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Abstract

Combinatorial Optimization is a branch of optimization in applied mathematicsand

computerscience,related to operationsresearch, algorithm theory and computational

complexity theory that sits at the intersectionof many �elds, such asarti�cial intelli-

gence,mathematicsand software engineering.Combinatorial optimization problems

commonly imply �nding values to a set of variables which are restricted by a set

of constraints, in somecasesin order to optimize a certain function (optimization)

and in others only to �nd a valid solution (satisfaction). Combinatorial optimization

algorithms solve instancesof problems that are believed to be hard in general by

exploiting the usually large solution spaceof theseinstances. They can achieve this

by reducing the e�ectiv e sizeof the search spaceand by exploiting it e�cien tly.

In this thesiswe focuson Combinatorial Optimization Algorithms which fall into

the �eld of Arti�cial Intelligence(although the line that separatesthis �eld from Op-

erations Research is very �ne), instead of algorithms from the Operations Research

�eld. Thus, methods such as Integer Programming (IP) or Branch and Bound (BB)

arenot considered.The goalof this thesisis to show that di�eren t approachescanbe

better suited for di�eren t problems,and that hybrid techniqueswhich include mech-

anismsfrom di�eren t frameworks canbene�t from their advantageswhile minimizing

their drawbacks. All this is shown throughout this thesis by solving hard combina-

torial optimization problems,such as quasigroupcompletion, social golfers,optimal

Golomb rulers, using a variety of techniques, which lead to a hybrid algorithm for

�nding Golomb rulers that incorporatesfeaturesof GeneticAlgorithms, Local Search,

Constraint Programming and even Clustering.
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Resumen

La Optimizaci�on Combinatoria esuna rama de la optimizaci�on en matem�atica apli-

caday de la inform�atica, relacionadacon la investigaci�on operativa, la teor��a de algo-

ritmos y la teor��a de complejidadcomputacional,que seencuentra en la intersecci�on

de varios campos, tales comola inteligenciaarti�cial, las matem�aticas y la ingenier��a

del software. Los problemasde optimizaci�on combinatoria suelenconsistir en encon-

trar valorespara un conjunto de variablesque estn restringidas por un conjunto de

restricciones,en algunoscasospara optimizar una funci�on dada (optimizaci�on) y en

otros tan solo para encontrar una soluci�on v�alida (satisfacci�on). Los algoritmos de

optimizaci�on combinatoria resuelven instancias de problemasconsideradosdif��ciles

en generalgraciasa una exploraci�on inteligente del espaciode b�usqueda,en parte

reduci�endolo,en parte recorri�endolode una forma e�ciente.

En esta tesis nos centramos en los algoritmos de optimizaci�on combinatoria que

seconsiderandentro del campo de la Inteligencia Arti�cial (aunqueescierto que la

linea que lo separadel campo de la investigaci�on operativa es muy �na), en vez de

en algoritmos de investigaci�on operativa. As�� pues,m�etodos como la programaci�on

entera o el "Branch-and-Bound" no van a ser tratados. El objetivo de esta tesis es

mostrar quediferentes t�ecnicaspuedenserm�asadecuadaspara diferentes problemas,

y que t�ecnicash��bridas que incluyen mecanismosde diferentes paradigmassepueden

bene�ciar de lasventajas e intentar minimizar los inconvenientesde losmismos.Todo

estosemuestra en esta tesiscon la resoluci�on de problemasdif��ciles de optimizaci�on

combinatoria comocompletitud decuasigrupos,gol�sta social, Golomb rulers, usando

varias t�ecnicas,que dan lugar al desarrollode un algoritmo h��brido para encontrar

Golomb rulers, que incorpora aspectosde algoritmos gen�eticos,b�usquedalocal, pro-

gramaci�on con restriccionese incluso clustering.
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Chapter 1

In tro duction

Combinatorial Optimization is a branch of optimization in applied mathematicsand

computerscience,related to operationsresearch, algorithm theory and computational

complexity theory that sits at the intersectionof many �elds, such asarti�cial intelli-

gence,mathematicsand software engineering.Combinatorial optimization problems

commonly imply �nding values to a set of variables which are restricted by a set

of constraints, in somecasesin order to optimize a certain function (optimization)

and in others only to �nd a valid solution (satisfaction). Combinatorial optimization

algorithms solve instancesof problemsthat are believed to be hard in general(most

of them are at least NP-complete[41]) by exploiting the usually large solution space

of those instances.They are able to achieve this by reducing the e�ectiv e sizeof the

search spaceand by exploiting it e�cien tly.

1.1 Motiv ation

The goal of this thesis is to show that di�eren t approachescan be better suited for

di�eren t problems,and that hybrid techniqueswhich include mechanismsfrom di�er-

ent frameworks can bene�t from their advantageswhile minimizing their drawbacks.

All this is shown throughout this thesis by solving hard combinatorial optimization

problems, such as quasigroupcompletion, social golfers,optimal Golomb rulers, us-

ing a variety of techniques, which lead to a hybrid algorithm for �nding Golomb

1



CHAPTER 1. INTR ODUCTION 2

rulers that incorporates features of Genetic Algorithms, Local Search, Constraint

Programming and even Clustering. As can be seenfrom this enumeration, our focus

is on algorithms that fall into the �eld of Arti�cial Intelligence (although the line

that separatesthis �eld from OperationsResearch is very �ne), insteadof algorithms

from the Operations Research �eld. Algorithms from Operations Research such as

Integer Programming (IP) or Branch and Bound (BB), which have alsobeenstudied

extensively for optimization problemsare, however, not studied in this thesis.

The constraint paradigm is a useful and well-studied framework for expressing

many problems of interest in Arti�cial Intelligence. The �rst research presented

here deals with modelling Constraint Satisfaction Problems (CSPs), in particular

for a well-known problem namedQuasigroup Completion Problem(QCP). From this

benchmark problem and comparing several modelling and solving methods we are

able to yield important conclusionsfor a more generalkind of problems, known as

Multiple Permutation Problems. There has also beeninterest in the comparisonbe-

tweenCSP and SAT techniques;discussingwhether onecan be more appropriate for

a speci�c �eld or for another. We provide this comparisonfor this speci�c problem.

Local Search is known to be a powerful technique especially for dealing with op-

timization problemsor problemswith a signi�cantly large search space.The second

research work presented dealswith modelling and solving social tournaments, in par-

ticular the Social Golfer Problem. The results presented hereare signi�cantly better

than other complexapproachesin the literature. It alsoraisesthe issueof symmetries

in Local Search and presents a clever and simple heuristic to obtain initial solutions

that boostsperformance.

Genetic Algorithms are population basedalgorithms that mimic biological pro-

cesses.Memetic Algorithms are hybrids that introduce Local Search to yield better

resultsand convergeto higher quality solutions. The next research work presented in

this thesisdealswith solving a very hard combinatorial optimization problem known

as Golomb Ruler. The research developed here focuseson modelling and solving

optimal and near-optimal Golomb Rulers, providing high quality results that are

consistently superior to thosepresented in other GeneticAlgorithms in the literature.

Finally, A Hybrid Memetic Algorithm known as Scatter Search is enriched with
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Constraint Programming and Clustering techniques to further improve the results

obtained in the previousresearch over the Golomb Ruler Problem as well.

In the next sectionswe introduce the problems dealt with troughout the whole

research, we establishthe boundariesof our work and present its main contributions.

1.2 Problems Addressed

Many real life problemsfall into the category of Combinatorial Optimization Prob-

lems. In this thesis we solve di�eren t problems with di�eren t techniques and ulti-

mately develop a hybrid that enclosesthem all.

The Quasigroup Completion Problem (QCP) is a very challenging benchmark

amongcombinatorial problems,which hasbeenthe focusof much recent interest in the

areaof constraint programming [101]. It has a broad rangeof practical applications

such as con
ict-free wavelength routing in wide band optical networks, statistical

design,and error correctingcodes[101]; it hasbeenput forward asa benchmark which

can bridge the gap betweenpurely random instancesand highly structured problems

[100]; and its structure as a multiple permutation problem [229, 118] is commonto

many other important problemsin constraint satisfaction. Thus, solutionsthat prove

e�ectiv e on QCPs have a good chanceof being useful in other problemswith similar

structure.

The social golferproblemhasattracted signi�cant interest sinceit was�rst posted

on sci.op-research in May 1998. It is a highly combinatorial and symmetric prob-

lem and it is not surprising that it has generatedsigni�cant attention from the con-

straint programming community (e.g., [72, 209, 178, 200, 199, 13, 184]). Indeed, it

raisesfundamentally interestingissuesin modelingand symmetry breaking,and it has

becomeoneof the standard benchmarks for evaluating symmetry-breakingschemes.

Recent developments (e.g., [13, 184]) approach the scheduling of social golfersusing

innovative, elegant, but alsocomplex,symmetry-breakingschemes.

Finding Golomb rulers is an extremely challengingcombinatorial problem which

has received considerableattention over the last decades.Golomb rulers have appli-

cations in a wide variety of �elds including radio communications ([27, 114]), x-ray
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crystallography ([26]), coding theory ([56, 139]), and radio astronomy. Moreover,

becauseof its highly combinatorial nature,1 it has becomea standard benchmark

to evaluate and comparea variety of search techniques. In particular, geneticalgo-

rithms, constraint programming, local search, and their hybridizations have all been

applied to the problem of �nding Golomb rulers (e.g., [43, 76, 173, 176, 210, 213]).

In this thesiswe are going to introducepure approachesof dealingwith combina-

torial problemssuch as Constraint Satisfaction Problems(CSPs), The Satis�abilit y

Problem (SAT), Local Search (LS) and Genetic Algorithms (GAs). We will also in-

troducehybrid approaches,namely CSP and LS, GA and LS (which is alsoknown as

Memetic Algorithms) and GAs that incorporate Constraint Satisfaction techniques.

We are going to present research on theseparadigmson di�eren t hard combinatorial

optimization problems and �nally develop a hybrid that incorporates them all and

that yieldsresultshigher in quality for a hard combinatorial problem. Wealsoinclude

an appendix to briely describe sometechniquesusedthorugh out the thesis, in par-

ticular GreedyRandomizedAdaptive Search Procedures(GRASP) and Clustering.

1.3 Con tributions

This research comesto prove that di�eren t techniquesmay be better suited for deal-

ing with di�eren t combinatorial problems,and instead of devoting research on very

specializedtechniqueswithin each �eld, we rather concentrate on problem solving,

using whichever technique is most suited. We also aim to show that all thesetech-

niques can cooperate in a single algorithm to yield high quality results. Thus, the

scope of this research is problem modelling, problem solving, and hybrid developing

with CSP, LS and Genetic Algorithm's techniques.

The main contributions of our work, in that sense,are diverse. This thesisdeals

mainly with problem solving, and thus, every chapter reports top results in the lit-

erature for the various problemsaddressed.Also, a hybrid algorithm is presented as

well, and altough it is problemoriented it canbe easilygeneralizedto dealwith many

1The search for a 19-mark Golomb ruler took approximately 36,200CPU hours on a Sun Sparc
workstation using a very specializedalgorithm [56].
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di�eren t combinatorial optimization problems.

Therefore,the research presented in this thesiscontributes to the state-of-the-art

in presenting high quality results for the QuasigroupCompletion Problem, the Social

Golfer Problem and the Golomb Ruler Problem; as well as introducing an e�ectiv e

hybrid algorithm that within a Memetic Algorithm (MA) template introducesCSP

and Clustering features. Thus, the main contributions are:

1.3.1 Quasigroup Completion with Systematic Search

First, we present several techniquesthat togetherallow us to solve signi�cantly larger

QCPsthan previouslyreported in the literature. Speci�cally, [101] reports that QCPs

of order40couldnot besolvedby pure constraint programmingapproaches,but could

sometimesbe solved by hybrid approachescombining constraint programming with

mixed integer programming techniquesfrom operations research. We show that the

pure constraint satisfaction approach can solve many problemsof order 45 closeto

the transition phase,which correspondsto the peak of di�cult y. Our solution builds

upon someknown ideas,such asthe useof redundant modelling [36] with primal and

dual modelsof the problemconnectedby channellingconstraints [229], with somenew

twists. In addition, we present a newvalueordering heuristic which provesextremely

e�ectiv e, and that could prove useful for many other problemswith multiple models.

Finally, we show how redundant constraints can be usedto \compile arc consistency

into forward checking", that is, to ensurethat the latter hasas much pruning power

as the former but at a much lessercost in constraint checks.

It is interesting to note that our approach involvesonly binary constraints, which

seemsto go againstcommonwisdomabout their limitations |when contrasted with

the useof non-binary constraints such as alldi� [188]| in solving quasigroupcom-

pletion problems[215].

1.3.2 SAT vs. CSP comparison

Second,we perform a systematicstudy of modelling choicesfor quasigroupcomple-

tion, testing a variety of solvers and heuristics on various SAT and CSP encodings.
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The clearwinner is the SAT 3D-encoding, specially with the solver Satz [144], closely

followed by the solver Satzoo [62] on the sameencoding. As these two solvers are

quite di�eren t (one usesa strong form of lookahead in its heuristic, but no back-

jumping or learning, while the other reliesheavily on the last two), the 3D encoding

appears to be quite robust as a representation. On the other hand, CSP models

perform signi�cantly worsewith the two solvers we tried, and standard SAT encod-

ings generatedfrom the CSP models are simply too large in practice. Theseresults

strongly suggestthat the 3D encoding can turn out to be quite competitiv e in other

permutation problems(many of which arise in quite practical problems[118]) when

comparedwith the currently preferredchannelling models.

The reasonsfor this appear to be twofold. First, we can show that the 3D en-

coding (which is basically the \SAT channellingmodel" of [118] extendedto multiple

permutations and dual models) exactly capturesthe channelling models of QCPs as

de�ned in this thesis,but in a much more conciseway, by collapsingprimal and dual

variables. Further, we can show that the 3D encoding captures the \support SAT

encoding" of the channelling model, henceby results of [89], that unit propagation

on the 3D encoding achievesthe samepruning asarc consistency(MA C) in the CSP

channelling model. These results appear easy to extrapolate to other permutation

problems(or similar oneswith "channelling constraints"), which have received a lot

of recent attention [35, 229, 118]. Second,empirically, we identify Satz'sUP heuristic

ascrucial to its successin this domain; asshown by the fact that, whenimporting the

heuristic into our CSPsolvers,we obtain signi�cant improvements in their scalability.

1.3.3 Scheduling Social Golfers with Lo cal Search

This research proposesa local search algorithm for scheduling social golfers, whose

local moves swap golfers within the same week and are guided by a tabu-search

meta-heuristic. The local search algorithm matches, or improves upon, the best

solutions found by constraint programming on all instancesbut 3. It also found the

�rst solutionsto 11 instancesthat werepreviouslyopen for constraint programming.2

2For the current statuses of the instances, see Warwick Harvey's web page at
http://www.icparc.ic.ac.uk /wh/ golf .
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Moreover, the local search algorithm solvesalmostall instanceseasilyin a fewseconds

and takesabout 1 minute on the remaining (harder) instances. The algorithm also

features a constructive heuristic which trivially solves many instancesof the form

odd� odd� w and provides good starting points for others.

The main contributions of this chapter are as follows.

1. It shows that local search is a very e�ectiv e way to schedulesocial golfers. It

�nds the �rst solutions to 11 instancesand matches,all other instancessolved

by constraint programming but 3. In addition, almost all instancesare solved

in a few seconds,the harder onestaking about 1 minute.

2. It demonstratesthat the local search algorithm usesa natural modeling and

doesnot involve complexsymmetry-breakingschemes.In fact, it doesnot take

symmetries into account at all, leading to an algorithm which is signi�cantly

simpler than constraint programming solutions, both from a conceptual and

implementation standpoint.

3. The experimental results indicate a nice complementarit y between constraint

programmingand local search, assomeof the hard instancesfor onetechnology

are trivially solved by the other.

1.3.4 Finding Near-Optimal Golom b Rulers with a Hybrid

Evolutionary Algorithm

This work proposesa novel hybrid evolutionary algorithm for �nding near-optimal

Golomb rulers in reasonabletime. The algorithm embedsa local search into a genetic

algorithm and outperformsearlier geneticalgorithms, aswell asconstraint program-

ming algorithms and their hybridizations with local search. In particular, the algo-

rithm quickly �nds optimal rulers for up to 13 marks and was able to �nd optimal

rulers for 14 marks, which is clearly out of reach for the above mentioned algorithms.

The algorithm also�nds near-optimal rulers in reasonabletime, clearly indicating the

e�ectiv enessof hybrid evolutionary algorithms on this highly combinatorial applica-

tion. Of particular interest is the conceptualsimplicity and eleganceof the algorithm.
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Even though there are solutions for higher number of marks for other complete

search approaches, evolutionary algorithms have the advantage of providing good

quality solutions in a short period of time. This is a main contribution of this re-

search as well, providing high quality solutions (improving all previousevolutionary

approaches) in a few secondsor minutes.

The main technical contribution of the novel hybrid evolutionary algorithm is its

focus on feasibility. Indeed, the main step of the evolutionary algorithm is to �nd a

Golomb ruler of a speci�ed length (or smaller),usingconstraint violations to guidethe

search. Near-optimal rulers areobtained indirectly by solvinga sequenceof feasibility

problems.

1.3.5 Scatter Search and Final Hybrid

We present a hybrid EA designedto �nd optimal or near-optimal Golomb Rulers.

This algorithm makes use of both an indirect approach and a direct approach in

di�eren t stagesof the search. More speci�cally, the indirect approach is usedin the

phasesof initialization and restarting of the population and takesideasborrowedfrom

the GRASP-basedevolutionary approach published in [43]. The direct approach is

consideredin the stagesof recombination and local improvement; particularly, the

local improvement method is basedon the tabu search (TS) algorithm described in

the previouschapter. Experimental results show that this algorithm succeedswhere

other evolutionary algorithms did not. Our algorithm systematically �nds optimal

rulers for up to 13 marks. OGRs up to 15 marks (included) can now be found.

Moreover, the algorithm producesGolomb rulers for 16 marks that are very closeto

the optimal value (i.e., 1.1%far), thus improving signi�cantly the results previously

reported in the EA literature.

At this point, we try to improve the performanceof this algorithm in di�eren t

ways:

� Complete Search: we usecompletesearch techniquesto combine the indi-

viduals in the population, usingconstraint programmingfeaturessuch aspropa-

gation. While this technique doesnot necessarilytranslatesinto the generation
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of high quality individuals, it is neverthelessable to producevalid solutionsand

even optimal solutions.

� Clustering: this technique, on the other hand, is introduced in order to

acquire a higher degreeof diversity in the population. Instead of maintaining

the best individuals in the population, we divide it into di�eren t clusters and

then choosethe best in each of the clusters.

Thesetwo techniquesallow, �rst, to implement a novel hybrid algorithm which

can be easily generalizedto deal with several other problems, and second,to yield

results that are even better in quality than the allready top resultsobtained with the

Scatter Search alone.

The results are outstanding, we are now able to solve a 16 marks ruler and to

consistently solve every 14 marks rulers. The algorithm is tested using di�eren t sets

of parametersreferred to the clustering mechansismand the results are consistently

superior to the previousalgorithm without the improvements.

1.4 Publications

Finally we present the main publications that this thesis yielded. We are going to

classify them into the chapters to which the research is related. Also, the "Others"

section indicates papers published during the Ph.D. time that are not included in

this thesis; and "Under Submission"referresto papers that have beensubmitted to

conferencesfrom which we are awaiting the outcome.

CSP and SAT

� Carlos Ans�otegui, �Alvaro del Val, Iv �n Dot�u, CesarFern�andezy Felip Manya,

"Mo deling Choicesin Quasigroup Completion: SAT vs. CSP". In AAAI'04

Proceedings,SanJos�e ,California, USA, July 2004.

� Iv�an Dot�u, �Alvaro del Val and Manuel Cebri�an, "Redundant Modeling for the

QuasiGroup Completion Problem". In CP'03 Proceedings,Kinsale, Ireland,
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September 2003.

� Iv�an Dot�u, �Alvaro del Val and Manuel Cebri�an, "Channeling Constraints and

Value Ordering in the QuasiGroup Completion Problem". In IJCAI'03 Pro-

ceedings,pages1372-1373,Acapulco, M�exico,August 2003.

LS for Scheduling Social Tournamen ts

� Iv�an Dot�u and Pascal Van Hentenryck, "Scheduling Social Tournaments Lo-

cally". To appear in AI Communications Special Issueon Constraint Program-

ming for Planning and Scheduling, 2006.

� Iv�an Dot�u, �Alvaro del Val and PascalVan Hentenryck, "SchedulingSocial Tour-

naments". In Proceedingsof CP-05, Sitges,Spain, October 2005.

� Iv�an Dot�u and PascalVan Hentenryck, "Scheduling Social GolfersLocally". In

CPAIOR'05 Proceedings,Prague,May 2005.

Genetic Algorithms for the Golom b Ruler Problem

� Iv�an Dot�u and PascalVan Hentenryck, "A Simple Hybrid Evolutionary Algo-

rithm for Finding Golomb Rulers". In IEEE CEC'05 Proceedings,Edimburgh,

September 2005.

Scatter Search and Final Hybrid

� Carlos Cotta, Iv�an Dot�u, Antonio J. Fern�andezand PascalVan Henteryck, "A

Memetic Approach for Golomb Rulers". To appear in Proceedingsof PPSN'06,

Reykjavik, Iceland, 2006.

Others

� Iv�an Dot�u and PascalVan Hentenryck, "A Note on Low Autocorrelation Binary

Sequences".To appear in Proceedingsof CP'06, Nantes, France, September

2006.
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� Manuel Cebri�an and Iv�an Dot�u, "GRASP-Evolution for CSPs". To appear in

Proceedingsof GECCO'06, Seattle, USA, July 2006.

� Manuel Cebri�an and Iv�an Dot�u, "A simpleHybrid GRASP-Evolutionary Algo-

rithm for CSPs". In Proceedingsof LLCS'05 Workshopin CP-05,Sitges,Spain,

October 2005.

� Iv�an Dot�u, Juan deLara, "Rapid Prototyping by Meansof Meta-Modelling and

Graph Grammars. An Example with Constraint Satisfaction". In Jornadasde

Ingenieradel Software y Basesde Datos, JISBD-03. Alicante, Spain,November

2003.

Under Submission

� Carlos Cotta, Iv�an Dot�u, Antonio J. Fern�andez and Pascal Van Henteryck,

"Scheduling Social Golfers with Memetic Evolutionary Programming". Sub-

mitted to HM'06, Canary Islands,October 2006.
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In tro ducci�on

La Optimizaci�on Combinatoria esuna rama de la optimizaci�on en matem�atica apli-

caday de la inform�atica, relacionadacon la investigaci�on operativa, la teor��a de algo-

ritmos y la teor��a de complejidadcomputacional,que seencuentra en la intersecci�on

de varios campos, tales comola inteligenciaarti�cial, las matem�aticas y la ingenier��a

del software. Los problemasde optimizaci�on combinatoria suelenconsistir en encon-

trar valorespara un conjunto de variablesque est�an restringidaspor un conjunto de

restricciones,en algunoscasospara optimizar una funci�on dada (optimizaci�on) y en

otros tan solo para encontrar una soluci�on v�alida (satisfacci�on). Los algoritmos de

optimizaci�on combinatoria resuelven instancias de problemasconsideradosdif��ciles

en generalgraciasa una exploraci�on inteligente del espaciode b�usqueda,en parte

reduci�endolo,en parte recorri�endolode una forma e�ciente.

Motiv aci�on

El objetivo deestatesisesmostrar quediferentesenfoquespuedenserm�asadecuados

para diferentes problemas, y que las t�ecnicash��bridas que incorporan mecanismos

de distintos paradigmaspuedenbene�ciarsede susventajas e intentar minimizar sus

defectos.Todo estosemuestraenestatesiscon la resoluci�on deproblemasdif��cilesde

optimizaci�on combinatoria comocompletitud de cuasigrupos,gol�sta social, Golomb

rulers, usandovariast�ecnicas,quedan lugar al desarrollodeun algoritmo h��brido para

encontrar Golomb rulers, que incorpora aspectosde algoritmos gen�eticos, b�usqueda

local, programaci�on con restriccionese inclusoclustering. Comosedesprendede esta

enumeraci�on, nuestro inter�esest�a en los algoritmosde optimizaci�on combinatoria que

seconsiderandentro del campo de la Inteligencia Arti�cial (aunqueescierto que la

linea que lo separadel campo de la investigaci�on operativa es muy �na), en vez de

en algoritmos de investigaci�on operativa. As�� pues,m�etodos como la programaci�on

entera o el "Branch-and-Bound" quehansidoampliamente estudiadosparaproblemas

de optimizaci�on, no van a ser, sin embargo, estudiadosen esta tesis.

El paradigma de la programaci�on con restriccionesesun marco muy �util y muy
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estudiadopara expresarmuchos problemasde inter�espara la Inteligencia Arti�cial.

El primer trabajo de investigaci�on presentado aqu�� trata la modelizaci�on de proble-

masde restricciones(CSPs), en concretopara un problemamuy concocido, llamado

Quasigroup Completion Problem (QCP). Desdeesteproblema y comparandovarios

modelosy m�etodosde resoluci�on, somoscapazesde extraer importantes conclusiones

para un tip o de problemam�asgeneralcomoesel de los problemasde permutaciones.

Tambi�en es sabido el inter�es en la comparaci�on entre t�ecnicasde CSP y de SAT;

discutir cual es m�as adecuadapara ciertos tip os de problema. Nosotrosrealizamos

estacomparaci�on para esteproblemaen concreto.

La b�usquedalocal es conocida como una t�ecnica poderosapara resolver, espe-

cialmente, porblemasde optimizaci�on, as�� comoproblemascon espaciosde b�usqueda

signi�cativ amente grandes.El segundotrabajo presentado en la tesisaborda el mode-

lado y resoluci�on decalendarizaci�on de torneossociales,m�asconcretamente el "Social

Golfer Problem". Los resultadosaqu�� presentadossonsigni�cativ amente superioresa

otros m�etodoscomplejosqueseencuentran en la literatura. Adem�as,motiva el tema

de la simetr��a en la b�usquedalocal y presenta una heur��stica simplee inteligente para

generarsolucionesiniciales que mejora la e�ciencia del algoritmo.

Los algoritmos gen�eticos son algoritmos basadosen poblacionesque imitan pro-

cesosbiol�ogicos. Los algoritmos mem�eticos son h��bridos que introducen b�usqueda

local para producir mejoresresultadosy convergera solucionesde mayor calidad. El

trabajo de investigaci�on en estecasotrata de resolver un problema de optimizaci�on

combinatoria muy dif��cil conocido comoGolomb Ruler. La investigaci�on desarrollada

aqu�� secentra enel modeladoy resoluci�on deGolomb Rulers�optimosy cuasi-�optimos,

y produjo resultadosde gran calidad que son consistentemente superioresa los pro-

ducidospor otros algoritmos gen�eticosque seencuentran en la literatura.

Finalmente, enriquecemosun algoritmo mem�etico conocido como Scatter Search

con la introducci�on de t�ecnicasde programaci�on con restriccionesy clustering para

mejorar todav��a m�a sa los ya de por s�� buenosresultadosde la investigaci�on anterior

sobreel Golomb Ruler Problem.

En las pr�oximas seccionesintroducimos los problemasestudiadosen esta tesis,

establecemoslos l��mites de la misma y presentamos suscontribuciones principales.
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Problemas estudiados

Muchosproblemasde la vida real seencuentran dentro de la categor��a de problemas

de optimizaci�on combinatoria. En esta tesis resolvemos diferentes problemas con

diversast�ecnicasy �nalmente desarrollamosun h��brido que las englobaa todasellas.

El problemadecompletitud decuasigrupos(QCP) esuno de losm�ascompetitiv os

problemasde combinaci�on, y ha sido el centro de reciente inter�es dentro del �area

de la programaci�on con restricciones[101]. Tiene una ancho rango de aplicaciones

pr�acticas como el enrutado de longitud de onda libre de con
ictos en redes�opticas

de ancha banda, dise~no est�adistico, c�odigos de correcci�on de errores [101]; se ha

consideradoun problemaquepuedeestar en un lugar entre las instanciaspuramente

aleatorias y los problemascon gran estructura [100]; su estructura de problema de

m�ultiples permutaciones[229, 118] escom�un a muchosotros problemasdesatisfacci�on

de restricciones.As�� pues,solucionesque resulten efectivas para QCPs tiene muchas

posibilidadesde ser �utiles en otros problemasde estructura similar.

El problemadel "Social Golfer" ha atraido un inter�essigni�cativ o desdequesein-

cluy�o ensci.op-research enMayo de1998.Esun problemaaltamente combinatorio

y sim�etrico, y no essorprendente que haya atraido tanta atenci�on en la comunidad

de la programaci�on con restricciones(e.g., [72, 209, 178, 200, 199, 13, 184]). De

hecho, destapaaspectosfundamentalmente interesantes en modelizaci�on y rotura de

simetr��as,y seha convertido enun problemaest�andar para evaluar m�etodosderotura

de simetr��as. Recientes investigaciones[13, 184]) se acercanal problem del "Social

Golfer" usandoesquemasinnovadores,elegantes, pero tambi�en complefos,de rotura

de simetr��as.

Encontrar "Golomb rulers" es un problema combinatorio extremadamente com-

plicado que ha recibido una atenci�on considerableen las �ultimas d�ecadas. Este

problema tiene aplicacionespr�acticasen gran variedad de campos incluyendoradio-

comunicaciones([27, 114]), cristalograf��a de rayos X ([26]), teor��a de c�odigos ([56,

139]), y radio- astronom��a. Adem�as, debido a su extrema naturaleza combinatoria3

ha llegadoa serun problemaest�andar para evaluar y compararuna gran variedadde

3La b�usquedade un "Golomb ruler" para 19 marcastard�o aproximadamente 36,200CPU horas
en una Sun Sparc workstation usandoun algoritmo muy especializado[56].



CHAPTER 1. INTR ODUCTION 15

m�etodos de b�usqueda.En concreto,algoritmos gen�eticos,programaci�on con restric-

ciones,b�usquedalocal, y sushibridizacioneshan sido aplicadosa esteproblema(e.g.,

[43, 76, 173, 176, 210, 213]).

En esta tesis vamosa introducir m�etodos puros para la resoluci�on de problemas

de combinatoria tales como los problemasde satisfacci�on de restricciones(CSPs),

el problema de la satisfacibilidad (SAT), la b�usquedalocal (LS), y los algoritmos

gen�eticos (GAs). Tambi�en introduciremosm�etodos h��bridos, como CSP y LS, GA

y LS (conocido comoalgoritmos mem�eticos) y GAs que incorporan t�ecnicasde pro-

gramaci�on con restricciones. Vamos a presentar trabajos de investigaci�on en �estos

paradigmaspara resolver problemasde combinaci�on dif��ciles, para �nalmente desar-

rollar un h��brido que incorpora todas esast�ecnicaspara producir resultadosde gran

calidad para uno de �estosproblemas. Tambi�en incluimos un ap�enice donde intro-

ducimos brevemente dos t�ecnicasque se usan en el �ultimo h��brido desarrollado,en

concreto"Greedy RandomizedAdaptive Search Procedures"(GRASP) y Clustering.

Con tribuciones

Estetrabajo deinvestigaci�on intenta demostrarquediferentest�ecnicaspuedenserm�as

adecuadaspara diferentes problemased combinaci�on, y, en vez de centrar tanto es-

fuerzoendesarrollart�ecnicasmuy especializadasencadacampo, espreferibleconcen-

trarnos en la resoluci�on de problemascon la t�ecnicaqueseam�asadecuada.Tambi�en

nos interesamostrar comotodasesast�ecnicaspuedecooperar en un �unico algoritmo

para producir resultadosde gran calidad.

Las principales contribuciones de estetrabajo son varias. Esta tesis trata de re-

solver problemas,y enesesentido cadacap��tulo presenta resultadosl��deresencalidad

en la literatura para varios problemas. Adem�as, presentamos tambi�en un algoritmo

h��brido que, aunqueestaorientado al problemaque tratamos, esf�acilmente general-

izable para poder seraplicadoa diferentes problemasde combinatoria.

Por lo tanto, el trabajo presentado en esta tesis contribuy e al estadodel arte al

presentar resultadosde gran calidad para el problemade completitud de cuasigrupos,

el Social Golfer y el Golomb ruler; tambi�en es una contribuci�on el desarrollode un
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algoritmo h��brido que introduce aspectosde CSPsy de clustering en el esquemade

un algoritmo mem�etico. As�� pues,las contribuciones principalesde esta tesisson:

Completitud de Cuasigrup os con b�usqueda completa

Primero, presentamosvarias t�ecnicasqueconjuntamente nospermiten resolver QCPs

signi�cativ amente m�as grandesque los presentados previamente en la literatura. En

concreto,[101] a�rma queQCPsdeorden40no sepuedenresolver con t�ecnicaspuras

de programaci�on con restricciones,pero s�� con t�ecnicash��bridas quecombinen la pro-

gramaci�on con restriccionesco la programaci�on entera de investigaci�on operativa.

Aqu�� mostramosque un m�etodo puro puederesolver varios problemasde orden 45

cercanosa la fasede transici�on, que corresponde con el pico de di�cultad. Nuestro

m�etodo est�a construido sobreconceptoscomo el del modelado redundante [36] con

modelosprimal y dual y restriccionesde canalizaci�on para unirlos [229], pero con al-

gunasmodi�caciones innovadoras.Adicionalmente presentamosuna nueva heur��stica

de ordenaci�on de valoresque resulta muy efectiva, y que podr��a serlo tambi�en para

muchos otros problemasde permutacionesm�ultiples. Finalmente, mostramoscomo

cierta restriccionesredundantes sepuedenutilizar para compilar arco consistenciaen

"forward checking", lo quesigni�ca asegurarqueel �ultimo tendr�a el mismo poder de

propagaci�on que el primero pero con menoschequeosde consistencia.

Es interesante recalcarque nuestro modelo no s�olo incluye restriccionesbinarias,

lo que pareceir en contra del conocimiento com�un acercade sus limitaciones |al

contrastar conel usoderestriccionesno binariascomoalldi� [188]| enesteproblema

[215].

Comparaci� on SAT vs. CSP

En segundolugar, realizamosun estudio sistem�atico de las opcionesde modelado

para la completitud de cuasigrupos, probando una gran variedad de resolutoresy

heur��sticas en diversascodi�caciones SAT y CSP. La clara ganadora es la codi�-

caci�on 3D de SAT, especialmente con el resolutor Satz [144], seguidodel resolutor
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Satzoo [62] en la misma codi�caci�on. Debido a que estosdos resolutoresson bas-

tante diferentes, la codi�caci�on 3D aparececomo muy robusta. Por otro lado, los

modelosCSP sonmuy inferioresen los dos resolutoresprobados,y los modelosSAT

generadosde maneraest�andar a partir de los modelosCSPsonsencillamente demasi-

ado grandesen la pr�actica. Todo esto sugiereque la codi�caci�on 3D puedeser muy

competitiv a para otros problemasde permutaci�on (muchosde los cualesaparecenen

problemaspr�acticos[118]) si los comparamosa los habitualmente preferidosmodelos

de canalizaci�on.

Pareceque hay una doble explicaci�on para lo anterior. Primero, podemosde-

mostrar que la codi�caci�on 3D (que esb�asicamente el \SAT channelling model" de

[118] extendido para permutaciones m�ultiples y modelos duales) capturar exacta-

mente los modelosde canalizaci�on de QCPs de�nidos, pero de una forma mucho m�as

concisa:colapsandovariablesprimalesy duales. Adem�as,podemosdemostrarque la

codi�caci�on 3D captura la codi�caci�on SAT desoportesdel modelodecanalizaci�on, y,

por lo tanto, por el resultadode [89], la propagaci�on unitaria en3D consigueel mismo

nivel de poda que la arco-consistenciaen el modelo de canalizaci�on CSP. Pareceque

estosresultadosson f�acilmente extrapolablesa otros problemasde permutaci�on que

han recibido gran atenci�on reci�entemente ([35, 229, 118]). En segundolugar, hemos

identi�cado emp��ricamente la importancia crucial de la heur��stica de Satz para su

e�cacia en estedominio; lo cual sedemuestra por el hecho de que, al importar esta

heur��stica a los resolutoresde CSP, seobtienenmejorassigni�cativ as.

Resolviendo el Problema del Gol�sta Social con B �usqueda Lo-

cal

Este trabajo proponeun algoritmo deb�usquedalocal para generarun calendariopara

gol�stas sociales,cuyos movimientos consistenen intercambiar gol�stas en la misma

semana,y esta guiado por una metaheur��stica de tip o tabu. El algoritmo empata o

mejoratodaslassolucionesencontradasmediante programaci�on conrestriccionespara

todas excepto3 instancias. Tambi�en encuentra nuevas solucionespara 11 instancias
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que estabanabiertas para la programaci�on con restricciones.4 Adem�as, el algoritmo

resuelve pr�acticamente todas las instanciasen pocossegundosy tarda alrededorde

un minuto en las instanciasrestantes. Tambi�en seincorpora una heur��stica construc-

tiva que resuelve de forma trivial muchas instanciasdel tip o impar � impar � w, y

constituye un buen punto de partida para el resto.

Las principalescontribuciones de estetrabajo son:

1. Muestra que la b�usquedalocal esun m�etodo muy efectivo para el problemadel

gol�sta social. Encuentra la primera soluci�on para 11 instancias,y empatacon

la mejor soluci�on en el resto exceptopor 3 instancias. Adem�as, casi todas las

instanciasseresuelven en apenasunossegundos.

2. Demuestraqueel algoritmo de b�usquedalocal usaun modelo natural del prob-

lema sin esquemascomplejosde rotura de simetr��as. De hecho, no tiene para

nada en cuenta las simetr��as, dando lugar a un algoritmo mucho m�as simple

que los desarrolladosdentro de la b�usquedacompletapara CSPs,desdeambos,

el punto de vista conceptualy el de la implementaci�on.

3. Losresultadosexperimentalesindican cierta complementariedadentre la b�usqueda

completa y la b�usquedalocal dentro de la programaci�on con restricciones,ya

que unas instanciasdif��ciles para una tecnolog��a son f�acilespara la otra.

Encon trando "Golom b Rulers" Cuasi- �Optimos con un Algo-

ritmo Evolutiv o H��brido

Este trabajo proponeun nuevo algoritmo evolutivo h��brido para encontrar "Golomb

rulers" cuasi-�optimos en un tiempo razonable.El algoritmo incorpora una b�usqueda

local dentro de un algoritmo gen�etico, y sobrepasaa algoritmos gen�eticos anteri-

ores,as�� como a algoritmos de programaci�on con restriccionesh��bridos de b�usqueda

completa y local. En concreto, el algoritmo encuentra reglas de hasta 13 marcas

4Para el estado actual de las distintas instancias, v�ease la p�agina web de Warwick Harvey
http://www.icparc.ic.ac.uk /wh/ golf .
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r�apidamente, y tambi�en fue capazde encontrar el �optimo para 14 marcas,lo que es-

taba fueradel alcanzedelosmencionadosalgoritmos. El algoritmo tambi�enencuentra

reglascuasi-�optimas en un tiempo razonable,indicando la efectividad de los agorit-

mos evolutivos h��bridos en esta aplicaci�on altamente combinatoria. Es de particular

inter�esla simplicidad conceptualy la eleganciadel algoritmo.

A pesarde quehay solucionesde mayor n�umero de marcascon otros enfoquesde

b�usquedacompleta, los algoritmos evolutivos tiene la ventaja de generarsoluciones

de alta calidad en poco tiempo. Esta estambi�en una de las mayorescontribuciones,

generarsolucionesde gran calidad (mejorando los resultadosde otros enfoquesevo-

lutiv os anteriores) en pocossegundoso minutos.

La mayor contribuci�on t�ecnica radica en un nuevo h��brido que se centra en la

validez. De hecho, el paso principal del algoritmo evolutivo es encontrar reglasde

una longitud espec���ca (o menor) usandoviolacionesde restriccionespara guiar la

b�usqueda.Las reglascuasi-�optimas seencuentra resolviendouna secuenciade prob-

lemasde satisfacci�on.

Scatter Search y el H��brido Final

Aqu�� presentamos un algoritmo evolutivo h��brido para encontrar "Golomb rulers"

�optimos o cuasi-�optimos. Este algoritmo usa un enfoque indirecto y uno directo

en diferentes etapas de la b�usqueda. M�as concretamente, el enfoque indirecto se

usa en las fasesde inicializaci�on y re-inicializaci�on de la poblaci�on, haciendo uso

de ideas prestadasdel enfoque basadoen GRASP publicado en [43]. El enfoque

directo seusaen las etapasde recombinaci�on y mejora local; en concreto,el m�etodo

de mejora local est�a basadoen una b�usquedatabu. Los resultadosexperimentales

muestran que estealgoritmo es capazde encontrar reglas �optimas hasta 13 marcas

sistem�aticamente. Ahora seencuentran reglas�optimas dehasta15 marcas(incluida).

Adem�as, el algoritmo generareglasde 16 marcasque son muy crecanasal �optimo

(1.1% lejos), as�� pues,mejorandosensiblemente el estadodel arte.

En estemomento, intentamosmejorar la e�cacia del algoritmo de diferentes man-

eras:
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� B �usqueda Completa: usamost�ecnicasdeb�usquedacompletapara combinar

individuos de la poblaci�on, haciendousodemecanismosde la programaci�on con

restriccionestalescomola propagaci�on. Esta t�ecnicano implica necesariamente

que se generenindividuos de gran calidad, pero si es, sin embargo, capazde

producir solucionesv�alidas e incluso �optimas.

� Clustering: esta t�ecnica se introduce en este caso para conseguirmayor

diversidad en la poblaci�on. En vez de mantener los mejoresindividuos en la

poblaci�on, dividimos �estaen distintos clustersy elegimoslos mejoresindividuos

de cadacluster.

Estas dos t�ecnicasintroducidas nos permiten, por una parte, crear un novedoso

algoritmo h��brido que es f�acilmente generalizablepara resolver muchos otros prob-

lemas de combinatoria, y, por otra parte, conseguirresultadosde mayor calidad a

los presentados antes de dichas incorporaciones,que ya eran resultadosde m�axima

calidad para estedominio.

Losresultadossonverdaderamente sobresalientes,ahorasomoscapacesderesolver

reglasde 16 marcas,y encontrar el �optimo para hasta 14 marcassistem�aticamente.

Adem�as,el algoritmo seha probadousandodistintos conjuntos de par�ametrosrefer-

entesal clusteringy los resultadossonconsistentemente superioresa losdel algoritmo

previo sin mejoras.

Publicaciones

Finalmente presentamos las principalespublicacionesqueha generadoestatesis. Las

vamosa clasi�car en los distintos cap��tulos a los que pertenecendentro de la tesis.

Adem�as, se aade una secci�on de "Otros" en la que se incluyen otras publicaciones

obtenidasdurante el tiempo de doctorado que no han sido �nalmente re
ejadas en

estatesisy otra de "EsperandoNoti�caci�on", para art��culosquehan sido enviadosa

conferenciasy seest�a esperandola noti�caci�on.
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Chapter 2

Pure Approac hes

In this chapter we are going to introducethe main frameworks this thesisdealswith:

Constraint SatisfactionProblems(CSPs)and the algorithms to solve them both Com-

plete Search (CP) and Local Search (LS), the Satis�abilit y Problem (SAT) and Evo-

lutionary Computation (EC). Note that the SAT problem will not be part of the �nal

hybrid presented in this thesis, however, it is important for its relevancy within the

CSPframework, and alsobecauseit hasbeenusedin preliminary work for this thesis.

This chapter is thus devoted to the introduction of pure approaches.

2.1 CSPs

We now review the framework of Constraint Satisfaction Problem (CSP) and some

of the main available search methods and techniques.

2.1.1 De�nitions

De�nition 2.1. A Constraint SatisfactionProblem (CSP) P = (X ; D; C) is de�ned

by a setof variablesX = f x1; :::; xng, a setof n �nite valuedomainsD = f D1; :::; Dng,

and a set of c constraints or relations C = f R1; :::; Rcg.

De�nition 2.2. A constraint Rx is a pair (vars(Rx ); r el(Rx )) de�ned as follows:

24
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� vars(Rx ) is an orderedsubsetof the variables,calledthe constraint scheme. The

sizeof vars(Rx ) is known as the arity of the constraint. A binary constraint

has arity equal to 2; a non-binary constraint has arity greater than 2. Thus, a

binary CSP is a CSP whereall constraints have arity equalor lessthan 2.

� r el(Rx ) is a set of tuples over vars(Rx ), called the constraint relation, that

speci�es the allowed combinations of values for the variables in vars(Rx ). A

tuple over an orderedsetof variablesX = f x1; :::; xkg is an orderedlist of values

(a1; : : : ; ak) such that ai 2 dom(x i ); i = 1; : : : ; k.

Solvinga CSPmeans�nding an assignment for each variable that doesnot violate

any constraint.

De�nition 2.3. A constraint graph associates a vertex with each variable and has

an edgebetweenany two verticeswhoseassociated variablesare related by the same

constraint.

De�nition 2.4. An assignment of values to variables is a set of individual assign-

ments, f X i  vi g, whereno variable occursmore than once.

An assignment canbe either partial , if it includesa proper subsetof the variables,

or total, if it includesevery variable.

De�nition 2.5. We say that an assignment is consistent if it does not violate any

constraint.

A solution to a CSP is then a total consistent assignment. Thus, the task of

�nding a solution to a CSP or proving that it doesnot have any can be referred as

the task of achievingtotal consistency.

Example 1. The n-queensproblemis usually expressed as a CSP. The problemcon-

sists on placing n queenson an n � n chessboard, in sucha way that no two queens

attack each other. It can be naturally expressed as a binary CSP where each variable

is associated with a board row, and its assignmentdenotesthe board column where

the queen is placed. Constraints restrict the valid positions for each pair of queens:
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two queenscannot be placed in the samecolumn nor in the samediagonal (note that

they cannot be placed in the samerow either, althoughthis is already guaranteed by

the representation).

2.1.2 Constrain t Optimization Problems

With this sametechnology we can model constraint optimization problems. These

are constraint satisfaction problemswherenot only we search for a solution but for

the one that optimizesa given criterion:

De�nition 2.6. A Constraint Optimization Problem P = (X ; D; C; f ) is de�ned by

a set of variablesX = f x1; :::; xng, a set of n �nite value domainsD = f D1; :::; Dng,

a set of c constraints or relations C = f R1; :::; Rcg, and a function f to be optimized

(minimized or maximized).

Note that the function f represents an optimization criteria, it referres to the

quality of the solution. Sometimes,it can be presented asa soft constraint which the

solution can violated but that decreasingits violations increasesthe quality of the

solution. However, we are going to assumethat the criterion is a function f without

lossof generality.

2.1.3 Constrain t algorithms: Complete Search

Oncea problem of interest hasbeenformulated as a constraint satisfaction problem,

a solution can be found with a generalpurposeconstraint algorithm. CSPsare NP-

complete[84]. Many constraint algorithms are basedon the principles of search and

deduction. CompleteSearch standsfor the fact that the search coversthe wholesearch

space,and thus, it is guaranteed to �nd a solution. The most e�ectiv e constraint

satisfaction algorithms are basedon:

Search based backtrac king

The term search is used to characterizea large category of algorithms which solve

problemsby guessingan operation to perform or an action to take, possiblywith the
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help of a heuristic. A good guessresults in a new state that is nearer the goal. If

the operation does not result in progresstowards the goal, it can be retracted and

another guessmade. For CSPs,search is exempli�ed by the backtracking algorithm.

Backtracking search assignsa value to an uninstantiated variable, thereby extending

the current partial solution. It exploresthe search spacein a depth-�rst manner.

If no legal value can be found for the current variable, the previous assignment is

retracted, which is called a backtrack. In the worst case,the backtracking algorithm

requiresexponential time in terms of number of variables,but only linear space.The

backtracking algorithm was �rst described more than a century ago, and sincethen

it hasbeenreintroducedseveral times [24].

Consistency based algorithms

Other kinds of algorithm to solve a CSP rely on applying reasoningthat transforms

the problem into an equivalent but more explicit form. The most frequently used

type of thesealgorithms is known as constraint propagation or consistencyenforc-

ing algorithms [148, 81]. Theseprocedurestransform a CSP problem by deducing

new constraints, tightening existing constraints, and removing values from variable

domains. In general,a consistencyenforcingalgorithm will extend somepartial so-

lution of a subproblemto somesurrounding subproblemby guaranteeing a certain

degreeof local consistency, de�ned as follows.

De�nition 2.7. A CSP problem is 1-consistent if the valuesin the domain of each

variable satisfy all the unary constraints.

De�nition 2.8. A problem is k-consistent, k � 2, i� given any consistent partial

instantiation of any k � 1 distinct variables,there existsa consistent instantiation of

any singleadditional variable [80].

The termsnode-, arc-, andpath-consistency[148] correspond to 1-, 2-, 3-consistency,

respectively.

De�nition 2.9. Given an ordering of the variables, a problem is directional k-

consistent i� any subset of k � 1 variables is k-consistent relative to every single

variable that succeedsthe k � 1 variablesin the ordering [52].
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A problem that is k-consistent for all k is called globally consistent.

The complexity of enforcingi-consistencyis exponential in i [42]. Consideringthis

high cost, there is a trade-o� between the e�ort spent in pre-processing(enforcing

local consistencyat each search node) and the time savings that it may produce.

RegardingCSPs(and alsobinary CSPs),arc-consistency{or weaker forms of arc-

consistency{are commonly usedto detect and remove unfeasiblevaluesbeforeand

during the search. Their interest is due to having low time and spacerequirements.

Lo ok-ahead Algorithms

Search algorithms can be combined with consistencyenforcement algorithms detect-

ing dead-endsat earlier levels in the search tree. The idea is to enforcelocal consis-

tency at each node during the search. If the current node is in a dead-endand the

search doesnot detect it, achieving somelevel of consistencymay lead to its discov-

ery, saving the search from visiting unsuccessfullydeeper nodesof the current subtree.

This processis generallycalled lookahead or propagation of the current assignment.

In practice, algorithms that perform a limited amount of propagation are among

the most e�ectiv e. Forward Checking (FC) [110] is a simple, yet powerful algorithm

for constraint satisfaction. It propagatesthe e�ect of each assignment by pruning

inconsistent values from future variables1. When a future domain becomesempty,

FC backtracks becausethere is no value for one (or more) future variable consistent

with the current partial assignment.

On the other hand, there is an algorithm that maintains arc-consistencyduring

search (denoted MAC [195]) which requires more computational e�ort than FC at

each search state. MAC �lters arc-inconsistent valuessimplifying the search space,

and if this propagation processcausesan empty domain, then the subproblem is

unsolvable. Given that MAC can prune more values than FC, it has better dead-

end detection capabilities. This meansthat MAC can backtrack in nodeswhereFC

would continue searching at deeper levels. In general,MAC is not the most e�ectiv e

algorithm on easyproblemsbecausetree reduction doesnot pay o� the computational

1Future variable is the term we use to denote a variable that has not been instantiated yet at a
given search node, while past variable is a variable that has already beeninstantiated
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overhead,while on hard problems,maintaining arc-consistencyis often cost e�ectiv e.

Lo ok-bac k Algorithms

There are someother ways in which the basic Backtracking (BT) strategy can be

improved by keeping track of previous phasesof search (for this reason they are

known as look-back algorithms):

Backmarking (BM) [86] avoids the repetition of someconsistencychecks. When

BT assignsthe current variable it checks the consistencyof this assignment with past

variables. If any of thesetests fails, BM recordsthe point of the failure in a maximum

check level array. Supposethat the algorithm backtracks up to somevariable, then

deepensin the tree and attempts again to assignthe samevariable. In this situation

it is known that the current assignment is consistent with past variables up to the

maximum check level as far as their assignment has not beenchanged. BM avoids

the repetition of thesealready performedchecks.

Backjumping (BJ) [87], improvesBT by making a moresuitable decisionof which

variable has to backtrack to. BJ only di�ers from BT at thosenodeswherea dead-

end is detected. Instead of backtracking to the most recently instantiated variable,

BJ jumps back to the deepest past variable that the current variable was checked

against, which corresponds to the earliest constraint causingthe con
ict. When the

current variable is not responsible for the dead-enddetection, no jump is done. In

that caseBJ backtracks chronologically.

Con
ict-Dir ected Backjumping (CBJ) [183] improvesBJ by following a more so-

phisticated jumping strategy. The con
ict setof a variable is formedby past variables

with which a consistencycheck failed with somevalue of the consideredvariable.

When all the valueshave beenattempted for the current variable, CBJ jumps to the

deepestvariable in its con
ict set. This variable is removedfrom the con
ict setof the

current variable, and this newcon
ict set is addedto the con
ict set of the variable it

jumps to. With this approach, jumps can be doneat thosenodeswherebacktracking

occursnot becausea dead-endis detected,but becauseall valueshave already been

attempted. In addition, more than one jump can be donealong the samepath from

a detecteddead-endto the root.
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Learning Algorithms

There are other algorithms that usea technique called constraint recordingor learn-

ing.

An opportunit y to learn new constraints is presented whenever the backtracking

algorithm encounters a dead-end. Had the problem included an explicit constraint

prohibiting this con
ict set, the dead-endwould have never beenreached. The learn-

ing procedurerecordsa new constraint that makes explicit an incompatibilit y that

already existed implicitly in a given set of variable assignments. Note thereforethat

nothing new is learnt, exceptinformation that logically follows from the speci�cation

of the problem. Thesenew constraints are usually called nogoods .

In learningalgorithms, the savings from possiblyreducingthe amount of search by

�nding out earlier that a givenpath cannot leadto a solution must bebalancedagainst

the cost of processingat each search node a more extensive databaseof constraints.

Learningalgorithms may becharacterizedby the way they identify smallercon
ict

sets. Learningcanbedeep or shallow. Deeplearningrecordsonly the minimal con
ict

sets. Shallow learningallowsnonminimal con
ict setsto berecordedaswell. Learning

algorithms may alsobe characterizedby how they bound the arity of the constraints

recorded.Constraints involving many variablesare lessfrequently applicable,require

additional memoryto store,andaremoreexpensiveto consult than constraints having

fewer variables. The algorithm may record a singlenogood or multiple nogoods per

dead-end,and it may allow learning at leaf dead-endsonly or at internal dead-ends

as well.

Heuristics

If backtrack is usedto solve CSPs,then another issueis the order in which variables

are consideredfor instantiation. There is overwhelming evidencethat the ordering

in which variables are chosenfor instantiation can have substantial impact on the

algorithms' e�ciency (seee.g. [51]). The samehappenswith the order in which an

algorithm tries the domain valuesfor the current variable. Heuristics for variable or

value ordering can be grouped into two categories:
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� Static orderings: A static heuristic establishesan ordering beforesearch starts,

and maintains this ordering throughout all of the search.

� Dynamic orderings: A dynamic heuristic makesselectionsdynamically during

search.

A well-known static heuristic involves ordering variables by their degreein the

constraint graph. The idea is to consider�rst the most constrainedvariables(those

with moreedgesin the constraint graph) becausethey arelikely to bemoredi�cult to

assign.Inconsistenciesare expectedto be found at early tree levels,whererecovering

from mistakes is lesscostly. Variables with few constraints have more freedom in

the values they can take, so it is easierto �nd a good value for them. With this

heuristic their assignment is delayed to deeptree levels. This static variable ordering

is denotedmaximum degree ordering heuristic.

Dynamic variable orderings are generally much more e�ectiv e than static ones,

sincethey can take into account the current state of the search to decidewhat to do

next. The most popular variable ordering heuristic selectsthe variable with the mini-

mum number of valuesin its current domain [110]. This heuristic, denotedminimum

domain (MD), is usually applied with look-aheadalgorithms, becausethe actual size

of domainsis available to the heuristic at no additional cost.

The performanceof MD is often improved with the addition of someinformation

from the graph topology. For instance, [83] breaks ties among variables in the MD

heuristic by using a graph degree. [22] select the variable having the lowest ratio

domain cardinality divided by degree in an attempt to combine both dynamic and

static information. Other approaches also considerdynamic degreeinformation, as

the constraint graph is simpli�ed as search proceeds.

Valueordering hasnot attracted the attention of the CSPcommunity asmuch. It

is generallybelieved that good valuesare thosewhich aremorelikely to participate in

solutions. This idea is developed in [52]wherethey proposea valueorderingheuristic

which relieson a tree-relaxation of the problem to estimate the goodnessof a value.

A di�eren t approach for value ordering is followed in [138, 88, 83]. Within the

context of look-aheadalgorithms, valuesare orderedby the pruning e�ect that they
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have on future domains. This approach requires the propagation of each possible

assignment to obtain the sizeof the resulting domains.

While there are quite successfuldomain-independent variable ordering heuristics,

the current state of research suggestthat good value ordering heuristicsare likely to

be highly problem-speci�c.

Optimization Techniques

Solving Optimization Problemswith completesearch techniquesusually implies bor-

rowing techniquesfrom Operations Research (OR) such as Branch-and-Bound (BB)

to intertwin them with constraint algorithms.

We are not going to give a comprehensive review of these techniquessince it is

not the focus of this thesis (hybrid optimization methods will be described in the

next chapter), but we are going to present someof the most popular techniques in

the literature.

Optimization problemscanbesolvedusinga number of di�eren t techniqueswithin

the constraint satisfaction paradigm. Full lookahead([110]) is popular becauseit is

easyto implement and works on a largevariety of problems. Essexalgorithms ([220]),

which are a variation on Freuder'ssolution synthesis techniques2 ([80]), signi�cantly

ouperform lookaheadalgorithms on the N-Queensproblem. Of special interest is the

techniquepresented in ([17, 16]) whereconstraint satisfaction,branch-and-bound and

solution synthesis techniquesare integrated.

2Solution synthesis is a method usedto generateall solutions to a CSP. That is, all assignments of
valuesto variablesthat satisfy the problem's constraints producedby a solution synthesisalgorithm.
Often, this set of solutions can be further judged according to someseparatecriteria to obtain the
optimal solution.
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2.1.4 Lo cal Search

Local search is a di�eren t paradigm for solving combinatorial optimization problems.

It di�ers from the constraint satisfaction techniquesthat perform a completesearch

in the way in which the search is performed. We can say it sacri�ces completeness

in return for better performancein a number of problems. Instead of performing a

completesearch of the search-tree which guarantees�nding the optimal, it explores

local neighborhoods to �nd nearoptimal solutionsfast. In someproblemsit canreach

the optimum although it cannot be proven by the mechanism itself. It is usually

well-suited for large-scaleproblems and for optimization problems, rather than for

satis�abilit y.

Local Search evolved on its own but it was quickly incorporated as a class of

algorithm to solve CSPs. We now review the main aspectsof this framework:

The LS Algorithm

A typical LS algorithm starts with an initial solution (either randomly or heuristically

generated)and it moves to neighbooring solutions in order to optimize the value of

a function f . This function f measuresthe quality of a solution. In constraint

satisfaction it is usually the number of constraint violations; thus, the algorithm will

try to minimize f , reaching a solution when f = 0 (no constraint violations). In

optimization problemsit is usually the function to be optimized, although it can be

mixed with constraint violations if we allow the algorithm to move through unfeasible

solutions.

The main operation of a LS algorithm is moving from a solution s to one of

its neighbors. This new solution s0 to which the algorithm will move, can be found

within the set of neighbors N (s) calledneighborhoodof s. Sometimes,a legality of a

move might be de�ned. In that case,the LS algorithm will identify which movesare

legal at a certain time, and then chooseone of them as the new solution. Thus, the

algorithm selects(S selectionoperator) a legal neighbor (L legality operator) from

the neighborhood N (s) of s.

Figure 2.1 depicts a genericLS algorithm. The search starts from an initial state
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1. function GenericLocalSearch()
2. s  I nitial Solution ();
3. s�  s;
4. k  0;
5. while k � maxIt
6. if satisf iable(s) and f (s) < f (s� ) then
7. s�  s;
8. s  S(L(N (s); s); s);
9. k++;
10. return s� ;

Figure 2.1: A GenericLocal Search Algorithm

in line 2, and performsa certain number of iterations (line 5). Lines 6 and 7 are used

to keeptrack of the best solution found so far, and line 8 performs the move to the

new solution.

Formalizing LS Concepts

In this sectionwe are going to summarizedsomeconceptswithin the LS framework.

We have already explained that LS evolved independently from CSPs and so we

are going to give introduce some general concepts.Let us assumethat we have a

combinatorial optimization problem P of the form:

minimize f (~x) subject to

C1(~x)
...

Cm (~x)

where~x is a vector of n decisionvariables,f is the objective function that represents

the quality of a solution, and C1; � � � ; Cm are the constraints to which the variables
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are subject. Basedon all that we can now de�ne:

De�nition 2.10. A solution to P is an assignment x̂ of all the variables in ~x. The

set of solutions is denotedby L P .

De�nition 2.11. A feasiblesolution to P is a solution x̂ that satis�es the constraints

C1; � � � ; Cm . The set of feasiblesolutions is denotedby ~L P .

De�nition 2.12. The set of optimal solutions to P, denotedby L �
P is de�ned as

L �
P = f s 2 ~L P j f (s) = min

k2 ~L P

f (k)g (2.1)

Note that in this casewe use the term solution to name a complete assignment of

valuesto variables, and feasiblesolution to a solution that satis�es the constraints.

Rembember than in the constraint satisfaction framework a solution corresponds to

a feasiblesolution here.

De�nition 2.13. A search space for P is a set L̂ P such that L P � L̂ P � N n .

Note that the search spacemay vary from one algorithm to the other. It is part of

the modeling of the problem, in somecaseswe might want to move within the space

of feasiblesolutions, where L̂ P = ~L P ; or we might want to enforcesomeconstraints

and leave others to be part of the objective function f , i.e. permit violations of those

constraints and try to minimize them during search. For a constraint satisfaction

problem,whenviolations arenon-existent, it meanswe have a solution; for constraint

optimization problemsit meansthat we have found a f easible solution.

De�nition 2.14. A neighborhood is a pair hL̂ P ; N i where L̂ P is a search spaceand

N is a mapping N : L̂ P � ! 2 ^L P that de�nes set of reachable solutions N (s) � L̂ P

from solution s.

De�nition 2.15. A solution s is locally optimal with respect to L P if

f (s) � min
i 2 N (s)

f (i )

The set of local optimal solutions is denotedL +
P .



CHAPTER 2. PURE APPROACHES 36

Escapingfrom local optima is oneof the issuesthat hasbeengetting the most atten-

tion within this framework, and it is the causeof LS algorithms introducinginteresting

legality and selectioncriteria.

De�nition 2.16. A neighborhood is a pair hL̂ P ; N i where L̂ P is a search spaceand

N is a mapping N : L̂ P � ! 2 ^L P that de�nes set of reachable solutions N (s) � L̂ P

from solution s.

De�nition 2.17. A legality condition L is a function (2 ^L P � L̂ P ) � ! 2 ^L P that �lters

setsof solutions from the search space.

De�nition 2.18. A selection rule S(M ; s) is a function (2 ^L P � L̂ P ) � ! L̂ P where

M = L(N (s); s), that choosesan element si from M and decideswhether to accept

it or to keepthe current solution s.

De�nition 2.19. A local search algorithm for P is a successionof solutions

s0 ! s1 ! : : : ! sk

such that

si +1 = S(L(N (si ); si ); si ) (1 � i � k) (2.2)

It is very common that such a local search algorithm producesa �nal solution sk

that belongsto L +
P . In the next section we are going to introduce heuristics and

metaheuristics , whoserole is to direct the search towards high-quality local optima,

and specially thosein L �
P if possible.

Heuristics

All the heuristicshereare basedon the template depictedin �gure 2.1, and assuming

that it receives the parametersf , N and the legality and selection rules L and S.

We are alsogoing to assumethat we are always dealingwith minimization problems,

so that the goal is to minimize f .

Heuristicstypically choosethe next neighbor basedon local information, basically

the current solution and its neighborhood, which translates into providing di�eren t
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selectionmechanismsand di�eren t legality conditions. For example,we can de�ne

three di�eren t legality conditions, whereN is assumedto be the neighborhood of S:

1. function L-Improvement(N; s)
2. return f n 2 N j f (n) < f (s)g;

which only allows to move to a neighbor with a strictly superior quality.

1. function L-ImprovementAndWalk(N; s)
2. return f n 2 N j f (n) � f (s)g;

which allows moveswherethe value of the objective function is the same.

1. function L-All(N; s)
2. return N ;

or the last casein which any kind of move is allowed.
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Systematic Heuristics This typeof heuristic performsan exploration of the neigh-

borhood in order to decidewhich neighbor is going to becomethe next solution. The

main relevant onesbeing:

Best Neigh bor: this heuristic choosesthe neighbor with the best value of the

objective function:

1. function S-Best(N; s)
2. N �  f n 2 N j f (n) = mins2 N f (s)g;
3. return f n 2 N � g;

where n can be chosenrandomly with probability 1
jN � j , where j N � j is the num-

ber of elements in N � . A Best-Improvement LS algorithm can thus be speci�ed by

instantiating the genericlocal search in the following manner:

1. function BestImprovement(s)
2. return GenericLocalSearch(f ; N;L-Improvement,S-Best)

First Neigh bor: sometimes,the search spaceis too large to completely scan

it in order to �nd the best neighbor. The First-Neighbor heuristic choosesthe �rst

neighbor which improves the value of the objective function. It assumesa function

lex(n) that speci�es the lexicographicorder of a neighbor n whenscanningthe neigh-

borhood:

1. function S-First(N; s)
2. return f n 2 N g minimizing lex(n);

A First-Improvement LS algorithm can thus be speci�ed by instantiating the generic

local search to usethe �rst-neighbor heuristic as selectionrule:
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1. function FirstImpr ovement(s)
2. return GenericLocalSearch(f ; N;L-Improvement,S-First)

Random Walks The Random Walks heuristic randomly selectsa candidate from

the neighborhood and decidewhether to select it or not (instead of performing an

exploration of the neighborhood).

Random Impro vement: this is the simplest example of a random walk, it

consistson acceptinga neighbor if it improvesthe current solution:

1. function S-RandomImprovement(N; s)
2. select f n 2 N g;
3. if f (n) < f (s) then
4. return n;
5. else 6. return s;

In line 2, n canberandomly selectedwith probability 1
jN j , wherej N j is the number of

elements in N . Note alsothat in line 6 the current solution is returned, which means

that s is implicitly part of the neighborhood. The random nature of this approach

seemscritical in someapplications ([6]). A RandomImprovement LS algorithm can

thus be speci�ed by instantiating the genericlocal search in the following manner:

1. function RandomImprovement(s)
2. return GenericLocalSearch(f ; N;L-All,S-RandomImprovement)

The Metrop olis Heuristic: is a variant of Random Walks that allows oc-

cassionaldegradation of the value of the objective function. It selectsa random

candidate, if it doesnot degradethe objective function the candidate is returned, if

it does,then it is acceptedwith a small probability

exp(f rac� (f (n) � f (s))t)
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that dependson the distancebetweenthe objective functions, and on a parameter t

called temperature. Assuminga function True(f (n); f (s); t) that checks this proba-

bilit y, the Metropolis heuristic can be speci�ed by:

1. function Metropolis(N; s; t)
2. select f n 2 N g;
3. if f (n) � f (s) then
4. return n;
5. else if True(f (n); f (s); t)
6. return n;
7. else
6. return s;

Again, n can be randomly selectedwith probability 1
jN j , wherej N j is the number of

elements in N .

Metaheuristics

The heuristicspresented in the previoussectionaim exclusively at choosingthe next

solution within the neighborhood in order to provide high quality local optima. But

local optima are not necessarilyglobal optima, and thus, somemechanism is needed

to escape from them. Thesemechanismsare known as metaheuristics.

All the metaheuristicshereare alsobasedon the template depicted in �gure 2.1,

and assumingthat it receivesthe parametersf , N and the legality and selection rules

L and S. We are alsogoing to assumethat we are always dealingwith minimization

problems,so that the goal is to minimize f .

In the following we will present someof the most characteristic metaheuristicthat

can be found on the literature:

Iterated Lo cal Search The idea behind this metaheuristic is to iterate a speci�c

local search from di�eren t points in the search space.Sometimes,the starting points

can be generatedfrom the last local minima reached on the previousiteration.
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1. function IteratedLocalSearch(f ; N; L; s)
2. s  I nitial Solution ();
3. s�  s;
4. for k = 1 to maxSearchesdo
5. s  LocalSearch(f ; N; L; s);
6. if f (s) < f (s� ) then
7. s�  s;
8. s  GenerateNewSolution(s);
9. return s� ;

Figure 2.2: Iterated Local Search

1. function SimulatedAnnealing(f ; N )
2. s  I nitial Solution ();
3. t1  I nitial Temperatur e(s)
4. s�  s;
5. for k = 1 to maxSearchesdo
6. s  LocalSearch(f,N,L-A ll,M etropolis(tk); s);
7. if f (s) < f (s� ) then
8. s�  s;
9. tk+1  UpdateTemperature(s; tk);
10. return s� ;

Figure 2.3: Simulated Annealing

Figure 2.2 depicts the outline of this algorithm. In line 2 an initial solution is

generatedand a certain number of iterations areperformed(lines 5-8). Each iteration

consistsof a call to a Local Search procedure(which couldbeany of the metaheuristics

presented in this section)and the generationof a new solution that can be produced

either through somekind of transformation of the current solution s or from scratch.

Simulated Annealing This is a very popular metaheuristic that is basedon the

Metropolis heuristic presented in the previoussection. The key feature is the parame-

ter t or temperature. Di�eren t temperaturesproducedi�eren t trade-o�s betweenthe
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1. function GuidedLocalSearch(f ; N; L; S)
2. s  I nitial Solution ();
3. f 1  f
4. s�  s;
5. for k = 1 to maxSearchesdo
6. s  LocalSearch(f k ; N; L; S; s);
7. if f (s) < f (s� ) then
8. s�  s;
9. f k+1  UpdateObjectiveFunction(s; f k);
10. return s� ;

Figure 2.4: Guided Local Search

quality of the solution and the executiontime. The idea behind this metaheuristic is

to iterate the Metropolis algorithm with a sequenceof decreasingtemperatures.

t0; t1; : : : ; tk (tk+1 � tk)

The results is to allow many moves initially , and progressively reduce the number

of allowed moves, converging thus toward random improvement with the hope of

high-quality local optima when t i ! 0.

Figure 2.3 depicts the Simulated Annealing template. There are, however, two

critical decisionsto take: the initial temperature (line 3) and the cooling mechanism

(line 9). Both of thesecan be chosenexperimentally or can be derived systematically

for speci�c instances([1],[126])

Guided Lo cal Search This metaheuristic is basedon the recognition that a local

optima s for an objective function f might not be locally optimal to a di�eren t objec-

tiv e function f 0; thus, using f 0 will drive the search away from s. As a consequence,

the key idea is to use a sequenceof objective functions f 0; f 1; : : : ; f k to direct the

search towards di�eren t areasof the search space.

Figure 2.4 depicts the Guided Local Search algorithm, whose embedded local

search is generic.The keyfeatureis the updating mechanismfor the objectivefunction
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1. function GenericLocalSearch()
2. s  I nitial Solution ();
3. s�  s;
4. �  hsi ;
5. k  0;
6. while k � maxIt
7. if satisf iable(s) and f (s) < f (s� ) then
8. s�  s;
9. sk+1  S(L(N (sk); � ); � );
10. k++;
11. �  � + sk+1 ;
12. return s� ;

Figure 2.5: The GenericLocal Search Revisited

(line 9), which canbedonein terms of the previousobjective function or from scratch.

Tabu Search This is a very popular and e�ectiv e metaheuristic that mixesa great

variety of techniques. In order to better understand it we are going to extend the

genericlocal search presented earlier. The new idea is to maintain a sequence

� = hs0; s1; : : : ; sk i

of solutionsexploredso far. Figure 2.5 depicts the new local search procedure.

As a �rst approximation, givena sequencehs0; s1; : : : ; sk i , tabu search selectssk+1

to be the best neighbor in N (sk) that hasnot yet beenvisited.

As a consequence,tabu search can be viewed as the combination of a greedy

strategy with a de�nition of legal moves ensuring that a solution is never visited

twice:

1. function TabuSearch(f ; N; s)
2. return LocalSearch(f ; N;L-NotTabu,S-Best)
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where

1. function L-NotTabu(N; � )
2. return f n 2 N j n =2 � g;

There are two interesting featuresto highlight here. First, there are no referencesto

the objective function in the legality conditions, which meansthat degradingmoves

are allowed, which can translate into escapingfrom local minima. Second,its greedy

nature ensuresthat the quality is not going to degradetoo much at any step, since

the best neighbor is always chosen.

Tabu List is the nameof the structure where tabu search storesthe sequence

of visited solutions. However, memory spaceconstraints limit the stored informa-

tion. Often, only characteristics of the move are recorded,rather tha the complete

solutions. Thus, the tabu list usually stores limited aspects of the solutions which

do not fully characterizethem, but can also considernon visited solutions with the

samecharacteristics. As a consequence,solution aspectsare only stored temporarily,

and are freed at somepoint. The number of stepsduring which the chosenfeatures

of a solution are stored is called the tabu tenure. Thus, the election of the aspects

of a solution to store, and the value of the tenure are key assetsin the algorithm's

performance.

Aspiration is a mechanism related to the partialit y of the stored information.

It allows choosinga solution in the tabu list when it is better than the current best

solution. The resulting legal movesare speci�ed as

1. function L-NotTabu-Asp(N; � )
2. return f n 2 N j n =2 � _ f (n) < f (s� )g;
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Long-T erm Memory: we know that the tabu list abstracts a small su�x of

the solution sequence,and cannot capture long-term information. As a consequence,

tabu search cannot ensurethat the search will not focus on low quality solutions, or

that it will spend too much time on the sameregion of search space. Thus, tabu

search algorithms typically implement two di�eren t mechanismto avoid the previous

problems:

� Intensi�c ation consistson storing high-quality solutions during the search and

returning to them periodically, thus, allowing a more extensive exploration of

the regionswherethe best solutionshave beenfound.

� Diversi�c ation provides a meansto explore more diverseregionsof the search

space. There are many ways to achieve this goal, such as using iterated local

search to perturb or to restart the search, or using strategic oscillation, which

consistsof changing the objective function in order to balancethe time spent

in the feasibleand infeasibleregions([6]).

There are other more complex metaheuristics in the literature such as Variable

Neighborhood Search (VNS) [161] or Ant Colony Optimization (ACO) [57]. Also,

hybrid evolutionary approaches are sometimesconsideredas metaheuristic, but we

will exploresuch methods in the next chapter.

Most of the �gures and templates in this sectioncan alsobeenfound with higher

detail in [115].

2.2 SAT

Considerthe following problem:

Example 2. I'm hungry and I would like somethingto eat. My father saysI must

eat meat or elsedon't eat �sh. My mother saysI must eat �sh, vegetableor both. My

girlfriend asksme not to eat either vegetablesor meat or both. What can I eat?
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This problem canbe represented asa propositional satis�abilit y problem. We can

expressthe three constraints by meansof a propositional formula,

(M _ : F ) ^ (F _ V) ^ (: V _ : M )

whereM, F and V areBooleanvariableswhich aretrue if and only if I eat respectively,

Meat, Fish, and Vegetables.A solution to the problem is a satisfying assignment, an

assignment of truth values to the Boolean variables that satis�es the propositional

formula. In this case,there are just two satisfyingassignments (out of eight possible).

Theseeither assignM and F to true and V to false,or assignM and F to falseand

V to true. That is, I can either eat both Meat and Fish, and not Vegetables,or I can

eat only Vegetablesand neither Meat nor Fish.

Whilst propositional satis�abilit y is a very simple problem, it is a cornerstone

in the theory of computational complexity. Propositional satis�abilit y was the �rst

problem shown to be NP-complete[41].

2.2.1 Satis�abilit y

Propositional satis�abilit y (SAT) is the problem of decidingif there is an assignment

for the variables in a propositional formula that makes the formula true. Many AI

problems can be encoded quite naturally into SAT (eg. planning [137], constraint

satisfaction, vision interpretation [189], diagnosis,hardware veri�cation and design,

. . . ).

Much research into SAT considersproblemsin conjunctive normal form (CNF).

A formula is CNF if and only if it is a conjunction of clauses;a clauseis a disjunction

of literals, where a literal is a negated or un-negatedBoolean variable. A clause

containing just one literal is called a unit clause. A clausecontaining no literals is

called the empty clauseand is interpreted as false. k-Sat is the class of decision

problemsin which all clausesare of length k. k-SAT is NP-complete for any k � 3

but is polynomial for k = 2 [84]. Other polynomial classesof SAT problems exist

including Horn-SAT (in which each clausecontains no morethan onepositive literal),

renamableHorn-SAT and several other generalizations.
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2.2.2 Complete pro cedures

There are di�eren t approachesto solve a SAT problem, such ascompleteprocedures,

approximation algorithms, mixed techniques, etc. We are now going to focus in

completeprocedures,explaining the algorithms and somebasic features.

Davis-Putnam pro cedure

Despite its simplicity and age,the Davis-Putnam procedureremainsthe coreof one

of the best completeproceduresfor satis�abilit y [61]. Davis, Logemannand Loveland

changedthe original procedureby adding a splitting rule which divides the problem

into two smaller subproblems[49]. In much of the literature, this later procedureis

rather inaccurately called \Da vis-Putnam" or \DP" procedure.

Pro cedure DP(�)
(Sat) if � empty then return satis�able
(Empty) if � contains an empty clausethen return unsatis�able
(Tautology) if � contains a tautologous clausec then return DP(� � f cg)
(Unitpr opagation ) if � contains a unit clausel then

return DP(� simpli�ed by assigningl to Tr ue)
(Pur eliter aldeletion) if � contains a literal l but not the negation of l then

return DP(� simpli�ed by assigningl to Tr ue)
(Split ) if DP(� simpli�ed by assigningl to Tr ue) is satis�able then

return satis�able
else return DP(� simpli�ed by assigningthe negation of l to Tr ue)

Figure 2.6: The Davis-Putnam procedure.

After applying the splitting rule, the algorithm simpli�es the set of clausesby

deleting every clausethat contains the literal l assignedto True (often called unit

subsumption) and deleting the negation of l whenever it occurs in the remaining

clauses(often called unit resolution).
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Branc hing heuristics

The DP algorithm is non-deterministic as we can choosethe literal upon which to

branch. A popular and cheapbranching heuristic is MOM 's heuristic. This picks the

literal that occurs most often in the minimal size clauses. Ties are usually broken

with a static random ordering.

The Jeroslaw-Wang heuristic [129] estimatesthe contribution each literal is likely

to make in order to satisfy the clauseset. Each literal is scoredas follows: for each

clausec the literal appears in, 2�j cj is added to the literal's score,where jcj is the

number of literals in c. The split rule is then applied to the literal with the highest

score.

Hooker and Vinay, after investigating the Jeroslaw-Wang scorefunction ([120])

claimed for a \simpli�cation hypothesis", that it is best to branch into simpler sub-

problemswith fewer and shorter clausesafter unit propagation. The simpli�cation

hypothesis suggestsa \t wo-sided" Jeroslaw-Wang rule which performs better than

the original.

There more recently proposedbranching heuristics 3, like the Variable State In-

dependent DeacyingSum (VSIDS) heuristics found in Cha� solver [165]. Someof its

featuresare:

� Choosethe literal that has the highest scoreto branch.

� Initial scoreof a literal is its literal count in the initial clausedatabase.

� Scoreis incremented by 1 when a new clausecontaining that literal is added.

� Periodically, divide all scoresby a constant.

In telligen t backtrac king and learning

The standardDP procedureperformschronologicalbacktracking, exploringonebranch

of the search tree completely before backtracking and exploring the other. We can

3Seehttp:// research.microsoft.com/users/lin taoz/SATSolving/satsolving.htm for a good SAT
Solving Mini Courseby Linato Zhang
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1. function StochasticLocalSearch(�; maxTr ies;maxSteps)
2. for k = 1 to maxTr ies do
3. s  I nitR andomAssignment();
4. for l = 1 to maxSteps do
5. if s satis�es � then
6. return s;
7. else
8. x  chooseVariable(s; � );
9. s  s with truth value of x 
ipp ed;
10. return no solution.

Figure 2.7: Stochastic Local Search. � is the input formula

improve upon this by adapting someof the well-developed techniquesfrom the con-

straint satisfactioncommunity likecon
ict-directed backjumping andnogood learning

(in fact, nogood learninghasdevelopedmuch moree�cien tly in the SAT framework).

Con
ict-directed backjumping backs up the search tree to the causeof failure, skip-

ping over irrelevant variableassignments. Nogood learningrecordsthe causeof failure

to prevent similar mistakes being made down other branches. Bayardo and Schrag

have described how both of these mechanismscan be implemented within the DP

procedure[15], and are now a standadr feature of all state-of-the-art SAT solvers.

Early mistak es

The problem with a complete procedure like DP is that an early mistake can be

very costly. Gomes,Selmanand Kautz have shown that a strategy of randomization

and rapid restarts can often be e�ectiv ely usedat tackling such early mistakes [99].

Meseguerand Walsh show that other modi�cations of the depth-�rst search strat-

egy like limited discrepancysearch and interleaved depth-�rst search can also help

avoiding early mistakes[154].

2.2.3 Lo cal Search-based Pro cedures

Our focusin this thesisis not on Local Search methodsfor the SAT paradigm. Several

hybrid methods are, nontheless,introduced in the next chapter. Here, we are going
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to give a brief set of referencesto pure Local Search solversand methods for the SAT

framework.

Stochastic Local Search (SLS) can be interpreted as performing biasedrandom

walk in a search spacewhich, for SAT, is given by the set of all complete truth

assignments. A generaloutline of a SLSalgorithm for SAT is given in Figure 2.7.

SLS algorithms di�er mainly in the heuristic for choosing the variable to 
ip

in each search step. WalkSAT algorithms (citeSelman96)use a two-step variable

selectionprocess:�rst, oneof the clauseswhich areviolated by the current assignment

is randomly chosen; then, according to someheuristic, a variable occurring in this

clauseis 
ipp ed using a greedybias to increasethe total number of satis�ed clauses.

Variants of this technique are WalkSAT with Tabu ([153]) and the Novelty versions

([153, 121, 47]). WalkSAT is similar to GSAT ([60]) but the former introducesthe

notion of noise parameter.

A rather comprehensive review of Complete and Local Search (WalkSAT-lik e)

review can be found in [122], and an empirical comparisonof LS methods in [123].

2.3 Evolutionary and Genetic Algorithms

An Evolutionary Algorithm (EA) indicates a subsetof Evolutionary Computation,

which specializesin solving combinatorial optimization problems. EAs are catego-

rized as a kind of Evolutionary Computation, being the latter a broader term which

includesmetaheuristic optimization algorithms. Someof thesetechniqueshave been

mentioned in the previoussection,such asant colony optimization (which is sometime

includedin the Local Search paradigm), or otherssuch asparticle swarm optimization

([37]).

EA is thus a term to de�ne any population-basedtechniqueswhich implements

certain mechanismssuch as reproduction, mutation, recombination and natural se-

lection, all of them inspired by biologicalevolution. EAs canbe alsoviewedasa form

of Local Search, where there are multiple completeassignments instead of just one,

and where richer methods of moving acrossthe search spaceare provided. A broad

classi�cation of EAs would be the following:
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� Genetic Algorithms: the most popular kind of EA, it looks for a solution

within a population of strings of numberswhich evolvesthrough recombination

methods that include mutation and selectionoperators.

� Evolutionary Programming: it consists on �xing the structure of the

program and letting the parametersevolve during time.

� Genetic Programming: here the solutions are in the form of computer

programs which �tness corresponds to the abilit y of solving a computational

problem.

� Evolution strategy: which maintains a representation of vectors of real

numbers and typically includesself-adaptive mutation rates.

� Learning classi�er system: instead of a �tness function they implement a

rule utilit y decidedby a reinforcement learning technique.

This categorization is neither extensive nor exclusive, and its only pretension is

to introduce the sub�eld of the Evolutionary Algorithms. To learn more about EAs

and Evolutionary Computation conslut [69]. In the next subsectionswe are going to

focuson Genetic Algorithms (GAs).

2.3.1 Genetic Algorithms

Everybody seemsto agreeon the fact that Holland was the father of the GAs. His

early works (in 1962)on adaptivesystemslaid the foundation for latter developments.

Moreover, his book Adaptation in Natural and Arti�cial Systems([119]) was the

�rst to present the conceptof adaptive digital systemsusing mutation, selectionand

crossover as a problem-solving strategy. However, this research was conceived by

Holland asa meansof studying adaptive behavior and not asa function optimization

method. To learn more about the history of GAs consult [96].
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1. function GenericGeneticAlgorithm()
2. pop I nitial Population();
3. Evaluate(pop);
4. while not Termination ()
5. parents  selectParents(pop);
6. descendants Combine(parents);
7. M utate(descendants);
8. pop SelectPopulation(pop;descendants);

Figure 2.8: A GenericGenetic Algorithm

The Algorithm Template

Figure 2.8 shows the genericGA template. The population pop is initialized in line

2 and evaluated in line 3. Then, a certain number of iterations is repeated until a

termination criteria is reached (line 4). During these iterations the individuals are

selected(line 5) to be combined (line 6) and their descendants are mutated (line 7).

Afterwards,a newpopulation is generatedfrom the previousoneand the descendants,

although sometimes,the previous population is completely forgotten and only new

individuals are consideredfor the next iteration.

In the next sectionswe are going to review each oneof thesesteps.

2.3.2 Represen tation

This is an issuethat is prior to the development of the algorithm. Typically, GA

usea string of number as a representation, and very often it is only a binary string.

However, we should not forget that choosingthe right representation of a problem is

key to the algorithm's performance. Thus, it is well worth to devote sometime to

representation.

The �rst issuewhich arisesin someGAs is to link the real problemto the problem

representation. This mimics biology wherea genotype encodesthe information that

yields a fenotype which is the natural transformation of that information.
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Sometimes,this distinction doesnot appear if the information and the represen-

tation are one and the samething, which happensoften. However, as we will latter

see,it is important to explicitly make this distinction sincethe genotype is usedfor

individuals interaction, but the fenotype is neededto calculate the real value of the

evaluation function. Every unit of information stored in the genotype is typically

namedgene.

The secondissueis what kind of structures do we need to use to represent our

genotype and/or fenotype (Note that, many times, the fenotype is not actually im-

plemented, and it might be only calculated when the evaluation function needsit).

In general,we can distinguish several typesof representation:

� Binary Represen tation: this is the simplest representation we can �nd. It

consistson a binary sequence,i.e., a sequenceof 1's and 0's. While this tech-

nique is very commonlyused,it is not always the bestsuited approach. Its main

drawback is basedon the genotype-to-fenotype mapping. For example,when

the 1's and 0's represent booleanvariables, the genotype-to-fenotype mapping

is direct: a 1 represents a true variable and a 0 represents a falseone. Instead,

if for example,we are representing numbers with binary sequences,we can en-

counter problemsderived from the fact that the distancesbetweenthe numbers

and between their representations do not match. Observe that the distance

between3 and 4 is only 1, while if we are representing the numbers as a 4-bits

sequence,the distancebetween0011and 0100is not 1 anymore. Here,asin the

next typesof representation, we have to decidethe length of the string.

� In teger Represen tation: to avoid problemslike the one previously stated,

wecansafelyrepresent the individuals assequencesof integers.This is probably

a better suited representation for complexproblems. The only issueherewould

be to decidewhether thoseintegerscan be �nite or in�nite.

� Real or Floating-P oin t Represen tation: which consistsof a string of real

values. This approach is typically better suited for genesthat come from a

continuousdistribution.
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There are other more complex representations such as: strings of letters (which

is basically equivalent to that of a �nite integer representation) and permutation

representations (see[69], p. 41{42).

2.3.3 Evaluation Function

Closelyrelated to the representation, the issueof the evaluation function arises.This

function associatesa value to every individual in the population, and correspondsto

the quality of that individual. Thus, di�eren t representations of the sameproblem

may have di�eren t evaluation functions, since this is typically calculated from the

valuesof the genesof each individual and through the genotype-to-fenotype mapping.

The evaluation function is often referredto as�tness function in the Evolutionary

Computation �eld.

2.3.4 Initial Population

Oncethe representation is �xed, the �rst issuein developing the algorithm is that of

the initial population. This is typically performedby randomly generatingindividuals

so that the population can cover wider areasof the search space.

Nonetheless,there are other morespecializedmethods. A very commonapproach

is to generatethe individuals in a greedymanner,which meansthat every individual

is constructedin a way such that at every time, the next geneis given the value that

optimizesthe evaluation function for that individual. Occasionally, the solutionsmay

be somehow seededin areaswheresolutionsare likely to be found.

2.3.5 Parent Selection

Selectionis the method through which certain elements in the population are chosen

to be combined. This selectionmechanism tries, in general, to chooseparents that

are likely to producea high-quality descendant. Typically, two individuals arechosen

two reproduceand yield descendants. Di�eren t kinds of selectionmechanism are:
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� Fitness Prop ortional Selection: consistsof giving a certain probability

to be chosenfor every individual. This probability depends directly on the

absolute�tness of the individual ([119]). The main drawback of this mechanism

is that the bestcandidatesarevery likely to takeover the wholepopulation very

quickly. This method is often called roulette-wheel selection.

� Ranking Selection: this method is very similar to the previous one. The

di�erence is that, in this case,the individuals are ranked according to their

�tness, and then probabilities are given basedon the ranking rather than on

the �tness itself ([11]).

� Tournamen t Selection: this is may be the simplest mechanism, and also

the least time-consuming. It consistson choosing k individuals completely at

random, and then selectingthe two individuals with highest �tness function.

Obviously, the complexity of this method dependson the value of k.

There are many other methods, mainly variations of the onesdescribed above.

Again, the readeris referredto [69] for more details.

Multiparen t Selection Is to worth mentioning that somealgorithms implement a

multiparent selectionscheme.This meansthat, independently of the selectionmethod

they use,more than two parents are selectedfor combination. We detail the kind of

combination methods for this type of selectionin the next section.

2.3.6 Repro duction

This operator is in chargeof combining the parents in such a way that a high quality

individual (descendant) will be obtained. This mechanismis alsoknown ascrossover.

In someGAs, this operator is able to generatemore than one descendant (usually

two), but we will assumefrom now on that only one descendant is going to be gen-

erated. Thus, di�eren t crossover operators are:

� One poin t crossover: this is the most popular method. It consistson choos-

ing a point randomly, and copying the genesof a parent, from the beginning
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until this point, to the descendant, and the genesof the other parent from that

point till the end.

As an example,imagine we have two parents of the form:

� 1 = h 0 1 0 0 1 1 1 1 0 i

� 2 = h 0 0 0 1 1 0 1 0 0 i

and k = 5 is the crossover point, the descendant would either be

h 0 1 0 0 1 / 0 1 0 0 i

or

h 0 0 0 1 1 / 1 1 1 0 i

Note that extending this operator to generatetwo descendants is trivial.

� Multiple poin t crossover: is basedon the previous operator, and its only

di�erence is that insteadof 1 point, several k points arechosenrandomly. Then,

to generatea descendant it would copy the genesof each parent in turns after

each crossover point.

� Uniform crossover: is slightly di�eren t than the previousone. It treats each

geneindependently and decidesfrom which parent it is going to be inherited

(typically with the sameprobability).

These methods are the most common onesin the literature. Other more complex

ones can also be found. It is also very common to implement a type of uniform

crossover whereinstead of proabilities, the decisioncriteria is basedon the �tness of

the descendant.

Multiparen t Com bination

As we mentioned in the previous subsectionit is also possible(although not very

common)to implement a multiparental combination. Instead of 2 parents, k parents

are selectedand combined. Thus, combination methods for this option tend to be
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di�eren t from thoseof the traditional scheme. Thesemethods can be categorizedas

follows:

� Generalizinguniform crossover ([166]).

� Generalizingmultiple point crossover ([64]).

� Generalizingarithmetic combination operators ([221]).

To know more about the e�ciency and suitabilit y of this type of combination on

certain structures of the search space(landscapes) consult [68].

2.3.7 Mutation

This operator is the sourceof great diversity. It is basedin the biological fact that

somegenescan mutate for di�eren t reasons,and thus, the descendant can acquire

genesthat are from neither of its parents. The most commononesare:

� Random bit modi�cation: consistson changingthe valueof somebits with

a given probability. The operator changesthe valueof every bit in the sequence

with a certain probability. If the representation is binary, the e�ect is that of


ipping a bit, either from 0 to 1 or from 1 to 0.

� Swap mutation: simply selectstwo genes(at random) in the sequenceand

swaps their values. Imagine the individual:

h 0 [1] 0 [0] 1 0 1 0 0 i

and the swapping genes1 and 3, the mutated individual would be

h 0 [0] 0 [1] 1 0 1 0 0 i

� Insert mutation: choosestwo genesat random and moves the secondone

next to the �rst. Again, if we have the individual

h 0 [1] 0 0 [1] 0 1 0 0 i
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and the inserting genes1 and 4, the mutate individual would be

h 0 [1] [1] 0 0 0 1 0 0 i

� Scram ble mutation: selectsa regionin the sequenceand randomly scrambles

its values. For example,

h [0 1 0 0] 1 0 1 0 0 i

and the region from 0 to 3, a possiblemutate individual would be

h [1 0 0 0] 1 0 1 0 0 i

Note that all theseoperators can be applied to any kind of representation, even

though the illustrations assumea binary representation.

Many other complexand specializedmutation operators can be found in the lit-

erature, including the ones where the mutation is not random but biased by the

subsequent value of the �tness function of the individual.

2.3.8 Selection of the New Generation

As we have previously introduced, this is the mechanism that replacesthe last pop-

ulation by a new one. In order to do so, somealgorithms completely replace the

previous population for the new set of descendants or o�spring . However, this is

usually not a very e�ectiv e technique, and GAs normally implement mechanism to

generatethe new population from both, the previousone and the o�spring. Among

thesemechanism we can distinguish:

� Fitness based: selectionfocuseson keepingthe individuals with higher �tness

for the next generation.

� Generationsbased: selection takes into account the number of generations

passedsinceits creation, and replacesthen those individuals which have been

in the population for a larger amount of generations.
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� ReplaceWorst: sometechniques tend to replace the worst x individuals in

each step. Many of these techniques do not present a generationalmodel as

shown in �gure 2.8, but a di�eren t model explainedin section2.3.10.

A technique associated with this operator (independent of the mechanismtype) is to

always maintain the highest quality individual in the population. This technique is

usually referredto as elitism.

2.3.9 Termination

The termination condition indicateswhenit is time for the algorithm to stop. At this

point, the algorithm will usually return the best individual according to its �tness

function. We can distinguish two kinds of termination condition:

� Ob jectiv e reached: when a GA is implemented to reach a certain goal (i.e.,

a solution of a certain quality), reaching that goal should be the indication for

the algorithm to stop.

� External conditions: However, the previous caseis very rarely achieved,

due to the stochastic nature of thesealgorithms. Therefore,a di�eren t criteria

must be used. Di�eren t conditions include:

{ Fixed number of generationsreached.

{ Maximum time allowed reached.

{ Fitnessimprovement doesnot occur for a certain period of time/generations.

{ Manual inspection.

{ A combination of the above.

2.3.10 Evolutionary Mo dels

This last issuedealswith the structure of the algorithm rather than with the nature

of its operators. There two well-known kinds of evolutionary models:
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� Generational Mo del: this is the model corresponding to �gure 2.8. In each

generationa setof parents areselectedto generatea newpopulation of the same

sizeas the previousone. This new population is often calledo�spring . The old

population will be replacedby the new one (o�spring) or by a combination of

both (as explainedin section2.3.8).

� Steady State Mo del: in this model the population is not replacedat once.

Instead, only a certain number � of old individuals is changed.The percentage

�=
 (where 
 is the sizeof the population) of replacedsolutions is called the

generational gap. This technique was introduced in [232] and has beenwidely

studied and applied sincethen ([228, 193]).

For a moretechnical point of view onEvolutionary Computation andEvolution strate-

giesconsult [23].



Chapter 3

Hybrid Approac hes

Our �nal hybrid incorporates featuresfrom Constraint Programming, Local Search

and Genetic Algorithms. Sincehybrids incorporating thesethree techniquesare al-

most non-existent, we aregoingto reviewsomestate-of-the-art approachesthat com-

bine these techniques two by two. Thus, in this chapter we are going to review

di�eren t hybrids divided into three sections:

� Constraint Programmingand Local Search hybrids, including SAT procedures.

� Memetic Algorithms which introduceLocal Search in Genetic Algorithms.

� Genetic Algorithms and Constraint Programming hybrids.

3.1 CP and LS

Many combinatorial problemscanberepresented and solvedwithin the generalframe-

work provided by Constraint Satisfaction Problems(CSP), which allows a very nat-

ural modeling of many practical applications, such as planning, scheduling, time

tabling, vehiclerouting, etc.

Search algorithms for solving CSPsare usually categorizedinto local search and

systematic search algorithms. Since both approaches have their own advantages,

combining them appearsvery promising. As a result, there is a growing interest in the

development of new hybrid algorithms that combine the strength of both techniques.

61
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3.1.1 A general view

Let us review the de�nition of a Constraint Satisfaction Problem; a CSP P =

(X ; D; C) is de�ned by a set of variables X = f x1; :::; xng, a set of n �nite value

domainsD = f D1; :::; Dng, and a set of c constraints or relations C = f R1; :::; Rcg.

A constraint Rx is a pair (vars(Rx ); r el(Rx )) de�ned as follows:

� vars(Rx ) is an orderedsubsetof the variables,calledthe constraint scheme. The

sizeof vars(Rx ) is known as the arity of the constraint. A binary constraint

has arity equal to 2; a non-binary constraint has arity greater than 2. Thus, a

binary CSP is a CSP whereall constraints have arity equalor lessthan 2.

� r el(Rx ) is a set of tuples over vars(Rx ), called the constraint relation, that

speci�es the allowed combinations of values for the variables in vars(Rx ). A

tuple over an orderedsetof variablesX = f x1; :::; xkg is an orderedlist of values

(a1; : : : ; ak) such that ai 2 dom(x i ); i = 1; : : : ; k.

Solving a CSP means�nding an assignment for each variable that does not violate

any constraint.

Algorithms for solving CSPsfall into one of two families: systematicalgorithms

and local search algorithms.

Systematicalgorithms typically start from an empty variable assignment that is

extendedin a systematicway by adding individual tentativ e assignments until either

a solution is found or the problem is detectedinconsistent (there is no solution for the

problem). Crucial to the e�ciency of thesemethods is that each decision(branch) is

immediately propagatedby local consistencytechniqueswhich prune the search space

(mainly, though not only) by deleting valuesfrom variables' domains. Backtracking

occurs when a dead-endis reached, typically becausethe propagation mechanism

made a variable's domain empty (produced a domain-wipeout, as it is called). The

biggestproblemof this approach is that it requiresan important computational e�ort

and therefore it encounters somedi�culties with large scaleproblems; it also might

su�er from early mistakesin the search which cancausea wholesubtreeto beexplored

with no success.Thesemethods are usually improved by adding speci�c techniques
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such as look-back enhancements (backjumping, learning) or look-aheadmechanisms

(�ltering techniques,variable or value ordering heuristics).1 Thus, we can say that

these algorithms are complete, systematic, and they search through the spaceof

partial assignments.

Local search algorithms mainly rely on the useof heuristics to e�cien tly explore

interesting areasof the search space. They typically start from a completevariable

assignment and perform an incomplete exploration of the search spaceby repairing

unfeasiblecompleteassignments. Local search algorithms are capableof following a

local gradient in the search space.Even though thesemethods can better deal with

large-scaleproblems of certain kinds, their main drawbacks are that they are not

guaranteed to �nd a solution even if there is one, cannot collect all solutions, and

cannot detect inconsistency. Thus, we can say that thesealgorithms are incomplete,

non-systematic(they usually follow a local gradient which doesnot ensureexhaustive

exploration), and they search through the spaceof completeassignments, moving from

oneto another accordingto certain prede�ned rules of \neighbourhood".

In terms of the �eld terminology, local search stands for the simple strategy of

performing local changesto a starting solution in order to decreasea given cost

function. The special heuristics that guide this process,mainly to avoid or escape

local minima are called "meta-heuristics". However, for simplicity, we will refer to

them as local search algorithms through all the review. If the reader is interestedin

meta-heuristicswe recommend[159] for an extensive review.

A promising idea for producing more e�cien t and robust algorithms consistsin

combining theseparadigmsin order to takeadvantageof their respectiveassets.Many

existing proposalsprovide di�eren t formsof hybridization betweenboth methods,but

they often deal with very speci�c classesof problemsand also mix satisfaction and

optimization. We are going to categorizethosehybrid approachesinto three di�eren t

branches:

1. The loosest form of integration is to use both local and systematic search,
1Industrial applications of constraint modeling, in particular, have proved the importance of

specialized �ltering techniques for prede�ned global constraints, e.g. that some variables have all
di�eren t values, or cardinalit y constraints such as \each machine can have at most k shifts" that
arise frequently in practice.
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but separately, e.g. perform local search after or before systematic search,

interleaved or in parallel. Portfolio or time-slicing techniquesmay for example

allocate time and processingpower to each of a variety of solvers, which may

be local or systematic, according to various strategies. While there are often

computational advantagesto begainedfrom this approach, it doesnot represent

a realdegreeof integration, and is thereforeleft outsidethe scopeof this chapter.

2. Perform systematic search improved by local search. We distinguish three di-

rections within this category:

� Over completeassignments. Typically for optimization or repair-like tech-

niques.

� Over partial assignments. In construct and repair approaches.

� Over global constraints. Local search is basically used to prune support

valuesin global constraints.

3. Perform local search improved by complete search. We can distinguish three

di�eren t brancheswithin this category:

� Usecompletesearch to explore the neighborhood.

� Useconsistencytechniquesto prune the search space.

� Record nogoods (learnt constraints that represent an explanation of do-

main wipe-outsfound during search) in order to achieve completeness.

It is alsoworth mentioning a recently proposedgeneralframework to encloseall these

methods: PLM, which stands for Propagation, Learning and Move. The authors

claim that any algorithm can be decomposedin thesethree components. Thus, any

method could be implemented by specifying each of thesethree elements.

The chapter is organizedas follows. Section 2 and 3 review hybrid approaches

from the secondand third categoriesrespectively. Section4 describesthe PLM frame-

work. Section5 introduceshybrid methods for the SAT problem which we alsofound

interesting to address. A necessarydiscussionabout hybridization (what has been
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doneand what we believe should be pursuedin the future) is presented in section6.

Finally, section7 is dedicatedto conclusionsand future work.

3.1.2 Lo cal Search enhancemen ts for Complete Search

Complete search and constraint programming algorithms have been the most used

methods for solving constraint satisfaction problems. After the proved superiority

of local search methods in many problem instances,trying to incorporate features

from local search into completesearch was a goal that seemedworth pursuing. As

introducedin the previoussectionwe will distinguish amongthree di�eren t branches

within this hybridization category.

Lo cal search over complete assignmen ts

This type of method is particularly suited for optimization purposes. It is very

straightforward to perform local search from an initial solution obtained by system-

atic search to improve its �tness. Usually, in the constraint programmingframework,

this issuewould be tackled using branch and bound techniques. However, this can

result in a uselessexploration of the search spacewherevisiting di�eren t brancheswill

not lead to a substantial changein the cost function. Thus, it seemsvery promising

to introducelocal search mechanismsto more e�cien tly explorethe neighborhood of

the constructedsolution.

Local search can also be applied to a set of global search generatedsolutions.

Global search will only be usedasa way to produceseveral initial solutionson which

a local search improvement phaseis performed. In this context, it is important to

generatestarting solutionsthat are diverseenoughfor the later exploration. Limited

DiscrepancySearch ([112]) is an interesting way of generatinga diversi�ed initial set

of solutions.

We will not further explore this branch of hybrid algorithms since it does not

represent a clear e�ort for integration. Local search is typically performedover con-

structed solutions,thus,both methodscanevensharethe sameinformation structure.

A more interesting idea is to perform local search at internal nodesof the search tree,
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i.e. local search over partial assignments, an idea we tackle in the next subsection.

Lo cal search over partial assignmen ts

This is a very interesting kind of hybridization becausethe degreeof integration

achieved is more sophisticated. Thesemethods typically perform an iterativ e exten-

sion of a consistent partial assignment until all problem variables are instantiated.

If the tentativ e extensionreachesa dead-end,it is necessaryto backtrack and pro-

duce alternative instantiations. At this point we can �nd methods which perform a

reparative stage,while others introducethe local search like techniquesto remove in-

consistent variablesinsteadof backtracking. Also, somemethods implement a CP-like

search (instead of a greedyconstruction) to extend the consistent partial assignment

and to prune the search spaceas well.

A construction and repair approac h Merging constructive and reparative fea-

tures into hybrid search hasbeeninvestigatedin di�eren t ways. Distinguishing among

thesevarious forms of hybrid search is a matter of stating the degreeof integration

between the two approaches. We can �nd methods where the integration is loose,

di�eren t constructive and reparative modules exchangeinformation while operating

independently ([168],[236]). In other approacheswe encounter a higher degreeof in-

tegration, wherethe reparative processemploys constructive methods to explorethe

neighborhood ([197],[194]).

A Construction and Repair approach with a higher degreeof integration is pre-

sented in [34]. They introducea generalhybrid method namedCR, and then proceed

to specify it in order to provide a fully operational search method called CNR.

CR is a genericsearch framework which integratesboth constructive and repar-

ative featuresas operators. Search is then performed in two alternating stages. A

construction stagewherea consistent partial assignment is iterativ ely extendeduntil

inconsistencyor completeconsistencyis proved. And a repair stagewhich modi�es

the current inconsistent assignment until it becomesconsistent.

CNR standsfor Construction and Neighborhood Repair search, and it represents

an instantiation of the CR framework described above. In the constructive stage,
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an implementation of the extend function is provided. It includesboth variable and

valueorderingheuristics,aswell asa consistency function which performsa modi�ed

versionof arc-consistency. In the reparative stagea neighborhood of an assignment

is speci�ed. At each time, a member of the neighborhood will be selectedgreedily

according to a cost function f . This cost function evaluates partial assignments

taking into account not only the number of variables with empty domainsbut also

how constrained the assignment is. They alsoprovide di�eren t repair operatorswhich

give rise to di�eren t neighborhoods.

The experimental results shown in [34] correspond to the open-shopscheduling

problem. The algorithm is tested on three sets of benchmarks from the literature:

Taillard instances ([217]), Brucker instances ([29]) and Gu�eret & Prins instances

([105]). The algorithm's performanceis compared against �v e di�eren t methods:

the geneticalgorithm of Prins ([182]), the Tabu Decision-Repairalgorithm of Jussien

and Lhomme([133]), two Tabu search methods of Alcaide ([5]) and Liaw ([146]), and

the Branch-and-Bound algorithm of Gu�eret and Prins ([104]). Authors assurethat

their algorithm outperforms all thesemethods in every instance except for a single

9X9 one;and it alsoyields strictly better solution quality for every 10X10 instance.

Impro ving The Scalabilit y of Backtrac king Other methods aim at improving

the scalability of backtracking through the integration of local search techniques. An

early example is basedon dynamic backtracking [92], an \in telligent" backtracking

technique able to backtrack to a variable without removing the remaining assign-

ments, while dynamically reorganizingthe search tree. Partial Order Dynamic Back-

tracking ([93]), improvesthe scalability of Dynamic Backtracking without sacri�cing

completeness.The main feature that introduceswith respect of DB is the allowance

of greater 
exibilit y in the choiceof the backtracking variable.

Another hybrid approach is to usesystematicbacktracking techniquesin a non-

systematic ways. In [143], Iterativ e Sampling is introduced. It simply consistsof

restarting a constructive search every time inconsistencyis proved. However, this

approach requiresa lower degreeof integration. It is nonethelessworth mentioning

that variations on this approach have been shown to outperform both local search
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and backtracking methods on certain problems([46],[99]).

A new approach called Incomplete Dynamic Backtracking (IDB) is described in

[177]. IDB is inspired by Dynamic Backtracking and Partial Order Dynamic Back-

tracking, and is ableto jump back to an earlier variablewithout removing the remain-

ing assignments. It allows total 
exibilit y in the choice of the variable to backtrack

with, and it alsorecordsno information about the visited search space,thus sacri�c-

ing completeness.The authors claims that this form of backtracking is indeeda local

search in a spaceof consistent partial assignments.

IDB's schemais quite simple: it proceedsby randomly selectingunassignedvari-

ables,and assigningvaluesto them following a certain value ordering heuristic; when

a dead-endis reached it backtracks by randomly removing several assignments. Ter-

mination is only guaranteed when a solution is found.

More speci�cally, IDB implements forward checking asa form of constraint prop-

agation. It is thus important to adapt this consistencytechnique to a random unas-

signment of variables,sinceit hasto be capableof leaving the state of thosevariables

as if forward checking had beenonly applied to the currently assignedvariables. It

alsoimplements a minimum-domain (MD) heuristic for variablesselection,while val-

uesare only selectedif they do not generateany con
icts and if propagating them

causesno domain wipeout. Among theseallowed values, the one that was assigned

the last, is selectedwherepossible.However, IDB attempts to usea random di�eren t

value for onevariable every time a dead-endis reached.

Another issueis how to unassignvariableswhen inconsistencyhas beenproven.

IDB provides a heuristic that consistsof selectingvariableswith the largest current

domain, breaking ties randomly.

Finally, in order to adapt this schema to optimization problems, ideasfrom the

Constraint Programmingframework are borrowed. It simply restarts the search after

each solution until the �rst dead-endoccurs,reusingthen asmany assignments from

the previoussolution as possible.

The approach is testedthrough severalknown problems: the n-queens,the Golomb

ruler and the maximum cliques problem. The n-queensproblem is used mainly to
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introducethe algorithm; on the Golomb ruler it improved the scalingof constrained-

basedapproachesand achieved better solutions than genetic algorithms. On maxi-

mum cliques, it outperformed many di�eren t algorithms and was only inferior to a

sophisticatedlocal search method ([14]).

Scheduling and Timetabling In many caseswe �nd very speci�c approachesto

deal with very speci�c problems. Someof them are easily extended to a general

cases,while others introduce various problem-tailored rules that are very hard to

generalize.Thus, it is interesting to study those methods within the context of the

type of problems they focus on. In this particular subsection,many methods have

beendevoted to solving Scheduling and Timetabling problems.

Scheduling and Timetabling problemsare often tackled with constraint program-

ming techniques,and asin other application areas,hybridization appearedpromising.

Someof the approaches described next deal speci�cally with this application area,

and are not always easyto extend to a more generaldomain.

In [214] authors employ a proposeand revise rule-basedapproach to the course

timetabling problem. Every time the construction reachesa dead-enda local change

rule attempts to �nd a possibleassignment for the unscheduledactivit y. They only

perform a single step before restarting the construction, and their aim is only to

accommodate the pending activit y.

Another approach is to use a heuristic constructive mechanism in order to �nd

an initial solution, and then apply a local search technique to improve it. In [235],

authors implement an algorithm to solve a timetabling problem by meansof com-

bining an arc-consistencybasedconstruction and a min-con
ict hill climbing stage.

The construction phaseacceptsconstraint violations, and when a completesolution

is produced,the hill-climbing phasereducesthe overall penalty.

A very interesting algorithm is described in [197]. It is similar to the other tech-

niques introduced above, i.e., it constructs a tentativ e solution until a dead-endis

reached, and then it performs a local search phase over the partial instantiation

reached. However, it has two new features:

1. It performsa full run of local search, insteadof a �xed number of local changes.
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It alsorelieson well-studied local search algorithms, insteadof implementing a

set of problem speci�c moves.

2. It introducesa look-aheadfactor that adds information to the cost function,

in order to provide a better guidance towards more promising areas in the

search space,not only taking into account feasibility but alsopossibility of the

partial solution to be completed. This look-aheadfactor is basedin the min-

con
icts heuristic, which counts the number of uninstantiated valuesfor every

uninstantiated variable.

This approach featuresthe possibility to be applied to both search and optimization

problems. This is achieved due to the 
exibilit y of the scorefunction which allows

di�eren t combinations of weights to take into account feasibility, optimalit y (if neces-

sary) and look-aheadin many proportions. Depending on the weights given to each

aspect the search would be directed towards di�eren t regions: for example, a high

weight for feasibility would direct the search towards feasibleregions(which authors

arguenot to be e�cien t due to the extremerisk to get trapped on local minima).

This technique is applied to solve the coursetimetabling problem. The author

implemented three di�eren t versions:with random hill climbing, steepest hill climb-

ing and min-con
ict hill climbing ([160]). The results show that combined methods

perform better than pure local search methods, and the best of them is the onethat

introducesmin-con
ict hill climbing. The algorithm is also applied to tournament

scheduling yielding results that con�rm the sameconclusion.

Unfortunately, a considerableamount of research is devoted to algorithms specif-

ically tailored to the problem at hand. Even though it can result in a very e�ectiv e

algorithm that outperformspreviousworks, it is hard to extract conclusionsfrom it.

A very speci�c approach for a timetabling problemis presented in [48]. This paper

describes an algorithm for an examination timetabling problem usedat the "Ecole

desMines de Nantes".It is a constraint-basedapproach that introduceslocal repair

techniques. An extra feature that this problem presents is that the timetable has to

be generatedin lessthan 1 minute.
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The problem it tacklesconsistsof scheduling examinationscomposedof four sub-

jects. For every day, for every subject, every candidate has to be assignedto one

examinerduring oneperiod.

The algorithm solvesthe problem in two consecutive steps:

1. A �rst step called preassignment that reducesthe domains of the variables

making them consistent with a de�ned set of required constraints.

2. A secondstep called �nal assignment which assignsa period to every candidate

from the preassigneddomains.

In the preassignment step the domainsof the variablesare reducedfollowing this

criteria:

� Every examinershould have the samenumber of candidates.

� Each candidate takesan exam in the languagehe chooses.

� No candidateshould meet an examinerwho comesfrom the sameschool.

� All candidatesare then preassignedeach to four examiners(one for each sub-

ject).

In the �nal step the algorithm searches for a solution. The method attempts

to assignevery variable following a smallest domain heuristic. When a dead-endis

reached, several speci�c local repair techniquesare applied: free assignedcandidates

that would be consistently assignedin the current state to the current examiner;

extend the previous technique to other examiners;swap already assignedexaminers

and check the consistencyof the resulting instantiation; and �nally , swap examiners

without checking.

The program was validated on �ft y hand-madeinstancesplus thirteen real ones.

Sincethe problem is very speci�c they do not provide any comparison.However, they

are able to solve instancesin lessthan a second(for the real ones),and eight seconds

at most for the hand-madeones.
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Over Global Constrain ts

In the last years,the constraint programmingcommunity hasshown a great interest

in global constraints. CP models have becomemore and more focusedon a few

number of global constraints. For instance,the Travelling SalesmanProblem (TSP)

hasbeencentred on onesingleTSP constraint ([19]). Moreover, Knapsack constraints

([219],[73]), or 
o w constraints ([28],[21]) have lately beendeveloped.

Constraint propagation on theseglobal constraints is usually improved by a spe-

cialized �ltering algorithm. These algorithms are usually basedon Operation Re-

search polynomial algorithms. Well known global constraints such as AllDi�er ent

and Cardinality Constraints have beenthoroughly studied as well ([188],[227],[185]).

Consequently, some e�ort has lately been centered on developing local search

techniquesas �ltering algorithms for global constraints. Thus, global constraints for

local search rise asa compromisebetweenthe generality of low-level CSP-basedlocal

search and the e�ciency of problem-tailored local search encodings.

A very straightforward approach for the Dynamic Job-ShopScheduling problem

is introduced in [167]. A global search control selectsamong a set of global con-

straints that implement their selectionof heuristic, their improvement heuristic and

their update functions; variablesemploy a commoninterfacethat links all the global

constraints and permits updating their states.

Resultsfor the dynamic job-shopscheduling are provided aswell. Basedon these

experimental results, authors intend to boost performanceby implementing various

extra features: randomization to escape local minima and plateaus; random walks

(random moves in the search spacewhich disregard the cost function value) that

can be included by allowing a secondimprovement heuristic for each constraint that

performs the mentioned variation of a random variable; a taboo list is usedfor the

global search control's constraint selection. They also provide di�eren t heuristics

(using moreknowledgeor beingmoreo�ensive) and show a comparisonamongthem.

Another interesting approach is described in [20]. Authors implement a Branch

and Movetechniquewhich consistsof using the support of the main global constraint

of the problem as a guide for the branching strategy.

The approach divides the problem into several global constraints. It selectsthe
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main global constraint of the problem and an element of its support (a variable-value

pair which is consistent with the current domains). This element has associated a

function that signi�es the distance to the current support with respect to all other

constraints. This distanceis a measureof the quality of the pair, i.e. how far is the pair

from being consistent to each constraint; if the function is null it meansthe element

is a solution, otherwisethe algorithm selectsa constraint with maximum valuefor the

mentioned function, and then the algorithm brancheson a constraint whosesupport

set does not include the element. The search proceedsby successively considering

sub problems(including the branching constraint and including the complementary

decision).

Local search is introduced before each element's choice. A descent procedureis

applied to a neighborhood structure for the main constraint.

Authors also provide an empirical comparisonfor the TV-break problem. The

algorithm is comparedagainstother CP, LS and Mixed Integer Programming (MIP)

methods. It is claimed that the approach �nds good solutions very quickly, and it

is always better than the other approachesexcept for a few instanceswhere the CP

approach is equalor better.

3.1.3 In tro ducing Complete Search mechanisms in Lo cal Search

Alternativ ely to the approaches discussedin the previous section, where complete

search is enhancedthrough local search, onemight try instead to introducecomplete

search characteristicsinto local search. This might be motivated by e�ciency reasons

and alsoasa way to addressthe lack of completenessof local search. In this casewe

di�eren tiate three di�eren t branches:

CP for neigh borho od exploration

In the last years,local search techniqueshave beenmore and more directed towards

the useof larger and more complicatedneighborhoods. However, the standard way

of searching the best neighbor is to iterate over the neighborhood, testing its �tness

and/or its feasibility. Moreover, real world problems usually require several side
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constraints, which yield a smaller feasiblespace.Thus, getting stuck on local minima

is more likely to happen, and exploring thoseneighborhoods by simple enumeration

becomesine�ectiv e.

A very referencedwork ([204]) introduces a new search method named Large

Neighborhood Search (LNS). LNS is a hybrid approach for solving vehicle rout-

ing problems. It exploresa large neighborhood which consistsof removing and re-

inserting visits usinga constraint basedtree search. Also, it usesLimited Discrepancy

Search (LDS [112]) to re-insert visits. It is basically a technique that movesthrough

the search spacein a local search fashion, but that usesconstraint propagation to

evaluate the cost and legality of the move.

The algorithm is basicallya processof continual relaxation and re-optimization. It

achievesthis through a technique of relaxing and re-inserting visits. The re-insertion

processmakesuseof the full power of constraint propagationand heuristics. A branch

and bound technique is usedto examinethe whole search tree for the re-insertion of

minimum cost. Variable ordering heuristics reducethe sizeof the search tree, while

value ordering heuristics guide the search towards a solution. Finally, in order to

explorethe search tree, the algorithm includesLDS which directs the search towards

an increasingnumber of discrepancies (i.e. number of branches taken against the

value ordering heuristic).

The algorithm is then applied to solve the capacitatedvehiclerouting problemand

the sameproblem with time windows. LNS is comparedagainst the best methods

implemented in the �eld of OperationsResearch, and it is extremelycompetitiv e: both

in its averageperformanceand in terms of its abilit y to producenew best solutions.

CP for search space pruning

A way of pruning or reducing the search spaceis to add symmetry constraints to a

symmetric problem. However, this has lately beenproved as an ine�cien t technique

for local search ([179]).

Many local search approachesimplement a technique to reducethe search space,

mainly for optimization problems: limit the neighborhood to only feasibleassignments

([107]). Others ([6]) featurea strategywhich consistsof allowing unfeasiblenavigation
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but only for a given number of steps.

However, in [171] we �nd an interesting approach that combines CP models of

the neighborhood and powerful propagation techniques. As the authors argue, the

paper proposesa novel way of looking at local search algorithms for combinatorial

optimization problems. The approach introducesa neighborhood exploration used

instead of performing branch and bound search.

This adaptation of local search to the constraint programming framework relies

on a particular neighborhood structure. Local search will iterate a branch and bound

like search on a di�eren t search space. The exploration of the branch and bound

strategy is translated to an examinationof the neighborhood of a solution. Moreover,

modeling constraints and lower bounds will help prune the search spaceover the

whole neighborhood.

The approach is calledbranch and bound becauseit brancheson a certain variable

and it alsoboundsthe costof partially constructedneighborhoods. Recordingthe cost

of the best neighbor found so far and computing lower bounds for partial neighbors

is thereforea way to reducethe unexploredneighborhood.

This techniqueis very interestingbecauseit implies the descriptionof two di�eren t

models: a CP model of the problem and a neighborhood model of a solution. There

existsa one-to-onemapping betweenthe set of solutionsof the CP model and the set

of neighbors which communicate through interface constraints. Local search is then

formulated as a sequenceof CP tree searcheson auxiliary problems.

While the algorithm is searching for a neighbor the original model is also active,

which can result in a propagation that can also reduce the search space. Thus,

constraints are used not only for testing feasibility but also for removing sets of

infeasible neighbors during search. Ultimately, the neighborhood exploration will

tend to �nd the neighbor that optimizesa given cost function.

In order to evaluate the approach, it is testedon the Traveling SalesmanProblem

with Time Windows (TSPTW), with instancesfrom the literature and the model

described in ([172]). The resulting observations are vague,though the authors claim

that the pruning yields savings on the number of neighbors.

This type of approach has a clear advantage: there is a clear separationbetween
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problem modeling and problem solving which facilitates the addition of side con-

straints, very commonin real-life problems.

Nogo od recording to achiev e completeness

There are not many approachesthat attempt to implement a complete local search

algorithm. Furthermore, apart from tabu search, most of the local search approaches

are memoryless. However, we will seein the SAT section that this goal has been

pursuedin that �eld.

Nonetheless,we can �nd a complete local search approach in the local search

literature ([91]). This method introducesa new neighborhood search heuristic which,

makinge�ectiv euseof memorystructure, achievescompleteness.The approach called

completelocal search with memory(CLM) keepstrack of the visited solutionsin order

to prevent the search from exploring them againat later stages.Memory standsfor a

special spacefor storing solutions generatedby the heuristics; its sizeis the number

of solutions that it can store.

The algorithm is basedon maintaining three di�eren t lists of solutions:

� A LIVE list which contains available solutions.

� A DEAD list which storessolutions that wereLIVE at somestage.

� and A NEWGEN list for new solutions that are generatedby the heuristic

during the current state.

The method starts with initial solution which is stored in LIVE. Then, iterates by

choosingand exploring a given number of solutions from LIVE, transferring them to

DEAD; at the sametime good quality neighbors are generated.Theseneighbors are

checked for membership in any of the three lists, if non of the lists contains them they

are stored in NEWGEN. After all solutionshave beenexplored,they are transferred

from NEWGEN to LIVE.

Di�eren t stoppingrulesarestudied in the paper. Whenever oneof them is reached

a genericlocal search is applied to every solution in LIVE and the optimal solutions
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are addedto DEAD. Finally, the heuristic returns the best solution found in DEAD.

The choiceof the stoppingrule will substantially perturbate algorithm's performance.

The experimental setting is designedto comparethe algorithm againsttabu search

on the traveling salesmanproblem (TSP) and the subsetsum problem (SSP). After

someparameter tuning e�ort, the algorithm yielded better quality solutions than

tabu search and took lesstime for the TSP; however, for the SSP, tabu search was

slightly slower but achieved marginally better results on the average.

Another very promising approach is that of Weak-commitment search ([233]).

Even though it might not �t in this category, it represents an e�ort in developing

complete local search algorithms. Weak-commitment search is able to revise bad

decisionswithout exhaustive search, while maintaining completenessand featuring

the possibility of introducing various heuristics to operate oncea consistent partial

solution is constructed.

It is a very special technique wheretwo parallel setsof variablesare maintained:

vars-left and partial- solution. Vars-left is initialized to a tentativ e solution while

partial-solution is assignedto an empty set. The algorithm will proceedby moving

variables from one set to the other, while recording abandonedpartial solutions as

nogoods. The search iterates the following steps:

1. Check if all variables in vars-left are consistent with the nogoods. If so, the

current assignment is a solution.

2. Choosea variable and value pair in vars-left that violates someconstraints and

createa set with the valuesthat are consistent with partial-solution.

3. If the set is empty and partial-solution is alsoempty, it meansthat there exists

no solution; if partial-solution is not empty, it is addedas a nogood and all its

elements transferred to vars-left.

4. If the setof consistent valuesis not empty, the variableand valuepair is removed

from vars-left and a value that minimizes the number of constraint violations

with vars-left is assignedto the variable and both addedto partial-solution.
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The author providesa comparisonof the algorithm against the min-con
ict back-

tracking and the breakout algorithm ([162]), on problemssuch as the n-queens,the

graph-coloringand the 3-SAT problem. An extensive discussionof the performance

of the methods on every domain is provided as well. As a summary, it is enoughto

say that weak-commitment is 3 to 10times moree�cien t than both other approaches.

3.1.4 The PLM Framew ork

In this section we describe the PLM framework which was introduced in [134] and

[135]. As we have mentioned before, the authors claim that any algorithm (either

systematicor local) can be decomposedinto three components: a Propagation com-

ponent, a Learning component and a Moving component. They also show that this

genericframework is a usefulbasisfor newsearch algorithms that combine constraint

programming and local search; yielding a family of algorithms which they call the

decision-repair family.

The Three Comp onents

We are going to brie
y summarizethe three di�eren t search components:

� The Propagation component is usedto propagateinformation whena decision

is made during search. They divide this component into two operators: a

�ltering operator which removesparts of the search spacethat do not contain

any feasiblesolutions, and a checking operator which checks if a solution can

exist.

� The Learning component is usedas a mechanism to avoid the exploration of

states that have beenproved not to contain a solution. This component also

has two operators: recording and forgeting.

� The Mo ving component, whoseaim is to explore the search space. There

are two moving operators as well: a repair operator to be usedwhen a dead-

end is reached and a extendoperator which incorporatesnew information when
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not enough information about the existenceof a solution, or lack thereof, is

provided.

They also provide a taxonomy of search algorithms introduced to characterizeany

given technique using di�eren t valuesfor the three components.

The Propagation comp onent Its �ltering operator can take di�eren t valuessuch

as: a simpleconsistencycheck, forward-checking, arc-consistency, bound-consistency,

etc.

Its checking operator can be non-existent or pragmatic (as in [131]).

The Learning Comp onent This component is only characterizedby the lifetime

of the recordedinformation: not used, single use, time-bounded use, size-bounded

use,etc.

The Mo ving Comp onent In this casetwo di�eren t types of movements can be

achieved: a backtrack-like type of move, and a jump-like move (which is the caseof

local search algorithms that jump from a given state to a neighboring one).

With this taxonomy authorsprovide a characterizationof severalknown algorithms,

such as BT, MAC, MAC-CBJ, GSAT, etc.

The Decision-Repair Family

In [135], the authors also present a new family of algorithms by specifying the three

PLM components. It is basedon the ideaof combining the propagation-basednature

of mac-dbt ([132]) and the freedom given by a local search algorithm such as tabu

search ([95]).

In terms of the PLM framework, this family would be characterizedby: starting

with an empty set of decisions;using a standard �ltering algorithm for reducing the

variablesdomains;recordingexplanationsfor the encountered dead-endsand storing

them in a tabu list; forgetting the oldest explanation when the tabu list is full;

classicallyextending the information by adding new decisions(variable assignment,
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domain splitting, etc.); and repairing by heuristically selectinga decision to undo

from the last computedexplanations.

A decision-repairalgorithm (DS) is tested on the open-shopscheduling problem.

Hard instancesare generatedusing results presented in [105], and the algorithm is

comparedagainst an intelligent backtracker ([104]) and a genetic algorithm ([182]).

DS is better than both approachesup to size9X9, while for 10X10instancesit is still

better than the backtracker but it is matched by the geneticalgorithm.

3.1.5 The Satis�abilit y Problem (SA T)

The development of hybrid approaches for SAT is clearly of interest for the topic

of this thesis. The time-line for hybrid SAT methods is similar to that for their

analoguesin constraint satisfaction. After the appearanceof local search algorithms

that outperformed complete search methods for certain instances,the need for hy-

bridization raised as a great opportunit y. The main direction initially followed was

randomization techniques for complete search solvers. Afterwards, a new direction

focusedon developing a more sophisticatedintegration. We can distinguish two dif-

ferent branches:

� Adding new learnt clausesin order to achieve completenessand/or boost per-

formance

� Improving stochastic local search on structured problemsby e�cien tly handling

variable dependencies.

We brie
y review someof thesemethods in the next subsections.

Randomizing complete search solvers

The heavy-tailed cost distribution phenomenonis the causeof unpredictability in

running times for complete search algorithms ([98]). Randomization is meant to

eliminate heavy-tails and thus boost completesearch methods performance. A few

works have beencentered on randomization; in [46], authors implement an algorithm

that employs a variableorder randomizationand a restart strategy. However, it is not
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until [98] when the �rst explanation for the potential successof this kind of strategy

is provided.

The approach described in [99] is characterizedby two di�eren t techniques:

Randomization In systematic proceduresa consistent assignment is iterativ ely

extended.A newunassignedvariable is heuristically selectedat each time. If di�eren t

variables appear to be equally good, a �xed rule is applied to chooseone of them.

It is there, in that step of tie-breaking, where randomization is applied. It simply

consistsof choosingamongthe equally ranked choicesat random.

However, it is possible that, for certain heuristic functions, no equally ranked

variablesappear. In order to deal with this, authors introduce a new parameter to

the algorithm. It is meant to provide a certain percentage of the highest scoreto be

consideredequally good. This expandsthe choice-setfor random tie-breaking.

With thesefeaturesthey ensurethat each run of the algorithm on the samein-

stancewill di�er in the order in which choiceswill be made. They claim it can be

advantageousto terminate the search when it appears to be stuck. Therefore, they

are forced to introduce a cuto� parameter to limit the search to a given number of

backtracks.

Restarts After the mentioned cuto�, the search is restarted from scratch, i.e. restart-

ing at the root of the search tree. Authors claim that this strategy clearly prevents

the algorithm from getting trapped in the long tails on the right of the heavy-tailed

distribution.

The performanceof this technique is mainly determinedby the valueof the cuto�

parameter. Authors argue that a low value could be usedto exploit the left part of

the distribution, and thus allowing the algorithm to solve several instancesafter a

su�cien t number of restarts. A thoroughly study of the impact of the cuto� valueon

the algorithm performanceis provided as well.
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Adding new clauses

After �nding in the 90's that local search performswell for many SAT problems,the

following approachesfocusedon developing a strategy for escapinglocal minima. A

�rst approach wasto dynamically increasethe weights of clausesassearch progresses

([162],[203]). However, a more powerful and promising technique was introduced in

[33] and [234]. Both approaches suggestedthat adding implied clausesis explicitly

better then adding duplicate clauses,and it alsoachievesthe samee�ect as in clause

weighing.

In [33], addingnewclausesis viewedasa way to makethe slopeof the search space

smoother than the simple weighting. Authors claim that this approach is roughly

four to ten times faster than weighting in terms of the number of search steps, for

the speci�c weighting schemethey use.

The algorithm (ANC) works asany local search algorithm with a weight strategy.

Moreover, as authors have pointed out, increasingthe weight of a clausecan be seen

equivalent to adding another equal clauseto the formula. The only problemsis how

to �nd thesenew clauses.The solution adopted in this caseis to selectresolvents of

two clauses,a widely usedtechnique in nogood recording in systematicSAT solvers.

This method is comparedagainsta similar approach (WEIGHT) developedby the

sameauthors ([32]). They present di�eren t kinds of instance: a completely random

kind of formula, a hard random-generatedtype that makes useof AIM Generators

([8]), and a few natural oneson fault diagnosisof VLSI design. ANC is signi�cantly

better than WEIGHT in terms of moves, but no time comparisonis provided, and

ANC is supposedto spend a larger amount of time per move.

Even though [162] argued that increasing the cost of visited local minima can

eventually solve a satis�able instance but cannot easily detect unsatis�abilit y, [75]

showed that local search can becomecomplete by adding new clausesand without

embedding it in a tree-like framework.

Thus, how to generatenew implied clausesis the key feature for achieving com-

pletenessin [75]. Authors ensure that no local minima are left after all possible

implied clauseshave beengenerated. It is clear that this approach can su�er from
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worst-caseexponential spacecomplexity, but authors arguethat, in practice, the al-

gorithm usually either �nds a satisfying assignment or generatesthe empty clause

beforethat can happen.

The algorithm schemeresembles that of many local search algorithms for SAT.

The search proceedsby iterativ ely changing the value of a single variable in the

current assignment. Randomnessis not fundamental, and thereforethe search moves

to a neighboring assignment only if it is strictly better. When this is not possibleit

meansthat a local minimum hasbeenreached. At this moment, the clausegenerator

must produce a new implied clause,and it is critical that this is achieved in �nite

time.

The clausegeneratorprovided is calledNeighborhood Resolution. For each literal

in every violated clausea di�eren t clausecritically satis�ed by the negation of the

literal is searched; a new clauseis generatedby resolvingthe two clauses.If this new

clauseis not empty it is addedto the formula. The authors develop several theorems

to prove that this approach is complete.

Furthermore, several other featuresare discussed:unit propagation when a unite

clauseis generated;equivalent literal detection as a limited form of equivalencerea-

soning; a resolution betweensimilar clauses,if they only di�er on the polarity of a

single literal; and appropriate data structures with the help of doubly-linked lists.

The empirical evaluation for this approach is one of the most completewe have

seen. It is basedon the instancesand the protocol of the 2003 SAT Competition

([207], [124]). Thus, the algorithm is comparedagainst many state-of-the-art solvers

using a broad collection of 996 problems. Comparisondemonstratesthat Complete

Local Search (CLS) is of practical interest. It is very competitiv e, and it yields close

results (mostly better) to local search methods on problems where local search is

more e�cien t, and relatively closeresults to completesearch methods on handmade

and industrial instances.Authors claim that had it entered the competition, it would

have achieved the best solver on satis�able random instancesaward. It is only out-

performedby RSAPS ([127]) on few random series.

Another completelocal search method for SAT is presented in [206]. It is based
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on the approach described above, and it di�ers in the way they generatenew im-

plied clauses.It also usesa form of resolution but over an ordering of propositional

variables, which potentially can greatly reduce the number of generatedresolvents

without sacri�cing completeness.

Impro ving local search by handling variable dependencies

Stochastic local search approaches for SAT becameprominent when independently

Selman,Levesque,and Mitchell ([202]) as well as Gu ([103]) introduced algorithms

basedon hill-climbing. One form of improving stochastic local search is to e�cien tly

handle variable dependencies,and it is also one of the ten challengesproposedby

[201]. Combining systematicand stochastic search wassuggestedasa way to achieve

it. GSAT ([202]), a local search algorithm for SAT wascombined with dynamic back-

tracking ([92]) in [93]. TSAT ([55]) integratesthe extraction of variable implications

to a tabu search method.

Another interesting approach is described in [106]. The main idea is to usevari-

able dependenciesto construct implications and equivalencesbetweenliterals. This

is achievedby combining two well-known algorithms such asWalksat ([153]) and Satz

([145]). The algorithm proceedsby iterativ ely extendingthe current assignment using

Satz. When a �xed depth in the search tree is reached it constructs the literal impli-

cation graph. The implication graph is reducedto its collapsedstrongly connected

components graph. Every component is viewed as an equivalenceclasswhich is rep-

resented by a single literal. Furthermore, the transitiv e closureof the implication is

generated.Walksat is applied to the reducedformula alongwith a tabu list to forbid

any cycling. The processcontinuesuntil either a solution is found or a �xed depth of

the Satz tree is reached.

The hybrid WalkSatzalgorithm is then comparedagainstWalksat andSatzon sev-

eral problems: latin squares,DIMA CS instances,superscalarprocessorveri�cation,

Beijing-Challengebenchmarks, and Kautz & Selmanplanning problems. In general,

comparedto Walksat, WalkSatz reducesthe number of 
ips required to reach a solu-

tion, and presents a good behavior whensolvinghard instances.However, Satzseems

to perform signi�cantly better, at least in terms of computation time.



CHAPTER 3. HYBRID APPROACHES 85

It is also worth mentioning UnitWalk ([117]), which combines local search and

unit clauseelimination as well. It is, indeed,basedon Walksat and GSAT, mingling

the ideasof both algorithms into a single one. UnitWalk has beenone of the most

successfulalgorithms for random instancesin the past SAT competitions2.

3.2 Memetic Algorithms

Memetic Algorithms (MAs) is a population-basedapproach for heuristic search in

optimization problems. Someresearchers view them as hybrid genetic algorithms.

The �rst useof the term Memetic Algorithm in the literature was in 1989in [163],

where a heuristic that incorporated Simulated Annealing with a cooperative game

between agents, and the use of a crossover operator was applied to the Traveling

SalesmanProblem.

It hasbeenarguedthat it is essential to incorporate someform of domain knowl-

edge into evolutionary algorithms in order to arrive at a highly e�ectiv e search

([102, 79, 10]). In [156] an assumption is given to support this fact. We can see

in �gure 3.1 the possibility of combining problem-speci�c heuristics and an Evolu-

tionary Algorithm (EA) into a hybrid algorithm. It is alsoassumedthat the amount

of problem-dependant information is variable and canbe adjusted: the moreinforma-

tion, the morethe curvewill resemble a problem-speci�c method, the lessinformation

the more it will approach to a EA method.

Sometimes,an EA is applied to a problem where there is already large amounts

of information available. It seemsa good idea to use this information to create

specializedoperators and/or good solutions. In thesecasesit is commonknowledge

that a hybrid EA performs better than any of the techniquesit incorporates alone.

Note that this is not re
ected in �gure 3.1.

Another issuewhich is often usedasa motivation by researchersis Dawkins' idea

of "memes" ([50]). Theseare viewed as units of cultural transmission rather than

biological transmission (genes). These "memes" are also selectedfor reproduction

basedon somemeasureof quality (t ypically either utilit y or popularity). Sincethe

2http://www.satcomp etition.org
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Figure 3.1: EA performanceview from [156]

idea was created it has been extended by many authors ([25, 30]). We can view

these"memes" from two di�eren t points of view: �rst, as agents that can transform

a promising candidate solution; and second,as a learning phasewhere memescan

in
uence genotypes.

3.2.1 In tro ducing Lo cal Search

We have introduced the Local Search (LS) framework in the previous chapter. As

we know, it is a heuristic technique for solving combinatorial problemsby exploring

neighborhoods of solution in order to optimize a given objective function. Introduc-

ing LS into a GA can be seenas an improvement or developmental learning phase

within the evolutionary scheme. We have to consider then whether those changes

(acquired traits) should be kept, or whether the improvement should be awarded to

the individuals of the original population.
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Lamarc kianism and the Baldwin E�ect

The issue of the inheritance of acquired traits (memes) was a major issue in the

nineteenth century. Lamarck argued in favor, while the Baldwin E�e ct ([12]) sug-

gestedthat favorableadaptation can be achieved without changesin the individuals.

Modern theoriesof geneticsstrongly support the latter point of view.

However, working with computeralgorithms we arenot subject to thosebiological

constraints, and thus, both schemescan be perfectly valid. In generalMAs are called

Lamarckian if the result of the local search phasesreplacesthe original individual, and

Baldwinian if the original solution is kept, but the result of its changesis somehow

re
ected in its �tness function (for example,after applying local search to a solution,

maintain the original solution and incorporate the value of the resultant objective

function in its �tness). There are many studies in the literature that have tried to

extract the bene�ts from using oneor the other ([125, 222, 230]). In the most recent

work it seemsthat either pure Lamarckianism or a probabilistic combination of both

are the preferredapproaches.

3.2.2 A Memetic Algorithm

As we have seenso far, a Memetic Algorithms is a Genetic Algorithm that uses

problem-speci�c knowledgeor incorporatesLocal Search to any of its operators. Fig-

ure 3.2 shows all the placeswhere thesetechniquescan be introduced within a GA

scheme (remember �gure 2.8). In the following we are going to describe all these

possibilities focusingmainly on the introduction of Local Search.

Initial Population

Typically, GAs generatetheir initial populations at random. However, it is very

straightforward to introducespeci�c knowledgeof the problem in this step. Although

LS techniquesare not usually applied at this point, it is preciselyto them that GAs

should pay attention: heuristic solutions that are known to be good as a seeding

heuristic for a LS algorithm for a given problem can easilybe adaptedto generatean
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Figure 3.2: A GA schemeand possibleways of hybridization

equally good initial population for a GA.3

However, there are MA that incorporate LS as a pre-step to generatethe initial

population. Scatter Search ([142]), typically generatesa set of individuals and then

applies a form of LS to them in order to generatethe initial population with the

resultant solutions.

In any case, the purpose of this improvement is to have a high quality initial

population. Nonetheless,in [216], the authors performedan examinationof the e�ect

of varying the proportion of the initial population of a GA that was derived from

high quality solutions. Their conclusionswere:

� Small proportions of derived solutionsaided the GA.

� Averageperformanceimprovesas proportion increases.

� The best performanceis achieved from a more random initial population.

3Note that in this section we use the term GA instead of MA since we consider that these
improvements are incorporated into a GA to yield a MA.
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Thus, we can concludethat as the proportion increases,so doesthe averageper-

formancebut at the sametime, the variancein performancedecreases.

Lo cal Search as Crossover and/or Mutation

This idea is very straightforward: apply a certain LS technique as a Crossover or

Mutation operator. Mutation and LS are intrinsically the samekind of technique,

they changethe genotypeof the individuals. The di�erence is that mutation is random

and LS is heuristic.

Someapproaches in the literature report good results when introducing LS at

this point. For example, in [223], a modi�ed one point crossover operator used for

protein structure prediction is introduced. The modi�ed operator madeuseof some

problem-speci�c knowledgeby explicitly testing all the possibledi�eren t orientations

of the two fragments to recombine in order to �nd the most energeticallyfavorable.

If no feasibleconformation was found, a di�eren t crossover point was chosenand

the processrepeated. This can be seenas a simple introduction of LS into the

recombination operator.

In [130], the authors propose a simple crossoverhil l-climber in which all the

possible o�springs arising from one point crossover are constructed and the best

chosen.

In [82], a more complex approach is presented: a distance preservingcrossover

operator for the Traveling SalesmanProblem (TSP). The intelligent part of the op-

erator is basedon a nearest-neighbor heuristic to join together the subtours inherit

from the parents, thus, explicitly exploiting instance-speci�c edgelength information.

Lo cal Search applied to the outcome of recom bination

The most commontechnique of hybridization of GAs is via the application of oneor

more stepsof improvement to individuals of the population during the evolutionary

cycle. LS is typically applied to whole solutionscreatedby mutation or crossover.

Perhapssurprisingly, the e�ort to useGAs to evolvearti�cial neuralnetworksgave

a great dealof insight into the role of learning, Lamarckianism and the Baldwin e�ect
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to guide evolution ([116, 125, 152, 231]). It also served to reinforce the opinion of

several researchers of the usefulnessof incorporating local search and domain-based

heuristics.

It is of especial interest the formal proof in [141], which indicates that in order to

reducethe worst-caserun times, it is necessaryto choosea local search method whose

move operator is not the sameas thoseof the crossover and mutation operators.

This is also a feature of the MA Scatter Search previously introduced. Not only

applies local search to the pre-initial population, but also to every new generated

individual after recombination.

Hybridisation during fenot yp e-to-genot yp e mapping

A widely used hybridization of GAs with other heuristics is during the genotype-

to-fenotype mapping. Many approaches have been proposed in the literature for

timetabling and scheduling problems ([111]) or for the vehicle routing approach

([218]).

([218]) presents a complextwo-phasealgorithm to solve the VehicleRouting Prob-

lem with Time Windows (VRTW). The �rst phaseis a GA and the secondphaseis

a local post-optimization algorithm. In the GA the population is represented by se-

quencesof o�sets. The Genetic Sectoringmethod (as it is called in the paper) uses

a geneticalgorithm to adaptively search for sector rays that partition the customers

into clusters served by each vehicle. This does not always yield feasiblesolutions,

that is why it needsto be improved by meansof a local optimization processthat

movescustomersbetweenclusters.

It is also interesting the approach presented in [43]. It introducesconceptsfrom

Greedy RandomizedAdaptive Search Procedures(GRASP4) into the genotype-to-

fenotype phaseof a GA to solve the Golomb Ruler Problem. The genotype in this

caseis a vector of GRASP parameters that indicates which choice to make when

assigningthe next mark of the ruler during the genotype-to-fenotype mapping.

As it can be seen,there is a commonthread in all theseapproaches,which is to

4GRASP is a metaheuristic that can be seenasa two step iterativ e process:construction an local
search. Consult [190] and [175] for the related reactive GRASP.
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Figure 3.3: A genericSSalgorithm diagram

make useof existing heuristicsand domain speci�c knowledge.

3.2.3 Scatter Search: A Popular MA

We have previously mentioned the Memetic Algorithm known as Scatter Search. It

is a generictemplate of a kind of MA which is thoroughfully described in [142]. It

is of great importance for this research sincethe �nal hybrid is going to be basedon

this particular scheme.

Figure 3.3 shows the diagram of a genericScatter Search Algorithm. It starts by

generatingthe initial population and improving it by meansof a heuristic procedure.

From the population a high quality set of individuals is included in the Reference

Set. From there the algorithm will select individuals to combine and improve the

descendants as well. The ReferenceSet is then updated with the new individuals

and the processis repeated until no more solutions can be added to the Reference

Set, when somerestarting mechanism is introduced, or �nally , when somestopping

criterion hasbeenreached (typically max number of generationsor time limit).

Let us review each of thesestepsmore thoroughly:
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Div ersi�cation Generation Metho d

In this step a starting set of solutions is generated. Through somemechanism, a

certain level of diversity is guaranteed. This is usually achieved by generatinghigh

quality solutionsand diversesolutionsasseparategoals. Thesesolutionswill now be

improved in order to be transferred to the ReferenceSet.

Impro vement Metho d

After the pre-initial population has beengeneratedor whenever a new individual is

created,an improvement method is applied to the solution. This method is usually

a heuristic local search proceduresuch as tabu search or simulated annealing.

Reference Set Up date Metho d

The ReferenceSetis now �lled with the solutionswith higherquality from the previous

steps. The notion of quality here is not limited to the value of an objective function,

diversity is a key factor to decidewhether a solution must be kept on the reference

set or not.

Subset Generation Metho d

This steps will de�ne the subsetsof individuals of the referenceset to be latter

recombined. Theseare the genericsubsetsto be generate:

� All 2-individuals subsets.

� 3-individuals subsetgeneratedfrom the 2-individuals subsetsby adding the best

solution not included in the subset.

� 4-individuals subsetsgeneratedin the samefashionfrom the 3-individuals sub-

sets.

� The subsetsconsistingof the best n elements, being n = 5 to the sizeof the

referenceset.
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Note that somesubsetscan be repeated,simple and e�cien t techniquesto avoid

that are presented in [94].

Solution Com bination Metho d

This method consistsof combining the individuals of the previouslygeneratedsubsets.

It is typically dependant of the speci�c problem. It can also generateone or more

solutionsdependingon its implementation. It is alsoimportant that the newsolutions

are generatedin a deterministic fashion; then, that will be recordedin order not to

combine the samesubsetsin subsequent iterations.

3.3 Genetic Algorithms and CP

In this sectionwe aregoingto reviewstate-of-the-art approachesthat introduceCon-

straint Programming techniquesinto GAs. Note that this sectioncould fall into the

categorydescribed in the previoussection;theseapproachescan be seenasMemetic

Algorithms, sincethey are GAs that incorporate problem-speci�c knowledgein some

stepsof the evolutionary scheme. In this case,this knowledgefalls into the �eld of

Constraint Programming,and thus, we have decidedto separateit and describe it in

a di�eren t section.

3.3.1 Handling Constrain ts

The �rst issue to describe is constraint handling. Remember that in a constraint

satisfaction problem(CSP) we are given a set of variables,whereeach variable hasa

domainof values,and a setof constraints acting betweenvariables. The problemcon-

sistsof �nding an assignment of valuesto variablesin such a way that the restrictions

imposedby the constraints are satis�ed.

We can also de�ne a CSP as a triplet < X ; D; C > , where X = f x1; : : : ; xng

is the set of variables, D = f D1; : : : ; Dng is the set of nonempty domains for each

variable x i , and C = f C1; : : : ; Cmg is the setof constraints. Each constraint is de�ned

over somesubsetof the original set of variablesf x1; : : : ; xng and speci�es the allowed
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combinations of thesevariable values. Thus, solving the CSP is equivalent to �nding

a completeassignment for the variablesin X with valuesfrom their respectivedomain

set D, such that no constraint Ci 2 C is violated.

The issueis thus, how to handle theseconstraints: either directly or indirectly

[63].

� Direct handling leavesthe constraints asthey are,andenforcesthem somehow

during the executionof the algorithm; while,

� Indirect handling involvestransforming the constraints into an optimization

objective (included in the �tness function), which the EA will pursue.

Direct handling is not generallyoriented for EA dueto the lack of an optimization

function in the CSP, which would result in no guidancetowards the objective. Thus,

indirect handling is the bestsuited approach for EA, although a mixed strategy where

someconstraints are enforcedand someare transformedinto an optimization criteria

is suited as well.

Whenever a direct handling approach is chosen,the algorithm will have to face

many problems,especially becausethe combination and mutation operatorsareblind

to the constraints, and recombination of two feasiblesolutionscan yield an infeasible

one. Approachesto solve this are:

� Repair infeasibleindividuals.

� Eliminate infeasibleindividuals.

� Maintain feasiblity with special purposeoperators.

� Transforming the search space.

Repairing infeasiblesolutions implies developing a repair operator which is very

problem-dependant. If implemented properly can nonthelessproducee�cien t results

(see [158] for a comparative study). Eliminating infeasible individuals is not very

e�cien t and hardly ever used. Maintaining feasiblity is also very problem-speci�c;

note that in order to maintain this, the initial population needsto be feasible,which
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is in itself NP-hard sometimes,and obviously not an option when dealing with con-

straint satisfaction problems5. Finally, transforming the search spacecan simplify

the problem and allow an e�cien t GA. The new search spaceis decoded to create

feasiblesolutionsand it alsoallows a free search for the GA.

On the other hand, indirect constraint handling is typically performedby adding

penaltiesto constraint violations. Thesepenaltiesare incorporated into the objective

function in order to drive the search towards a feasiblesolution. Constraint penal-

ties represent distance to feasibility. This approach is usually the best suited for

constraint satisfaction problemsbecauseit is general,and allows the problem to be

transformed into an optimization problem. However, it is sometimescomplicatedto

mergepenaltieswith objective function. It is alsoknown to perform poorly for sparse

problems.

In the next sectionswe will reviewdi�eren t GAs for solvingconstraint satisfaction

problems,divided into three di�eren t groups:

� Heuristic basedmethods.

� Adaptive basedmethods.

� Memetic Algorithms for CSPs.

Note that all the techniques present either an indirect or a mixed direct and

indirect constraint handling approach.

3.3.2 Heuristic based metho ds

The methods reviewed here have in commonthe fact that they all extract heuristic

knowledgefrom the structure of the constraints to be incorporated in the GAs.

Heuristic Genetic Op erators

This techniquehasbeenintroducedin [65, 66]. It studiesthe possibility to incorporate

exiting CSP heuristics into genetic operators. These operators are mutation and
5If we were trying to �nd a feasiblesolution for a problem and the initial population wasfeasible,

then the problem would be already solved
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multi-parent crossover, which are guided by the sameheuristic: selectthe variables

which appear in more constraint violations and instantiate them with the value that

minimizes theseviolations.

Thus, the mutation operator will selecta certain number of variables in the in-

dividual and will change their values so as to minimize the number of constraint

violations. The multi-parent crossover will proceedsimilarly, only that in this case

only the valuesfound in any of the parents will be taken into consideration.

Kno wledge Based Fitness

In this case,information about the constraint network is incorporated in the �tness

function and in the geneticoperators (see[191, 192]) as well.

The �tness function is called arc-�tness and it consistsof the sum of the error

evaluationsof the violated constraints. The error evaluationsof a constraint is the

number of variablesin its scope plus the number of variablesconectedto them in the

constraint network.

The mutation operator (called arc-mutation) simply selectsa variable randomly

and instantiates it with the value that minimizes the sum of error evaluations. The

crossover operator which is calledconstraint dynamicadaptivearc-crossoverbasically

constructsa new individual by focusingon constraints and selectingthe valuesof the

variables in thoseconstraints from one parent or the other in order to minimize the

�tness function as well.

Moreover, it includesa heuristic parent selectionmechanismthat divides the pop-

ulation in three di�eren t groups,basedon the value of their objective functions.

The Glassb ox Approac h

In [150, 151, 44] it is described a GA to solve CSPsbasedon pre and post-processing

techniques. In particular, in [150], the algorithm developed relieson the transforma-

tion of the constraints into a canonical form. This rewriting of constraints is called

constraint processingand is performedin two steps:

1. Elimination of functional constraints.
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2. Decomposition of the CSP into primitiv e constraints in the form of inequalities.

With all the constraints in primitiv eform, a singlerepair-basedheuristic is applied.

This heuristic is called dependencypropagation and it attempts to repair violated

constraints in random order.

Note that at the endof the repairing processthe individual might not bea feasible

solution, sincerepairing violated constraints can produceother constraint violations.

Coevolutionary Approac h with Heuristics

In [109, 108], we can �nd a coevolutionary algorithm where the host population is

parasitedon by a population of schemata. Schemataare individuals which have some

of their variables instantiated with an unknown value. The interaction betweenthe

population is performedusing two mechanisms:

� Superp osition: a parasite �nds a match in the host population and it simply

instantiates the unknown variableswith the valuesof its host. This is performed

in order to calculate the �tness function of the parasite individuals.

� Transcription: it randomly choosesvariables of an individual and replaces

their valueswith the unknown valuesof the parasite population.

The host �tness function is not only based on constraint violations, but it is

also normalized to a range from 0 to 1 taking into account the number of violated

constraints versusthe total number of constraints. The host mutation and crossover

operators are standard (random mutation and one-point crossover).

Hybrid GRASP-Ev olution

The method presented in [31] is slightly di�eren t from the rest of the approaches

in this category. The algorithm doesnot present any speci�c-problem features,but

it incorporates a novel genotype-to-fenotype mapping. The population is a set of

GRASP parametervectorsasin [43]. In the samemanner,the valueof each parameter

de�nes the exactcandidateto select,insteadof a rangefor a randomselectionasin the
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generalcasein GRASP. This is dueto the stochastic genotype-to-phenotype mapping

that would yield, which will, thus, add a level of complexity in the algorithm.

The initial problem is transformedinto that of �nding an optimal ordering for the

variables that will yield a feasiblesolution. Thus, the vector of GRASP parameters

allows to choose,amongthe ranked variables,which one is going to be instantiated

next.

The basicprocedurefor assigninga variablewithin the genotype-to-fenotypemap-

ping is as follows:

1. Present the variablesavailable for selection.

2. Apply the dom/degreeheuristic to thesevariables.

3. De�ne the resultant Restricted Candidate List.

4. Selectthe candidatevariable that the GRASP parametersvector indicates.

5. Instantiate the variable with the best value possible.

6. Re
ect this selectionand instantiation in the correspondant position of a vector

that represents an actual tentativ e solution of the problem.

3.3.3 Adaptiv e based metho ds

All the methods included in this categorysharethe commonemphasison adaptation

featuresrather than on heuristic operators.

The Coevolutionary Approac h

This approach hasbeentestedon many di�eren t problems([169,170]). Interestingly,

it hasbeenaplied to solveCSPsin [71, 226]. It consistsof two populationsthat evolve

in a predator-prey model: a population of candidate solutions and a population of

constraints.

The �tness of the individuals of both populations is basedon a history of en-

counters. Encounters are matchings betweenconstraint and individual which reward
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the individual if it satis�es the constraint, or reward the constraint otherwise. This

results in a higher �tness for constraints that are often violated, which meansthat

the algorithm will focuson harder constraints.

Mutation and crossover are only performed in the population of candidate solu-

tions. The crossover operator aims at generatingdiverseindividuals.

Step-Wise Adpatation of Weights

The Step-WiseAdaptation of Weights (SAW) mechanismwasintroducedin [70, 225]

as an improved version of the weight adaptation mechanism presented in [67]. The

basic idea behind this mechanism is that constraints that are not satis�ed and vari-

ablescausingconstraint violations after number of stepsmust be hard, and so they

should be given higher weights.

This algorithm presents a steadystate model with a representation basedon per-

mutation models. A permutation is transformed into a solution by a decoder that

simply instantiates variables, in the order in which they occur in the chromosome,

with the �rst feasiblevalue; if this feasiblevalue doesnot exist, the variable is then

left uninstantiated. Uninstantiated variablesare penalizedand the �tness of a chro-

mosomeis the sum of all thesepenalties.

3.3.4 MAs for solving CSPs

We have separatedthesetechniquesbecausethey not only introduceCSP like mech-

anisms but also Local Search. These are the most similar approaches to our �nal

hybrid. They are, however, di�eren t in the sensethat they only incorporate knowl-

edge of the constraint network for solving a CSP, instead of actually including a

CP-like procedurewithin the algorithm.

Genetic Lo cal Search

A Genetic Local Search Algorithm for solving CSPsis presented in [151]. The basic

schemeconsistsof the application of geneticoperatorsto a population of local optima
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producedby a LS algorithm. The processis iterated until either a solution is generated

or the maximum number of generationsis reached.

The LS algorithm used is a Repair and Improve heurisitic: it repairs the pop-

ulation by extracting and extending every candidate, and improves it by applying

arc-consistency, deleting and extending.

Since the algorithm deals with feasible partial instantiations, in this case, the

�tness functionscorrespondsto the number of instantiated variableson the individual.

Evolving Hill-Clim bers

In [58, 59] we �nd a GA with a very small population (that is why it is called micro-

evolutionary) whosepopulation is a set of hill-climbers.

Every candidatesolution contains four di�eren t �elds:

� Field 1: is a chromosomecontaining each object.

� Field 2: is the �tness of the individual.

� Field 3: determinesthe heursitic-basedmutation operator.

� Field 4: is the individual's family identi�cation number6.

The evaluation function determinesthe individual's �tness by substracting the

weights of all violated constraints. The algorithm evolves the population using sev-

eral crossover and mutation operators, and alsoapplying an adaptation schemethat

awards the operators that yield superior o�springs.

Most of these methods are compared using random binary CSPs in [45]. Other

classi�cations are available in the literature ([157, 155]).

6Family or relatednessis a mechanism to reducethe number of duplicates within the population
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Chapter 4

CP and SAT for the Quasigroup

Completion Problem

The QuasigroupCompletion Problem (QCP) is a very challengingbenchmark among

combinatorial problems, which has been the focus of much recent interest in the

areaof constraint programming. It hasa broad rangeof practical applications [101];

it has been put forward as a benchmark which can bridge the gap between purely

randominstancesand highly structured problems[100]; and its structure asa multiple

permutation problem[229] is commonto many other important problemsin constraint

satisfaction. Thus,solutionsthat provee�ectiv eon QCPshavea good chanceof being

useful in other problemswith similar structure.

In this chapter, we present several techniqueswithin the constraint programming

and SAT frameworks that together allow us to solve signi�cantly larger QCPs than

previously reported in the literature. Speci�cally, [101] reports that QCPsof order 40

couldnot besolvedby pure constraint programmingapproaches,but couldsometimes

besolvedby hybrid approachescombining constraint programmingwith mixed integer

programmingtechniquesfrom operationsresearch. We show that the pure constraint

satisfaction approach can solve many problems of order 45 in the transition phase,

which corresponds to the peak of di�cult y. Our solution builds upon someknown

ideas, such as the use of redundant modeling [36] with primal and dual models of

the problem connectedby channeling constraints [229], with somenew twists. For

102
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example,we will considermodels consistingof only channeling constraints, without

any primal or dual constraints, and we demonstrateempirically for the �rst time the

usefulnessof channeling constraints linking several pairs of models of a problem, an

idea that was considered,but only theoretically, in [35] and [212]. In addition, we

present a newvalueorderingheuristic which provesextremelye�ectiv e,and that could

prove usefulfor many other problemswith multiple models. The ideaunderlying this

heuristic, which originates in the work of [35, 211] for single permutation problems,

is that selectinga value for (say) a primal variable is in practice in the presenceof

channelingconstraints alsoa choiceof the dual variablescorresponding to that value;

therefore we can use variable selection heuristics on the dual variables to choose

the value to assignto the previously chosenprimal variable. Finally, we show how

redundant constraints canbeusedto \compile arc consistencyinto forward checking",

that is, to ensurethat the latter has as much pruning power as the former but at a

much lessercost in constraint checks.

It is interesting to note that our approach involvesonly binary constraints, which

seemsto go againstcommonwisdomabout their limitations |when contrasted with

the useof non-binary constraints such asalldi� [188]| in solvingquasigroupcomple-

tion problems[215]. It is certainly an interesting issue,which we plan to addressin

the future, whether the useof alldi� could yield evenbetter resultsthan our approach

when coupledwith other ideasin this work.1

The idea of redundant modeling was �rst introduced by [36]. The bene�ts of

adding redundant constraints to somegiven model to improve pruning power were

well-known in the literature, but [36] went a stepfurther by consideringthe redundant

combination of full modelsof a problem, wherethe modelsmay involve di�eren t sets

of variables. This combination is achieved by specifying how the various models

relate to each other through channelingconstraints, which provide a mapping among

assignments for the di�eren t models. The combined model contains the original but

redundant modelsassubmodels. The channelingconstraints allow the sub-modelsto

cooperate during constraint-solving by propagating constraints amongthe problems,

1Besidesthe obvious computational limitations in running large experimental suitesof hard QCP
problems, we were limited in this aspect by the unavailabilit y of open sourcealldi� code.
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providing an extra level of pruning and propagation which results in a signi�cant

improvement in performance.

Another important modeling ideathat weuseis that of permutation problems(see

e.g. [211, 229]). A constraint satisfaction problem (CSP) is a permutation problem

if it has the samenumber of variablesas values,all variableshave the samedomain

and each value can be assignedto a unique variable. Thus, any solution can be seen

as assigninga permutation of the values to the variables. In the samemanner, a

multiple permutation problem hassome(possiblyoverlapping) setsof variables,each

of which is a permutation problem. QCP is a paradigmatic exampleof a multiple

permutation problem.

Moreover, we perform a systematic study of modelling choices for quasigroup

completion, testing a variety of solvers and heuristics on various SAT and CSP en-

codings. The clear winner is the SAT 3D-encoding, specially with the solver Satz

[144], closelyfollowed by the solver Satzoo [62] on the sameencoding. As thesetwo

solvers are quite di�eren t (one usesa strong form of lookaheadin its heuristic, but

no backjumping or learning, while the other relies heavily on the last two), the 3D

encoding appears to be quite robust as a representation. On the other hand, CSP

modelsperform signi�cantly worsewith the two solvers we tried, and standard SAT

encodings generatedfrom the CSP models are simply too large in practice. These

resultsstrongly suggestthat the 3D encoding can turn out to be quite competitiv e in

other permutation problems(many of which arise in quite practical problems[118])

when comparedwith the currently preferredchannelling models.

The reasonsfor this appear to be twofold. First, we can show that the 3D en-

coding (which is basically the \SAT channellingmodel" of [118] extendedto multiple

permutations and dual models) exactly capturesthe channelling models of QCPs as

de�ned in this thesis,but in a much more conciseway, by collapsingprimal and dual

variables. Further, we can show that the 3D encoding captures the \support SAT

encoding" of the channelling model, henceby results of [89], that unit propagation

on the 3D encoding achievesthe samepruning asarc consistency(MA C) in the CSP

channelling model. These results appear easy to extrapolate to other permutation

problems(or similar oneswith "channelling constraints"), which have received a lot
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of recent attention [35, 229, 118]. Second,empirically, we identify Satz'sUP heuristic

as crucial to its successin this domain; as shown by the fact that, when importing

the heuristic into our CSP solvers,we obtain signi�cant improvements in their scala-

bilit y. Further, the improvements aremuch smaller if we only uselookaheadto detect

potential wipeouts(i.e. for \failed literal detection"), but choosevariablesinsteadby

someother standard heuristic such as min-domain.

The rest of the chapter is organizedas follows: �rst we introduce Quasigroups

and the QCP problem, then we detail the modeling and heuristic used and give

experimental results; Afterwards, we introduce SAT models and solvers, compare

results againstCSP solversand introduceSAT featuresin our CSP solver to provide

a new comparison.Finally, we present the lessonslearnt from this research.

4.1 Quasigroups

A quasigroupis an orderedpair (Q; �), where Q is a set and � is a binary operation

on Q such that the equationsa � x = b and y � a = b are uniquely solvable for every

pair of elements a;b in Q [101]. The order n of the quasigroupis the cardinality of

the set Q. A quasigroupcan be seenas an n � n multiplication table which de�nes

a Latin Square,i.e. a matrix which must be �lled with \colors" (the elements of the

set Q) so that the colorsof each row are all distinct, and similarly for columns.

Early work on quasigroupsfocused on quasigroup existenceproblems, namely

the questionwhether there exist quasigroupswith certain properties, solving several

signi�cant open mathematical problems [208]. We focus instead on the quasigroup

completion problem (QCP), which is the (NP-complete [38]) problem of coloring a

partially �lled Latin square.

4.1.1 Quasigroup Completion Problem

Imagineyou have an empty Latin square,and that you color someof its cellsand left

someothers empty. Trying to extend that partial coloring to a solution (if possible)

de�nes the Quasigroup Completion Problem.
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QCP sharewith many real world problemsa signi�cant degreeof structure, while

at the sametime allowing the systematicgenerationof di�cult problemsby randomly

�lling the quasigroupwith preassignedcolors. It is thus ideally suited as a testbed

for constraint satisfaction algorithms [100]. Experimental studies of the problem

have con�rmed its interest for research, by for examplehelping to discover important

patterns in problem di�cult y such as heavy-tailed behavior [98].

Instances of QCP

It is also important to introduce types of instancesfor the quasigroup completion

problem. Not only in order to establish a framework for the experiments, but also

becausethe study of its hardnessand its complexity are within the state of the art in

this problem. There alsoa needof a sourceof satis�able instancesfor the evaluation

of somealgorithms.

Under this perspectivewecandi�eren tiate two kinds of instancesfor this problem:

QCP We have introduced the QCP problem in the initial sections,and it is an

NP-complete problem [38] which has an interesting phase transition phenomenon

with an associated easy-hard-easypattern as a function of the fraction of number of

preassignedcolors. This kind of instancesthat we will refer to asQCP from now on,

aregeneratedin a way that canbe solvableor not. This meansthat we cannot assure

its solvabilit y becauseof the way they are generated.

Within this kind we can distinguish between those instanceswhich are trivial ly

unsolvable, which means that the preassignment itself violates one ore more con-

straints; and those which we do not know its solvabilit y until a completealgorithm

terminates without �nding a feasiblesolution.

QWH As mentioned above, there is a needfor hard solvable instances,in order to

have a sourcefor evaluating for examplelocal search algorithms. The quasigroup with

holes(QWH) problem was proposedin [2] as a way to �ll this need.
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QWH instancesare given this namebecauseof the way they are generated2: (1)

�rst generatea completeLatin squareaccording to the Markov chain Monte Carlo

approach proposedby Jacobsonand Mathews [128]; punch a fraction p of \holes"

in the Latin squarein an uniformly distributed manner. The resulting partial Latin

squareis guaranteed to be solvable. We can also�nd two di�eren t typesof instances

within QWH:

Random This kind of instancesare generatedpunching holes at random. This

was the �rst kind of instancesgeneratedand studied, thus we know that its phase

transition coincideswith d1:6 � n1:55e holesfor order n.

Balanced Lately, this kind of instanceshave beenstudied and it seemsthat they

are much harder than random ones.They are generatedin a way that the number of

holesin each row and in each column is more or lessthe same.

4.2 Mo delling and solving QCPs as a CSP

Our �rst step through improving e�ciency solving QCPs is due to an e�ort to make

competitiv e an initial implementation for this problem that yielded very poor results

when compared with the literature. Guided by this objective and after studying

sometechniquesand approachesapplied to solve QCPs(those introducedin previous

sections)we found an implementation and an heuristic that yields promising results.

4.2.1 Not-equal implemen tation

First of all we introduce the initial implementation of the problem, to which we will

refer as the primal model.

This model represents cellsof the Quasigroupasvariableswhosedomainsare the

set of possiblecolorsto be assigned:

2We thank Carla Gomesfor providing us with the lsencode generator, which was usedfor gener-
ating satis�able instancesfor the experiments that are presented in the next sections
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x i;j 2 f 1; ::; ng8 i; j

x i;j = k 8i; j such that QCPi;j = k

not � equal(x i; 1; x i; 2); not � equal(x i; 1; x i; 3); :::; not � equal(x i; 1; x i;n ) 8i

not � equal(x1;j ; x2;j ); not � equal(x1;j ; x3;j ); :::; not � equal(x1;j ; xn;j ) 8j

It is important to note that we �rst choosea not-equal implementation insteadof

an alldi� one. This election was maintained for all the experiments from now on.

4.2.2 Redundan t mo dels

Redundancyis a double-edgedsword: it canhelp propagationby allowing morevalues

to be pruned at any given point in the search, but it can also hinder it by forcing

it to processa larger set of constraints. Fortunately, more �ne grained distinctions

are possible,as we might chooseto combine only parts of various models. We could

not speak of combining models if we don't usetheir respective setsof variables,but

it will often be advantageous(as we will see)to drop someof the constraints from

oneor more models that becomeredundant when making the combination. If we do

this, however, we must be careful to ensurethe correctnessand completenessof the

combined model.

Several modelscanbe de�ned for QCPs,asdescribednext. While all modelshave

the samelogical status, it is commonto distinguish betweenprimal and dual models.

The distinction is only a matter of perspective, specially in permutation problems,

wherevariablesand valuesare completely interchangeable.

Primal Mo del This is the model introducedbefore,and we will refer to it as pr

model for short.

Row Dual Mo del There aredi�eren t ways to formulate dual modelsfor a multiple

permutation problem. Here we consider dual models for each of the permutation

subproblems(as opposedto a single dual model of the primal problem), and group
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them by row and column, to obtain two completemodels of QCPs. In the row dual

model, the problem is reformulated as the question of which position (column) in

a given row has a given color. The row dual variablesare the set R = f r ik j 1 �

i � n; 1 � k � ng where r ik is the kth color in the i th row. The domain of each

variable is again the set D = f j j 1 � j � ng, but now the valuesrepresent columns,

i.e. the positions in row i where color k can be placed. The row dual constraints

are similar to the primal constraints. There are n2 constraints of the form r ik 6= r il ,

where r ik ; r il 2 R and l 6= k, which meansthat two colors in the samerow must

not be assignedto the samecolumn; and n2 constraints of the form r ik 6= r j k where

r ik ; r j k 2 R and i 6= j , which meansthat the samecolor in di�eren t rows must not

be assignedto the samecolumn. Alternativ ely, we could have alldi� (r i 1; : : : ; r in ) for

every row i , and alldi� (r 1k ; : : : ; r nk ) for every color k.

A simple symmetry argument shows that this model also fully characterizesthe

problem.

Column Dual Mo del The seconddual model is composedof the setof dual models

for each column permutation constraint, representing the colorsin each column. The

column dual variablesare the set C = f cj k j 1 � j � n; 0 � k � ng wherecj k is the

kth color in the j th column. All variableshave domain D = f i j 1 � k � ng, wherei

represents the rows wherecolor k canbe placedin the j th column. Similar to the row

dual model, we have column dual constraints of the form cj k 6= cj l wherecj k ; cj l 2 C

and k 6= l, which meansthat two colors in the samecolumn must not be assignedto

the samerow; and of the form cj k 6= clk where cj k ; clk 2 C and j 6= l, which means

that the samecolor in di�eren t columnsmust not be assignedto the samerow.

This model also fully characterizesthe problem. We refer to the combination of

both dual modelsas the dl model.

4.2.3 Com bining the Mo dels

A channelling constraint for two models M 1 = (X 1; F1; C1) and M 2 = (X 2; F2; C2) is

a constraint relating variablesof X 1 and X 2 [36]. We will considerthe following kinds

of channelling constraint:
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� Row Channelling Constraints: Constraints for the n row permutation con-

straints, linking the primal model with the row dual model:

x ij = k , r ik = j :

� Column Channelling Constraints: Corresponding to the n column permutation

constraints, they link the primal and the dual column models:

x ij = k , cj k = i:

� Triangular Channelling Constraints: Theseconstraints link both dual models,

closinga \triangle" amongthe three models:

cj k = i , r ik = j :

Given two or more redundant, completemodels,we can obtain a combined model

by simply implementing all the modelsand linking them by channelling constraints.

Thus the full combined model or pr-dl-ch2-model resulting from the above models

is the model consistingof primal and dual variablesand constraints, linked together

by row and column channelling constraints.3 More generally, as long as a combined

model includesa completemodel of the problemasa submodel, wearefreeto add any

set of variablesor constraints from other models, with the only requirement that in

order to add a constraint all its variablesmust belongto the combined model. Thus,

for example,given the primal variables and constraints, we may chooseto add any

number of dual and channellingconstraints aslong asthe corresponding variablesare

alsoadded. For example,we may decideto useonly the row dual variablestogether

with the row dual constraints and/or row channelling constraints. Nothing is lost by

not including parts of the dual models,sinceall the necessaryinformation is present

in the primal model.

In fact we can take this asfar asremoving all primal and dual constraints! Walsh

[229] shows that arc consistencyon the channelling constraints for a permutation
3We don't consideradding the triangular constraints until later.
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problem dominatesin pruning power over arc consistencyover the binary not-equal

constraints. Intuitiv ely, this meansthat nothing is gained by adding the not-equal

constraints oncewehave the channellingconstraints. Note that this doesn't prove the

superiority of a model with only channelling constraints over, say, the primal model,

as the former alsohas many more variablesand constraints; this issueis empirically

examinedlater. It is important however to show that the model consistingof primal

and dual variables, with only row and column channelling constraints, but without

the primal or dual constraints (i.e. alldi� or not-equal) is also a completemodel of

the problem. We refer to this model as the bichannelling model or ch2:

Prop osition 4.2.3.1. The bichannelling model is equivalent to the primal model,

henceit provides a full characterization of QCPs.

Proof. If the two models had the sameset of variables and associated domains, we

could de�ne equivalencejust as having the sameset of solutions. Since that's not

the casehere,we needto provide instead a one-to-onemapping betweensolutionsof

either model.

Let us say that a primal assignment, or P-assignment for short, is an assignment

of valuesto all the primal variables,and a PD-assignment an assignment to all primal

and dual variables.

The proposition can then be phrasedmore exactly in terms of the following two

claims.

Claim 1: Any P-assignment A which satis�es the (primal) alldi� constraints can

be extended to a PD-assignment B which satis�es the channelling constraints. To

extend A to B, we just pick each label x ij = k from A and set r ik = j and cj k = i in

B. To seethat B is well-de�ned, note that every r ik gets assigned,sinceA must use

all available colors in order to �ll row i in accordancewith the primal constraints;

and that any given r ik is assignedat most once, since otherwise we would have

x ij = x ih for distinct columnsj and h, in contradiction with the fact that A satis�es

the primal constraints. Similarly for any cj k . HenceB is well-de�ned, and it satis�es

the channelling constraints by construction.



CHAPTER 4. CP AND SAT FOR THE QUASIGROUP COMPLETION PROBLEM112

Claim 2: Any PD-assignment B satisfying the row and column channelling con-

straints, is such that its primal subset A satis�es the primal constraints. Suppose

not. Then B assignsthe samevalue k to two primal variablesx ij and x ih for j 6= h

(or the completely symmetric casewhere it is row indexesthat vary). But sinceB

satis�es the row channelling constraints, B should satisfy r ik = j and r ik = h, which

is impossible.

Yet another combined model we will consider later is the trichannelling model,

or ch3 for short, which adds the triangular channelling constraints to ch2, but still

keepsaway from the primal and dual constraints. Given the above proposition, ch3

is alsoa completemodel, and redundantly so.

4.2.4 Variable and Value Ordering

It is well know that the order in which we make our choicesas to which variable

to instantiate, and with which value, can have a major impact in the e�ciency of

search. As already pointed out, all the results reported here use the min-domain

variable ordering heuristic (often denoteddom), which at each search node choosesa

variablewith the smallestdomain to instantiate. The reasonfor this is simply that we

obtained better results with it than with other alternativeswe tried. Theseincluded

more �ne-grained heuristics such as dom+degreeand dom/degree, yielding further

con�rmation to previous results by [36] and [211] on simple permutation problems.

These other heuristics would often make no di�erence with respect to dom,4 but

when they did it was most often to the worse. (We did not perform a systematic

comparison,though.) We also considereda number of variants of the above which

took into account the (primal or dual) model to which variablesbelong,e.g. selecting

only amongprimal variables,or only amongprimal variablesunlesssomedual variable

had a singleton domain, etc. Thesevariants would often signi�cantly underperform

the previousones,so we didn't pursuethem further.

4This is not much of a surprise, since the degreeof a variable (number of constraints in which
it is initially involved) cannot discriminate much among variables in a QCP; though this could also
depend on details of implementation such as whether constraints are generated for variables that
are explicitly or implicitly assignedby the initial coloring.
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[35] introduced a min-domain value ordering heuristic to apply when dual vari-

ablesare available during the search. The idea is to choosethe value such that the

corresponding dual variable has the smallestcurrent domain. To generalizethis idea

to multiple permutation problems,we needa way to take into account the two dual

models. The one that worked best is what we might call the min-domain-sumvalue

selection heuristic (or more brie
y vdom+, the 'v' standing for value). Oncea primal

or dual variable is selected,we needto choosea value for it. Sinceany such valuecor-

respondsto onespeci�c variable from each of the two other models,weselectthe value

whosecorresponding two variableshave a minimal \combined" domain. Speci�cally,

say we have chosenx ij . Then we choosea color k from its currently active domain

for which the sum of the current domain sizesof r ik and cj k is minimal among the

currently available colors for x ij . Similarly, if the chosenvariable is a dual one, say

r ik , we choosea column j for this variable as a function of the current domain sizes

of the corresponding variablesx ij and cj k .

4.2.5 First exp erimen ts on balanced instances

Our initial results on the various models were in fact quite favorable to the bichan-

nelling model. In order to present them, we needto say a few words about the ex-

periments in this section. First, in order to make our results comparablewith others

appearing in the literature, all instancesweregeneratedusing the lsencode generator

of QCPs. This generatorbeginsby randomly coloring an empty quasigroupusing a

local search algorithm, and then randomly decoloringsomecells. Henceall problems

in our suites have a solution. All instancesare of the \balanced" kind, which are

known to be the hardest [101]; and most instancescorrespond to problemswith 60%

cells preassigned,which is closeto the transition phaseand corresponds to a peak

in problem hardness.Second,all experiments hereare run with a slightly optimized

variant of van Beek'sGAC library, which comesas part of the CSP planning system

CPLAN [224], and which implements generalizedarc consistency(though in our case

we only needits binary version,which is equivalent to the MAC algorithm [22]). As

discussedbelow, neither CBJ nor nogood learning seemto help in QCP, contrary to
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% preassign! 20% 42% 80%
order % solved mean median mean median mean median

30 100% 0.94 0.93 0.43 0.25 0.03 0.02
35 100% 1.99 1.99 0.71 0.53 0.05 0.05
40 100% 4.98 4.98 2.51 1.09 0.08 0.08

60%preassigned
order % solved timeout mean(solved) median (all)

30 18% 100 48.74 100
35 22% 3600 903.07 3600
40 10% 3600 1751.90 3600

Table4.1: Experimental resultsfor the bichannellingmodel, MAC, no valueordering.

the experiencein many other domains,hencethey are disabledin our tests. Also, all

experiments use the min-domain variable selectionheuristic, which we found to be

uniformly the best amongthe oneswe tried (seealso [36, 211] and the discussionin

Section4.2.4).

We can distinguish two di�eren t moments in theseexperiments:

Before applying our heuristic

In our initial tests, we found that the bichannelling model ch2 could solve many

problemsthat were out of reach for the other models, including many order 35 and

someorder 40quasigroupswith 60%preassignedcells. Table4.1showsmeantime for

solved instancesand mediantime for the wholesample,both in seconds,and percent

of solved instanceswithin the given timeout (also in seconds)for setsof 50 instances

of orders 30, 35 and 40, and 20, 42, 60 and 80% preassignment. (These results are

alsoplotted in Figure 4.1 later.)

Our data con�rm the existenceof a peak of di�cult y around 60%preassignment

[101], whereasproblems were trivially solvable with all other percentageswe tried.

Even though the resultswerepromising, specially whencomparedwith other models,

they were alsodisappointing, in that the number of problemsthat we could solve in

the transition phasewas rather limited for various dimensions. (Note that in these
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pr pr-dl pr-dl-ch2 ch2
time checks time checks time checks time checks
1.45 1.30 1.93 1.69 1.90 1.69 1 1

Table 4.2: Comparisonof various modelsusing MAC and no value ordering.

cases,median time is the sameas timeout becauselessthan 50% of instanceswere

solved.) Nevertheless,we decidedto pursuefurther the bichannellingmodel basedon

the somewhatanecdotalevidenceof its clear superiority over other models. As the

following sectionsshow, we succeededin this goal.

For the sakeof a moresystematiccomparison,wepresent herea simplecomparison

of the variousmodels. Due to limited available time, we chosethe 29easiestproblems

(as measuredwith the approaches developed later) for order 30 quasigroupswith

60% preassignment. These are still relatively di�cult problems closeto the phase

transition: the ch2-model took a total of 6624 secondson the 19 problems (66%)

in the sample that were solved with all tested models in less than 1800 seconds,

yielding an averageof 348.6secondsper solved problem, and a mean(over the whole

sample) of 574.16s. Table 4.2 shows the result of a comparison between various

modelson this sample.The table providesthe ratios in the accumulated data in time

and constraint checks over the solved problems, relative to the performanceof ch2.

Note that all models tried exactly the samenumber of assignments in all problems,

empirically con�rming the fact that arc consistencyhas identical pruning power in

all four models.

We conjecture that theseratios will increasewith problem di�cult y. But there

is little point on belaboring these data, as much better solutions are available, as

discussedin the following sections.

In tro ducing value ordering

The results when the �rst combined model wasusedwith the min-domain-sumvalue

ordering heuristic were quite surprising, as it outperformed previous tests in three

ordersof magnitude in somecases.For example,for the instancebqwh-35-405-5.pls
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Figure 4.1: Mean solution time on QCPs of order 30, 35 and 40 with (vo1) and
without (vo0) value ordering.

(balancedinstanceof order 35 and 60% preassignedcells) it took 2905secswithout

valueordering and only 0.40secswith it. For a moregeneralpicture, Figure 4.1 plots

the data of Table 4.1, obtained with lexicographicvalue ordering, against the results

over the samesamplewith dom+value ordering.

Encouragedby this performance,we generateda set of 100 balancedinstances

of orders 30, 35, 40 and 45, with 60% preassignment. Table 4.3 shows median and

meantime in seconds(the latter taken only over solved instances),percent of solved

instancesand timeouts, in solving these instanceswith the new variable ordering

heuristic.

order mean median % solved timeout
30 148.84 174.11 68% 1000
35 533.43 163.48 84% 3600
40 732.94 1010.82 68% 5000
45 1170.81 2971.40 56% 6000

Table 4.3: The min-domain value ordering heuristics at the phasetransition, using
MAC.

Theseresultsaresigni�cantly better than thosepreviously found in the literature,

aswe can solve over 50%of balancedQCPs of order 45 at the phasetransition. [101]
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reports that pure constraint programming approaches, even when using specialized

forms of arc consistencyfor non-binary alldi� constraints and a commercialsolver,

could not solve any problem of order 40 in the phasetransition.

We consideredother ways of combining domainsizessuch asminimizing the prod-

uct of the corresponding domain sizes(min-domain-product or vdom*), and their cor-

responding maximizing versions,without success.Perhaps there is no deep reason

why vdom+was so clearly superior to vdom*. Maximizing versionswere clear under-

performers,and there is a reasonableexplanation for it. For concreteness,consider

choosinga value with the maximal combined domain of the corresponding variables,

e.g. a valuek for a primal variable x ij such that domain-size(r ik ) + domain-size(cj k) is

maximal (over the colorsavailable for x ij at the current stageof search). While large

domain sizesare usually indication of lesstightness,and thus could be conjectured

to capture the idea,often cited in connectionwith valueordering, of selectinga value

which is \more likely to leadto a solution", in this casethey haveexactly the opposite

e�ect. When x ij = k is the maximal labelling accordingto this criteria, the domains

of r ik and cj k are immediately pruned into singletons. Hencea maximizing choice

producesmaximal pruning, which is the opposite of what is desired.And conversely,

heuristicssuch as vdom+choosevaluesthat producethe least pruning.

4.2.6 Compiling A C to FC with redundan t constrain ts

Our next and last step (in this subsection)in improving our solution derived from an

examinationof the pruning behavior of the bichannellingmodel with arc consistency.

Supposex ij is assignedk at somepoint during the search. The GAC implementation

of CPlan beginsby checking arc consistencyfor constraints with a single uninstan-

tiated variable, i.e. doing forward checking, which forcesthe domainsof r ik and cj k

to becomethe singletonsf j g and f ig respectively, and alsoprunes,for each h 6= k, j

from r ih , and i from cj h. Arc consistencywill further discover (if not already known

at this stageof the search):

� x ih 6= k for any column h 6= j , sinceotherwiser ik = h 6= j ;

� hencealsochk 6= i for any column h 6= j , sinceotherwisex ih = k;
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� similarly, xhj 6= k for any row h 6= i , sinceotherwiser ik = h 6= j ;

� hencealso r hk 6= j for any row h 6= i , sinceotherwisexhj = k;

It is not di�cult to show that GAC cannot prune any morevaluesasa result of an

assignment to a primal variable, unlessone of the listed prunings reducesa domain

to a singleton. All theseare useful prunings, but GAC does much more work than

neededto obtain them. Each oneof the pruned values{ onefor each x ih ; xhj ; chk ; rhk ,

potentially 4(n � 1) pruned valuesand variablesfrom a singleassignment { requires

GAC to check all the constraints in which the corresponding variablesare involved,

namely 2(n � 1) or (n � 1) constraints for, respectively, the primal and dual pruned

variables (further, in the CPlan implementation all a�ected variables have all their

valuestested, even if at most onewill be pruned). This is wastede�ort, as no addi-

tional pruning is achieved. One can however observe that most of the pruning power

can be derived simply by assigningthe variables whosedomain becamesingletons

(either directly through channelling constraints or indirectly when pruning a single

value results in a singleton) and doing forward checking on them. To seethat the

remaining valuespruned by GAC (namely the secondand fourth items above) are

alsopruned by FC with the trichannellingmodel, observe that chk 6= i sinceotherwise

r ik = h 6= j using the corresponding triangular channelling constraint, and similarly

rhk 6= j sinceotherwisecj k = h 6= i .

We remark that the samee�ect canbe achieved in di�eren t ways, e.g. the bichan-

nelling model supplemented with the dual not-equal constraints also allows forward

checking to derive the sameconsequences.

Results with the tric hannelling model Table 4.4 comparesthe bichannelling

model ch2, using only row and column channelling constraints with GAC, versusthe

trichannelling model ch3 with the three kinds of channelling constraints using only

FC, in both caseswith the min-domain-sum value ordering. Each sampleconsists

again of 100balancedinstanceswith 60%preassignment;the accumulated valuesare

over the problemssolved by both approacheswithin the given timeout. The median

times areon the other hand over the wholesample.Accumulated times are in seconds
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while the other accumulated valuesare in millions of checks and tried assignments

respectively.

ch3-fc ch2-ac ratios
order acc. time median solved acc. time median solved acc. time median

30 6445.44 153.04 78% 9557.83 174.11 68% 1.48 1.14
35 29691.18 152.16 86% 45341.22 163.48 85% 1.53 1.07
40 33015.14 637.18 73% 48682.04 1010.82 68% 1.47 1.59
45 38569.95 1650.52 59% 61469.78 2971.40 56% 1.59 1.80

checks visits
order ch3-fc ch2-ac ratio ch3-fc ch2-ac ratio

30 29886 80206 2.68 431 658 0.15
35 114572 279003 2.44 1617 218 0.13
40 205247 445790 2.17 2769 331 0.12
45 108276 321632 2.97 1489 236 0.16

Table 4.4: The ch3 and ch2 modelscompared,with value ordering.

Thesetables show that there is a signi�cant improvement in time with the ch3

model usingonly FC, and this canbe traced to the largesavings in number of checks.

On the other hand, ch3 with FC tries almost one order of magnitude more assign-

ments, which arisefrom the fact that it must instantiate the variablesassociated to a

given assignment made in the search tree in order to extract the sameconsequences

as AC with ch2; these added tried assignments do not however translate into any

more checks or more true backtracking.

The results in this table are not however as straightforward to obtain as the for-

mal result on the equivalent pruning power may suggest.Indeed,our �rst attempt at

implementing ch3 resulted in a slight but noticeableslowdown! On further examina-

tion, we realizedthat this wasdue to the implementation of the min-domain variable

ordering heuristic, which could selectmany other variableswith a singleton domain

before the variables associated with the last assignment; as a result, obtaining the

sameconclusionsas AC could be signi�cantly delayed. We solved the problem by

keepinga stack of uninstantiated variableswith singletondomain, and modifying the

min-domain heuristic to pop the most recent variable from that stack whenever it
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wasnot empty. This ensuresthat FC considersthosevariablesthat have just become

singletonsimmediately. The solution hasneverthelessan ad-hoc 
a vor, and suggests

that for domainssuch as QCPs, wherepropagation often forcesa value for variables

asopposedto merelypruning part of their domain, a moreSAT-lik e propagationmay

bemoreindicated; in other words, it is not always su�cien t to rely on the min-domain

heuristic to propagatein a timely fashion forcedvalues.

Finally, the following �gures display a more detailed picture of how ch2 and ch3

compare, showing the time taken to solve all 100 problems in each set, sorted by

di�cult y, for order 40 and 45 quasigroupsat the phasetransition. As it can be seen,

the ch3 model is almost always superior, but there aresomeanomaliesthat areworth

investigating further.
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4.3 In tro ducing SAT to the QCP

This section presents the introduction of SAT techniques to the QCP problem. It

alsoperformsa comparisonof SAT and CSP methods for solving this problem. First

we are going to review the SAT and CSP models for the QCP and present some

experimental results for several SAT problems. Then, we are going to theoretically

comparethe SAT and CSP encodings and to introducea very e�ectiv e technique to

our CSP solver. Finally, a comparisonof all methods consideredis provided.

4.3.1 SAT and CSP Enco dings

The two SAT encodingsof the QCP of order n consideredin this research, introduced

in [136], usen Booleanvariablesper cell; each variable represents a color assignedto

a cell, and the total number of variablesis n3. The most basicSAT encoding, which is

known as2-dimensional(2-D) encoding, includesclausesthat represent the following

constraints:

1. at least onecolor must be assignedto each cell (ALO-1);
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2. no color is repeatedin the samerow (AMO-2); and

3. no color is repeatedin the samecolumn (AMO-3).

The other encoding, which is known as3-dimensional(3-D) encoding, addsto the

2-D encoding redundant clausesthat represent the following constraints:

1. each color must appear at least oncein each row (ALO-2);

2. each color must appear at least oncein each column (ALO-3); and

3. no two colorsare assignedto the samecell (AMO-1).

Both encodings have O(n4) clauses.The labels associated to each clauseset are

explainedlater.

For the sake of brevity and clarity, the only CSP encoding we describe is the

\bic hannelling model". It consistsof:

� A set of primal variablesX = f x ij j 1 � i � n; 1 � j � ng; the value of x ij is

the color assignedto the cell in the i th row and j th column, and n is the order

of the quasigroup,i.e. the number of rows and columns.

� Two setsof dual variables: R = f r ik j 1 � i � n; 1 � k � ng, where the value

of r ik is the column j where color k occurs in row i ; and C = f cj k j 1 � j �

n; 0 � k � ng wherethe value of cj k represents the row i wherecolor k occurs

in column j .

The domain of all variables is f 1; : : : ; ng, where thesevalues represent respectively

colors, columns, and rows. Variables of di�eren t types are linked by channelling

constraints:

� Row channelling constraints link the primal variables with the row dual vari-

ables: x ij = k , r ik = j :

� Column channelling constraints link the primal variableswith the column dual

variables: x ij = k , cj k = i:
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% solved mean median
order Cha� Berkmin Satzoo Satz Cha� Berkmin Satzoo Satz Cha� Berkmin Satzoo Satz

35 99 100 100 100 59 24 37 6 3.2 0.5 16 1.2
37 96 99 100 100 232 173 129 42 24 4.7 5 5.8
40 82 86 96 99.5 518 590 861 539 288 112 142 41
43 50.5 62 78.5 84 279 1487 1799 1243 1085 2178 815 358
45 46 46 59.5 68 380 1312 1021 1181 > 12000 > 12000 1857 1184

Table 4.5: Comparison of Cha�, Berkmin, Satzoo and Satz on the 3-D encoding.
Time in seconds,meanof solved instances.Cuto� 12000seconds.1 GHz.

This model is a completemodel of the problem; in particular, the socalledprimal

constraints, which explicitly state that no two colorscan be repeatedin any onerow

or column, are redundant, and hinder propagation. CSP \channelling" encodings for

permutation problems similar to the one presented here are discussedat length in

[118].

4.3.2 Exp erimen tal results on random QWH instances

Weconsideredfour state-of-theart SAT solvers: Satz[144], Cha� [165], Berkmin [97],

and Satzoo [62]. We choseSatz becausesomeauthors have claimed that it is the

best option to solve QCPs; our experimental results provide evidenceof this claim

too. We choseCha� and Satzoo becausethey were the winners of the two last SAT

competitions, and Berkmin becauseit is often competitiv e with Cha�. In addition,

we tested two CSP solvers, the GAC library described in [224], and the MAC solver

by Regin and Bessiere[22]. Note that for binary CSPs they are simply di�eren t

implementations of the MAC algorithm.

The instancestested in our experiments are of the QWH type (quasigroupwith

holes [136], generatedwith lsencode), are all satis�able, and are located near the

phasetransition.5 Our samples,with 200 instanceseach, did not contain \balanced"

problems,which arereported to be the hardest;still, wedid verify that they aremuch

harder for all solversthan the balancedproblemstestedand discussedin the previous

section,which werenot closeenoughto the phasetransition for their class.

5Speci�cally , QWH instancesof order n are generatedwith d1:6 � n1:55e holes.
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% solved mean(solved) median
order Satz GACvo Satz GACvo Satz GACvo

35 100 37 6 2970 1.2 > 12000
37 100 11 42 2572 5.8 > 12000
40 99.5 7 539 4546 41 > 12000

Table 4.6: Comparisonof Satz on the 3-D encoding and GAC-vo. Time in seconds.
Cuto� 12000seconds.1 Ghz.

Of all the solutions tried, we can discard the 2D SAT encoding and the primal

CSP models, as they give signi�cantly worse results. Of the remaining encodings,

the 3D encoding was clearly superior with the four SAT solvers, with Satz scaling

somewhatbetter than Satzoo and both much better than cha�. On the other hand,

the CSP approach which usesMAC on the bichannelling model, scaledmuch worse

on the (harder) problems tested in this section. There is therefore a clear dividing

line betweenSAT and CSP encodings in terms of performance. Table 4.5 provides

the data for SAT solvers,and Table 4.6 comparesour best SAT solver with the CSP

approach (labelled GACvo), which seemsto be the best one in the literature, using

GAC on the bichannellingmodel with a specialvalueorderingheuristic (namedvdom+

in that paper). Note that the ratio of solved problemsfor GACvo is much lower than

reported in the previoussectionsfor problemsof the sameorder, and that's because

our instancesare harder.6

Discussion We will now explorepotential explanationsfor theseobservations, and

ways to improve theseresults for the CSPapproachesdrawn from theseexplanations.

Our �rst focuswill be on comparingrepresentations; later we considersolver-speci�c

issues(most importantly, the extra level of propagation and the heuristicsof Satz).

6The improvements reported for the tric hannelling model do not a�ect scaling behavior, and are
prett y much subsumedby the stronger forms of lookahead discussedlater. Hencewe did not test
this model in this section.
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4.3.3 Comparing mo dels

In order to compareour models formally, we needa small detour through SAT en-

codings of CSP models, a third modelling option that we have not consideredso far.

In this context, the many-valued CSP variables are represented by meansof a set

of boolean variables, one for each possibleassignment. So, for example, a primal

variable x ij becomesa set of booleanvariablesx ij = 1; : : : ; x ij = n. The semantics of

CSP domainsis then captured by including oneALO (\at least one") clausefor each

variable, specifying that the variable must take at leastoneof its possiblevalues,and

O(n2) AMO (\at most one") clauseswhich specify, for every pair of possiblevaluesof

a variable, that they can not be satis�ed simultaneously. In our bichannellingmodel,

we would have variablesx ij = k, r ik = j and cj k = i , for each triple j ; k; i , for a total

of 3n3 variables.

De�ne the minimal support encoding of the bichannelling model as that consist-

ing of AMO-ALO clausesfor the three variable types,together with the channelling

clauses: x ij = k_ r ik = j and : r ik = j _x ij = k, which directly encodethe equivalence

x i 1 = j , r ij = k which de�nes the constraint betweenx ij and r ik (and similarly for

column channelling constraints). Clearly, the channelling clausescompletely charac-

terize the channelling constraints, hencethe minimal support encoding is a complete

model.

The support encoding, as de�ned in [89], encodesa constraint betweentwo vari-

ablesX and Y by adding, for each possiblevalue v of X , the clause: X = v _ Y =

v1 _ : : :_ Y = vk , wherev1; : : : ; vk is a list of all valuesw in the domain of Y such that

(v; w) satis�es the constraint, i.e. a list of supports for the assignment X = v. For the

bichannellingmodel, we can observe that the channellingclausesof the minimal sup-

port encoding already encode the supports for x ij = k and r ik = j . For valuesv 6= k,

the supports for x ij = v are given by the clause: x ij = v _
W

h2f 1;:::;ng;h6= j r ik = h, and

for valuesv 6= j , the supports for r ik = v aregivenby : r ik = v_
W

h2f 1;:::;ng;h6= k x ij = h.

Prop osition 4.3.3.1. Unit resolution obtains the sameresults on the minimal sup-

port encoding as in the support encoding of the bichannelling model.

Proof. Consider e.g. the constraint between x i 1 and r i 2 (a similar analysis holds
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for column channelling constraints). Since the channelling clausesare preserved in

the minimal encoding, it su�ces to show that the e�ect of unit propagation on the

additional support clausesis also obtained without them. For v 6= 2 we have the

support clause : x i 1 = v _
W

h2f 1;:::;ng;h6=1 r i 2 = h. We consider two cases. First,

supposer i 2 = 2; : : : ; r i 2 = n are all false; we must show that unit resolution on the

remainingclausesimply : x i 1 = v. Unit resolutionon the ALO for r i 2 obtains r i 2 = 1,

which together with the channelling clausesyield x i 1 = 2, and with the AMO for x i 1,

: x i 1 = v. Second,supposex i 1 = v is true and, say, r i 2 = 1 through r i 2 = n � 1

are all false;we needto show that r i 2 = n follows by unit resolution. Now, x i 1 = v

implies through AMO : x i 1 = 2, and thus : r i 2 = 1 using the channelling clauses.

This together with the hypothesisof the caseand the ALO for r i 2 allows us to obtain

r i 2 = n, as desired.

Our secondobservation is that the binary theory consisting of the channelling

clausesfor all constraints can be simpli�ed using a strongly connectedcomponents

(SCC) algorithm such as in [53]. The SCCswill consist preciselyof the triplets of

booleanvariablesof the form x ij = k, r ik = j and cj k = i . The SCC-basedalgorithm

would then replaceeach such triplet by a singlevariable, which we may appropriately

call x ij k , as in the 3D SAT encodings, and perform the appropriate replacements in

the remaining clauses.The result is the following:

� The ALO and AMO clausesfor the CSP variables becomeclausesof the 3D-

encoding. Speci�cally, the clauseslabelled ALO-k and AMO-k (1 � k � 3)

in the 3D-encoding are the result of rewriting the ALO and AMO clausesfor

the primal variables(k=1), row dual variables(k=2) and column dual variables

(k=3) in the minimal channelling encoding.

� The channelling clausesbecometautologiesafter variable replacement, so they

can be eliminated.

The SCC-simpli�cation formally captures the intuitiv e idea that the triplet of

variablesx ij = k, r ik = j and cj k = i all \mean the same" {color k is in cell (i; j ){,

and hencethat each triplet can be \collapsed" into a singlebooleanvariable x ij k , as

donein the 3D encoding (and in the \SAT channelling model" of [118]).
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% solved mean median
order GAC-HLA MAC-HLA Satz GAC-HLA MAC-HLA Satz GAC-HLA MAC-HLA Satz

35 98 98.5 100 428 586 6 131 129 1.2
37 86 89.5 100 1360 1913 42 882 822 5.8
40 52 58 99.5 1770 3033 539 5304 8411 41
43 30 39 84 1342 2668 1243 > 12000 > 12000 358
45 24 26 68 2810 3585 1181 > 12000 > 12000 1184

Table 4.7: Comparisonof GAC-HLA, MAC-HLA and Satz. Time in seconds,mean
of solved instances.Cuto� 12000seconds.1 Ghz.

% solved mean median
order MAC-LA MAC-HLA MAC-LA MAC-HLA MAC-LA MAC-HLA

30 96 100 544 18 482 9
33 91 100 1753 187 1256 52
35 58 98.5 2714 586 4487 129

Table4.8: Comparisonof MAC-LA and MAC-HLA. Time in seconds,meanof solved
instances.Cuto� 12000seconds.1 Ghz.

Prop osition 4.3.3.2. Unit resolution on the 3D model hasthe samepruning power

as MAC on the bichannelling model.

Proof. [89] shows that unit resolution on the support encoding of a CSP problem is

equivalent to MAC on the original problem. We have just shown that unit resolution

on the minimal support encoding is equivalent to unit resolution on the support

encoding of the bichannellingmodel, and that the 3D encoding is simply the minimal

support encoding after SCC simpli�cation, which does not a�ect the power of unit

resolution.

Thus, the 3D model exactly capturesthe bichannellingmodel, without loosingany

propagation power, but with 3 times fewer variables(n3 instead of 3n3) and without

the 4n3 channelling clausesof the minimal channelling model. We did in fact try to

solve QCPs using a direct encoding of the bichannellingmodel, with very bad results

due to the sizeof the resulting theories. The above propositions seemto go a long

way toward explaining the successof the 3D model.
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For each free variable x such that PROPz(x) is true do
(let F 0 and F 00two copiesof the formula F under consideration)

F 0 := unit-propagation( F 0[ f xg);
F 00:= unit-propagation( F 00[ f: xg);
If 2 2 F 0 and 2 2 F 00then return " F is unsatis�able"
If 2 2 F 0 then x:=0, F := F 00

else if 2 2 F 00then x:=1, F := F 0

If 2 62F 0 and 2 62F 00then
let w(x) denote the weight of x
w(x) := number of times that non-binary clausesof F

have beenreducedwhen deriving F 0

w(: x) := number of times that non-binary clausesof F
have beenreducedwhen deriving F 00

For each free variable x do
H (x) := w(x) � w(: x) � 1024+ w(x) + w(: x);

Branch on the free variable x with greatest H (x)

Figure 4.2: The variable selectionheuristic of Satzfor PROP(x; 4)

4.3.4 Satz's heuristic in QCPs

We now turn to solver and domain-speci�c features that may explain the observed

performance. Thus our next step was to analyze in depth the behavior on QCP

instancesof the bestsolver, Satz,soasto incorporatenewpropagationtechniquesand

heuristicsinto the CSP solversfrom the insights gained. Beforegoing into details, let

usrecall the variableselectionheuristic that implements Satz,which combinesMOMS

(Maximum Occurrencesin clausesof Minimum Size) and UP (Unit Propagation)

heuristics. In both heuristics, the goal is to maximize the power of unit propagation.

MOMS picks one variable among those that occur the most often in minimal size

clauses,sincetheseare more likely to result in propagation. UP goesa step further

by actually measuring the number of propagations from each choice. It examines

each variable p occurring in a given CNF formula � by respectively adding the unit

clausesp and : p to � , and independently making two unit propagations,which are

usedto derive a scorefor each variable. As a secondarye�ect, UP detectsso-called

failed literals in � , which when satis�ed falsify � in a singleunit propagation.
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In order to reducethe time required to propagateall literals, Satz appliesUP to

a restricted number of variables that occur in binary clausesby applying a unary

predicate,called PROPz, which is de�ned as follows:

De�nition 4.1. Let � bea CNF formula; let PROP(x; i ) bea binary predicatewhich

is true i� variable x occursboth positively and negatively in binary clausesof � , and

there are at least i occurrencesof x in binary clausesof � ; and let T be an integer.

PROPz(x) is de�ned to bethe �rst of the threepredicatesPROP(x; 4); PROP(x; 3); tr ue

(in this order) whosedenotational semantics contains more than a �xed number T of

variables. T is set to 10 in Satz.

After applying unit propagation to a restricted number of variablesand detecting

failed literals, the heuristic of Satz weights literals with di�eren t criteria depending

on the predicate applied. For example,when PROP(x; 4) is applied, the heuristic

scoreseach literal (x; : x) with the number of times that non-binary clauseshave

beenreducedwhen propagating the literal. The pseudocode of the variable selection

heuristic of Satz for PROP(x; 4) is shown in Figure 4.2. Function H (x) is usedto

reach a good balance between weights of positive literals and weights of negative

literals.

When solving QCP instancesusing the 3-D encoding with Satz, we observed that

Satzalmost always usesthe predicatePROP(x; 4), which requiresx to occur in both

positive and negative binary clauses,with at least 4 occurrencesin total. A closer

look at the 3-D encoding revealsthat Booleanvariablesthat ful�ll PROP(x; 4) model

CSPvariableswith domainsize2. The reasonis that positive literals only occur in the

ALO-1, ALO-2 and ALO-3 constraints, hencethe only way to have x occur positively

in a binary clauseis when one of these clausesbecomesbinary, in which casethe

corresponding (primal or dual) CSP variable has domain size2. Further, it is easy

to show that the variables in such positive binary clauseshave at least three other

negative occurrencesfrom AMO clauses,sothat PROP(x; 4) holds. This analysisled

us to incorporate the technique of failed literals and the heuristic of Satz into CSP

solversas follows:

1. For each free CSP variable of domain size 2, we propagate each value of the
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domain in order to seeif the domaincanbereduced.As a result, the domaincan

remainasbefore,canbea singletonor canbeempty. In the �rst case,weweight

the variable using the balancefunction H of Satz's heuristics, wherew(x = i )

is the number of times that domainshave beenreducedafter propagating the

value i . In the secondcase,we �x the variable to the only value of its domain.

In the third case,we have detectedan inconsistencyand we backtrack.

2. We select the �rst free CSP variable of domain size 2 with greatest value of

function H .

3. If there is no candidatevariable in step 2, we apply the default heuristic of the

CSP solver (for example,min-domain).

The abovedescriptioncorrespondsto what wewill call simply look-aheadheuristic

(LAH). We refer to the versionof GAC (MA C) that incorporatesLAH asGAC-LAH

(MA C-LAH).

4.3.5 New exp erimen tal results on random QWH instances

To assessthe performanceof LAH we performed an empirical investigation. In the

�rst experiment we comparedSatz with GAC-LAH and MAC-LAH on sets of 200

instancesof order 35, 37, 40 and 45 of the hard region of the phasetransition. The

results obtained are shown in Table 4.7. We observed that Satz outperforms GAC-

LAH and MAC-LAH, but the di�erences are not sodramatic aswith GAC-vo, which

wasthe most competitiv e CSPoption to solve QCPs. MAC-LAH seemsto be slightly

superior to GAC-LAH.

In the secondexperiment, we analyzed if the improvements achieved on CSP

solversaredueto the useof lookaheadto detect potential wipeoutsor to the heuristic

function. To this end, we comparedMAC-LAH with a variant MAC-LA which uses

the samelookaheadbut choosesvariablesof minimum domainsizeinsteadof applying

the heuristic function H to a reducednumber of variables;we refer to that versionas

MAC-LA. The resultsobtained,shown in Table4.8,clearly indicate that the heuristic

function plays a central role.
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Figure 4.3: Percent solved for the main solvers.

Nevertheless,failed literals do achieve an extra-level of consistencyin each search

node over that of plain unit propagation, and a natural question to ask is whether

stronger forms of consistencycould yield better results. We experimented with

stronger forms of lookahead without success,but did not try alldifferent con-

straints. Hall's Theorem,as presented in [227], states that:

"the constraint alldifferent (x1; : : : ; xn ) with respective variable domains

D1; : : : ; Dn has a solution if and only if no subsetK � f x1; : : : ; xng exists such that

jK j > j
S

x i 2 K D i j".

However, we observed experimentally that, for the QCP and the solvers consid-

ered, the condition of the theoremis only violated by subsetsof three CSP variables

with domain sizetwo. It is easyto show that the lookaheadphaseof our heuristic,

whenapplied to a variable of domain sizetwo, �nds a contradiction for the two values

of the domain and backtracks. So in practice we may be getting the samepruning

power as with Hall's theorem.

As a summary of our main results, Figure 4.3 comparesthe main approaches

discussedin this work in terms of scalability, plotting percent of solved instances

against the order of quasigroups.It canbe seenthat SAT encodingsstill scalebetter,

but that the incorporation of the lookaheadheuristic inspired by Satz goes a long
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way toward bridging the gapbetweenthe best CSPmodel available to date, GAC-vo,

and the SAT approaches.

4.4 Lessons learn t

Constraint Satisfactionand SAT techniquesare very powerful techniquesfor solving

optimization problems. They rely on propagation techniques to reduce the search

spaceand on heuristic to drive the search e�cien tly. Here is the list of useful lessons

we have learnt:

� Both techniques seemto be specially suited for satisfaction rather than for

optimization.

� Both approachesstrongly rely on propagationmechanisms,and their e�ciency

on a given problem seemsto be related to the speci�c trade-o� betweensearch

and propagation.

� Heuristics have a huge impact on both techniques,although it is not possible

to �nd the optimal heuristic to apply to any problem, nor even to any instance

of the sameproblem.

� They seemnot to be suited for very large search space,due to their complete

nature, and their impossibility to generatenear-optimal solutions.

� They are however necessarywhen we needto �nd the optimal solution or all

the solutions of a problem.



Chapter 5

Lo cal Search for the Social Golfer

Problem

The social golfer problem has attracted signi�cant interest since it was �rst posted

on sci.op-research in May 1998. It consistsof scheduling n = g � p golfersinto g

groups of p players every week for w weeksso that no two golfersplay in the same

groupmorethan once.An instanceof the social golfer is speci�ed by a triple g� p� w,

where g is the number of groups, p is the size of a group, and w is the number of

weeksin the schedule.

The scheduling of social golfersis a highly combinatorial and symmetric problem

and it is not surprising that it hasgeneratedsigni�cant attention from the constraint

programming community (e.g., [72, 209, 178, 200, 199, 13, 184]). Indeed, it raises

fundamentally interesting issuesin modeling and symmetry breaking, and it hasbe-

come one of the standard benchmarks for evaluating symmetry-breaking schemes.

Recent developments (e.g., [13, 184]) approach the scheduling of social golfersusing

innovative, elegant, but alsocomplex,symmetry-breakingschemes.

This research approachesthe problem from a very di�eren t angle. It proposesa

local search algorithm for scheduling social golfers, whoselocal moves swap golfers

within the sameweek and are guided by a tabu-search meta-heuristic. The local

search algorithm matches,or improvesupon, the best solutions found by constraint

programming on all instancesbut 3. It also found the �rst solutions to 11 instances

133
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that werepreviouslyopenfor constraint programming.1 Moreover, the local search al-

gorithm solvesalmostall instanceseasilyin a fewsecondsand takesabout 1 minute on

the remaining(harder) instances.The algorithm alsofeaturesa constructiveheuristic

which trivially solvesmany instancesof the form odd� odd� w and provides good

starting points for others.

The rest of the chapter is organized as follows. After reviewing some related

work it starts by describingthe basiclocal search algorithm, including its underlying

modeling, its neighborhood, its meta-heuristic, and its experimental results. It then

presents the constructive heuristic and reports the new experimental results when

the heuristic replacesthe random con�gurations as starting points of the algorithm.

Finally, the chapter concludesby giving a set of lessonslearnt.

5.1 Solving the Social Golfer Problem

There is a considerablebody of work on scheduling social golfers in the constraint

programming community. References[13, 184] describe state-of-the art results using

constraint programmingand areexcellent starting points for morereferences.Seealso

[199] for interesting theoretical and experimental resultson the social golfer problem,

as well as the description of SBDD, a generalschemefor symmetry breaking. Agren

[3] describesa tabu-search algorithm for schedulingsocial golfers,wherethe neighbor-

hood consistsof swapping the value of a singlevariable and whereall constraints are

explicit. The resultsarealsofar in quality and performancefrom thosereported here.

The neighborhood usedin this research, which implicitly maintain the groupand week

structures, and the randomizedtabu-list strategy are fundamental in schedulinghard

instances.Another local search approach is introducedin [180], wherethe symmetry

breaking is shown counter-productive for local search and adding symmetries(super-

symmetries) is proposedinstead. Hybrid local search and constraint programming

approaches have been tried on the social golfer problem [177]. In both cases,the

results are signi�cantly dominated by those presented in this chapter. The idea of

1For the current statuses of the instances, see Warwick Harvey's web page at
http://www.icparc.ic.ac.uk /wh/ golf .
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weeks group 1 group 2 group 3 group 4 group 5
week 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
week 2 1 6 11 16 21 2 7 12 17 22 3 8 13 18 23 4 9 14 19 24 5 10 15 20 25
week 3 1 7 13 19 25 2 8 14 20 21 3 9 15 16 22 4 10 11 17 23 5 6 12 18 24
week 4 1 8 15 17 24 2 9 11 18 25 3 10 12 19 21 4 6 13 20 22 5 7 14 16 23
week 5 1 9 12 20 23 2 10 13 16 24 3 6 14 17 25 4 7 15 18 21 5 8 11 19 22
week 6 1 10 14 18 22 2 6 15 19 23 3 7 11 20 24 4 8 12 16 25 5 9 13 17 21

Table 5.1: A solution for the problem 5 � 5 � 6

separatingthe problem constraints into soft and hard constraints is part of the folk-

lore of local search. It was studied theoretically and experimentally in [74], in which

conditions to preserve connectivity are discussed.The connectivity is trivial in the

applications consideredheresincefeasiblesolutionsare permutations.

5.2 The Social Golfer

Thi application is the well-known social golferproblem,which hasattracted signi�cant

interest sinceits posting on sci.op-research in May 1998. It is alsoproblem 10 in

the CSPLIB [90]. The social golfer problem consistsof scheduling n = g � p golfers

into g groupsof p players every week for w weeksso that no two golfersplay in the

samegroup more than once. An instanceof the social golfer is speci�ed by a triple

g � p � w, where g is the number of groups, p is the sizeof a group, and w is the

number of weeksin the schedule. Figure 5.1 depictsa solution for the 5� 5� 6 social

golfer problem.

5.2.1 The Mo deling

There are many possiblemodelings for the social golfer problem, which is one of

the reasonsit is so interesting. This paper usesa modeling that associatesa decision

variablex[w; g; p] with every position p of every group g of every weekw. Weconsider

every wi 2 W, gi 2 G and pi 2 P, where W = 1::w, G = 1::g and P = 1::p. We

abusenotation and denoteany given weekas w, group as g and position as p.
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Given a schedule � , i.e., an assignment of values to the decisionvariables, the

value � (x[w; g; p]) denotesthe golfer scheduled in position p of group g in week w.

There are two kinds of constraints:

1. A golfer plays exactly oncea week;

2. Two golferscan play together at most once.

The �rst type of constraints is implicit in the algorithms presented in this paper: It

is satis�ed by the initial assignments and is preserved by local moves. Therefore, in

this section,we always assumethat schedulessatis�es the �rst setof constraints. The

secondset of constraints is represented explicitly. The model contains a constraint

m[a;b] for every distinct pair (a;b) of golfers: Constraint m[a;b] holds for an assign-

ment � if golfersa and b are not assignedmore than onceto the samegroup. More

precisely, if # � (a;b) denotesthe number of times golfersa and b meet in schedule� ,

i.e.,

# � (a;b) = # f (w; g) j 9p;p0 2 P : � (x[w; g; p]) = a & � (x[w; g; p0]) = bg;

constraint m[a;b] holds if

# � (a;b) � 1: (5.1)

To guide the algorithm, the model also speci�es violations of the constraints. In-

formally speaking, the violations � � (m[a;b]) of a constraint m[a;b] is the number of

times golfers a and b are scheduled in the samegroup in schedule � beyond their

allowed meeting. In symbols, and generalizing

� � (m[a;b]) = max(0; # � (a;b) � 1): (5.2)

As a consequence,the social golfer problem can be modeledasthe problem of �nding

a schedule� minimizing the total number of violations f (� ) where

f (� ) =
X

a;b2G

� � (m[a;b]): (5.3)



CHAPTER 5. LOCAL SEARCH FOR THE SOCIAL GOLFER PROBLEM 137

and G is the set of g� p golfers. A schedule� with f (� ) = 0 is a solution to the social

golfer problem.

5.2.2 The Neigh borho od

The neighborhood of the local search consistsof swapping two golfersfrom di�eren t

groupsin the sameweek. The set of swaps is thus de�ned as

S = f (hw; g1; p1i ; hw; g2; p2i ) j w 2 W; g1; g2 2 G; p1; p2 2 P; g1 6= g2g:

Note that the neighborhood is connectedsince a feasiblesolution, if it exists, can

always be obtained by swapping golfersin the sameweek.

It is more e�ectiv e however to restrict attention to swaps involving at least one

golfer in con
ict with another golfer in the samegroup. This ensuresthat the algo-

rithm focuseson swapswhich may decreasethe number of violations. More formally, a

triple hg; w; pi is said to be in con
ict in schedule� , which is denotedby � � (hg; w; pi );

if

9p0 2 P : � � (m[� (x[w; g; p]); � (x[w; g; p0])]) > 1: (5.4)

With this restriction, the set of swapsS� (� ) consideredfor a schedule� becomes

S� (� ) = f (hw; g1; p1i ; hw; g2; p2i ) 2 S j � � (hw; g1; p1i )g:

The neighbors of a schedule� is given by

f � (x[w; g1; p1]) $ � (x[w; g2; p2]) j (hw; g1; p1i ; hw; g2; p2i ) 2 S� (� )g:

5.2.3 The Tabu Comp onent

The tabu component of the algorithm is basedon threemain ideas.First, the tabu list

is distributed acrossthe variousweeks,which is natural sincethe swapsonly consider

golfersin the sameweek. The tabu component thus consistsof an array tabu where
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tabu[w] represents the tabu list associated with weekw. Second,for a given weekw,

the tabu list maintains triplet ha;b;i i , wherea and b are two golfersand i represents

the �rst iteration where golfersa and b can be swapped again in week w. Observe

that the tabu lists store golfers,not positions hw; g; pi . Third, the tabu tenure, i.e.,

the time a pair of golfers(a;b) stays in the list, is dynamic: It is randomly generated

in the interval [4; 100]. At iteration k, swapping two golfersa and b is tabu, which is

denotedby

tabu[w](a;b;k);

if the Booleanexpression

ha;b;i i 2 tabu[w] & i � k

holds. As a result, for schedule � and iteration k, the neighborhood consistsof the

set of schedulesobtained by applying movesin

St (� ; k) = f (t1; t2) 2 S� (� ) j : tabu[w](� (x[t1]); � (x[t2]); k)g:

wherewe abusenotations and usex[hw; g; pi ] to denotex[w; g; p].

Aspiration In addition to the non-tabu moves, the neighborhood also considers

movesthat improve the best solution found so far, i.e.,

S� (� ; � � ) = f (t1; t2) 2 S� (� ) j f (� [x[t1] $ x[t2]]) < f (� � )g;

where � [x1 $ x2] denotesthe schedule � in which the valuesof variablesx1 and x2

have beenswapped and � � denotesthe best solution found so far.

5.2.4 The Tabu-Searc h Algorithm

Figure 5.1 depicts the basiclocal search algorithm SGLS,which is a tabu search with

a restarting component. Lines2{7 perform the initializations. In particular, the tabu

list is initialized in lines 2{3 and the initial scheduleis generatedrandomly in line 4.
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Lines 5{7 then initialize the best schedule found so far � � , the iteration counter k,

and the stabilit y counter s. The initial con�guration � randomly schedulesall golfers

in the various groupsfor every week,satisfying the constraint that each golfer plays

exactly oncea week.

The core of the algorithm are lines 8{23. They iterate local moves for a given

number of iterations or until a solution is found. The local move is selectedin line 9.

The key idea is to selecta swap in

St (� ; k) [ S� (� ; � � )

minimizing

f (� [x[t1] $ x[t2]]):

Observe that the expressionf (� [x[t1] $ x[t2]]) represents the number of violations

obtained after swapping t1 and t2. The tabu list is updated in line 11, wherefunction

week is de�ned as

week(< w; g; p > ) = w:

The newscheduleis computedin line 12. Lines13{15 update the bestschedule,while

lines 16{20 specify the restarting component.

The restarting component simply reinitializes the search from a random con�g-

uration whenever the best schedule found so far has not been improved upon for

maxStableiterations. Note that the stabilit y counter s is incremented in line 22 and

reset to zero in line 15 (when a new best scheduleis found) and in line 18 (when the

search is restarted).

5.3 Exp erimen tal Results

This sectionreports the experimental results for the SGLSalgorithm. The algorithm

was implemented in C and the experiments were carried out on a 3.06GHzPC with

512MB of RAM. Algorithm SGLSwasrun 100times on each instanceand the results

report averagevalues for successfulruns, as well as the percentage of unsuccessful



CHAPTER 5. LOCAL SEARCH FOR THE SOCIAL GOLFER PROBLEM 140

1. SGLS(W; G; P)
2. forall w 2 W
3. tabu[w]  fg ;
4. �  random con�guration;
5. � �  � ;
6. k  0;
7. s  0;
8. while k � maxIt & f (� ) > 0 do
9. select (t1; t2) 2 St (� ; k) [ S� (� ; � � )

minimizing f (� [x[t1] $ x[t2]]);
10. �  random ([4,100]);
11. tabu[week(t1)]  

tabu[week(t1)] [ fh� (x[t1]); � (x[t2]); k + � ig ;
12. �  � [x[t1] $ x[t2]];
13. if f (� ) < f (� � ) then
14. � �  � ;
15. s  0;
16. else if s > maxStablethen
17. �  random con�guration;
18. s  0;
19. forall w 2 W do
20. tabu[w] = fg ;
21. else
22. s++;
23. k++;

Figure 5.1: Algorithm SGLSfor Scheduling Social Golfers

runs (if any).

Tables5.2and 5.3 report the experimental results for SGLSwhentrying to match

the constraint-programming results. Note that no explicty comparisonis given for

constraint-programming approaches since all the methods in the literature merely

report single instancesusually solved for a lower number of weeks. Given a number

of groups g and a group size p, the tables only give the results for those instances

g� p� w maximizing w sincethey alsoprovide solutionsfor w0 < w. Table5.2reports

the number of iterations (moves), while Table 5.3 reports the executiontimes. Bold

entries indicate that SGLS matches the best known number of weeksfor a given
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size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
g w I w I w I w I w I w I w I w I
6 8 282254.0 6 161530.3 6 16761.5 3 15.8 - - - - - - - -
7 9 12507.6 7 274606.0 5 102.9 4 100.4 3 23.4 - - - - - -
8 10 653.9 8 323141.5 6 423.7 5 1044.9 4 237.5 4 153301.6 - - - -
9 11 128.3 8 84.4 6 52.7 5 55.5 4 44.8 3 27.7 3 43.9 - -

10 13 45849.1 9 100.2 7 80.8 6 110.7 5 94.6 4 61.8 3 36.1 3 53.3

Table 5.2: Number of Iterations for SGLSwith Maximal Number of Weeks.
Bold Entries Indicate a Match with the Best Known Number of Weeks.

size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
g w T %F w T %F w T w T w T w T w T w T
6 8 48.93 6 6 47.75 6 107.18 3 0.01 - - - - - - - -
7 9 3.06 7 107.62 8 5 0.07 4 0.09 3 0.03 - - - - - -
8 10 0.23 8 207.77 9 6 0.37 5 1.21 4 0.39 4 360.00 - - - -
9 11 0.08 8 0.09 6 0.09 5 0.13 4 0.14 3 0.09 3 0.19 - -

10 13 30.82 9 0.16 7 0.19 6 0.34 5 0.41 4 0.33 3 0.20 3 0.39

Table 5.3: CPU Time in Secondsfor SGLSwith Maximal Number of Weeks.
Bold Entries Indicate a Match with the Best Known Number of Weeks.

number of groups and a given group size. The percentage of unsuccessfulruns is

shown betweenparenthesesin Table 5.3.

As canbeseenfrom the tables,Algorithm SGLS�nds solutionsto all the instances

solved by constraint programming except 4. Moreover, almost all entries are solved

in lessthan a second. Only a few instancesare hard for the algorithm and require

around 1 minute of CPU time. Interestingly, algorithm SGLS also solves 7 new

instances(with format hg� s � wi : 9� 4� 9, 9� 5� 7, 9� 6� 6, 9� 7� 5, 9� 8� 4,

10� 5� 8 and 10� 9� 4. Thoseare not shown in the tablesbut moredetail on these

are given below.

It is interesting to observe that algorithm SGLS doesnot break symmetriesand

doesnot exploit speci�c properties of the solutions. This contrasts with constraint-

programming solutions that are often quite sophisticatedand involved. See,for in-

stance,the recent papers[13,184] which report the useof very interesting symmetry-

breaking schemesto schedulesocial golfers.



CHAPTER 5. LOCAL SEARCH FOR THE SOCIAL GOLFER PROBLEM 142

weeks group 1 group 2 group 3 group 4
week 1 1 2 3 4 5 6 7 8 9 10 11 12
week 2 1 4 7 10 2 5 8 11 3 6 9 12
week 3 1 5 9 10 2 6 7 11 3 4 8 12

Table 5.4: The initial con�guration for the problem 4 � 3 � 3

weeks group 1 group 2 group 3 group 4 group 5
week 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
week 2 1 6 11 16 21 2 7 12 17 22 3 8 13 18 23 4 9 14 19 24 5 10 15 20 25
week 3 1 7 13 19 25 2 8 14 20 21 3 9 15 16 22 4 10 11 17 23 5 6 12 18 24
week 4 1 8 15 17 24 2 9 11 18 25 3 10 12 19 21 4 6 13 20 22 5 7 14 16 23
week 5 1 9 12 20 23 2 10 13 16 24 3 6 14 17 25 4 7 15 18 21 5 8 11 19 22
week 6 1 10 14 18 22 2 6 15 19 23 3 7 11 20 24 4 8 12 16 25 5 9 13 17 21

Table 5.5: The initial con�guration for the problem 5 � 5 � 6

5.4 A Constructiv e Heuristic

The quality of SGLS can be further improved by using a constructive heuristic to

�nd a good starting, and restarting, con�guration. The heuristic [39] trivially solves

p � p � (p + 1) instanceswhen p is prime and provides good starting points (or

solutions) for other instancesas well. Examples of such initial con�gurations are

given in Tables5.4 and 5.5, which will be used to explain the intuition underlying

the constructive heuristic. The heuristic simply aims at exploiting the fact that all

golfersin a group for a given weekmust be assigneda di�eren t group in subsequent

weeks.As a consequence,the heuristic attempts to distribute thesegolfersin di�eren t

groupsin subsequent weeks.

Table 5.5 is a simple illustration of the heuristic with 5 groupsof size5 (i.e., 25

golfers)and 6 weeks.The �rst weekis simply the sequence1..25. In the secondweek,

group i consistsof all golfersin position i in week1. In particular, group 1 consistsof

golfers1; 6; 11; 16; 21, group 2 is composedof golfers2; 7; 12; 17; 22and soon. In other

words, the groupsconsistof golfersin the samegroup position in week1. The third

weekis most interesting,sinceit givesthe intuition behind the heuristic. The key idea

is to try to selectgolferswhosepositions are j,j+1,j+2,j+3,j+4 in the �rst week,the



CHAPTER 5. LOCAL SEARCH FOR THE SOCIAL GOLFER PROBLEM 143

1. heuristicSchedule (w; g; p)
2. n  g � p;
3. P0  h1; : : : ; ni ;
4. forall we 2 1::w � 1
5. Pwe  scheduleWeek(we;g; p;n);

6. scheduleWeek (we;g; p;n)
7. Pwe  h1i ;
8. po  0;
9. gr  1;
10. �  we � 1;
11. forall go 2 1::n � 1
12. s  select (gr; (po+ �)% p);
13. po  position (s);
14. gr  (gr + 1)%g;
15. Pwe  Pwe :: hsi ;
16. return Pwe;

Figure 5.2: The Constructive Heuristic for Scheduling Social Golfers

addition being modulo the group size. In particular, group 1 is obtained by selecting

the golfersin position i from group i in week1, i.e., golfers1; 7; 13; 19; 25. Subsequent

weeksareobtained in similar fashionby simply incrementing the o�set. In particular,

the fourth weekconsiderssequencesof positionsof the form j,j+2,j+4,j+6,j+8 and its

�rst group is 1; 8; 15; 17; 24. Table 5.4 illustrates the heuristic on the 4-3-3 instance.

Note that the �rst group in week2 hasgolfersin the �rst position in groups1, 2, and

3 in week 1. However, the �rst golfer in week 4 must still be scheduled. Hencethe

secondgroup must selectgolfer 10, as well as golfers2 and 5.

Figure 5.2 depicts the code of the constructive heuristic. The code takes the

convention that the weeksare numberedfrom 0 to w � 1, the groupsfrom 0 to g � 1,

and the positionsfrom 0 to p� 1, sincethis simpli�es the algorithm. The key intuition

to understand the code is to recognizethat a weekcan be seenas a permutation of

the golferson which the group structure is superimposed.Indeed,it su�ces to assign

the �rst p positions to the �rst group, the secondset of p positions to the second

group and so on. As a consequence,the constructive heuristic only focuseson the
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problem of generatingw permutations P0; : : : ; Pw� 1.

The top-level function is heuristicSchedule which speci�es the �rst weekand

calls function scheduleWeeek for the remaining weeks. Scheduling a week is the

coreof the heuristic. All weeksstart with golfer 1 (line 7) and initialize the position

po to 0 (line 8), the group number gr to 1 (line 9), and the o�set � to we � 1. The

remaining golfersare scheduledin lines 11-15.

The key operation is line 12, which selectsthe �rst unscheduled golfer s from

group gr of week0 (speci�ed by P0) starting at position (po+ �)% p and proceeding

by viewing the groupasa circular list. The next three instructions update the position

po to the position of s in group gr of week0 (line 13), increment the group to select

a golfer from the next group, and extend the permutation by concatenating s to

Pwe. By speci�cation of Select , which only selectsunscheduledgolfersand the fact

that the heuristic selectsthe golfers from the groups in a round-robin fashion, the

algorithm is guaranteed to generatea permutation.

5.5 Exp erimen tal Results using the Constructiv e

Heuristic

This sectiondiscussesthe performanceof algorithm SGLS-CH that enhancesSGLS

with the constructive heuristic to generatestarting/restarting points. Although the

starting point is deterministic, the algorithm still usesrestarting, since the search

itself is randomized,i.e., ties are broken randomly.

5.5.1 The odd� odd� w Instances

It is known that the constructive heuristic �nds solutionsfor p� p� (p+ 1) instances

when p is prime. Moreover, it also provides solutions to many instancesof the form

odd� odd� w as we now show experimentally. The results were performed up to

odd = 49. For all (odd) prime numbers p lower than 49, the heuristic solves the

instancesp� p� w, wherew is the maximal number of weeksfor p groupsand periods.

When odd is divisible by 3, the heuristic solvesinstancesof the form odd� odd� 4,



CHAPTER 5. LOCAL SEARCH FOR THE SOCIAL GOLFER PROBLEM 145

when odd is divisible by 5, it solves instancesof the form odd� odd� 6, and when

odd is divisible by 7, it solvesinstancesof the form odd� odd� 8. For instance,the

constructive heuristic solvesinstance49-49-8.

It is interesting to relate theseresults to mutually orthogonal latin squares2. In-

deed,it is known that �nding a solution for instancesof the form g� g� 4 is equivalent

to the problem of �nding two orthogonal latin squaresof sizeg. Moreover, instances

of the form g� g � n are equivalent to the problem of �nding n � 2 mutually orthog-

onal latin squaresof sizeg [39, 199]. Instancesof the form g � g � 4 can be solved in

polynomial time wheng is odd. This providessomeinsight into the structure of these

instancesand somerationale why the constructive heuristic is able to solve many of

the odd� odd� w instances.Table 5.6 summarizesthe results on the odd� odd� w

instances.The columnsrespectively specify the instances,the largestw found by the

constructive heuristic, and the number of weeksw for the social golfers that corre-

sponds to the best lower bound on the latin squareas given in [40]. Rows in bold

facesindicate closedinstances.This constructive heuristic hasbeenextendedto deal

with other typesof instancein [113].

It is interesting to observe that the lower boundson the mutually orthogonal latin

squaresvary signi�cantly. Indeed, the lower bound for size17 is 16, while it is 4 for

size15. Theselower bounds give someadditional insights on the inherent di�cult y

of theseinstancesand on the behavior of the constructive heuristic.

5.5.2 Hard Instances

Table 5.7 comparesthe tabu-search algorithm with and without the constructive

heuristic on the hard instancesfrom Table 5.3. Note that 7 � 7 � 7 and 7� 7 � 8 are

now trivially solved, as well as 9 � 9 � 4 which was also open. SGLS-CH does not

strictly dominatesSGLS,as there are instanceswhereit is slightly slower. However,

on someinstances,it is clearly superior (including on 8 � 8 � 5 which can now be

solved). Algorithm SGLS-CHalsoclosestwo additional open problems: 7� 5� 6 and

2A Latin Square corresponds to a Quasigroup, explained in chapter 4. Two Latin Squaresof
order n are said to be orhtogonal if one can be superimposed on the other, and each of the n2

combinations of the symbols occurs exactly one in the n2 cells of the array
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instances CH : w Gol:LB
3-3-w 4 4
5-5-w 6 6
7-7-w 8 8
9-9-w 4 10

11-11-w 12 12
13-13-w 14 14
15-15-w 4 6
17-17-w 18 18
19-19-w 20 20
21-21-w 4 7
23-23-w 24 24
25-25-w 6 26
27-27-w 4 28
29-29-w 30 30
31-31-w 32 32
33-33-w 4 7
35-35-w 6 7
37-37-w 38 38
39-39-w 4 6
41-41-w 42 42
43-43-w 44 44
45-45-w 4 8
47-47-w 48 48
49-49-w 8 50

Table 5.6: Resultson the odd� odd� w Instances

10 � 4 � 10. Table 5.8 depicts the performanceof algorithm SGLS-CH on the new

solved instances.

5.5.3 Summary of the Results

Table 5.9 summarizesthe results of this work. It depicts the status of maximal

instancesfor SGLS-CHand whether the instancesarehard (more than 10seconds)or

easy(lessthan 10 seconds).The results indicate that SGLS-CHmatchesor improves

the best results for all but 3 instances. In addition, it produces11 new solutions
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random new
instances I T %F I T %F

6-3-8 282254.07 48.93 6 250572 43.84 4
6-4-6 161530.35 47.75 168000 49.66
7-4-7 274606.00 107.18 200087 124.15
8-4-8 323141.52 107.62 8 316639 141.91 3
8-8-4 153301.61 360.00 8380.45 19.54
8-8-5 { { 100 108654.00 496.82

10-3-13 45849.00 30.82 51015.00 34.28

Table 5.7: ComparisonbetweenSGLSand SGLS-CH.

instance I T %solv ed
7-5-6 487025.0 370.50 10
9-4-9 469156.4 402.55 100
9-5-7 4615.0 5.39 100
9-6-6 118196.7 196.52 100
9-7-5 64283.9 155.16 100
9-8-4 1061.3 2.92 100

10-4-10 548071.6 635.20 100
10-5-8 45895.4 76.80 100
10-9-4 5497.9 24.42 100

Table 5.8: Experimental Resultsof SGLS-CHon the New Solved Instances.

with respect to earlier results. Theseresultsarequite remarkablegiven the simplicity

of the approach. Indeed, constraint-programming approaches to the social golfer

problemaretypically very involvedand useelegant, but complex,symmetry-breaking

techniques. Algorithm SGLS-CH, in contrast, does not include any such symmetry

breaking.

It is interesting to observe the highly constrainednature of the instancesfor which

SGLS-CH does not match the best-known results. Henceit is not surprising that

constraint programming outperforms local search on theseinstances.Note also that

Brisset and Barnier [13] proposeda very simple constraint-programming model to

solve 8 � 4 � 9 in a few seconds. So, once again, there seemsto be a nice com-

plementarit y betweenconstraint programming and local search on the social golfer
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size3 size4 size5 size6 size7 size8 size9 size10
#groups w status w status w status w status w status w status w status w status

6 8 Hard 6 Hard 6 Hard 3 Easy - - - - - - - -
7 9 Easy 7 Hard 6 New 4 Easy 8 New - - - - - -
8 10 Easy 8 Hard 6 Easy 5 Easy 4 Easy 5 Hard - - - -
9 11 Easy 9 New 7 New 6 New 5 New 4 New 4 New - -

10 13 Hard 10 New 8 New 6 Easy 5 Easy 4 Easy 4 New 3 Easy

Table 5.9: Summary of the Results for SGLS-CHwith Maximal Number of Weeks.
Bold entries represent a match or an improvement over existing solutions.
The status is new(for improvement), hard (> 10 seconds),and easy(� 10 seconds).

problem.

5.6 Lessons learn t

Local Search is a heuristic algorithm that relieson a �tness function and a neighbor-

hood structure to drive the search towards high quality solutions in the search space.

Here is the list of lessonswe have learnt:

� LS is better suited for optimization, although it is alsoe�ectiv e for satisfaction.

However, in the latter caseit is not possiblefor the LS algorithm to �nd all the

solutions.

� LS algorithms tend to quickly convergeto a local optima, however, it is some-

timesvery di�cult to escapefrom it anddirect the search towardsglobaloptima.

� LS can be easily fed with constructive heuristics to generateinitial candidate.

This hasa great impact on the performanceof the algorithm.

� Tabu search is a very powerful LS technique sinceit allows degradingmovesto

help escape local optima while not excessively degrading the solution quality,

and it alsomaintains abstractionsof visited solutionsin order to avoid revisiting

them during search.

� LS algorithms are not very di�cult to implement and the most time consuming

part is usually devoted to comeup with the right modeling and data structures.



Chapter 6

A Memetic Algorithm for the

Golom b Ruler Problem

Finding Golomb rulers is an extremely challengingcombinatorial problem which has

received considerableattention over the last decades.An n-mark Golomb ruler is an

orderedsequenceof n distinct nonnegative integershm1; : : : ; mn i (mi < mi +1 ) such

that all distances

mj � mi (1 � i < j � n) (6.1)

are distinct. Each integer mi corresponds to a mark on the ruler and the length of

the ruler is the di�erence mn � m1. By convention, the �rst mark m1 can be placed

in position 0, in which casethe length is given by mn . An n-mark Golomb ruler is

optimal if there exists no n-mark Golomb ruler of smaller length.

Golomb rulers have applicationsin a wide variety of �elds including radio commu-

nications ([27, 114]), x-ray crystallography ([26]), coding theory ([56, 139]), and radio

astronomy. Moreover, becauseof their highly combinatorial nature,1 they have be-

comea standard benchmark to evaluate and comparea variety of search techniques.

In particular, genetic algorithms, constraint programming, local search, and their

hybridizations have all been applied to the problem of �nding Golomb rulers (e.g.,

[43, 76, 173, 176, 210, 213]).

1The search for a 19-mark Golomb ruler took approximately 36,200CPU hours on a Sun Sparc
workstation using a very specializedalgorithm [56].

149
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This research proposesa novel hybrid evolutionary algorithm for �nding near-

optimal Golomb rulers in reasonabletime. The algorithm embedsa local search into

a geneticalgorithm and outperformsearlier geneticalgorithms, as well as constraint

programmingalgorithms and their hybridizations with local search. In particular, the

algorithm quickly �nds optimal rulers for up to 13 marks and was able to �nd opti-

mal rulers for 14 and 15 marks, which is clearly out of reach for the above mentioned

algorithms. The algorithm also �nds near-optimal rulers in reasonabletime, clearly

indicating the e�ectiv enessof hybrid evolutionary algorithms on this highly combi-

natorial application. Of particular interest is the conceptualsimplicity and elegance

of the algorithm.

Even though there are solutions for higher number of marks for other complete

search approaches, evolutionary algorithms have the advantage of providing good

quality solutions in a short period of time. This is a main contribution of this re-

search as well, providing high quality solutions (improving all previousevolutionary

approaches) in a few secondsor minutes.

The main technical contribution of the novel hybrid evolutionary algorithm is its

focus on feasibility. Indeed, the main step of the evolutionary algorithm is to �nd a

Golomb ruler of a speci�ed length (or smaller),usingconstraint violations to guidethe

search. Near-optimal rulers areobtained indirectly by solvinga sequenceof feasibility

problems.

The rest of this chapter starts by a brief overviewof related work. It then presents

presents the local search and the hybrid evolutionary algorithms for �nding Golomb

rulers of a speci�ed length, before generalizingthe algorithm to �nd near-optimal

rulers and concludingwith the lessonslearnt.

6.1 Finding Golom b Rulers

Two main approachescan be essentially consideredfor tackling the Optimal Golomb

Ruler (OGR) problem with EAs. The �rst one is the direct approach, in which the

EA conducts the search in the spaceSG of all possibleGolomb rulers. The second

one is the indirect approach, in which an auxiliary Saux spaceis usedby the EA. In
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this latter case,a decoder [140] must be utilized in order to perform the Saux � ! SG

mapping. Examplesof the former (direct) approach are the works of Soliday et al.

[213], and Feeney[76]. As to the latter (indirect) approach, we can cite the work

by Pereira et al. [173] (based on the notion of random-keys [18]), and Cotta and

Fern�andez[43] (basedon ideasfrom GRASP [190]). This latter paper is speci�cally

interesting sincegeneralizationsof the core idea presented there have been used in

this work. To be precise,the key ideawasusinga problem-aware procedure(inspired

in GRASP) to perform the genotype-to-phenotype mapping. This method ensured

the generation of feasible solutions, and was shown to outperform other previous

approaches.

In 1995,Soliday, Homaifar and Lebby [213] useda geneticalgorithm on di�eren t

instancesof the Golomb ruler problem. They chosea direct approach where each

chromosomeis composed by a permutation of n � 1 integers that represents the

sequenceof the n � 1 lengths of its segments. Two evaluation criteria were followed:

the overall length of the ruler, and the number of repeatedmeasurements. This latter

quantit y was used in order to penalizeinfeasiblesolutions. The mutation operator

consistedof either a permutation in the segment order, or a changein the segment

lengths. As to crossover, it was designedto guarantee that descendants are valid

permutations.

Later, Feeneystudied the e�ect of hybridizing geneticalgorithms with local im-

provement techniquesto solveGolomb rulers [76]. The direct representation usedcon-

sistedof an array of integerscorresponding to the marks of the ruler. The crossover

operator was similar to that used in Soliday et al.'s approach although a sort pro-

cedurewas addedat the end. The mutation operator consistedin adding a random

amount in the range [� x; x] -where x is the maximum di�erence between any pair

of marks in any ruler of the initial population{ to the segment mark selectedfor

mutation. As it will be shown later, we can use a similar concept in order to de-

�ne a distance measureon the �tness landscape. Pereira et al. presented in [173]

an indirect approach basedEA using the notion of random keys [18] o codify the

information contained in each chromosome.The basic idea consistsof generatingn

random numbers (i.e., the keys) sampledfrom the interval [0; 1] and orderedby its
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position in the sequence1; : : : ; n; then the keysare sorted in decreasingorder. The

indices of the keys thus result in a feasiblepermutation of f 1; � � � ; ng. A similar

evaluation criteria as described in [213] was followed. They also presented an alter-

native algorithm that adds a heuristic, favoring the insertion of small segments. A

related approach has beenpresented in [43]. This proposal incorporates ideasfrom

greedy randomizedadaptive search procedures(GRASP) [190] in order to perform

the genotype-to-phenotype mapping. More precisely, the mapping procedure pro-

ceedsby placing each of the n � 1 marks (the �rst mark is assumedto be a1 = 0) one

at a time; the (i + 1)th mark can be obtained as ai +1 = ai + l i , where l i > 1 is the

i � th segment length. Feasiblesegment lengths (i.e., those not leading to duplicate

measurements) can be sorted in increasingorder. Now, the EA needsonly specifying

at each step the index of a certain segment within this list (obviously, the contents of

the list are di�eren t in each of thesesteps). This implies that each individual would

be a sequencehr 1; � � � ; rn� 1i , wherer i would be the index of the segment usedin the

i � th iteration of the constructionalgorithm. Notice that in this last placement stepit

doesnot make senseto pick any other segment length than the smallestone. For this

reason,r n� 1 = 1; hence,solutionsneedonly specify the sequencehr 1; � � � ; rn� 2i . This

representation of solutions is orthogonal [186], i.e., any sequencerepresents a feasible

solution, and hence,standard operators for crossover and mutation can be used to

manipulate them. This GRASP-basedapproach wasreported to perform better than

the previous(indirect and direct) approached mentioned.

6.2 Golom b Rulers of Fixed Lengths

This section describes hybrid evolutionary algorithm for �nding Golomb rulers of

speci�ed lengths. It starts with the problemmodeling, then describesthe local search

and the hybrid evolutionary algorithms, and concludeswith the experimental results.



CHAPTER 6. A MEMETIC ALGORITHM FOR THE GOLOMB RULER PROBLEM153

6.2.1 Mo deling

The problem modeling in the hybrid evolutionary algorithm is natural and associates

a decisionvariablemx with every mark x. Givena ruler � , i.e., an assignment of values

to the decisionvariables,the value � (mx ) denotesthe position of mark x within the

ruler. Sincethe length l of the ruler is known in this section, the values� (m1) and

� (mn) are �xed to 0 and l respectively. There are three kinds of constraints in the

Golomb ruler:

1. The marks have di�eren t positions in the ruler.

2. The marks are ordered,i.e., � (mi ) < � (mi +1 ).

3. The distancesdij = mj � mi (j > i ) are all di�eren t.

The �rst two types of constraints are implicit in the algorithms presented in this

work: They are satis�ed by the initial assignments and are preserved by local moves

and geneticoperators. The goal of the algorithms is thus to satisfy the third set of

constraints.

To guide the search, the algorithms usea notion of constraint violations on the

distances. The violation � � (d) of a distance d in a n-mark ruler � is the number

of times distance d appears between two marks in the ruler � beyond its allowed

occurrences,i.e.,

� � (d) = max(0; # f dij = d j 1 � i < j � ng � 1) (6.2)

where dij = � (mj ) � � (mi ). The violations � (� ) of a n-mark ruler � is simply the

sum of the violations of its distancesd, i.e.,

� (� ) =
X

d2 D

� � (d) (6.3)

whereD = f di;j j 1 � i < j � ng. Obviously, a ruler � with � (� ) = 0 is a solution

to the Golomb ruler problem.
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6.2.2 The Tabu Search

We now turn to the tabu search algorithm for �nding Golomb rulers of speci�ed

lengths.

The Neigh borho od The movesin the local search consistsof changing the value

of a singlemark. Sincethe marks are ordered,a mark x can only take a value in the

interval

I � (x) = [� (mx� 1) + 1; � (mx+1 ) � 1]:

As a consequence,the setsof possiblemovesis

M (� ) = f (x; p) j 0 < x < n & p 2 I � (x)g:

Observe that � (m1) and � (mn) are �xed to 0 and l.

The Tabu Comp onent The tabu component of the local search prevents a mark

from being reassignedthe samevalue for a number of iterations. The tabu list thus

consistsof a triplet hx; p; i i , wherex is a mark and p is a possibleposition for mark

x and i represents the �rst iteration wheremark x can be assignedto p again. The

tabu tenure, i.e., the number of iteration (x; p) stays in the list, is dynamic and is

randomly generatedin the interval [4; 100]. For a ruler � and an iteration k, the set

of legal movesis thus de�ned as

M + (� ; k) = f (x; p) 2 M (� ) j : tabu(x; p;k)g:

where tabu(x; p;k) holds if the assignment mx  p is tabu at iteration k. The tabu

status can be overridden whenever an assignment would reducethe smallestnumber

of violations found so far. In other words, if � � is the ruler with the smallestnumber

of violations found so far, the neighborhood also includesthe moves

M � (� ; � � ) = f (x; p) 2 M (� ) j � (� [mx  p]) < � (� � )g
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where� [mx  p] denotesthe ruler � wherevariable mx is assignedto p.

The Tabu-Searc h Algorithm We are now ready to present the basiclocal search

algorithm grls . The algorithm, depicted in Figure 6.1, a tabu search with an inten-

si�cation component 2. Lines 2-6 perform the initializations. In particular, the tabu

list is initialized in line 2, the initial ruler is generatedrandomly in line 3, while lines

5 and 6 initialize the iteration counter k, and the stabilit y counter s. The initial

con�guration � randomly assignsvaluesfor all marks, satisfying the constraints that

each mark is assignedto a di�eren t value and are ordered. Moreover, the position of

the �rst mark is 0 and the position of the last mark is the length l of the ruler. The

best ruler found so far � � is initialized to � . The coreof the algorithm are lines 7-21

which perform local movesfor a number of iterations or until a solution is found. The

local move is selectedin line 8. The key idea is to selectthe best assignment in the

neighborhood

M + (� ; k) [ M � (� ; � � );

i.e., the non-tabu moves and those which improve the best ruler. Observe that the

expression� (� [mx  v]) represents the number of violations obtained after assigning

p to mark x. The tabu list is updated in line 10, and the new ruler is computed in

line 11. Lines12-14update the best ruler, while lines15-18specify the intensi�cation

component. The intensi�cation component simply reinitializes the search from the

best available ruler whenever no improvement in the number of violations took place

for maxStableiterations. Note that the stabilit y counter s is incremented in line 20

and resetto zeroin line 14 (when a new best ruler is found) and in line 17 (when the

search is restarted).

6.2.3 The Hybrid Evolutionary Algorithm

We now turn to the hybrid evolutionary (HE) algorithm for �nding Golomb rulers

of speci�ed lengths. The algorithm maintains a population of rulers and performs

2Remember that intensi�cation consistsof maintaining a list of good solutions that the algorithm
will revisit at somepoint during the search
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1. grls (n,l)
2. tabu  fg ;
3. �  randomConfigura tion (n,l);
4. � �  � ;
5. k  0;
6. s  0;
7. while k � maxIt & � (� ) > 0 do
8. select (x; p) 2 M + (� ; k) [ M � (� ; � � )

minimizing � (� [mx  p]);
9. �  random ([4,100]);
10. tabu  tabu [ fhx; p;k + � ig ;
11. �  � [mx  p];
12. if � (� ) < � (� � ) then
13. � �  � ;
14. s  0;
15. else if s > maxStablethen
16. �  � � ;
17. s  0;
18. tabu  fg ;
19. else
20. s++;
21. k++;

Figure 6.1: Algorithm grls for Finding Golomb Rulers

a number of iterations until a solution is found. Each iteration selectstwo rulers in

the population and, with someprobabilities, crossesand/or mutates them. The two

rulers soobtained replacetheir parents in the population. Each of thesestepsis now

reviewed in more detail.

Selection Each iteration selectstwo rulers in the population (the parents). Two

strategieswerestudied for selectingthe parents: a random strategy which randomly

selectstwo rulers from the population and a \roulette wheel" strategy that biasesthe

search toward rulers with fewer violations.
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Crossover The HE algorithm usesa one-point crossover for crossingtwo rulers � 1

and � 2. It selectsa random number k in 1..n. The �rst child is obtained by selecting

the �rst k marks from � 1 and the remaining n � k marks from � 2. The secondchild

is obtained in a similar fashionby swapping the role of the parents. There is a minor

di�cult y to addresswhen crossingtwo rulers: the two rulers may include the same

markers. Considerthe two parents

� 1 = h 0 1 5 12 23 34 37 41 44 i

� 2 = h 0 3 6 10 16 23 39 42 44 i

and k = 5. Without extra care, the �rst child would be

h 0 1 5 12 23 / 23 39 42 44 i

repeating position 23. Instead, the crossover selectsthe last n � k elements in � 2

which are not found in � 1, giving

h 0 1 5 12 23 / 16 39 42 44 i .

The ruler is then orderedto obtain the �rst child

h 0 1 5 12 16 23 39 42 44 i .

The secondchild is obtained in a symmetric way.

Mutation Mutations in the HE algorithm are performedby the local search grls .

The best solution obtained by grls is the result of the mutation, unlessthis solution

is already in the population. In this last case,the mutation is simply the ruler when

the local search terminates. This designchoiceis motivated by the desireto preserve

diversity during the search.

Restarting Policy The algorithm is restarted from scratch when the diversity of

the population is too low. The restarting policy is basedon the empirical observation

that the population is not diverseenoughwhen too many rulers have few violations.

As a consequence,the HE algorithm restarts when more than half of the population
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1. grhea (n; l)
2. forall i 2 1::PopulationSize
3. �  � [ f randomConfigura tion (n; l)g;
4. g  0;
5. while g � maxGen & � (�) > 0 do
6. i  0;
7. � +  ; ;
8. while i � populationSizedo
9. select (� 1; � 2) 2 �;
10. with probabilit y Pc

11. (� 1; � 2)  crossover(� 1; � 2);
12. with probabilit y Pm

13. � 1  grls (� 1);
14. � 2  grls (� 2);
15. � +  � + [ f � 1; � 2g;
16. i  i + 2;
17. �  � + ;
18. g  g + 1;
19. if diversity (�) < �
20. forall i 2 1::PopulationSize
21. �  � [ f randomConfigura tion (n; l)g;

Figure 6.2: Algorithm grhea for Finding Golomb Rulers

hasfewer violations than a speci�ed threshold �. This strategy is only applied when

the parents are selectedusing the \roulette wheel" strategy which hasa tendencyto

decreasethe diversity of the population signi�cantly over time. In the following, we

usediversity(�) to denotethe medianviolation in � and � (�) to denotethe smallest

violation in �.

The Hybrid Algorithm We are now ready to present the HE algorithm grhea

which is depicted in Figure 6.2. Lines 2-4 perform the initializations. In particular,

the population is randomly generatedin lines 2-3 and the generation counter g is

initialized in line 4.

The core of the algorithm is in lines 5-21. They generatenew generationsof
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CPU Time(secs) Local Moves Failures CLS
# marks avg mdn avg mdn %F MaxGen time Uns. Backtracks CPU Time

5 0.0 0.0 3.46 1 0 10 - 15 0.0
6 0.0 0.0 8.78 5 0 10 - 24 0.0
7 0.0 0 42.44 21 0 10 - 145 0.0
8 0.03 0.02 1125.54 564 0 10 - 5114 0.08
9 0.24 0.19 5711.32 4339.5 0 10 - 23118 0.47

10 3.49 2.29 5674.5 37479.5 0 10 - 74860 1.87
11 8.15 5.86 84606.2 60836.5 0 10 - 269905 8.16
12 199.45 166.75 1531640.67 1288230.5 1 20 2411.1 2005597 72.2
13 1071.74 959.55 5655670.67 4969063 1 50 990.36 20360198 860
14 1013.2 3861.69 3939817.5 14965000 98 50 3860.93

Table 6.1: Experimental Resultsof grhea for Rulers from 5 to 14 Marks.

rulers for a number of iterations or until a solution is found. The new generationis

initialized in line 7, while lines 8-16 create the new generation. The new rulers are

generatedby selectingthe parents in line 9, applying a crossover with probability Pc

(lines 10-11),and applying a mutation with probability Pm (lines 12-14). Note that

the function grhea (� ) denotesthe executionof grls starting from ruler � . The new

rulers are addedto the new population in line 15. The new population becomesthe

current population in line 17. If the new population is not diverseenough(line 19),

it is reinitialized from scratch (lines 20-21).

Exp erimen tal Results Table 6.1 reports the experimental results for algorithm

grhea . Algorithm grhea was run 50 times for each ruler with a population size

of 50 and with a maximum of 10,000iterations for the local search. The crossover

and mutation probabilities were both set to 0.6 and the diversity parameter � is

set to 5. Theseparameterswere determined from a limited number of experiments

and can certainly be tuned for speci�c instances.Only resultswith roulette selection

are reported. The results of random selectionare relatively close,but near-optimal

results only useroulette selection.

The results are comparedto those of [176], where a hybrid Complete and Local

Search algorithm named Constrained Local Search (CLS) is introduced. Note that

CLS performsbetter for higher number of marks but it is not able to solve rulers of
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14 marks while our algorithm is.

6.3 Near Optimal Golom b Rulers

The algorithms described so far compute Golomb rulers of speci�ed lengths. This

sectiondiscusseshow to generalizethem to �nd near-optimal Golomb rulers.

6.3.1 The Di�cult y

Consider�rst the problem of generalizingthe tabu-search algorithm for �nding near-

optimal Golomb rulers. A natural approach is to solve a sequenceof feasibility prob-

lems. Starting from an upper bound l on the optimal length of the ruler, the algorithm

then searches for rulers of length l, l � 1, ... until no solution can be found. This

approach, although conceptuallysimple,performspoorly. Indeed,it essentially solves

a sequenceof mostly unrelated problems, sinceno information is reusedacrossthe

searchesand, in addition, the search for a ruler of length l is not necessarilysimpler

than the search for a ruler of smaller length.

A secondapproach consistsof integrating the ruler length aspart of the objective

function and to consider the last mark mn as a decision variable. The objective

function now combines constraint violations and the ruler length in order to guide

the search toward optimal rulers. The violations and the length can be combined

in di�eren t fashions. However, preliminary experimental results with this approach

were not encouraging,although there may exist e�ectiv e ways to combine thesetwo

con
icting objectivese�ectiv ely for tabu-search or other meta-heuristics.

6.3.2 Generalizing the Hybrid Evolutionary Algorithm

Interestingly, the HE algorithm can be generalizedto produce an indirect, but ef-

fective, approach for �nding near-optimal Golomb rulers in reasonabletime. The

approach consistsagainof solvinga sequenceof feasibility problems,starting from an

upper bound l and producing a sequenceof rulers of length l1 > l2 > : : : > l i > : : :.

The key idea however is not to �x the length of the ruler in the HE algorithm. More
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1. gr ohea (n; u)
2. �  gr ghea (n; u);
3. while � (� ) = 0 do
4. � �  � ;
5. �  gr ghea (n,length (� � )-1);
6. return � � ;

Figure 6.3: Algorithm gr ohea for Near-Optimal Rulers

precisely, the new HE (gr ghea ) algorithm considersthe last mark mn as a decision

variable whosevalue is at most l , where l is the best available upper bound. The

initial population consistsof random rulers whoselengthsareat most l , but are likely

to beshorter. Crossover operationsproceedasbefore. Mutations areagainperformed

by the local search algorithm which still minimizesthe number of violations but now

considersthe last mark as a decisionvariable. This algorithm di�ers from the previ-

ousoneonly in lines13 and 14 (�gure 6.2), whereinsteadof using the grls , it would

make useof a slightly modi�ed procedurewhich will take into account the last mark

of the ruler; this translates to the fact that � (mn) is now not �xed (seeremark in

equation 5). Note that the length of the ruler is not incorporated in the objective

function which focusesexclusively on feasibility.

The generalizedHE algorithm gr ohea for �nding near-optimal rulers is depicted

in Figure 6.3. Givenan upper boundu on the length of an n-mark ruler, the algorithm

�rst searchesfor a ruler of length at most u (line 2). It then performs a number of

iterations, each of which producingrulersof smallerlength (lines3-5), until no feasible

solution can be found for a speci�ed length. The main step is in line 5: It usesthe

HE algorithm gr ghea for �nding a ruler of length smaller than length (� � ), where

� � is the smallest ruler found so far and length (� � ) is simply the value � � (mn ) of

the last mark. Note also that algorithm gr ghea is the HE algorithm grhea (n; l)

presented earlier, except that the last mark is now a decisionvariable and the initial

population are rulers whoselength is at most l but may be shorter.

Algorithm gr ohea is best viewed assolving a sequenceof feasibility problemsto

�nd rulers of decreasinglengths. However, algorithm gr ohea does not arti�cially
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hgrasp gr ohea
#marks Opt Best Median Time Best Median Time Last(time) Opt(time)

11 72 74(2.8) 74(2.8) 1.5 72 72 0.3 0.3 0.1
12 85 94(10.6) 95(11.8) 2.4 85 91(7.1) 2.3 1 1.8
13 106 111(4.7) 114(7.5) 3.6 106 112(5.6) 3.9 2 1.7
14 127 135(6.3) 139(9.4) 5.3 131(3.1) 136(7.1) 6 3.2 40.7
15 151 162(7.3) 169(11.9) 7.6 158(4.6) 164(8.6) 8.7 4.7 -
16 177 189(6.8) 197(11.3) 11.3 187(5.6) 195(10.2) 13.4 5.9 -

Table 6.2: Experimental Results for the gr ohea Algorithm. Time in minutes.

constrain the ruler length. Instead, the search is directed by constraint violations

and the length of the ruler, i.e., the value of the last mark, is modi�ed appropriate

to minimize violations.

6.3.3 Exp erimen tal Results

Table 6.2 reports the experimental results for algorithm gr ohea and comparethem

with the hgrasp algorithm of [43]. All experiments use a roulette wheel selection

and are basedon the following settings. The maximum number of iterations for the

tabu search is 10; 000,the sizeof the population is 50, the probabilities Pc and Pm are

both 0:6, and � is 5. For a n-mark ruler, the algorithm usesthe optimal length of an

n+ 1-mark ruler asinitial upper bound and is iterated until no improvedruler is found

for two successive generations,exceptfor n = 16wherewe usethree generations.The

gr ohea is run 30 times for each ruler (like the hgrasp in [43]). Finally, we also let

algorithm gr ohea without time/generation limits to determine whether it can �nd

optimal rulers (these results are for a small number of runs). Both algorithms were

run on similar machines.

The table reports the bestand medianlengthsfor rulerswith 11to 16marksfound

by algorithms hgrasp and gr ohea within their time limits (algorithm gr ohea

easily �nds optimal rulers for smaller lengths). It also reports the averagetimes of

both algorithms in minutes. In addition, for algorithm gr ohea , the table alsogives

the time to �nd the last solution (if it is not the optimal solution the algorithm will

keep on trying to �nd it, but it might not be able to �nd any other ruler, in that
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case,we report time to �nd the last valid ruler). The last column reports the time of

gr ohea to �nd optimal rulers.

The resultsareparticularly impressive. First observe that gr ohea systematically

�nds optimal rulers up to 11 marks very quickly. Algorithm hgrasp does not �nd

optimal rulers systematicallyeven for 10 marks and never �nds optimal rulers for 11

marks. Algorithm gr ohea also�nds optimal rulers for 12 and 13 marks in lessthan

two minutesand for 14marks in about 40minutes. Algorithm gr ohea alsoimproves

the near-optimal solutionssigni�cantly. For 14 marks, the best solutionsof gr ohea

are with 3.1%of the optimal rulers (instead of 6.3%for hgrasp ) in about 6 minutes.

They are with 4.6%and 5.6%for 15 and 16 marks in about 9 and 13 minutes. These

represent improvements ranging from 1.4% to 3.2% comparedto hgrasp . Similar

results are obtained for median valuesas well.

A fundamental bene�t of gr ohea is its abilit y to improve its solutionsover time,

which does not seemto be the caseof prior genericand/or hybrid evolutionary al-

gorithms. Contrary to gr ohea , earlier algorithms were not able to �nd optimal

solutions for 13 and 14 marks. Algorithm gr ohea also �nds a solution of length

153 in about an hour on 15 marks (151 is the optimal length), showing that better

solutions can be found when the algorithm is given more time. This is particularly

interesting given the natural modeling and conceptualsimplicity of the algorithm.

It is also important to stressthat theseresults were obtained without tuning of

the parameters. In particular, larger instancesare likely to bene�t from longer tabu

searchesand, possibly, moresophisticatedcrossovers. But the resultsclearly indicate

the potential of hybrid evolutionary algorithms for �nding near-optimal rulers.

6.4 Lessons learn t

Genetic Algorithms are population-basedalgorithms that are easily hybridized with

LS techniques. Contrary to the opinion of many researcherswithin the combinatorial

optimization �eld, they can be very e�cien t when solving hard problems,and espe-

cially when generatingfast near-optimal solutions. Here is the list of lessonswe have

learnt:
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� GAs arevery usefulto provide a framework in which to maintain a setof diverse

and high quality solutions.

� Recombination operators can sometimesyield valid, optimal or near-optimal

solutions.

� When solving hard combinatorial problemsthey greatly bene�t from the incor-

poration of LS techniquesthat allow a faster convergence.

� A fast convergenceof the population is also problematic. Restarts and other

mechanismareneededin order to regeneratethe population anddrivethe search

towardsdi�eren t regionsin the search space.However, it is not always straight-

forward to implement the right restarting condition.

� The Local Search is greatly enrichedby having a population of diversesolutions.

LS typically improvesa solution until it getsstuck on a local optima, when the

algorithm commonly restarts and attempts to improve a di�eren t solution. In

this case,we can seeit as if the LS had a set of good solutionsavailable at any

time to be optimized in turns.

� GAs can not only incorporate LS proceduresto improve the e�ciency of their

recombination operators,but alsouseinformation yieldedby thoseprocessesto

dynamically adapt themselves.
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The Last Hybrid
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Chapter 7

Adding CP and Clustering to Solve

the Golom b Ruler Problem

In this section a new hybrid algorithm is presented in two steps: �rst a very so-

phisticated memetic algorithm; and second,the introduction of CP and clustering

techniques to boost performance. As in the previous chapter, the problem we are

goingto be dealingwith is that of the Golomb Ruler. Remember that Golomb Rulers

[9, 26] area classof undirectedgraphsthat, unlikeusualrulers, measuremorediscrete

lengths than the number of marks they carry. More formally, a n-mark Golomb ruler

is an orderedsequenceof n distinct nonnegative integershm1; : : : ; mn i (mi < mi +1 )

such that all distancesmj � mi (1 6 i < j 6 n) are distinct. Each integer mi corre-

sponds to a mark on the ruler and the length of the ruler is the di�erence mn � m1.

By convention, the �rst mark m1 canbe placedin position 0, in which casethe length

is given by mn .

The particularit y of Golomb Rulersthat on any givenruler, all di�erencesbetween

pairs of marksareuniquemakesthem really interestingin many practical applications

(cf. [76, 187]). It turns out that �nding optimal or near-optimal Golomb rulers (a n-

mark Golomb ruler is optimal if thereexistsno n-mark Golomb ruler of smallerlength)

is an extremely challenging combinatorial problem. To date, the highest number of

marks for which the optimal Golomb ruler (OGR) is known is 23 marks1 [205, 198].

1The search for an optimal 19-marks Golomb ruler took approximately 36,200CPU hours on

166
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Finding optimal Golomb rulers has thus becomea standard benchmark to evaluate

and comparea variety of search techniques. In particular, evolutionary algorithms

(EAs), constraint programming(CP), local search (LS), and their hybridizations have

all beenapplied to this problem (e.g., [76, 43, 173, 176, 210, 213]).

In thesenext sections,we present a hybrid EA designedto �nd optimal or near-

optimal Golomb Rulers. This algorithm makesuseof both an indirect approach and

a direct approach in di�eren t stagesof the search. More speci�cally, the indirect

approach is usedin the phasesof initialization and restarting of the population and

takes ideas borrowed from the GRASP-basedevolutionary approach published in

[43]. The direct approach is consideredin the stagesof recombination and local

improvement; particularly, the local improvement method is basedon the tabu search

(TS) algorithm describedin the previouschapter. Experimental resultsshow that this

algorithm succeedswhere another evolutionary algorithms did not. OGRs up to 15

marks (included) cannow be found. Moreover, the algorithm producesGolomb rulers

for 16 marks that are very closeto the optimal value (i.e., 1.1%far), thus improving

signi�cantly the results previously reported in the EA literature. Finally, we show

the last improvements which rely on clustering to achieve diversity in the reference

set and completesearch to attempt to �nd optimal rulers at the recombination step.

Theseenhancements producesuperior results, and the new hybrid is now capableof

solving rulers up to 16 marks. The chapter concludeswith a brief summary and a

review of all the lessonslearnt throughout the thesis and how they are re
ected in

this last hybrid.

7.1 Scatter Search for the Golom b Ruler Problem

Scatter search (SS) is a metaheuristicbasedon population-basedsearch whoseorigin

can be traced back to the 1970sin the context of combining decisionrules and prob-

lem constraints [142]. Figure 7.1 depicts the SStemplate. Among the salient features

a Sun Sparc workstation using a very specialized algorithm [56]. Optimal solutions for 20 up to
23 marks were obtained by massive parallelism projects, taking several months for each of those
instances[187, 85].
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Figure 7.1: A genericSSalgorithm diagram

of SSwecancite the absenceof biologicalmotivation, and the emphasisput in the use

of problem-aware mechanisms,such asspecializedrecombination procedures,and LS

techniques. In a striking exampleof convergent evolution, theseare also distinctiv e

featuresof memetic algorithms (MAs) [164]. Indeed, although SSevolved indepen-

dently from MAs, SScan be regardedwith hindsight as a particular caseof MA (or,

at least, as an alternative formulation of a common underlying paradigm). There

is just one remarkable methodological di�erence betweenmainstreamversionsof SS

and MAs: unlike other population-basedapproaches,SSreliesmore on deterministic

strategiesrather than on randomization. At any rate, this generalmethodological

principle is 
exible. This is particularly the casein our approach, in which we usea

non-deterministic component within our algorithm. For this reason,we will usethe

terms MA and SSinterchangeablyin the context of this work. In the following we

will describe each of the components of our algorithm.
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7.1.1 Div ersi�cation Generation Metho d

The diversi�cation generationmethod servestwo purposesin the SSalgorithm con-

sidered: it is usedfor generatingthe initial population from which the referenceset

will be initially extracted, and it is utilized for refreshingthe referenceset whenever

a restart is needed.

The generationof new solutions is performed by using a randomizedprocedure

that tries to generatediverse solutions. The basic method utilizes the GRASP-

decoding techniques introduced in [43]. Solutions are incrementally constructed as

follows: in the initial step, only mark m1 = 0 is placed; subsequently, at each step

i an ordered list is built using the n �rst integersl1; � � � ; ln such that placing a new

mark mi = mi � 1 + l j , 1 6 j 6 n, would result in a feasibleGolomb ruler. A random

element is drawn from this list, and usedto placemark m i . The processis iterated

until all marks have beenplaced. Notice that this results in a feasiblesolution.

A variant of this processis used in subsequent invocations to this method for

refreshingthe population. This variant is related to an additional dynamic constraint

that is imposedin the algorithm: in any solution, it must hold that mn < L, whereL

is the length of the best feasibleGolomb ruler found so far. To ful�ll this constraint,

newsolutionsareconstructedby generatingtwo feasiblerulesfollowing the procedure

described before,and submitting them to the combination method (seeSect.7.1.3),

which guaranteescompliancewith the mentioned constraint.

7.1.2 Lo cal Impro vement Metho d

The improvement method is responsible for enhancing raw solutions produced by

the diversi�cation generation method, or by the solution combination method. In

this case,improvement is achieved via the useof a tabu-search algorithm. This TS

algorithm works on tentativ e solutions that may be infeasible, i.e., there may exist

somerepeated distancesbetween marks. The goal of the algorithm is precisely to

turn infeasiblerulers into feasibleones,respecting the dynamic constraint mn < L.

Whenever this is achieved, a new incumbent solution is obviously found.

To guide the search, the algorithm usesa notion of constraint violations on the
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distances. The violation � � (d) of a distance d in a n-mark ruler � is the number

of times distance d appears between two marks in the ruler � beyond its allowed

occurrences,i.e.,

� � (d) = max(0; # f dij = d j 1 6 i < j 6 ng � 1) (7.1)

where dij = mj � mi . The overall violation � (� ) of a n-mark ruler � is simply the

sum of the violations of its distancesd, i.e., � (� ) =
P

d2 D � � (d), where D = f dij j

1 6 i < j 6 ng.

The moves in the local search consistsof changing the value of a single mark.

Sincemarks are ordered, a mark mx can only take a value in the interval I � (x) =

[mx� 1 + 1; mx+1 � 1]. As a consequence,the set of possiblemovesis M (� ) = f (x; p) j

(1 < x < n) ^ (p 2 I � (x))g. Observe that m1 is �xed to 0, and mn is not allowed

to grow. To prevent cycling, a tabu list of movements is kept. The list storestriplets

hx; p; i i , wherex is a mark, p is a possibleposition for mark x, and i represents the

�rst iteration where mark x can be assignedto p again. The tabu tenure, i.e., the

number of iterations (x; p) stays in the list, is dynamic and randomly generatedin

the interval [4; 100]. For a ruler � and an iteration k, the set of legal moves is thus

de�ned as

M + (� ; k) = f (x; p) 2 M (� ) j : tabu(x; p;k)g:

where tabu(x; p;k) holds if the assignment mx  p is tabu at iteration k. The tabu

status can be overridden whenever an assignment reducesthe smallest number of

violations found sofar. Thus, if � � is the ruler with the smallestnumber of violations

found so far, the neighborhood also includesthe moves

M � (� ; � � ) = f (x; p) 2 M (� ) j � (� [mx  p]) < � (� � )g

where� [mx  p] denotesthe ruler � wherevariable mx is assignedto p. To intensify

the search, the current solution is reinitialized to the initial ruler � 0 (in the actual TS

run) whenever no improvement in the number of violations took placefor maxStable

iterations. The algorithm returns the best solution � � found. Fig. 7.2 shows the
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completepseudocode of the TS algorithm.

1. TS(� 0)
2. tabu  fg ;
4. � �  � 0;
5. k  0;
6. s  0;
7. while k 6 maxIt & � (� ) > 0 do
8. select (x; p) 2 M + (� ; k) [ M � (� ; � � )

minimizing � (� [mx  p]);
9. �  random ([4,100]);
10. tabu  tabu [ fhx; p;k + � ig ;
11. �  � [mx  p];
12. if � (� ) < � (� � ) then
13. � �  � ;
14. s  0;
15. else if s > maxStablethen
16. �  � 0;
17. s  0;
18. tabu  fg ;
19. else
20. s++;
21. k++;
22. return � � ;

Figure 7.2: Pseudocode of the TS algorithm

7.1.3 Solution Com bination Metho d

The combination of solutions is performedusing a procedurethat bearssomeresem-

blancewith the GRASP-decoding mentioned in Sect.7.1.1. Therearesomeimportant

di�erences though: �rstly , the procedureis fully deterministic; secondly, the solution

producedby the method is entirely composedof marks taken from either of the par-

ents; �nally , the method ensuresthat the mn < L constraint is ful�lled.

The combination method begins by building a list L of all marks x present in
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either of the parents, such that x < L 2. Then, starting from m1 = 0, a new mark x

is chosenat each step i such that (i) mi � 1 < x, (ii) there exist n � i marks greater

than x in L , and (iii) a local optimization criterion is optimized. This latter criterion

is minimizing
P i � 1

j =1 � � (x � mj )2 + (x � mi � 1), where � is the partial ruler. This

expressioninvolvesminimizing the number of constraints violated when placing the

new mark, aswell as the subsequent increasein length of the ruler. The �rst term is

squaredto raise its priorit y in the decision-making.

7.1.4 Subset Generation and Reference Set Up date

This subsetgenerationmethod createsthe groupsof solutionsthat will undergocom-

bination. The combination method usedis in principle generalizableto an arbitrary

number of parents, but we have consideredthe standard two-parent recombination.

Hencethe subsetgenerationmethod has to form pairs of solutions. This is doneex-

haustively, producing all possiblepairs. It must be noted that sincethe combination

method utilized is deterministic, it does not make senseto combine again pairs of

solutions that werealready coupledbefore. The algorithm keepstrack of this fact to

avoid repeating computations.

As to the referenceset update method, it must produce the referenceset for the

next step by using the current referenceset and the newly producedo�spring (or by

using the initial population generatedby diversi�cation at the beginning of the run

or after a restart). Several strategiesarepossiblehere. Quality is an obvious criterion

to determine whether a solution can gain membership to the referenceset: if a new

solution is better than the worst existing solution, the latter is replacedby the former.

In the OGR, we considerthat a solution x is better than a solution y if the former

violates lessconstraints, or violates the samenumber of constraints but has a lower

length. It is alsopossibleto gain membershipof the referenceset via diversity. To do

so, a subsetof diverse solutions (i.e., distant solutions to the remaining high-quality

solutionsin the set { an appropriate de�nition of a distancemeasureis neededfor this

purpose)is kept in the referenceset, and updated whenever a new solution improves

2It might happen that the number of such marks were not enoughto build a new ruler. In that
case,a plain solution with length 1 (that is, the worst possiblevalue) is returned.
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the diversity criterion.

If at a certain iteration of the algorithm no update of the referenceset takesplace,

the current population is consideredstagnated,and the restart method is invoked3.

This method works as follows: let � be the sizeof the referenceset; the best solution

in the referenceset is preserved, � = � (� � 1)=2 solutions are generatedusing the

diversi�cation generationmethod and the improvement method, and the best � � 1

out of these� solutions are picked and inserted in the referenceset.

7.2 Exp erimen tal Results

To evaluateour memeticapproach, a setof experiments for problemsizesrangingfrom

10 marks up to 16 marks has been realized. In all the experiments, the maximum

number of iterations for the tabu search wasset to 10; 000,the sizeof the population

and referencesetwas190and20respectively, and the arity of the combination method

was 2. The referenceset is only updated on the basisof the quality criterion. One

of the key points in the experimentation has been analyzing the in
uence of the

local search strategy with respect to the population-basedcomponent. To this end,

we have experimented with partial Lamarckism [125], that is, applying the local

improvement method just on a fraction of the members of the population. To be

precise,we have considereda probability pts for applying LS to each solution. The

valuespts 2 f 0:1; 0:2; 0:4; 0:6; 0:8; 1:0g have beenconsidered.All algorithms wererun

20 times until an optimal solution was found, or a limit in the whole number of

evaluations was exceeded.This number of evaluations was set so as to allow a �xed

averagenumber e of LS invocations (e = 10; 000 TS runs). Thus, the number of

evaluations was limited in each of the instancesto e=pts . This is a fair measuresince

the computational cost is dominated by the number of TS invocations.

Table 7.1 reports the experimental results for the di�eren t instancesconsidered.

Row MAxx corresponds to the executionof the MA with a local improvement rate

3Notice that the TS method used for local improvement is not deterministic. Thus, it might be
possible that further applications of TS on the stagnated population resulted in an improvement.
However, due to the computational cost of this process,it is advisable to simply restart.
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10 11 12 13 14 15 16
hgrasp Best N/A 2.8 10.6 4.7 6.3 7.3 6.8

Median N/A 2.8 11.8 7.5 9.4 11.9 11.3
gr ohea Best 0 0 0 0 3.1 4.6 5.6

Median 0 0 7.1 5.6 7.1 8.6 10.2
MA1.0 Best 0 0 0 0 1.6 0 4.0

Median 0 0 0 0 2.4 4.0 6.2
MA0.8 Best 0 0 0 0 0.8 1.3 2.3

Median 0 0 0 0 1.6 3.3 5.6
MA0.6 Best 0 0 0 0 0.8 0 2.8

Median 0 0 0 0 1.6 4.0 6.2
MA0.4 Best 0 0 0 0 0 1.3 1.1

Median 0 0 0 0 1.6 4.0 5.6
MA0.2 Best 0 0 0 0 0 0.7 3.4

Median 0 0 0 0 1.6 4.0 6.2
MA0.1 Best 0 0 0 0 0 0.7 3.4

Median 0 0 0 0 1.6 3.3 5.6

Table7.1: Relativedistancesto optimum for di�eren t probabilities of the MA and the
algorithms gr ohea and hgrasp . Globally best results (resp. globally best median
results) for each instance sizeare shown in boldface(resp. underlined). Results of
hgrasp are not available for 10 marks.

of pts = xx. The table reports the relative distance (percentage) to the known

optimum for the best and median solutions obtained. The table also shows the

resultsobtainedby the algorithms described in [43](i.e., hgrasp ) and in the previous

chapter (gr ohea ). Algorithm hgrasp is groundedon the evolutionary use of the

GRASP-basedsolution generationmethod used in the basic diversi�cation method

of our algorithm. As to algorithm gr ohea , it provides the best results reported in

the literature for this problem via a population-basedapproach, and therefore it is

the benchmark referencefor our algorithm. Speci�cally for this latter algorithm, as

reported in the previous chapter, the maximum number of iterations for the tabu

search was also 10; 000, the sizeof the population was 50, and the probabilities pm

and pX were both set to 0.6. Both algorithms (gr ohea and hgrasp ) were run 30

times for each ruler.
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Figure 7.3: (Top) Computational e�ort (measuredin number of TS invocations) to
�nd the best solution. (Bottom) Statistical comparisonof the computation e�ort. In
each cell, the results (`+'=signi�can t, �̀ '=non-signi�can t) correspond from left to
right to instancesizesfrom 10 up to 16.

The results are particularly impressive. Firstly, observe that our memetic algo-

rithm systematically�nd optimal rulers for up to 13marks. gr ohea is alsocapableof

eventually �nding someoptimal solutionsfor theseinstancesizes,but notice that the

medianvaluesaredrastically improvedin the MA. In fact, the medianvaluesobtained

by the MA for theseinstancescorrespond exactly to their optimal solutions. Compar-

atively, the resultsare even better in larger OGR instances:our MA can �nd optimal

ORGs even for 14 and 15 marks, and computeshigh-quality near-optimal solutions

for 16 (i.e., 1.1%from the optimum). Theseresults clearly outperform gr ohea ; in-

deed,the latter cannot provide optimal valuesfor instancesizeslarger than 14marks.

Moreover, all MAxx signi�cantly improve the medianvaluesobtained by gr ohea on

the larger instancesof the problem. These results clearly indicate the potential of

hybrid EAs for �nding optimal and near-optimal rulers.
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We have also conducted statistical tests to ascertain whether there are signi�-

cant performancedi�erences between the di�eren t LS application rates. This has

beendone using a non-parametric Wilcoxon ranksum test (results are not normally

distributed). Except in three head-to-headcomparisonsfor 14 marks (pts = 1:0 vs

pts = 0:8 and pts = 0:1, and pts = 0:4 vs pts = 0:1), there is no statistically signi�cant

di�erence (at the standard 0.05 level) in any instancesizefor the di�eren t valuesof

pts . While this is consistent with the fact that the averagenumber of TS invocations

is constant, it raisesthe issueof whether the associated computational cost is the

sameor not. The answer to this questioncan be seenin Fig. 7.3. As expected, the

computational cost increaseswith the size of the problem. Quite interestingly, the

averagecost decreasesfor 16 marks. This behavior owes to the higher di�cult y of

the problem for this latter size: the algorithm quickly reachesa near-optimal value

(a remarkable result), and then stagnates(longer runs would be required to improve

the solutions from that point on). The table at the bottom of Fig. 7.3 shows the

outcomeof the statistical comparisonbetweenthe computational cost of the MAxx

for a given instancesize. As it can be seen,the di�erences are almost always signi�-

cant for the lower rangeof sizes,and progressively becomenon-signi�cant as the size

increases.For 16 marks, there is just one caseof statistically signi�cant di�erence

of computational cost (pts = 0:4 vs pts = 0:8). Sincethe small valuesof pts imply a

lower computational cost for instancesizesin the low range,and there is no signi�cant

di�erence in either quality or computational cost with respect to higher valuesof pts

in the larger instances,it seemsthat valuespts 2 f 0:1; 0:2g are advisable.

7.3 New Impro vements

The algorithm presented this far yields very impressive results, however, we want

to pursue it further. There are two aspects (among others) that we can improve

very straightforwardly. First, we realized that Constraint Programming can be of

help at somepoint. Second,we believe that diversity in the population is almost as

important as the quality of it. Let us then introduce the new featuresincorporated

into our algorithm:
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7.3.1 Solution Com bination by Complete Search

Recombination methods are usually introducedin order to generatenew high quality

and diverseindividuals. Our current recombination mechanism achievesthesegoals,

however what wepursuehereis somethingdi�eren t. Wearetrying to generateoptimal

solutionswith this operator.

We have beendealingwith valuesof marks through all this research. Now we turn

to look into the distancesbetweenmarks. We realized that a completesearch pro-

cedurethat incorporatespropagation techniqueswould be perfectly suited to search

for a solution when fed with the appropriate distances.CompleteSearch procedures

tend to be very ine�cien t with very large search spaces,however we can limit that

in this caseby only taking into account the distancesbetweenmarks of the two indi-

viduals to be combined. For example,imagine we have the two rulers of 9 marks to

be combined:

� 1 = h 0 1 5 13 23 34 47 50 55 i

� 2 = h 0 2 7 11 12 24 30 40 47 i

The distancesbetweenmarks of both rulers are

[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13]

Note that we only considerdistancesbetween two consecutive marks i; j where

i + 1 = j . To fully characterizethe problem we needto take all the distancesinto

account, however theseare the distancesthat we are going to restrict.

Thus, we use those distancesto feed a completesearch procedurewhosegoal is

to quickly attempt to generatevalid rulers (hopefully optimal). In order to do that

we need to formulate the problem as a CSP. Now, the variables are distancesD ij

betweenmarks (where i < j ). The domain of the variables D ij where i + 1 = j is

reducedto the valuespreviously shown. The rest of the variablescan take any value
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within 1::m wherem is the length of the ruler4. The set of constraints is as follows:

D ij 6= Dkl 8 i 6= k and j 6= l

Since we are going to execute this procedure within the MA cycle, we can take

advantage of dynamic information, such as the length � of the shortest valid ruler

in the population. This is explicitly indicated in the procedure by introducing a

constraint:

min (lk) < �

wheremin (lk) is the minimum length possiblefor a partial ruler k.

Empirical Observ ations

We have now fully characterizedthe problem our completesearch procedureis going

to be dealing with. However we found two options at this point:

� Usea Constraint Programming solver,

� or take advantageof the data structures already implemented in our algorithm.

The �rst option implies we canplug a black-box to our MA to which we passa set

of distancesand then expect a solution or a con�rmation that no valid solution canbe

found. We can take advantage of e�cien t propagation techniquesand sophisticated

heuristics.

On the other hand, taking advantage of the structures already implemented, we

can focus on instantiating only variables D ij corresponding to distancesbetween

consecutive marks; if we instantiate the variables in the sameorder as they would

physically appear in the ruler, we can easily calculate the rest of the distancesand

thus, check the validit y of the partial solution very quickly. This can be viewed as

limiting the search variables to the onesrepresenting distancesbetweenconsecutive

marks and using a lexicographicvariable ordering heuristic. Note that in this case

4Note that the value of m is not important as we will soon clarify
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we do not needto worry about the value of m, upper bound in the value of the non-

consecutive distances,sincewe are not focusingthe search on them, but only on the

consecutive ones.

Both approacheswere tested and we found that the latter wasconsistently faster

than the former; as it allows us to ignore non-consecutive distance variables. Still,

the reduction of the search spacewas not enough to yield a very fast mechanism.

Remember that we implement this procedureas a combination operator, and thus,

we cannot devote more than a few secondsto it.

In our experimental tests we discovered that, when reducing the search spaceto

consideronly the consecutive distancesof the optimal ruler, the procedurewas able

to �nd a solution in lessthan a secondfor up to 14 marks, and lessthan 5 seconds

for 15 and 16 marks. However, introducing more distancesslowed down the process

exponentially , and if within those distancesa valid solution was not possibly found,

the time cost grew inmensely.

The �nal pro cedure

After a few more experiments we designedthe next mechanism:

1. Selectthe two rulers to be combined.

2. Calculate the consecutive distances5

3. Randomly selectn + 3 distancesfrom the previousstep, being n the number of

marks in the ruler (which is 4 distancesmore than needed).

4. Run the completesearch procedurewith thosedistances,with a time limit of 4

seconds.

5. If a valid solution was found, return it, if not call the old recombination mech-

anism.
5Note that somedistancesmight be repeated; for example, in two 15 mark rulers (14 consecutive

distances)we typically �nd around 20 di�eren t distances.
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Note that this procedurecan also �nd near optimal rulers if the chosendistances

permit it. Obviously, we can be missingsomepotential optimal rulers by randomly

selectingn + 3 distances,but we found it to be the best trade-o� betweentime and

e�ciency . That is, if there was a valid solution for the given distances,the complete

search procedurewould almost always �nd it within the given time limit.

7.3.2 Div ersit y in the Population: Clustering

Wealsorealizedthat the population got stuck very frequently. The solutionsprovided

by the LS mechanism were of high quality, and thus convergedvery quickly to the

sameregion of the search space.Restarts were required to drive the search towards

di�eren t regions.Sincethe population wasselectedin an elitist fashion,many times,

the algorithm wasunableto generatebetter individuals that could be included in the

referenceset.

Diversity is thusa keyaspect of a population in order to provide the algorithm with

individuals di�eren t enoughas to generatenew solutionsof relatively high quality.

In this sensewe directed our e�orts towards implementing a clustering algorithm.

Clustering dealswith �nding a structure in a collection of unlabeleddata, and it can

beconsideredthe most important unsupervisedlearningmechanism;a loosede�nition

of clustering could be "the processof organizingobjects into groupswhosemembers

are similar in someway". A cluster is therefore a collection of objects which are

"similar" amongthem and are "dissimilar" to the objects belongingto other clusters.

In our population we have individuals that are vectorsof marks, however, we are

going to transform them into distancesbetweenmarks as in the previoussubsection.

Our goal is thus to group individuals with similar setsof distancesin the samecluster.

The algorithm for clustering is very simple; imagine we consider� clusters:

1. Transform the vectors of marks into vectors of distances. Actually, in binary

vectors that indicate whether a distance is included in the individual or not.

For example,the individual representing a 9 marks ruler

� 1 = h 0 1 5 13 23 34 47 50 55 i
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will be transformed into

x(� 1) = [ 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0 ... ]

wherea 1 in x(� 1)[i ] indicates that the distancei is included in the individual

� 1, wherei rangsfrom 1 to three times the number of marks6.

2. Calculate � random centroids. The centroids are the vectorsthat represent the

clusters,their central points. Thus, the centroids are vectorsof the samelength

as the individuals that characterize a cluster. If we already had the vectors

separatedin clusters,the centroid of a cluster ki would be a vector:

centroid(ki ) = [
a1

j ki j
a2

j ki j
: : :

al

j ki j
] (7.2)

wherej ki j is the number of vectorsin cluster ki and aj is the number of vectors

in cluster ki in which thet j -th bit is set to 1. Sincewe have no clustersyet we

calculate the centroids randomly.

3. Assign every vector to its nearest centroid, creating thus the clusters. The

distancemeasurewe useis that of the cosineof the anglesformedby the vector

and the centroid, and it is explainedin the Clustering sectionof the appendix.

4. Recalculatethe centroids with the now real information of the vectors in the

clusters.

5. Repeat steps3 and 4 until no centroid is changedin step 4 or until a maximum

number of iterations is reached, in our case10.

Our population is now divided into clusters. This fact itself doesnot ensurediver-

sity in the ReferenceSet. To maintain a high degreeof diversity without harnessing

its quality we rank the vectorsin every cluster and then selectthe best ! individuals

from each cluster, and we include them in the ReferenceSet.

6This limit l was imposedafter the observation that optimal rulers try to incorporate the lowest
di�eren t distancesbetweenconsecutive marks so that the ruler's length is minimized



CHAPTER 7. ADDING CP AND CLUSTERING TO SOLVE THE GOLOMB RULER PROBLEM182

14 15 16
MA0.1 Best 0 0.7 3.4

Median 1.6 3.3 5.6
MA+5-4 Best 0 0 0

Median 0 0.7 2.8
MA+10-2 Best 0 0.7 2.3

Median 0 0.9 3.7
MA+20-1 Best 0 0.7 3.4

Median 0 0.9 3.4

Table 7.2: Relative distancesto optimum for di�eren t probabilities of the MA0.1
and the improved algorithm MA+. Globally best results (resp. globally best median
results) for each instancesizeare shown in boldface(resp. underlined).

Note that this processis relatively time consuming,and thus, it is only performed

for the initial population and after a restart. However, at any generation,the algo-

rithm updates the ReferenceSet in a way that the premisethe best ! individuals of

each cluster are maintained in the Reference Set is satis�ed.

7.4 Final Exp erimen tal Results

In this sectionwe show results for our Memetic Algorithm after the incorporation of

the newfeatures. The experiments havebeenperformedover rulers of 14 to 16marks,

and with probability pts = 0:1, which we found to be oneof the most consistent ones

after the previous experiments; and with the sameother parametersas in the last

experimental results.

Regarding the diversity mechanism, we have performed three di�eren t sets of

experiments varying the valuesof the clustering parameters. Thesedi�eren t setsof

parametersare: � = 5 ! = 4, � = 10 ! = 2, and � = 20 ! = 1.

Table 7.2 depicts the results for thesenew experiments and a comparisonof the

results presented in section7.2 for pts = 0:1. As a �rst result we can seethat for 14

marks the algorithm MA+ alw ays �nds the optimal solution, which did not happen

with MA0.x. Secondand maybe more important is that we are now able to solve a
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16 marks ruler. Also note that all the median valuesof MA+ are superior to those

producedby MA0.1. MA+5-4 seemsto dominate the rest of the instancesof MA+.

7.5 Summary

To summarizeour newly born algorithm we must remember that it is basedon a

Scatter Search ([142]) scheme,which usesGRASP featuresfor initialization and re-

combination, and introducesa tabu search mechanismfor improving individuals. This

algorithm is enriched with a completesearch procedurealso usedfor recombination

whosepurposeis basically to try to reach an optimal solution at any point in the

execution of the algorithm (rather than provide high quality individuals). Finally,

the diversity of the population is ensuredby meansof a clustering algorithm that

divides the individuals in di�eren t clusters,and a selectionmechanism that chooses

the best ! individuals from each cluster to be part of the referenceset.

A di�eren t point of view is the following: A Local Search and a CompleteSearch

mechanism feed each other through a commonpopulation whosediversity is main-

tained by a clustering technique. According to this, tabu search and the complete

search recombination would be exchanging solutions in order to �nd the optimal

one,obtaining and returning thesesolutions to a diversi�ed population. Moreover, a

GRASP mechanismhelpsconstructing the initial population and conservingit (creat-

ing high quality and alsodiverseindividuals). All this, sustainedby a Scatter Search

schemethat holds everything together.

7.5.1 Lessons learn t revisited

Hereis a brief explanationof how wehavedealt with someof the lessonslearnt during

the previouschapters,and how those lessonsare re
ected in this �nal hybrid:

� Constraint programming is especially suited for satisfaction problems; even

though this is an optimization problem we have transformed it into a satis-

faction onein the sensethat we only ask for a feasiblesolution to the complete

search procedure(to be found amongthe selecteddistances).
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� Propagation and Heuristics are key features in the constraint programming

framework; however, we have limited our heuristics here in order to take ad-

vantage of the already existent data structures, although we have maintained a

form of propagation related to the available distancesand to the length of the

potential ruler.

� Constraint Satisfaction techniques encounter many di�culties when dealing

with very large search spaces.Note that the de�nition of search spacedepends

on the number of variablesand alsoon the sizeof the domains. While wecannot

reducethe number of variables,we have reducedthe number of valuesthat the

completesearch procedurehas to deal with; thus, harnessingcompletenessfor

the sake of speed.

� LS greatly bene�ts from the introduction of constructive heuristics as initial

solution generators.In this case,both the GRASP initialization procedureand

the GRASP recombination operator allow the LS to init the search from high

quality solutions.

� LS techniqueshave the major drawback of getting stuck on local optima. The

introduction of clustering an the resultant diversity of the population allow the

LS procedureto be fed with diverseand high quality solutions, each of which

have relatively high probabilities to yield a solution or at least not to converge

to the sameregion in the search space.

� Memetic Algorithms present the dangerto quickly convergeto the sameregion

of the search spacewithout �nding optimal solutions. It is sometimeshard to

decidewhen to restart the population in order to regenerateit. Scatter Search

provides a natural way to deal with this issue: restart when no new solutions

can be introducedin the referenceset. This, and the new diversity mechanism

ensurethat the algorithm will maintain a diversepopulation and will restart in

the exact moment in which this is not possibleto achieve anymore.

� Finally, we have discussedabout the LS being fed with diverseand high quality
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solutions. In this case,diversity is maintained thanks to the clustering and se-

lection techniques,and the quality is maintained by the GRASP recombination

operator. Also, the complete procedurebene�ts from this diversity and high

quality, it constantly considersdi�eren t sets of distanceswith relatively high

probabilities to contain a solution (this is perturbed by the random selectionof

a certain number of them, beforethey are passedto the completeprocedure).



Chapter 8

Conclusions and Future Work

This last chapter is devoted to the conclusionesderived from the research developed

for this thesis,and to the future work that follows from every research in every �eld

including hybrids.

8.1 Conclusions

Throughout this thesis we have presented several approachesto solve di�eren t hard

combinatorial optimization problems. Wehavesucceededin developinge�ectiv e tech-

niques to solve theseproblems, and we have also created a new hybrid that incor-

porates mechanisms from the Constraint Programming, Local Search and Genetic

Algorithm's frameworks.

Within the CSP framework we have introduced two novel aspects in redundant

modelling for multiple permutation problems:

� A novel value ordering heuristic which takesinto account the primal and both

dual models,and which generalizesfor multiple permutation problemsideasin-

troducedin ([35, 211] for simplepermutation problems. The speedupproduced

by this heuristic is quite remarkable, up to three ordersof magnitude in some

cases.

� The use of channelling constraints linking more than a single pair of models

186
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to provide forward checking with the samepruning power as arc consistency

at a much smaller cost in constraint checks, and thus in performance,provided

that orderinge�ects are taken into account in the min-domain variableselection

heuristic.

We have alsoshown that SAT encodingsallow for much morescalablesolutionsin

QCP problems,in particular whencomparedto previousresults in the literature. We

have explained this performanceby properties of the representation and by solver-

speci�c features;andwehaveshown that thosefeaturescanalsobefruitfully exploited

in CSP models to get much better CSP solutions than before.

In the next research work we have reconsideredthe scheduling of social golfers,a

highly combinatorial and symmetric application which has raisedsigni�cant interest

in the constraint programmingcommunity. It presented an e�ectiv e local search algo-

rithm which found the �rst solutions to 11 new instancesand matched, or improved

upon, all instancessolved by constraint programmingsolutionsbut 3. Moreover, the

local search algorithm wasshown to �nd almost all solutions in lessthan a coupleof

seconds,the harder instancestaking about 1 minute. The algorithm also featuresa

constructive heuristic which trivially solvesmany instancesof the form odd� odd� w.

Finding Golomb rulers is an extremely challenging optimization problem with

many practical applicationsthat havebeenapproachedby a variety of search methods

in recent years. It combineshard and densefeasibility constraints and an optimization

function to minimize the length of the ruler. Related to this, we have presented:

� A hybrid evolutionary algorithm gr ohea to �nd near-optimal Golomb rulers

in reasonabletime. The algorithm is conceptually simple and usesa natural

modeling. It incorporatesa tabu-search algorithm for mutation and a one-point

crossover to crosstwo rulers. It optimizes the length of the rulers indirectly by

solving a sequenceof feasibility problems.

� We have presented a memeticapproach for �nding near-optimal Golomb rulers

at an acceptablecomputational cost. The MA combines, in di�eren t stagesof

the algorithm, a GRASP-like procedure(for diversi�cation and recombination)
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and tabu search (for local improvement) within the generaltemplate of scatter

search. The results of the MA have been particularly good, clearly outper-

forming other state-of-the-art evolutionary approachesfor this problem. Oneof

the aspects on which our analysishas been focusedis the in
uence of the LS

component. We have shown that lower ratesof Lamarckianism achieve the best

tradeo� betweencomputational cost and solution quality.

� We have introducedseveral improvements to the previousalgorithm (complete

search and clustering) to yield outstanding results: we are able to solve a 16

marks ruler and to consistently solve every 14 mark rulers. The algorithm

testedusingdi�eren t setsof parametersreferredto the clustering mechanismis

consistently superior to the previousalgorithm without the improvements.

Finally, we have presented a new hybrid algorithm. This algorithm is basedon

a Scatter Search template and includes a complete search inherited technique to

combine individuals, and a clustering procedurewhich we apply to our population in

order to achieve a higher degreeof diversity. Results of this hybrid for the Golomb

Ruler Problem are superior to thosepresented in previouschapters in this thesis.

8.2 Future Work

Therearemany issueto persuewithin this thesis. Remember that every chapter deals

with a di�eren t kind of problem and a di�eren t kind of technique. Thus, possible

future work in each of thesedi�eren t research works will be the following:

8.2.1 CSP and SAT

Many issuesremain to be explored. While we did try a number of alternativesto the

presented value ordering heuristics without success,others may be more successful.

There are someanomaliesin the behavior of the ch3-fc approach vs ch2-ac which

could be symptoms of more subtle e�ects than the ordering e�ects reported above,

and which needto be explored. There is �nally the issueof why CBJ and nogood
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learning did not help in this problem, which may in part suggestthat in a sense

randomnessdominatesover structure in QCPs, but which should at any rate be an

incentiv e to develop more e�ectiv e implementations of these techniques so that at

least they do not hurt when they do not help.

It would be interesting to seewhether the combination of the ideasof this paper

with either alldi� constraints or Operations Research techniquescould yield further

improvements in our abilit y to solve larger QCPs. For example,we mentioned that

the samee�ect achieved by introducing triangular channelling constraints would be

achieved by reintroducing insteadthe dual not-equalconstraints, which in turn could

be replacedby dual alldi� constraints.

On the other handwhile wecanexplain Satz'sperformanceand exploit its features

in CSP approaches,a similar study could be carried out for satzoo. This might help

in understanding the role of CBJ and learning in QCPs, as they do not help with

QCPs formulated as CSPs (as mentioned above). Moreover, we plan to study the

e�ect of many-valued models [7] as an intermediate and potentially more concise

representation betweenSAT and CSP.

8.2.2 Lo cal Search for Scheduling Social Tournamen ts

Let us �rst point out a number of interesting observations. First, the social golfer is

a problem where the properties of the instancesseemto determine which approach

is best positioned to solve them. In particular, hard instancesfor constraint pro-

gramming are easyfor local search and viceversa. There are of courseother applica-

tions wherethis also holds. What is interesting here is the simplicity of local search

comparedto its constraint programming counterpart and the absenceof symmetry-

breaking schemesin local search. Whether this observation generalizesto other,

highly symmetric, problemsis an interesting issuefor future work. See,for instance,

[180, 181] for early results along theselines.

Moreover, we are interested by the e�ect of the seedingheuristic. It not only

constructsoptimal solutionsfor several instances,but represents an e�ectiv e starting

point for the algorithm. However, we believe that a deeper study on its e�ects should
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be performedin order to adapt the heuristic to certain instancesand to develop new

intensi�cation and diversi�cation mechanisms.

8.2.3 Golom b Rulers

We are currently exploring alternatives for some of the operators used in our al-

gorithm. Preliminary experiments with multi-tier referencesets {i.e., including a

diversity section{ do not indicate signi�cant performancechanges.A deeper analysis

is neverthelessrequired here. In particular, it is essential that the particular dis-

tance measureusedto characterizediversity correlate well with the topology of the

search landscape induced by the reproductive operators. De�ning appropriate dis-

tancemeasuresin this context (and indeed,checking their usefulnessin practice) will

be the subsequent step. However, the clustering mechanismachievesa high degreeof

diversity that might be su�cien t.

As for the �nal hybrid resulting of the introduction of the new improvements,

there is a very obvious observation: the SSand the LS deal with marks, while the

Clustering and CompleteSearch dealwith distances.We plan to make it uniform and

possibly implement all the techniquesso they can deal with distances.More e�cien t

clustering techniquesare alsoworth being studied.

8.2.4 Dev eloping Hybrids

On the other hand, we are still also very interested in developing new hybrid algo-

rithms. Wearecurrently devoting someresearch on hybrid local search and constraint

programmingalgorithms. Namely, we are experimenting with a form of Limited Dis-

crepancySearch ([112]) for Local Search. Wearealsoin the �rst stagesof development

of a LS algorithm which will incorporate a heuristic basedon constraint propagation.

Memetic Algorithms are still of great interest as well.
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Conclusiones y Traba jo Futuro

Este �ultimo cap��tulo est�a dedicadoa las conclusionesgeneradaspor cada trabajo de

investigaci�on, as�� comoal trabajo futuro a realizar en cada campo, incluyendoen el

desarrollode h��bridos.

Conclusiones

En esta tesis hemospresentado diversosenfoquespara resolver problemasde opti-

mizaci�on combinatoria. Hemostenido �exito al crear t�ecnicasefectivas para resolver

este tip o de problemas, y hemoscreado tambi�en un nuevo h��brido que incorpora

mecanismosde la programaci�on con restriccciones,de la b�usquedalocal y de los

algoritmos evolutivos.

Dentro del campo de los CSP hemosintroducido dos aspectos novedososen el

modeladoredundante de problemasde m�ultiples permutaciones:

� Una nueva heur��stica de ordenaci�on de valoresque tiene en cuenta los modelos

primal y dual, y quegeneralizalas ideasintroducidasen ([35, 211] para proble-

masde m�ultiples permutaciones.La gananciaen cuanto a tiempo de resultados

esbastante notable, llegandoa ser de hasta 3 �ordenesde magnitud en algunos

casos.

� El usarrestriccionesdecanalizaci�on uniendom�asdedosmodelospara conseguir

que forward checking tenga el mismo poder de poda que arco-consistencia,a

un menor precio en t�erminos de chequeosde restricciones,y, por lo tanto, en

e�ciencia.

Tambi�en hemosmostradocomolas codi�caciones SAT permiten una mayor escal-

abilidad de solucionesen el problemade completitud de cuasigrupos, en concreto,al

compararlocon resultadospreviosdisponiblesen la literatura. Hemosexplicadoesos

resultadosen t�erminosde la representaci�on y de los resolutores,y hemosdemostrados

queestascaracter��sitcaspuedensertambi�en importadasal enfoqueCSPpara obtener

resultadossuperiores.
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En el siguiente trabajo de investigaci�on hemosreconsideradola calendarizaci�on de

gol�stas sociales,un problema altamente combinatorio y sim�etrico que ha generado

gran inter�esen la comunidad de la programaci�on conrestricciones.Hemospresentado

un algoritmo deb�usquedalocal queencuentra la primera soluci�on para11instancias,y

empataconel resto,exceptopor 3 instancias,conlosresultadosconseguidosmediante

otras t�ecnicasde programaci�on con restricciones.Adem�as el algoritmo de b�usqueda

local encuentra lascasitodaslassolucionesenmenosdeun par desegundos,mientras

queinstanciasdif��cilesapenastardan un minuto. El algoritmo tambi�en incorpora una

heur��stica constructiva queresuelvemuchasinstanciasde la forma impar � impar � w

trivialmente.

Encontrar Golomb rulers esun problemadeoptimizaci�on combinatoria muy dif��cil

que tiene diversasaplicacionespr�acticas y que se tratado desdediferentes enfoques

en los �ultimos tiempos. Combina restriccionesduras y densasde satisfacci�on con un

funci�on a minimizar que correspondea la longitud de la regla. En relaci�on con esto

hemospresentado:

� Un algoritmo evolutivo h��brido gr ohea para encontrar reglas cuasi-�optimas

en un tiempo razonable. El algoritmo es conceptualmente simple y usa un

modelo natural. Incorpora una b�usquedatabu como operador de mutaci�on y

una recombinaci�on de un punto. Optimiza la longitud de las reglasmediante la

resoluci�on de una sequenciade problemasde satisfacci�on.

� Hemospresentado un enfoque mem�etico a un costecomputacional aceptable.

El algoritmo combina un procedimiento tip o GRASP y b�usquedalocal dentro

del esquemadel "Scatter Search". Los resultadosson claramente superioresa

resultadosprevios del estadodel arte. Un aspecto en el que nos hemoscen-

trado esen el m�etodo de mejora local y su in
uencia en los resultados.Hemos

mostradocomotasa bajas de Lamarckianismoconsiguenel mejor balanceentre

costecomputacionaly calidad en la soluci�on.

� Hemosintroducidodiversasmejorasal algoritmo anterior (b�usquedacompletay

clustering), consiguiendograndesresultados: siendocapacesde resolver reglas

de hasta 16 marcas, y resolviendohasta 14 marcas sistem�aticamente. Este
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nuevo algoritmo seha probadousandodistintos par�ametrospara el mecanismo

declusteringsiendoconsistentemente superior al algoritmo previo encadacaso.

Finalmente, hemospresentado un nuevo h��brido queest�a basadoenel esquemadel

Scatter Search y que incluye b�usquedacompleta para la recombinaci�on y clustering

para obtenerun mayor gradode diversidaden la poblaci�on. Los resultadosobtenidos

sonsuperioresa cualquier resultadopresentado en cap��tulos anteriores en la tesis.

Traba jo Futuro

Hay muchos temas que abordar despu�es de esta tesis. Recordadque cada cap��tulo

trata diferentesproblemascondiferentes t�ecnicas.As�� pues,el possibletrabajo futuro

en cadauno de estosaspectoses:

CSP y SAT

Hay muchos aspectosa explorar. A pesarde que probamosdiversasalternativas de

ordenaci�on de valor sin �exito, ser��a interesante utilizar otras nuevas. Tambi�en hay

ciertasanomal��as en el compartamiento de los modelosuno frente a otro quepodr��an

ser causadospor algo m�as que la ordenaci�on y que merecela pena seanestudiadas.

Otro aspecto esporqueCBJ y el aprendizaje de "nogoods" no esde ninguna ayuda,

lo cual puedesigni�car que la aleatoriedaddomina sobrela estructura en QCPs.

Ser��a tambi�en interesante ver si la combinaci�on de otras ideascomola restricci�on

alldi� o t�ecnicasde investigaci�on operativa puedenayudar a mejorar los resultados.

Por ejemplo, hemosmostrado que el efectode introducir las restriccionesde canal-

izaci�on triangulares esel mismo que reintroducir las desigualdadesduales,lo que se

podr��a reemplazarpor alldi� duales.

Por otro lado, tras explicar la e�cacia deSatzy aprovechar suscaracter��sticas,ser��a

interesante realizar el mismo estudio para el resolutor Satzoo. Esto podr��a ayudar a

entender el efectode CBJ y aprendizaje en QCPs. Adem�as, planeamosestudiar el

efectode modelosmulti-v aluados[7] como un m�etodo intermedio y potencialmente

m�as conciso.
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B �usqueda Lo cal para Calendarizaci� on de Torneos Sociales

Antes de nada hay que indicar una seriede observacionesinteresantes. Primero, el

gol�sta social esun problemadondelas propiedadesde las instanciasparecendeter-

minar que enfoque es mejor para resolverlas. En concreto, instancias dif��ciles para

CSPs con b�usquedacompleta son f�aciles para la b�usquedalocal y viceversa. Hay

otros dominios en los que esto tambi�en ocurre. Lo interesante aqu�� esla sencillezde

la b�usquedalocal comparadacon la completa, en la que seencuentran mecanismos

de rotura de simetr��asmuy complejos.El hecho de queestaobservaci�on puedagener-

alizarsepara problemasaltamente sim�etricosespara estudiarenel futuro. Consultad,

por ejemplo, [180, 181] para trabajo en esta l��nea.

Adem�as, estamosinteresadosen el efectode la heur��stica constructiva. No solo

construye soluciones�optimas para varias instancias,sino que adem�as constituye un

punto de partida efectivo para el algoritmo. Sin embargo, habr��a que realizar un

estudiom�asdetalladopara poder adaptar la heur��stica a otras instanciasy desarrollar

nuevos m�etodosde intensi�caci�on y diversi�caci�on.

Golom b Rulers

Actualmente estamosestudiandoalternativasa ciertosoperadores.El usode subcon-

juntos dem�asdedosindividuos para la recombinaci�on esuna posibilidad a investigar.

De momento, el incluir una zonadediversidadno cambia los resultados.En cualquier

casoser��a importante hacerun estudio m�as detallado de la medida de distancia que

caracterizala diversidaddela poblaci�on y quedebehallarsecorrectamente relacionada

con la topolog��a del espaciode b�usqueda.Ser��a interesante de�nir otros tip osde me-

didas distancia m�as apropiadas. Sin embargo, pareceque el uso de clustering como

mecanismopara conseguirdiversidadessu�cientemente efectivo.

En cuanto al h��brido �nal resultante de la introducci�on de las nuevas mejoras,

hay una observaci�on directa: Scatter Search y tabu manejan marcasmientras que

clusteringy la b�usquedacompletautilizan distanciasentre marcas.Ser��a conveniente

conseguirqueestoseauniforme y posiblemente, traducir todo a distanciasentre mar-

cas. Tambi�enser��a interesante estudiarotros mecanismosdeclusteringm�ase�cientes.
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Desarrollo H��bridos

Por otro lado, todav��a estamosmuy interesadosen la creaci�on de nuevos algoritmos

h��bridos. Actualmente estamosdesarrollandoh��bridos de b�usquedacompleta y lo-

cal para CSPs. Por ejemplo, estamosexperimentando con una forma de "Limited

DiscrepancySearch" ([112]) para b�usquedalocal. Tambi�en estamosen las primeras

etapasde desarrollode un algoritmo de b�usquedalocal que incorporar�a un heuristica

basadaen la propagaci�on de restricciones.Adem�as, los algoritmos mem�eticossiguen

siendode inter�es.



App endix A

GRASP and Clustering

In this appendix we are going to brie
y introduce two techniques that have been

used in the last hybrid developed for this thesis. Sincethis techniquesare not the

focusof our research, but only tools we have utilized to improve the e�ciency of our

technique, we believe that a brief appendix is better suited to introducethem.

A.1 Greedy Randomized Adaptiv e Search Pro ce-

dures (GRASP)

The GRASP (GreedyRandomizedAdaptive Search Procedure)metaheuristiccan be

viewed as an iterativ e process,each iteration consistingof two phases:construction

and local search ([78]). The construction phasebuilds a solution whoseneighborhood

is investigated by the local search procedure. During the whole process,the best

solution is updated and returned at the end of a certain number of iterations. Figure

A.1 illustrates the basicGRASP procedure.

Any local search algorithm canbe incorporated to improvea solution: tabu search

and simulated annealing([54, 147]), large neighborhoods ([4]) or variable neighbor-

hood search ([161]). However, we are interested in the greedy construction phase,

wherea tentativ e solution is built in a greedyfashion.

Randomlygeneratedsolutionsareusuallyof a poor quality, while greedygenerated

196
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pro cedure GRASP(maxIt,seed)
1. Read Input()
2. for k=1, : : : , maxIt do
3. Solution  Greedy Randomized Construction(seed);
4. Solution  Local Search(Solution);
5. Update Solution(Solution);
6. end ;
7. return Best Solution;
end GRASP

Figure A.1: The GRASP pseudocode

solutionstend to beattracted by local optimum1, dueto the lessamount of variabilit y.

A semi-greedy heuristic ([77]) adds variabilit y to the greedy algorithm. A certain

greedyfunction yields a ranked candidatelist, which is calledrestricted candidatelist

(RCL). An element from that list is randomly selectedand addedto the solution.

The procedureto construct the semi-greedy solution is depicted in Figure A.2. A

key step in this pseudocode is the selectionof an attribute from the RCL. This canbe

performedusing a qualitativ e or quantitativ e criterion. In the former, the element is

selectedamongthe k best elements; while in the latter, the element is selectedamong

the elements with a quality � percentage of the greedyvalue,where� 2 [0; 100]. Note

that k = 1 or � = 100yields a pure greedyselection.

A.1.1 Reactiv e GRASP

As can be seenin the proceduredescribed below, the selectionof the k parameter is

problematic. The use of a �xed value for this parameter could hinder high quality

solutions([174]). A learning-basedstrategy named reactive GRASP was introduced

in [175], selectinga di�eren t value in each iteration from a �nite set of values. The

selectionof a certain value in a given iteration can be chosenon the basis of the

goodnessof the bestsolution generatedby this parameter. A possibility is to maintain

1Local optima are points in the search spacefrom where a local search algorithm cannot escape,
and thus a restart is necessaryin order to explore other regions.
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pro cedure Greedy Randomized Construction(seed)
1. Solution  ;
2. Evaluate the incremental costsof candidate elements
3. While Solution is not complete do
4. Build the restricted candidate list RCL
5. Selectelement s from RCL at random
6. Solution  Solution [ f sg;
7. Reevaluate the incremental costs;
8. end ;
9. return Solution;
end Greedy Randomized Construction

Figure A.2: The GreedyRandomizedConstruction pseudocode

a vector of parametervaluesto usein each iteration, wherea position pi denotesthe

value of the parameter that serves to choosethe i � th candidate. We refer to this

vector as GRASP parametersvector.

For example,a certain position of the GRASP parametersvector pi = 3 makesus

choosea random candidate amongthe four best candidates,for the i � th decision,

in the RCL list (From now on we will considerthat the �rst value in the RCL is in

position 0 and the last onen � 1, wheren would be the length of the RCL).

A.2 Clustering

Clustering dealswith �nding a structure in a collection of unlabeleddata, and it can

beconsideredthe most important unsupervisedlearningmechanism;a loosede�nition

of clustering could be "the processof organizingobjects into groupswhosemembers

are similar in someway". A cluster is therefore a collection of objects which are

"similar" amongthem and are "dissimilar" to the objects belongingto other clusters.

The goal of clustering is to determinethe intrinsic grouping in a set of unlabeled

data. In general,there is no absolutebest criterion which would be independent of

the �nal aim of the clustering. It is ultimately the userwho hasto provide the criteria

that will yield results to better suit his needs.
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However, when implementing a clustering algorithm, several requirements should

be satis�ed: scalability, possibility of dealingwith di�eren t typesof attribute, discov-

ering clusterswith arbitrary shape, abilit y to deal with noise,insensivity to order of

input records,high dimensionality, interpretabilit y and usability (among others).

Current clustering techniquessu�er from the following drawbacks:

� They do not usually addressall the requirements adequatelyand concurrently.

� Time complexity is a major problem when dealing with large number of data.

� In many occasions,the e�ectiv enessdependson the de�nition of distance.

� Distance has to be de�ne when it is not obvious, which might be di�cult,

especially when dealing with multi-dimensional spaces.

� The result of the clustering algorithm can be interpreted in di�eren t ways.

A.2.1 Clustering Algorithms

Clustering Algorithms can be classi�ed as follows:

� Exclusive Clustering.

� Overlapping Clustering.

� Hierarchical Clustering.

� Probabilistic Clustering.

In the �rst casedata are grouped in an exclusive ways, this meansthat every

individual pieceof information is included in one cluster and cannot be include in

another one. On the contrary, the secondtype usesfuzzy sets to cluster data, so

every point belongsto di�eren t clusterswith a certain degreeof memebership. The

hierarchical clustering algorithm is basedon the union betweenthe two nearestclus-

ters; the beginning condition is performed by setting every point as a cluster, and

after a few iterations it reachesthe �nal cluster. Finally, the last type of clustering

algorithm relys on a completelyprobabilistic approach.
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K-Means Algorithm

This is one of the most popular clustering algorithms that fall in the category of

Exclusive Clustering. Sincethis is the clustering method usedin our hybrid, we are

going to brie
y detail it here.

It is indeed one of the simplest unsupervised learning algorithms ([149]). The

procedurefollows a simpleand easyway to classifya given data set through a certain

number of clusters k �xed a priori. The main idea is to de�ne k centroids, each

one corresponding to each clustering. The next step is to associate each point to

its nearestcentroid. This yields a �rst grouping of the data. At this point we need

to re-calculatethe k new centroids as barycenters of the clusters resulting from the

previousstep. After the new centroids have beencalculated,each point needsto be

re-associate to a centroid again. The algorithm now iterates this processuntil either

no cluster changesfor any point occur or a stopping criterion is reached.

This algorithm aims at minimizing an objective function, in this casea squared

error function:

J =
kX

j =1

nX

i =1

kx(j )
i � cj k2 (A.1)

wherekx(j )
i � cj k2 is a chosendistancemeasurebetweena data point x (j )

i and the

cluster centroid cj , indicating the distanceof the n data points from their respective

cluster centres.

A.2.2 Distance Measure

As we have previuosly stated, de�ning the distance measureis a problematic task.

If the components of the data instance vectors are all in the samephysical units

(metric), then it is possiblethat the simple Euclideandistancemetric is su�cien t to

group similar distances. However, even in this case,the Euclidean distance can be

misleading. It is dependant from the range: if one metric spansthe range [0:0; 0:5]

and another spans[0:0; 100:0], the maximum deviation in the �rst would have little

e�ect on the total distance,while even a modest separationin the secondwould have

a much larger e�ect. To remove this dependencyit is important to standarize the
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values. In order to achieve this, the following stepsmust be taken:

1. Sumthe valuesof the metric over all objects and divide the sumby the number

of objects.

2. Substract this averagevalue from the metric in all objects.

3. Sum the squaresof thesenew values, divide the sum by the total number of

objects and take its square-root. This is the standard deviation of the new

values.

4. Divide the metric by the standard deviation in each object.

Assumenow that each object is described by a real-valued array of metrics of

length K , the i -th object x i has the array xki for k = 1; 2; : : : ; K . The generalform

for the distance,which is called the L N norm, betweenobject i and centroid j is

LN ij = [
KX

k=1

j xki � xkj jp]1=p (A.2)

When p = 1 this distancemeasureis known as the Manhattan distance,while for

p = 2 it is known as the Euclideandistance.

Binary Data

When dealing with binary arrays of data, the distance measuresde�ned so far are

not valid. Even though there are many possibilities, the simplest one is to use the

cosinesimilarit y function ([196]). The cosinesimilarit y function CSij betweenobject

i and j treats the objects asvectorsand it calculatesthe cosineof the anglebetween

thesevectors. This similarit y, which is also known as the Ochini coe�cien t, is given

by the expression

CSij =
P K

k=1 xki xkjq P K
k=1 x2

ki

P K
ki =1 x2

kj

(A.3)

Note that as the objects becomemore similar, CSij approaches1:0.
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