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ALTO JORNAL
Dichoso el que un buen día sale humilde

y se va por la calle, como tantos
días más de su vida, y no lo espera

y, de pronto, ¿qué es esto?, mira a lo alto
y ve, pone el oído al mundo y oye,

anda, y siente subirle entre los pasos
el amor de la tierra, y sigue, y abre
su taller verdadero, y en sus manos

brilla limpio su oficio, y nos lo entrega
de corazón porque ama, y va al trabajo
temblando como un niño que comulga

mas sin caber en el pellejo, y cuando
se ha dado cuenta al fin de lo sencillo
que ha sido todo, ya el jornal ganado,

vuelve a su casa alegre y siente que alguien
empuña su aldabón, y no es en vano.

Claudio Rodríguez, Conjuros (1958)

In my periods of weakness and spiritual emptiness and lethargy, I reach out to Bach’s
music to revive and fire my desire for creativity.

M. C. Escher
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Resumen

El interés en la construcción de dispositivos de menor coste y mayores presta-
ciones ha llevado, prácticamente desde los inicios de la electrónica, a la búsqueda
y desarrollo de estructuras cada vez más pequeñas. En la actualidad nos encon-
tramos muy cerca de alcanzar el límite físico impuesto por la naturaleza a este
proceso de miniaturización. Para poder diseñar nuevos elementos electrónicos y
comprender su funcionamiento se ha hecho necesario estudiar las propiedades
de sistemas cuyas características principales están determinadas por las leyes de
la mecánica cuántica.

La teoría cuántica de los sólidos también es necesaria para comprender cómo
funciona el paradigma de la electrónica convencional, la unión p-n entre semi-
conductores. Sin embargo, cuando la relación entre el tamaño del dispositivo
y la temperatura a la que se encuentra es la adecuada, se manifiestan nuevos
fenómenos cuánticos incluso en sistemas compuestos por muchos átomos. Uno
de ellos es la cuantización de los niveles energéticos en los que los electrones,
principales responsables del transporte de carga, pueden situarse. El otro es el
mantenimiento de la coherencia de fase a lo largo del proceso de transporte. Por
ambos motivos se ha acuñado el término de sistemas mesoscópicos para designar
a este tipo de estructuras en los que, estando a medio camino entre el tamaño
de los átomos y el de los sistemas macroscópicos, tienen lugar fenómenos de
transporte cuántico.

Los semiconductores son, una vez más, protagonistas de esta nueva etapa.
Las técnicas de manipulación de materiales (crecimiento de capas con precisión
atómica, bajas temperaturas, microscopías atómicas) han permitido la fabricación
de los llamados pozos y puntos cuánticos. Este nombre designa estructuras en las
que los electrones quedan confinados en una región del espacio. El confinamiento
se consigue (en los puntos cuánticos verticales) combinando semiconductores con
diferente separación entre las bandas de conducción y valencia, o (en puntos
cuánticos planos) mediante el uso de voltajes aplicados a electrodos metálicos.
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En ambos casos los electrones encuentran barreras energéticas más o menos ele-
vadas a su alrededor que impiden su paso a otras zonas.

Esta tesis considera algunos problemas relacionados con el transporte de carga
y de calor en pozos o puntos cuánticos dobles, en presencia de voltajes externos
con dependencia temporal periódica. Cuando el transporte tiene lugar de forma
coherente, la interacción con potenciales o campos dependientes del tiempo mod-
ifica sustancialmente las propiedades de transmisión a través de nanoestructuras
semiconductoras. Por esta razón, hemos estudiado el comportamiento de la com-
ponente continua de la corriente en diferentes situaciones de interés.

En primer lugar se trata el efecto de control coherente de la corriente eléctrica. Esco-
giendo los parámetros del voltaje ac aplicado, la interacción entre los dos pozos
cuánticos puede modificarse, llegando a anularse para determinados valores de
la amplitud de voltaje y la frecuencia de la oscilación. El estudio de la supresión co-
herente de la transmisión por efecto túnel era conocida en sistemas aislados, pero su
consideración en problemas de transporte, donde el contacto con los electrodos
debe incluirse explícitamente, ha sido tenido en cuenta solo recientemente. Los
resultados numéricos han sido obtenidos mediante el formalismo de dispersión
(scattering) de Landauer (1957), con las modificiaciones adecuadas para tratar el
caso de sistemas dependientes del tiempo. Para el cálculo de las transmisiones se
han utilizado los formalismos de matrices de transferencia (Wagner, 1995) y de
Floquet-Green (Kohler et al., 2005). Las matrices de transferencia son una versión
particular de la teoría de Floquet cuando los estados asintóticos de los electrones
se toman como ondas planas. Los cálculos realizados reproducen en el límite
de alta frecuencia los resultados de una aproximación analítica en el modelo de
enlaces fuertes (tight-binding). Esta aproximación ofrece interesantes resultados
analíticos más fáciles de interpretar cualitativamente, puesto que transforman
el problema inicial dependiente del tiempo en un problema independiente del
tiempo. La dependencia temporal queda incluida renormalizando los parámet-
ros (acoplamiento entre pozos y distribución de electrones en los contactos) que
determinan la corriente eléctrica.

La producción de una corriente eléctrica en ausencia de un voltaje (continuo)
externo es el otro asunto tratado en esta tesis. La aplicación de una señal alterna
a una heteroestructura asimétrica causa que la probabilidad de transmisión de-
penda del lado (izquierdo o derecho) por el que incidan los electrones. De este
modo, la corriente eléctrica puede bombearse a través de la heteroestructura. Este



efecto de bombeo de electrones es también de origen cuántico y puede entenderse
con las herramientas de análisis de sistemas dependientes del tiempo utilizados
para el problema anterior. En este caso, estamos interesados en demostrar que
en dobles pozos cuánticos este transporte es no adiabático y tiene lugar gracias a
la transmisión túnel ayudada por fotones, es decir, por la interacción con el campo
o potencial eléctrico. Por otro lado, otro de nuestros objetivos ha sido estudiar
si puede caracterizarse el comportamiento de un dispositivo de bombeo de elec-
trones mediante las propiedades de transmisión y reflexión cuando es utilizado
dentro de un circuito.

Por último, consideramos en esta tesis la producción de calor debido a la cor-
riente de electrones en un dispositivo de bombeo. El formalismo de Landauer
puede generalizarse una vez más para calcular cómo es el intercambio de energía
de los electrones cuando atraviesan el doble pozo cuántico. Nos ha parecido es-
pecialmente relevante investigar las condiciones en las que una corriente de elec-
trones puede contribuir a enfriar uno de los electrodos. Esto puede conseguirse
con una elección de la estructura de niveles energéticos en los pozos y un ajuste
de la frecuencia del potencial alterno aplicado. El fundamento de nuestro modelo
para el enfriamiento se basa en el intercambio de electrones calientes, situados por
encima del potencial químico del electrodo, por electrones fríos provenientes de
estados situados del otro lado de la heteroestructura. Los resultados numéricos
presentados en el último capítulo confirman nuestras hipótesis. Para comprobar
nuestras predicciones cualitativas, hemos estudiado cómo depende la produc-
ción de calor de unas cuantas variables. De entre los casos de posible importancia
experimental, la producción de calor en ausencia de corriente eléctrica es quizá
el más interesante. Según nuestros cálculos, esto es posible para un amplio rango
de temperaturas (entre unos 5 y ∼ 40 K) de los electrodos.
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1 Introduction

The unstoppable progress in the understanding of the physics, and the develop-
ment of technological applications of solid state structures down to sizes of the
atomic scale, was foreseen by the late Richard P. Feynman nearly 50 years ago.
In his 1959 talk to the American Physical Society (Feynman, 1960) he made the
scientific community aware of the wide prospects of the then emerging field of
microscopic systems. The principles of physics, as far as I can see, he said, do not
speak against the possibility of maneuvering things atom by atom, and by now it is
quite clear that he was perfectly right.

Since those days, the interest in solid state devices has moved towards smaller
and smaller sizes at increasing speed, so much that in a few years the quan-
tum effects will dominate their working principles. This may sound a little too
ambitious for anybody who has in mind the basic building block of today’s elec-
tronics, the p-n transistor, whose most important properties are derived from the
quantum theory of solids.

There are nevertheless reasons to think that the forthcoming generation of
devices can be fundamentally new. As an example, one can consider the impact
that the discovery of the Giant Magnetoresistance Effect has had in the evolution
of the storage capacity of hard-disks (Baibich et al., 1988), based ultimately on
the properties of the spin, a magnitude with no classical counterpart. Thus, the
fundamental limits imposed by Nature in the downsizing process of the building
blocks of electronics are also understood by scientists and industry alike as an
opportunity to enter a new era in the manipulation of matter at the nanometer
scale.

Semiconductors have been of particular importance to the progress of both
science and technology in the past century, principally but not exclusively by
the invention of the transistor, and are also to take part in the next revolution.
Extremely accurate growing and patterning techniques have brought semicon-
ductor layers to be just a few atoms wide. As we will see below, this has intro-
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1 Introduction

duced quantum tunneling effects in the process of electron transfer across the
layers and, moreover, makes it necessary to treat the charge carriers as quantum
entities.

Many questions raised in the study of nanometer-sized systems have been an-
swered by the exploration of their transport characteristics. Theories for transport
aimed at the correct description of the empirical facts were one of the goals that
instigated the application of the then-new quantum mechanics to the full micro-
scopic description of solids, in the early 1930s. The advent of truly microscopic
structures has motivated the study of electrical current, or the transport of heat
through these systems, and the quantum mechanical fluctuations of these quan-
tities, to gain further insight into the physical properties of such a system. To
address these features new theoretical as well as experimental tools have been
needed. A landmark in the history of solid state theory was the formulation of a
quantum theory of transport for independent electrons in the form of a scattering
formalism, achieved by the idea of Landauer (Landauer, 1957) soon before the
above mentioned talk of Feynman.

Among the many interesting properties of transport at the nanoscale, this the-
sis considers in detail a number of problems posed by the production and control
of charge and heat current in semiconductor heterostructures. Under the assump-
tion of no electron–electron interactions, we study the action of external ac volt-
ages on systems formed by two quantum wells or quantum dots. We carry out
numerical calculations and prove that it is possible to control the dc component
of the current in an externally biased system by means of an ac driving. This
is shown to be a consequence of the coherent properties of quantum mechani-
cal transmission. This effect had been predicted for isolated systems, but to our
knowledge it has been investigated here for the first time.

Another remarkable feature of driven semiconductor quantum systems is the
possibility of creating a dc current without the action of an external bias. This
electron pump effect is also of quantum mechanical origin, too. We approach
this issue from two different perspectives: first, a numerical analysis confirms
the theory of photon assisted tunneling (see Platero and Aguado, 2004, for a re-
view) for quantum pumps (Stafford and Wingreen, 1996). Second, we take into
consideration the possibility of using one of these devices as a part of a bigger cir-
cuit. In this regime, it is interesting to study what is the behaviour of the electron
pump as an element of such a circuit.

2



Electrical current is generally accompanied by the transfer of heat. Through in-
elastic scattering processes, this is also the case in quantum transport. As nanos-
tructures offer the possibility of tailoring almost most of their physical properties,
one may hope to control the direction of heat flow. Such is the main theme in this
thesis, that in semiconductor heterostructures heat flow can be manipulated by
the action of ac driving, and derive the conditions for such a device to work as a
heat pump, i.e. to transfer heat from a colder to a hotter reservoir.

Outline of this work

This thesis is organized as follows. An overview of the physical systems for
which we build our theory is given in this chapter as a general introduction. The
scattering theory we need to treat quantum transport at the mesoscopic scale
is presented then in chapter 2. We describe the static Landauer formalism, and
subsequently explain how this theory has to be extended to treat systems with
a periodic time dependence. The methods of transfer matrices and tight-binding
description of quantum systems are also described. We defer to an Appendix a
brief explanation of the details pertaining to the structure of transfer matrices
and some useful results in the manipulation of Bessel functions.

Results are presented in three separate chapters: chapter 3 addresses the prob-
lem of coherent control of the current. This serves also as a comparison of the
two methods mentioned above (transfer matrices and tight-binding), since there
are some assumptions in the tight-binding model which can be treated exactly
within a transfer matrix approach. Next, in chapter 4 we consider the subject of
nonadiabatic electron pumping. We first present numerical results for the pump
current and test the physical model by an exploration of the parameter space.
This chapter ends with a characterization of an electron pump in a circuit in
terms of its electromotive force and internal resistance. Finally, we discuss in
chapter 5 heat production in heterostructures in ac driven systems. Our interest
here is centered in the search for negative total heat production in one of the
leads. After the derivation of the correct formula for heat production in the leads
and the introduction of the model and main physical assumptions, we present
numerical results that confirm our hypothesis. An exploration of some of the
parameters allows for a critical assessment of the physical model.

3



1 Introduction

1.1 A brief overview of mesoscopic systems

Quantum wells and quantum dots, the structures which are the subject of this the-
sis, represent the last step in the miniaturization process of electronic devices. In
the beginning, single-electron effects were studied in granular metals and metal-
lic tunnel junctions. Charge quantization was first observed in these systems
(Zeller and Giaever, 1969). Later on, the precursors of quantum dots, in the form
of small isolated islands by the effect of random impurities in silicon or GaAs
wires, were the subject of experiments. Quantized energy levels were observed
here for the first time (Field et al., 1990; Staring et al., 1992). The theory known
as Coulomb blockade of Likharev and Zorin (1985) had already been proposed and
came to explain the experimental features in terms of charging effects: the addi-
tion of a single electron is not possible if the charging energy is big enough so
that this transfer process is energetically unfavourable.

The fact that it was the quantum properties of the samples which were being
revealed ignited the rapid development of transport at the quantum scale. There
are at least two ways in which it can be said that a system displays quantum
behaviour. One is the quantization effects like those of Coulomb blockade re-
ferred to above. The other is the maintenance of quantum coherence, i.e. of the
wave nature of the particles, over distances comparable to or greater than the
extension of the system itself. Quantum coherence can be observed if all inelastic
phase-breaking events have been turned off, and this implies highly clean samples
free of impurities and usually very low temperatures. But this so-called dephasing
length is also determined by the Fermi wavelength and degree of disorder (Stone,
1995), so it is not just the size of the system, but an interplay of all these quanti-
ties, what determines whether quantum phenomena are observable at all. They
have been reported, usually in transport experiments, in systems ranging from
down to nanometer-sized structures to samples as big as ∼ 100 µm for low (i.e.
miliKelvin) temperatures. The term mesoscopic was invented to refer to this class
of devices or regime of transport lying somewhere between the dimensions of
the atoms and those of macroscopic structures, where quantum properties can
be observed (Imry, 1997; Beenakker and van Houten, 1991).

The advances in the manipulation of materials and fabrication techniques that
have made possible the construction of these systems are not less astonishing
than the theoretical discoveries they have either forecasted or confirmed. In fact,

4



1.1 A brief overview of mesoscopic systems

it is fair to say that, at least from a theorist’s point of view, they have been
more astonishing and have many times been ahead of the theory. Among these
incredibly precise techniques we must mention Molecular-Beam Epitaxy (MBE)
for growing semiconductor layers, nanolithography for patterning, the advances
in cryogenics, and the analysis of system structures by means of the various
microscopies relying on quantum tunneling.

1.1.1 Semiconductor heterostructures

The most common experimental device in the research of quantum transport is
probably the semiconductor heterostructure. This expression refers to the com-
bination of two or more semiconductors, or semiconductor alloys (generally be-
tween elements of the groups III-V and II-VI of the periodic table), in a layered
structure. Among these, the combination of gallium arsenide (GaAs) and its alloy
with aluminium, AlxGa1−xAs, where x denotes the Al fraction (typically 0.3), is
the most popular (Beenakker and van Houten, 1991), replacing more traditional
MOSFETs (Metal-Oxide Semiconductor Field-Effect Transistors). There are sev-
eral reasons for this: the low electron effective mass (m∗ = 0.067me), the high
mobility (up to ∼ 106 cm2/V s) allowed by very clean samples, the possibility of
modulating the separation of the conduction bands (around 0.3 V) by choosing
the Al fraction, or the almost perfect match of the two lattices, which reduces
scattering at the interfaces.

A nanometer-sized region of such a GaAs/AlGaAs combination defines a low-
dimensional structure named quantum dot (QD) where electrons can be confined.
In these nanometric samples, the allowed states for the electrons in the band
structure become increasingly separated in energy, and for very strong confine-
ment they are reduced to only a few. The position of the levels in the energy axis
resembles that of electronic states in atoms, which justifies the name of artificial
atoms (Ashoori, 1996; Kouwenhoven et al., 2001).

The development of QDs has by far exceeded the most optimistic visions of
Feynman. QDs are not only used as a tool for the study of quantum properties
of the solid state, but also of interest in practical applications as metrology, tran-
sistors and quantum interference devices. In addition to this, QDs are promising
candidates for a solid state implementation of quantum computation (Loss and
DiVincenzo, 1998).
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1 Introduction

Figure 1.1: (a) Schematic representation of a vertical QD: an indium-doped GaAs layer

is placed between two AlGaAs external layers, acting as tunnel barriers. The con-

tacting electrodes are made of n-doped GaAs. (b) shows an energy diagram of the

dot. Adapted from Kouwenhoven et al. (2001).

One can in principle design structures for transport (Kastner, 1993) to take
place either perpendicularly to the direction in which the semiconductor layers
were grown or to remain in the plane of one of the layers. This defines vertical
and planar or lateral quantum dots (QDs).

Vertical quantum dots

Taking advantage of the mismatch of the conduction bands of GaAs and AlGaAs
(where the separation between valence and conduction band is bigger), which
acts as a tunnel barrier between both semiconductors, electrons can be confined
in a thin GaAs layer between two external AlGaAs layers; further lateral con-
finement is achieved by etching off the surrounding material. Connecting this
quantum well to two electrodes allows electrons to flow across the tunnel barri-
ers and therefore create a current. A schematic diagram, together with an energy
diagram of a vertical QD, is shown in Fig. 1.1. A spectroscopy of the levels inside
the well is performed when measuring the I − V curve, since electrons can tun-
nel into and out of the well when the Fermi energy of the external leads aligns
with one of the levels. Typical sizes are a few tens of nanometers for either the
barriers or the well itself. Barriers are of the order of 100 meV high and are well
modelled by square barriers (Meirav and Foxman, 1995).
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1.1 A brief overview of mesoscopic systems

Figure 1.2: Scanning-electron microscopy (SEM) micrographs of single- and double QDs,

taken from the original articles of Switkes et al. (1999) (left) and van der Wiel et al.
(2003). Metallic gates are placed over a 2DEG (of darker color), to confine electrons

in a zero-dimensional region, or to or introduce e.g. ac modulations of the dots. Left

figure shows also the typical measurement configuration.

Lateral or planar quantum dots

The layering technique can be used to confine some of the electrons of a GaAs/ Al-
GaAs structure to a two-dimensional region to form a bidimensional electron gas
(2DEG) (see Fig. 1.2, left). By attaching metallic gates one can further create tun-
able tunnel barriers and separate a small dot region from the rest of the 2DEG.
Planar QDs are the actual heirs of the semiconductor islands in which quantum
effects were first observed. The interest of these QDs is presently very high for a
large number of reasons: electron–electron interactions can be studied in systems
where the number of confined electrons (generally controllable by external gates)
goes from zero to anything up to several thousands (Ashoori, 1996). The move-
ment of the electron ranges from purely ballistic to diffusive regimes by means of
scattering by impurities, suggesting research on the transition from coherent to
incoherent transport and of the fluctuation properties of the current due to dis-
order (Beenakker and van Houten, 1991). When the electron dynamics is chaotic,
transport has interesting statistical properties that affect the coherence and the
electron–electron interactions (Alhassid, 2000).

In both (vertical and planar) cases, the interest on single QDs has moved into
the next step in complexity, namely systems composed of two (or more) QDs.
An example of this is shown on the right of Fig. 1.2. These have been given the
name of artificial molecules, as single QDs were considered to be artificial atoms.

7



1 Introduction

Figure 1.3: SEM graph of a break junction for measurements of molecular electronic de-

vices. Two setups of an symmetric and an asymmetric organic molecule connected

to metallic contacts are displayed on the right-top diagram, whereas an energy dia-

gram of a generic molecule is shown in the lower part of the figure. Adapted from

Reichert et al. (2002) and Nitzan and Ratner (2003)

Single-electron effects (Blick et al., 1996) and various kinds of spectroscopic mea-
surements (van der Wiel et al., 2003) have been performed on these systems to
gain a deeper understanding on the level structure and the interplay of various
physical parameters.

1.1.2 Molecular wires

Semiconductor quantum dots have had to share their popularity among research-
ers with the emerging field of molecular electronics, the other nanometer-sized
systems of interest. More than 30 years ago, Aviram and Ratner (1974) demon-
strated the feasibility of building molecular devices and, in particular, the rec-
tification properties of asymmetric organic molecules that could be of interest
for the eventual construction of e.g. nanoscale transistors. This initial investiga-
tions have led to the experimental search for molecular rectifiers, single-molecule
diodes and three-terminal transistors, to name only a few possible applications.
The study of such systems and their transport properties has been greatly im-
proved with the tools of scanning tunnel microscopy, available since the mid
1980s. They present some advantages over semiconductor quantum dots: since
their length scale is of a few angstroms, the energy scale is higher and the quan-
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1.1 A brief overview of mesoscopic systems

tum effects more robust.
In Fig. 1.3 a typical scanning tunnel microscopy image of a break junction

(taken from Reichert et al., 2002) is shown, together with the scheme of the ex-
perimental setup of an organic molecule between two metallic contacts, and the
energy diagram of a many site molecule (from Nitzan and Ratner, 2003), where
the arrows indicate molecule–electrode and intersite coupling.

While having very different microscopic details, molecular wires fit also into
the category of mesoscopic systems. They can also be described by the same scat-
tering picture put forward in this thesis. The essential ingredients in the tight-
binding formalism of section 2.3.3 (e.g. energy levels, coupling of the structure
to the external leads, and coupling between its different parts) are directly trans-
latable into the picture of molecular wires. Many results contained in this thesis
—with the appropriate modifications— describe correctly the effect of external,
time dependent driving on transport in molecular wires. This similarity is ex-
ploited, for example, in the article of Camalet et al. (2003). We refer the reader to
the reviews of Nitzan and Ratner (2003) and Agraït et al. (2003) for more infor-
mation on this subject.
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2 Quantum transport in
time-dependent systems

In this chapter the necessary tools to work with quantum systems, which shall
be of use for the results of later chapters, are presented. First, we state in section
2.1 the scattering theory of Landauer for the calculation of electrical current in
coherent structures, starting with the static picture. Then, the following sections
address the necessary generalization to study time-dependent situations. Two
similar and sometimes complementary approaches, transfer-matrices and tight-
binding modelling of nanoscale conductors, are described next. They will be used
to obtain numerically (and sometimes analytically) the transmission probability
for electrons entering the system, the basic quantity that determines the current
in the scattering formalism.

2.1 Scattering theory of transport in mesoscopic

systems

In the decade of the 1950s, electron transport theories were based on either the
application of Bloch’s theorem in a semiclassical context, to calculate the acceler-
ation of electrons in a Fermi gas by uniform electric fields, or on Kubo’s linear
response theory, in which the laws of time evolution were applied to closed
conservative Hamiltonians (Landauer, 1987). By considering the fields to be the
cause of the electrical currents, both methods were anchored to the classic view
from which other areas, as e.g. circuit theory, had already departed putting cur-
rents and fields on equal grounds. It was then when Landauer (1957) introduced
his ground-breaking idea of considering the coherent transmission of electron
in solids as a quantum scattering problem. For over twenty years little attention
was paid to this approach. The interest in the development of a scaling theory
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2 Quantum transport in time-dependent systems

for transport (Anderson et al., 1980), and the achievement of the first truly nano-
metric samples, revived the interest in the formulation of Landauer. 1

The Landauer picture of quantum transport might have been at first conceived
and used rather ad hoc. It has nevertheless been both proven theoretically on solid
physical grounds (Stone and Szafer, 1988) and experimentally tested (de Picciotto
et al., 2001), and provides a satisfactory formalism to address many problems in
transport for independent electrons.

2.1.1 The Landauer approach

The central idea of the Landauer formula can be stated as follows (Landauer,
1957)2: a scattering center with reflection probability R(E) is placed inside a per-
fectly conducting region between two leads. These hold equilibrium distributions
of electron Fermi gases characterized by chemical potentials. If a current flows
(say) left to right through this region, an excess of charge carriers accumulates
to the left of the scatterer, so that the density there becomes 1 + R. Accordingly,
to the right this density will be 1 − R, building up a difference (proportional
to the voltage difference) equal to 2R. The current flow is proportional to the
transmission T = 1 − R, so that aside from numerical factors the conductance
G = I/V must be proportional to T/R. The complete derivation leads to the by
now famous result

G =
2e2

h
1− R

R
, (2.1)

where R is to be evaluated at the Fermi energy. The implicit assumptions made in
this calculation amount to saying that the current and the voltage are measured
in different sets of probes. This must be the case, as otherwise —i.e. if current and
voltage were measured in the same pair of electrodes— the current through the
contacts would drive the population of electrons in the leads out of equilibrium,
and the chemical potential would be ill-defined.

Transmission and reflection probabilities are magnitudes one can compute if
it is possible to know (or guess) the initial and final form of the scattering states.

1The original article, Landauer (1957), was cited five times until 1974 (in three cases by Landauer
himself), and around 20 until 1977. The number of citations it has received by now —not
counting later reprints and revised versions of the 1957 article— is over 1000.

2The reader is referred to the review of Stone and Szafer (1988) or to Landauer (1987) for a
complete account of the history of the Landauer formula.
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2.1 Scattering theory of transport in mesoscopic systems

Thus conduction is in fact formulated as a scattering problem and, therefore,
the knowledge of the transmission probability or probability amplitude is every-
thing one needs to solve transport problems. As it is often said, for independent
electrons transmission is all (Das and Green, 2003a,b).

In the other relevant experimental setup, current is driven and voltage is mea-
sured through the same pair of electrodes. Eq. (2.1) becomes3

G =
2e2

h
T(EF) , (2.2)

where EF is the Fermi energy. In this case the dc current measured in the leads is
calculated as

I =
2e
h

∫
dE[ fL(E)− fR(E)]T(E) , (2.3)

for a finite dc voltage between reservoirs eV = µL − µR, where

fL,R(E) = f (E− µL,R) =
1

1 + exp[(E− µL,R)/kBT]
(2.4)

are the electron Fermi distributions. In this thesis we will use the generalization
of this formula to the case of ac driven systems to obtain dc currents numerically.

Note that with Eqs. (2.1) and (2.2) one calculates the resistance of the sample
itself and, respectively, the resistance of the sample together with the contacts.
This issue will be of relevance in the discussion of the results of section 4.3.

Before considering the case of driven systems, we note two results related to
the Landauer formula. They are both intended to generalize the above equations
to more realistic situations. On the one hand, there is the issue of the leads. As
they emit and receive electrons, they are in strict sense systems out of equilibrium.
Büttiker et al. (1985) found that one can however find a new pair of effective che-
mical potentials to describe fictious, equilibrium-like electron distributions, which
give the experimentally observed effective potential difference. To determine these
new chemical potentials, one counts the piled up charges to the left and right of
the sample, in the spirit of the original derivation of Landauer. This yields

G ≡ I
V

=
2e2

h

[∫
dE

−d f
dE

T(E)
] ∫

dE(−d f /dE)(∂n/∂E)∫
dE(−d f /dE)R(E)(∂n/∂E)

, (2.5)

3To see further details of this two- vs. four-terminal controversy of the Landauer formula, see
the review articles of Stone and Szafer (1988) and Imry and Landauer (1999), or Sols and
Sánchez-Cañizares (1999).
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2 Quantum transport in time-dependent systems

where −d f /dE ∼= [ fL(E)− fR(E)](µL − µR) is the derivative of the equilibrium
Fermi distribution and ∂n/∂E = 1/πh̄v(E) stands for the one dimensional den-
sity of states. In this way the rather difficult task of finding the non-equilibrium
electron distribution is avoided. A physical interpretation of the effect of trans-
port over the system is gained in that one can see the reflected electrons as pro-
ducing a certain screening that reduces the initial chemical potential difference.

By similar arguments, when there are N channels at the Fermi energy conduc-
tance becomes

G =
2e2

h ∑
i

Ti
2 ∑i v−1

i

∑i(1 + Ri − Ti)v−1
i

, (2.6)

where Ri = ∑j Rij and Ti = ∑j Tij represent the total reflection and transmission
probabilities into the ith channel. The generalization for multi-terminal systems
was provided by Büttiker (1986).

2.2 Scattering theory for driven systems

In order to use a scattering theory of quantum transport, we need to extend the
Landauer picture to deal with the inelastic (though phase-conserving) processes
induced by the ac driving. An educated guess which includes these non-conserving
transitions, based on the Tsu-Esaki formulas for tunneling, leads to an expression
for the dc current which is essentially correct. This deduction of a formula like
Eq. (2.3) has been, however, rigorously proven. Wagner and Sols (1999) based
their formula on the adiabatic time evolution of the scattering states. Kohler,
Lehmann, and Hänggi (2005) used a formalism that combines the Floquet theory
for time periodic systems and Green functions, which we review briefly for later
reference.

In addition to this, even if a less formal way is taken to derive a correct scatter-
ing expression for the dc current in driven systems, one still faces the question of
how to calculate now the inelastic transmission probabilities. For semiconductor
heterostructures we have a method very well suited for a numerical accomplish-
ment of this task. Partially based on the Floquet approach mentioned above, the
method of transfer matrices is reviewed here as extended for ac driven systems
by Wagner (1995). We will see how it provides quite straightforwardly the time-
independent transmission probabilities by making some reasonable assumptions
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2.2 Scattering theory for driven systems

about the electronic scattering states in the leads.

2.2.1 Tien-Gordon theory

Motivated by a series of experiments performed by Dayem and Martin (1962) in
superconductor/insulator/superconductor (SIS) structures irradiated by micro-
waves in 1962, Tien and Gordon (1963) formulated a theory for the tunnel trans-
port observed through the insulating barrier between the two superconductors.
In spite of its appealing simplicity, this theory gives a correct account of the ex-
perimental findings by appropriately linking the time-dependent wave function
in the presence of an ac perturbation with the electron distribution that yields
the observed dc current.

According to Tien and Gordon, when an ac potential of the form V(t) = V0 +
Vac cos Ωt affects homogeneously one side of a SIS junction, the eigenstates of
the Hamiltonian H = H0 + V(t), with H0 = −(h̄2/2m∗)∂2/∂x2, at one side of the
barrier change their form in the static case, ψ(r, t) = f (r)e−iEt/h̄, to

ψ(r, t) = f (r)e−i(E+eV0)t/h̄

[
n=+∞

∑
n=−∞

Bne−inΩt

]
(2.7)

for H(t) = H0 + V(t). Substituting this into the Schrödinger equation

H(t)|ψ(r, t)〉 = ih̄
∂

∂t
|ψ(r, t)〉 (2.8)

one obtains Bn = Jn(eVac/h̄Ω) for the coefficients. The wave function reads

ψ(r, t) = f (r)

[
n=+∞

∑
n=−∞

Jn

(
eVac

h̄Ω

)
e−i(E+nh̄Ω)t/h̄

]
. (2.9)

As seen from the static side, the particles on the driven side behave as if having
a probability amplitude Jn(eVac/h̄Ω) to be displaced in energy by nh̄Ω (Tucker
and Feldman, 1985). In other words, the action of the ac signal is equivalent to
the application of voltages V0 + nh̄Ω/e with a probability J2

n(eVac/h̄Ω) across the
junction. This results in an effective density of states in the oscillating side of the
form

ρR
ac =

n=+∞

∑
n=−∞

J2
n

(
eVac

h̄Ω

)
ρR

dc(E + nh̄Ω) . (2.10)
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2 Quantum transport in time-dependent systems

The tunneling dc current (averaged over a period of the driving)

Ī = C
∫ +∞

−∞
dE[ f (E−V0)− f (E)]ρL

dc(E−V0)ρR
dc(E) , (2.11)

where C is a constant and f (E) is again the Fermi distribution function, thus
becomes

Ī = C
n=+∞

∑
n=−∞

J2
n

(
eVac

h̄Ω

) ∫ +∞

−∞
dE[ f (E−V0)− f (E + nh̄Ω)]

×ρL
dc(E−V0)ρR

dc(E + nh̄Ω)

=
n=+∞

∑
n=−∞

J2
n

(
eVac

h̄Ω

)
Idc(V0 + nh̄Ω) . (2.12)

The Tien-Gordon model represents a good attempt to include inelastic chan-
nels for the electronic transport in the presence of ac modulation. However, as
the implicit assumption for the effective electron distribution is independent of
time, it only gives a correct description of the dc current, but does not correctly
address any other time-dependent phenomena inherent to ac transport. As an
additional drawback, Tien-Gordon can be used only for spatially homogeneous
driving, a particular case among various interesting experimental setups.

2.2.2 Floquet theory

This section describes the physical principles of systems whose Hamiltonian de-
pends periodically on time. A convenient starting point is the Floquet theorem
(Floquet, 1883), which states the following: a time-periodic Hamiltonian such
that H(t + T ) = H(t) has a complete set of solutions |ψα(t)〉 in the form

|ψα(t)〉 = e−iεαt/h̄|uα(t)〉 , (2.13)

where εα is a real number, termed quasienergy (Sambe, 1973), and |uα(t)〉 is called
a Floquet state which conserves the time periodicity of the H(t):

|uα(t + T)〉 = |uα(t)〉 . (2.14)

A way of demonstrating this theorem (Kohler, 1999) states that the eigenstates of
a periodic Hamiltonian can only change by at most a phase factor when acted
upon by the symmetry operator

ST : t→ t + T (2.15)
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2.2 Scattering theory for driven systems

over one period T of the driving. This is enough to guarantee that the eigenstates
can be decomposed in the way of Eq. (2.13).

Due to their periodic nature, the |uα(t)〉 can be decomposed into their Fourier
series,

|uα(t)〉 =
k=+∞

∑
k=−∞

e−ikΩt|uα,k〉 , (2.16)

with Fourier coefficients

|uα,k〉 =
1
T

∫ T

0
dt eikΩt|uα(t)〉 . (2.17)

The Floquet states satisfy the so-called Floquet equation(
H(t)− ih̄

∂

∂t

)
|uα(t)〉 = εα|uα(t)〉 , (2.18)

which justifies the name of quasienergies for the εα, because they appear as the
eigenvalues of an equation for the |uα(t)〉 in a similar way as do the authentic
eigenenergies in the time-independent Schrödinger equation. This interpretation
also follows by analogy with the definition of quasimomentum for electrons in a
spatially periodic potential in Bloch theory. One can show that these quasiener-
gies are not the eigenvalues by observing that two Floquet states

|uα(t)〉 and |u′α(t)〉 = einΩt|uα(t)〉 (2.19)

have quasienergies εα and ε′α = εα + nh̄Ω differing in nh̄Ω, but are otherwise
physically equivalent solutions of the Schrödinger equation (2.8). Therefore we
only need to know the quasienergies and the corresponding Floquet states in the
interval −h̄Ω/2 < ε < h̄Ω/2, known in this context as first Brillouin zone. The
rest of quasienergies can be constructed by referring to those contained in this
part of the spectrum.

Determining the quasienergies is one of the difficult tasks associated with pe-
riodically time-dependent problems. However, the appearance of Eq. (2.18) sug-
gests (Sambe, 1973) that the Floquet states are stationary eigenstates of the Hamil-
tonian

H(t) ≡ H(t)− ih̄
∂

∂t
, (2.20)

so one can attempt to compute them exactly by diagonalizing H(t). With this
goal in mind it is convenient to extend the usual Hilbert space where both the
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2 Quantum transport in time-dependent systems

eigenstates of H(t) and the Floquet states are defined, to the Hilbert space formed
by the time-periodic functions f (t + T ) = f (t) such that∫ +T /2

−T /2
dt | f (t)|2 < ∞ , (2.21)

with inner product

〈 f (t), g(t)〉 =
1
T

∫ +T /2

−T /2
dt f ∗(t)g(t) . (2.22)

The plane waves {ϕn(t) = e−inΩt, n ∈ Z} with Ω = 2π/T form an orthonormal
basis in this space. We thus obtain the composed Hilbert space of functions defined
in R3 ⊕T, in which the functions F(r, t) satisfy∫ +T /2

−T /2

∫
dr dt |F(r, t)|2 < ∞ (2.23)

and where the inner product is defined accordingly:

〈F(r, t), G(r, t)〉 =
1
T

∫ +T /2

−T /2

∫
dr dt F∗(r, t)G(r, t) . (2.24)

A probabilistic interpretation of the Floquet states can only be made if they have a
square modulus that is independent of time. This follows from the general prop-
erties of unitary evolution of the basis states (Wagner and Sols, 1999). Another
way to show it is by means of the Schrödinger equation (2.8):

∂

∂t

∫
dr |ψ(r, t)|2 =

∫
dr
(

∂ψ(r, t)∗

∂t
ψ(r, t) + ψ∗(r, t)

∂ψ(r, t)
∂t

)
=

i
h̄

∫
dr {[H(t)ψ(r, t)∗]ψ(r, t)− ψ(r, t)∗[H(t)ψ(r, t)]}

= 0 . (2.25)

In an analogous way, the scalar product in R3 of two Floquet states is indepen-
dent of time. This is a useful result since it allows to state that two Floquet states
with different quasienergies will remain orthogonal at any instant of time. The
transport problems investigated later in this thesis will be greatly simplified by it,
because for the calculation of currents in the presence of ac driving it is essential
to make sure that states which were initially orthogonal (as is the case of plane
waves) will still be orthogonal once the ac perturbation has been turned on. This
makes calculations easier to handle.
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2.2 Scattering theory for driven systems

2.2.3 Physical meaning of the Floquet states

The Floquet states and their Fourier series decomposition (see Eqs. 2.14, 2.16-
2.17) have been employed up to this point just as a convenient mathematical tool
to obtain the energy spectrum of time-dependent systems. Their interpretation
depends on the physical system under consideration. A good starting point for
this is the calculation of the mean energy H̄α in one driving period T that refers
to a state |ψα(t)〉. As in a system with a time-dependent Hamiltonian H(t) the
energy is no longer a conserved quantity, this is not a trivial result anymore. Thus
we have (Grifoni and Hänggi, 1998)

H̄α ≡
1
T

∫ T

0
dt 〈ψα(t)|H(t)|ψα(t)〉 = εα + ih̄〈〈uα(t)| ∂

∂t
|uα(t)〉 ; (2.26)

now, using Eq. (2.16), one obtains

H̄α =
k=+∞

∑
k=−∞

(εα + h̄kΩ)〈uα,k|uα,k〉 . (2.27)

According to this equation, the energy stored in a state |ψα(t)〉 is equal to the av-
erage over all Fourier components in the wave function at energies εα + kh̄Ω. We
can therefore use the expression of the Floquet states at energies E + kh̄Ω, k ∈ Z to
understand them as inelastic scattering channels by which the electrons exchange
energy with the driving field. One often refers to them by the name of photonic
sidebands.

What is precisely meant by these sidebands depends, as stated above, on the
system. When talking of systems with fixed total number of particles, the Fourier
coefficients 〈uα,n|uα,n〉 are taken as the spectral weights of the sidebands at energy
E + nh̄Ω. This definition is very common for the calculation of optical absorption
spectra of strongly driven systems.

When studying tunneling and other transport-based phenomena, it often pro-
ves to be more useful to define the sidebands somewhat differently. Typically
one considers an incoming wave with definite wave vector k0 and energy E, and
the reflected and transmitted partial waves after the scattering events with wave
vectors kn and energies E + nh̄Ω, which can be derive in a wave-packet anal-
ysis. These are interpreted as new transport channels mediated by the emission
or absorption of photon quanta. One is then tempted to say that these partial
waves are individual wave functions. But it must be remembered that the Flo-
quet state is still a particular way to describe a single, coherent wave function. Its
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2 Quantum transport in time-dependent systems

components do not have a time dependence given just by exp[i(E + nh̄Ω)t/h̄],
at difference with the spectral sidebands defined above, but each of them has in
general a different one due to their different kn-vector. When one uses the expres-
sion transport channel at energy εn, we mean that this denotes the channel with a
wave vector k corresponding to the energy ε(k) = εn in the dispersion relation.

There is yet a further type of sidebands of interest both to spectroscopic (iso-
lated) as well as transport problems: as we will see in the case of driven hete-
rostructures, the Floquet states are sometimes decomposed into free particle solu-
tions which do not necessarily satisfy the boundary conditions of the problem. A
prominent example of this is the expansion into plane waves in a quantum well
with infinite barriers (Wagner, 1994), among others. With these free particle states
one can nevertheless obtain the right solution to the driven system by combining
many of them and therefore oblige them to fulfill the boundary conditions of the
Schrödinger equation. This is ultimately the foundation of the transfer-matrix
method to be described in the next section.

2.3 Scattering formula for transport in ac driven

systems

We will examine now how Floquet theory, in slightly different versions, can help
us derive an expression for the current in ac driven systems. We argued in the
introduction that in a scattering formalism the (time- or energy-dependent) trans-
mission probability is the quantity we need to finally calculate the current, and
we review here two useful methods for that purpose. We motivate first, and then
show how to go from transmission probabilities to electric current. It should be
noted, however, that in the presence of ac perturbations there exist some quanti-
ties that cannot be calculated just with the transmission probabilities, but need
of the full quantum mechanical probability amplitudes with the corresponding
phases as, for example the current noise (Kohler et al., 2005).

2.3.1 Heuristic derivation of the dc current

The calculation of the tunnelling current through a semiconductor heterostruc-
ture goes back to the formulae of Tsu and Esaki of the 1970s (Esaki and Tsu,

20



2.3 Scattering formula for transport in ac driven systems

1970; Tsu and Esaki, 1973). Their original derivation can be adapted to ac driven
systems by a separate calculation of the fluxes going in left-to-right and right-to-
left directions and the subsequent subtraction of both quantities. The current in
e.g. L→ R direction is defined as the product of the occupation probability of the
initial state, given by the Fermi function fL(E) of Eq. (2.4), the density of states
of lead L, the velocity of the electrons v(E), and the inelastic transmission prob-
ability TRL(E′, E) ≡ TR←L(E → E′). In one-dimensional systems the density of
states is proportional to v−1(E) and therefore, for a discrete number of channels,
one has then

I =
2e
h

∫
dE dE′{TRL(E′, E) fL(E)− TLR(E′, E) fR(E)} (2.28)

This formula holds when the microreversibility of scattering processes is satisfied,
meaning that the probability of going from a state at energy E on the left to a
state at energy E′ on the right is the same of the reversed process:

TRL(E′, E) = TLR(E, E′) . (2.29)

The formula 2.28 should be generalized to take into account of two- and three-
dimensional structures. Until now it has been assumed that both leads are just
one-dimensional regions connected through point contacts with the driven sys-
tem. This implicit consideration makes the tight-binding description of section
2.3.3 easy to adapt for molecular wires. But, in semiconductor heterostructu-
res, one is also interested in the cases of planar structures connected through
a one-dimensional interface, or of three-dimensional systems. This can be done
by including explicitly the density of the leads in the calculations, ignored so far
thanks to a lucky cancellation of density of states and the velocity of electrons:

I =
2e
h

∫
dE dE′[TR←L(E, E′) fL(E)DL⊥(E⊥)

−TL←R(E, E′) fR(E)DR⊥(E⊥)] (2.30)

Here, D`⊥(E⊥), with E⊥ representing the density of states of the directions per-
pendicular to the transport direction in lead ` = L, R.

It has been argued that one should include the so-called Pauli blocking factors
to ensure that the current satisfies Pauli’s exclusion principle. This is however
not true, since the orthogonality of the dc scattering states from which the corre-
sponding ac counterparts are created is preserved. In any case, if one still insists
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2 Quantum transport in time-dependent systems

in including these factors, they can be shown to cancel for systems with time-
reversal, as is our case. The reader is referred to the articles by Sols (1991, 1992).

2.3.2 The method of transfer matrices

Transfer matrices offer a powerful means of treating transport problems of peri-
odically driven by making the reasonable hypothesis that (a) the wave functions of
the electrons have the Floquet form of Eq. (2.13), and (b) that the Floquet states
can be decomposed as a sum of plane waves. This latter assumption makes sense
if one accepts that deep inside the external reservoirs, where the dc current is
eventually to be calculated (or measured), the initial and final scattering states
of the electrons are plane waves. One tries then to express Floquet states in a
way such that the final states in the quantum system can be related to the ini-
tial scattering states. In doing so the original eigenvalue problem of the time-
dependent Schrödinger equation is transformed into a set of coupled linear al-
gebraic equations, easier to implement numerically. Another advantage of this
procedure is that the plane wave decomposition leads with less effort to the
time-independent transmission probabilities of the ac scattering formula for the
current. This method has, however, some drawbacks: on the one hand, we disre-
gard in this way all kind of electron–electron interactions, which are of interest in
many real problems. We also lose control of the precise shape of the Floquet states
in the system, and therefore it doesn’t allow for a qualitative understanding of
the ongoing processes. There have nevertheless been some examples worked out
explicitly, as e.g. in the articles by Truscott (1993) and Wagner (1996).

We take advantage of the flat-band conditions that hold for a spatially constant
(dc) potential with a time-dependent gate voltage Vac(t) and, in the spirit of the
Floquet theorem, write the solution of the Schrödinger equation as

ψ(E, z, t) =
+∞

∑
n=−∞

ψn(z) exp
{
− i

h̄
(E + nh̄Ω)t− iφ(t)

}
(2.31)

with the accumulated phase

φ(t) = − e
h̄

∫ t
dt′Vac(t′) = φ(t + T ) . (2.32)

Its time-periodicity follows from the zero time-average of the gate voltage Vac(t).

22



2.3 Scattering formula for transport in ac driven systems

Neighbouring layers of a heterostructure may have different ac voltages ap-
plied in addition to different band-edges. As a consequence, the wave functions
in Eq. (2.31) which satisfy the Schrödinger equation in the asymptotic regions of
each layer do not coincide in the general case. However, as the solution for the
complete system and its spatial derivative have to be continuous throughout the
system, we can construct the total wave function by matching the corresponding
partial wave functions at the interfaces between layers. With this goal in mind,
we assume that the wave function (2.31) is a solution of the Schrödinger equation
for the time-dependent Hamiltonian

H(z, t) = H0(z) + Vac(t)

= − h̄2

2
∂

∂z
1

m(z)
∂

∂z
+ V(z) + Vac cos Ωt (2.33)

and that, moreover, ψn(z) is an eigenfunction of the time-independent Hamil-
tonian H0ψn(z) = Enψn(z) with the spatially piecewise constant effective mass
m(z), and has the general form

ψn(z) = An exp(knz) + Bn exp(−knz) . (2.34)

The wave vector kn = [2m(V − E− nh̄Ω)]1/2 describes travelling as well as de-
caying waves (bound states) for complex and real values of kn, respectively. The
matching conditions at an interface for ψ(z, t) follow from the fact that both the
wave function and the flux have to be continuous, i.e. at z = z0

lim
z→z+

0

ψ(z, t) = lim
z→z−0

ψ(z, t)

lim
z→z+

0

1
m(z)

∂

∂z
ψ(z, t) = lim

z→z−0

1
m(z)

∂

∂z
ψ(z, t) . (2.35)

This yields an infinite system of algebraic equations for the coefficients An and
Bn in each layer. Inserting the Fourier expansion of the phase in Eq. (2.32),

exp
{
− ie

h̄
Vac cos Ωt

}
=

+∞

∑
n′=−∞

Jn′

(
Vac

h̄Ω

)
exp(−in′Ωt) , (2.36)

where Jn is the n-th order Bessel function of the first kind, allows one to recast
these equations for an interface between layers I and II at z = zi in matrix form:

TI
zi

(
AI

n

BI
n

)
= TII

zi

(
AII

n

BII
n

)
. (2.37)
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2 Quantum transport in time-dependent systems

Tz1→z2 Tz2→z3 Tz3→z4 Tz4→z5

Tz1 Tz2 Tz3 Tz4 Tz5

Figure 2.1: Layer vs. interface usage of transfer matrices (TMs). Defining TMs across

layers is physically more sensible, since the matrices depend on the properties of

just one layer. They are also numerically easier to implement, as there are fewer

qualitatively different matrices to deal with.

The matrices TI
zi

and TII
zi

with elements TI
zi;n,n′ and TII

zi;n,n′ , respectively, are of
infinite dimension, and contain the coefficients of all possible scattering channels,
i.e. photon exchanges between the incoming electron and the driving field, at
either side of the interface. Their precise form depends of course on whether or
not a layer is affected by the time-dependent gate voltage.4 The transfer matrix
Tzi→zj between two sides of a layer of width zj − zi is then defined (Wagner and
Mizuta, 1993) as

Tzi→zj = TI
zj

(
TI

zi

)−1. (2.38)

A graphical representation of how transfer matrices are defined is presented
in Fig. 2.1 above. To calculate the total transfer matrix across the structure, we
have to multiply the matrices across all different layers and obtain

TL→R = TzRTzj→zR · · ·TzL→zi TzL ; (2.39)

where TzL and TzR represent the initial and final matrices at the ends of the
heterostructure. With the elements Tn,n′

L→R of the total transfer matrix we can find
the probability that an electron with energy E + nh̄Ω in lead L is scattered into
a channel with energy E′ = E + n′h̄Ω in lead R, with integer n, n′. The diagonal
elements Tn,n

L→R are closely related to the (static) transmission probability TRL,

4For a detailed description of transfer matrices, see Wagner (1995) or the Appendix.

24



2.3 Scattering formula for transport in ac driven systems

while the off-diagonal elements Tn 6=n′
L→R describe the effects of the absorption or

emission of n− n′ photons on the transmission probability of the electron. With
this quantities we can proceed to calculate of the dc current inserting them in a
formula like Eq. (2.28) for the time-independent probabilities.

For flat conduction bands on both sides of the heterostructure, the wave func-
tions in the contacts are plane waves, and in this case the proper boundary con-
ditions to describe an electron incident from, say, the left-hand side at energy E
are An

L = δn,0 and Bn
R = 0. The transmission probability in sideband n is then

defined as

Tn
RL =

kn
R

k0
L

mL

mR

∣∣∣∣∣An
R

A0
L

∣∣∣∣∣
2

, (2.40)

where kn
R and k0

L represent the wave vectors on the right- and left-hand side in
sidebands n and 0, respectively.

In a numerical implementation of the transfer-matrix technique, it is necessary
to truncate the infinite matrices. Thereby for consistency, a proper cut-off has to
be so large that unitarity of the scattering process is preserved, i.e.

+Nhigh

∑
n=−Nlow

Tn
RL +

+Nhigh

∑
n=−Nlow

Rn
LL = 1 . (2.41)

Nlow, Nhigh > 0 denote respectively the lowest and highest sidebands that need
to be taken into account to meet a given accuracy (which in our calculations
was set to 10−10). This depends essentially on the ratio eVac/h̄Ω, as this is the
argument of the Bessel function Jn that determines the weight of each sideband
n and sets the values of Nmin and Nmax. To proceed, one starts at the initial value
of Vac = 0 with a tentative number of sidebands, and increases it for growing
driving amplitudes if a check with Eq. (2.41) suggests that unitarity is breaking
down. When particle number conservation is restored one can go to a higher
Vac. Transfer matrices such as those employed here have the advantage of being
easily scalable to arbitrarily complex structures. The combination of flexibility in
structural properties and numerical accuracy makes this method well-suited to
the study of strongly driven semiconductor heterostructures.
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2 Quantum transport in time-dependent systems

2.3.3 Tight-binding model

As was discussed in the introduction to this thesis, energy levels in heterostruc-
tures are not in a one-to-one correspondence with those of the atoms that form
the system, but are determined by the interactions of the many atoms in the re-
spective layers of GaAs and AlGaAs forming the tunnel barriers and quantum
wells. This discretization by confinement, and the localization inside the wells,
along with motivating the name of artificial atoms to the resulting structures, sug-
gests a different method to explore the transport properties of these systems. In
the tight-binding approximation put forward in this section one treats the quan-
tum dot or quantum well as a structure isolated from the exterior with localized
electrons. Electrons go into and out of the structure through tunnel barriers that
connect it with the external leads.5 Using a second quantization description for
the occupation of the energy levels, one writes the number operator that counts
the electrons in the QD as N = ∑i c†

i ci, where the operators c†
i and ci create and

destroy, respectively, an electron in level i of the QD. The corresponding term in
the Hamiltonian is then

HQDs(t) = ∑
nn′

Hnn′(t)c†
ncn′ , (2.42)

where Hnn′(t) represents the matrix element such that Hnn(t) = εn(t) gives the
energy of the electron in site n, and Hnn′(t) = ∆nn′(t) describes the possible
interwell interaction between levels in adjacent QDs. The system model we will
later use in this thesis will a double QD or double quantum well. Thus our basic
Hamiltonian for the QDs, which includes interwell coupling and the effect of an
external driving field Vac(t), reads

HQDs(t) = −∆(c†
1c2 + c†

2c1) + eVac cos(Ωt)c†
1c1 . (2.43)

We have chosen ε1 = ε2 = 0 for the time-independent part of the on-site energies
ε(t); we have also restricted the action of the ac field to the left QD. If the same
description is applied to the leads and to the contacts through which current

5The tight-binding method has been used to obtain the energetic levels and transport properties
of complex atomic networks from first principles. A detailed account of this procedure can
be read in chapters 8-9 in Ashcroft and Mermin (1976), Section 7.3 in Agraït et al. (2003), or
Ohno et al. (1999).

26



2.3 Scattering formula for transport in ac driven systems

flows in and out of the system, one can write the total Hamiltonian as

H(t) = HQDs(t) + Hleads + Hcontacts . (2.44)

Here, the term

Hleads = ∑
`,q

ε`qc†
`qc`q ` = L, R (2.45)

describes the electrons in the leads as a non-interacting Fermi gas, while

Hcontacts = ∑
q

(VLqc†
Lqc1 + VRqc†

RqcN) + H. c. (2.46)

models the interaction between the terminating levels in the QD and the level in
the lead |`q〉 through the matrix element V`q. The lead–dot coupling is effectively
described by the spectral density

Γ̀ (ε) = 2π ∑
q
|V`q|2δ(ε− ε`q) , (2.47)

which contains most of the physics of the hopping process between the lead and
the dot without being too specific about the details. Furthermore, we will later
work in a regime where transport takes place in an energy range much narrower
than the conduction band in the leads, so that one can disregard the energy
dependence of the coupling and state

Γ̀ (ε)→ Γ̀ , (2.48)

in what is termed as the wide band limit.

Calculation of the dc current

To calculate from the Hamiltonian (2.44) the dc component of the current one has
to calculate the time average over one period of the driving T

Ī = 〈I`(t)〉 =
1
T

∫ T

0
dtI`(t) (2.49)

of the current operator in the leads

I`(t) = eṄ`(t) =
ie
h̄

[H(t), N`(t)] =
ie
h̄

[H(t), ∑
q

c†
`qc`q] , (2.50)
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2 Quantum transport in time-dependent systems

where we have used the evolution of the operators in the Heisenberg represen-
tation. To proceed, one writes the Heisenberg equations of motion for the lead
operators and uses Green functions to uncouple the resulting system of equa-
tions. By this method (see e.g. Kohler et al., 2005, for details), one arrives at the
following expression for the time-averaged current:

Ī = 〈I`(t)〉 =
e
h̄

∞

∑
k=−∞

∫
dε
{

T(k)
LR (ε) fR(ε)− T(k)

RL (ε) fL(ε)
}

. (2.51)

The transmission probabilities T(k)
`′` (ε) ≡ T`′←`(ε → ε + kh̄Ω) can be expressed

in terms of Green functions, and have a straightforward interpretation in terms
of electron scattering: they correspond to the processes of absorption (k > 0)
or emission (k < 0) of |k| photons, thus going from an initial energy ε to a
final one ε + kh̄Ω. Within this formalism an expression for the dc current can be
derived that resembles the Landauer formula [Eq. (2.3)] in the ac case right from
the definition of the current operator, instead of merely postulating it in some
heuristic way. On the other hand, Eq. (2.51) reduces to Eq. (2.3) when Vac = 0,
since in that limit T(k)

LR (ε) = T(k)
RL (ε) and the terms with k 6= 0 vanish.

The fact that the Hamiltonian of the system is a periodic function of the time t
can be used to establish an explicit relation between the Green functions that go
into the transmission probabilities of Eq. (2.51) and the Floquet states of Eq. (2.14).
With this it is possible to numerically calculate the dc current of Eq. (2.51).

2.3.4 High frequency limit and current suppression

Treating transport problems within a Floquet approach allows the development
of a perturbative method in the case when energy scale set by the frequency of
the external ac signal, h̄Ω, is much higher than any other energy scale appearing
in the problem. This limit, explored first by Shirley (1965), is a reasonable one to
investigate since many of the transport phenomena in the presence of an ac per-
turbation are greatly amplified when the driving frequency Ω is high. Among
them, the coherent destruction of tunnelling and the photo assisted tunnelling
addressed in this thesis. Mathematically, this approximation amounts to keeping
only the first term in an expansion in the parameter 1/Ω. Physically (Kohler et al.,
2004), its main advantage is that the original time-dependent problem is mapped
into a static (or time-independent) one, with the appropriate renormalization of
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2.3 Scattering formula for transport in ac driven systems

some quantities, which makes a qualitative understanding easier. In the static
case the dc current is calculated with Eq. (2.3), where, again in the wideband
limit, transmission probabilities are just T(ε) = TLR(ε) = ΓLΓR|GLR(ε)|2 with
the additional condition that GLR(ε) = GRL(ε). Setting Vac = 0 in our Hamilto-
nian (2.44), the transmission can be shown to be

T(ε) =
Γ2∆2

|(ε− iΓ/2)2 −∆2|2 (2.52)

if the couplings ΓL = ΓR = Γ are assumed equal.
The starting point of the high frequency approximation (HFA) is the applica-

tion of the unitary transformation

U0(t) = exp
{
− ieVac

h̄Ω
sin(Ωt)c†

LcL

}
(2.53)

to the Hamiltonian (2.42):

H(t)→ H̃(t) = U+
0 (t)H(t)U0(t)− ih̄U+

0 (t)U̇0(t) (2.54)

For very high frequencies Ω � ∆/h̄, this transformation results in an effective
separation of two timescales: that of the ac signal, very short in this limit, and the
much longer one of the tunnel dynamics. Thus one can discard the effects of the
external driving when averaging over a period T (Großmann and Hänggi, 1992;
Grifoni and Hänggi, 1998). In this way one arrives at an effective Hamiltonian
for the QDs

H̄eff =
1
T

∫ T

0
dt
(

U†
0 Hwells(t) U0 − ih̄ U†

0 U̇0

)
= −∆eff(c†

LcR + c†
RcL), (2.55)

for the matrix elements H̃nm(t) � h̄Ω. This effective Hamiltonian has the same
form as the static one, but now the tunnel matrix element has been substituted
by its effective value

∆eff = J0

(
eVac

h̄Ω

)
∆0 , (2.56)

where J0(x) is the Bessel function of the first kind and zeroth order. It logically
follows that the static transmission probability has to be replaced in favour of the
corresponding effective quantity, Teff(ε), by substituting ∆0 → ∆eff in Eq. (2.52).
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2 Quantum transport in time-dependent systems

The most striking feature of this new transmission is that it appears to be control-
lable by a proper choice of the driving amplitude and frequency. In particular,
the HFA predicts a complete suppression of transport for those values of the ar-
gument Vac/h̄Ω for which J0 goes to zero. This analytical result will be used in
the analysis of the results presented in chapter 4.

On the other hand, the transformation (2.53) affects also the contacts between
the system and the leads. The principal effect here is the change in the distribu-
tion function of the electrons in the leads, which is now replaced by the effective
one:

fL,eff(ε) =
∞

∑
k=−∞

J2
k

(
Vac

h̄Ω

)
fL(ε + kh̄Ω) . (2.57)

The Bessel functions of the first kind and order k ∈ Z weigh the contributions
of the processes by which an electron goes from an initial energy ε to the other
side of the structure after emitting or absorbing k photons. This effective Fermi
function presents steps at energies ε = µL + nh̄Ω and is constant for other values
of ε.

It is now quite straightforward to show the new form of the current in the
HFA: Teff(ε) is a sharp-peaked function around ε = 0, and, for finite voltages,
fR(0) and fL,eff(0) are constant. The dc current then reads (Kohler et al., 2004)

IHFA =
eΓ

4h̄
∆2

eff

∆2
eff + (Γ/2)2

1 + ∑
|k|≤K(V)

J2
k

(
Vac

h̄Ω

) (2.58)

using the static Landauer formula with the renormalized parameters. Here, K(V)
is an abbreviated form of stating that only the integer part of e|V|/2h̄Ω has to be
taken into account in the sum over k.

The main achievement of the HFA, namely the mapping of the time depen-
dent problem into a static one, offers yet another way of interpreting its results:
transport in static systems, in the absence of other perturbations, can only take
place if the charge carriers can be transmitted elastically through the system. The
time-dependent gauge transformation U0(t) takes the part of the Hamiltonian
that explicitly depends on time to a static form and, simultaneously, brings the
energy levels to an equal energy (in a dynamical way), thus allowing transport
as if it took place elastically.
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3 Coherent suppression of current in
heterostructures

As a first application of the time-dependent formalism for transport derived in
the previous chapter, we study the effect of an ac gate voltage on the transmission
properties of semiconductor heterostructures. The feature of interest here is the
possibility of coherently controlling the dc current that traverses the structure by
appropriately choosing the parameters of the driving. This effect, predicted at
first for isolated systems only (Dunlap and Kenkre, 1986; Grossmann et al., 1991;
Holthaus, 1992; Wagner, 1995; Creffield and Platero, 2002), can thus be extended
to transport situations by suitably taking into account the coupling to the leads.

We also use this problem as test bed for the basic assumptions underlying the
analytical and numerical methods used in this thesis. In particular, we check the
analytical high-frequency approximation against the exact numerical calculations
carried out with the numerical tight-binding and transfer-matrix schemes.

3.1 Dynamic localization and coherent destruction of

tunnelling

Motivation for the study of coherent transport suppression comes from different
physical systems already mentioned in the introduction: semiconductor quan-
tum wells and their generalization in the form of superlattices, envisioned and
subsequently built in the early 1970s, and, on the other hand, driven two-level
systems, of which various possible realizations exist, which motivated the article
of Grossmann et al. (1991).
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3 Coherent suppression of current

3.1.1 Dynamic localization by irradiation of superlattices

We can consider the pioneering investigations of Tsu and Esaki on negative re-
sistance in superlattices, i.e. a spatially periodic potential created by periodic
variation of alloy composition or of impurity densities of semiconductors (Esaki
and Tsu, 1970; Esaki, 1974), as the first attempt to control the transport proper-
ties by an external field. In the search for "new ultra-high-speed devices" based
on semiconductors, and applying the semiclassical theory of transport, a nega-
tive differential conductivity appeared when the strength of a dc field reached
a certain threshold. The effect was attributed to the negative drift velocity that
resulted from an inflection (change of sign in the derivative) in the dispersion
relation ε(k) of the electrons.

As an artificial realization of a Kronig-Penney potential (see Ashcroft and Mer-
min, 1976), superlattices have attracted much attention since their invention. As
Tsu and Esaki themselves predicted, they allow the observation of quantum trans-
port properties in a physical scale much bigger than that of the atoms of the host
crystal.1

The periodic disposition of layers of e.g. GaAs and AlGaAs in a superlattice
results in the narrowing of the conduction bands of the starting crystals, justify-
ing the use of the term miniband. A tight-binding model for superlattices with
separation d and interaction to first neighbours ∆0 gives a dispersion relation
E(k) = −h̄∆0 cos(kd) and bandwidth 2h̄∆0. The application of an ac field of the
form ε̂ cos(Ωt)/d can be shown (Holthaus, 1992) to yield a renormalized disper-
sion relation ε′(k) = J0(ε̂/h̄Ω)ε(k), which translates in a corresponding change
in the conduction bandwidth. J0 is again the zeroth order Bessel function. If ε̂/h̄Ω

equals one of the zeros of J0, the band will collapse and a particle prepared at
a site of the lattice will neither move nor spread. This phenomenon was termed
dynamic localization.

3.1.2 Coherent destruction of tunnelling in two-level systems

Far from being a mere theoretical tool, two-level systems (TLS) appear often
in many problems of chemistry and physics. Double quantum dots and two-
site molecular wires, for example, can be described to a good approximation

1For a full review of the transport properties of superlattices, see Wacker (2002).
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3.1 Dynamic localization and coherent destruction of tunnelling

by studying the properties and evolution of just two levels. These are either the
lowest-lying in energy above the valence band (for semiconductor dots), or the
highest-energy orbitals that are still occupied (for molecular wires). All other
levels are then regarded as completely empty or filled, thus not contributing to
transport, or too far-lying in energy so as to cause any measurable interaction.2

The general properties on TLS of interest to our problem can be summed up as
follows. We have in mind a system like those depicted either in Fig. 3.1 or 3.2, that
is, a symmetric two-site structure with degenerate levels of energy E0. Usually,
E0 = 0 is chosen for convenience. The degeneracy of the levels is removed by the
tunnel interaction ∆. Thus the lowest lying states correspond to the symmetric
and antisymmetric combinations of the ground states of the separate wells, which
acquire (as shown by elemental first-order perturbation theory) energies ±∆/2.
A convenient way of writing the Hamiltonian is the pseudo-spin basis using the
Pauli matrices, because of the identical treatment of this TLS with the standard
example of a particle with momentum J = h̄/2 found in text books. The ac
perturbation affects the on-site energies only, so one can write

HTLS(t) = −∆

2
σx +

ε(t)
2

σz . (3.1)

The time-dependent site energy ε(t) will be taken of sinusoidal shape, i.e. ε(t) =
Vac cos Ωt.

The interaction of a TLS with radiation, in the form of an electric or magnetic
field, was the subject of a number of relevant papers in the beginnings of quan-
tum mechanics (Rabi, 1937; Bloch and Siegert, 1940). Bloch found in the case of
linear polarization that an analytical solution was possible for driving frequen-
cies Ω ' ∆/h̄, where one could invoke the so-called rotating wave approximation
and discard terms oscillating very rapidly and keep only the slow oscillations.
Then it is possible to analytically solve the coupled system of linear differential
equations for the populations c1(t) and c2(t) of the energy levels, to find that
they oscillate with a frequency ΩR = [(h̄Ω−∆)2 + V2

ac/4]1/2. When h̄Ω = ∆ the
population is transferred periodically between both states.

2The basics of TLS can be found in Cohen-Tannoudji et al. (1977), and as they apply to driven
situations in Sec. 3 of Grifoni and Hänggi (1998). Many experimental results on microwave
spectroscopy of TLS in double quantum dots can be found in the review of van der Wiel et al.
(2003).
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3 Coherent suppression of current

But a novel effect appears when one considers this situation in the context of
transport. Here one analyzes the problem of a particle, localized initially in site
|L〉, say, which can tunnel coherently to site |R〉. The particle tunnels at a rate
∼ ∆/h̄ in the absence of any other perturbation, and therefore spends typically
a time ∼ h̄/∆ in each well (at least in symmetric systems). The onset of a time-
dependent driving that brings the Hamiltonian to the form of Eq. (3.1) changes
the picture, and now one must obtain the time-dependent site occupations cL,R(t)
from the Schrödinger equation of the system. This yields for frequencies Ω �
∆/h̄ the following equation (Grifoni and Hänggi, 1998):

i(d/dt)cL,R(t) = −1
2

∆J0(eVac/h̄Ω)cL,R(t) (3.2)

where J0(x) is the zeroth-order Bessel function of the first kind. What is inter-
esting of this result is that Eq. (3.2) has the same structure as that of the static
system, but with an effective tunnel coupling

∆→ ∆eff ≡ J0(eVac/h̄Ω)∆ (3.3)

now multiplied by a function that vanishes at certain values of the argument
eVac/h̄Ω. The conclusion that follows is that tunneling in a TLS can be brought to
a standstill by the suitable choice of the parameters of the external driving. To ex-
plain precisely what is happening here requires a description of the quasienergy
levels of the driven TLS: coherent destruction of tunneling takes place when two
quasienergies stemming from two quasidegenerate sites (degeneracy removed by
tunneling) cross, i.e. are equal at a finite driving. In terms of tunneling process,
it is evident that an effective tunnel coupling ∆eff → 0 takes the tunnel event rate
to zero, and correspondingly the dwell time to infinity.

3.1.3 Transport quenching in single quantum dots

Closely related to the transport problem addressed in this chapter, the case of
isolated heterostructures under the action of ac driving was considered around
a decade ago by Wagner (1994, 1995, 1996). Treating both single- and double
semiconductor quantum wells in the presence of either a driving potential or a
driving field (the latter implying a spatially varying potential through the struc-
ture), Wagner found that transport channels could be inhibited simultaneously
by the action of an external driving. However, as the role of the contacts is not
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3.2 Current suppression in semiconductor heterostructures

correctly taken into account, these calculations fail to provide a reliable transport
calculation. In any case they are probably the first hint that a transport-related
effect, in the way of the coherent destruction of tunneling of Grossmann et al.,
could be observable.

The approach of Wagner developed in two directions: on the one hand, he
used the transfer matrix technique of section 2.3.2 for the numerical computation
of transmission probabilities at high amplitude driving, where perturbational ap-
proximations are no longer valid. As we know, transfer matrices are a convenient
way of expanding the Floquet states in free space — or at least inside layered
semiconductor heterostructures, if one can assume flat conduction bands, as has
been done there. This is then just a particular case of the more general Floquet
theory of periodically driven systems.

But, on the other hand, although numerically exact, the analysis of the results
in terms of simple energy (as in the Tien-Gordon case) or transport sidebands is
not possible, since the phase of the plain waves retains a certain time- and wave
vector dependence. As a way out, (Wagner, 1994, 1995, 1996) developed analytical
solutions, either by making some ansatz for the transfer matrix coefficients An, Bn

for driving potentials, or for the wave function itself (in the spirit of Truscott,
1993) for driving electric fields. This was done by expanding perutrbatively the
general solution for the case h̄Ω � E0, where E0 denotes the energy of the level
for zero driving. This analytical treatment allowed Wagner to compare with the
numerical results, as well as the critical assessment of some experiments of Keay
et al. (1995) on sequential photon-assisted tunneling in superlattices.

As mentioned above, these findings are still not enough to predict that current
will be suppressed in a transport experiment. We need, apart from the rather
technical issues of the leads and the relevant integrations in the energy, to find a
situation where all the relevant transmission probabilities vanish simultaneously,
and this is not guaranteed by the theory above. In what follows we explain how
a proper comparison with the clearcut physical situation of two level systems
brings this closer to experiments.

35



3 Coherent suppression of current

eV
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VL = VR
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2∆

eVac cos Ωt

Figure 3.1: Double quantum well structure used in the study of coherent current control.

Parameters are dL,R = 5, dC = dwL,R = 15 nm; VL,R = 90, VC = 40 meV; V = 6 mV.

3.2 Current suppression in semiconductor

heterostructures

The investigation of current suppression in a transport context has received at-
tention only recently (Kohler et al., 2004; Camalet et al., 2004). In this section we
discuss how a semiconductor heterostructure can be tuned to predict a vanish-
ing of the dc current.3 The analysis is performed with the tools developed in
chapter 2: transfer matrices and tight-binding Floquet theory.

As a system we choose the triple-barrier structure of 3.1. The values of barrier
heights and widths correspond roughly to the order of magnitude of typical
semiconductor heterostructures (Capasso and Datta, 1990). At zero driving the
ground states of the wells are split by ∆ = 0.23 meV because of tunneling between
them. An equivalent description in terms of the tight-binding model is depicted
in Fig. 3.2. In the following we will compare the results of the two approaches,
taking advantage of the high precision of numerical transfer-matrix and tight-
binding calculations, and the analytical results of the HFA (cf. Section 2.3.4).

In order to be able to compare the transfer-matrix and the tight-binding ap-
proaches, we have to ensure that the same physical situation is addressed. As a
matching condition we compare the transmission T(ε) in the time-independent
case (eVac = 0). The level splitting energy 2∆ due to the central tunnel barrier
is extracted from the resonance peaks of the doublet states computed with the

3This results have already been published in Rey et al. (2005).
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3.2 Current suppression in semiconductor heterostructures

Figure 3.2: Tight-binding model for the double quantum well [dot?] of Fig. 3.1. The

interwell coupling is given by ∆, while the couplings to the leads are ΓL and ΓR,

respectively. The ground state of the left well oscillates by the action of the external

ac potential, Vac(t), and an external bias V = (µR − µL)/e is applied.

transfer-matrix method. Solving for Γ in Eq. (2.52), with ε = 0 and T(0) and ∆

taken from the previous calculation, the corresponding lead–well coupling for
the tight-binding system is determined.

Surveying the time-averaged current calculated numerically from the transfer-
matrix and the tight-binding method plotted in Fig. 3.3, we observe current
minima for distinct values of eVac/h̄Ω for frequencies in the microwave regime
(Ω ∼ 1 meV ∼ 200 GHz). By varying the ratio between driving amplitude and
frequency, we can thus tune the tunneling between the two wells and thereby con-
trol the current (Kohler et al., 2004). To understand this results better we also plot
the HFA analytical curve of (2.58), which exhibits minima close to those of the
transfer-matrix and tight-binding curves. The analytical expression shows a re-
markable agreement with the exact tight-binding result (2.51) for eVac . eV. The
current (2.58) vanishes whenever the ratio eVac/h̄Ω assumes a zero of the Bessel
function J0, i.e. for the values 2.405, 5.520, 8.654, . . . , since then ∆eff ∝ J2

0 = 0. That
this also happens for the numerical calculations only shows that the parameters
(h̄Ω = 5∆ = 1.15 meV in our case) have been conveniently chosen so that the
HFA, and therfore ∆0 → ∆eff = J0∆0, is valid.
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0

10

20

30

40

Ī
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Figure 3.3: Average current as function of driving amplitude Vac obtained numerically

from transfer-matrix (dashed line) and tight-binding (solid) methods. Also shown

is the HFA curve (dash-dotted). The chosen parameters are h̄Ω = 1.15 meV, V =
6.0 mV, Γ = 0.16 meV and ∆ = 0.23 meV. The corresponding parameters for the

barriers are the same as those of Fig. 3.1.

3.2.1 Exploration of HFA and tight-binding approximations

As a further check on the correctness of the HFA, Fig. 3.4 shows how the current
at the first suppression (around eVac/h̄Ω = 2.405 meV) decays as a function of
the driving frequency Ω. If the HFA gives a good —though inexact— account of
the transport properties in this regime, then IHFA(eVac/h̄Ω) represents the first or-
der term in the expansion of Ī(eVac/h̄Ω), in the (small) parameter 1/h̄Ω (Kohler
et al., 2004). The current at the minimum does decay as 1/h̄Ω as predicted by
the HFA scheme; higher order contributions are included in the numerically ex-
act calculation of transfer-matrices and tight-binding methods, which results in
a non-vanishing current at the minima. These higher order terms can be disre-
garded for h̄Ω & 2 meV.

While the general shape and magnitude of the current are very similar for both
models, there still appears a small difference in the location of the minima for the
relatively low barriers chosen in Fig. 3.3. For a continuous potential, the current
assumes minima at values of eVac/h̄Ω higher than those predicted by the tight-
binding description. We can understand this shift by analysing, for given Ω, the
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Figure 3.4: Value of the first current minimum as a function of the driving frequency.

Both transfer-matrix (blue) and tight-binding (red) lines decay approx. as 1/Ω, as

expected in the HFA approximation.

deviation δV = Vmin − V0 of the driving amplitude Vmin for which the current
exhibits its first minimum from V0 = 2.405h̄Ω (the first zero of J0). In Fig. 3.5 we
plot δV as a function of κd, where d = dL = dR and

κ =
1
h̄

√
2m(V − µ̄) ; (3.4)

i.e. κd is the instanton action in units of h̄, and exp(−2κd) is the WKB4 trans-
mission probability of the outer barriers in Fig. 3.1. Here V = VL = VR is the
corresponding barrier height and µ̄ = (µL + µR)/2 is the average chemical po-
tential representing approximately the mean energy of the resonance doublet.

In the derivation of (2.51) for the dc current in the Floquet formalism we consid-
ered the lead-well coupling to be completely energy-independent (cf. Eq. 2.47), as
assumed in the wide-band limit. But we know this to be an ideal situation, strictly
valid only when the external barriers are infinitely high. The wave functions of
the well states become then completely localised and Γ is in fact independent
of energy. We use κd as a measure of this localization. Figure 3.5 shows that if
the width of the outer barriers is kept fixed, δV decreases for growing κd, be-

4WKB stands here for the Wentzel, Kramers, and Brillouin semiclassical approximation, cf. Grif-
fiths (1995).

39



3 Coherent suppression of current

0

0.2

0.4

0.6

0.8
δ
V

[m
eV

]
δ
V

[m
eV

]

5 6 7 8 9 10 11 12

κdκd

d = 4.0 nm
d = 5.0 nm
d = 7.5 nm
d = 7.5 nm

Figure 3.5: Deviation of the driving amplitude for the first current minimum from the

expected first zero of J0, V0 = 2.405 h̄Ω, for different barrier widths and heights.

The parameters for the first three data sets are dC = 15 nm, µ̄ = 12.0 meV and

VC = 40 meV, whereas for the last one (◦), we chose µ̄ = 13.3 meV and VC = 80 meV.

cause then the resonance energies are further away from the barrier edge and the
wide-band limit is approached. Furthermore, this argument is used to explain
the smaller deviation observed with thinner barriers for the same κd, since V is
much larger in that case.

As can be seen by comparing data sets for different central barrier heights
in Fig. 3.5, an increase of the height of the central barrier VC reduces the level
splitting 2∆, that is, the overlap between the localised states in the left and right
well in a tight-binding description. Thus the tight-binding and the transfer-matrix
results converge as a function of the barrier height. Finally, it is important to
note that varying any of the barriers affects the transmission properties of the
whole heterostructure, in contrast to the tight-binding model, where the different
coupling parameters can be controlled independently.

3.2.2 Other types of driving

A question that arises in view of the results of this section is their stability against
possible variations of the driving ac potential, i.e. if the actual experimental con-
ditions are not as ideal as the figure 3.1 suggests. It could well be the case that
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Figure 3.6: Current suppression calculated with transfer matrices for different driving

setups. Dashed-gray curve corresponds to the situation of Fig. 3.3; for the continu-

ous (red), both wells are driven with a phase difference of π between them. Blue

(dotted) and black (dash-dotted) curves represent results for two in-phase driven

wells without and with driving the central barrier as well. Parameters are like those

of Fig. 3.3.

the localization of the driving to the quantum well is not as perfect as assumed,
and that it "invades" adjacent regions as any of the barriers to the left or the
right. A numerical test with the transfer matrix approach of these other driving
conditions is presented in Fig. 3.6, and the results can be directly compared to
the original case of Fig. 3.3. As is evident, all kinds of driving, with minor differ-
ences, reproduce the dependence of the dc current with the driving amplitude,
with minima at the ratios of the amplitude to the driving frequency that equal
zeros of the first order Bessel function. In the case of two in-phase driven wells
the results are somewhat different. This difference can be ascribed to the differ-
ent coupling between the levels when they are raised or lowered simultaneously.
Moreover, the HFA scheme presented for the case of a single driven well does
not hold, so that we cannot perform the same static-like analysis.
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Figure 3.7: Time-averaged current through 2- and 3D semiconductor heterostructures.

Calculations are carried out with the same ac scattering formalism, but with the

corresponding 2D and 3D densities of states in the respective leads. An equivalent

suppression effect is also predicted in these cases.

3.2.3 Higher dimensions

The dimensionality of the leads connected to the driven heterostructure has not
played any role in the discussion of these results, but in principle it is also in-
teresting to study if this effect is maintained for two- and three-dimensional
leads. We assume that the component of the wave vector parallel to the interface
across which transport takes place is conserved. Then the main difference with
the strictly one-dimensional case treated so far is, as discussed in section 2.3.1, the
different densities of state that must be used now. This should however not mat-
ter very much for current suppression: as the high-frequency approximation and
renormalization of the coupling affect exclusively the driven part of the structure,
we expect to observe the same current minima as in one-dimensional systems.
The results confirming this is indeed the case are shown in Fig. 3.7.
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4 Nonadiabatic pumping in
heterostructures

4.1 Introduction

We now turn our attention to the other main topic of the present thesis, namely
the nonadiabatic pumping of electrons. This expression is a convenient shorthand
for the transfer of electrons in the absence of, or even against, an externally applied bias,
by the action of an ac gate voltage at finite frequency. Essential ingredients of this rec-
tification effect are nonlinear ac driving and some asymmetry in the spatial struc-
ture or in the temporal signal. The general symmetry conditions for pumping in
systems described by Floquet Hamiltonians like that of Eq. (2.18) have recently
been formulated by Kohler et al. (2005). We deal here only with systems without
magnetic field, and the structure Hamiltonian possesses time-reversal symmetry.
The transmission probabilities TRL(ε→ ε + kh̄Ω) and TLR(ε + kh̄Ω→ ε) are then
equal. This implies that to achieve any non-vanishing current a breaking of the
generalized parity is required.

The interest in rectified motion of particles by the action of external forces
reaches many research areas in physics today. For instance, thermal fluctuations
in so-called thermal ratchets can result in a net current of particles. When such sys-
tems work against a small force opposed to the current they are called Brownian
motors (Parrondo and de Cisneros, 2002; Astumian, 1997). In solid state devices,
the subject of charge pumping was started by the idea of adiabatic charge transfer
(Thouless, 1983), and the experiments with single electron turnstiles performed
in the early 1990s (see e.g. Geerligs et al., 1990; Devoret et al., 1992). Since then,
pumping has been predicted in systems like asymmetric molecules, both un-
driven (Kornilovitch et al., 2002) and under ac driving (Lehmann et al., 2002),
and superconducting-insulator interfaces (Blaauboer, 2002). Experimentally, it
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4 Nonadiabatic pumping in heterostructures

has been found in carbon nanotubes (Leek et al., 2005) and some semiconductor
systems such as adiabatically driven quantum dots (Switkes et al., 1999), biased
ratchets (Linke et al., 1999), and one dimensional channels driven by the action
of surface acoustic waves (Talyanskii et al., 1997).

The reasons for this theoretical and experimental richness are multiple. First,
adiabatic pumping holds the promise of providing a precise mechanism for set-
ting a current standard that would complete those already found for voltage in
the Josephson effect and for resistance in the Hall effect (Niu, 1990). Second, the
miniaturization of electronic devices, almost down to the domain where quan-
tum effects are important, requires the development of new voltage and current
sources to be integrated in the circuits (this is the subject of Section 4.3).

In mesoscopic semiconductor systems, pumping has been pursued either via
irradiation and subsequent modification of the level structure by an external
source, or by the modulation at low frequencies of the gates connecting the sys-
tem with the environment. The experiments of Kouwenhoven et al. (1994) belong
to the first group, and partially go back to the proposal of Tien and Gordon (1963)
for SIS systems. Switkes et al. (1999) achieved pumping through the second mech-
anism based on Thouless’ idea, although this was initially an effect predicted for
isolated systems. In this pump the driving frequency produces a dc current while
the system does not abandon its ground state, and it is therefore referred to as
adiabatically driven. These two proposals differ from the single charge pumping
method of Devoret et al. in the essential feature that the latter, which makes use of
the Coulomb blockade effect and the change in the electrostatic energy through
a gate voltage, is free from any quantum mechanical fluctuations, and thus is a
classical effect.

Adiabatic pumping occurs when the inverse of the driving frequency is much
larger than the typical traversal time of the electrons through the system. It re-
quires that at least two parameters be independently varied to produce a non-
vanishing dc current (Altshuler and Glazman, 1999). This current has then been
shown to be computable from the scattering matrix of the system (Brouwer, 1998)
and also to be proportional to the driving frequency. In spite of the theoretical
insight it provides on the transport mechanisms of chaotic dots, we are interested
here in the opposite regime of moderate-to-high (nonadiabatic) driving frequen-
cies, where a larger current occurs while its accompanying noise can be kept at
tolerable values (Strass et al., 2005).
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4.2 Pump current in asymmetric double quantum wells

Wagner and Sols (1999) applied this ideas to a semiconductor structure and
proposed to introduce a band offset between the leads. This had the consequence
of strongly enhancing the pumped current in an otherwise already asymmetric
structure. This setup was used to prove that in ac driven systems, in contrast to
static situations, the current does not stem exclusively from states with energies
close to the Fermi level, but effectively involves electrons at all energies. In the
appropriate conditions this results in an interesting resilience of the current to
changes in chemical potential or temperature for three dimensional pumps.

We introduce an asymmetry in the structure of chapter 3 by an internal bias in
one of the wells. We then follow the formalism of Stafford and Wingreen (1996)
to propose a model for a semiconductor heterostructure pump which operates
by photon assisted tunnelling (Platero and Aguado, 2004) in the non-adiabatic
regime. The last part of the chapter is devoted to the study of the behavior of an
electron pump when introduced in an electrical circuit, assuming that it can be
treated as a semiclassical device. Most theoretical calculations have dealt so far
with the derivation of the pump current, but we argue in section 4.3 that under
under some reasonable assumptions the pump, acting as a voltage source, can
be characterized by the electromotive force which defines its role in the circuit
and the internal resistance. We further show how to calculate these quantities
with the scattering matrix of the pump in the limit where coherence effects can
be neglected.

4.2 Pump current in asymmetric double quantum

wells

Introductory texts to quantum mechanics (see e.g. Cohen-Tannoudji et al., 1977)
show how the energy levels of two unequal quantum wells are modified when
they are coupled with coupling strength ∆, in the same way as was done to the
symmetric structure of Fig. 3.1 (or its tight-binding description in Fig. 3.2). The
asymmetry between wells can be characterized by the difference in energy be-
tween the ground states of the wells, ε0 = E02 − E01, referred to as internal bias.
The interplay of bias and coupling takes the ground level splitting to (∆2 + ε2

0)
1/2.

If the coupling is much smaller than the internal bias, the ground states become
highly localized in their respective wells. But a current can still be produced if

45



4 Nonadiabatic pumping in heterostructures

µL = µ µR = µh̄Ω

ε0

Figure 4.1: Double well structure in the asymmetric case. An internal bias ε0 raises the

ground level of the right well and thus increases the separation of the ground states.

Electrons can however produce a dc current (this time pumped current) if an ac gate

voltage is applied.

the structure is driven with a frequency conveniently chosen such that h̄Ω equals
a multiple of (∆2 + ε2

0)
1/2. The physical mechanism of the pumping process con-

sidered here should be quite clear from the figure: an electron residing in lead L
tunnels through the left barrier to the (modified) ground level E1 in the left well.
It can then absorb one or more quanta of energy nh̄Ω and tunnel through the
central barrier to the level on the right at E2; from here, it can finally pass to lead
R, therefore producing a current.

To perform the calculation of the pump current with the method of transfer
matrices of section 2.3.2, one only needs to modify the band-bottom level of
one of the wells, which basically shifts the position of the ground state, and
observe the change of the static transmission probability T(E). The Landauer
formula Eq. 2.51 for ac transport is of course still valid. Meanwhile, some of the
simplifying assumptions of the tight-binding description used in the symmetric
case can no longer be applied, and although the derivation of a formula for
the current goes along the same lines of Sec. 2.3.4, it needs some appropriate
modifications (see Strass et al., 2005).

4.2.1 Tight-binding model

We consider in this section the possibility of changing the static energy levels
of the two wells simultaneously, but with an opposite phase. The tight-binding
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Figure 4.2: Tight-binding model of a double quantum well in a pumping setup.

Hamiltonian is then

HDQD(t) = −∆

2
(c†

1c2 + c†
2c1) +

ε(t)
2

(c†
1c1 − c†

2c2) , (4.1)

where ε(t) = ε0 + Vac cos(Ωt) represents the energy difference caused by the ac
gate voltage and the static bias ε0.

As mentioned above, pumping is expected to show most pronounced features
when the frequency meets the resonant condition

h̄Ω =
(∆2

0 + ε2
0)

1/2

n
(4.2)

for integer n. If, for example, n = 1, then electrons at E = E1, absorbing just one
photon, acquire the necessary energy to tunnel to the right well and subsequently
to lead R. But we can be more precise, since our setup has been designed such
that ε0 � ∆, so now we have

nh̄Ω = (∆2 + ε2
0)

1/2 ≈ ε0 . (4.3)

In this regime, the time-dependent part in the Hamiltonian (4.1) dominates over
the tunneling term, and this therefore justifies the use of perturbation theory to
first order for the calculation of the quasienergies at resonance. Its even possible
to obtain a quantitative analytical curve for the current in terms of the Floquet
theory of chapter 2, in the HFA. This has been recently done by Strass et al.
(2005) and, similarly to the analytical results of chapter 3, offers a clear physical
interpretation of the numerically exact results.

The main findings of Strass et al. are, again, the expressions for the effective
tunnel matrix element ∆eff and new electron distribution functions, derived in an
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analogous manner as in the case of single-well driving: starting by a new unitary
transformation similar to (2.53), an effective Hamiltonian is obtained, to finally
arrive at

∆eff = (−1)n Jn

(
eVac

h̄Ω

)
∆ (4.4)

for the effective coupling, and

fL/R,eff(ε) =
∞

∑
k=−∞

J2
k

(
Vac

2h̄Ω

)
fL/R

(
ε +

[
k∓ n

2

]
h̄Ω
)

(4.5)

for the function that replaces the equilibrium Fermi functions. This functions
exhibits steps at ε = µL,R + (k ∓ n/2)h̄Ω and is constant elsewhere for zero
temperature.

4.2.2 Numerical results

To obtain numerical results in the pumping configuration, we start with the
double-well structure of Fig. 3.1 to operate in the strongly localized regime of
Stafford and Wingreen (1996). With the experience gained in the current suppres-
sion comparison of last chapter, we tune the structural parameters so our two
independent numerical approaches give better agreement. We choose ε0 = 5∆, a
value already big enough so that the approximation ε0 � ∆ holds, and accord-
ingly h̄Ω = ε0 = 5∆ to reach the resonance condition (4.3) for n = 1. We note
that in the transfer-matrix formalism the whole structure, and in particular the
coupling to the leads, is affected by a change in any of its parts, and therefore the

new energy splitting differs slightly from the expected
√

∆2 + ε2
0. The actual level

splitting is used then to set the driving frequency. Additionally, and contrary to
the two-level tight-binding model, the static transmission is slightly asymmetric
around the midpoint energy.

Driving amplitude

In Fig. 4.3 we show the dependence of the pumped current as a function of the
driving amplitude Vac. The upper panel (a) shows the results when the two wells
are driven with opposite phases, as was considered above. Below the case of a sin-
gle driven well is presented for comparison. In both cases, the HFA is displayed
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Figure 4.3: (a), pump current as a function of the amplitude eVac/h̄Ω. (b), pump current

for a different driving setup (only one driven well).

as well. When scaled to the driving frequency h̄Ω, the current is suppressed at
the expected values of the quotient eVac/h̄Ω = 3.812, 7.016, 10.174, . . . , i.e. where
the Bessel function of first order J1 vanishes, since we chose n = 1 in Eq. (4.3).

We have chosen two different set of parameters in Fig. 4.3: for panel (a) the
outer and the center barriers are respectively dL,R = 3 and dC = 7 nm wide,
while the wells have been stretched to 20 nm so that dc levels lie closer in energy;
with heights of VL,R = 140 and VC = 90 meV, this yields a level splitting (without
internal bias) ∆ = 0.46 meV, and with the internal bias ε0 = 5∆ fixes the driving

49



4 Nonadiabatic pumping in heterostructures

frequency as in Eq. (4.3) to h̄Ω = 2.35 meV.

In panel (b) we have taken the structure of Fig. 3.1 (i.e. dL,R = dC = 5 nm,
well and center barrier 15 nm wide); but now, in order to achieve a better corre-
spondence between our data following the results of Fig. 3.5, with higher outer
(VL,R = 140 meV) and central (VC = 80 meV) barriers. Taking again ε0 = 5∆ gives
h̄Ω = 2.15 meV.

The agreement of the three different approaches to the calculation of the dc cur-
rent is in this case highly remarkable; the improvement achieved by the compar-
ison of transfer-matrix and tight-binding calculations of chapter 3 is here clearly
demonstrated. There are, however, some deviations from the analytical results
for the numerical transfer-matrix: the current remains positive for the numeri-
cal tight-binding and HFA calculations, while it takes negative values for higher
driving amplitudes in the transfer-matrix results. We ascribe this to the effects
of the energy-dependent coupling, not considered in the tight-binding approxi-
mation, and the contribution of higher order processes, all of which are "exactly"
taken into account in the TM description. The decrease in the pumped current
after the first minimum is, according to Stafford and Wingreen, a feature of true
photon-assisted tunnelling that distinguishes it from adiabatic electron transfer.

Driving frequency

The HFA predicts (Strass et al., 2005) maxima of the dc pumped current when
the driving frequency meets the resonance condition (4.3). Varying the frequency
of our transfer-matrix calculations we can observe how the current is enhanced
at the values h̄Ω = ε0/n, as shown in Fig. 4.4. Displayed here are results for two
particular driving amplitudes, together with the tight-binding numerical calcula-
tion for the higher driving amplitude eVac/h̄Ω = 4.

We can further check the the non-adiabaticity of the photon-assisted tunneling
processes by an exploration of the low-frequency behavior of the pumped current.
The results are shown in Fig. 4.5. The double logarithmic plot is a proof of the Ω2-
dependence of the current, clearly different from the ∝ Ω dependence expected
if pumping was adiabatic.
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Current-voltage characteristics

Working in the strongly localized regime, again for the first resonance (h̄Ω ≈
ε0 = 5∆ in our case), offers the possibility of studying the current-voltage charac-
teristics of the double-dot pump. The pump current of Fig. 4.6 displays a series
of steps of width 2h̄Ω = 10∆ as a function of the chemical potential difference
eV = µL − µR.

To explain these features, the three different situations possible are depicted in
Fig. 4.7. When eV = 0 we are in the pump configuration studied so far: current
is pumped by electrons that travel from the dc ground state on the left well to
that of the right one by absorbing one photon.

For positive voltages, the first step appears at eV = 5∆; that is, when µL =
+ε0/2, the energy where —according to Floquet theory— the left well has its
first sideband. We must remember that since we chose ε0 � ∆, the level split-
ting is in effect equal to ε0 (cf. Eq. 4.3), and this places the resonances at ±ε0/2
symmetrically around the equilibrium situation of µL = µR. When this happens
electrons can tunnel from lead L to lead R, first through the first sideband of the
left dot and, after releasing an energy quantum h̄Ω, to the sideband at −ε0/2 in
the right dot. Therefore, the dc current is enhanced by photon-assisted tunnelling.
A similar analysis can be performed for higher steps.

The reverse process takes place for eV < 0, which explains the steps at eV =
−5∆. This situation is however not completely symmetric to the one for positive
voltage, since in the heterostructure the introduction of the internal bias in the
right well has turned the whole structure, and also the static transmission prob-
ability, slightly asymmetric: now the resonant peak on the right is higher and
wider than that on the left dot, because as it lies somewhat higher in energy due
to the internal bias it effectively experiences a lower barrier.

The width of the steps, 2h̄Ω, follows from the fact that the differences of µL,R

with respect to their equilibrium value go up and down, respectively, in equal
amounts, and they cross the sideband energies at opposite values µR = −µL =
−kh̄Ω.

One could also explain these results by looking at the effective electron distri-
bution of Eq. (4.5) for the HFA. In that case, the interpretation would say that a
positive voltage allows static-like processes whenever the two distribution func-
tions differ in energy by the width of one of the steps.
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4.3 Characterization of an electron pump in the

semiclassical regime

In the practical realization of an electron pump, one is likely to be interested in
the performance of the pump as a circuit component, something which cannot
be predicted from the mere knowledge of the pump current.1 This creates the
need to characterize the electron pump as a battery with a certain electromotive
force and internal resistance. Although the electromotive force can in principle be

1The content of this section was published in an slightly different version in Rey and Sols (2004).
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Figure 4.8: Schematic representation of an electron pump in series with a generic resistor

within a closed circuit where current flows due to the action of the pump.

obtained from the dc bias that exactly cancels the pump current (Switkes et al.,
1999; Wagner and Sols, 1999), its derivation within a unified and general scheme
seems desirable. On the other hand, there is no obvious ansatz for the calculation
of the internal resistance. A potential application of this new class of devices is
the generation of current in small closed circuits not attached to broad wires
acting as electron reservoirs. Such a setup is schematically depicted in Fig. 4.8.
One may also consider a pump in series with a resistor, both within a lead that
couples to large reservoirs through ideal contacts, as indicated in Fig. 4.9.

In this section we derive formulae which express the battery parameters in
terms of the transmission and reflection probabilities for electrons crossing the
pump and the resistor. The scattering theory here presented attempts to play a
role for the electromotive force and internal resistance of an electron pump sim-
ilar to that which the Landauer-Büttiker theory has represented for the conduc-
tance of nanostructures. An important difference, however, is that the scenario
which we investigate requires a more coarse-grained description if we wish to
uniquely characterize the circuit performance of the pump in terms of a small
set of parameters. Such an effective self-averaging of the device performance re-
quires the assumption of electron decoherence (i.e. lost of all phase memory)
between the pump and the resistor in series. This prevents us from including
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4.3 Characterization of an electron pump

Figure 4.9: Electron pump in series with a scattering barrier, both within a multichannel

wire that couples through ideal contacts to large electron reservoirs. Both the action

of the pump and the difference between the reservoir chemical potentials contribute

to drive the current through the wire.

small quantum corrections such as deviations from Ohm’s law considered, in
adiabatic pumps, in Polianski and Brouwer (2001), and therefore takes our theory
into the realm of semiclassical approximations for quantum transport. It might
seem a bit odd to obviate quantum effects when pumping as considered here
is precisely achieved by another manifestation of the quantum theory. However,
unlike Büttiker (1986), we assume that effective phase randomization outside the
electron-photon interaction region can be achieved with negligible backscattering.
This hypothesis is supported by the fact that a minor distortion of the environ-
ment suffices to induce electron dephasing, while a more continued interaction is
needed to change the electron energy or direction appreciably (Stern et al., 1990).
We find that reflectionless decoherence between the circuit elements is still insuf-
ficient to permit the characterization in terms of only two parameters, and not
twice as many as available transverse channels. To achieve a simple and manage-
able description we must assume that, within the leads, electrons moving in each
direction are characterized by a single chemical potential. The adequacy of this
assumption, or its replacement by a weaker one within a model of comparable
tractability, deserves further study.

For the analysis presented in this Section we will modify slightly the notation
used so far. The total current through a two-lead multimode structure in the
presence of local ac driving will be written as

I =
e
h

∫
dEi[ f (Ei − µin

R )TLR(Ei)− f (Ei − µin
L )TRL(Ei)] (4.6)
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with
TLR(Ei) ≡ ∑

a∈L
∑
b∈R

∫
dEfTLR

ab (Ef, Ei) . (4.7)

TLR
ab (Ef, Ei) represents the probability distribution that an electron incident from

the right lead in channel b with energy Ei is transmitted into channel a of the
left lead with energy Ef. For future convenience, we assume I > 0 when current
flows from right to left. The chemical potentials µin

L , µin
R characterize the popula-

tion of incoming electrons. These scattering probabilities and chemical potentials
include the effective potential which may result from self-consistent dynamic
screening (see e.g. Moskalets and Büttiker, 2004), an effect yet to be explored for
strictly local pumps.

The pump effect is based on the existence of an asymmetry between the left-
to-right and right-to-left transmissions. Thus it is convenient to define:

T(Ei) ≡ [TLR(Ei) + TRL(Ei)]/2 (4.8)

δT(Ei) ≡ TLR(Ei)− TRL(Ei) . (4.9)

If we linearize f (E − µin
L,R) around a common reference chemical potential µ0,

we may write the total current of Eq. (4.6) as the sum of a bias and a pump
contribution (Pedersen and Büttiker, 1998)

I = IB + IP (4.10)

IB ≡ e
h

∆µin
∫

dEi[− f ′(Ei − µ0)]T(Ei) (4.11)

IP ≡ e
h

∫
dEi f (Ei − µ0)δT(Ei) , (4.12)

with ∆µin ≡ µin
R − µin

L . Hereafter, we take µ0 ≡ 0, although we note that IP, unlike
IB, does in general depend on µ0.

Let us focus on the current flow in a given channel a on e.g. lead L. For con-
venience, we define Ĩα ≡ (h/e)Iα for all future current contributions. To achieve
a better perspective, we momentarily abandon the assumption that the chemical
potential is channel independent. The total current through channel a ∈ L can
then be written:

Ĩa = −µin
a + µout

a , (4.13)

where µin
a and µout

a characterize the population of electrons in L approaching
and leaving the pump. We note that even if the in population is rigorously ther-
mal, and it can therefore be characterized by a single chemical potential, the out
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4.3 Characterization of an electron pump

population is generally not. However, one can always find a suitably defined
chemical chemical potential µout

a that reproduces the same current flow (and, in
one dimension, the same current density, see Sols and Sánchez-Cañizares, 1999).
Like the total current, this outgoing chemical potential has a “bias” and a “pump”
contribution,

µout
a = µout,B

a + µout,P
a (4.14)

µout,B
a = ∑

b
Sabµin

b (4.15)

µout,P
a = ĨP,a . (4.16)

Here, ĨP,a is the pump current in channel a (∑a ĨP,a = ĨP). Since the bias contri-
bution depends only on the symmetrized probability (cf. Eq. 4.8), the scattering
matrix satisfies the relation Sab = Sba. On the other hand, unitarity conditions
requires ∑b Sab = 1. The term µout,P

a accounts for the excess (or defect) of elec-
trons generated by the pump. It reflects the fact that an operating battery creates
a population imbalance which ultimately drives the current through the circuit.

4.3.1 Closed circuit configuration

Assume that, in series with the pump, we introduce a resistor which is also char-
acterized in terms of its scattering probabilities. The resulting circuit is schemati-
cally depicted in Fig. 4.8. As the resistor is a passive element, its flow equations
do not include a pump term. We write

Ĩa = min
a −∑

b
σabmin

b ≡ min
a −mout

a , (4.17)

where min, mout
a are the chemical potential for the electrons approaching and leav-

ing the resistor, and {σab} are the scattering probabilities by the resistor, which
obey σab = σba and ∑a σab = 1. The sign convention in Eq. (4.17) is different from
that used in the pump equations because counterclockwise current is taken to be
positive (see Fig. 4.8. Now we note that the out population of the pump is the in
population of the resistor, and viceversa. We seal this equivalence by establishing
a common notation. For a ∈ L we write

µin
a = mout

a ≡ µ↑L,a (4.18)

µout
a = min

a ≡ µ↓L,a, (4.19)
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and similarly for a ∈ R. The vertical arrows refer to the direction of movement
within the convention of Fig. 4.8.

Although a solution of the flow equations that would permit us to predict the
total current in terms of {IP,a, Sab, σab} is formally possible, our real goal is the
characterization of the pump in terms of two parameters. To achieve this, we
have to introduce the simplifying assumption that electrons flowing in a given
direction within a lead are all characterized by the same chemical potential. We
express it as

µ↑↓L,a = µ↑↓L µ↑↓R,a = µ↑↓R ∀a ∈ L, R. (4.20)

Hereafter we differentiate between reflection and transmission probabilities:

Sab → Rab, Tab σab → ρab, τab. (4.21)

We further introduce the notation

Ra ≡ ∑
b

Rab Ta ≡ ∑
b

Tab (Ra + Ta = 1) , (4.22)

R ≡ ∑
a

Ra T ≡ ∑
a

Ta (R + T = N) , (4.23)

where N is the number of transverse channels. The resistor parameters ρa, τa, ρ, τ

are defined analogously. We introduce an average pump chemical potential

µP ≡ ∑
a

µout,P
a /N = ĨP/N (4.24)

so that the total current can now be written

Ĩ = N(µ↓L − µ↑L) = N(µ↑R − µ↓R) . (4.25)

These four chemical potential are not independent but are rather related by
the flow equations

Nµ↓L = Rµ↑L + Tµ↑R + NµR ,

Nµ↑L = ρµ↓L + τµ↓R ,

Nµ↓R = Tµ↑L + Rµ↑R − NµP ,

Nµ↑R = τµ↓L + ρµ↓R . (4.26)

which are physically transparent. The different signs carried by the pump con-
tribution NµP in two of the equations above express the fact that, when µP > 0,
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4.3 Characterization of an electron pump

there is an excess of outgoing electrons on the left of the pump and a correspond-
ing defect of outgoing electrons on the right. When Eqs. (4.26) are introduced into
Eq. (4.25), we obtain for the total current

Ĩ = −T∆µ↑ + NµP ; (4.27)

= τ∆µ↓ , (4.28)

where the chemical potential differences ∆µ↑↓ ≡ µ↑↓L − µ↑↓R satisfy

N∆µ↓ = (R− T)∆µ↑ + 2NµP ; (4.29)

N∆µ↑ = (ρ− τ)∆µ↓ . (4.30)

We may solve now for ∆µ↑↓ in Eqs. (4.29) and (4.30) and introduce the solutions
in either (4.27) or (4.28) to obtain

Ĩ =
(N/T)IP

ρ/τ + R/T
. (4.31)

Calculating the electromotive force Vemf and the internal resistance Ri amounts
to finding a relation

I =
Vemf

R+Ri
, (4.32)

where R is a suitably defined resistance for the resistor. Comparison of Eqs. (4.31)
and (4.32) uniquely leads to the result

Vemf =
h
e2

IP

T
(4.33)

Ri =
h

Ne2
R
T

, (4.34)

provided that

R =
h

Ne2
ρ

τ
. (4.35)

The prefactors have been chosen to make Vemf an intensive quantity, while the
resistances R,Ri vary as ∼ N−1 for N → ∞.

Application to the pipeline model We may apply these results for to the analyt-
ically solvable pipeline model, which assumes that transmission takes place only
within a single pair of channels (Wagner and Sols, 1999). This can be expressed
as:

TLR
ab (Ef, Ei) = Jδabδ(Ez

f − E2)δ(Ez
i − E1) . (4.36)
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Here, Ez
α (α = i, f) is the energy in the direction perpendicular to the planar struc-

ture and (E2− E1)/h̄ = ω > 0 is the driving frequency. The other scattering prob-
abilities are determined by time-reversal symmetry in the presence of coherent
ac driving (TRL

ab (E′, E) = TLR
ba (E, E′)) and unitarity. For three dimensions, the sin-

gle pipeline model yields T = DJ, where D = Am/2πh̄2 is the two-dimensional
transverse density of states, and A is the interface area. Preservation of unitarity
requires DJ < N. The total pump current is

IP = eDJΩ/2π , (4.37)

so we interpret eDJ as the pumped charge per cycle. For the circuit parameters
we obtain

Vemf = h̄ω/e ; (4.38)

Ri =
h

Ne2
N − DJ

DJ
. (4.39)

The result that the electromotive force is just h̄Ω/e, independently of the trans-
mittivity J, is remarkable if one looks at the structure of the Eqs. (4.12), (4.22),
(4.23) and (4.33), but could have been expected from the notion that the pipeline
model allows only for an energy gain h̄Ω as the electron is pumped from right to
left, regardless of the total electron flow. We readily conclude that, in a more gen-
eral pump structure, Vemf ∼ h̄Ω/e, in agreement with Switkes et al. (1999) and
Wagner and Sols (1999). By contrast, the internal resistance is very sensitive to
the transmittivity of the pump. In particular, we note that Ri → ∞ when J → 0.

4.3.2 Open circuit configuration

We now turn our attention to an open setup where the pump and resistor stay in
series within a lead coupled through ideal contacts to broad electron reservoirs.
As indicated in Fig. 4.9, the chemical potentials in the reservoirs characterize the
population of the incoming electrons. Hence, we refer to them also as µin

L,R. One
may perform an analysis similar to that described for the closed geometry of
Fig. 4.8. After some algebra, one obtains

I = (e/h)T′(eVemf + ∆µin) , (4.40)

where Vemf is given by Eq. (4.33), and

T′ ≡ Tτ/N
1− Rρ/N2 (4.41)
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is the the average transmission through the compound structure formed by the
pump plus the resistor.

Interestingly, Eq. (4.40) can also be written as

I =
Vemf + ∆µin/e

(h/Ne2) +R+Ri
, (4.42)

where the resistances R and Ri are given by Eqs. (4.35) and (4.34), respectively.
Thus we see that, in an open geometry, the pump electromotive force adds to
the voltage bias generated by the potential difference between the two electron
reservoirs. This confirms the intuitive expectation that Vemf can be obtained from
the the voltage difference ∆µin needed to cancel the pump current (Switkes et al.,
1999; Wagner and Sols, 1999).

A striking difference between Eqs. (4.32) and (4.42) is the role of the contact
resistance h/Ne2, which is absent in the case of a closed structure. Comparison
of the underlying models suggests that the contact resistance disappears under
the assumption that the flow of outgoing electrons on the left of the resistor-
pump structure of the open circuit setup is identified with the flow of incoming
electrons from the right, and equivalently for electrons moving in the opposite
direction. We conclude that, within a closed circuit of uniform width, there is
no natural lower limit to the resistance that the electron current must face as it
is generated by the electron pump. This result appears reasonable if one notes
that contact resistances along the circuit are generated by narrow-wide contacts
where the width of the wire (and thus the number of available electron channels)
changes (Imry, 1997), a feature which doesn’t apply to the open configuration.2

The denominators of Eqs. (4.32) and (4.42) suggest that the resistances which
we have introduced should be additive. Unfortunately, the ratios R/T and ρ/τ

cannot be guaranteed to be additive in general. That is possible only in one di-
mension, where the ration R/T is known to be additive for barriers compounded
incoherently (Datta, 1995) or, for multichannel wires, in the particular case where
the scattering probabilities are independent of the channel index (Rab = R/N2,

2This question is directly related to the famous two- vs. four-terminal conductance dispute of
section 2.1. It has been experimentally —and definitely— answered by de Picciotto et al. (2001)
in recent times: it is the contacts who give a ballistic wire its resistance, and this vanishes
when the current enters and leaves the sample through two terminals different from the ones
through which the voltage drop is measured.
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Tab = T/N2, and similarly for ρab, τab). In such a case, the assumption of a com-
mon chemical potential for all incoming electrons (µin

a = µin
L,R for all a ∈ L, R)

automatically guarantees an outgoing population with a common chemical for
all outgoing electrons (µout

b = µout
L,R for any b ∈ L, R). Within that scheme, the

assumption of a common chemical potential for all electrons moving in a given
direction [see Eq. 4.20] is internally consistent in the sense that a scenario may be
conceived where the outgoing population from a barrier or pump is guaranteed
to be a suitable incoming population for the following obstacle. Interestingly, it
is also in the channel-independent scattering limit where the resistance defined
by Büttiker et al. (1985),

R ≡ G−1 =
πh̄
e2

(
∑

i
Ti

)−1
∑i(1 + Ri − Ti)v−1

i

2 ∑i v−1
i

(4.43)

becomes additive and equivalent to the resistance defined in Eq. (4.35).
On closer inspection, one realizes that the assumption of channel independent

scattering is hard to justify within an independent electron picture, where no
naturally additive resistance can be defined for multichannel wires without in-
voking impurity averaging. In particular, such a hypothesis is not satisfied by
the pipeline model invoked above, since its transmission depends on the perpen-
dicular energy. We conclude that the question of the definition of an electron
pump internal resistance is directly connected to the discussion on the additivity
of resistances in multichannel wires. As long as this fundamental issue is not
satisfactorily resolved, the transport equations (4.32) and (4.42), together with
Eqs. (4.26), which we have derived, will have to be viewed as approximations
obtained from a reasonable and appealing scheme.
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5.1 Introduction

It is a well-known fact that the flow of charge carriers is accompanied by the
transfer of energy. The development of a temperature difference when a current
is driven through a metal, named the Seebeck effect after its discoverer, and its
inverse, the appearance of a voltage difference when a temperature gradient is
maintained between its extremes, or Peltier effect, are based on this fact. Since
their discovery in the 19th century it has led to many technological applications,
from thermocouples to thermal diodes and thermoelectric generators. They have
also contributed to the understanding of the properties of the solid state. The
ongoing miniaturization of electronic devices has opened a new field for the
study of the interplay of thermal and electric effects, since in small systems the
currents which heat up the structure can damage the performance of the device
and must therefore be taken into account.

In this chapter we describe how the dc current between two unbiased leads
could be used to pump heat from one reservoir to the other by means of a driven
asymmetric semiconductor heterostructure. We first discuss the definition of heat
production for ac driven systems and, subsequently, show how to derive the cor-
rect formula by extending the Floquet-Green scattering formalism of section 2.3.3.
This gives a sound basis to the counting arguments of energy balance between the
reservoirs. In this derivation the role of phonons is not taken into account. We
assume that the thermal conductivity of the lattice is much smaller than elec-
tronic thermal conductivity, a result that usually holds for moderately doped
semiconductors at sufficiently low temperatures (Mahan et al., 1997).

It is also discussed how an appropriate choice of parameters can yield a nega-
tive heat production, i.e. a cooling of one of the reservoirs. This is in itself not such
a novel idea in view of traditional thermoelectric effect. The novelty of our calcu-
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lations is that the ac driving can be used to select the sign of the heat production
and, most importantly, that cooling can be achieved in conditions of no net flow
of electrons between the leads. The idea is to replace hot electrons, i.e. electrons
with an energy above the chemical potential of the lead, with cold electrons from
the other lead of the structure. We implement the resulting expressions with the
transfer-matrix method to perform numerical calculations.

5.2 General remarks on heat transfer

Classical thermodynamics describes the production of heat due to a change in
internal energy and particle number (volume is assumed to be fixed) as

dQ = TdS = dU − µdN . (5.1)

In a semiconductor structure, heat is produced by the exchange of carriers. Thus,
entropy is increased when electrons arrive at states above the chemical potential
µ, or leave states below µ. Conversely, entropy is reduced when hot electrons (i.e.
with energy above µ) leave, or cold electrons arrive.

In solids, the first estimates of thermal currents were calculated with the Drude
theory for conduction in metals. It successfully accounted for the ratio of thermal
to electrical conductivity, κ/σ (the empirical Wiedemann-Franz law), but esti-
mated in about two orders of magnitudde the thermopower or coefficient of the
thermoelectric (Seebeck) effect.

Semiclassical band-theories of conduction removed many of the inconsisten-
cies of the Drude model (see e.g. Ashcroft and Mermin, 1976). Electrical and
energy currents are expressed by averages over the distribution of the electrons,
weighted respectively by the charge (−e) or the energy transported per electron
(ε−µ). Assuming a linear relation between the currents J and the forces X that cre-
ate them (electric fields, and temperature or chemical potential gradients) of the
form Ji = ∑j Z

(ij)Xj, all electrical and thermal conductivities and thermoelectric
coefficients can be found with the coefficients Z(ij).
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5.3 Some thermodynamic identities

Considering cooling from a purely thermodynamical point of view offers some
insight on the physical process involved. We consider a noninteracting gas of
Fermi particles with well defined chemical potential. Our goal is to calculate the
variations of entropy and temperature of the system when it exchanges particles
with another reservoir. We note here some useful thermodynamical relations.
First, we note (

∂U
∂N

)
T

= µ + T
(

∂S
∂N

)
T

= µ− T
(

∂µ

∂T

)
n

, (5.2)

where n ≡ N/V is the particle density and Maxwell relations have been used.
Now, noting the cyclic property(

∂T
∂N

)
U

= −
(

∂T
∂U

)
N

(
∂U
∂N

)
T

, (5.3)

we may write (
∂T
∂N

)
U

=
1

Cv

[
µ− T

(
∂µ

∂T

)
n

]
. (5.4)

where (∂T/∂U)N = 1/Cv is the inverse of the volume heat capacity. Thus we can
write the temperature variation in the form

dT =
(

∂T
∂U

)
N

dU +
(

∂T
∂N

)
U

dN

=
1

Cv

{
dU −

[
µ− T

(
∂µ

∂T

)
n

]
dN
}

.
(5.5)

For a noninteracting gas we can assume dU = εdN, where ε is the energy of the
electron state involved in a given elementary process. Thus, Eq. (5.5) becomes

dT =
1

Cv

[
ε− µ + T

(
∂µ

∂T

)
n

]
dN , (5.6)

or
dT =

1
Cv

[ε− σ(T)]dN with σ(T) ≡ µ(T)− T
(

∂µ

∂T

)
n

. (5.7)

The meaning of this new quantity σ(T) can be elucidated by the direct compari-
son of the entropy and temperature variations, namely

dS =
ε− µ(T)

T
dN vs. dT =

ε− σ(T)
Cv

dN . (5.8)
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5 ac-cooling of nanoscale conductors

This shows that entropy and temperature variations are not necessarily proportional to
each other. From the low-temperature Sommerfeld expansion of µ(T),

µ(T) = εF −
π2

12
(kBT)2

εF
(5.9)

so that

σ(T) = εF +
π2

12
(kBT)2

εF
, (5.10)

The fact that µ(T) < σ(T) suggests that an arriving electron increases entropy
more easily than temperature.

For convenience we refer to a given scattering process by the generic name λ.
Summing over all scattering process, we can write Eq. (5.8) as

∂S
∂t

= ∑
λ

ελ − µ(T)
Cv

∆NλΓλ

∂T
∂t

= ∑
λ

ελ − σ(T)
T

∆NλΓλ .
(5.11)

where Γλ is the probability per unit time that a certain scattering process takes
place, and ∆Nλ = ±1 is the number variation in the electrode under considera-
tion. For systems of charged carriers, particle accumulation in a given electrode
is undesirable because of the high energy of Coulomb repulsion. For such sys-
tems, the most interesting situation is that of Ṅ = ∑λ ∆NλΓλ = 0. In this case
we can identify entropy increase with temperature increase provided a proper
summation over all scattering processes is performed. Thus, if electrons leave the
system at energies above the chemical potential and are replaced by electrons be-
low it, one can effectively cool the system at zero net electrical current. We base
our cooling proposal on this idea.

5.4 Cooling in mesoscopic systems

The cooling of systems by means of electrical currents has been used in a number
of recent experimental proposals (Manninen et al., 1999; Clark et al., 2005). We
emphasize that in general all these approaches have treated the case of cooling
by transfer of heat from the hot to the cold part of the system. This is in high
contrast to the idea of heat pumping, or transfer of heat against a temperature
difference, which we will find in ac driven nanostructures.
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5.4 Cooling in mesoscopic systems

5.4.1 Experiments

Many details about the present state of cooling through phonon transport can be
found in the recent review of Cahill et al. (2003). Phonons are the main subject of
interest because in insulators it represents the most important contribution to the
heat conductivity. Usually this research is motivated by the increasing interest in
the dissipation of heat in field-effect transistors, required by the miniaturization
of the devices.

Solid-state microscopic refrigerators built on junctions of a normal metal and
a superconductor with an insulator spacer, have been investigated recently (Man-
ninen et al., 1999; Clark et al., 2005). A bulk system is cooled by the emission
of hot electrons to a superconductor. The absence of free states below the su-
perconductor gap prevents cold electrons (i.e. below the chemical potential) to
leave the metal, resulting in an overall cooling. These systems offer interesting
prospects for cooling at very low temperatures (in the sub-Kelvin range), and
at moderate cooling powers (∼ 1 − 100 pW), two requirements that have to be
fulfilled for possible applications: analytical instruments for radiation detectors,
sensitive low-temperature detectors, and refrigerators (see Pekola, 2005; Giazotto
et al., 2006, for details).

5.4.2 Theory

Heat transfer theories in mesoscopic systems have been centered in the calcula-
tion of the coefficient of performance in molecular heat pumps (Segal and Nitzan,
2006) and classical ratchets (Parrondo and de Cisneros, 2002), while the interest in
semiconductor quantum dots has been generally put on obtaining the transport
coefficients, either using a scattering formalism (Sivan and Imry, 1986; Guttman
et al., 1995, 1996) or a rate equation approach for a dot in the Coulomb blockade
(Beenakker and Staring, 1992). The formulation of Sivan and Imry shows that the
formula for heat transfer is a natural generalization of the Landauer idea, and
can be derived from general thermodynamical and scattering arguments. They
find that the energy U transferred by electrons is

U = θ JS =
1
h

∫ ∞

0
dε

N

∑
i=1

Ti(ε− εT
i )(ε− µ)× [ fL(ε)− fR(ε)] , (5.12)
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where θ is the temperature and JS the entropy current. This formula resembles
Landauer’s Eq. (2.3), but the charge −e has been substituted by the energy carried
by each electron, i.e. (ε− µ).

The link between classical heat transfer expressions and a scattering formalism
for phonons has been provided by Blencowe (2004).1

5.5 Heat production in the presence of ac driving

The introduction of an ac signal changes the static picture that has been common
to all theoretical and experimental research on heat transfer so far. When, in ad-
dition to chemical potential or temperature imbalances, an external source of en-
ergy is present in the system, the production of heat is affected as happened with
the electrical current in the previous chapters of this work. Prior to us, work has
been done on the adiabatic transfer of electrons against a negative temperature
in an adiabatically driven quantum well (Humphrey et al., 2002). The motivation
behind is the search of quantum engines with efficiencies as close as possible to
those predicted by Carnot. A possible implementation of this scheme is an adi-
abatically driven quantum well coupled to two leads at different temperatures,
which can be analyzed with the scattering formulas of Sivan and Imry (1986) of
above. We describe our proposal for achieving a similar effect with a driving that
operates in the opposite limit of high frequencies. These formulas will be the
basis of the numerical calculations presented in section 5.6.

5.5.1 Finite frequencies

Adiabatic heat transfer mechanism is by its construction restricted to very slow
heat pumping. It neither can make any statement about the general case of finite
driving frequencies. In the following we show how to define the heat production2

1The naturally arising issue of whether heat transport is quantized; i.e. whether a quantum of
thermal conductance exists, analogously to the quantum of electrical conductance, was elu-
cidated in recent experiment by Schwab et al. (2000), who found the thermal current in a
quantum electromechanical system (suspended insulating nanowires) at very low tempera-
tures T to be quantized in units of π2k2

BT/3h. Since these data were taken on insulating Si,
this value refers to the quantum of phonon thermal conduction.

2We avoid such terms as entropy or heat current as a given microscopic electron transfer process
induces different entropy changes in the exit and arrival leads.
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5.5 Heat production in the presence of ac driving

in the leads when a (dc) electron current flows in the presence of an ac potential
far from the adiabatic limit. The notation we will adopt here is as follows: the
heat produced in lead ` = L, R is

Q̇` = ∑
q

(εq − µ`)ṅ`q = ∑
q

εqṅ`q −
µ`

e
I (5.13)

= Ė` − µ`Ṅ` . (5.14)

Here, Ė` represents the energy current and Ṅ` the particle current. In this for-
mula, the energy transfer processes are referred to the corresponding local che-
mical potential.

In the first place we present here a derivation of the heat production formulas
in a scattering, Landauer-like formalism. Our counting arguments of considering
the various processes that take place here and writing the respective contribu-
tions to the total energy balance are then derived within a Green function ap-
proach, as it is done for the electrical current (see section 2.3.3).

There are three different processes contributing to the energy transfer which
have to be included in the total Ė` formula: the electrons leaving and arriving to
the lead, and the electrons reflected which do not actually traverse the structure,
but which do exchange one or more energy quanta with the ac driving and there-
fore must be explicitly considered. For convenience we consider in the following
the right lead only:

• Electrons transmitted R → L: they leave lead R with energy ε before they
interact with the driving. Their contribution to the total energy balance,
−∑k εT(k)

LR (ε) fR(ε), is independent of sideband index k.

• Electrons transmitted L → R: these leave lead L with an initial energy ε,
but reach lead R with ε + kh̄Ω. This time the term does depend on index k:
(ε + kh̄Ω)T(k)

RL (ε) fL(ε).

• Reflected electrons R → R: they start with energy ε but, scattered by the
driven structure, go back to lead R with ε + kh̄Ω, so that their total contri-
bution is just proportional to the energy difference kh̄Ω; the corresponding
energy term is therefore kh̄ΩR(k)

RR(ε) fR(ε).
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The total energy balance is then written as

ĖR =
1
h ∑

k

∫
dε[− εT(k)

LR (ε) fR(ε) + (ε + kh̄Ω)T(k)
RL (ε) fL(ε)

+ kh̄ΩR(k)
RR(ε) fR(ε)] .

On the other hand, only transmission processes contribute to a change in the
particle number in the leads; therefore,

ṄR =
1
h ∑

k

∫
dε[T(k)

RL (ε) fL(ε)− T(k)
LR (ε) fR(ε)] . (5.15)

Thus, the total heat production in lead R is

Q̇R =
1
h ∑

k

∫
dε[(µR − ε)T(k)

LR (ε) fR(ε) + kh̄ΩR(k)
RR(ε) fR(ε)

+(ε + kh̄Ω− µR)T(k)
RL (ε) fL(ε)] . (5.16)

A similar expression (exchanging L and R) can be derived analogously for Q̇L.
Starting from the definition of the energy current as Ė = 〈εṄ(ε)〉, the tight-

binding method described in section 2.3.3 for the calculation of the electrical
current offers a way to properly derive the terms of the equation above. In doing
so, one obtains first an expression for the time-dependent electrical current:

Ė = 〈εṄ(ε)〉 = ĖR←L + ĖR←R (5.17)

(the R→ L seems to be included by hand) and writes the different terms with the
creation and destruction operators of the leads and the system. It is convenient
here to introduce the system’s Green function

G(t, t′) = − i
h̄

U(t, t′)Θ(t− t′) (5.18)

as an alternative way of describing the time evolution of the system. U(t, t′) is the
evolution operator and Θ(t− t′) represents the step function.3 Their importance,
as mentioned in section 2.3.3, lies in that with them one can formally solve the
Heisenberg equations of motion for the creation and destruction operators in the

3The application of Green function theory to transport problems can be found in Jauho et al.
(1994). Details for ac driven systems are described in Kohler et al. (2005). A tight-binding
approach to pumps has been recently published (see Arrachea, 2005).
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quantum wells and, subsequently, obtain the time-average of the current operator.
This results for the electrical current in the equivalent of the Landauer formula
for ac driven systems. To do this, the following correspondence between Green
functions and transmission probabilities is used:

T(k)
LR (ε) = ΓLΓR|G

(k)
1N(ε)|2 . (5.19)

Here, ΓL,R are the wide-band limit coupling with the leads and G(k)
1N(ε) is the k-

component of the Fourier-transformed Green function. We use here this formal-
ism for heat production. One proceeds by writing e.g. the term corresponding to
ĖR←L in Eq. 5.17 with the Green functions,

ĖR←L =
1

2πh̄2

∫
dεΓL(ε)ε

∫ ∞

0
dτe−iετ/h̄

1
(2π)2 ×∑

`

∫
dε′eiε′t/h̄e−iε′(t−τ)/h̄G∗

1`(t, ε′)G1`(t− τ, ε′)

× 2πΓ̀ (ε′) f`(ε′) + [H. c.]

(5.20)

and, using the Fourier transform of G1`(t, ε′), eliminates one of the energy in-
tegrals in favour of a sum over Fourier coefficients k. Then, after performing a
time-average, this equation takes the simplified form

ĖR←L =
1
h ∑

`k

∫
dε(ε + kh̄Ω)ΓL(ε + kh̄Ω)|G(k)

1` (ε)|2Γ̀ (ε) f`(ε) (5.21)

Now, with G(k)
1` (ε) interpreted in terms of transmission probability as above, we

finally obtain

ĖR←L =
1
h ∑

`k

∫
dε(ε + kh̄Ω)T(k)

L` (ε) f`(ε) . (5.22)

A similar analysis can be performed with the rest of the contributions to the total
energy balance to justify Eq. (5.15).

5.5.2 Fundamental limits to cooling: per degree of freedom

(acting on volume)

In a thermodynamic system, the quantity Cv/kB is a good measure of the "active"
degrees of freedom, i.e. of those dynamic variables whose characteristic lowest
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5 ac-cooling of nanoscale conductors

energy scale is lower than kBT. Here we estimate the maximum rate at which we
can extract heat from a given degree of freedom. Such an extraction will result
from many elementary processes. The maximum energy we can expect to extract
in each of those elementary processes is of order kBT. On the other hand, the rate
must be lower than kBT/h̄, since otherwise we may heat up the system because
of Heisenberg’s uncertainty principle. This yields

k2
BT2

h̄
(5.23)

as the order of magnitude of the maximum rate at which we can cool a given
degree of freedom. Summing over all active degrees of freedom, we find for the
rate of internal energy variation

dU
dt

' −Cv

kB

k2
BT2

h̄
. (5.24)

On the other hand, the temperature variation is

dT
dt

=
1

Cv

dU
dt

. (5.25)

From these equations we conclude∣∣∣∣dT
dt

∣∣∣∣
max

'
k2

BT2

h̄
(5.26)

and, therefore,

T(t) ≥ T(0)
1 + (k2

B/h)T(0)t
(5.27)

for any cooling process starting from T = T(0).

5.5.3 Fundamental limits to cooling: per outgoing channel

(acting on surface)

We can give here an estimate of the maximum cooling rate that can be attained in
a mesoscopic structure. This occurs for a perfectly transmitting interface between
the R electrode and the zero-temperature L electrode. Roughly, the heat produced
in e.g. lead R is

Q̇R =
1

πh̄

∫ +∞

−∞
dε ε[ fL(ε)(ε− µR) + fR(ε)(µR − ε)]

=
1

πh̄

∫ +∞

−∞
dε (ε− µR)[ fL(ε)− fR(ε)] = −2

1
πh̄

∫ ∞

0
dε ε fR(ε) .

(5.28)
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In the last equation, we have taken µL,R = 0, and used the fact that fL(ε) is a step
function. The change of variables ε/kBT = x yields

Q̇R = − 2
πh̄

k2
BT2

∫ ∞

0
dx

x
ex + 1

=
π2

3
k2

BT2

h
(5.29)

where we have used the definite integral
∫ ∞

0 dx x/(ex + 1) = π2/12. This sug-
gests

|Q̇R|max = −π2

3
k2

BT2

h
(5.30)

as an upper limit to the cooling rate per outgoing channel. We wish to note
that Eq. (5.30) has different prefactors from those which would be obtained from
replacing ∆T by T in the quantum of thermal conductance.

5.6 Heat production in a double-well heterostructure

The theory developed in the preceding sections of this chapter will now be ap-
plied for the calculation of heat production in semiconductor heterostructures.
Here we propose a double-well structure which, if properly tuned, shows the
remarkable feature of pumping heat from the right lead by emitting hot electrons
(i.e. above the chemical potential) while absorbing cold electrons from lead L, in
the absence of a chemical potential or even temperature bias between the leads. It
is of particular importance the possibility of extracting heat against a temperature
bias, i.e. pumping heat from the cold to the hot electron reservoir.

5.6.1 Structure of the double-well

To achieve this cooling effect we need at least the four-level structure depicted in
Fig. 5.1. These resonant levels (ordered by increasing energy) E1L, E1R, E2R and
E2L, originate from two different quantum wells placed between tunnel barri-
ers, neglecting for transport calculations all higher-lying states in each well. The
structure is designed as follows: the two levels of the wider well on the right can
be placed symmetrically in the energy axis between the other two levels, which
are correspondingly more separated if the left well is narrower, by introducing
an internal bias ε0 that shifts the levels to higher energies. Left and right chemical
potentials of the leads are then placed halfway between the four levels, and an ac
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µL,R = µ

VL = VR VC

E2R

E1R

E2L

E1L

ε0

Figure 5.1: Asymmetric double-well heterostructure used for heat production calcula-

tions. Energy levels are symmetrically placed around the equal Fermi levels of the

leads. See text for further details.

gate voltage is applied to the structure in the same way as in the electron pump
of chapter 4. Now, we choose the driving frequency to be as close as possible to
the energy difference between the two highest levels, that is, h̄Ω ≈ E2L − E2R,
which ideally corresponds to E1R − E1L.

Thus we try to favor the following processes (see Fig. 5.2): first, electrons in lead
R can tunnel through the right barrier to E2R and then absorb one photon to hop
to E2L. These electrons leave the structure through the left barrier and reach lead
L, thus producing a current. At the same time, electrons in lead L can follow a
similar process and travel from left to right through the levels E1L and E1R. These
two contributions have the effect of taking away electrons above the chemical
potential µR in the direction R→L, while replacing them by electrons below µR

stemming from the left lead. We are effectively replacing hot electrons (above µR)
by cold electrons (below µR), i.e. we are cooling the R electrode. Importantly, this
transmission-induced cooling must overcome the reflection term in Eq. (5.16).

On the other hand, we expect cooling to be more efficient at low driving ampli-
tudes. We explore this regime since this allows for a a fine control of the relevant
inelastic processes. For low amplitudes, the term k = 1 will dominate over higher
order processes, which might transfer electrons to higher energies contributing
to spoil the cooling effect.

As a further requirement, temperature must be carefully chosen. Too low tem-
peratures would leave the states at energies around E2R completely empty, so
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µL,R = µ

2k
B
T

+ h̄Ω

+ h̄Ω

Figure 5.2: Dominant transmission processes to cool lead R: hot electrons in the low-

populated states up to ∼ kBT above µ leave lead R, and are replaced by cold electrons

from lead L, stemming from highly occupied states at energies as much as ∼ kBT
below µ. It is assumed that TL = TR = T.

there would be very few electrons to be transferred to lead L. By contrast, too
high temperatures (assuming µL,R = (E2R + E1R)/2) would have the opposite
effect of too high occupation of E2L. The electron current from L to R would
prevent any efficient cooling. The optimal temperature for cooling of lead R is
therefore expected for temperatures such that E2L − E2R ≈ 2kBT. This intuition is
confirmed by both the numerical results and an analytical model.

The structure was developed by surveying the dc transmission probabilities,
calculated via transfer-matrices, of the separate wells without internal bias. This
is shown in panel (a) of Fig. 5.3. In this situation we can ascribe each of the res-
onances to either of the wells. The two wells are then coupled through a central
barrier. The full T(E) curve (gray dashed in panel (b) of the same figure) was
then finely tuned to arrive at the solid blue curve, which displays a four level
structure symmetrically placed around E ∼ 6.03 meV. There is a further level
at E ∼ 2 meV, about ∼ 0.2 meV below the one we actually consider, but if the
frequency is properly tuned with E2L − E2R so that it differs from it by less than
the level width, then we expect its contribution to transport to be negligible. We
emphasize here that this modelling is realistic in that it does not neglect other res-
onances present in the structure. This makes our transfer matrix approach more
reliable for numerical results than a tight-binding calculation where the number
and position of the levels can be adjusted at will.

Our assumptions on the relevance of the k = 1 process is checked in Fig. 5.4.
Here we show the transmission probability at a finite value of the driving ampli-
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Figure 5.3: dc transmission probability as a function of energy. Upper panel (a) shows

T(E) of the separate wells (depicted in the inset), while lower panel (b), with the

corresponding inset, displays the transmission of the full double-well structure. See

text for some comments.

tude. Left-right and right-left transmissions are no longer equal because of the
ac driving. A peak appears in e.g. R→L transmission for E ∼ E2R, indicating that
there is a strong resonance for the E → E + h̄Ω process. The same analysis can
be performed with the rest of the peaks.

For our calculations we have chosen two wells 40 and 80 nm wide, respectively,
coupled through 4 nm barriers of 60 meV to the leads and with a central barrier 5
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Figure 5.4: ac transmission probability of the structure of Fig. 5.1 for eVac = 0.4 meV.

Peaks correspond to the L→R and R→L processes relevant for heat transport calcu-

lations.

nm wide and 30 meV high. The levels of the right well fall symmetrically between
those of the left one for ε0 = 1.5 meV, as shown in Fig. 5.3. The dc transmission
probability thus obtained is still highly asymmetric, in the sense that peaks are
of different heights and widths; but this, hard to avoid in practice, does not spoil
the numerical results, although it does make them a little less transparent when it
comes to their interpretation. The four levels have in this case the energies E1L =
2.43, E1R = 4.36, E2R = 7.70, and E2L = 9.65 meV, respectively. This determines
the driving frequency of the ac potential as h̄Ω ≈ E2L − E2R ≈ E1R − E1L ' 1.94
meV (i.e. ∼ 400 GHz), and an optimal temperature for cooling is expected at
kBT ∼ (E2R − E1R)/2 ≈ 1.7 meV or equivalently T ≈ 20 K.

5.6.2 Numerical results

We consider now the numerical implementation of the formulas of section 5.5.
In addition to the basic plot of Q̇R as a function of the driving amplitude, we
perform various numerical tests to check the assumptions made on transport
model and its robustness against departures from ideal behavior. The exploration
of the parameter space can help optimize the structure to achieve higher cooling
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Figure 5.5: Heat production in lead R for the structure of Fig. 5.1 as a function of the

driving amplitude eVac for various temperatures of the leads. Panel (b) shows the

case of T = 20 K together with the electrical current and the contribution of reflected

electrons, which remains always positive. The driving frequency is h̄Ω = 1.94 meV.

rate. In particular, we check the dependence of Q̇R on the driving frequency, the
temperature of the leads and the chemical potential. We also show negative heat
production in the experimentally interesting case of vanishing electric current is
also possible.

Driving amplitude

Typical data for Q̇R for the structure defined above are shown in Fig. 5.5. We
plot here the dependence of Q̇R on the driving amplitude eVac for different tem-
peratures TL = TR = T of the reservoirs. We restrict the calculations to low
amplitudes. Heat production remains positive at very low temperatures, but de-
creases with growing T until it begins to take negative values at T & 5 K. The
highest cooling power is observed, as expected from the reasons given in the
introduction to this section, for temperatures around 20 K.

In Fig. 5.6 we plot the specific case of T = 20 K. Here, the contribution of
reflected electrons to the total heat production and the electrical current as a
reference. The accompanying electrical current is also shown as a reference. As

78



5.6 Heat production in a double-well heterostructure

−2.5

0

2.5

5

I
[n

A
],
Q̇

R
[p

W
]

I
[n

A
],
Q̇

R
[p

W
]

0 0.1 0.2 0.3 0.4 0.5

eVac/h̄ΩeVac/h̄Ω

Ielectric

Q̇R (total)

Q̇R→R

Figure 5.6: Q̇R for T = 20 K, plotted together with the electrical current and the contri-

bution of reflected electrons, which remains always positive.

expected from very general principles, reflection always tends to heat the system,
eventually dominating at high driving amplitudes. There exists however a regime
at low amplitudes where transmission terms dominate, resulting in a negative
heat.

The magnitude obtained for the cooling power of these devices remains low,
∼ 10−12 W, but comparable to the experimental results reported (see Pekola,
2005, and references therein).

Dependence of heat production with driving frequency

We show in the following some numerical results to explore the qualitative be-
havior expected from Fig. 5.2 against the variation of some parameters. In the
first place, we check that the resonance condition for the driving frequency
E2L − E2R ≈ h̄Ω is in fact a maximum condition for the negative heat production.
Similar results but with lower output are expected for frequencies which differ
from the resonant case. This is indeed the case, as can be seen in Fig. 5.7: heat
production at specific temperature and driving amplitude conditions is plotted
against the frequency of the driving. If the energy absorbed by the electrons does
not match any of the inelastic transmission channels, electrical current and there-
fore heat production are effectively blocked. The graph shows that whenever h̄Ω

79



5 ac-cooling of nanoscale conductors

−2

0

2

4

6

8

Q̇
R

[p
W

]
Q̇

R
[p

W
]

0.2 0.4 0.6 0.8 1 1.2 1.4

h̄Ω/∆E2h̄Ω/∆E2

Q̇L

Q̇R

Figure 5.7: Maximum pumped heat, plotted against the deviation of the driving fre-

quency h̄Ω from the resonant frequency ∆E2 = E2L − E2R ' ∆E1. The temperature

is 20 K and the driving amplitude eVac = 0.3 meV.

differs from E2L − E2R in more than about ∼ 0.5 meV, which is approximately
the width of the resonances in Fig. 5.3(b), then heat production goes to zero. This
illustrates the need to carefully choose the driving parameters so that they meet
all necessary requirements.

Note further that Q̇L remains always bigger than |Q̇R|. This indicates that, as
expected, in global terms heat is produced in the system. A general proof of this
is given in the Appendices.

Dependence on chemical potential

The direction of the electrical current as well as the sign of heat production in the
leads can be controlled through the variation of the common chemical potential
of the leads. We show this in Fig. 5.8. We have chosen the optimal temperature
(TL,R = 20 K) and driving amplitude (eVac ∼ 0.2h̄Ω meV) conditions of maxi-
mum negative heat production of Fig. 5.6.

The curves of Q̇L and Q̇R as a function of µ can be understood qualitatively
in terms of our model of Fig. 5.2. The transition E1L → E1R dominates for low
chemical potential, and this results in a small negative Q̇L and positive Q̇R. With
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increasing µ we begin to populate states around E1R, and since the process E1R →

E1L is slightly more probable than its reverse, we soon obtain a certain cooling
of lead R. This tendency is maintained for higher chemical potentials, reaching
maximal negative heat production for lead R when µ lies around the mid-point
between resonances on the right and, simultaneously, the temperature is such
that kBT ≈ (E2R − E1R)/2. Then, a few states are populated at E ∼ E2R, so that
the transition E2R → E2L effectively removes hot electrons from lead R, while
electrons coming from lead L with energies around kBT below µR still have some
free states when arriving to R through the lower transmission channel E1L →

E1R. A further increase of µ fills these levels, so that lead R can only cool by
the leaving electrons, which reduces the overall efficiency. Eventually, for high
chemical potentials & 10 meV it is the E2L → E2R which dominates, which
causes a small negative Q̇L.

Figure 5.8 also shows that there even exist some conditions when heat can be
pumped from lead R at vanishing electrical current (e.g. for µ ≈ 6 meV). This is
explored in detail next.
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Heat production at zero electric current

While a negative heat production is an interesting result in itself for driven hete-
rostructures, a desirable situation would be to obtain it in the absence of electric
current across the system. The various thermoelectric effects confirm that the
passage of electrical current involves in general the transfer of heat, too, so the
most interesting situation arises when no current flows through the double well
structure. To achieve this, one could search for a current suppression effect as
discussed in chapter 3. This is however not useful, since by blocking the flow
of electrons prevents also the flow of heat. We are rather interested in vanishing
electrical current by cancellation of left- and right-moving currents of electrons.
That this is possible can be noted by assuming particle-hole symmetry around
the chemical potential, and it is confirmed by the I(eVac) curve of Fig. 5.6. The
current appears to vanish at eVac ≈ 0.1h̄Ω. Since the electrical current depends es-
sentially on the ratio eVac/h̄Ω —although here in a far more complicated manner
than in the cases studied so far—, it should be no surprise that for different tem-
peratures and under the same driving conditions there still exists a zero-current
point at the same value of the driving amplitude. We plot in Fig. 5.9 how Q̇L
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and Q̇R change with temperature in this situation. Although there is some heat
pumping for low temperatures, the effect is more pronounced again at the opti-
mal temperature TL,R ∼ 20 K, and it is still appreciable for higher temperatures.

Dependence on temperature difference

We explore here the dependence of the heat production with the temperature
difference between the leads. Figure 5.10 shows the results for fixed TR = 20 K and
varying temperature of the left lead, TL. The chemical potentials µL,R = 6.03 meV
are set half-way between resonances. Two interesting features can be observed:
first, as displayed in the inset, heat production and electrical current are negative
for zero temperature difference. In the small region with TL > TR the double
well structure acts as a true heat pump, i.e. heat flows against the temperature
gradient. Such a device may be viewed as a nanorefrigerator.

The second regime of interest is that of very low temperatures. When TL → 0,
Q̇R reaches its maximum value. From a simple thermodynamical analysis it is
expected that the highest cooling rate attains its maximum efficiency when the
temperature of the coldest reservoir goes towards absolute zero. The non-zero
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5 ac-cooling of nanoscale conductors

electrical current flowing from lead R to L (thus its negative sign) still puts some
heat into lead L.

Dependence of heating with coupling: two-pipeline model

In our previous analysis we have implicitly considered that the width of the res-
onances is very small. Our qualitative discussion assumed that electrons entered
and left the structure at the energies of the resonances. But a rapid check with
Fig. 5.3 or 5.4 shows that this is not strictly true. We show here that a simple,
but more realistic, model for the shape of the resonance of the right well helps to
demonstrate that the cooling rate cannot attain any desired value, but is limited
by the interplay between the coupling to the leads, fixed by the width of the res-
onances and of the Fermi distribution, and the distance of the resonances to the
middle energy between them.

This model is based on the idea of inelastic transmissive channels or pipelines
(Wagner and Sols, 1999; Sols and Wagner, 2000). Pipelines are conceived as the
dominant channels of the inelastic transmission induced by the ac driving. The
rest of possible transfer process, resulting from the absorption or emission of
more than one photon, or from different energies, is neglected.

For the double-well structure of Fig. 5.1 our model goes as follows. Choosing
E = 0 at the middle energy between E1R and E2R, the transmission in the presence
of ac driving is modelled by two pipelines, named Tu(E) and Td(E), which peak
at energies E2R ≡ +E0 and E1R ≡ −E0, respectively. Any electron entering the
heterostructure at ±E0 will be transmitted in either case to E0 + h̄Ω and −E0 −
h̄Ω. We take µL,R = 0 for convenience. If temperature is chosen such that h̄Ω �
kBT, then

fL(E0 + h̄Ω) ≈ 0 , fL(−E0 − h̄Ω) ≈ 1 , (5.31)

i.e. the corresponding energy levels are completely empty or filled. Note that this
is compatible with TL > TR, i.e. with lead L being hotter than lead R. In this case
the electrical current reads

h
e

I =
∫

dE{[ fL(E + Ω)− fR(E)]Tu(E)

+ [ fL(E−Ω)− fR(E)]Td(E)} ,
(5.32)
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while for heat production in lead R we have

hQ̇R =
∫

dE{[ fL(E + Ω)− fR(E)](E− µR)Tu(E)

+ [ fL(E−Ω)− fR(E)](E− µR)Td(E)} .
(5.33)

If we take the pipelines to be symmetric, Tu(E) = Td(−E) ≡ T0(E) and use
Eq. (5.31), it is easy to show that the electrical current vanishes and, furthermore,

hQ̇R = −
∫ ∞

−∞
dE fR(E)ET0(E) . (5.34)

A possible model for the transmission peaks is to assume they are Gaussians of
width Γ0 centered around the energies ±E0.4 It follows that the cooling rate is
given by

Q̇R = −π2

3
(kBT)2

h
T0H(βE0, βΓ0) , (5.35)

with β ≡ 1/kBT (T stands here for temperature), T0 = maxE{T0(E)} is the maxi-
mum value of T0(E), and

H(x, y) ≡ y
3

π2

∫ +∞

−∞
dt

t
et + 1

1
2y

e−(t−x)2/y2
. (5.36)

This function is basically a measure of the overlap between the Fermi function
and the resonance. Note that in the limit of small widths,

lim
y→0

1
2y

exp[−(t− x)2/y2] = δ(t− x) , (5.37)

i.e. the transmission becomes a Dirac delta.
This expression for Q̇R should be compared with the upper limit for cooling,

estimated in Eq. (5.30) to be of order ∼ (kBT)2/h. Thus the maximum cooling
rate for this model will be given by the highest value of H(x, y) times T0, which
is a function independent of the scale. Numerical exploration suggests that the
maximum of H(x, y) is of order 0.1. This allows us to conclude that for any lead
R there is always a T0(E) which produces optimal cooling.

On the other hand, the cooling rates obtained are still of the order of ∼ 10 pW
even in the most favorable of the cases studied. This is about an order of magni-
tude below the highest possible cooling rate of Eq. (5.30), which for temperatures

4We take Gaussian shapes for the resonances to avoid the divergences that would appear for
Lorentzian curves.
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Figure 5.11: Heat production for two and three dimensional structures. The parameters

are the same as in Figs. 5.5 and 5.6.

in the range of 10 K predicts ∼ 100 pW for this quantity. Given the crudeness
of the two-pipeline model and the absolutely fundamental nature of the upper
limit (5.30), it is probably not such a bad result. Moreover, the model captures
the main features of an optimal heat transfer process.

Heat production in systems of higher dimensions

Finally, we study the situation when the heterostructure is part of a two- or
three-dimensional system. As happened in chapter 3 with this issue, the way in
which the calculation is done amounts to making certain assumptions about the
conditions of transmission through the interface. Here we stick to our previous
choice of considering that the wave vector ~k‖ of the electrons parallel to the
interface is conserved. The results, shown in Fig. 5.11, indicate that a negative
cooling rate is also observed. As a general remark we note that while not all ~k‖
may operate optimally, none of them will oppose cooling, i.e. all of them will
contribute to cool the lead R albeit with varying efficiency.
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Was sich überhaupt sagen lässt,

lässt sich klar sagen; und

wovon man nicht reden kann,

darüber muÿ man schweigen.1

(Ludwig Wittgenstein)

We summarized here the main conclusions. In this thesis, we have studied the
behaviour of semiconductor quantum heterostructures under the action of exter-
nal ac driving. We have found that these systems offer a physical mechanism
to achieve coherent current control of the electrical current, for sufficiently local-
ized states an moderately wide external barriers. This effect is also observed in
situations that depart from the ideal one, i.e. when the driving is not localized
to one of the wells, and for two- and three dimensional systems, in which it
was assumed that the component of the wave vector parallel to the transmission
interface, ~k‖, is conserved.

The high-frequency approximation (HFA) for the tight-binding formalism pre-
dicts the driving amplitudes of current suppression in accordance with numer-
ically exact results obtained within a transfer-matrix formalism and a numeri-
cal implementation of the tight-binding approach. The discrepancies can be ex-
plained by an analysis of the assumptions made for the HFA and tight-binding
approaches: HFA represents the first order term in a (h̄Ω)−1 expansion, so it is
the dominant contribution at high frequencies, and predicts I = 0 for zeros of
the Bessel functions; on the other hand, the tight-binding description uses an

1What can be said at all can be said clearly; and whereof one cannot speak thereof one must be
silent.
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energy-independent coupling, which disregards higher order contributions that
spoil the exact eVac/h̄Ω dependence.

We also studied asymmetrically driven double quantum wells. The asymme-
try is introduced by an internal bias ε0. When properly tuned, this systems can
yield a nonzero dc current at vanishing external bias. We have shown that in this
situation transport presents the features of photon-assisted tunneling predicted
by Stafford and Wingreen (1996). In particular, the current presents peaks at res-
onance frequencies Ω ≈ nε0/h̄ in the strongly localized regime ε0 � ∆, and a
Ω2 dependence for low frequencies. Our numerical results are confirmed again
by the analytical curves of a Floquet calculation in the high frequency approxi-
mation.

The dependence on an external ac bias demonstrates the enhancement of the
current by the absorption of one or more photons. The current steps indicate the
adequacy of the Floquet analysis, in terms of sidebands, for ac transport.

Assuming electron decoherence between a pump and a resistor connected in
series, and equal chemical potentials for all channels in the leads, it is possible
to derive in a semiclassical scheme the two parameters (electromotive force and
internal resistance) which characterize the pump when considered as an element
in a circuit. In our analysis we have disregarded nonlinear effects and a possible
dependence of the scattering events on the incident channel. These issues deserve
further study and we hope to address them in forthcoming investigations.

Perhaps our most interesting results are the matter of chapter 5, where we have
described heat production in electron reservoirs caused by electrical current. This
current is produced by the action of ac driving in semiconductor heterostructures.
We have extended Landauer’s scattering formulation to heat transfer in an ac
context, and have proved that this agrees with a derivation along the lines of the
Floquet-Green formalism explained in Kohler et al. (2005).

We have shown that by properly choosing the structure and the driving pa-
rameters heat production in one of the leads can be negative, i.e. we predict
a negative cooling rate for ac driven double quantum wells. The cooling rate
predicted falls somewhat below the order of magnitude of other experimentally
accomplished setups (Pekola, 2005), but presents some advantages over them:
first, it the driving provides a means to control the amount of heat produced and
even the direction of heat flow. Second, cooling should be attainable in the ex-
perimentally relevant conditions of zero electrical current, i.e. without charging
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of the leads, and even against a thermal gradient, so the proposed device would
act as a heat pump or nanorefrigerator.

To gain a better understanding of the physical model, we have explored part
of the vast parameter space that defines the double well heterostructure. Our
calculations show that the achievement of a negative heat production depends
on the relation of the temperature of the leads and the level structure of the
wells. Although in our particular model the highest cooling rates were expected
at temperatures of the order of ∼ 20 K, the scaling arguments of sections 5.5.2
and 5.5.3 make it clear that the scheme can operate at any temperature.

Heat production depends strongly on the driving frequency. Optimal cooling
rates appear when the energy of the driving, h̄Ω, matches the difference between
energy levels in the wells. The chemical potential of the leads is a further parame-
ter that can be used to adjust the amount of heat produced. Finally, by modelling
the resonances as pipelines, we have shown that the cooling rate can always come
close to the fundamental limits for completely transparent systems with an elec-
trode at zero temperature, provided that the frequency is correctly tuned and
both resonance level widths and difference are comparable to the temperature of
the electrode we wish to cool.

Taking the resonances as pipelines of Gaussian shape, we have modelled the
heat produced and found it to agree roughly with the fundamental limits ex-
pected in the most favourable conditions of completely transparent systems.

Besides the nonlinear effects on pumps mentioned above, there are other issues
which we have not taken into account in this work. The most important might be
that of screening effects in the reservoirs, which is overestimated systematically
in our calculations. More effort is needed to understand realistic conditions of
driven heterostructures. Besides, all electron–electron interactions have also been
completely disregarded, and while this might be a valuable approximation in
vertical quantum dots populated with few atoms, this does not address many
situations in other types of dots. Regarding the ac-cooling of nanostructures, we
think we have captured the essential ingredients of the physics, but we are also
aware that the formalism is still not as sound as existing transport theories for
electrical current in mesoscopic systems. We hope to fill this gap in forthcoming
research projects.
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Conclusiones

En esta tesis hemos estudiado el comportamiento de heteroestructuras semicon-
ductoras bajo la acción de potenciales externos dependientes del tiempo. Hemos
utilizado las propiedades de transporte coherente a través de dobles pozos cuán-
ticos, y hemos demostrado que es posible controlar la corriente eléctrica que
atraviesa una de estas estructuras escogiendo de forma adecuada la amplitud
del voltaje aplicado y su frecuencia. Estos resultados se mantienen también para
señales alternas con diferente dependencia espacial y en estructuras de dos y tres
dimensiones.

La supresión coherente de la corriente eléctrica nos ha permitido comparar
cálculos numéricos exactos, realizados mediante los formalismos de matrices de
transferencia y enlaces fuertes (tight-binding). Mientras que el primero describe de
forma más realista las heteroestructuras, la aproximación de altas frecuencias del
segundo permite dar una explicación cualitativa de problemas de transporte en
sistemas con Hamiltoniano periódico en el tiempo. Mediante cálculos adicionales
hemos evaluado algunos de los supuestos sobre los que se sustenta esta aproxi-
mación.

El estudio del bombeo de electrones en dobles pozos cuánticos asimétricos ha
centrado la segunda parte de nuestra investigación. Hemos calculado la corriente
de bombeo en ausencia de un voltaje continuo (de polarización) externo y hemos
comprobado que se corresponde con los supuestos de que el transporte tiene
lugar mediante la absorción de fotones del campo (alterno) aplicado. También
en este caso las curvas de la aproximación de altas frecuencias reproducen los
resultados numéricos y permiten una clara interpretación cualitativa.

Por otro lado, hemos comprobado que bajo las hipótesis de decoherencia elec-
trónica completa de los electrones en su desplazamiento entre la bomba y el
resistor, y de igualdad de potencial químico de todos los canales de transporte,
el comportamiento del dispositivo de bombeo de electrones al formar parte de
un circuito puede caracterizarse por dos parámetros: la fuerza electromotriz y
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la resistencia interna. Ambas cantidades pueden calcularse en términos de las
propiedades de dispersión de los elementos que forman el circuito.

En último lugar hemos considerado la producción de calor debida al paso de
la corriente eléctrica en los electrodos. Hemos propuesto un modelo para una
heteroestructura en la que la acción de voltajes alternos y una elección precisa
de los parámetros de la heteroestructura permiten controlar la dirección del flujo
de calor. La corriente predicha por nuestros cálculos queda por debajo de los
resultados experimentales en otros sistemas, pero sobre ellos presenta las venta-
jas de ser controlable, y de poder operar en condiciones en las que la corriente
eléctrica neta en los electrodos se anula. Esta situación es de gran interés para
sistemas mesoscópicos, puesto que los procesos de carga conllevan un gran coste
energético por la repulsión de Coulomb entre los electrones.

Para comprender mejor el modelo descrito, hemos explorado el espacio de
parámetros que define la heteroestructura. Según nuestros cálculos, la posibili-
dad de enfriar un electrodo está fijada por la relación entre la estructura de nive-
les energéticos y la temperatura de funcionamiento. Aunque en el caso particular
estudiado el enfriamiento alcanza su valor óptimo en T ∼ 20 K, los argumentos
teóricos indican que este esquema de funcionamiento puede operar a cualquier
temperatura. Los cálculos numéricos realizados permiten afirmar que nuestro
modelo contiene la física esencial de la producción de calor en heteroestructursa.
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Appendix A: Transfer matrices and
Bessel functions

Little has been said in chapter 2 about the actual content of the transfer matrices.
For the interested reader we offer here some insight into their structure as de-
fined in chapter 2. In many occasions, their manipulation involves using Bessel
functions in some way; therefore,a couple of useful relations of these mathemati-
cal objects are stated here for completeness.

A.1 What is inside a transfer matrix?

Transfer matrices (TMs) are obtained matching wave functions across an interface.
This means that one takes the plane-wave expansion of the scattering states on
one side of a layer, which we take to be non-driven (static), and has to match all
the coefficients, and those of its spatial derivative, to the plane-wave expansion
at the other side of the interface, which is driven by e.g. Vac(t) = Vac cos Ωt. An
important point in this derivation is that the matching equates time-dependent
wave functions that have to be equal at all times. With the definition

aI
n(z) =

(
ekI

lz e−kI
lz

kI
le

kI
lz −kI

le
−kI

lz

)
(A-1)

for the spatial part of the wave functions and its derivatives for layer I (an equal
expression, of course, appears for layer II), and using Bessel functions, this means

∑
n

aI
n(z)e−inΩt = ∑

n
aII

n (z) ∑
l

Jle
−i(n+l)Ωt . (A-2)

We need to re-arrange the terms on the rhs of this equation in order to get rid
of the time-dependent factors by matching term by term the corresponding coef-
ficients. This can be done with the addition theorems for Bessel functions (see
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below):

∑
n

aII
n (z) ∑

l
Jle

−i(n+l)Ωt = ∑
n

∑
l

aII
l (z)Jn−le

−inΩt , (A-3)

and then the infinite set of algebraic equations of Eq. (A-2) becomes

aI
n(z) = ∑

l
aII

l (z)Jn−l (A-4)

or, in a more explicit manner,

∑
l

δz;n,l

(
ekI

lz e−kI
lz

kI
le

kI
lz −kI

le
−kI

lz

)
︸ ︷︷ ︸

TI
z;n,l

(
AI

l
BI

l

)
= ∑

l
Jn−l

(
Vac

h̄Ω

)(
ekII

l z e−kII
l z

kII
l ekII

l z −kII
l e−kII

l z

)
︸ ︷︷ ︸

TII
z;n,l

(
AII

l
BII

l

)

(A-5)
which defines the transfer matrices corresponding to the layers I and II at the
common interface at coordinate z. So the matching takes place between the ma-
trix on the left, made up of 2× 2-blocks along the diagonal (note that we have
introduced a Kronecker delta δz;n,l for this TM), and the TM on the right, which
has 2× 2-blocks also for non-diagonal elements:

. . . ...
. . . tn−1,−1 tn−1,0 tn−1,+1 . . .
. . . tn,−1 tn,0 tn,+1 . . .

... . . .

 (A-6)

where each sub-matrix tn,l is of the form

tn,l =

(
Jn−lekII

l z Jn−le−kII
l z

Jn−lkII
l ekII

l z Jn−l(−kII
l )e−kII

l z

)
. (A-7)

The index n increases from top to bottom, and we have omitted further blocks
to the left and right of k = ±1. The compact form of (2.37) does in fact mean
that one must equate each block of the diagonal matrix on the left to the corre-
sponding sum on the right, as shown above. This represents the mixing of the
sidebands on either side of the interface: one of the undriven layer and a sum
over sideband index l on the right. This is the way to interpret correctly Eq. (A8)
of the Appendix A in Wagner (1995). It is these matrices that one needs to invert
in order to build up the total TM across a driven system.
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A.1 What is inside a transfer matrix?

To do this, we have the option of operating with TMs across an interface or a
layer. As was discussed in chapter 2, we prefer to use the latter. Across a layer
of width (d = zj − zi) driven by a monochrome ac potential, one applies two
times the same wave matching procedure as explained above; the total TM is
then obtained as

(
TII

zi→zj

)
n,n′

= TII
zj;n,l ×

(
TII

zi

)−1

l,n′
=

∞

∑
l=−∞

Jn−l

(
ekII

l zj e−kII
l zj

kII
l ekII

l zj −kII
l e−kII

l zj

)
× 1

2
Jn′−l

e−kII
l zi mII

kII
l

e−kII
l zi

ekII
l zi −mII

kII
l

ekII
l zi


=

∞

∑
l=−∞

Jn−l Jn′−l ×

 cosh(kII
l d) mII

kII
l

sinh(kII
l d)

kII
l

mII
sinh(kII

l d) cosh(kII
l d)

 (A-8)

(across a layer that is not driven this is easier to accomplish, since one simply
needs to invert TI

z;n,l —which is a block-diagonal matrix— and calculate Tzi→zj =

TI
zj;n,l

(
TI

zi

)−1
l,n′). For readability only we have omitted the (common) argument of

the Bessel functions, e.g. Jn−l = Jn−l(Vac/h̄Ω).

This TM is too made up of 2× 2-blocks relating coefficients AII
n′ and BII

n′ on one
side of a layer with those on the other side; taking zi = zL and zj = zR, we have

(
AII

n

BII
n

)
R

= ∑
n′

(
TII

R←L

)
n,n′

(
AII

n′

BII
n′

)
L

(A-9)

= ∑
n′

∞

∑
l=−∞

Jn−l Jn′−l ×

 cosh(kII
l d) mII

kII
l

sinh(kII
l d)

kII
l

mII
sinh(kII

l d) cosh(kII
l d)

(AII
n′

BII
n′

)
L

so that we can now write


...

AII
n

BII
n
...


R

=



...
...

· · · ∑l Jn−l Jn′−l cosh kII
l d ∑l Jn−l Jn′−l

mII

kII
l

sinh kII
l d · · ·

· · · ∑l Jn−l Jn′−l
kII

l
mII sinh kII

l d ∑l Jn−l Jn′−l cosh kII
l d · · ·

...
...




...

AII
n′

BII
n′
...


L

(A-10)
From the matrix above, using the usual conditions AII

n,L = δn,0, BII
n′,R = 0, etc., one
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finally gets the transmission probabilities

Tn
R←L =

kn
R

k0
L

mL

mR

∣∣∣∣∣An
R

A0
L

∣∣∣∣∣
2

=
kn

R

k0
L

mL

mR

∣∣∣∣∣∣∣∣
∑n′

[
∑l Jn−l Jn′−l

(
cosh(kII

l d)AII
n′ +

mII

kII
l

sinh(kII
l d)BII

n′

)]
A0

L

∣∣∣∣∣∣∣∣
2

(A-11)

This transmission probability is energy dependent because of the k vectors (h̄kII
l =

[2mII(V − E − lh̄Ω)]1/2, for example). It is evident that these are not easy for-
mulas to operate with, or even to be simplified. One therefore restricts to the
numerical results or, with some intuition and practice, substitutes a reasonable
ansatz for the coefficients to obtain whenever possible some analytical results.
This was achieved for some cases by Wagner (1994, 1995). We can note further
that the hyperbolic functions turn into normal trigonometric ones for complex
values of the wave vector, and this is precisely what happens for travelling states
(E + lh̄Ω > V, l ∈ Z).

A.1.1 TM with phase shifts

Now let’s see what happens if the driving comes with a phase shift of π, i.e.
Vac(t) = Vac cos(Ωt + π). This driving has been used in the calculation of the dc
current in the pump (asymmetric double quantum dot) of chapter 4, and most of
the results in chapter 5 on heat production. On the static side nothing changes.
On the driven side we now, the algebraic equations become

∑
l

δz;n,l

(
ekI

lz e−kI
lz

kI
le

kI
lz −kI

le
−kI

lz

)
︸ ︷︷ ︸

TI
z;n,l

(
AI

l
BI

l

)
= ∑

l
Jl−n

(
ekII

l z e−kII
l z

kII
l ekII

l z −kII
l e−kII

l z

)
︸ ︷︷ ︸

TII
z;n,l

(
AII

l
BII

l

)
(A-12)

An expansion like that of Eq. (A-6) shows that this system has the same structure,
. . . ...
. . . t′n−1,−1 t′n−1,0 t′n−1,+1 . . .
. . . t′n,−1 t′n,0 t′n,+1 . . .

... . . .

 , (A-13)
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but now the sub-matrices t′n,l are

t′n,l =

(
Jl−nekII

l z Jl−ne−kII
l z

Jl−nkII
l ekII

l z Jl−n(−kII
l )e−kII

l z

)
. (A-14)

This shows distinctly that, although similar, the matrices in Eqs. (A-6) and (A-13)
are slightly different. There is yet no simple way of relating elements of this latter
matrix to elements of the former one except for l = 0.

In the end one arrives at a new TM:(
TII,π

zi→zj

)
n,n′

= TII,π
zj;n,l ×

(
TII,π

zi

)−1

l,n′
=

=
∞

∑
l=−∞

Jl−n Jl−n′ ×

 cosh(kII
l d) mII

kII
l

sinh(kII
l d)

kII
l

mII
sinh(kII

l d) cosh(kII
l d)

 . (A-15)

A.2 Some relations for Bessel functions

The importance of Bessel functions for driven systems stems from the expansion
in plane waves of the time-dependent phase of Eq. 2.32, as was done in Eq. 2.36
for the case of sinusoidal driving. Their usage for TMs is even more relevant,
since here they appear in matrices that have to be inverted, which can be an
expensive numerical task in terms of computer operations for large matrices.
The addition theorem stated below simplifies many of these calculations.

A.2.1 Addition theorem

The addition theorem for Bessel functions of the first kind (see Arfken and Weber,
2001, ex. 11.1.3),

Jn(y + z) = ∑
m

Jm(y)Jn−m(z) (A-16)

can be proven with help of the generating function

e(x/2)(t−1/t) =
∞

∑
n=−∞

Jn(x)tn , (A-17)
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used to define Bessel functions, in the following way: set x = y + z so that

e(y+z/2)(t−1/t) = e(y/2)(t−1/t)e(z/2)(t−1/t) =

=

(
∞

∑
n=−∞

Jn(y)tn

)(
∞

∑
m=−∞

Jm(z)tm

)

=
∞

∑
n=−∞

Jn(y + z)tn ; (A-18)

now we re-arrange terms on the two infinite sums on the left side of the equal
sign:

∞

∑
n=−∞

Jn(y)tn
∞

∑
m=−∞

Jm(z)tm = ∑
n,m

Jn(y)Jm(z)tn+m = ∑
n,m

Jn−m(y)Jm(z)tm . (A-19)

Equating now term by term Eqs. (A-18) and (A-19) we arrive at the expression of
Eq. (A-16), which completes the proof.

A.2.2 Other results

Obtaining the TM across a layer amounts, in some sense, to solving the algebraic
system of equations for the coefficients of the wave function; this operation, in
turn, is done by matrix inversion and multiplication. To show that summing
over one common index one can get rid of Bessel functions, we use the addition
theorem above in a special case: set z = −y so that

Jn(0) = ∑
m

Jm(y)Jn−m(−y) . (A-20)

We now remember that Bessel functions have even or odd parity, according to
the following rule:

Jn(x) = (−1)n Jn(−x) ⇒ Jn(−x) = (−1)−n Jn(x) (A-21)

so that Jn−m(−y) = (−1)m−n Jn−m(y); then

Jn(0) = ∑
m

Jm(y)(−1)m−n Jn−m(y) = (−1)−n ∑
m

J−m(y)Jn−m(y);

J−n(0) = ∑
m

J−m(y)Jn−m(y) . (A-22)

For the last line we have used the property J−n(x) = (−1)n Jn(x).
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Now Jn(0) = J−n(0) = δn,0 (all Jn are 0 at x = 0 except for n = 0, where
J0(0) = 1). Suppose in addition that we perform the change −m → n′ − m, so
that, mutatis mutandis,

J−n(0) = ∑
m

Jn′−m(y)Jn+(n′−m)(y) ⇒ Jn′′−n′(0) = ∑
m

Jn′−m(y)Jn′′−m(y) (A-23)

and finally (changing index names)

δn,n′ = ∑
m

Jn−m(y)Jn′−m(y) . (A-24)

Because m ranges from −∞ to +∞, we can change its name to −m without
changing the value of this expression. It then follows this version of the above:

δn,n′ = ∑
m

Jm−n(y)Jm−n′(y). (A-25)
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Appendix B: Entropy production

We provide here a proof that the reflection part in the heat production formula
contributes always to the heating of the corresponding lead. We begin by writing
the total entropy production in the system in the following way:

h
kB

(ṠL + ṠR) =
∫

dE dE′[TLR(E, E′) fR(E′)(βLE− ηL − βRE′ + ηR)

+TRL(E, E′) fL(E′)(βRE− ηR − βLE′ + ηL)

+RLL(E, E′) fL(E′)(βLE− βLE′)

+RRR(E, E′) fR(E′)(βRE− βRE′)] .

(B-1)

We have defined for convenience η` ≡ µ`/kBT`, and we have used β` = 1/kBT`.
Consider first the reflection part of e.g. lead L. We can rewrite it, invoking the
time-reversal symmetry RLL(E, E′) = RLL(E′, E), as

h
kB

(ṠL)refl. =
1
2

∫
dE dE′βLRLL(E, E′)[ fL(E′)− fL(E)](E− E′) . (B-2)

It is easy to prove that this is a definite positive quantity: RLL(E, E′) > 0 by defini-
tion. With fL(E) being a monotonically decreasing function of E, the product of
[ fL(E′)− fL(E)] and (E − E′) must remain always positive.

On the other hand, it can be shown that the total entropy production is also a
positive quantity. If one takes the terms proportional to the transmission proba-
bilities in Eq. (B-1) and uses time-reversal properties, i.e. TRL(E, E′) = TLR(E′, E),
this can be written in the form

h
kB

(ṠL + ṠR)trans. =
∫

dE dE′TLR(E, E′)

× [ fR(E′)− fL(E)](βLE− ηL − βRE′ + ηR) .
(B-3)

The positive sign of this expression follows from similar considerations to those
used for Eq. (B-2), this time comparing the monotonically decreasing function
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with the full argument βLE − ηL. Therefore we can conclude that

h
kB

(ṠL + ṠR)total > 0 . (B-4)
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