSSM a one-loop-refined evaluation of ∆µ2 (both in the MSSM and the present model),

computed following the procedure explained in Appendix A.2.

We should also comment on the relation between the coupling λ along the breaking

direction [which is the coupling relevant for (5.32)] and the Higgs mass. At tree-level one of

the CP-even Higgses lies along the breaking direction and therefore has mass-squared 2λv2,

but this is no longer the case at one loop: radiative corrections induce a deviation in the

direction of the mass eigenstates, the effect being larger for light tree level masses. We will

use the notation m2
‖ = 2λv2 for the mass matrix element that controls the fine-tuning (5.32)

keeping in mind that it does not always correspond to the mass of a physical state. Explicitly,

in the region tanβ > 1 on which we focus here,

m2
‖ =

[
1

4
(g2 + g′2) + 2α2

1

m̃2

M2
+

lµ

M
s2β

]
v2 +

3m4
t

2π2v2
log

M2
SUSY

m2
t

+ ... (5.33)

where we have added the dominant one-loop stop correction, as in the MSSM.

For the values of the parameters of the unconventional model we take as a first example

(set A) those used in [56]: µ/M = 0.6, e1 = −1.3, m̃/M = 0.5 and αt = 3. The exact value of

α1 is fixed by the minimization condition for v: it is always α1
>∼ µ2/m̃2 = 1.44, and gets closer

and closer to µ2/m̃2 for increasing m̃. The parameter l is free and can be traded by tan β. To

understand some of the numerical results that follow, it is important to study the dependence

of m2
‖ on m̃ (for fixed m̃/M). Its tree-level part decreases monotonically with increasing m̃

due to the behaviour of α1, while the one-loop correction increases logarithmically with m̃

(it enters through M 2
SUSY which we take to be M 2

SUSY ' m̃2 + m2
t ). The combination of

these two opposite effects results in a mass m‖ that decreases with m̃ for small m̃ (where

the tree-level dependence dominates), reaches a minimum, and then starts increasing again

for larger m̃ (when the one-loop dependence takes over). For this reason, every value of m‖

corresponds to two values of m̃: a low value, associated to a large tree level Higgs coupling

and a small radiative effect, which has small fine-tuning; and a high value, associated to
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Figure 5.6: Fine-tuning in the unconventional SUSY scenario of section 5.2 as a function of the Higgs mass

(in GeV) for tanβ = 10 and the rest of parameters as in set A (left) or as in set B (right).

a larger radiative effect, which has larger fine-tuning. This causes ∆µ2 to be a bi-valued

function of m‖. Moreover, for this set of parameters m‖ is a good approximation to mh.

This behaviour is shown in Figure 5.6, left plot, which is the equivalent of fig. 5.1, but for

the unconventional scenario just introduced, with tanβ = 10. We can use the soft mass m̃ as

a parameter along the curve plotted, with ∆µ2 growing for increasing m̃. In the large-m̃ range

of this curve (its steep upper branch) radiative corrections dominate the Higgs mass and the

behaviour of the fine-tuning is similar to that in the MSSM (i.e. it grows with increasing

mh). If we restrict our attention to the more interesting low-m̃ range (the lower branch of the

curve), the contrast with the MSSM result is evident: now, the larger mh is, the smaller the

tuning becomes and for mh
>∼ 300 one gets ∆µ2 < 10. All this is the straightforward result

of having a larger tree-level contribution to the Higgs mass. For the choice of parameters

considered here the resulting Higgs mass is somewhat large, but we can easily choose different

parameters in order to lower the Higgs mass without loosing the dramatic improvement in

∆µ2 . This is shown on the right plot of fig. 5.6, which has (set B): µ/M = 0.3, e1 = −2,

m̃/M = 0.5, αt = 1 and α1
>∼ 0.36. The bi-valuedness of ∆µ2 is more evident in this case.

We plot ∆µ2 vs. mh in fig. 5.7 to make even clearer the difference of behaviour with

respect to the MSSM (see fig. 5.1). We take µ = 330 GeV, m̃ = 550 GeV, e1 = −2, αt = 1, l

chosen to give tanβ = 10 and instead of fixing m̃/M we vary it from 0.05 to 0.8. In this way

we can study the effect on the fine-tuning of varying λ when the low energy mass scales (µ

and m̃) are kept fixed. When m̃/M is small (and this implies that µ/M is also small), the
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Figure 5.7: Fine-tuning in a low-scale SUSY breaking scenario as a function of the Higgs mass (in GeV) for

tan β = 10.

unconventional corrections to quartic couplings are not very important and the Higgs mass

tends to its MSSM value4. As m̃/M increases, the tree level Higgs mass (or λ) also grows

and this makes ∆µ2 decrease with mh, just the opposite of the MSSM behaviour.

Finally, fig. 5.8 is the version of fig. 5.3 for this unconventional model. The values of the

parameters are those of set B. We show lines of constant ∆µ2 in the (m̃, tan β) plane, together

with lines of constant mh (upper plot) and mH (lower plot). In each plot we also draw the

experimental lower bound on the corresponding Higgs mass coming from LEP, either for

Higgs-strahlung or associated production as indicated (see Appendix B). We find that the

fine-tuning is larger for smaller tanβ and larger m̃, as in the MSSM, but now the overall

value of ∆µ2 is significantly smaller. From the figure we can estimate that for soft masses

m̃2 ∼ av2, the fine-tuning in this model (say near mh = 115 GeV and tan β = 3) is ∆ ∼ 3.5a

instead of the ∼ 20a we found for the MSSM. The pattern of Higgs masses is also different

and restricting the fine-tuning to be less than 10 does not impose an upper bound on the

Higgs masses, in contrast with the MSSM case. As a result, the LEP bounds do not imply

4For the model at hand this limit is not realistic, as it implies too small (or even negative) values of m2
A,

m2
H and m2

H± . However, we are interested in the opposite limit, of sizeable m̃/M .
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a large fine-tuning: in the region with small m̃ and tanβ not too close to 1,5 we can get

simultaneously Higgs masses large enough to escape LEP detection and small fine-tunings.

In any case, following the line of ∆µ2 = 10 we do find an upper bound m̃ <∼ 500 GeV, so

that LHC would either find superpartners or revive a (LHC) fine-tuning problem for these

scenarios (although the problem would be much softer than in the MSSM).

We can conclude in this section that we can achieve a dramatic improvement in the fine-

tuning problem in models of low-scale �
�

��

SUSY , and in this explicit model (studied in previous

works by its own sake) this improvement occurs for any range of tanβ and the Higgs mass

(which can be as large as several hundred GeV if desired, but this is not necessary).

5.3 A peculiar SUSY scenario

We have seen how in generic SUSY models the usual fine-tuning bound Λ <∼ 2 − 3 TeV

holds, although in many cases the bound is more stringent due to finite and logarithmic

contributions to m2, which have no reason to cancel. However, it can be amusing to think

of a scenario where, besides the cancellation of quadratic contributions, the other dangerous

contributions also cancel or are absent, i.e. where eq. (2.21) vanishes.

If a non-accidental cancellation occurs in eq. (2.21), a plausible possibility seems to require

universality, i.e. mb(h = 0) ≡ m̃, for all particles beyond the SM ones. This universality

does not exactly coincide with the universality of the soft breaking terms usually invoked in

MSSM analyses. The differences occur in the Higgs/higgsino sector: degeneracy of higgsinos

with the other states requires adjusting also the µ parameter. Moreover, now the Higgs soft

masses are not equal to the other soft masses; instead, they have to be adjusted so that one

Higgs doublet (some combination of H1 and H2) is heavy and degenerate with the other

states while the orthogonal combination is kept light and plays the role of the SM Higgs.

We will be interested in considering the possibility of m̃ � mW even if this is against

the usual naturalness argument for bounding the soft masses in the MSSM. In this universal

case, eq. (2.21) reads

δMS
NP m2 =

1

32π2

NP∑

b

Nb

[
m̃2

(
log

m̃2

Q2
− 1

)
∂2m2

b

∂h2

∣∣∣∣
h=0

+ log
m̃2

Q2

(
∂m2

b

∂h

)2
∣∣∣∣∣
h=0

]
. (5.34)

The logarithmic and finite contributions in this expression have a clear interpretation in

5Besides the tanβ > 1 region we have explored, there is a wide region of parameter space with tanβ = 1

which is also experimentally allowed [56].
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the language of effective field theories. The logarithms can be interpreted as coming from RG

running beyond the scale m̃, while the finite contributions can be interpreted as threshold

corrections coming from integrating out the physics at m̃. In fact this threshold correction

is just δMS
NP m2 evaluated at the scale Q = m̃. In this section we will require only that this

threshold correction vanishes and therefore we disregard the possible effects from running

beyond the scale m̃. (In other words, we are imposing the universality condition at Q = m̃.)

Needless to say, such effects might spoil the electroweak hierarchy (unless m̃ is the cut-off

scale in the fundamental theory, see below) but we are being conservative and only require

that the NP particles at m̃ do not destabilize that hierarchy themselves. After setting then

Q = m̃ we get

δMS
NP m2(Q = m̃) = − m̃2

32π2

NP∑

b

Nb
∂2m2

b

∂h2

∣∣∣∣
h=0

. (5.35)

Using now the fact that the theory is supersymmetric and there is a cancellation of

quadratic divergences, we can use (2.20) to rewrite (5.35) in the form

δMS
NP m2(Q = m̃) =

m̃2

32π2

SM∑

a

Na
∂2m2

a

∂h2

∣∣∣∣
h=0

. (5.36)

This result is interesting because it involves only SM particles6 and therefore the poten-

tially large quantity δMS
NP m2(Q = m̃) is proportional to the same combination of couplings

that appears in Veltman’s condition. In this very peculiar scenario then, imposing Veltman’s

condition would also work for the cancellation of the dangerous contributions of NP particles.

The first concern is that Veltman’s condition can be satisfied in the SM by adjusting the

unknown Higgs mass, while in the MSSM there are strong bounds on the latter. In fact,

Veltman’s “prediction”, mh ' 313 GeV seems to be hopelessly large for the MSSM. However,

this not so: as we have seen, RG effects are important to evaluate a refined value of mh

coming from Veltman’s condition,

3g2 + g′2 + 8λ − 8λ2
t = 0 , (5.37)

which is supposed to hold at Λ. There are two competing effects. First, λt gets smaller and

smaller when the energy scale increases and consequently the predicted λ(Λ) gets smaller

for increasing Λ. Second, for a given λ(Λ) a larger interval of running causes λ, and thus

mh, to be bigger at the low scale. The first effect turns out to win and mh decreases with

6It is not difficult to work out explicitly 5.35 to check 5.36. One has to make use of the SUSY relation

λ = (1/8)(g2 + g′2) cos2 2β.
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increasing Λ (see figure 2.2). In the peculiar SUSY scenario we are discussing, one should

take these important effects into account to see whether Veltman’s condition can be satisfied

at some scale. Remarkably, the scale at which Veltman’s condition holds [with λ = (1/8)(g2 +

g′2) cos2 2β] turns out to be around the string scale (Λ ' 1018 GeV for tan β � 1 and Λ ' 1025

GeV for tanβ = 1). Running λ down in energy one obtains mh ' 140−150 GeV as a further

prediction of this model.

We consider this scenario, somewhat reminiscent of Split Supersymmetry [57], as a mere

curiosity. The reasons that prevent us from taking it seriously are manifold: first, there

is in principle no theoretical reason to expect that Veltman’s condition should be satisfied,

even though the couplings g, g′, λ and λt can all be related to the string coupling, and for

a particular string vacuum this could be the case. Second, the fulfillment of Veltman’s

condition at higher loop order is more difficult to justify or even impossible (which is a

problem given the large value of m̃). Third, the condition m2
b(h = 0) = m̃ is equally difficult

to justify theoretically, especially in the Higgs sector, which involves both SUSY and soft

masses. Even generating µ through the Giudice-Masiero mechanism [58] requires tuning to

achieve the desired universality. Finally, the MSSM relation λ = 1/8(g2 +g′2) cos2 2β we have

used to evaluate m̃ receives �
�

��

SUSY contributions which (as discussed above) are important

for
√

F ∼ M , which is the case now. Moreover, the appropriate framework to study this

problem is SUGRA rather than the conventional MSSM with global SUSY.

5.4 Conclusions

SUSY is the paradigmatic example of a theory in which the quadratically divergent radiative

corrections of the SM are cancelled by those coming from new physics. The new particles

introduced by SUSY (gauginos, sfermions and higgsinos) have masses of the order of the scale

of the soft breaking terms, O(msoft). Despite the cancellation of the quadratic corrections,

logarithmic and finite contributions due to the new states lead to the usual (but conservative)

fine-tuning upper bound msoft ≡ Λ <∼ 2 − 3 TeV [remember sect.2.3].

In fact, according to the usual analyses, in the Minimal Supersymmetric Standard Model

(MSSM) a successful electroweak breaking requires a substantial fine-tuning, giving a more

stringent upper bound, namely msoft
<∼ few hundred GeV [16, 19, 36]. Actually, the available

experimental data already imply that typically the ordinary MSSM is fine-tuned at the few

percent level.

The main reason for this abnormally acute tuning of the MSSM is the small magnitude
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of the tree-level Higgs quartic coupling λMSSM = 1
8(g2 + g′2) cos2 2β ' 1

15 cos2 2β. This has

two effects:

• The “natural” value for the Higgs vev, v2 ∼ m2
soft/λ tends to be much larger than m2

soft

due to the 1
15 factor in λMSSM , specially if tan β is not large.

• Sizeable radiative corrections are needed to satisfy the experimental bound on mh,

which worsens the fine-tuning problem because sizeable radiative corrections require

large soft terms. Since mh increases logarithmically with msoft, the problem gets expo-

nentially worse for increasing mh.

In addition, the radiative mechanism for EW breaking aggravates the problem, since it

induces large coefficients for the individual contributions of certain soft terms to the effective

potential.

As a consequence, the most efficient way of reducing the fine-tuning is to consider su-

persymmetric models where λtree is larger than in the MSSM. This happens in the Next-to-

Minimal Supersymmetric SM (NMSSM), and also this can take place naturally in scenarios

in which the breaking of SUSY occurs at a low scale (not far from the TeV scale) that we

have studied. Then, the quartic couplings get �
�

��

SUSY corrections, δλ ∼ m2
soft/M

2, so that

λ + δλ can be easily larger than λMSSM, as desired to ameliorate the fine-tuning problem.

Moreover, this opens up many new possibilities for EW breaking and for a non-conventional

Higgs spectrum.

We demonstrate this in an explicit model of low-scale �
�

��

SUSY studied in a previous work

by its own sake (and not with the goal of solving the fine-tuning problem). This indicates

that the improvement in the fine-tuning is indeed a generic feature of these scenarios. By

modifying the parameters of the model we achieve a dramatic improvement of the fine-tuning

for any range of tan β and the Higgs mass (which can be as large as several hundred GeV

if desired, but this is not necessary). It is in fact quite easy to get e.g. ∆ < 5 (i.e. no

fine-tuning), in contrast with the MSSM values, ∆ > 20 (and much larger for mh > 115 GeV

and/or small tan β).

In scenarios with low-scale �
�

��SUSY , the interval of running of the soft parameters is small,

which has further consequences:

• EW breaking takes place at tree-level, which, as discussed before, also helps in reducing

the fine-tuning.
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• The cross-talk (through RG running) between mass parameters in the Higgs sector

and those of other sectors (squarks, gluinos, etc.) is drastically reduced. Then, the

soft parameters can be (much) heavier than MZ without upsetting the naturalness of

the electroweak scale. In this sense these scenarios represent an alternative to other

options which try to reduce the fine-tuning by postulating correlations between different

parameters to implement cancellations in MZ : here MZ does not even depend strongly

on those parameters.

Then, this low-scale �
�

��

SUSY scenario behaves better than MSSM from fine-tuning argu-

ments, and it can saturate the general bound msoft ≡ ΛSM ≤ 2-3 TeV without fine-tuning

problems. Besides the MSSM and the low-scale �
�

��SUSY cases, we have considered a super-

symmetric scenario where the cancellation of all the dangerous contributions takes places. In

this peculiar scenario we have considered universality for all the particles beyond the SM ones

with masses m̃ � mW . We have also imposed the universality condition at the scale Q = m̃

and λ = (1/8)(g2 +g′2) cos2 2β. With this ingredients, the SM Veltman’s condition would also

work for the cancellation of dangerous contributions of the new particles. The scale at which

the Veltman’s condition holds for this case turns out to be around the string scale (Λ ' 1020

GeV). However, we should not take this scenario seriously, because the assumptions on which

it is based are very difficult to justify.
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Chapter 6

Little Higgs

Little Higgs models [8] are a recent development in the quest to solve the “Little Hierarchy”

problem of the SM. The Higgs mass stabilization by making the Higgs a pseudo-Goldstone

boson resulting from a spontaneously broken global symmetry is the main achievement of

these models (this did not occur in the first scenarios attempting this idea [59]). In Little Higgs

models the Higgs mass is protected at one-loop from quadratically divergent contributions. In

principle, since the remaining quadratic corrections to the Higgs mass appear at the two-loop

level, no fine-tuning should be required to keep the Higgs sufficiently light until a scale of ∼ 10

TeV, avoiding the “Little Hierarchy” problem. Therefore, the “Big Hierarchy” problem can

be postponed above 10 TeV, the cut-off scale beyond which these models need an ultraviolet

(UV) completion.

In order to achive the one-loop cancellation, the mechanism of “collective breaking” is

used. Little Higgs models are based on a non-linear sigma model, where the Higgs boson

transforms as a Goldstone boson when a global symmetry, G, is broken to a subset, H, at

a scale f around 1 TeV. The group G contains in turn a gauged subgroup G1 × ... × Gn

(with n ≥ 2). All the Gi factors commute with a different subgroup of G. If only one of the

Gi factors is gauged, the Higgs transforms as a massless Goldstone boson because there is a

remaining unbroken global symmetry. It is when the full G1 × ... × Gn group is gauged that

the Higgs acquires a mass, with divergent contributions generated at the n-th loop:

δm2
H =

g2
1

(4π)2
...

g2
n

(4π)2
Λ2. (6.1)

In this case, the SM appears when the extended G1 × ...×Gn group is broken at the scale f .

These leads to new degrees of freedom at this scale f ∼ 1 TeV. The divergent one-loop dia-

grams for the Higgs mass from each SM particle are cancelled by one-loop diagrams involving

87
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Figure 6.1: An illustration of the scales in the Little Higgs picture.

the new particles, with this cancellation taking place between particles of the same spin (the

opposite of supersymmetric models). The interactions of these extra states can be described

within perturbation theory, and detailed predictions of their properties can be made. They

provide distinct signatures that can be searched for at LHC and induce calculable corrections

to precision electroweak observables (often under control). This effective description is only

valid up to an energy scale of order 10 TeV, beyond which Little Higgs models need to be

replaced by a more fundamental theory, its “ultraviolet (UV) completion”. Fig. 6.1 shows

the generic spectrum of Little Higgs models.

Despite the good prospects, the absence of fine-tuning in a particular LH scenario should

be checked in practice. More precisely, the fine-tuning must be computed for the different

LH models with the same level of rigor employed for the supersymmetric models. We will

focus on the naturalness of electroweak symmetry breaking (EWSB) in four popular and

representative LH scenarios [61, 62, 63, 64]. We devote a section of this chapter to each of

them.
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6.1 The Littlest Higgs

6.1.1 Structure of the Littlest Higgs model

The first and most representative LH scenario is the “Littlest Higgs” [61]. It is one of the most

economical and attractive implementations of the collective symmetry breaking mechanism.

Most of the phenomenological studies up to date have been performed in the context of this

model or its modifications. This section contains a review of the structure of this model and

the fine-tuning analysis.

The Littlest Higgs model is a non-linear sigma model based on a global SU(5) symmetry

which is spontaneously broken to SO(5) at a scale f ∼ 1 TeV, and explicitly broken by

the gauging of an [SU(2) × U(1)]2 subgroup. After the spontaneous breaking, the latter

gets broken to its diagonal subgroup, identified with the SM electroweak gauge group. The

spontaneous breaking of SU(5) down to SO(5) is produced by the vacuum expectation value

of a 5 × 5 symmetric matrix field Φ,

〈Φ〉 = Σ0 =




0 0 I2

0 1 0

I2 0 0


 . (6.2)

This breaking of the global SU(5) symmetry produces 14 Goldstone bosons that include

the Higgs doublet field. These Goldstone bosons can be parametrized through the nonlinear

sigma model field

Σ = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (6.3)

where Π =
∑

a ΠaXa, with Xa the broken SU(5) generators and Πa the Goldstone boson

fields. The model assumes a gauged SU(2)1 × U(1)1 × SU(2)2 × U(1)2 subgroup of SU(5)

with generators (σa are the Pauli matrices)

Qa
1 =

(
σa/2 02×3

03×2 03×3

)
, Qa

2 =

(
03×3 03×2

02×3 −σa∗
/2

)
, (6.4)

and

Y1 =
1

10
diag(−3,−3, 2, 2, 2), Y2 =

1

10
diag(−2,−2,−2, 3, 3). (6.5)

The vacuum expectation value in eq. (6.2) breaks SU(2)1 ×U(1)1×SU(2)2×U(1)2 down

to the diagonal SU(2) × U(1), identified with the SM group.
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The Goldstone and (pseudo)-Goldstone bosons in the hermitian matrix Π in Σ = e2iΠ/fΣ0

fall in representations of the SM group as

Π =




ξ H†√
2

φ†

H√
2

0 H∗√
2

φ HT√
2

ξT


+

1√
20

ζ0diag(1, 1,−4, 1, 1) , (6.6)

where H = (h0, h+) is the Higgs doublet; φ is a complex SU(2) triplet given by the symmetric

2 × 2 matrix:

φ =


 φ0 1√

2
φ+

1√
2
φ+ φ++


 , (6.7)

the field ζ0 is a singlet which is the Goldstone associated to the U(1)1 × U(1)2 → U(1)Y

breaking and finally, ξ is the real triplet of Goldstone bosons associated to SU(2)1×SU(2)2 →
SU(2) breaking:

ξ =
1

2
σaξa =




1
2ξ0 1√

2
ξ+

1√
2
ξ− −1

2ξ0


 . (6.8)

All the fields in Π as written above are canonically normalized.

The [SU(2) × U(1)]2 gauge interactions give a radiative mass to the SM Higgs, but only

when the couplings of both groups are simultaneously present. Hence, the quadratically diver-

gent contributions only appear at two-loop order, and the high-energy cut-off can be pushed

up to a scale Λ ∼ 4πf ∼ 10 TeV. For the potentially dangerous fermions interactions (in

particular top-Yukawa interactions), things work in a similar way: the spectrum is enlarged

with two extra (left-handed and right-handed) fermions, and the conventional top-Yukawa

coupling, λt, is not an input parameter but results from two independent couplings λ1, λ2.

Both must be present in order to generate a radiative correction to the Higgs mass, and this

again forbids quadratically divergent corrections to m2
h at one-loop. We are going to see how

this happens by examining the lagrangian.

The relevant part of the lagrangian consists of two pieces

L = Lkin(g1, g2, g
′
1, g

′
2) + Lf(λ1, λ2) , (6.9)

where g2, g1 (g′2, g
′
1) are the gauge couplings of the first (second) SU(2) × U(1) factor, and

λ1, λ2 are the two independent fermionic couplings.

The kinetic part is

Lkin =
f2

8
Tr[(DµΣ)(DµΣ)†] , (6.10)
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where

DµΣ = ∂µΣ − i

2∑

j=1

gjW
a
j (Qa

jΣ + ΣQaT
j ) − i

2∑

j=1

g′jBy(YjΣ + ΣY T
j ). (6.11)

In this model, additional fermions are introduced in a vector-like coloured pair t ′, t′c to

cancel the Higgs mass quadratic divergence from top loops (other Yukawa couplings are

neglected). The relevant part of the lagrangian containing the top Yukawa coupling is given

by

Lf =
1

2
λ1fεijkεxyχiΣjxΣkyu

′c
3 + λ2ft′t′c + h.c., (6.12)

where χi = (t, b, t′), indices i, j, k run from 1 to 3 and x, y from 4 to 5, and εijk and εxy are

the completely antisymmetric tensors of dimension 3 and 2, respectively.

We can consider now the symmetry breaking [SU(2) × U(1)]2 −→ SU(2)L × U(1)Y . In

the gauge sector, the Σ0 vev gives mass to one linear combination of the two SU(2) gauge

bosons W1 and W2 and to one linear combination of the two U(1) gauge bosons B1 and B2

as follows:

W ′a = − cos θW a
1 + sin θW a

2 , MW ′ =
gf

sin 2θ
,

B′ = − cos θ′B1 + sin θ′B2, MB′ =
g′f√

5 sin 2θ′
, (6.13)

where we define the mixing angles in terms of the gauge couplings by

g = g1 sin θ = g2 cos θ, g′ = g′1 sin θ′ = g′2 cos θ′. (6.14)

In the fermionic sector, inserting the Σ0 vev, t′ marries a linear combination of t′c and u′c
3

and gets a mass of order f ,

MT = f
√

λ2
1 + λ2

2. (6.15)

The orthogonal linear combination becomes the right-handed top quark, and remains massless

at this level. When EWSB takes places, the top quark will get a mass given by:

mt =
λ1λ2√
λ2

1 + λ2
2

v. (6.16)

Then, as a result of the [SU(2) × U(1)]2 −→ SU(2)L × U(1)Y breaking, the couplings are

constrained by the relations with the SM couplings,

1

g2
=

1

g2
1

+
1

g2
2

,
1

g′2
=

1

g′21
+

1

g′22
,

2

λ2
t

=
1

λ2
1

+
1

λ2
2

, (6.17)
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where g and g′ are the SU(2) and U(1)Y gauge couplings, respectively, and λt is the top

Yukawa coupling.

As we have seen above, the lagrangian (6.9) gives O(f) masses to W ′, B′ and T . After

EWSB these heavy masses have a non-trivial and involved dependence on the full non-linear

field Σ, which contains the H and φ fields. In particular, retaining only the dependence on

h ' Re(h0)
√

2 we get

m2
W ′(h) = M2

W ′ + O(h2) =
1

4
(g2

1 + g2
2)f

2 − 1

4
g2h2 + O(h4/f2) ,

m2
B′(h) = M2

B′ + O(h2) =
1

20
(g′21 + g′22 )f2 − 1

4
g′2h2 + O(h4/f2) ,

m2
T (h) = M2

T + O(h2) = (λ2
1 + λ2

2)f
2 − 1

2
λ2

t h
2 + O(h4/f2) . (6.18)

At this level, H and φ are massless, but they get massive radiatively. The simplest way

to see this is by using the effective potential. Let us consider first the quadratically divergent

contribution to the one-loop scalar potential, given by

V quad
1 =

1

32π2
Λ2 StrM2 , (6.19)

where the supertrace Str counts degrees of freedom with a minus sign for fermions, and M2

is the (tree-level, field-dependent) mass-squared matrix. In our case, the previous formula

reads

V quad
1 =

1

32π2
Λ2

[
6m2

W + 9m2
W ′ + 3m2

Z + 3m2
B′ − 12(m2

t + m2
T )
]

. (6.20)

By looking at the h-dependence of the masses above, it is easy to check that V quad
1 does not

contain a mass term for h (this will be generated by the logarithmic and finite contributions

to the potential, to be discussed shortly). The reason for this result is the following. If

λ1 = g2 = g′2 = 0, the lagrangian (6.9) recovers a global SU(3) [SU(3)1, living in the

upper corner of SU(5)] that protects the mass of the Higgs (which transforms by a shift

under that symmetry). On the other hand, if λ2 = g1 = g′1 = 0, then a different SU(3)

symmetry [SU(3)2, living in the lower corner of SU(5)] is recovered that also protects the

Higgs mass. A non-zero value for the Higgs mass can only be generated by breaking both

SU(3)’s and therefore both type-1 and type-2 couplings should be present. Quadratically

divergent diagrams involve only one type of coupling and therefore cannot contribute to the

Higgs mass. This is the so-called collective breaking (discussed in the introduction of this

chapter) of the original SU(5) symmetry and is one of the main ingredients of Little Higgs

models.
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These symmetries do not protect the mass of the triplet. In fact, if we include the full

dependence of the bosonic (W ′, B′) and fermionic (T ) masses on the Σ field, V quad
1 contains

operators, OV (Σ) and OF (Σ) respectively, that produce a mass term for the triplet φ of order

Λ2/(16π2) ∼ f2 and also a quartic coupling for h. These operators are:

OV (Σ) = f4
∑

i=1,2

g2
i

∑

a

Tr[(Qa
i Σ)(Qa

i Σ)∗] + f4
∑

i=1,2

g′2i Tr[(YiΣ)(YiΣ)∗], (6.21)

OF (Σ) = −f 4 λ2
1

8
εwxεyzε

ijkεkmnΣiwΣjxΣ
∗myΣ∗nz . (6.22)

These operators respect all the symmetries of the theory. Then, following [61], it is reasonable

to assume that OV (Σ) and OF (Σ) are already present at tree-level, as a remnant of the heavy

physics integrated out at Λ (a threshold effect). Hence, these effects can be accounted for by

adding an extra piece to the lagrangian,

−∆L = c OV (Σ) + c′ OF (Σ) , (6.23)

where c and c′ are unknown coefficients. For future use, it is convenient to discuss here what

is the natural size of c and c′. Naive dimensional analysis [66] leads one to expect c, c′ ∼ O(1).

However, we can make a more precise estimate by evaluating the one-loop contributions to c

and c′ coming from (6.20) keeping the full dependence on Σ. Then we get

c = c0 + c1 = c0 + 3/4 ,

c′ = c′0 + c′1 = c′0 + 24 . (6.24)

where the subindex 0 labels the unknown threshold contributions from the physics beyond

Λ.

Besides giving a mass to φ, the operators in eq. (6.23) produce a coupling ∼ h2φ and

a quartic coupling for h. The h2φ coupling induces a tadpole for φ after EWSB. Keeping

the vev of φ small enough is a necessary requirement to obtain an acceptable model and we

ensure that this is the case in our numerical analysis. Then, it is a good approximation to

neglect the effect of that small vev. Another effect of the h2φ coupling is the modification of

the quartic coupling once the heavy triplet is integrated out. After that is done, the Higgs

quartic coupling λ can be written in the simplest manner as

1

λ
=

1

λa
+

1

λb
, (6.25)

with λa ≡ c(g2
2 + g′22 ) − c′λ2

1 and λb ≡ c(g2
1 + g′21 ). We see that the structure of these scalar

couplings is very similar to that in the fermion and gauge boson sectors, with λa (λb) being

a type-1 (type-2) coupling.
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In order to write the one-loop Higgs potential, we need explicit expressions for the h-

dependent masses. In the scalar sector, we decompose h0 ≡ (h0r + ih0i)/
√

2 and φ0 ≡
i(φ0r + iφ0i)/

√
2. In the CP -even sector we write the relevant part of the mass matrix in the

basis {h0r, φ0r}; in the CP -odd sector we use the basis {h0i, φ0i} and finally, in the charged

sector the basis {h+, φ+}. The three mass matrices are very similar in structure and can be

written simultaneously as1

M2
κ(h) =




1
4aκλ+h2 + 1√

2
sκλ−ft + O(h4/f2) bκλ−fh + O(h2)

b∗κλ−fh + O(h2) λ+(f2 − cκh2) + O(h4/f2)


 , (6.26)

where the index κ = {0r, 0i,+} labels the different sectors, and aκ = {3, 1, 1}, sκ = {1,−1, 0},
bκ = {1/

√
2, 1/

√
2, i/2} and cκ = |bκ|2, and we have defined λ+ ≡ λa +λb, λ− ≡ λa −λb. We

have also included the contribution of the triplet vev, t ≡ 〈φ0r〉, with

t ' − 1

2
√

2

λ−h2

λ+f
, (6.27)

to the mass matrices. The off-diagonal entries in (6.26) are due to the h2φ coupling and they

cause mixing between h and φ. Concerning the masses, the effect of this mixing is negligible

for the triplet [at order h2 in the masses, the components φ0r and φ0i can still be combined

in a complex field φ0]. We will call h′0r, h′0i and h′+ the light mass eigenstates of (6.26) in

the different sectors.

The explicit masses for the different components of the triplet field are then



m2
φ0(h)

m2
φ+(h)

m2
φ++(h)


 = M2

φ + O(h2) = (λa + λb)f
2 −




2

1

0


λh2 + O(h4/f2) , (6.28)

while for the light states we get



m2
h′0r(h)

m2
h′0i(h)

m2
h′+(h)


 =




3

1

1


λh2 + O(h4/f2) . (6.29)

From the previous expressions it is straightforward to check that, in the contribution of scalars

to V quad
1 ,

Λ2

32π2

(
m2

h′0r + m2
h′0i + 2m2

h′+ + 2m2
φ0 + 2m2

φ+ + 2m2
φ++

)
, (6.30)

1At this point there is no tree-level mass term for the Higgs field but the presence of a quartic coupling

gives it a nonzero mass in a background h.
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there is also a cancellation of h2 terms. This is due to the fact that the operators (6.21) and

(6.22) still respect the same SU(3)i symmetries as the original lagrangian (6.9).

Finally, a non-vanishing mass parameter for h arises from the logarithmic and finite

contributions to the effective potential. In the MS scheme, setting the renormalization scale

Q = Λ,

m2 =
3

64π2

{
3g2M2

W ′

[
log

Λ2

M2
W ′

+
1

3

]
+ g′2M2

B′

[
log

Λ2

M2
B′

+
1

3

]}

+
3λ

8π2
M2

φ

[
log

Λ2

M2
φ

+ 1

]
− 3λ2

t

8π2
M2

T

[
log

Λ2

M2
T

+ 1

]
, (6.31)

where we have included the contribution from the φ masses.

It is convenient to write the effective potential of the Higgs field in the SM-like form

V =
1

2
m2h2 +

1

4
λh4 (6.32)

where λ and m2 are given by eqs. (6.25) and (6.31). The Higgs vev is simply:

v2 ' −m2

λ
. (6.33)

6.1.2 Fine-tuning analysis in the Littlest Higgs

A rough estimate of the fine-tuning associated to electroweak breaking in the Littlest Higgs

model can be obtained from eq. (6.31). The contribution of the heavy top, T , to the Higgs

mass parameter is

δT m2 = −3λ2
t

8π2
M2

T

[
log

Λ2

M2
T

+ 1

]
. (6.34)

Using eqs. (6.17, 6.18), it turns out that M 2
T ≥ 2λ2

t f
2, and thus δT m2 ≥ 0.37f 2 (the minimum

corresponds to λ1 = λ2 = λt). Thus the ratio δT m2/m2, tends to be quite large: e.g. for

f = 1 TeV and mh = 150 (250) GeV, δT m2/m2 ≥ 33 (12). Since there are other potential

sources of fine-tuning, this should be considered as a lower bound on the total fine-tuning.

Actually, the overall fine-tuning is usually much larger than this estimate, as we show below.

In order to perform a complete fine-tuning analysis [27] we determine first the independent

parameters, pi, and then calculate the associated fine-tuning parameters, ∆pi , according to

eq. (2.7), i.e. ∆pi = (pi/v
2)(∂v2/∂pi). For the Littlest Higgs model the input parameters of

the lagrangian [eqs. (6.9, 6.23)] are

pi = {g1, g2, g′1, g′2, λ1, λ2, c, c′, f} . (6.35)
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We have not included Λ among these parameters since we are assuming Λ ' 4πf . In

any case, this assumption reduces the amount of fine-tuning, so it is a conservative one. On

the other hand, the parameter f basically appears as a multiplicative factor in the mass

parameter, m2, so ∆f is always O(1), and can be ignored. Finally, the above parameters are

constrained by the measured values of the top mass and the gauge couplings g, g ′, according

to eq. (6.17). The procedure to estimate the fine-tuning in the presence of constraints is

discussed in Appendix C. The net effect is a reduction of the “unconstrained” total fine-

tuning, ∆ = (
∑

i ∆
2
pi

)1/2, according to eq. (C.7). In this particular case, that equation gives

∆ =



∑

i

∆2
pi
−
∑

α

1

N2
α

(
∑

i

pi
∂G

(0)
α

∂pi
∆pi

)2



1/2

, (6.36)

where G
(0)
α = g2, g′2, λ2

t are functions of the pi as given in eq. (6.17), and

N2
α ≡

∑

i

p2
i

(
∂G

(0)
α

∂pi

)2

, (6.37)

are normalization constants.

As announced before, ∆ is in general much larger than our initial rough estimate, although

the precise magnitude depends strongly on the region of the parameter space considered

and decreases significantly as mh increases. Let us discuss how this comes about. The

negative contribution from M 2
T to m2 in eq. (6.31) must be compensated by the other positive

contributions. Typically, this implies a large value of the triplet mass, M 2
φ = (λa + λb)f

2,

which implies a large value of (λa+λb), but keeping 1/λ = 1/λa+1/λb in the phenomenological

range. There are two ways of achieving this2:

a) λ ' λb � λa ' M2
φ/f2 ,

b) λ ' λa � λb ' M2
φ/f2 . (6.38)

Notice that the one-loop m2 is a symmetric function of λa and λb, so cases a) and b) are

simply related by λa ↔ λb. This means that the triplet and Higgs masses are exactly the

same in both cases although the fine-tuning may be different (since the dependence of λa,b

on pi is not the same), and indeed it is, as we discuss next.

2The existence of two separate regions of solutions can be also noticed from the fact that, for given values

of λ, λ1, g1, g
′
1, and in the approximation log(Λ2/M2

φ) ' const., the minimization condition (6.33) becomes

quadratic in c.



6.1 The Littlest Higgs 97

0.8 1 1.2 1.4 1.6 1.8 20.6

0.8

1

1.2

1.4

1.6

1.8

2

g1

λ
1

80 100 120

140

140

170

170

0.8 1 1.2 1.4 1.6 1.8 2

1

1.5

2

2.5

3

g1

λ
1

20 30

30

50

65

40

25

40

Figure 6.2: Preliminary fine-tuning contours for the Littlest Higgs model, case a) of eq. (6.38), for two

different values of the Higgs mass: mh = 115 GeV (left) and mh = 250 GeV (right).

For case a), the value of ∆ is shown by the contour plots of fig. 6.2 which correspond

to two different values of the Higgs mass. We present our results in the plane {g1,λ1}. In

each point of this plane g2 and λ2 are fixed by eq. (6.17), and the values of c and c′ are fixed

by the minimization condition for electroweak breaking and the choice of the Higgs mass.

The value of g′1 has been taken at g′21 = g′22 = g′2/2, which nearly minimizes the fine-tuning.

(Note also that g1 ≥ g and thus smaller values of ∆ cannot be reached by lowering g1 in

fig. 6.2). The shaded areas correspond to regions where there is not a correct electroweak

symmetry breaking (in these regions, MΦ ≥ Λ, which besides being beyond the range of

validity of the effective theory, makes negative the triplet contribution to m2. These plots

illustrate the large size of ∆, which is significantly larger than the previous rough estimate.

This is not surprising since, as stated before, besides the heavy top contribution to m2 (on

which the estimate was based), there are other contributions that depend in various ways

on the different independent parameters. This gives additional contributions to the total

fine-tuning, increasing its value. The plots also show how ∆ decreases for increasing mh.

This is due to the fact that the larger mh, and thus λ, the larger the required value of m2 in

(6.33), which reduces the level of cancellation needed between the various contributions to

m2 [36, 15]. Although the fine-tuning is substantial, it could be considered as tolerable [i.e.
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Figure 6.3: Same as fig. 6.2 but using c0 and c′0 of eq. (6.24) as unknown parameters.

O(10)], for some (small) regions of the parameter space (at least for large mh). However, on

closer examination the fine-tuning turns out to be larger than shown by fig. 6.2. From the

condition a) in (6.38),

λ ' c(g2
1 + g′21 ) = λb � λa = c(g2

2 + g′22 ) − c′λ2
1, (6.39)

it is clear that in this case c′ is large (and negative), while c is small. But then, eq. (6.24)

shows that there is an implicit tuning between c0 and c1 to get the small value of c. This effect

can be taken into account by using {c0, c′0}, rather than {c, c′} as the independent unknown

parameters appearing in (6.35). Since ∆c0 = |(c0/c)∆c| (and similarly for ∆c′0
), the global

fine-tuning becomes much larger. This is illustrated in fig. 6.3, where ∆ is systematically

above O(10), even for large mh.

There is a simple way of understanding the order of magnitude of ∆. We can repeat the

rough argument at the beginning of this subsection, but considering now the contribution of

the triplet to the Higgs mass parameter in (6.31). More precisely, since M 2
φ = (λa + λb)f

2 =

[c(g2
1 + g′21 + g2

2 + g′22 ) − c′λ2
1]f

2, we can focus on the contribution proportional to c′:

δc′m
2 = − 3λ

8π2
c′λ2

1f
2

[
log

Λ2

M2
φ

+ 1

]
. (6.40)

Now, c′ itself contains a radiative piece c′1 = −24 [see eq. (6.24)], whose relative contribution
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Figure 6.4: Fine-tuning contours, using c0 and c′0 of eq. (6.24) as unknown parameters, for the Littlest Higgs

model, case b) of eq. (6.38), for mh = 115 GeV (left) and mh = 250 GeV (right).

to m2 is then given by
∣∣∣∣∣
δc′1

m2

m2

∣∣∣∣∣ ≥
9

2π2
λ2

t

f2

v2

[
log

Λ2

M2
φ

+ 1

]
' 45 , (6.41)

where we have first used λ2
1 ≥ λ2

t /2 and then Mφ ∼ f . Hence we easily expect O(100)

contributions to ∆, as reflected in fig. 6.3.

It is interesting to note that this rough argument holds even if there are additional con-

tributions to m2, since it is based on the size of contributions that are present anyway. In

particular, two-loop corrections or ‘tree-level’ (i.e. threshold) corrections to m2 are not likely

to help in improving the fine-tuning. Of course, it might happen that they have just the

right size to cancel the known large contributions, such as those of eqs. (6.34) and (6.41).

However, in the absence of a theoretical argument for that cancellation, this possibility can

only be understood a priori as a fortunate accident. The chances for the latter are precisely

what the fine-tuning analysis evaluates.

For case b) in eq. (6.38) things are much worse, as illustrated in the contour plots of

fig. 6.4, that show huge values of ∆. The reason is the following: in case b), both c and

c′ are sizeable, so there is no implicit tuning between c0 (c′0) and c1 (c′1), but this implies

a cancellation to get λa ' λ, which requires a delicate tuning. This “hidden fine-tuning”
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Figure 6.5: Fine-tuning contours for the Littlest Higgs model, case b) in eq. (6.38), with fixed λ (left); and

fine-tuning associated to λ itself (right). The Higgs mass is mh = 115 GeV.

is responsible for the unexpectedly large values of ∆. In other words, small changes in the

independent parameters of the model produce large changes in the value of λ, and thus in

the value of v2.

Now, imagine some future time after the Higgs mass has already been measured so that

the parameter λ takes a particular value and the other parameters of the model can only be

varied in such a way that λ remains constant. Then, according to the above discussion, the

fine-tuning for case b) should be dramatically reduced and, apparently, this is exactly what

happens. The condition of constant λ can be incorporated in the computation of ∆ using

eq. (C.7) with an additional constraint G
(0)
4 = λ 3. The new “constrained” fine-tuning in

case b) (for mh = 115 GeV), is shown in the left plot of fig. 6.5, to be compared with the left

plot of fig. 6.4. Although still sizeable, the fine-tuning is now much smaller.

However, this behaviour does not alleviate the fine-tuning problems. If the Higgs mass is

measured, one can also consider what is the fine-tuning between the independent parameters

of the model to produce such value of mh, in the same way that one examines the fine-tuning

to produce the measured value of v2. Let us denote the fine-tuning in m2
h (or equivalently in

3The constraint G
(0)
4 = λ is not independent of the others (for g2, g′2 and λt). A Gramm-Schmidt

orthonormalization of the different constraints is enough to deal with this complication (see Appendix C).
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λ) associated to a parameter pi by ∆
(λ)
pi . It is given by

δm2
h

m2
h

=
δλ

λ
= ∆(λ)

pi

δpi

pi
. (6.42)

If ∆(λ) > O(1), this fine-tuning must be taken into account. Then, since ∆ and ∆(λ) represent

independent inverse probabilities, they should be multiplied to estimate the total fine-tuning

in the model. The right plot in fig. 6.5 shows that the values of ∆(λ) are certainly quite large,

as expected. Hence the product ∆ · ∆(λ) is very large, comparable to the values of ∆ before

the measurement of mh.

The final conclusion is that the “standard” Littlest Higgs model has built-in a significant

fine-tuning problem, especially for mh < 250 GeV, even if other problems with electroweak

observables are ignored. In this range the fine-tuning is typically ∆ >∼ O(100), i.e. essentially

of the same order (or higher) than that of the Little Hierarchy problem of the SM [see fig. 2.8]

and more severe than the MSSM one. For larger values of mh, which is not so attractive from

the point of view of fits to electroweak observables [67], the situation is better, although still

∆ > 10.

Let us finish this subsection with two additional comments. First, notice that the plots

presented correspond to f = 1 TeV, which is a desirable and standard value in Little Higgs

models. For other values of f , the parametric dependence of the fine-tuning is ∆ ∝ f 2. In

fact, precision electroweak observables in the Littlest Higgs model require larger values of the

masses of the new particles and therefore of f [68], which makes the fine-tuning even more

severe. The second comment concerns perturbativity. We have just seen that a large value

of c′ [and also c for region b) in eq. (6.38)] is generically required for a correct electroweak

breaking. Actually, from eq. (6.24), it seems indeed natural to expect large values of c ′, which

might be a problem for perturbativity. One way of obtaining a smaller value of c ′ would be

to lower Λ, making it smaller than 4πf , which reduces the low-energy radiative contribution

to c′. In fact, it is known [69] that chiral perturbation theory as a low energy description

of technicolor theories with a large number of technifermions, N , breaks down at the scale

4πf/
√

N . In the Littlest Higgs model we do have a large number of degrees of freedom,

so, the low-energy effective theory would not be reliable all the way up to 4πf . Conversely,

if one insists in keeping Λ ' 4πf/
√

N ' 10 TeV to solve the Little Hierarchy problem,

one would need f larger than 1 TeV. This would help with the fits to precision electroweak

measurements but would worsen significantly the fine-tuning.
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6.2 A Modified Littlest Higgs Model [62]

6.2.1 Structure of the Modified Littlest Higgs

This model is also based on the SU(5)/SO(5) Littlest Higgs [61], but modified [62] in such a

way that only one abelian U(1) factor (identified with hypercharge) is gauged. The SU(2)1×
SU(2)2 generators are as in the Littlest model [eq. (6.4)] and the hypercharge generator is

Y = diag(1, 1, 0,−1,−1)/2. The field content of the hermitian matrix Π in Σ is the same

as in the Littlest Higgs model but now the field ζ 0 [Goldstone associated to the breaking

of the U(1) symmetry left ungauged] is not absorbed by the Higgs mechanism and remains

in the physical spectrum, so there is no heavy B ′ gauge bosons what helps with precision

electroweak fits [62].

The kinetic part of the lagrangian is as in the Littlest Higgs, eq. (6.10) model but now

with

DµΣ = ∂µΣ − i
2∑

j=1

gjW
a
j (Qa

jΣ + ΣQaT
j ) − ig′BY (Y Σ + ΣY T ). (6.43)

The fermionic couplings in the lagrangian can be kept as in the Littlest Higgs model

also. Then the scalar operators OF (Σ) and OV (Σ), induced by fermion and gauge boson

loops have the same form of (6.21), (6.22) but with the U(1) part limited to U(1)Y only.

The main difference with respect to the Littlest Higgs case is that now the Higgs mass is not

protected from quadratically divergent radiative corrections involving U(1)Y interactions even

at one-loop level, this mass is of order g ′2f2. Therefore, those corrections are not especially

dangerous, due to the smallness of the g ′ coupling.

The h-dependent field masses, needed for the calculation of the one-loop Higgs potential,

are the following. In the gauge boson sector we have

m2
W ′(h) =

1

4
(g2

1 + g2
2)f

2 − 1

4
g2h2 + O(h4/f2) , (6.44)

with no B′ gauge boson. In the fermion sector, the heavy Top has mass:

m2
T (h) = M2

T + O(h2) = (λ2
1 + λ2

2)f
2 − 1

2
λ2

t h
2 + O(h4/f2) . (6.45)

In the scalar sector, decomposing h0 ≡ (h0r + ih0i)/
√

2 and φ0 ≡ i(φ0r + iφ0i)/
√

2 and

using λ′
a ≡ cg2

2 − c′λ2
1 and λ′

b ≡ cg2
1 , combined in λ′

+ ≡ λ′
a + λ′

b and λ′
− ≡ λ′

a − λ′
b, the

masses are as follows. Writing simultaneously the relevant part of the mass matrices in the

CP -even sector (using the basis {h0r, φ0r}), the CP -odd sector (in the basis {h0i, φ0i}) and
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the charged sector (in the basis {h+, φ+}), we get

M2
κ(h) =




1
4aκλ′

+h2 + 1√
2
sκλ′

−ft + O(h4/f2) bκλ′
−fh + O(h2)

b∗κλ′
−fh + O(h2) λ′

+

(
f2 − cκh2

)
+ O(h4/f2)




+ cg′2




f2 − dκh2 + O(h4/f2) O(h2)

O(h2) 4f2 − eκh2 + O(h4/f2)


 , (6.46)

where the index κ = {0r, 0i,+} labels the different sectors. The numbers aκ, bκ, cκ and sκ

are as in (6.26) while dκ = {1, 1/6, 1/6} and eκ = 13|bκ|2/3. We have also included in these

mass matrices the contribution of the triplet vev, t ≡ 〈φ0r〉, with

t ' − 1

2
√

2

λ′
−h2

(λ′
+ + 4cg′2)f

. (6.47)

As in the Littlest Higgs model, the off-diagonal entries in (6.46) are due to the h2φ

coupling which causes mixing between h and φ after electroweak symmetry breaking. This

effect is negligible for the heavy triplet [at order h2 in the masses, the components φ0r and

φ0i can still be combined in a complex field φ0]. We call h′0r, h′0i and h′+ the light mass

eigenvalues of (6.26) in the different sectors. The explicit masses for the different components

of the triplet field are then4




m2
φ0(h)

m2
φ+(h)

m2
φ++(h)


 = M2

φ +O(h2) = (λ′
++4cg′2)f2−




2

1

0



(

λ +
17

12
cg′2

)
h2 +O(h4/f2) . (6.48)

For h′0r, h′0i and h′+ we get




m2
h′0r(h)

m2
h′0i(h)

m2
h+(h)


 = M2

s + O(h2) = cg′2f2 +




3

1

1


λh2 +




0

1

1




1

6
cg′2h2 + O(h4/f2) .

(6.49)

From the previous expressions for the masses one can check that the cancellation of h2

terms in StrM 2 works except for the g′-dependent terms, as expected. The presence of the

coupling g′, which does not respect the SU(3)1,2 symmetries, complicates the structure of

4In writing the expansions for these masses we are assuming cg′2f2 ∼ λh2 � λ′
+f2.
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couplings in the Higgs sector. For instance, the Higgs quartic coupling after integrating out

the heavy triplet is given by

λ =
1

4

[
λ′

a + λ′
b −

4

3
cg′2 − (λ′

a − λ′
b)

2

(λ′
a + λ′

b + 4cg′2)

]
, (6.50)

to be compared with the theoretically cleaner formula (6.25) that holds in the Littlest Higgs

case. All mass formulas and couplings written above reproduce those of the Littlest Higgs

model in the limit λ′
a,b → λa,b and g′ → 0. After electroweak symmetry breaking some kinetic

terms are non-canonical due to O(h2/f2) corrections from non-renormalizable operators. The

masses above include effects from field redefinitions necessary to render canonical all fields.

6.2.2 Fine-tuning analysis in the Modified Littlest Higgs

The input parameters of the model are now

pi = {g1, g2, λ1, λ2, c, c′, f} , (6.51)

to be compared with (6.35) for the Littlest Higgs model [27]. As in that model, f can be

ignored for the fine-tuning analysis.

For the fine-tuning analysis we need the h-dependent masses, which enter the one-loop

effective potential, and they are given by the above eqs. (6.44), (6.45), (6.48), (6.49). Besides

the absence of g′1 and g′2, the main difference with the original Littlest Higgs model is that the

Higgs mass parameter m2 gets an additional positive contribution from the operator c OV (Σ),

δm2 = cg′2
Λ2

16π2
= cg′2f2 . (6.52)

This contribution involves g′ as anticipated. Adding the one-loop logarithmic corrections we

get

m2 = cg′2f2 +
9g2

64π2
M2

W ′

[
log

Λ2

M2
W ′

+
1

3

]
− 3λ2

t

8π2
M2

T

[
log

Λ2

M2
T

+ 1

]
(6.53)

+
3

8π2

{(
λ +

17

12
cg′2

)
M2

φ

[
log

Λ2

M2
φ

+ 1

]
−
(

λ +
1

12
cg′2

)
M2

s

[
log

Λ2

M2
s

+ 1

]}
,

where the Higgs quartic coupling is the one of eq. (6.50). The expression for MT is as for the

Littlest Higgs, the triplet mass is M 2
φ = (λ′

a + λ′
b + 4cg′2)f2 and M2

s = cg′2f2 is the squared

mass associated to the light Higgses [see eqs.( 6.48), (6.49)]. Eqs. (6.53) and (6.50) have to

be compared with (6.31) and (6.25) for the Littlest Higgs.
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Figure 6.6: Preliminary fine-tuning contours, using c and c′ as unknown parameters, for the Little Higgs

model of [62], case a), with mh = 115 GeV (left plot) and mh = 250 GeV (right plot).

The presence of the g′ terms in m2 complicates the parameter dependence of the mini-

mization condition for electroweak breaking: c and c′ do no longer enter in m2 just through

λ′
a and λ′

b. Nevertheless, there are still two separate regions of solutions, which are the re-

spective heirs of the two regions named a) and b) for the Littlest Higgs model [eq. (6.38)]5;

thus we keep the same notation.

The fine-tuning ∆ for the region a), using c and c′ as input parameters, is shown in fig. 6.6.

The magnitude of ∆ is similar to that in the Littlest Higgs model, fig. 6.2. In the present

case the tree-level contribution cg ′2f2 in (6.53), which is positive 6, helps in compensating the

negative correction from the heavy Top, so that the contribution from the triplet, and thus

the triplet mass M 2
φ , is not required to be as large as before. Consequently, the values of c and

c′ will be smaller, as it happens for c in the region a) of the Littlest Higgs model. However, as

discussed in the previous section, small c and c′ cause additional fine-tuning7, which can be

taken into account by using c0 and c′0, rather than c and c′ as the input parameters appearing

5Again, the existence of these two regions can be understood here using the approximation explained in

footnote 2 of this chapter.
6For c < 0 one breaks the electroweak symmetry at tree-level. However, this possibility leads to a large

vev for the triplet and therefore we focus on c > 0.
7Note that eq. (6.24) holds also in this model.
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Figure 6.7: Final fine-tuning contours for the Little Higgs model of [62], using c0 and c′0 as unknown

parameters, for the two regions of solutions: a) (top) and b) (bottom), and two different values of the Higgs

mass: mh = 115 GeV (left) and mh = 250 GeV (right).
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in (6.51). This enhancement of the fine-tuning can be appreciated in the corresponding plots

[both for a) and b) regions] in fig. 6.7.

Fig. 6.7 represents our final results for the model analyzed in this section. The fine-tuning

is quite similar to that for the Littlest Higgs model (fig. 6.3 and fig. 6.4). Therefore, the same

comments apply here: the fine-tuning is always substantial (∆ > 10) and for mh < 250

GeV is essentially of the same order as (or higher than) that of the Little Hierarchy problem

[∆ >∼ O(100)] and worse than in the MSSM. As in the Littlest Higgs, two-loop or ‘tree-level’

contributions to m2 are not likely to improve the situation [note in particular that eqs. (6.34)

and (6.41) remain the same in this scenario].

6.3 The Littlest Higgs with T -parity [63]

6.3.1 Structure of the Littlest Higgs with T -parity

This model, proposed in [63], is also based on the SU(5)/SO(5) structure of the Littlest Higgs

model, with the same gauge and scalar field content. However, the lagrangian is different: a

T -parity is imposed such that the triplet and the heavy gauge bosons are T -odd while the

Higgs doublet is T -even. This T -parity plays a role similar to R-parity in SUSY: it has the

welcome effect of forbidding a number of dangerous couplings (like the h2φ one responsible

for the triplet vev, as discussed in previous sections; or direct couplings of the SM fields to

the new gauge bosons) improving dramatically the fit to electroweak data.

The gauge kinetic part of the lagrangian is as in eq. (6.10) with T -parity and imposes the

equalities

g1 = g2 =
√

2g , g′1 = g′2 =
√

2g′ , (6.54)

where g and g′ are the gauge coupling constants of the SM. Imposing T -invariance on the

fermionic sector requires the introduction of several new degrees of freedom. Those relevant

for making the fermionic lagrangian of eq. (6.12) T -symmetric are a new vector-like pair of

coloured doublets q̃3, q̃
c
3 (T -even) plus two new coloured singlets u′c

T (the T -image of u′c) and

U (which is T -odd). The fermionic lagrangian reads [63]

Lf =
1

4
λ1fεijkεxy

[
(ξQ)iΣjxΣkyu

′c + (ξ̃Q)iΣ̃jxΣ̃kyu
′c
T

]
+ λ2ft′t′c +

1√
2
λ3fU(u′c − u′c

T ) + h.c.,

(6.55)

plus (heavy) mass terms for q̃3. Here we have used Q ≡ (q3, t
′, q̃3)

T , ξ ≡ exp[iΠ/f ], ξ̃ ≡
Ωexp[iΠ/f ]Ω [with Ω ≡ diag(1, 1,−1, 1, 1)] and Σ̃ ≡ ξ̃2Σ0. The index convention is as in
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(6.12). Finally, the scalar operators (6.21),(6.22) turn out to be given by

−∆L = V = 2cg2f4
∑

i=1,2

∑

a

Tr[(Qa
i Σ)(Qa

i Σ)∗] + 2cg′2f4
∑

i=1,2

Tr[(YiΣ)(YiΣ)∗]

− 1

16
c′f4λ2

1ε
wxεyz

(
ΣiwΣjxΣ

iy∗Σjz∗ + Σ̃iwΣ̃jxΣ̃
iy∗Σ̃jz∗

)
, (6.56)

which is simply a T -invariant version of the lagrangian of eq. (6.23).

In this model, the squared masses to O(h2), needed for the calculation of the one-loop

Higgs potential, are very similar to those in the Littlest Higgs model. In the gauge boson

sector they are exactly the same as in (6.18), with gauge couplings related by eq. (6.54):

m2
W ′(h) = M2

W ′ + O(h2) = g2f2 − 1

4
g2h2 + O(h4/f2) ,

m2
B′(h) = M2

B′ + O(h2) =
1

5
g′2f2 − 1

4
g′2h2 + O(h4/f2) . (6.57)

In the fermion sector, the only mass relevant for our purposes is that of the heavy Top which,

to order h2, remains the same as in the Littlest Higgs model:

m2
T (h) = M2

T + O(h2) = (λ2
1 + λ2

2)f
2 − 1

2
λ2

t h
2 + O(h4/f2) . (6.58)

The squared masses of the other heavy fermions do not have an h2-dependence.

In the scalar sector, an important difference with respect to the Littlest Higgs model is

that now there is no φh2 coupling. As a result, the Higgs quartic coupling does not get

modified after decoupling the triplet field and is simply given by

λ =
1

4
(λa + λb) , (6.59)

[now λa = 2c(g2 + g′2)− c′λ2
1 and λb = 2c(g2 + g′2)] to be compared with eq. (6.25). Another

direct consequence of not having a φh2 coupling is the absence of the off-diagonal entries

in the scalar mass matrices in the CP -even, CP -odd and charged sectors. Using the same

conventions of eq. (6.26), these mass matrices are given by

M2
κ(h) =

[
aκλh2 + O(h4/f2) 0

0 4λ(f2 − cκh2) + O(h4/f2)

]
, (6.60)

with the constants aκ and cκ exactly as in the Littlest Higgs model, eq. (6.26). The explicit

masses for the different components of the heavy triplet field are still given by (6.48), and

making use of (6.59) they simply read



m2
φ0(h)

m2
φ+(h)

m2
φ++(h)


 = M2

φ + O(h2) = 4λf2 −




2

1

0


λh2 + O(h4/f2) . (6.61)



6.3 The Littlest Higgs with T -parity [63] 109

For the light eigenvalues of (6.60), which now do not mix with the triplet components, we

simply get m2
h0r(h) = 3λh2, m2

h0i(h) = m2
h+(h) = λh2, as in the Standard Model.

The one-loop generated Higgs mass parameter, m2, is given by the same expression as

that of the Littlest Higgs model [eq. (6.31)] but, as we have seen, T -parity imposes strong

relations between the parameters of the model. In particular, we have now

M2
W ′ = g2f2 , M2

B′ =
1

5
g′2f2 , M2

φ = 4λf2 . (6.62)

The model is therefore much more constrained than the Littlest Higgs.

6.3.2 Fine-tuning analysis in the Littlest Higgs with T -parity

For the fine-tuning analysis [27], we start by identifying the input parameters, which are now

pi = {λ1, λ2, c, c′, f} , (6.63)

to be compared with (6.35) and (6.51). Again, we can leave f aside as explained after (6.35).

The couplings λ1,2 are related by the usual top-Yukawa constraint in eq. (6.17) while c and

c′ are related to λ through eq. (6.59). For a given value of the Higgs mass (and therefore of

the coupling λ) the minimization condition for electroweak breaking can be solved for M 2
T ,

which fixes λ2
1 + λ2

2, but not λ1 or λ2 separately. From this continuum of solutions, the top

mass constraint [eq. (6.17)] leaves only two of them, simply related by λ1 ↔ λ2. We will refer

to these two solutions as

1) λ1 ≤ λ2 , 2) λ2 ≤ λ1 . (6.64)

If λ is small, Mφ is not large enough to compensate the negative heavy Top contribution

to the one-loop Higgs mass and the minimization condition is not satisfied. If, on the other

hand, λ is too large then the Top contribution, which cannot be arbitrarily large (it grows

with MT , but only up to MT = Λ), is also unable to satisfy the minimization condition. Thus,

we obtain a limited range for mh: 280 GeV <∼ mh
<∼ 625 GeV, for f = 1 TeV. This result has

interest by itself for the phenomenology of the Littlest Higgs model with T -parity, with the

caveat that possible two-loop (or ‘tree-level’) contributions to the Higgs mass parameter can

change the limits of that interval for mh, as we discuss in more detail below.

The resulting constrained fine-tuning [using c0 and c′0 of eq. (6.24) as unknown parameters]

is shown in figure 6.8. As g1 is not a free-parameter anymore, we present our results in

the plane {c,mh}. The black solid lines correspond to case 1) and the red dashed ones to

case 2). At the lower bound for mh, which is determined by the minimal possible value
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Figure 6.8: Fine-tuning contours in a Little Higgs model with T -parity, using c0 and c′0 of eq. (6.24) as

unknown parameters. Solid (dashed) lines correspond to case 1 (2) of eq. (6.64).

of M2
T = (λ2

1 + λ2
2)f

2, one has λ1 = λ2 = λt and therefore cases 1) and 2) give the same

results for the fine-tuning, as it can be seen in the figure. At the upper bound on mh one has

M2
T = Λ2, which implies λi ' 4π for i = 1 or 2, at the limit of perturbativity. We see that

the fine-tuning is sizeable throughout all parameter space in spite of the large values of the

Higgs mass. It is always larger for case 2) because a larger value of λ1 affects directly the

parameter λa and therefore the value of λ. In fact, as it will be clearer shortly, the largest

contribution to the fine-tuning comes, in most cases, through the dependence of λ on c, c ′

and λ1.

From the previous discussion, it follows that at some future time, after the Higgs mass

has already been measured (and thus λ gets fixed), the fine-tuning would get dramatically

reduced, especially in case 2). This is shown by fig. 6.9, left plot, which presents the fine-

tuning when the constraint of fixed λ is enforced. The fine-tuning is nearly independent of

c, and varies only through the values of λ1,2, getting the smallest values at the boundaries of

parameter space. This can be understood from the simple analytical approximation

∆ ' M2
T

2λv2

|λ2
1 − λ2

2|√
λ4

1 + λ4
2

3λ2
t

2π2
log

Λ2

M2
T

, (6.65)
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Figure 6.9: Left: Same as in fig. 6.8 but keeping fixed λ. Right: Fine-tuning associated to λ itself. [Solid

(dashed) lines correspond to case 1 (2) of eq. (6.64)].

which is easy to derive and explains why cases 1) and 2) give very similar values for the

fine-tuning8. Although the fine-tuning is moderate, we still have to worry about the tuning

in λ itself, as we did in the last section for the model of ref. [62]. We show that tuning in the

right plot of fig. 6.9. Analytically we find

∆(λ) ' λ2
1

4λ

[
4c′2λ4

1

λ4
1 + λ4

2

+ (c′ − c′0)
2 + 16(c − c0)

2 (g2 + g′2)2

λ4
1

]1/2

. (6.66)

We see that there is a big difference between cases 1) and 2). In case 1), the coupling

λ1 varies between λt at the lower limit of mh and λt/
√

2 at the upper limit, and it does not

cost much to get λ right. Therefore the associated tuning is always small. In case 2), λ1 is of

moderate size (∼ λt) near the lower limit on mh but grows significantly when mh increases

(reaching λ1 ∼ 4π near the upper limit). Then, getting λ right requires small values of c′

and, being unnatural, this causes a sizeable tuning. Coming back to fig. 6.8, one can easily

check that the dependence of the fine-tuning in that plot on c and mh can be understood as

a particular combination of the two effects shown in fig. 6.9.

8The small sensitivity to c and the small difference between scenarios 1) and 2) which can be appreciated

in fig. 6.9 is a subtle effect [not captured by the approximation (6.65)] due to the dependence of λ on c, c′ and

λ1 (even though we are fixing λ). Such effects are discussed in Appendix C.
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Figure 6.10: Fine-tuning contours in a Little Higgs model with T -parity, with a ‘tree-level’ µ2
0 mass param-

eter, using c0 and c′0 of eq. (6.24) as unknown parameters and setting c = 0. The left (right) plot corresponds

to case 1 (2) of eq. (6.64).

Finally, let us consider the effect of two-loop (or ‘tree-level’) contributions to the Higgs

mass parameter which, as mentioned, can allow Higgs masses below the (quite high) lower

limit mh ≥ 280 GeV of fig. 6.8. We mimic this effect by adding a constant mass term 1/2µ2
0h

2

to the Higgs potential (allowing both signs of µ2
0). From the arguments given in previous

sections, we do not expect big changes in the fine-tuning but it is interesting to consider

this possibility as a way of accessing regions of lower Higgs mass, which are more attractive

phenomenologically. Notice that eq. (6.63) is now enlarged by one more parameter, namely

µ2
0. The resulting fine-tuning for cases 1) and 2) of eq. (6.64) is shown in fig. 6.10, (left and

right plots, respectively), setting c = 0 (which nearly minimizes the fine-tuning). For Higgs

masses accessible already with µ0 = 0, the fine-tuning does not change much, as expected,

while for lower Higgs masses the fine-tuning increases [case 1)] or remains large [case 2)]. We

see that case 1) continues to be the best option.

Figs. 6.8 and 6.10 summarize our results for the model analyzed in this section. As

for the models of sections 6.1 and 6.2, the fine-tuning is always substantial (∆ > 10) and

usually comparable to (or higher than) that of the Little Hierarchy problem [∆ >∼ O(100)]

and worse than in the MSSM. Notice also that the lowest fine-tuning, ∆ ∼ 25, is obtained
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for large values of the Higgs mass, mh
>∼ 500 GeV, which is generically disfavoured from

fits to precision electroweak observables [67]. In addition, such large values of mh are less

satisfactory from the point of view of the Little Higgs philosophy: the Little Higgs mechanism

is interesting because it might explain the lightness of the Higgs compared to the TeV scale.

6.4 The Simplest Little Higgs Model [64]

6.4.1 Structure of the Simplest Little Higgs model

We now depart from the group structure of the Littlest Higgs and consider a model, proposed

in [64], that is based on a global [SU(3) × U(1)]2/[SU(2) × U(1)]2. The initial gauged sub-

group is [SU(3) × U(1)X ] which gets broken to the electroweak subgroup. This spontaneous

symmetry breaking produces 10 Goldstone bosons, 5 of which are eaten by the Higgs mech-

anism to make massive a complex SU(2) doublet of extra W ′s, (W ′±,W ′0), and an extra Z ′.

The remaining 5 degrees of freedom are: H [an SU(2) doublet to be identified with the SM

Higgs] and η (a singlet).

Explicitly, the spontaneous breaking is produced by the vevs of two scalar triplet fields,

Φ1 and Φ2:

〈Φ1〉 =




0

0

f1


 , 〈Φ2〉 =




0

0

f2


 . (6.67)

These triplets transform under the global symmetry as

Φ1 → e−iα1/3U1Φ1 , Φ2 → e−iα2/3U2Φ2 , (6.68)

where Ui is an SU(3)i matrix and e−iαi/3 are U(1)i rotations, with gauge transformations

corresponding to the diagonal U1 = U2, α1 = α2. Using the broken generators, the Goldstone

fluctuations around the vacuum (6.67) can be written as

Φi = exp




i

f




0 0 h+
i

0 0 h0
i

h−
i h0∗

i ηi/
√

2










0

0

fi


 , (6.69)

for i = 1, 2, with f 2 = f2
1 + f2

2 . Identifying explicitly the linear combinations of hi and ηi

that correspond to the eaten Goldstones (G±, G0, GS) and the physical fields (H, η) one gets

Φ1 = exp




i

f




0 0 G+

0 0 G0

G− G0∗ GS/
√

2


+

if2

ff1




0 0 h+

0 0 h0

h− h0∗ η/
√

2










0

0

f1


 ,
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(6.70)

Φ2 = exp




i

f




0 0 G+

0 0 G0

G− G0∗ GS/
√

2


− if1

ff2




0 0 h+

0 0 h0

h− h0∗ η/
√

2










0

0

f2


 .

The scalar kinetic part of the lagrangian is

Lk = |DµΦ1|2 + |DµΦ2|2 , (6.71)

with

DµΦi = ∂µΦi − igW a
µT aΦi +

i

3
gxBx

µΦi , (6.72)

corresponding to the SU(3) × U(1)x gauged group. Obviously, g corresponds to the SU(2)

gauge coupling while the relation between g, gx and the U(1)Y gauge coupling g′ is given by

1

g′2
=

1

3g2
+

1

g2
x

, (6.73)

which simply fixes gx in terms of g and g′. This initial tree-level lagrangian has a structure

similar to eq. (6.9). In particular, m2 and λ are zero at this level.

As in previous models, in order to study the electroweak breaking, we need to consider

the one-loop Higgs potential, for which we have to to compute the h-dependent masses of the

model.

In the gauge sector one can write the masses of the gauge bosons in terms of Φ1,2. For

this we find convenient to define the operator

O12 ≡ 1

f2

(
f2
1f2

2 − |Φ†
1Φ2|2

)
. (6.74)

In a background of 〈h0〉 = h/
√

2 and η, this operator can be expanded as

O12 =
1

2
h2 − 1

48

f2

f2
1 f2

2

h2(4h2 + η2) + ... (6.75)

Generically, one gets masses of the form

m2
H,L =

M2

2

[
1 ±

√
1 − 4κ2

12O12/M2

]
, (6.76)

where the subindices H,L stand for heavy and light masses, M is a generic mass of order f

and κ12 is some combination of couplings. An expansion in powers of O12 gives

m2
H = M2 − κ2

12O12 + O(O2
12) ,

m2
L = κ2

12O12 + O(O2
12) . (6.77)
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Besides the massless photon, the rest of gauge bosons have the following masses. For the

charged (W±,W ′±), formula (6.76) holds with

M2 = M2
W ′ ≡ 1

2
g2f2 , κ2

12 =
1

2
g2 . (6.78)

Expanding in powers of h, one gets

m2
W ′±(h) = M2

W ′ − 1

4
g2h2 + O(h4/f2) ,

m2
W±(h) =

1

4
g2h2 + O(h4/f2) . (6.79)

For the (Z ′0, Z0) pair, again the masses are given by formula (6.76), now with

M2 = M2
Z′ ≡ 2g2

3 − t2w
f2 , κ2

12 =
1

2
(g2 + g′2) , (6.80)

where tw ≡ g′/g. An expansion in powers of h gives

m2
Z′0(h) = M2

Z′ − 1

4
(g2 + g′2)h2 + O(h4/f2) ,

m2
Z0(h) =

1

4
(g2 + g′2)h2 + O(h4/f2) . (6.81)

Finally, for the complex W ′0

m2
W ′0 = M2

W ′ , κ2
12 = 0 . (6.82)

In the fermion sector, the Yukawa part of the lagrangian, reads

LY = λ1u
c
1Φ

†
1ΨQ + λ2u

c
2Φ

†
2ΨQ + h.c. , (6.83)

with generation indices suppressed (we only care about the third family). Here ΨQ is an

SU(3) triplet (with x-charge 1/3) that contains the usual quark doublet while uc
1,2 are SU(3)

singlets (with x-charge −2/3). A combination of uc
1 and uc

2 corresponds to the SM top quark

field while the orthogonal combination gets a heavy mass with the third component of ΨQ.

The explicit masses of these fields follow the pattern of (6.76) with

M2 = M2
T ≡ λ2

1f
2
1 + λ2

2f
2
2 , κ2

12 = λ2
t , (6.84)

where λt is the SM top Yukawa coupling, given by

f2

λ2
t

=
f2
1

λ2
2

+
f2
2

λ2
1

. (6.85)

An expansion in powers of h gives

m2
T (h) = M2

T − 1

2
λ2

t h
2 + O(h4/f2) ,

m2
t (h) =

1

2
λ2

t h
2 + O(h4/f2) . (6.86)
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From the generic formula for the masses in eq. (6.76), one sees that StrM 2 is field in-

dependent and then the cancellation of h2 terms holds to all order in h. Therefore, and in

contrast with previous models, one-loop quadratically divergent corrections from gauge or

fermion loops do not induce scalar operators to be added to the lagrangian. Then, no Higgs

quartic coupling is present at this level.

Less divergent one-loop corrections do induce both a mass term and a quartic coupling

for the Higgs. Using again the MS scheme in Landau gauge9 and setting the renormalization

scale Q = Λ, it is straightforward to compute the one-loop potential including fermion and

gauge boson loops once the masses are known as a function of h. Performing an expansion

of this potential in powers of h, one gets [64]

V (h) =
1

2
δm2h2 +

1

4

[
δ1λ(h) − δm2

3

f2

f2
1 f2

2

]
h4 + ... (6.87)

with

δm2 =
3

32π2

[
g2M2

W ′

(
log

Λ2

M2
W ′

+
1

3

)
+

1

2
(g2 + g′2)M2

Z′

(
log

Λ2

M2
Z′

+
1

3

)]

− 3

8π2
λ2

t M
2
T

(
log

Λ2

M2
T

+ 1

)
+ ... , (6.88)

and

δ1λ(h) = − 3

128π2

[
g4

(
log

M2
W ′

m2
W (h)

− 1

2

)
+

1

2
(g2 + g′2)2

(
log

M2
Z′

m2
Z(h)

− 1

2

)]

+
3

16π2
λ4

t

(
log

M2
T

m2
t (h)

− 1

2

)
+ ... , (6.89)

where the dots in eqs. (6.88) and (6.89) stand for subdominant contributions (in particular

those from the η and the Higgs field itself, which were also subdominant in previous models).

The radiatively induced Higgs mass, δm2, is dominated as usual by the negative heavy

Top contribution, which is again too large (being M 2
T ≥ 4λ2

t f
2
1 f2

2/f2) and now there is no

bosonic contribution that can be used to compensate it. This problem is solved [64] by adding

to the tree-level potential a mass µ2 for the triplets Φ1,2

δ0V = µ2OX ≡ µ2(2f1f2 − Φ†
1Φ2 − Φ†

2Φ1) . (6.90)

Such operator contributes to the Higgs potential the piece

δ0V =
1

2
µ2

0h
2 − 1

48

µ2
0f

2

f2
1 f2

2

h4 + ... (6.91)

9Our scheme differs from that used in [64], but the difference is numerically small.
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where µ2
0 is given in terms of the fundamental mass parameter µ2 by

µ2
0 = µ2 f2

f1f2
. (6.92)

By choosing µ2
0 > 0 we get a positive contribution to the Higgs mass parameter that can

compensate the heavy Top contribution in δm2. The tree-level value of the Higgs quartic

coupling from eq. (6.91) is then negative but the large (and positive) radiative corrections in

eq. (6.89) can easily overcome that effect.

6.4.2 Fine-tuning analysis in the Simplest Little Higgs

In order to compute the fine-tuning in this model [27] we use the previous potential, (6.87)

plus (6.91):

V (h) =
1

2
(µ2

0 + δm2)h2 +
1

4

[
δ1λ(h) − f2

3f2
1 f2

2

(
δm2 +

µ2
0

4

)]
h4 + ... (6.93)

As mentioned, it does not contain the subdominant contributions from η and the Higgs field.

The input parameters are now:

{λ1, λ2, µ
2, f1, f2} . (6.94)

Without loss of generality we can choose f1 ≤ f2, in which case the UV cut-off is Λ = 4πf1.

Since we want Λ = 10 TeV (the scale of the Little Hierarchy problem) we also set f1 = 1 TeV.

As f1 and f2 are not the only mass scales in the problem (there is µ2 as well) it is important

to include the fine-tuning associated to them, which might be large now.

The Higgs mass that results from the potential (6.93), after trading µ2
0 by v using the mini-

mization condition, can be computed as a function of M 2
T for fixed f2/f1. For any pair {λ1, λ2}

that gives a particular value of M 2
T , there is another pair {λ1, λ2} → {λ2f2/f1, λ1f1/f2} that

gives the same M 2
T . Therefore each choice of M 2

T (to get a particular value of mh) corresponds

to two different solutions in terms of λ1,2. We will refer to them as

1) λ1f1 ≤ λ2f2 , 2) λ1f1 ≥ λ2f2 . (6.95)

As mentioned above, these two solutions are related by the interchange λ1f1 ↔ λ2f2. Fig. 6.11

gives the fine-tuning in the plane {mh, f2/f1} for these two cases. We see from these plots

that the fine-tuning is sizeable and increases with f2/f1. From the bound MT ≥ 2λtf1f2/f

and the fact that δm2 and δ1λ cannot be arbitrarily large, it follows that m2
h is limited to

a certain range. This range depends on the value of f2/f1: for f2 = f1 one gets 163 GeV

≤ mh ≤ 606 GeV and a narrower range for larger f2/f1, as it can be seen in fig. 6.11.
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Figure 6.11: Fine-tuning contours for the Simplest Little Higgs model for cases 1) (left plot) and 2) (right

plot) of eq. (6.95).

To access lower values of mh one can add a piece λ0 to the Higgs quartic coupling in the

potential (6.93). This new term can result from the unknown heavy physics at the cut-off

Λ. For λ0 < 0 one can get values of mh below the lower bounds discussed before. In the

presence of such term we should also worry about the quadratically divergent contributions

of scalars to the Higgs mass parameter. From

δV quad
1 =

Λ2

32π2
(m2

h + 3m2
G + m2

η) , (6.96)

where mh,mG and mη are the tree-level masses of the Higgs, the electroweak Goldstones and

η respectively, one gets10 (after substituting Λ = 4πf1)

δqm
2 = −5f2

8f2
2

µ2
0 + 6λ0f

2
1 . (6.97)

The piece proportional to µ2
0 is not particularly dangerous and can even be interpreted as

a redefinition of the original µ2
0 parameter, while the second term, proportional to the new

coupling λ0, can be sizeable, thus having a significant impact on the fine-tuning. In the

presence of these quadratically divergent corrections we expect to have a contribution to the

10Of course, this contribution is due to the fact that the Simplest model does not include additional fields

to cancel the quadratic divergencies from loops of its scalar fields.
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Figure 6.12: Fine-tuning contours for the Simplest Little Higgs model augmented by a ‘tree-level’ quartic

coupling λ0, with mh = 115 GeV (left plot) and mh = 250 GeV (right plot).

Higgs mass parameter of order 6λ0f
2
1 already at the cut-off. Therefore we introduce such a

mass term in the potential, multiplied by some unknown coefficient c, from the beginning.

As we did in previous models, we then split c into an unknown ‘tree-level’ contribution c0

and a calculable radiative one-loop correction c1, with c = c0 + c1 = c0 + 1. Our potential is

now

V (h) =
1

2
[µ2

0+δm2+6(c0+1)λ0f
2
1 ]h2+

1

4

[
λ0 + δ1λ(h) − f2

3f2
1 f2

2

(
δm2 +

µ2
0

4

)]
h4+... (6.98)

and the set of input parameters is enlarged to

{λ0, λ1, λ2, µ
2, f1, f2, c0} . (6.99)

Fig. 6.12 shows the fine-tuning associated to this modified potential in the plane {c0, λ1}
for mh = 115 Gev (left plot) and mh = 250 GeV (right plot) for f2 = f1. As expected, lower

Higgs masses can now be reached, but there is a fine-tuning price to pay. As shown by the

right plot, in the case of larger Higgs masses, already accessible for λ0 = 0, the effect of the

new parameters c0 and λ0 allows the fine-tuning to be reduced if such parameters are chosen

appropriately, but the effect is never dramatic (for the sake of comparison, we show by a

dashed line, the fine-tuning corresponding to λ0 = 0). However, the fine-tuning gets worse

in most of the parameter space.
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Figure 6.13: Scatter-plot of the fine-tuning in the Simplest Little Higgs model as a function of the Higgs

mass.

From figs. 6.11 and 6.12, we can conclude that the fine-tuning in the Simplest LH model is

similar to that of the models analyzed in previous sections: it is always significant and usually

comparable to (or higher than) that of the Little Hierarchy problem [∆ >∼ O(100)]. Only for

some small regions of parameter space is ∆ comparable to the MSSM one (∆ ∼ 20 − 40 for

mh
<∼ 125 GeV); usually it is much worse. The last point is illustrated by the scatter-plot

of fig. 6.13, which shows the value of ∆ vs. mh for random values of the parameters given

in (6.99) compatible with v = 246 GeV. More precisely, we have set f1 = f2 = 1 TeV and

chosen at random λ0 ∈ [−2, 2], λ1 ∈ [λt/
√

2, 15] and c0 ∈ [−10, 10]. The solid line gives the

minimal value of ∆ as a function of mh and has been computed independently (rather than

deduced from the scatter plot). Clearly, the density of points gets sparser near this lower

bound.

6.5 Conclusions

Little Higgs (LH) models try to solve the Little Hierarchy problem, making the Higgs a

pseudo-Goldstone boson resulting from a spontaneously broken global symmetry. In these

models quadratic divergences to the Higgs mass are absent at one-loop level, and no fine-
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Figure 6.14: Comparative summary of the fine-tuning vs. mh for different scenarios. The curves for Little

Higgs models (lines labeled “Littlest”, “Littlest 2”, “T -parity” and “Simplest”) are lower bounds on the

corresponding fine-tuning, see text for details.

tuning is required to keep the Higgs sufficiently light until a scale of the order 10 TeV : the

“Little Hierarchy” is then stabilized.

We have rigorously analyzed the fine-tuning associated to the electroweak breaking pro-

cess in Little Higgs (LH) scenarios, focussing on four popular and representative models,

corresponding to refs. [61, 62, 63, 64].

Although LH models solve parametrically the Little Hierarchy problem [generating a

Higgs mass parameter of order f/(4π)], our first conclusion is that these models generically

have a substantial fine-tuning built-in, usually much higher than suggested by the rough

considerations commonly made. This is due to the great amount of superstructure of these

models giving implicit tunings between parameters that can be overlooked at first glance

but show up in a more systematic analysis. This does not demonstrate, of course, that all

LH models are necessarily fine-tuned, but it stresses the need of a rigorous analysis in order

to claim that a particular model is not fine-tuned, especially if a quantitative statement is

attempted (e.g. to compare its degree of fine-tuning with that of the MSSM). In this respect,

the analysis presented here can also be helpful as a guide to the ingredients that typically

increase the fine-tuning in LH models, in order to correct them in improved constructions.

We have quantified the degree of fine-tuning following the ’standard’ criterion of Barbieri

and Giudice [16], through a fine-tuning parameter ∆, that can be computed in each model

(e.g. ∆ ' 100 means a fine-tuning at the one percent level), finding that the four LH scenarios
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analyzed here present fine-tuning (∆ > 10) in all cases and in most of their parameter space.

The results are summarized in the plots of figs. 6.3 (for the Littlest Higgs), 6.7 (for the

modified Littlest Higgs), 6.8 and 6.10 (for the Littlest Higgs with T -parity), and 6.11 and

6.12 (for the Simplest Little Higgs). Actually, the fine-tuning is comparable to or higher–

sometimes much higher– than the one associated to the Little Hierarchy problem of the SM

(given by the blue line of fig. 2.8 in chapter 2) in most of the parameter space of these models.

Since LH models have been designed to solve the Little Hierarchy problem, we believe this is

a serious drawback. Likewise, the fine-tuning is usually worse than that of supersymmetric

models (∆ = 20 − 40 for the MSSM and lower for other supersymmetric scenarios), which

succeed at stabilizing a much larger hierarchy (Λ ' MGUT or MP lanck rather than Λ ' 10

TeV).

We can make the previous statements more precise. Fig. 6.14 shows the fine-tuning ∆

as a function of mh for different scenarios. The curve labelled “SM” represents the fine-

tuning of the Little Hierarchy problem in the SM, as discussed in fig. 2.8 in chapter 2. The

“MSSM” line shows the fine-tuning of the MSSM11. Then, for each LH model analyzed in

sects. 1–4 of this chapter we have plotted (lines labeled “Littlest”, “Littlest 2”, “T -parity”

and “Simplest”) the minimum value of ∆ accessible by varying the parameters of the model.

Usually, only in a quite small area of parameter space of each model is the fine-tuning close

to the lower bound shown, so the LH curves in fig. 6.14 are a very conservative estimate

of the fine-tuning in the corresponding LH models. This point is illustrated by fig. 6.13 for

the Simplest LH model (the best behaved): the lower line in that plot corresponds to the

“Simplest” line in fig. 6.14. Now we see that the value of ∆ for all these models is ≥ O(100)

in most of parameter space, and larger that 20 − 30 in all cases. This fine-tuning is larger

than the MSSM one, at least for the especially interesting range mh
<∼ 130 GeV. Notice here

that mh
>∼ 135 GeV is not available in the MSSM if the supersymmetric masses are not larger

than ∼ 1 TeV. This limitation does not hold for other supersymmetric models, e.g. those

with low-scale SUSY breaking, as discussed in ref. [36], which are definitely in better shape

than LH models concerning fine-tuning issues.

Regarding the specific ingredients that potentially increase the fine-tuning in LH models,

we stress two of them. First, the LH lagrangian is generically enlarged with operators that

have the same structure as those generated through the quadratically divergent radiative

corrections to the potential (and are necessary for the viability of the models). Such operators

11This curve has been obtained for large tan β (which minimizes the fine-tuning) but disregarding stop-

mixing effects (which can help in reducing the fine-tuning).
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have two contributions: the radiative one (calculable) and the ’tree-level’ one (arising from

physics beyond the cut-off and unknown). Very often the required value of the coefficient

in front of a given operator is much smaller than the calculable contribution, which implies

a tuning (usually unnoticed) between the tree-level and the one-loop pieces (similar to the

hierarchy problem in the SM). Second, the value of the Higgs quartic coupling, λ, receives

several contributions which have a non-trivial dependence on the various parameters of the

model. Therefore, to keep λ small (as required to have mh in a phenomenologically acceptable

region) an extra fine-tuning is required.
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Chapter 7

Conclusions

7.1 Conclusions (English)

This thesis focusses on the Hierarchy problem of the Standard Model (SM) and in the natu-

ralness of Electroweak Symmetry Breaking (EWSB) for specific examples of physics beyond

the SM.

The Hierarchy problem of the SM gives an estimate of the scale of New Physics (NP), Λ,

based on the sensitivity of the Higgs mass, mh, to quadratic divergences. Imposing that the

Higgs mass is not fine-tuned, i.e. that the quadratically divergent contributions are not much

larger than mh itself, one obtains the estimate Λ ≤ 2-3 TeV for the SM cut-off (although

in very specific situations this bound could be evaded). Then, according to this estimate,

NP should appear at scales on the reach of the LHC at CERN. Although this argument is

arguably naive [as it ignores other contributions to the Higgs mass (logarithmic and finite)

which can be potentially large], the general analysis presented in this thesis, based on a model-

independent study of the one-loop effective potential, shows that one can keep Λ ≤ 2-3 TeV

as a conservative bound. In spite of being a very general argument, this kind of analysis still

has limitations, and there could be some cases where the above result does not apply (e.g. all

the dangerous contributions are absent due to some unknown reason). Therefore, to be on

the safe side, one must perform the fine-tuning analysis on specific scenarios of NP in order

to obtain more precise implications from naturalness arguments.

If one assumes that the SM is valid up to a very large cut-off scale (e.g. MGUT ∼ 1015

GeV or MP lanck ∼ 1019 GeV), the Higgs mass suffers from an enormous fine-tuning, called

the “Big Hierarchy” problem. On the other hand, if the considered cut-off is at 10 TeV (i.e.

125
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the experimental lower bound on the effective scale of some higher order operators), there

is still a fine-tuning, but of the order of 1%. The last is the so called “Little Hierarchy”

problem. In the literature it has been proposed to alleviate this Little Hierarchy problem

with simple modifications of the Higgs sector. In this work, specific proposals of two Higgs

doublets models (2HDM) have been examined from naturalness arguments to confirme or not

if they can raise the expected SM scale of new physics of 2-3 TeV. Then, this could lead to

NP above the LHC reach. The conclusion for them is that, in general, they cannot improve

the SM upper bound, keeping the expected NP inside LHC reach.

On the other hand, the evidence for neutrino masses is the first experimental result

of physics beyond the ordinary SM. The simplest extension of the SM incorporates small

neutrino masses by adding right-handed neutrinos with a large Majorana mass, MR (the

“seesaw” mechanism). In this scenario there are two neutrino eigenstates for each generation,

one very light (mν < 1 eV) and the other very heavy (e.g. MR ∼ 1013 GeV). The heaviest

eigenstate contributes to the dangerous corrections to the Higgs mass and we have seen that

fine-tuning arguments in the Higgs mass set an upper bound, MR
<∼ 107 GeV, which spoils

the natural small values for neutrino masses in the seesaw mechanism with natural neutrino

Yukawa couplings of O(1). In conclusion, the case of right-handed seesaw neutrinos suffers a

very important fine-tuning problem, which can not been ameliorated unless additional new

physics is introduced, such as Supersymmetry.

In Supersymmetry (SUSY) quadratically divergent corrections to the Higgs mass are can-

celled. Despite this feature, the new sparticles with masses of O(msoft) give rise to logarithmic

and finite contributions to the Higgs mass that lead to the usual fine-tuning upper bound

msoft ≡ Λ <∼ 2− 3 TeV. In the Minimal Supersymmetric Standard Model (MSSM) the upper

bound is much more stringent, namely msoft
<∼ few hundred GeV. In the MSSM, radiative

corrections to the Higgs mass are required due to the smallness of the tree-level Higgs quartic

coupling (not large enough to be consistent with LEP Higgs mass bound), this implies soft

masses larger than msoft > 300 GeV. In consequence, the MSSM is already fine-tuned at the

few percent level. The main reasons for this abnormally large fine-tuning are this smallness of

the tree-level Higgs quartic coupling and the large coefficients of soft-terms contributions in

the effective potential due to Renormalization Group running effects. The MSSM problems

can be alleviated in alternative SUSY models. In this thesis, we have considered scenarios

where the breaking of SUSY occurs at low scale (not far from the TeV). In such scenarios it is

natural to have tree-level SUSY breaking contributions to the Higgs quartic coupling which

can make it larger. This helps in evading the LEP Higgs mass bound without the need of
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large radiative corrections and, moreover, in such models RG effects do not play a significant

role since the cut-off scale is much closer to the electroweak scale. All these improvements

can cooperate to make EWSB much more natural than in the MSSM, and in this particular

case the general bound Λ <∼ 2 − 3 TeV can indeed be saturated.

Besides SUSY, there are other candidates for NP. Among them, Little Higgs (LH) sce-

narios are a recent proposal done to solve the Little Hierarchy problem of the SM, that is, to

stabilize the Higgs mass sufficiently light until a scale at least of 10 TeV. In our fine-tuning

analysis of four representative LH models, we have concluded that their fine-tuning is much

larger than suggested by rough estimates. Because these models present a great amount

of superstructure, there are “hidden” adjustments between the parameters of the model in

order to have the correct EWSB, giving rise to a large amount of fine-tuning in most of the

parameter space of the model. These implicit tunings can be overlooked at first glance but

show up in a more systematic analysis. This unexpected high fine-tuning is mostly due to two

reasons. First, the LH models have operators in their lagrangian with the same structure as

the operators generated through the quadratic radiative corrections to the potential. These

operators have two contributions: the radiative one (computable) and the ’tree-level’ one

(arising from physics beyond the cut-off and unknown). The required value of the coefficient

in front of a given operator is often much smaller than the calculable contribution, which

implies a tuning between the tree-level and the one-loop pieces. Second, the value of the

Higgs quartic coupling, λ, receives several contributions which have a non-trivial dependence

on the various parameters of the model. Keeping λ in a phenomenologically acceptable region

needs an extra fine-tuning. This does not demonstrate that all LH models are fine-tuned,

but stresses the need of a careful analysis of this issue in model-building.

The last point of the above paragraph should be indeed applied to all the scenarios of NP.

The fine-tuning analyses give us a naturalness criterion for the different kinds of scenarios,

and together with electroweak precision tests they offer a guideline to NP properties and

to the scales at which NP could be found. In this thesis, it has been found that the upper

bound of 2-3 TeV for NP given by the Hierarchy problem of the SM is a conservative bound,

and when specific scenarios are considered, the upper bounds from naturalness on the masses

of new particles are even smaller than 2 TeV. This suggests that new physics is around the

corner, at scales accessible to the next generation of high energy accelerator, such as LHC,

starting next year. And from naturalness arguments and due to its successful properties,

supersymmetry could be the favourite candidate to be observed.
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7.2 Conclusiones (Castellano)

Esta tesis se centra en el problema de las jerarqúıas del Modelo Estándar y en la naturalidad

de la ruptura de la simetŕıa electrodébil en ejemplos espećıficos de f́ısica más allá del Modelo

Estándar.

El problema de las jerarqúıas del Modelo Estándar da una estimación de la escala de

nueva f́ısica, basada en la sensibilidad de la masa del Higgs a divergencias cuadráticas. Si

imponemos que la masa del Higgs no esté sometida a un ajuste fino ó fine-tuning, es decir, que

las divergencias cuadráticas no sean mucho mayores que la propia masa del Higgs, se obtiene

una estimación en la escala de Λ ≤ 2-3 TeV, probablemente accesible para el LHC en el CERN.

Aunque este argumento se podŕıa considerar como simplista, ya que pueden exister situaciones

en las que esta cota puede evadirse como hemos visto, el análisis general que se presenta en

esta tesis basado en el estudio del potencial efectivo a un loop independiente de modelo,

muestra que la cota estimada anteriormente funciona bien como una cota conservadora, ya

que al estimarla se han ignorado otras contribuciones a la masa del Higgs que pueden ser

potencialmente grandes. A pesar de ser un argumento general, este tipo de análisis tiene

sus limitaciones, y podŕıa aparecer algún caso donde la cota anterior fuera errónea (p. ej.

alguna teoŕıa donde todas las contribuciones peligrosas no aparecerieran debido a alguna

razón desconocida). Por lo tanto, por precaución, se deben realizar los análisis de fine-tuning

en escenarios espećıficos de nueva f́ısica para aśı obtener implicaciones más precisas de los

argumentos de naturalidad.

Si se asume que el Modelo Estándar es válido hasta una escala de cut-off alta (e.g.

MP lanck), la masa del Higgs presenta un gran fine-tuning, llamado el “gran” problema de

las jerarqúıas. Por otro lado, si se considera el cut-off en 10 TeV (el ĺımite experimental

inferior en la escala efectiva de algunos operadores de orden superior), sigue existiendo un

fine-tuning, pero en este caso del 1%, llamado el “pequeño” problema de las jerarqúıas. Se

ha propuesto en la literatura resolver el “pequeño” problema de las jerarqúıas modificando

el sector de Higgs del MS. En esta tesis, se han analizado diferentes propuestas de modelos

con dos dobletes de Higgs y se ha observado que, sin embargo, no son capaces de mejorar la

cota de naturalidad del MS.

Por otro lado, el primer resultado experimental de f́ısica más allá del Modelo Estándar

ordinario es la evidencia de masas para los neutrinos. La extensión más simple del MS para

incorporar masas para los neutrinos es via el mecanismo de “seesaw”, añadiendo neutri-

nos dextrógiros con un masa tipo Majorana muy grande, MR. En este escenario hay dos
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autoestados de masa para cada generación, uno muy ligero (mν < 1 eV) y otro muy pe-

sado (MR ∼ 1013 GeV). El autoestado pesado contribuye a la masa del Higgs a través de

correciones radiativas. Hemos mostrado que para que esas correciones no supongan un gran

fine-tuning, la masa MR debeŕıa ser <∼ 107 GeV, por lo que para mantener masas my pequeñas

para los neutrinos ligeros necesitaŕıamos acoplos de Yukawa no naturales, <∼ 10−7. Con esto

concluimos que los neutrinos seesaw presentan un problema importante de fine-tuning que no

puede mejorarse salvo que se introduzca nueva f́ısica adicional, como puede ser supersimetŕıa.

En Supersimetŕıa las correciones cuadráticamente divergentes a la masa del Higgs se

cancelan. A pesar de esta propiedad, las nuevas part́ıculas supersimétricas con masas O(msoft)

dan lugar a contribuciones logaŕıtmicas y finitas a la masa del Higgs que conducen a la cota de

naturalidad habitual, msoft ≡ Λ <∼ 2 − 3 TeV. En el modelo supersimétrico mı́nimo (MSSM)

esta cota es mucho más severa, msoft
<∼ 150 GeV. Debido a que el acoplo cuártico del Higgs

a nivel árbol es muy pequeño haciendo necesarias correciones radiativas a la masa del Higgs

para que esta masa sea consistente con el ĺımite inferior experimental, las masas de las

part́ıculas supersimétricas deben ser tales que msoft > 300 GeV, con lo que el MSSM resulta

estar ajustado aproximadamente al 4 %. Otra razón de este gran ajuste es que el potencial

efectivo tiene contribuciones de los términos soft con coeficientes grandes debido a efectos de

running del grupo de renormalización, dando lugar a ajustes entre estos términos para que

se dé una correcta ruptura electrodébil. Los problemas anteriores pueden ser atenuados en

otros modelos supersimétricos. En esta tesis se ha considerado el escenario donde la ruptura

de supersimetŕıa ocurre a baja escala (no muy lejos del TeV). En estos escenarios se tiene

de manera natural un acoplo cuártico del Higgs a nivel árbol mayor que el del MSSM. Esto

hace que la masa del Higgs a nivel árbol sea consistente con las cotas experimentales y no se

necesiten grandes correciones radiativas y, además, los efectos del grupo de renormalización

no juegan un papel importante ya que la escala de cut-off está más próxima a la escala

electrodébil. Estas mejoras hacen que la ruptura de la simetŕıa electrodébil se realice de

manera más natural que en el MSSM, y en este caso particular se ve también como el ĺımite

general de Λ <∼ 2 − 3 TeV puede saturarse.

Además de la supersimetŕıa, existen otros candidatos de nueva f́ısica. Entre ellos, los

escenarios de Little Higgs son una propuesta reciente realizada para resolver el “pequeño”

problema de las jerarqúıas del Modelo Estándar. En nuestro análisis del fine-tuning en cua-

tro modelos representativos de Little Higgs hemos concluido que su fine-tuning asociado a la

ruptura de la simetŕıa electrodébil es mucho mayor que lo sugieren las primeras estimaciones.

Debido a que estos modelos presentan una gran cantidad de estructura interna, hay mu-
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chos ajustes “ocultos” entre los parámetros para que se de la correcta ruptura de la simetŕıa

electrodébil. Esto da lugar a una gran cantidad de fine-tuning en la mayoria del espacio de

parámetros del modelo. Estos ajustes impĺıcitos pueden pasar desapercibidos, pero salen a

la luz cuando se lleva a cabo un análisis sistemático, como el que hemos realizado. Este ines-

perado fine-tuning es debido principalmente a dos razones. La primera es que estos modelos

tienen operadores en su lagrangiano con la misma estructura que los operadores generados

a través de correciones radiativas cuadráticas al potencial. Estos operadores tienen dos con-

tribuciones: la radiativa (calculable) y la de nivel árbol (que proviene de f́ısica por encima

del cut-off y desconocida). El valor requerido para el coeficiente en frente de un operador

dado suele ser mucho menor que la contribución calculable, dando lugar a un ajuste entre la

pieza calculable y la de nivel árbol. La segunda razón es que el valor del acoplo cuártico del

Higgs recibe varias contribuciones que tienen una dependencia no trivial en los parámetros del

modelo y para mantener este acoplo en la región aceptable fenomenológicamente se necesita

un fine-tuning extra. Estas dos razones no demuestran que todos los modelos de Little Higgs

estén ajustados de manera fina, pero hace hincapié en la necesidad de un análisis cuidadoso

del fine-tuning en la construcción de modelos de este tipo.

En realidad, el análisis cuidadoso del fine-tuning debeŕıa ser realizado en todos los esce-

narios de f́ısica más allá del MS. Estos análisis nos dan un criterio de naturalidad para las

diferentes clases de escenarios, y, junto con las medidas de precisión electrodébil, nos ofrecen

una gúıa acerca de las propiedades de la nueva f́ısica y a que escalas podŕıa ésta encontrarse,

además de cuáles son los escenarios más favorables para ser descubiertos en próximos ex-

perimentos. En nuestro trabajo se ha observado que el ĺımite de 2-3 TeV para nueva f́ısica

dado por el problema de las jerarqúıas del Modelo Estándar es en realidad una cota con-

servadora y cuando se estudian escenarios espećıficos se encuentran ĺımites de naturalidad

incluso menores que esa escala para las nuevas part́ıculas de cada modelo en concreto. Esto

sugiere que la nueva f́ısica se encuentra a escalas accesibles para la nueva generación de ex-

perimentos de alta enerǵıa como es el LHC , cuyo funcionamiento empieza el año próximo.

En estos momentos, de los argumentos de naturalidad y debido a sus propiedades exitosas,

supersimetŕıa pareceŕıa ser el candidato favorito de ser observado en el LHC.



Appendix A

General formulas in two Higgs

doublet models

Here we consider a generic scenario where the Higgs sector consists of two SU(2)L doublets of

opposite hypercharge, H1 and H2, as in many supersymmetric models [9]. The most general

Higgs potential for such two Higgs doublet models (2HDM) is at tree-level:

V = m2
1|H1|2 + m2

2|H2|2 −
[
m2

3H1 · H2 + h.c.
]

+
1

2
λ1|H1|4 +

1

2
λ2|H2|4 + λ3|H1|2|H2|2 + λ4|H1 · H2|2

+

[
1

2
λ5(H1 · H2)

2 + λ6|H1|2H1 · H2 + λ7|H2|2H1 · H2 + h.c.

]
. (A.1)

A.1 Renormalization Group Equations

In this Appendix, we collect the one-loop Renormalization Group Equations (RGEs) [70] that

are needed in the analysis presented in chapter 4 of this work. Schematically, the RGEs at

one-loop take the form

dpi

dt
= βi(p1, p2, ...), with t ≡ lnµ2, (A.2)

where µ is the energy scale and the parameters pi stand for the Higgs boson self-couplings

λi, the squared Yukawa coupling for the top λ2
t and the squared gauge couplings g2, g′2 and

g2
3 .
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We must distinguished between the non-supersymmetric 2HDM case and the supersym-

metric case. The distinction is given depending on whether the scale µ where we are is above

or below the scale of supersymmetry breaking, MSUSY.

• µ > MSUSY

16π2βλ2
t

= λ2
t

(
6λ2

t −
16

3
g2
3 − 3g2 − 13

9
g′2
)

48π2βg′2 = g′4
(

10Ng +
3

2
NH

)

48π2βg2 = g4

(
6Ng +

3

2
NH − 18

)

48π2βg2
3

= g4
3 (6Ng − 27) .

(A.3)

Here Ng = 3 is the number of generations, NH = 2 is the number of scalar doublets,

and the top Yukawa coupling is λt = gmt√
2MW sβ

.

• µ < MSUSY

16π2βλ2
t

= λ2
t

(
9

2
λ2

t − 8g2
3 − 9

4
g2 − 17

12
g′2
)

48π2βg′2 = g′4
(

20

3
Ng +

1

2
NH

)

48π2βg2 = g4

(
4Ng +

1

2
NH − 22

)

48π2βg2
3

= g4
3 (4Ng − 33) .

(A.4)

The anomalous dimensions of the two Higgs fields and the RGEs for the Higgs self-

couplings and mass parameters (with the Higss-fermion couplings as specified in section 1 of

chapter 4) are:

64π2γ1 = 9g2 + 3g′2

64π2γ2 = 9g2 + 3g′2 − 12λ2
t

16π2βλ1 = 6λ2
1 + λ2

3 + (λ3 + λ4)
2 + λ2

5 + 12λ2
6 +

3

8
[2g4 + (g2 + g′2)2] − 32π2λ1γ1

16π2βλ2 = 6λ2
2 + λ2

3 + (λ3 + λ4)
2 + λ2

5 + 12λ2
7 +

3

8
[2g4 + (g2 + g′2)2] − 6λ4

t − 32π2λ2γ2

16π2βλ3 = (λ1 + λ2)(3λ3 + λ4) + 2λ2
3 + λ2

4 + λ2
5 + 2λ2

6 + 2λ2
7 + 8λ6λ7
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+
3

8
[2g4 + (g2 + g′2)2] − 16π2λ3(γ1 + γ2)

(A.5)

16π2βλ4 = λ4(λ1 + λ2 + 4λ3 + 2λ4) + 4λ2
5 + 5λ2

6 + 5λ2
7 + 2λ6λ7

+
3

2
g2g′2 − 16π2λ4(γ1 + γ2)

16π2βλ5 = λ5(λ1 + λ2 + 4λ3 + 6λ4) + 5λ2
6 + 5λ2

7 + 2λ6λ7 − 16π2λ5(γ1 + γ2)

16π2βλ6 = λ6(6λ1 + 3λ3 + 4λ4 + 5λ5) + λ7(3λ3 + 2λ4 + λ5) − 8π2λ6(γ1 + γ2)

16π2βλ7 = λ7(6λ2 + 3λ3 + 4λ4 + 5λ5) + λ6(3λ3 + 2λ4 + λ5) − 8π2λ7(γ1 + γ2)

16π2βm2
1

= 3m2
1λ1 + m2

2(2λ3 + λ4) − 6m2
3λ6 − 16π2γ1m

2
1

16π2βm2
2

= 3m2
2λ2 + m2

1(2λ3 + λ4) − 6m2
3λ7 − 16π2γ2m

2
2

16π2βm2
3

= −3m2
1λ6 − 3m2

2λ7 + m2
3(λ3 + 2λ4 + 3λ5) − 8π2(γ1 + γ2)m

2
3

(A.6)

A.2 Formulas for fine-tuning parameters in a supersymmetric

2HDM

The minimum of the 2HDM potential occurs in general at non-zero values of the neutral com-

ponents of the Higgs doublets, H0
1 and H0

2 with tanβ ≡ 〈H0
2 〉/〈H0

1 〉 and 〈H0
1 〉 = (v/

√
2) cos β,

〈H0
2 〉 = (v/

√
2) sinβ. It is useful to write V as a ‘SM-like’potential for v:

V (v) =
1

2
m2v2 +

1

4
λv4 , (A.7)

where λ and m2 are functions of tanβ and the initial parameters of the theory, pα. Explicitly,

m2 =
3∑

i=1

ci(β)m2
i (pα), ~c = (c2

β , s2
β,−s2β) , (A.8)

and

λ =

7∑

i=1

di(β)λi(pα), ~d = (
1

2
c4
β ,

1

2
s4
β, s2

βc2
β, s2

βc2
β , s2

βc2
β , c2

βs2β, s2
βs2β) . (A.9)

Minimization of V with respect to v and β implies1

1With an abuse of notation we use the same symbols (v and β) for the variables and their vacuum expec-

tation values.
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v2 =
−m2

λ
, (A.10)

2λ
∂m2

∂β
− m2 ∂λ

∂β
= 0 . (A.11)

In order to evaluate the fine-tuning in a generic theory of this kind with the absence of

quadratic divergences (as it happens in supersymmetric models), we will use the fine-tuning

parameters, ∆pα , introduced by Barbieri and Giudice [16]:

δM2
Z

M2
Z

=
δv2

v2
= ∆pα

δpα

pα
. (A.12)

Naturalness requires ∆pα
<∼ O(10). Applying eq. (A.12) to eq. (A.10) we get, after trading

∂m2/∂β by ∂λ/∂β using eq. (A.11),

∆p =
p

m2

[
∂m2

∂p
+

v2

2

∂λ

∂β

dβ

dp
+ v2 ∂λ

∂p

]
. (A.13)

The dependence of β on p, which is not explicit in the initial potential (A.1), can be

extracted from eq. (A.11) by acting on it with d/dp, to obtain finally

∆p = −p

x

[(
2
∂2m2

∂β2
+ v2 ∂2λ

∂β2

)(
∂λ

∂p
+

1

v2

∂m2

∂p

)
− ∂λ

∂β

∂2m2

∂β∂p
+

∂m2

∂β

∂2λ

∂β∂p

]
, (A.14)

where

x ≡ λ

(
2
∂2m2

∂β2
+ v2 ∂2λ

∂β2

)
− v2

2

(
∂λ

∂β

)2

. (A.15)

The dependence of m2 and λ on β is determined by eqs. (A.8, A.9). In many cases,

equations (A.13) and (A.14) admit expansions which are useful for fine-tuning estimates.

If there exists a fine-tuning at all, there must be some cancellation between the various

contributions to m2, say m
2

i
, which generically implies ∂m2/∂p = O(m2

i
/p) � O(m2/p). Then,

the last two terms within the brackets in eq. (A.13) are suppressed by a factor O(m2/m2
i
),

and

∆p ' p

m2

∂m2

∂p
= − p

λv2

∂m2

∂p
. (A.16)
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The same result can be obtained from eq. (A.14).

Let us now consider how the previous results are modified by radiative corrections. As

is well-known, the one-loop correction to the effective Higgs potential in a supersymmetric

theory (using the DR renormalization scheme) is given by

δ1V =
1

64π2

∑

a

NaM
4
a (H)

[
log

M2
a (H)

Q2
− 3

2

]
, (A.17)

where Q is the renormalization scale, M 2
a (H) is the H-dependent mass eigenvalue of the par-

ticle a and Na its multiplicity (taken negative for fermions). δ1V modifies the minimization

conditions as well as mh. However, it is possible to reproduce these results by using appropri-

ately one-loop corrected m2
i , λi parameters in the tree-level expressions, e.g. the minimization

equations (A.10, A.11) [71]. In this way, one can still use all the previous (tree-level-like)

equations (A.13–A.16) for fine-tuning estimates. In particular, the dominant contribution to

the fine-tuning is still given by eq. (A.16) but expressed in terms of the one-loop corrected

parameters.

Now, one expects δ1m
2
i = O(Nh2m̃2/(32π2)), δ1λi = O(Nh4/(32π2)), where h is the

coupling constant of a field with multiplicity N to the Higgses and m̃2 is a typical soft mass.

Moreover, there can be a logarithmic factor ∼ log(m̃2/m2
t ). Clearly δ1m

2
i are smaller than the

typical O(m̃2) tree-level contributions, so they do not affect the degree of fine-tuning. On the

other hand, δ1λi can be relevant if the tree-level values are small, as it happens for instance in

the MSSM (but not in models with sizeable λtree). These corrections are normally dominated

by the top-stop sector with coupling ht =
√

2mt/(v sinβ), which besides being O(1) has large

multiplicity, NL + NR = 12. If some of the Higgs self-couplings, λi, are initially large, say

O(1), they can also contribute substantially to δ1λi, though the multiplicity is smaller than

for the stops. However, when δ1λi � λtree such corrections can be ignored for the fine-tuning

issue.

Consequently, for fine-tuning estimates, we approximate the radiative corrections by the

logarithmic stop contribution (more sophisticated expressions for δ1λi can be found in [72]):

δ1λ2 =
3h4

t

8π2
log

M2
SUSY

m2
t

. (A.18)

In particular the approximate formula given in eq. (A.16) simply gets corrected by a factor

λtree/λ1−loop.
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Appendix B

LEP Higgs bounds

The main Higgs production mechanism of the physical CP-even scalars H0
α = h0,H0 at LEP

is e+e− → Z0H0
α. The Higgs production cross-section is

σZHα = ξ2
Hα

σSM
Zh (m2

Hα
) , (B.1)

where σSM
Zh (m2) is the SM production cross-section for a Higgs with mass m [73] and the

prefactor ξHα measures the coupling Z0Z0H0
α relative to the SM value. In a generic 2HDM

the linear combination along the breaking direction1 h‖ ≡ h0r
1 cos β +h0r

2 sinβ has a coupling

to ZZ of SM strength while the orthogonal combination h⊥ ≡ h0r
1 sinβ − h0r

2 cos β does not

couple to ZZ. In the basis {h‖, h⊥} the mass eigenstates h0,H0 read

h0 = ξhh‖ + ξHh⊥ , H0 = ξHh‖ − ξhh⊥ , (B.2)

with ξ2
h + ξ2

H = 1. That is, the coupling H0
αZ0Z0 is proportional to the amount of h‖ that

enters in the composition of H0
α. From the definition of tanβ and that of the mixing angle

of the two CP-even Higgs bosons h0,H0:

h0 = h0r
2 cos α − h0r

1 sinα ,

H0 = h0r
1 cos α + h0r

2 sinα , (B.3)

we obtain the familiar expressions

ξ2
h = sin2(α − β) , ξ2

H = cos2(α − β) . (B.4)

1We write H0
1 = (v1 + h0r

1 + ih0i
1 )/

√
2 and a similar formula for H0

2 .
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In the alternative scenario considered in section 4.2, at tree-level, the mass matrix for

CP-even Higgses (in the basis {h0r
1 , h0r

2 }) is

M2
H0

α
=




m2
‖c

2
β + m2

⊥s2
β (m2

‖ − m2
⊥)cβsβ

(m2
‖ − m2

⊥)cβsβ m2
‖s

2
β + m2

⊥c2
β




=




cβ sβ

sβ −cβ







m2
‖ 0

0 m2
⊥







cβ sβ

sβ −cβ


 . (B.5)

This implies that h‖ and h⊥ are in fact mass eigenstates and means in particular that only

h‖ could be produced at LEP. For some choice of parameters (like in set A, used in section

4.2), h‖ turns out to be the heavy state, and its mass makes it kinematically inaccessible at

LEP. The light state turns out to be h⊥ and even if it is light, it does not couple to Z0 and

therefore it is not produced.

At one-loop the previous situation changes. There are corrections to the mass matrix

(B.5), the main one being

δ〈h0r
2 |M2

H0
i
|h0r

2 〉 =
3m4

t

π2v2s2
β

log
MSUSY

mt
, (B.6)

that induce deviations of the mass eigenstates from h‖ and h⊥, making ξh and ξH different

from 1 and 0. Working out the expression for the one-loop corrected α, we arrive at the

simple result

ξ2
h =

(m2
H − m2

h‖
)c2

β + (m2
h⊥

− m2
h)s2

β

m2
H − m2

h

, (B.7)

and

ξ2
H =

(m2
H − m2

h⊥
)s2

β + (m2
h‖

− m2
h)c2

β

m2
H − m2

h

. (B.8)

As discussed before, {h‖, h⊥} are the tree-level mass eigenstates.

In order to implement the LEP bound in this alternative scenario, we conservatively im-

pose that σZHα should be smaller than σSM
Zh (m2

h) evaluated at
√

s = 209 GeV and mH = 115

GeV (the ultimate LEP bound on the SM Higgs mass). This requirement can be represented

as an upper limit on ξ2
Hα

as a function of mh. A more refined bound can be found on the

experimental papers [74, 75].
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Another possible Higgs production mechanism is associated production e+e− → A0H0
α,

with cross section given by [73]

σAHα = (1 − ξ2
Hα

)λ̄σSM
Zh (m2

Hα
) , (B.9)

where λ̄ is a kinematical factor. The non observation of this process sets a limit on our model.

We implement this limit by using the experimental bound on the coefficient (1−ξ2
Hα

) derived

e.g in [76] as a function of mHα +mA. (We are conservative in using that experimental curve,

which applies strictly to the case mHα ' mA, and in assuming ∼ 100% branching ratios

A → bb̄ and Hα → bb̄.) When (1 − ξ2
Hα

) ' 1, this limit reads mHα + mA
<∼ 195 GeV.

Finally, charged Higgs production (e+e− → H+H−) does not give constraints in this

scenario because mH± ' 95 GeV while the experimental limit is around mH±
>∼ 80 GeV

[77].
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Appendix C

Fine-tuning estimates with

constraints

Let F (xi) be a quantity that depends on some input parameters xi (i = 1, ..., N), considered

as independent. The fine-tuning in F associated to xi is ∆i, defined by

δF

F
= ∆i

δxi

xi
. (C.1)

It is convenient for the following discussion to switch to vectorial notation and define

~∆F ≡
{

∂ log F

∂ log xi

}
, (C.2)

which is a vector of dimension N with components ∆i, and is simply the gradient of log F

in the {log xi} space. Based on the statistical meaning of ∆i, we define the total fine-tuning

associated to the quantity F as

∆F ≡
[
∑

i

∆2
i

]1/2

= ||~∆F || . (C.3)

This definition can be interpreted in the following statistical sense: if the input parameters

xi are allowed to vary (randomly and independently) around their values, with δxi/xi follow-

ing gaussian distributions of width σi, then δF/F in eq.( C.1) follows a gaussian distribution

of width (squared)

σ2
F =

∑

i

∆2
i σ

2
i , (C.4)
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which can be taken as a measure of the fine-tuning in F : notice that the quantity (δF )2

is expected to take a value of order F 2σ2
F . Now, it is sensible to assume that an unknown

parameter xi may vary within a range of order xi (this is a common assumption in fine-tuning

discussions) and hence to take σi ∼ 1. Then, the definition in eq.( C.3) follows. In the case

of an input parameter which is measured with some non-negligible experimental uncertainty

εexp
i one should use σi = εexp

i /xi in eq.( C.4). This is equivalent to rescaling the corresponding

∆i as ∆i −→ ∆iσi in eq. (C.3) [19].

Next suppose that the xi are not independent but are instead related by a number of

(experimental or theoretical) constraints G
(0)
α (xi) = 0 (α = 1, ...,m with m < N) so that,

when one computes the fine-tuning in F , one is only free to vary the input xi’s in such a way

that the constraints are respected. In order to compute the “constrained fine-tuning” in F

we first define, for each constraint, the vector ~∆G
(0)
α = {∂G

(0)
α /∂ log xi} which is normal to

the G
(0)
α = 0 hypersurface in the {log xi} space. We then use the Gramm-Schmidt procedure

to get from the vectors ~∆G
(0)
α an orthonormal set, ~∆Gα, that satisfies

~∆Gα · ~∆Gβ = δαβ . (C.5)

Then we can find the constrained fine-tuning simply projecting the unconstrained ~∆F on the

Gα = 0 manifold [which coincides with the G
(0)
α = 0 manifold]:

~∆F
∣∣∣
G

= ~∆F −
∑

α

(~∆F · ~∆Gα)~∆Gα . (C.6)

Finally,

∆F |G =
∣∣∣
∣∣∣ ~∆F

∣∣∣
G

∣∣∣
∣∣∣ =

[
(∆F )2 −

∑

α

(~∆F · ~∆Gα)2

]1/2

. (C.7)

As it was to be expected, the constrained fine-tuning, ∆F |G, is always smaller that the

unconstrained fine-tuning ∆F .

The previous procedure can also be seen as a change of coordinates in the “euclidean”

{log xi} space [which leaves eq. (C.3) invariant], such that the first m new coordinates {log yα}
span the same subspace as the ~∆G

(0)
α vectors. These m coordinates have to be simply

eliminated from eq. (C.3), as they are fixed by the constraints, while the remaining ones are

totally unconstrained. In this way the final expression (C.7) is recovered.

Note that if F does not depend on some of the parameters, say {xa}, but some of the

constraints do, the constrained fine-tuning will generically depend on the value of {xa}, even

if the other parameters remain the same. This is in fact a perfectly logical result. Notice that
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the fine-tuning quantity, ∆F , measures the relative change of F against the relative changes in

the xi parameters. Imagine a function F = F (x1) and a constraint G(0) = x1+x2+x3−C = 0.

If x2, x3 � x1, the value of x1 is essentially fixed and thus ∆F |G should be small (if x2, x3

are allowed to change a 100%, x1 is only allowed to change in a very small relative range).

In the opposite case, if x2, x3 � x1 (for the same value of x1) the x1 parameter can be freely

varied and thus ∆F |G ' ∂ log F/∂ log x1. Therefore, ∆F |G does depend on x2 and x3 even

if F = F (x1). We have found this effect in some of the scenarios studied (although it always

had a mild impact on the final fine-tuning); see the section dedicated to the Littles Higgs

with T -parity.
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han convertido a la ”ciencioloǵıa” también se encuentra Sara a la que quiero dar las gracias

porque siempre ha estado pendiente de mı́. Y no me olvido del tercero en “discordia”, Ignacio,

el tercer trillizo, con el que he pasado momentos muy divertidos.

Y antes que la gente del IFT estuvieron mis compañeros de la facultad. Gracias a Nico
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