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Abstract

Combinatorial Optimization is a branch of optimization in applied mathematicsand
computerscienceyelatedto operationsreseart, algorithm theory and computational
complexity theory that sits at the intersectionof many elds, sud asatrti cial intelli-
gence,mathematics and software engineering. Combinatorial optimization problems
commonly imply nding valuesto a set of variables which are restricted by a set
of constrairts, in somecasesin order to optimize a certain function (optimization)
and in othersonly to nd a valid solution (satisfaction). Combinatorial optimization
algorithms solwe instancesof problemsthat are believed to be hard in general by
exploiting the usually large solution spaceof theseinstances. They can achieve this
by reducingthe e ectiv e sizeof the seart spaceand by exploiting it e cien tly.

In this thesiswe focus on Combinatorial Optimization Algorithms which fall into
the eld of Arti cial Intelligence(although the line that separateshis eld from Op-
erations Researt is very ne), instead of algorithms from the Operations Researt
eld. Thus, methods sudt as Integer Programming (IP) or Branch and Bound (BB)
are not considered.The goal of this thesisis to show that di erent approadescanbe
better suited for di erent problems,and that hybrid techniqueswhich include med-
anismsfrom di erent frameworks canbene t from their advantageswhile minimizing
their drawbads. All this is shavn throughout this thesis by solving hard conbina-
torial optimization problems, such as quasigroupcompletion, sccial golfers, optimal
Golomb rulers, using a variety of techniques, which lead to a hybrid algorithm for
nding Golomb rulersthat incorporatesfeaturesof GeneticAlgorithms, Local Seard,
Constraint Programming and even Clustering.



Resumen

La Optimizacion Combinatoria esuna rama de la optimizacion en matematica apli-
caday de la informatica, relacionadacon la investigacon operativa, la teor a de algo-
ritmos y la teor a de complejidad computacional,que seencueltra en la interseccon
de varios campos, tales comola inteligenciaarti cial, las matematicasy la ingeniera
del software. Los problemasde optimizacion conmbinatoria suelenconsistir en encon-
trar valorespara un conjunto de variables que estn restringidas por un conjunto de
restricciones,en algunoscasospara optimizar una funcion dada (optimizacion) y en
otros tan solo para encortrar una solucbn valida (satisfaccbon). Los algoritmos de
optimizacion combinatoria resuelen instancias de problemas consideradosdif ciles
en generalgraciasa una exploracon inteligente del espaciode busqueda,en parte
reduciendolo, en parte recorriendolode una forma e ciente.

En estatesis nos certramos en los algoritmos de optimizacion conmbinatoria que
seconsiderandertro del campo de la Inteligencia Arti cial (aunque escierto que la
linea que lo separadel campo de la investigacbn operativa esmuy na), envezde
en algoritmos de investigacon operativa. As pues, metodos como la programacon
entera o el "Branch-and-Bound" no van a ser tratados. El objetivo de estatesises
mostrar que difererntes tecnicaspuedenser mas adecuadagara diferertes problemas,
y quetecnicash bridas que incluyen mecanismosle diferertes paradigmasse pueden
bene ciar delasvenajas e intentar minimizar losincornveniertes de los mismos. Todo
estosemuestra en estatesis con la resolucon de problemasdif ciles de optimizacion
combinatoria comocompletitud de cuasigrups, gol sta sacial, Golomb rulers, usando
varias tecnicas,que dan lugar al desarrollode un algoritmo h brido para encorirar
Golomb rulers, que incorpora aspectosde algoritmos gereticos, busquedalocal, pro-
gramacbn con restriccionese incluso clustering.
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Chapter 1
In tro duction

Combinatorial Optimization is a branch of optimization in applied mathematicsand
computersciencerelatedto operationsreseart, algorithm theory and computational
complexity theory that sits at the intersectionof many elds, sud asarti cial intelli-

gence,mathematics and software engineering. Combinatorial optimization problems
commonly imply nding valuesto a set of variables which are restricted by a set
of constrairts, in somecasesin order to optimize a certain function (optimization)

and in othersonly to nd a valid solution (satisfaction). Combinatorial optimization

algorithms solwe instancesof problemsthat are believed to be hard in general(most
of them are at least NP-complete[41]) by exploiting the usually large solution space
of thoseinstances. They are able to achieve this by reducingthe e ectiv e sizeof the
seart spaceand by exploiting it e cien tly.

1.1 Motiv ation

The goal of this thesisis to shav that di erent approatescan be better suited for
di erent problems,and that hybrid techniqueswhich include medanismsfrom di er-
ent frameworks canbene t from their advantageswhile minimizing their drawbadks.
All this is shavn throughout this thesis by solving hard combinatorial optimization
problems, sud as quasigroupcompletion, sccial golfers,optimal Golonb rulers, us-
ing a variety of techniques, which lead to a hybrid algorithm for nding Golomb
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rulers that incorporates features of Genetic Algorithms, Local Seart, Constraint
Programming and even Clustering. As can be seenfrom this enumeration, our focus
is on algorithms that fall into the eld of Articial Intelligence (although the line
that separateghis eld from OperationsReseart is very ne), instead of algorithms
from the Operations Researth eld. Algorithms from Operations Researb sud as
Integer Programming (IP) or Branch and Bound (BB), which have alsobeenstudied
extensiwely for optimization problemsare, however, not studied in this thesis.

The constraint paradigm is a useful and well-studied framework for expressing
many problems of interest in Articial Intelligence. The rst researt presened
here deals with modelling Constraint Satisfaction Problems (CSPs), in particular
for a well-known problem named Quasigioup Completion Problem (QCP). From this
bendmark problem and comparing seeral modelling and solving methods we are
able to yield important conclusionsfor a more generalkind of problems, known as
Multiple Permutation Problems There has also beeninterest in the comparisonbe-
tweenCSP and SAT techniques;discussingwhether one can be more appropriate for
aspecic eld or for another. We provide this comparisonfor this speci ¢ problem.

Local Seart is known to be a powerful technique especially for dealing with op-
timization problemsor problemswith a signi cantly large seard space.The second
researty work presertied dealswith modelling and solving sccial tournamerts, in par-
ticular the Scacial Golfer Problem. The results preserted here are signi cantly better
than other complexapproadesin the literature. It alsoraisesthe issueof symmetries
in Local Seart and presens a clever and simple heuristic to obtain initial solutions
that boosts performance.

Genetic Algorithms are population basedalgorithms that mimic biological pro-
cessesMemetic Algorithms are hybrids that introduce Local Seart to yield better
resultsand corvergeto higher quality solutions. The next researt work preserted in
this thesisdealswith solving a very hard combinatorial optimization problem known
as Golomb Ruler. The researt deweloped here focuseson modelling and solving
optimal and near-optimal Golomb Rulers, providing high quality results that are
consisterlly superior to thosepresened in other Genetic Algorithms in the literature.

Finally, A Hybrid Memetic Algorithm known as Scatter Seart is enriched with
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Constraint Programming and Clustering techniquesto further improve the results
obtained in the previousreseart over the Golomb Ruler Problem aswell.

In the next sectionswe introduce the problemsdealt with troughout the whole
researt), we establishthe boundariesof our work and presen its main cortributions.

1.2 Problems Addressed

Many real life problemsfall into the category of Combinatorial Optimization Prob-
lems. In this thesis we solve di erent problemswith dierent techniquesand ulti-
mately dewelop a hybrid that encloseghem all.

The Quasigroup Completion Problem (QCP) is a very challenging bendhmark
amongconbinatorial problems,which hasbeenthe focusof much recen interestin the
areaof constraint programming[10]]. It hasa broad range of practical applications
sud as con ict-free wavelength routing in wide band optical networks, statistical
design,and error correctingcodes[101]]; it hasbeenput forward asa bendimark which
can bridge the gap betweenpurely random instancesand highly structured problems
[10Q; and its structure as a multiple permutation problem [229 11§ is commonto
many other important problemsin constrairt satisfaction. Thus, solutionsthat prove
e ective on QCPs have a good chanceof being usefulin other problemswith similar
structure.

The sacial golfer problem hasattracted signi cant interest sinceit was rst posted
on sci.op-research in May 1998. It is a highly combinatorial and symmetric prob-
lem and it is not surprising that it has generatedsigni cant attention from the con-
straint programming community (e.g., [72 209 178 200 199 13 184). Indeed, it
raisesfundamertally interestingissuesn modelingand symmetry breaking,andit has
becomeone of the standard bendimarks for evaluating symmetry-breakingsdemes.
Recen dewelopmerts (e.g., [13, 184) approad the scheduling of sccial golfersusing
innovative, elegan, but alsocomplex,symmetry-breakingschemes.

Finding Golomb rulers is an extremely challenging conmbinatorial problem which
hasreceived considerableattention over the last decades.Golomb rulers have appli-
cationsin a wide variety of elds including radio commnunications ([27, 114), x-ray
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crystallography ([26]), coding theory ([56, 139), and radio astronony. Moreover,
becauseof its highly combinatorial nature,! it has becomea standard bendymark
to ewvaluate and comparea variety of seart techniques. In particular, geneticalgo-
rithms, constraint programming, local seart, and their hybridizations have all been
applied to the problem of nding Golonb rulers (e.g.,[43 76, 173 176 21Q 213).
In this thesiswe are going to introduce pure approadesof dealingwith combina-
torial problemssud as Constraint Satisfaction Problems (CSPs), The Satis abilit y
Problem (SAT), Local Seard (LS) and Genetic Algorithms (GAs). We will alsoin-
troducehybrid approadhes,namely CSPand LS, GA and LS (which is alsoknown as
Memetic Algorithms) and GAs that incorporate Constraint Satisfaction techniques.
We are goingto presen researt on theseparadigmson di erent hard conbinatorial
optimization problemsand nally dewelop a hybrid that incorporatesthem all and
that yieldsresultshigherin quality for a hard conmbinatorial problem. We alsoinclude
an appendix to briely descrike sometechniquesusedthorugh out the thesis, in par-
ticular Greedy RandomizedAdaptive Searth Procedures(GRASP) and Clustering.

1.3 Contributions

This researti comesto prove that di erent techniquesmay be better suited for deal-
ing with di erent combinatorial problems, and instead of dewting researt on very
specializedtechniqueswithin ead eld, we rather concerrate on problem solving,
using whichewer technique is most suited. We also aim to shaw that all thesetech-
niques can cooperate in a single algorithm to yield high quality results. Thus, the
scofe of this researt is problem modelling, problem solving, and hybrid deweloping
with CSP, LS and Genetic Algorithm's techniques.

The main cortributions of our work, in that senseare diverse. This thesisdeals
mainly with problem solving, and thus, every chapter reports top resultsin the lit-
erature for the various problemsaddressed.Also, a hybrid algorithm is preserned as
well, and altough it is problem oriented it canbe easilygeneralizedo dealwith many

1The seart for a 19-mark Golomb ruler took approximately 36,200CPU hours on a Sun Sparc
workstation using a very specializedalgorithm [56].
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di erent conmbinatorial optimization problems.

Therefore,the researt preserted in this thesiscortributes to the state-of-the-art
in preserting high quality resultsfor the QuasigroupCompletion Problem, the Sccial
Golfer Problem and the Golomb Ruler Problem; as well as introducing an e ective
hybrid algorithm that within a Memetic Algorithm (MA) template introducesCSP
and Clustering features. Thus, the main cortributions are:

1.3.1 Quasigroup Completion with Systematic Search

First, we presert se\eral techniquesthat togetherallow usto solve signi cantly larger
QCPsthan previouslyreported in the literature. Speci cally, [10]] reports that QCPs
of order 40 could not be solved by pure constraint programmingapproades,but could
sometimesbe solved by hybrid approatesconmbining constraint programming with
mixed integer programming techniquesfrom operations researti. We show that the
pure constrain satisfaction approad can solve many problems of order 45 closeto
the transition phase,which correspndsto the peak of di cult y. Our solution builds
upon someknown ideas,sud asthe useof redundart modelling [36] with primal and
dual modelsof the problem connectedby channellingconstrairts [229, with somenew
twists. In addition, we presen a new value ordering heuristic which provesextremely
e ective, and that could prove usefulfor many other problemswith multiple models.
Finally, we shav how redundart constraints can be usedto \compile arc consistency
into forward chedking”, that is, to ensurethat the latter hasas much pruning power
asthe former but at a much lessercostin constraint cheds.

It is interestingto note that our approad involvesonly binary constrairts, which
seemdo go againstcommonwisdomabout their limitations |when cortrasted with
the use of non-binary constrairts sud as alldi [18§| in solving quasigroupcom-
pletion problems[213.

1.3.2 SAT vs. CSP comparison

Second,we perform a systematic study of modelling choicesfor quasigroupcomple-
tion, testing a variety of solvers and heuristics on various SAT and CSP encalings.
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The clearwinner is the SAT 3D-encaling, specially with the solver Satz[144, closely
followed by the solver Satza [62] on the sameencaling. As thesetwo solvers are
quite di erent (one usesa strong form of lookaheadin its heuristic, but no back-
jumping or learning, while the other reliesheavily on the last two), the 3D encaling
appearsto be quite robust as a represemation. On the other hand, CSP models
perform signi cantly worsewith the two solverswe tried, and standard SAT encal-
ings generatedfrom the CSP models are simply too large in practice. Theseresults
strongly suggestthat the 3D encaling canturn out to be quite competitiv e in other
permutation problems(many of which arisein quite practical problems[118§) when
comparedwith the currently preferredchannelling models.

The reasonsfor this appear to be twofold. First, we can shav that the 3D en-
coding (which is basicallythe \SAT channellingmodel” of [11§ extendedto multiple
permutations and dual models) exactly capturesthe channelling models of QCPs as
de ned in this thesis,but in a much more conciseway, by collapsingprimal and dual
variables. Further, we can shawv that the 3D encaling capturesthe \support SAT
encaling” of the channelling model, henceby results of [89], that unit propagation
on the 3D encaling achievesthe samepruning asarc consistency(MAC) in the CSP
channelling model. Theseresults appear easyto extrapolate to other permutation
problems(or similar oneswith "channelling constrains"), which have received a lot
of recent attention [35, 229 118. Second.empirically, we identify Satz'sUP heuristic
ascrucial to its success$n this domain; asshavn by the fact that, whenimporting the
heuristic into our CSP solvers, we obtain signi cant improvemerts in their scalability.

1.3.3 Scheduling Social Golfers with Local Search

This researt proposesa local seart algorithm for sdheduling sacial golfers, whose
local moves swap golfers within the same week and are guided by a tabu-seart
meta-heuristic. The local seard algorithm matches, or improves upon, the best
solutions found by constraint programming on all instancesbut 3. It alsofound the
rst solutionsto 11instancesthat werepreviously open for constraint programming2

2For the current statuses of the instances, see Warwick Harvey's web page at
http://www.icparc.ic.ac.uk /wh/ golf .
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Moreover, the local seart algorithm solvesalmostall instanceseasilyin a few seconds
and takesabout 1 minute on the remaining (harder) instances. The algorithm also
features a constructive heuristic which trivially solves many instancesof the form
odd odd w and providesgood starting points for others.

The main cortributions of this chapter are as follows.

1. It shows that local seart is a very e ective way to schedule sccial golfers. It
nds the rst solutionsto 11 instancesand matches,all other instancessolved
by constraint programmingbut 3. In addition, almost all instancesare solved
in a few secondsthe harder onestaking about 1 minute.

2. It demonstratesthat the local seart algorithm usesa natural modeling and
doesnot involve complexsymmetry-breakingschemes.In fact, it doesnot take
symmetriesinto accoun at all, leading to an algorithm which is signi cantly
simpler than constraint programming solutions, both from a conceptual and
implemenrtation standpoint.

3. The experimental results indicate a nice complemenarity between constrairt
programmingand local seard, assomeof the hard instancesfor onetechnology
are trivially solved by the other.

1.3.4 Finding Near-Optimal Golom b Rulers with a Hybrid
Evolutionary Algorithm

This work proposesa novel hybrid ewlutionary algorithm for nding near-optimal
Golomb rulersin reasonabldime. The algorithm embedsa local seart into a genetic
algorithm and outperforms earlier geneticalgorithms, aswell as constrairnt program-
ming algorithms and their hybridizations with local seard. In particular, the algo-
rithm quickly nds optimal rulers for up to 13 marks and was able to nd optimal
rulers for 14 marks, which is clearly out of read for the above mentioned algorithms.
The algorithm also nds near-optimalrulersin reasonabldime, clearly indicating the
e ectivenessof hybrid ewlutionary algorithms on this highly conbinatorial applica-
tion. Of particular interestis the conceptualsimplicity and eleganceof the algorithm.
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Even though there are solutions for higher number of marks for other complete
seart approades, ewlutionary algorithms have the advantage of providing good
quality solutionsin a short period of time. This is a main cortribution of this re-
sear® as well, providing high quality solutions (improving all previous ewlutionary
approadies)in a few secondsor minutes.

The main technical contribution of the novel hybrid ewlutionary algorithm is its
focus on feasibility. Indeed, the main step of the ewlutionary algorithm isto nd a
Golomb ruler of a speci ed length (or smaller), usingconstrairt violations to guidethe
seart. Near-optimalrulers are obtainedindirectly by solvinga sequencef feasibility
problems.

1.3.5 Scatter Search and Final Hybrid

We presen a hybrid EA designedto nd optimal or near-optimal Golomb Rulers.
This algorithm makes use of both an indirect approad and a direct approad in
di erent stagesof the seart. More speci cally, the indirect approad is usedin the
phasegfinitialization and restarting of the population and takesideasborrowed from
the GRASP-basedewlutionary approad publishedin [43]. The direct approad is
consideredin the stagesof reconbination and local improvemern; particularly, the
local improvemert method is basedon the tabu seart (TS) algorithm descriked in
the previous chapter. Experimental results shav that this algorithm succeedsvhere
other ewlutionary algorithms did not. Our algorithm systematically nds optimal
rulers for up to 13 marks. OGRs up to 15 marks (included) can now be found.
Moreover, the algorithm producesGolomb rulers for 16 marks that are very closeto
the optimal value (i.e., 1.1%far), thus improving signi cantly the results previously
reported in the EA literature.

At this point, we try to improve the performanceof this algorithm in di erent
ways:

Complete Search: we usecompleteseart techniquesto combine the indi-
vidualsin the population, using constraint programmingfeaturessud aspropa-
gation. While this technique doesnot necessarilytranslatesinto the generation



CHAPTER 1. INTRODUCTION 9

of high quality individuals, it is neverthelessableto producevalid solutionsand
even optimal solutions.

Clustering: this technique, on the other hand, is introduced in order to
acquire a higher degreeof diversity in the population. Instead of maintaining
the bestindividuals in the population, we divide it into di erent clustersand
then choosethe bestin ead of the clusters.

Thesetwo techniquesallow, rst, to implemert a novel hybrid algorithm which
can be easily generalizedto deal with seeral other problems, and second,to yield
resultsthat are even better in quality than the allready top results obtained with the
Scatter Seart alone.

The results are outstanding, we are now able to solve a 16 marks ruler and to
consistenly solve every 14 marks rulers. The algorithm is tested using di erent sets
of parametersreferredto the clustering metansismand the results are consistetly
superior to the previousalgorithm without the improvemerts.

1.4 Publications

Finally we presen the main publications that this thesisyielded. We are going to
classifythem into the chaptersto which the researt is related. Also, the "Others"
section indicates papers published during the Ph.D. time that are not included in
this thesis;and "Under Submission"referresto papersthat have beensubmitted to
conferencedrom which we are awaiting the outcome.

CSP and SAT

Carlos Ansotegui, Alvaro del Val, Ivn Dotu, CesarFernandezy Felip Manya,
"Mo deling Choicesin Quasigroup Completion: SAT vs. CSP". In AAAI'04
Proceedings,SanJose ,California, USA, July 2004.

Ivan Dotu, Alvaro del Val and Manuel Cebrian, "Redundant Modeling for the
QuasiGroup Completion Problem". In CP'03 Proceedings,Kinsale, Ireland,
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Septenber 2003.

Ivan Dotu, Alvaro del Val and Manuel Cebrian, "Channeling Constraints and
Value Ordering in the QuasiGroup Completion Problem”. In 1IJCAI'03 Pro-
ceedingspagesl372-1373Acapulco, Mexico, August 2003.

LS for Scheduling Social Tournamen ts

Ivan Dotu and Pascal Van Hentenryck, "Scheduling Sccial Tournameris Lo-
cally". To appearin Al Communications Special Issueon Constraint Program-
ming for Planning and Scheduling, 2006.

Ivan Dotu, Alvaro del Val and PascalvVan Hentenryck, "Scheduling Sccial Tour-
namerts”. In Proceedingsof CP-05, Sitges, Spain, October 2005.

Ivan Dotu and PascalVan Hertenryck, "Scheduling Sccial GolfersLocally”. In
CPAIOR'05 Proceedings Prague, May 2005.

Genetic Algorithms for the Golom b Ruler Problem

Ivan Dotu and Pascal Van Hentenryck, "A Simple Hybrid Evolutionary Algo-
rithm for Finding Golomb Rulers”. In IEEE CEC'05 Proceedings Edimburgh,
Septenber 2005.

Scatter Search and Final Hybrid

Carlos Cotta, Ivan Dotu, Antonio J. Fernandezand PascalVan Herteryck, "A
Memetic Approach for Golomb Rulers". To appearin Proceedingsof PPSN'06,
Reykjavik, Iceland, 2006.

Others

Ivan Dotu and PascalVan Hertenryck, "A Note on Low Auto correlation Binary
Sequences". To appear in Proceedingsof CP'06, Nantes, France, Septenber
2006.
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Manuel Cebrian and lvan Dotu, "GRASP-Evolution for CSPs". To appear in
Proceedingsof GECCO'06, Seattle, USA, July 2006.

Manuel Cebrian and Ivan Dotu, "A simple Hybrid GRASP-Evolutionary Algo-
rithm for CSPs". In Proceedingf LLCS'05 Workshopin CP-05, Sitges,Spain,
October 2005.

Ivan Dotu, Juan de Lara, "Rapid Prototyping by Meansof Meta-Modelling and
Graph Grammars. An Example with Constraint Satisfaction". In Jornadasde
Ingenieradel Softwarey Basesde Datos, JISBD-03. Alicante, Spain, November
2003.

Under Submission

Carlos Cotta, Ivan Dotu, Antonio J. Fernandez and Pascal Van Henteryck,
"Scheduling Sacial Golfers with Memetic Evolutionary Programming”. Sub-
mitted to HM'06, Canary Islands, October 2006.
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Intro ducci on

La Optimizacion Combinatoria esuna rama de la optimizacion en matematica apli-
caday de la informatica, relacionadacon la investigacon operativa, la teor a de algo-
ritmos y la teor a de complejidad computacional,que seencueltra en la interseccon
de varios campos, tales comola inteligenciaarti cial, las matematicasy la ingeniera
del software. Los problemasde optimizacion conmbinatoria suelenconsistir en encon-
trar valorespara un conjunto de variablesque estan restringidas por un conjunto de
restricciones,en algunoscasospara optimizar una funcion dada (optimizacion) y en
otros tan solo para encortrar una solucbn valida (satisfaccbon). Los algoritmos de
optimizacion combinatoria resuelen instancias de problemas consideradosdif ciles
en generalgraciasa una exploracon inteligente del espaciode busqueda,en parte
reduciendolo, en parte recorriendolode una forma e ciente.

Motiv acion

El objetivo de estatesisesmostrar que difererntes enfoquespuedensermasadecuados
para diferentes problemas,y que las tecnicash bridas que incorporan mecanismos
de distintos paradigmaspuedenbene ciarsede susvertajas e intentar minimizar sus
defectos.Todo estosemuestraen estatesisconla resolucon de problemasdif cilesde
optimizacion conmbinatoria comocompletitud de cuasigrups, gol sta sacial, Golomb
rulers, usandovariastecnicasquedan lugar al desarrollode un algoritmo h brido para
encornrar Golomb rulers, que incorpora aspectos de algoritmos gereticos, busqueda
local, programacbon conrestriccionese incluso clustering. Como sedesprendede esta
enumeracbn, nuestrointeresesta en los algoritmos de optimizacion conmbinatoria que
seconsiderandertro del campo de la Inteligencia Arti cial (aunque escierto que la
linea que lo separadel campo de la investigacon operativa esmuy na), envezde
en algoritmos de investigacon operativa. As pues, metodos comola programacon
ertera o el "Branch-and-Bound" quehan sidoampliamerte estudiadosparaproblemas
de optimizacion, no van a ser, sin embargo, estudiadosen estatesis.

El paradigmade la programacbn con restriccioneses un marco muy util y muy
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estudiado para expresarmuchos problemasde interespara la Inteligencia Arti cial.

El primer trabajo de investigacon presenado aqu trata la modelizacon de proble-
mas de restricciones(CSPs), en concretopara un problemamuy concaido, llamado
Quasigoup Completion Problem (QCP). Desdeeste problemay comparandovarios
modelosy metodosde resolucbn, somoscapazesle extraer importantes conclusiones
paraun tip o de problemamasgeneralcomoesel de los problemasde permutaciones.
Tambien es sabido el interes en la comparacon erntre tecnicasde CSP y de SAT;
discutir cual es mas adecuadapara ciertos tip os de problema. Nosotrosrealizamos
estacomparacon para esteproblemaen concreto.

La busquedalocal es conacida como una tecnica poderosapara resoher, espe-
cialmerte, porblemasde optimizacion, as como problemascon espaciode busqueda
signi cativamerte grandes.El segunddrabajo presenado enla tesisaborda el mode-
ladoy resolucon de calendarizacon de torneosscciales,masconcretamere el "Social
Golfer Problem". Losresultadosaqu presenados sonsigni cativamerte superioresa
otros metodos complejosque seencueltran en la literatura. Ademas, motiva el tema
dela simetr a enla busquedalocal y preserntia una heur stica simple e inteligente para
generarsolucionesniciales que mejorala e ciencia del algoritmo.

Los algoritmos gereticos son algoritmos basadosen poblacionesque imitan pro-
cesosbiologicos. Los algoritmos memeticos son h bridos que introducen busqueda
local para producir mejoresresultadosy corvergera solucionesde mayor calidad. El
trabajo de investigacon en estecasotrata de resoler un problema de optimizacion
conbinatoria muy dif cil conacido comoGolomb Ruler. La investigacon desarrollada
agu secertra enel modeladoy resolucon de Golomb Rulersoptimosy cuasi-optimos,
y produjo resultadosde gran calidad que son consistettemerte superioresa los pro-
ducidospor otros algoritmos gereticos que seencuerttran en la literatura.

Finalmente, enriqguecemosun algoritmo memetico conccido como Scatter Sear®
con la introduccion de tecnicasde programacbn con restriccionesy clustering para
mejorar todav a ma salos ya de por s buenosresultadosde la investigacon anterior
sobreel Golomb Ruler Problem.

En las proximas seccionesgntroducimos los problemasestudiadosen esta tesis,
establecemodgos | mites de la mismay preseramos suscortribuciones principales.
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Problemas estudiados

Muchos problemasde la vida real seencuertran dertro de la categora de problemas
de optimizacion combinatoria. En esta tesis resohemos diferentes problemas con
diversastecnicasy nalmente desarrollamosun h brido quelas englobaa todasellas.

El problemade completitud de cuasigrumps (QCP) esuno de los mascompetitiv os
problemasde conbinacion, y ha sido el certro de recierte interes dertro del area
de la programacbn con restricciones[10]. Tiene una ando rango de aplicaciones
practicas como el enrutado de longitud de onda libre de con ictos en redesopticas
de andha banda, disero estadistico, codigos de correccon de errores [10]]; se ha
consideradoun problemaque puedeestar en un lugar entre las instanciaspuramerte
aleatoriasy los problemascon gran estructura [100; su estructura de problemade
multiples permutaciones[229 118 escomun a muchosotros problemasde satisfaccon
de restricciones.As pues,solucionesque resulten efectivas para QCPs tiene muchas
posibilidadesde ser utiles en otros problemasde estructura similar.

El problemadel "Social Golfer" ha atraido un interessigni cativ o desdeque sein-
cluyo ensci.op-research enMayo de1998. Esun problemaaltamerte conbinatorio
y simetrico, y no essorprendere que haya atraido tanta atencion en la conunidad
de la programacbn con restricciones(e.g., [72, 209 178 200 199 13 184). De
hedo, destapaaspectosfundamertalmente interesaries en modelizacon y rotura de
simetr as,y seha cornvertido enun problemaestandar para evaluar metodosde rotura
de simetr as. Recienes investigacioneq13, 184) se acercanal problem del "Social
Golfer" usandoesquemasnnovadores,elegares, pero tambien complefos,de rotura
de simetr as.

Encortrar "Golomb rulers" esun problema conbinatorio extremadamerme com-
plicado que ha recibido una atencion considerableen las ultimas decadas. Este
problematiene aplicacionespracticasen gran variedad de campos incluyendo radio-
comunicaciones([27, 114), cristalografa de rayos X ([26]), teor a de codigos ([56,
139), y radio- astronoma. Ademas, debido a su extrema naturaleza comnbinatoria®
ha llegadoa serun problemaestandar para evaluar y compararuna gran variedad de

3La busquedade un "Golomb ruler" para 19 marcastardo aproximadamerte 36,200CPU horas
en una Sun Sparc workstation usandoun algoritmo muy especializado[56].
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metodos de busqueda. En concreto, algoritmos gereticos, programacbn con restric-
ciones,busquedalocal, y sushibridizacioneshan sido aplicadosa esteproblema(e.g.,
[43,76, 173 176 21Q 213).

En estatesisvamosa introducir metodos puros para la resolucon de problemas
de conmbinatoria tales como los problemasde satisfaccon de restricciones(CSPs),
el problema de la satisfacibilidad (SAT), la busquedalocal (LS), y los algoritmos
gereticos (GAs). Tambien introduciremosmetodos h bridos, como CSP y LS, GA
y LS (conccido como algoritmos memeticos) y GAs que incorporan tecnicasde pro-
gramacbpn con restricciones. Vamos a presenar trabajos de investigacon en estos
paradigmaspara resoler problemasde conbinacion dif ciles, para nalmente desar-
rollar un h brido que incorpora todas esastecnicaspara producir resultadosde gran
calidad para uno de estosproblemas. Tambien incluimos un apenice donde intro-
ducimos brevemerne dos tecnicasque se usan en el ultimo h brido desarrollado,en
concreto"Greedy RandomizedAdaptive Sear® Procedures”(GRASP) y Clustering.

Contribuciones

Estetrabajo deinvestigaconintenta demostrarquediferenestecnicagpuedensermas
adecuadagpara diferertes problemased conbinacion, y, en vez de certrar tanto es-
fuerzoendesarrollartecnicasmuy especializadasen cadacampo, espreferible concen-
trarnos enla resolucon de problemascon la tecnicaque seamas adecuada.Tambien
nosinteresamostrar comotodas esastecnicaspuedecooperar en un unico algoritmo
para producir resultadosde gran calidad.

Las principales cortribuciones de estetrabajo sonvarias. Esta tesistrata de re-
solver problemas,y enesesertido cadacaptulo preserta resultadosl deresen calidad
en la literatura para varios problemas. Ademas, presertamos tambien un algoritmo
h brido que, aunqueestaorientado al problemaque tratamos, esfacilmerte general-
izable para poder seraplicado a diferertes problemasde combinatoria.

Por lo tanto, el trabajo presenado en estatesis cortribuy e al estadodel arte al
preserar resultadosde gran calidad para el problemade completitud de cuasigruos,
el Sccial Golfer y el Golomb ruler; tambien esuna cortribucion el desarrollode un
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algoritmo h brido que introduce aspectosde CSPsy de clustering en el esquemade
un algoritmo memetico. As pues,las cortribuciones principales de estatesis son:

Completitud de Cuasigrup os con busqueda completa

Primero, presertamos varias tecnicasque conjuntamente nospermiten resoher QCPs
signi cativamerte mas grandesque los presenados previamerte en la literatura. En
concreto,[10] arma que QCPsde orden40 no sepuedenresoler contecnicaspuras
de programacbn con restricciones,peros contecnicash bridas que combinen la pro-
gramacbn con restriccionesco la programacon entera de investigacon operativa.
Aqu mostramosque un metodo puro puederesoler varios problemasde orden 45
cercanosa la fasede transicion, que correspnde con el pico de di cultad. Nuestro
metodo esta construido sobre conceptoscomo el del modelado redundarte [36] con
modelosprimal y dual y restriccionesde canalizacon para unirlos [229, pero con al-
gunasmodi caciones innovadoras. Adicionalmerte presemamos una nueva heur stica
de ordenacon de valoresque resulta muy efectiva, y que podr a serlotambien para
muchos otros problemasde permutacionesmultiples. Finalmente, mostramoscomo
cierta restriccionesredundartes sepuedenutilizar para compilar arco consistenciaen
"forward chedking", lo que signi ca asegurarque el ultimo tendra el mismo poder de
propagacon que el primero pero con menoschequeosle consistencia.

Es interesarte recalcarque nuestro modelo no solo incluye restriccionesbinarias,
lo que pareceir en cortra del conacimiento comun acercade sus limitaciones |al
cortrastar conel usoderestriccionesno binariascomoalldi [188| enesteproblema

[215.

Comparaci on SAT vs. CSP

En segundolugar, realizamosun estudio sistematico de las opcionesde modelado
para la completitud de cuasigrups, probando una gran variedad de resolutoresy
heur sticas en diversascodi caciones SAT y CSP. La clara ganadoraes la codi -

cacon 3D de SAT, especialmerte con el resolutor Satz [144, seguidodel resolutor
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Satza [62) en la misma codi cacion. Debido a que estosdos resolutoresson bas-
tante diferertes, la codi cacion 3D aparececomo muy robusta. Por otro lado, los
modelosCSP son muy inferioresen los dos resolutoresprobados,y los modelos SAT

generadogle maneraestandar a partir de los modelosCSP sonsencillamerte demasi-
ado grandesen la practica. Todo esto sugiereque la codi caci on 3D puedeser muy

competitiva para otros problemasde permutacion (muchosde los cualesaparecenen
problemaspracticos[118) si los comparamosa los habitualmente preferidosmodelos
de canalizacon.

Pareceque hay una doble explicacon para lo anterior. Primero, podemosde-
mostrar que la codi cacion 3D (que esbasicamete el \SAT channelling model” de
[119 extendido para permutaciones multiples y modelos duales) capturar exacta-
merte los modelosde canalizacon de QCPs de nidos, pero de una forma mucho mas
concisa: colapsandovariablesprimalesy duales. Ademas, podemosdemostrarque la
codi cacion 3D captura la codi caci on SAT de soportesdel modelode canalizacon, y,
por lo tanto, por el resultadode [89], la propagacon unitaria en 3D consigueel mismo
nivel de poda que la arco-consistencian el modelo de canalizacon CSP. Pareceque
estosresultadosson facilmerte extrapolablesa otros problemasde permutacion que
han recibido gran atencion recientemerte ([35, 229 118). En segundolugar, hemos
identi cado empricamerte la importancia crucial de la heurstica de Satz para su
e cacia en estedominio; lo cual sedemuestra por el hedo de que, al importar esta
heur stica a los resolutoresde CSP, se obtienen mejorassigni cativ as.

Resolviendo el Problema del Golsta Social con Busqueda Lo-
cal

Estetrabajo proponeun algoritmo de busquedalocal para generarun calendariopara
gol stas scciales, cuyos movimientos consistenen intercambiar gol stas en la misma
semana,y estaguiado por una metaheurstica de tip o tabu. El algoritmo empatao
mejoratodaslas solucionesncoriradas mediarte programacbn conrestriccionegpara
todas excepto3 instancias. Tambien encueitra nuevas solucionespara 11 instancias
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que estabanabiertas para la programacbn con restricciones? Ademas, el algoritmo
resuelhe practicamene todas las instancias en pocos segundosy tarda alrededorde
un minuto en lasinstanciasrestartes. Tambien seincorpora una heur stica construc-
tiva que resuehe de forma trivial muchasinstanciasdel tipo impar impar w,y
constituye un buen punto de partida para el resto.

Las principalescortribuciones de estetrabajo son:

1. Muestra quela busquedalocal esun metodo muy efectivo para el problemadel
gol sta sccial. Encuertra la primera solucon para 11 instancias,y empatacon
la mejor solucion en el resto exceptopor 3 instancias. Ademas, casitodas las
instanciasseresuelen en apenasunos segundos.

2. Demuestraque el algoritmo de busquedalocal usaun modelo natural del prob-
lema sin esquemasomplejosde rotura de simetr as. De hedo, no tiene para
nada en cuerta las simetr as, dando lugar a un algoritmo mucho mas simple
guelos desarrolladodertro de la busquedacompletapara CSPs,desdeambos,
el punto de vista conceptualy el de la implemertacion.

3. Losresultadosexperimertalesindican cierta complememariedad ertre la busqueda
completay la busquedalocal dertro de la programacbn con restricciones,ya
gue unasinstanciasdif ciles para una tecnologa sonfacilespara la otra.

Encontrando "Golom b Rulers" Cuasi- Optimos con un Algo-
ritmo Evolutiv o H brido

Este trabajo propone un nuew algoritmo ewlutivo h brido para encorrar "Golomb
rulers” cuasi-optimos en un tiempo razonable. El algoritmo incorpora una busqueda
local dertro de un algoritmo geretico, y sobrepasaa algoritmos gereticos anteri-
ores,as como a algoritmos de programacbn con restriccionesh bridos de busqueda
completay local. En concreto, el algoritmo encuenra reglas de hasta 13 marcas

4Para el estado actual de las distintas instancias, veasela pagina web de Warwick Harvey
http://lwww.icparc.ic.ac.uk Iwh/ golf .
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rapidamerte, y tambien fue capazde encortrar el optimo para 14 marcas,lo que es-
taba fueradel alcanzede los mencionadosalgoritmos. El algoritmo tambienencuertra
reglascuasi-optimas en un tiempo razonable,indicando la efectividad de los agorit-
mos ewolutivos h bridos en esta aplicacion altamente conbinatoria. Es de particular
interesla simplicidad conceptualy la eleganciadel algoritmo.

A pesarde que hay solucionesde mayor numero de marcascon otros enfoquesde
busquedacompleta, los algoritmos ewlutivos tiene la vertaja de generarsoluciones
de alta calidad en poco tiempo. Esta estambien una de las mayorescortribuciones,
generarsolucionesde gran calidad (mejorando los resultadosde otros enfaquesewvo-
lutiv os anteriores) en pocossegundos minutos.

La mayor cortribucion tecnicaradica en un nuevo h brido que se certra en la
validez. De hedo, el paso principal del algoritmo ewlutivo es encorirar reglasde
una longitud espec ca (0 menor) usandoviolacionesde restriccionespara guiar la
busqueda. Las reglascuasi-optimas seencuettra resolviendouna secuenciade prob-
lemasde satisfaccon.

Scatter Search y el H brido Final

Aqu preseriamos un algoritmo ewlutivo h brido para encorirar "Golomb rulers”
optimos o cuasioptimos. Este algoritmo usa un enfoque indirecto y uno directo
en diferentes etapas de la busqueda. Mas concretamete, el enfoque indirecto se
usa en las fasesde inicializacion y re-inicializacion de la poblacion, haciendo uso
de ideas prestadasdel enfoque basadoen GRASP publicado en [43]. El enfoque
directo seusaen las etapasde reconbinacion y mejoralocal; en concreto, el metodo
de mejora local esta basadoen una busquedatabu. Los resultadosexperimertales
muestran que este algoritmo es capazde encorirar reglasoptimas hasta 13 marcas
sistermaticamerte. Ahora seencueitran reglasoptimas de hasta 15 marcas(incluida).
Ademas, el algoritmo generareglasde 16 marcasque son muy crecanasal optimo
(1.1%lejos), as pues,mejorandosensiblemete el estadodel arte.

En estemomerto, intentamos mejorar la e cacia del algoritmo de diferertes man-
eras:
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Busqueda Completa: usamostecnicasde busquedacompletaparacombinar
individuos de la poblacion, haciendousode mecanismosgle la programacbn con
restriccionestalescomola propagacon. Estatecnicano implica necesariamete
gue se generenindividuos de gran calidad, pero si es, sin enbargo, capazde
producir solucionesvalidas e incluso optimas.

Clustering: esta tecnica se introduce en este caso para conseguir mayor
diversidad en la poblacion. En vez de mantener los mejoresindividuos en la
poblacion, dividimos estaen distintos clustersy elegimodos mejoresindividuos
de cadacluster.

Estas dos tecnicasintroducidas nos permiten, por una parte, crear un novedoso
algoritmo h brido que esfacilmerte generalizablepara resoler muchos otros prob-
lemas de combinatoria, y, por otra parte, conseguirresultadosde mayor calidad a
los presenados antes de dichas incorporaciones,que ya eran resultadosde maxima
calidad para estedominio.

Losresultadossonverdaderamete sobresalietes, ahorasomoscapacesle resoher
reglasde 16 marcas,y encorirar el optimo para hasta 14 marcassistenmaticamerte.
Ademas, el algoritmo seha probado usandodistintos conjuntos de parametrosrefer-
enesal clusteringy los resultadossonconsistetemerte superioresa los del algoritmo
previo sin mejoras.

Publicaciones

Finalmente presertamos las principalespublicacionesque ha generadoestatesis. Las
vamosa clasi car en los distintos captulos a los que pertenecendertro de la tesis.
Ademas, se aade una seccon de "Otros" en la que se incluyen otras publicaciones
obtenidasdurante el tiempo de doctorado que no han sido nalmente re ejadas en
estatesisy otra de "EsperandoNoti caci on", para art culos que han sido erviadosa
conferenciasy seesta esperandola noti caci on.
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CSP y SAT

Carlos Ansotegui, Alvaro del Val, lvn Dotu, CesarFernandezy Felip Manya,
"Mo deling Choicesin Quasigroup Completion: SAT vs. CSP". In AAAI'04
Proceedings,SanJose ,California, USA, July 2004.

Ivan Dotu, Alvaro del Val and Manuel Cebrian, "Redundant Modeling for the
QuasiGroup Completion Problem". In CP'03 Proceedings,Kinsale, Ireland,
Septenber 2003.

Ivan Dotu, Alvaro del Val and Manuel Cebrian, "Channeling Constraints and
Value Ordering in the QuasiGroup Completion Problem”. In [JCAI'03 Pro-
ceedingspagesl372-1373Acapulco, Mexico, August 2003.

Busqueda Local para Torneos Sociales

Ivan Dotu and Pascal Van Hentenryck, "Scheduling Sccial Tournamens Lo-
cally". To appearin Al Communications Special Issueon Constraint Program-
ming for Planning and Scheduling, 2006.

Ivan Dotu, Alvaro del Val and PascalVan Hentenryck, "Scheduling Sccial Tour-
namens". In Proceedingsof CP-05, Sitges, Spain, October 2005.

Ivan Dotu and PascalVan Hentenryck, "Scheduling Sccial GolfersLocally”. In
CPAIOR'05 ProceedingsPrague, May 2005.

Algoritmos Evolutiv os para el "Golom b Ruler Problem"

Ivan Dotu and PascalVan Hentenryck, "A Simple Hybrid Evolutionary Algo-
rithm for Finding Golomb Rulers”. In IEEE CEC'05 Proceedings Edimburgh,
Septenber 2005.
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Carlos Cotta, Ivan Dotu, Antonio J. Fernandezand PascalVan Henteryck, "A
Memetic Approach for Golomb Rulers". To appearin Proceedingsof PPSN'06,
Reykjavik, Iceland, 2006.

Otros

Ivan Dotu and PascalvVan Hentenryck, "A Note on Low Auto correlation Binary
Sequences". To appear in Proceedingsof CP'06, Nantes, France, Septenber
2006.

Manuel Cebrian and Ivan Dotu, "GRASP-Evolution for CSPs". To appear in
Proceedingsof GECCO'06, Seattle, USA, July 2006.

Manuel Cebrian and lvan Dotu, "A simple Hybrid GRASP-Ewvolutionary Algo-
rithm for CSPs". In Proceedingsf LLCS'05 Workshopin CP-05, Sitges,Spain,
October 2005.

Ivan Dotu, Juan de Lara, "Rapid Prototyping by Meansof Meta-Modelling and
Graph Grammars. An Example with Constraint Satisfaction”. In Jornadasde
Ingenieradel Softwarey Basesde Datos, JISBD-03. Alicante, Spain, November
2003.

Esperando Noti caci on

Carlos Cotta, Ivan Dotu, Antonio J. Fernandezand Pascal Van Hertenryck,
"Scheduling Sccial Golfers with Memetic Evolutionary Programming”. Sub-
mitted to HM'06, Canary Islands, October 2006.
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Chapter 2
Pure Approac hes

In this chapter we are goingto introducethe main frameworks this thesisdealswith:

Constraint SatisfactionProblems(CSPs)and the algorithmsto solvethem both Com-
plete Seart (CP) and Local Seart (LS), the Satis abilit y Problem (SAT) and Evo-
lutionary Computation (EC). Note that the SAT problemwill not be part of the nal

hybrid presered in this thesis, howeer, it is important for its relevancy within the
CSPframework, and alsobecausédt hasbeenusedin preliminary work for this thesis.
This chapter is thus dewted to the introduction of pure approades.

21 CSPs

We now review the framework of Constraint Satisfaction Problem (CSP) and some
of the main available seart methods and techniques.

2.1.1 De nitions

De nition  2.1. A Constraint Satisfaction Problem (CSP) P = (X;D;C) is de ned
by a setof variablesX = fxq;:::; X0, asetofn nite valuedomainsD = fDq;:::;;Dng,
and a set of ¢ constrairts or relations C = fRy;:::; R.Q.

De nition 2.2. A constrairnt Ry is a pair (vars(Ry);rel(Ry)) de ned asfollows:

24
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vars(Ry) is an orderedsubsetof the variables,calledthe constrairt scheme The
size of vars(Ry) is known as the arity of the constrairt. A binary constraint
hasarity equalto 2; a non-binary constraint hasarity greaterthan 2. Thus, a
binary CSP is a CSP whereall constrains have arity equalor lessthan 2.

rel(Ry) is a set of tuples over vars(Ry), called the constraint relation, that
speci es the allowed combinations of valuesfor the variablesin vars(Ry). A
tuple over an orderedsetof variablesX = fx;y;:::;xxgis an orderedlist of values

Solvinga CSP means nding an assignmeh for ead variable that doesnot violate
any constrairt.

De nition  2.3. A constraint graph asseiates a vertex with ead variable and has
an edgebetweenany two verticeswhoseassaiated variablesare related by the same
constrairt.

De nition  2.4. An assignmeh of valuesto variablesis a set of individual assign-
merts, f X;  v;g, whereno variable occurs more than once.

An assignmen can be either partial, if it includesa proper subsetof the variables,
or total, if it includesewery variable.

De nition  2.5. We say that an assignmen is consisten if it doesnot violate any
constrairt.

A solution to a CSP is then a total consisten assignmen Thus, the task of
nding a solution to a CSP or proving that it doesnot have any can be referred as
the task of achievingtotal consistency

Example 1. The n-quesnsproblemis usualy expressd asa CSP. The problemcon-
sistson placingn queenson an n  n chesshoard, in sucha way that no two queens
attack each other. It can be naturally expressé as a binary CSP whele each variable
is assaiated with a board row, and its assignmentdenotesthe board column wheswe
the queen is placed. Constraints restrict the valid positions for each pair of queens:
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two queens cannot be placd in the samecolumn nor in the samediagonal (note that
they cannot be placd in the samerow either, althoughthis is already guarantesd by
the representation).

2.1.2 Constrain t Optimization Problems

With this sametechnology we can model constrairt optimization problems. These
are constrairt satisfaction problemswhere not only we seart for a solution but for
the onethat optimizesa given criterion:

De nition  2.6. A Constraint Optimization ProblemP = (X;D;C;f) is de ned by
a set of variablesX = fxy;:::; X0, a setof n nite value domainsD = fDq;::;;Dng,
a set of ¢ constrairts or relations C = fRy;::;; R.g, and a function f to be optimized
(minimized or maximized).

Note that the function f represems an optimization criteria, it referresto the
quality of the solution. Sometimes,t canbe presened asa soft constrairnt which the
solution can violated but that decreasingits violations increasesthe quality of the
solution. Howewer, we are goingto assumethat the criterion is a function f without
lossof generality.

2.1.3 Constrain t algorithms: Complete Search

Oncea problem of interest has beenformulated as a constraint satisfaction problem
a solution can be found with a generalpurposeconstrairt algorithm. CSPsare NP-
complete[84]. Many constrairt algorithms are basedon the principles of seart and
deduction. CompleteSeart standsfor the fact that the seard coversthe wholesearh
space,and thus, it is guararteed to nd a solution. The most e ective constrairnt
satisfaction algorithms are basedon:

Search based backtrac king

The term search is usedto characterizea large category of algorithms which solve
problemsby guessingan operation to perform or an action to take, possibly with the
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help of a heuristic. A good guessresults in a new state that is nearerthe goal. If
the operation does not result in progresstowards the goal, it can be retracted and
another guessmade. For CSPs,seard is exempli ed by the badtracking algorithm.
Badktracking seart assignsa value to an uninstantiated variable, thereby extending
the current partial solution. It exploresthe seart spacein a depth- rst manner.
If no legal value can be found for the current variable, the previous assignmen is
retracted, which is called a backtrack In the worst case,the badtracking algorithm
requiresexponertial time in terms of number of variables,but only linear space.The
badktracking algorithm was rst descriked more than a certury ago, and sincethen
it hasbeenreintroducedse\eral times [24].

Consistency based algorithms

Other kinds of algorithm to solve a CSP rely on applying reasoningthat transforms
the problem into an equivalert but more explicit form. The most frequertly used
type of these algorithms is known as constraint propagation or consistencyenforc-
ing algorithms [148 81]. These procedurestransform a CSP problem by deducing
new constraints, tightening existing constrairts, and removing valuesfrom variable
domains. In general,a consistencyenforcing algorithm will extend somepartial so-
lution of a subproblemto somesurrounding subproblemby guararteeing a certain
degreeof local consistencyde ned asfollows.

De nition  2.7. A CSP problem is 1-consistent if the valuesin the domain of ead
variable satisfy all the unary constrairts.

De nition  2.8. A problem is k-consistent k 2, i given any consisten partial
instantiation of any k 1 distinct variables,there exists a consisten instantiation of
any single additional variable [80].

The termsnode-, arc-, and path-consistency[14§ correspndto 1-, 2-, 3-consistency
respectively.

De nition  2.9. Given an ordering of the variables, a problem is directional k-
consisteh i any subsetof k 1 variables is k-consisten relative to ewvery single
variable that succeedshe k 1 variablesin the ordering [52].
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A problem that is k-consisten for all k is called glokally consisten.

The complexity of enforcingi-consistencyis exponertial in i [42]. Consideringthis
high cost, there is a trade-0 betweenthe e ort spent in pre-processing(enforcing
local consistencyat eat seart node) and the time savings that it may produce.

RegardingCSPs(and alsobinary CSPs),arc-consistency{or weaker forms of arc-
consistency{are commonly usedto detect and remove unfeasiblevaluesbefore and
during the seart. Their interestis due to having low time and spacerequiremerts.

Look-ahead Algorithms

Seart algorithms can be conmbined with consistencyenforcemen algorithms detect-
ing dead-endsat earlier levelsin the seart tree. The ideais to enforcelocal consis-
tency at eat node during the seard. If the current node is in a dead-endand the
seart doesnot detectit, achieving somelevel of consistencymay lead to its discov-
ery, saving the seart from visiting unsuccessfullydeeper nodesof the current subtree.
This processis generally called lookah@d or propagation of the current assignmen

In practice, algorithms that perform a limited amourt of propagation are among
the most e ective. Forward Checking (FC) [11Q is a simple, yet powerful algorithm
for constraint satisfaction. It propagatesthe e ect of eat assignmenh by pruning
inconsisten valuesfrom future variables. When a future domain becomesempty,
FC badtracks becausethere is no value for one (or more) future variable consisten
with the current partial assignmen

On the other hand, there is an algorithm that maintains arc-consistencyduring
seart (denoted MAC [195) which requires more computational e ort than FC at
ead seart state. MAC lIters arc-inconsisten valuessimplifying the seart space,
and if this propagation processcausesan empty domain, then the subproblem s
unsohable. Given that MAC can prune more valuesthan FC, it has better dead-
end detection capabilities. This meansthat MAC can badtrack in nodeswhere FC
would cortinue searting at deeger levels. In general, MAC is not the most e ective
algorithm on easyproblemsbecausdree reduction doesnot pay o the computational

IFuture variable is the term we useto denote a variable that has not beeninstantiated yet at a
given seart node, while past variable is a variable that has already beeninstantiated
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overhead,while on hard problems,maintaining arc-consistencyis often coste ective.

Lo ok-back Algorithms

There are someother ways in which the basic Backtracking (BT) strategy can be
improved by keepingtrack of previous phasesof seart (for this reasonthey are
known aslook-bad algorithms):

Backmarking (BM) [86] avoids the repetition of someconsistencychedks. When
BT assignghe current variable it cheds the consistencyof this assignmeh with past
variables. If any of thesetestsfails, BM recordsthe point of the failure in a maximum
check level array. Supposethat the algorithm badktracks up to somevariable, then
deepensin the tree and attempts againto assignthe samevariable. In this situation
it is known that the current assignmen is consistem with past variablesup to the
maximum check level as far as their assignmeh has not beenchanged. BM avoids
the repetition of thesealready performedcheds.

Backjumping (BJ) [87],improvesBT by making a more suitable decisionof which
variable hasto badtrack to. BJ only diers from BT at those nodeswhere a dead-
end is detected. Instead of badtracking to the most recerily instantiated variable,
BJ jumps bad to the deepest past variable that the current variable was cheded
against, which correspndsto the earliest constrairnt causingthe conict. When the
current variable is not responsible for the dead-enddetection, no jump is done. In
that caseBJ badktracks chronologically

Con ict-Dir ected Backjumping (CBJ) [183 improvesBJ by following a more so-
phisticated jumping strategy. The con ict setof a variableis formedby pastvariables
with which a consistencyched failed with somevalue of the consideredvariable.
When all the valueshave beenattempted for the current variable, CBJ jumps to the
deepestvariablein its con ict set. This variable is removedfrom the con ict setofthe
current variable, and this newcon ict setis addedto the con ict setof the variable it
jumps to. With this approad, jumps can be doneat thosenodeswherebadtracking
occursnot becausea dead-endis detected, but becauseall valueshave already been
attempted. In addition, more than one jump can be done along the samepath from
a detecteddead-endto the root.
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Learning Algorithms

There are other algorithms that usea technique called constrairt recordingor learn-
ing.

An opportunity to learn new constrairts is presened whene\er the badtracking
algorithm encourers a dead-end. Had the problem included an explicit constrairt
prohibiting this conict set, the dead-endwould have newver beenreaded. The learn-
ing procedurerecordsa new constrain that makes explicit an incompatibility that
already existed implicitly in a given set of variable assignmets. Note thereforethat
nothing new is learnt, exceptinformation that logically follows from the speci cation
of the problem. Thesenew constrairts are usually called nogaods .

In learningalgorithms, the savings from possiblyreducingthe amourt of seard by
nding out earlierthat a givenpath cannotleadto a solution must be balancedagainst
the cost of processingat ead seart node a more extensiwe databaseof constrairs.

Learning algorithms may be characterizedby the way they identify smallercon ict
sets. Learning canbe deep or shalow. Deeplearningrecordsonly the minimal con ict
sets. Shallov learningallows nonminimal con ict setsto berecordedaswell. Learning
algorithms may also be characterizedby how they bound the arity of the constrairts
recorded. Constraints involving many variablesare lessfrequertly applicable,require
additional memoryto store,and are moreexpensiveto consultthan constrains having
fewer variables. The algorithm may record a single nogaod or multiple nogaoods per
dead-end,and it may allow learning at leaf dead-endsonly or at internal dead-ends
aswell.

Heuristics

If badktrack is usedto solve CSPs,then anotherissueis the order in which variables
are consideredfor instantiation. There is overwhelming evidencethat the ordering
in which variables are chosenfor instantiation can have substartial impact on the
algorithms' e ciency (seee.g. [5]1]). The samehappenswith the order in which an
algorithm tries the domain valuesfor the current variable. Heuristics for variable or
value ordering can be grouped into two categories:
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Static orderings: A static heuristic establishesan ordering beforeseart starts,
and maintains this ordering throughout all of the seard.

Dynamic orderings: A dynamic heuristic makes selectionsdynamically during
seard.

A well-known static heuristic involves ordering variables by their degreein the
constrairt graph. The ideais to consider rst the most constrainedvariables (those
with moreedgedn the constrairt graph) becausehey arelikely to be moredi cult to
assign. Inconsistenciesare expectedto be found at early tree levels, whererecovering
from mistakesis lesscostly. Variables with few constraints have more freedomin
the valuesthey can take, so it is easierto nd a good value for them. With this
heuristic their assignmen is delayed to deeptree levels. This static variable ordering
is denoted maximum degree ordering heuristic.

Dynamic variable orderings are generally much more e ectiv e than static ones,
sincethey cantake into accourt the currert state of the seart to decidewhat to do
next. The most popular variable ordering heuristic selectsthe variable with the mini-
mum number of valuesin its current domain [110Q. This heuristic, denotedminimum
domain (MD), is usually applied with look-aheadalgorithms, becausethe actual size
of domainsis available to the heuristic at no additional cost.

The performanceof MD is often improved with the addition of someinformation
from the graph topology. For instance, [83] breaksties amongvariablesin the MD
heuristic by using a graph degree. [22] selectthe variable having the lowest ratio
domain cardinality divided by degree in an attempt to combine both dynamic and
static information. Other approades also considerdynamic degreeinformation, as
the constraint graphis simpli ed asseard proceeds.

Value ordering hasnot attracted the attention of the CSP comnunity asmuch. It
is generallybelieved that good valuesare thosewhich are morelikely to participate in
solutions. This ideais dewelopedin [52]wherethey proposea value ordering heuristic
which relieson a tree-relaxation of the problem to estimate the goodnessof a value.

A dierent approad for value ordering is followed in [138 88, 83]. Within the
context of look-aheadalgorithms, valuesare orderedby the pruning e ect that they
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have on future domains. This approad requiresthe propagation of eat possible
assignmenh to obtain the sizeof the resulting domains.

While there are quite successfulomain-independert variable ordering heuristics,
the current state of researt suggestthat good value ordering heuristics are likely to
be highly problem-speci c.

Optimization  Techniques

Solving Optimization Problemswith completeseart techniquesusually implies bor-
rowing techniquesfrom Operations Researb (OR) sud as Branch-and-Bound (BB)
to intertwin them with constrairt algorithms.

We are not going to give a comprehensie review of these techniquessinceit is
not the focus of this thesis (hybrid optimization methods will be descriked in the
next chapter), but we are goingto presen someof the most popular techniquesin
the literature.

Optimization problemscanbe solvedusinga number of di erent techniqueswithin
the constraint satisfaction paradigm. Full lookahead([11Q) is popular becauseit is
easyto implemert and works on a large variety of problems. Essexalgorithms ([220),
which are a variation on Freuder's solution syrthesistechniques ([80]), signi cantly
ouperform lookaheadalgorithms on the N-Queensproblem. Of special interest is the
technique presenied in ([17, 16)) whereconstrairt satisfaction, branch-and-bound and
solution syrthesistechniquesare integrated.

2Solution synthesisis a method usedto generateall solutionsto a CSP. That is, all assignmets of
valuesto variablesthat satisfy the problem's constraints producedby a solution synthesis algorithm.
Often, this set of solutions can be further judged accordingto someseparatecriteria to obtain the
optimal solution.
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2.1.4 Local Search

Local seard is a di erent paradigmfor solving combinatorial optimization problems.
It diers from the constrairnt satisfactiontechniquesthat perform a complete seart
in the way in which the seart is performed. We can sa it sacri ces completeness
in return for better performancein a number of problems. Instead of performing a
completeseart of the seard-tree which guarartees nding the optimal, it explores
local neighborhoodsto nd nearoptimal solutionsfast. In someproblemsit canread
the optimum although it cannot be proven by the medanism itself. It is usually
well-suited for large-scaleproblems and for optimization problems, rather than for
satis abilit y.

Local Searth ewlved on its own but it was quickly incorporated as a class of
algorithm to solve CSPs. We now review the main aspects of this framework:

The LS Algorithm

A typical LS algorithm starts with aninitial solution (either randomly or heuristically
generated)and it movesto neighbooring solutionsin order to optimize the value of
a function f. This function f measuresthe quality of a solution. In constrairt
satisfactionit is usually the number of constrairt violations; thus, the algorithm will
try to minimize f, reading a solution whenf = 0 (no constrairt violations). In
optimization problemsit is usually the function to be optimized, although it can be
mixed with constrairt violations if we allow the algorithm to move through unfeasible
solutions.

The main operation of a LS algorithm is moving from a solution s to one of
its neighbors. This new solution s® to which the algorithm will move, can be found
within the set of neighbors N (s) called neighborhoodof s. Sometimesa legality of a
move might be de ned. In that case,the LS algorithm will identify which movesare
legal at a certain time, and then chooseone of them as the new solution. Thus, the
algorithm selects(S selectionoperator) a legal neighbor (L legality operator) from
the neighborhood N (s) of s.

Figure 2.1 depictsa genericLS algorithm. The seart starts from an initial state
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1 function GenericLocalSerch()
2 s Initial Solution();
3 S S;

4. k 0

5. while k  maxlt
6 if satisf iable(s) and f (s) < f (s ) then
7 S S;

8 s S(L(N(s);s);s);

9. k++;

10. return s ;

Figure 2.1: A GenericLocal Seart Algorithm

in line 2, and performsa certain number of iterations (line 5). Lines6 and 7 are used
to keeptrack of the best solution found so far, and line 8 performsthe move to the
new solution.

Formalizing LS Concepts

In this sectionwe are goingto summarizedsomeconceptswithin the LS framework.
We have already explained that LS ewlved independerily from CSPsand so we
are going to give introduce some general concepts.Letus assumethat we have a
conbinatorial optimization problem P of the form:

minimize f (¢) subject to
Ci(%)

Cm (%)

wherex is a vector of n decisionvariables,f is the objective function that represets
the quality of a solution, and Cg; :C,, are the constrairts to which the variables
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are subject. Basedon all that we can now de ne:

De nition  2.10. A solution to P is an assignmeh R of all the variablesin %. The
set of solutionsis denotedby Lp.

De nition 2.11. A feasiblesolution to P is a solution ® that satis es the constrains
Cy; :Cm. The set of feasiblesolutionsis denotedby L%.

De nition  2.12. The set of optimal solutions to P, denotedby L is de ned as
Lo =fs2 L% jf(s)= minf(k)g (2.1)
k2Lp

Note that in this casewe usethe term solution to name a complete assignmen of
valuesto variables, and feasiblesolution to a solution that satis es the constrairts.
Renmbenber than in the constraint satisfaction framework a solution correspndsto
a feasiblesolution here.

De nition  2.13. A sarch space for P isasetl’s sudhthat L, Lp N

Note that the seard spacemay vary from one algorithm to the other. It is part of
the modeling of the problem, in somecasesve might want to move within the space
of feasiblesolutions, where L’\p = Lp; or we might want to enforcesomeconstrairts

and leave othersto be part of the objective function f, i.e. permit violations of those
constrairts and try to minimize them during sear®. For a constrairt satisfaction
problem, whenviolations are non-existen, it meanswe have a solution; for constrairt

optimization problemsit meansthat we have found a f easible solution.

De nition  2.14. A neighlrhood is a pair h'p; Ni wherels is a seart spaceand
N is a mapping N : s ! 2% that de nes set of readable solutions N (s) LUp
from solution s.

De nition  2.15. A solution s is locally optimal with respectto Lp if
f(s) i2np\ll(ns)f (1)

The set of local optimal solutionsis denotedL .
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Escapingfrom local optima is one of the issuesthat hasbeengetting the most atten-
tion within this framework, andit is the causeof LS algorithms introducinginteresting
legality and selectioncriteria.

De niton  2.16. A neightorhood is a pair hs; Ni wherel’s is a searh spaceand
N is a mapping N : U'p ! 2% that de nes set of reacable solutions N (s) Lp
from solution s.

N

De niton  2.17. A legality condition L is a function (2*» L) ! 2% that lters
setsof solutions from the seart space.

De nition  2.18. A seletion rule S(M ;s) is a function (2t Lb) ! s where
M = L(N(s);s), that choosesan elemern s; from M and decideswhether to accept
it or to keepthe current solution s.

De nition  2.19. A local search algorithm for P is a successiorof solutions
Sg! s iilbos

sud that
Si+1 = S(L(N(s);si)isi) (1 i k) (2.2)

It is very commonthat sud a local sear® algorithm producesa nal solution sy
that belongsto L5. In the next sectionwe are going to introduce heuristics and
metaheuristics, whoserole is to direct the seard towards high-quality local optima,
and specially thosein L if possible.

Heuristics

All the heuristicshereare basedon the template depictedin gure 2.1, and assuming
that it receivesthe parametersf, N and the legality and selection rulesL and S.
We are alsogoingto assumethat we are always dealingwith minimization problems,
sothat the goalis to minimize f .

Heuristicstypically choosethe next neighbor basedon local information, basically
the current solution and its neighborhood, which translatesinto providing di erent
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selectionmedanismsand di erent legality conditions. For example, we can de ne
three di erent legality conditions, whereN is assumedio be the neighborhood of S:

1. function L-Improvemen{N;s)
2. return fn2 N jf(n) < f(9)g;

which only allows to move to a neighbor with a strictly superior quality.

1. function L-ImprovementMdWalk(N;s)
2. return fn2 N jf(n) f(s)g;

which allows moveswherethe value of the objective function is the same.

1. function L-All(N;s)
2. return N;

or the last casein which any kind of move is allowed.
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Systematic Heuristics  This type of heuristic performsan exploration of the neigh-
borhood in orderto decidewhich neighbor is goingto becomethe next solution. The
main relevant onesbeing:

Best Neigh bor: this heuristic choosesthe neighbor with the best value of the
objective function:

1. function S-Bes{N;s)
2. N fn2 N jf(n) = mingy f(9)g;
3. return fn2 N g;

where n can be chosenrandomly with probability JNLJ wherej N | is the num-
ber of elemerts in N . A Best-Improvemen LS algorithm can thus be speci ed by
instantiating the genericlocal seart in the following manner:

1. function Bestimprovemen(s)
2. return GenericLocalSerch(f ; N;L-Improvement,S-Best

First Neigh bor: sometimes,the seart spaceis too large to completely scan
it in orderto nd the best neighbor. The First-Neighbor heuristic choosesthe rst
neighbor which improvesthe value of the objective function. It assumesa function
lex(n) that speci es the lexicographicorder of a neighbor n when scanningthe neigh-
borhood:

1. function S-First(N;s)
2. return fn 2 Ng minimizing lex(n);

A First-Improvemern LS algorithm canthus be speci ed by instantiating the generic
local seart to usethe rst-neighbor heuristic as selectionrule:
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1. function Firstimprovemen(s)
2. return GenericLocalSerch(f ; N;L-Improvement,S-Firs)

Random Walks The Random Walks heuristic randomly selectsa candidate from
the neighborhood and decidewhether to selectit or not (instead of performing an
exploration of the neighborhood).

Random Impro vement: this is the simplest example of a random walk, it
consistson acceptinga neighbor if it improvesthe current solution:

1 function S-Randomimprovemen{N; s)
2. select fn2 Ng;

3. if f(n) < f(s) then

4. return n;

5 else 6. return s;

In line 2, n canberandomly selectedwith probability ,N% wherej N | is the number of
elemerts in N. Note alsothat in line 6 the current solution is returned, which means
that s is implicitly part of the neighborhood. The random nature of this approat
seemscritical in someapplications ([6]). A RandomIimprovemen LS algorithm can
thus be speci ed by instantiating the genericlocal seart in the following manner:

1. function Randomlmprovemen(s)
2. return GenericLocalSearch(f ; N;L-All,S-Randomimprovemeny

The Metrop olis Heuristic: is a variant of Random Walks that allows oc-
cassionaldegradation of the value of the objective function. It selectsa random
candidate, if it doesnot degradethe objective function the candidateis returned, if
it does,then it is acceptedwith a small probability

exp(frac (f(n) f(s))t)
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that dependson the distance betweenthe objective functions, and on a parametert
called temperature. Assuminga function True(f (n);f (s);t) that cheds this proba-
bility, the Metropolis heuristic can be speci ed by:

function Metropolis(N;s;t)

select fn2 Ng;

if f(n) f(s)then
return n;

else if True(f (n);f (s);t)
return n;

else
return s;

oNogahk~wDdE

Again, n can be randomly selectedwith probability JNLJ wherej N j is the number of
elemerts in N.

Metaheuristics

The heuristics presetted in the previoussectionaim exclusiwely at choosingthe next
solution within the neighborhood in order to provide high quality local optima. But
local optima are not necessarilyglobal optima, and thus, somemedanismis needed
to escae from them. Thesemedanismsare known as metaheuristics.

All the metaheuristicshere are also basedon the template depictedin gure 2.1,
and assumingthat it receivesthe parametersf , N andthe legality and selection rules
L and S. We are alsogoingto assumethat we are always dealing with minimization
problems,sothat the goalis to minimize f .

In the following we will presen someof the most characteristic metaheuristicthat
can be found on the literature:

Iterated Local Search The ideabehind this metaheuristicis to iterate a speci c
local seard from di erent points in the seard space.Sometimesthe starting points
can be generatedfrom the last local minima reated on the previousiteration.
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function IteratedLocalSearch(f;N;L; s)
s Initial Solution();
S S;
for k = 1to maxSearchesdo
s LocalSearch(f;N;L; s);
if f(s)<f(s)then
S S;
s GenemteNewSolutioifs);
return s ;

©CoNOO~WDNE

Figure 2.2: Iterated Local Seart

1 function SimulatedAnnealing(f; N)
2 s Initial Solution();

3 t;  Initial Temperature(s)
4. S S,

5. for k = 1to maxSearchesdo
6 s LocalSarch(f,N,L-All,M etropois(tk);s);
7 if f(s)<f(s) then

8 S S,

9. tk+1 UpdateTemperature(s; ty);

10. return s ;

Figure 2.3: Simulated Annealing

Figure 2.2 depicts the outline of this algorithm. In line 2 an initial solution is
generatedand a certain number of iterations are performed(lines 5-8). Each iteration
consistsof a call to a Local Seart procedure(which could be any of the metaheuristics
presened in this section)and the generationof a new solution that can be produced
either through somekind of transformation of the current solution s or from scratc.

Simulated Annealing This is a very popular metaheuristic that is basedon the
Metropolis heuristic presened in the previoussection. The key featureis the parame-
ter t or temperature. Di erent temperaturesproducedi erent trade-o s betweenthe
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1 function GuidedLocalSarch(f;N;L; S)

2 s Initial Solution();

3 fq f

4, S S;

5. for k = 1to maxSearchesdo

6 s LocalSarch(f¢;N;L; S;s);

7 if f(s)<f(s) then

8 S S

9 frse1  UpdateObjetiveFunction(s;fy);
10. return s ;

Figure 2.4: Guided Local Sear®

guality of the solution and the executiontime. The ideabehind this metaheuristicis
to iterate the Metropolis algorithm with a sequencef decreasingemperatures.

to;ty; it (tker  ty)

The results is to allow many moves initially, and progressiely reduce the number
of allowed moves, corverging thus toward random improvemer with the hope of
high-quality local optima whent; ! 0.

Figure 2.3 depicts the Simulated Annealing template. There are, howewer, two
critical decisionsto take: the initial temperature (line 3) and the cooling medanism
(line 9). Both of thesecan be chosenexperimentally or canbe derived systematically
for speci ¢ instances([1],[126])

Guided Local Search This metaheuristicis basedon the recognitionthat a local
optima s for an objective function f might not be locally optimal to a di erent objec-
tive function f © thus, using f °will drive the searh away from s. As a consequence,

seart towards di erent areasof the seard space.
Figure 2.4 depicts the Guided Local Seart algorithm, whose embedded local
sear® is generic. The keyfeatureis the updating medanismfor the objective function
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1. function GenericLocalSerch()
2. s Initial Solution();

3. S S,

4. hsi;

5. k 0O

6. while k  maxit

7. if satisf iable(s) and f (s) < f(s ) then
8. S S;

9. Sker S(L(N(sk); )i )
10. k++;

11. *+ Sk+1;

12. return s ;

Figure 2.5: The GenericLocal Seart Revisited

(line 9), which canbe donein terms of the previousobjective function or from scratd.

Tabu Search This is avery popular and e ective metaheuristicthat mixesa great
variety of techniques. In order to better understandit we are going to extend the
genericlocal seart presened earlier. The newideais to maintain a sequence

to be the best neighbor in N (s¢) that hasnot yet beenvisited.

As a consequencetabu seart can be viewed as the combination of a greedy
strategy with a de nition of legal moves ensuring that a solution is newer visited
twice:

1. function TabuSarch(f;N;s)
2. return LocalSarch(f ; N;L-NotTabu,S-Bes}t
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where

1. function L-NotTabuN; )
2. return fn2 N jn2 g;

There are two interesting featuresto highlight here. First, there are no referencego
the objective function in the legality conditions, which meansthat degradingmoves
are allowed, which cantranslate into escapingfrom local minima. Second,its greedy
nature ensuresthat the quality is not goingto degradetoo much at any step, since
the best neighbor is always chosen.

Tabu List is the name of the structure wheretabu seart storesthe sequence
of visited solutions. Howewver, memory spaceconstrairts limit the stored informa-
tion. Often, only characteristics of the move are recorded,rather tha the complete
solutions. Thus, the tabu list usually storeslimited aspects of the solutions which
do not fully characterizethem, but can also considernon visited solutions with the
samecharacteristics. As a consequencesolution aspectsare only stored temporarily,
and are freed at somepoint. The number of stepsduring which the chosenfeatures
of a solution are stored is called the tabu tenure. Thus, the election of the aspects
of a solution to store, and the value of the tenure are key assetsin the algorithm's
performance.

Aspiration  is a medanismrelated to the partiality of the stored information.
It allows choosing a solution in the tabu list whenit is better than the current best
solution. The resulting legal movesare speci ed as

1. function L-NotTabu-AsgN; )
2. return fn2Njn2  f(n)<f(s)g;
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Long-T erm Memory: we know that the tabu list abstractsa small su x of
the solution sequenceand cannot capture long-term information. As a consequence,
tabu seard® cannot ensurethat the seart will not focuson low quality solutions, or
that it will spend too much time on the sameregion of seart space. Thus, tabu
seart algorithms typically implemert two di erent medanismto avoid the previous
problems:

Intensi c ation consistson storing high-quality solutions during the seart and
returning to them periodically, thus, allowing a more extensiwe exploration of
the regionswherethe best solutions have beenfound.

Diversi c ation provides a meansto explore more diverseregionsof the seart
space. There are many ways to achieve this goal, sud as using iterated local
seart to perturb or to restart the seart, or using strategic oscillation, which
consistsof changing the objective function in order to balancethe time spernt
in the feasibleand infeasibleregions([6]).

There are other more complex metaheuristicsin the literature sud as Variable
Neighborhood Seard (VNS) [16]] or Ant Colony Optimization (ACO) [57]. Also,
hybrid ewlutionary approades are sometimesconsideredas metaheuristic, but we
will explore suh methods in the next chapter.

Most of the gures and templatesin this sectioncan alsobeenfound with higher
detail in [115.

2.2 SAT

Considerthe following problem:

Example 2. I'm hungry and | would like somethingto eat. My father says| must
eat meat or elsedorit eat sh. My mother saysl musteat sh, vegetableor both. My
girlfriend asksme not to eat either veggetablesor meat or both. What can | eat?
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This problem canbe represeted asa propositional satis abilit y problem. We can
expressthe three constrairnts by meansof a propositional formula,

M_F)MF_V)"(CV_:M)

whereM, F andV areBooleanvariableswhich aretrue if and only if | eatrespectively,
Meat, Fish, and Vegetables.A solution to the problem is a satisfying assignmety an
assignmen of truth valuesto the Boolean variablesthat satis es the propositional
formula. In this case there arejust two satisfying assignmets (out of eight possible).
Theseeither assignM and F to true and V to false,or assignM and F to falseand
V to true. That is, | caneither eat both Meat and Fish, and not Vegetablespr | can
eat only Vegetablesand neither Meat nor Fish.

Whilst propositional satis ability is a very simple problem, it is a cornerstone
in the theory of computational complexity. Propositional satis abilit y was the rst
problem showvn to be NP-complete[41].

2.2.1 Satis abilit vy

Propositional satis abilit y (SAT) is the problem of decidingif there is an assignmen
for the variablesin a propositional formula that makesthe formula true. Many Al
problems can be encaled quite naturally into SAT (eg. planning [137, constraint
satisfaction, vision interpretation [189, diagnosis,hardware veri cation and design,
).

Much researtr into SAT considersproblemsin conjunctive normal form (CNF).
A formula is CNF if and only if it is a conjunction of clausesa clauseis a disjunction
of literals, where a literal is a negated or un-negated Boolean variable. A clause
containing just one literal is called a unit clause. A clausecortaining no literals is
called the empty clauseand is interpreted as false. k-Sat is the class of decision
problemsin which all clausesare of length k. k-SAT is NP-completefor any k 3
but is polynomial for k = 2 [84]. Other polynomial classesof SAT problems exist
including Horn-SAT (in which ead clausecortains no morethan onepositive literal),
renamableHorn-SAT and se\eral other generalizations.
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2.2.2 Complete pro cedures

There are di erent approathesto solve a SAT problem, sud ascompleteprocedures,
approximation algorithms, mixed techniques, etc. We are now going to focus in
completeprocedures,explaining the algorithms and somebasicfeatures.

Davis-Putham pro cedure

Despiteits simplicity and age,the Davis-Putnam procedureremainsthe core of one
of the best completeproceduresfor satis abilit y [61]. Davis, Logemannand Loveland
changedthe original procedureby adding a splitting rule which divides the problem
into two smaller subproblems[49]. In much of the literature, this later procedureis
rather inaccurately called \Davis-Putnam" or \DP" procedure.

Pro cedure DP()
(Sat) if empty then return satis able
(Empty) if  contains an empty clausethen return unsatis able
(Tautology) if  cortains a tautologous clausec then return DP( fcg)
(Unitpr opagation) if  cortains a unit clausel then
return DP( simplied by assigningl to True)
(Pureliter aldeletion) if  cortains a literal | but not the negation of | then
return DP( simplied by assigningl to True)
(Split) if DP(  simplied by assigningl to True) is satis able then
return satis able
else return DP( simplied by assigningthe negation of | to True)

Figure 2.6: The Davis-Putnam procedure.

After applying the splitting rule, the algorithm simpli es the set of clausesby
deleting every clausethat cortains the literal | assignedto True (often called unit
subsumption) and deleting the negation of | whene\er it occursin the remaining
clauseg(often called unit resolution).
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Branc hing heuristics

The DP algorithm is non-deterministic as we can choosethe literal upon which to
branch. A popular and cheap branching heuristic is MOM's heuristic. This picks the
literal that occurs most often in the minimal size clauses. Ties are usually broken
with a static random ordering.

The Jeroslav-Wang heuristic [129 estimatesthe cortribution ead literal is likely
to make in order to satisfy the clauseset. Eadh literal is scoredas follows: for eat
clausec the literal appearsin, 21 9 is addedto the literal's score,wherejg is the
number of literals in ¢. The split rule is then applied to the literal with the highest
score.

Hooker and Vinay, after investigating the Jeroslav-Wang scorefunction ([120])
claimed for a \simpli cation hypothesis”, that it is bestto branch into simpler sub-
problemswith fewer and shorter clausesafter unit propagation. The simpli cation
hypothesis suggestsa \t wo-sided" Jeroslav-Wang rule which performs better than
the original.

There more recertly proposedbranching heuristics 3, like the Variable State In-
dependent DeacyingSum (VSIDS) heuristicsfound in Cha solver [165. Someof its
featuresare:

Choosethe literal that hasthe highestscoreto branch.
Initial scoreof a literal is its literal court in the initial clausedatabase.
Scoreis incremeried by 1 when a new clausecortaining that literal is added.

Periodically, divide all scoresby a constart.

Intelligen t backtrac king and learning

The standard DP procedureperformschronologicalbadtracking, exploringonebranch
of the seart tree completely before badctracking and exploring the other. We can

3Seehttp:// researd.microsoft.com/users/lintaoz/SATSolving/satsolving.htm for a good SAT
Solving Mini Courseby Linato Zhang



CHAPTER 2. PURE APPROACHES 49

1. function StachasticlocalSarch( ; maxTries; maxSteps)
2. for k = 1to maxTries do

3. s I nitR andomAssignment();

4. for | = 1to maxStepsdo

5. if ssatises then

6. return s;

7. else

8. X  choose\ariable(s; );

9. s s with truth valueof x ipp ed;

10. return no solution.

Figure 2.7: Stochastic Local Seart. is the input formula

improve upon this by adapting someof the well-deweloped techniquesfrom the con-
straint satisfactioncomnunity like con ict-directed badkjumping and nogaod learning
(in fact, nogaod learning hasdeveloped much moree cien tly in the SAT framework).
Con ict-directed badkjumping badks up the seart tree to the causeof failure, skip-
ping over irrelevant variable assignmets. Nogood learningrecordsthe causeof failure
to prevert similar mistakes being made down other branches. Bayardo and Sdirag
have descrited how both of these mehanismscan be implemerted within the DP
procedure[15], and are now a standadr feature of all state-of-the-art SAT solvers.

Early mistak es

The problem with a complete procedure like DP is that an early mistake can be
very costly. Gomes,Selmanand Kautz have shown that a strategy of randomization
and rapid restarts can often be e ectiv ely usedat tackling suc early mistakes[99].
Meseguerand Walsh show that other modi cations of the depth- rst seart strat-
egy like limited discrepancyseart and interleaved depth- rst seart can also help
avoiding early mistakes[154.

2.2.3 Local Search-based Pro cedures

Our focusin this thesisis not on Local Searty methods for the SAT paradigm. Seeral
hybrid methods are, nontheless,introducedin the next chapter. Here, we are going
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to give a brief set of referencedo pure Local Seard solversand methods for the SAT
framework.

Stochastic Local Seard (SLS) can be interpreted as performing biased random
walk in a seard spacewhich, for SAT, is given by the set of all complete truth
assignmets. A generaloutline of a SLS algorithm for SAT is givenin Figure 2.7.

SLS algorithms dier mainly in the heuristic for choosing the variable to ip
in ead seard step. WalkSAT algorithms (citeSelman96)use a two-step variable
selectionprocess: rst, oneof the clausesvhich areviolated by the current assignmen
is randomly chosen;then, accordingto someheuristic, a variable occurring in this
clauseis ipp ed using a greedybias to increasethe total number of satis ed clauses.
Variants of this technique are WalkSAT with Tabu ([153]) and the Novelty versions
([153 121, 47]). WalkSAT is similar to GSAT ([60]) but the former introducesthe
notion of noise parameter.

A rather comprehensie review of Complete and Local Searth (WalkSAT-lik e)
review can be found in [127, and an empirical comparisonof LS methods in [123.

2.3 Evolutionary and Genetic Algorithms

An Evolutionary Algorithm (EA) indicates a subsetof Evolutionary Computation,
which specializesin solving combinatorial optimization problems. EAs are catego-
rized asa kind of Evolutionary Computation, being the latter a broaderterm which
includes metaheuristic optimization algorithms. Someof thesetechniqueshave been
mertioned in the previoussection,sud asant colory optimization (which is sometime
includedin the Local Seart paradigm), or otherssud asparticle swarm optimization
([37]).

EA is thus a term to de ne any population-basedtechniqueswhich implemerts
certain medanismssud as reproduction, mutation, reconbination and natural se-
lection, all of them inspired by biological ewlution. EAs canbe alsoviewed asa form
of Local Seart, where there are multiple complete assignmets instead of just one,
and wherericher methods of moving acrossthe seart spaceare provided. A broad
classi cation of EAs would be the following:
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Genetic Algorithms: the most popular kind of EA, it looks for a solution
within a population of strings of numberswhich ewlvesthrough reconbination
methods that include mutation and selectionoperators.

Evolutionary Programming: it consistson xing the structure of the
program and letting the parametersewlve during time.

Genetic Programming: here the solutions are in the form of computer
programs which tness correspnds to the ability of solving a computational
problem.

Evolution strategy: which maintains a represemation of vectors of real
numbers and typically includesself-adaptive mutation rates.

Learning classier system: insteadofa tness function they implemert a
rule utilit y decidedby a reinforcemen learning technique.

This categorizationis neither extensive nor exclusive, and its only pretensionis
to introducethe sub eld of the Evolutionary Algorithms. To learn more about EAs
and Evolutionary Computation conslut [69]. In the next subsectionswve are going to
focus on Genetic Algorithms (GAS).

2.3.1 Genetic Algorithms

Everybody seemsto agreeon the fact that Holland was the father of the GAs. His
early works (in 1962)on adaptive systemdlaid the foundation for latter dewvelopmerts.
Moreover, his book Adaptation in Natural and Arti cial Systems([119]) was the
rst to presen the conceptof adaptive digital systemsusing mutation, selectionand
crosseer as a problem-solving strategy. However, this researt was conceived by
Holland asa meansof studying adaptive behavior and not asa function optimization
method. To learn more about the history of GAs consult [96].
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function GenericGeneticAgorithm()

pop Initial Population();

E valuate(pop);

while not Termination ()
parents  selectParents(pop);
descendants Combing(parents);
M utate(descendants;
pop SelectPopulation(pop;descendants;

ONogabk~wDNE

Figure 2.8: A Generic Genetic Algorithm

The Algorithm Template

Figure 2.8 shows the genericGA template. The population popis initialized in line
2 and ewvaluated in line 3. Then, a certain number of iterations is repeated until a
termination criteria is readed (line 4). During theseiterations the individuals are
selected(line 5) to be conmbined (line 6) and their descendats are mutated (line 7).
Afterwards, a newpopulation is generatedirom the previousoneand the descendats,
although sometimes,the previous population is completely forgotten and only new
individuals are consideredfor the next iteration.
In the next sectionswe are goingto review ead one of thesesteps.

2.3.2 Representation

This is an issuethat is prior to the dewelopmert of the algorithm. Typically, GA
usea string of number as a represemation, and very often it is only a binary string.
Howewer, we should not forget that choosingthe right represemation of a problemis
key to the algorithm's performance. Thus, it is well worth to dewte sometime to
represemation.

The rst issuewhich arisesin someGAs is to link the real problemto the problem
represemation. This mimics biology where a genotyg encalesthe information that
yields a fenotype which is the natural transformation of that information.
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Sometimes.this distinction doesnot appear if the information and the represen-
tation are one and the samething, which happensoften. Howewer, as we will latter
see,it is important to explicitly make this distinction sincethe genotyg is usedfor
individuals interaction, but the fenotype is neededto calculate the real value of the
evaluation function. Every unit of information stored in the genoty is typically
namedgene

The secondissueis what kind of structures do we needto useto represem our
genotye and/or fenotype (Note that, many times, the fenotype is not actually im-
plemerted, and it might be only calculated when the evaluation function needsit).
In general,we can distinguish se\eral typesof represetation:

Binary Representation: this is the simplestrepresemation we can nd. It
consistson a binary sequenceij.e., a sequenceof 1's and 0's. While this tech-
niqueis very commonlyused,it is not always the bestsuited approad. Its main
drawbadk is basedon the genotype-to-fenoype mapping. For example, when
the 1's and O's represem boolean variables, the genolype-to-fenoype mapping
is direct: a 1 represems a true variable and a O represens a falseone. Instead,
if for example,we are represeting numberswith binary sequencesye can en-
courter problemsderived from the fact that the distancesbetweenthe numbers
and between their represemations do not match. Obsene that the distance
between3 and 4 is only 1, while if we are represeting the numbers as a 4-bits
sequencethe distancebetween0011and 0100is not 1 anymore. Here,asin the
next typesof represemation, we have to decidethe length of the string.

Integer Representation: to avoid problemslike the one previously stated,
we cansafelyrepresem the individuals assequencesf integers. This is probably
a better suited represemation for complexproblems. The only issueherewould
be to decidewhether thoseintegerscan be nite or in nite.

Real or Floating-P oint Representation:  which consistsof a string of real
values. This approad is typically better suited for genesthat comefrom a
cortinuous distribution.
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There are other more complex represetations sud as: strings of letters (which
is basically equivalent to that of a nite integer represemation) and permutation
represemations (see[69], p. 41{42).

2.3.3 Evaluation Function

Closelyrelated to the represemation, the issueof the evaluation function arises. This
function assaiatesa value to ewery individual in the population, and correspndsto
the quality of that individual. Thus, di erent represetations of the sameproblem
may have di erent ewvaluation functions, since this is typically calculated from the
valuesof the genesof ead individual and through the genot/pe-to-fenotype mapping.

The evaluation function is often referredto as tness function in the Evolutionary
Computation eld.

2.3.4 Initial Population

Oncethe represemation is xed, the rst issuein dewelopingthe algorithm is that of
the initial population. This istypically performedby randomly generatingindividuals
sothat the population can cover wider areasof the seart space.

Nonethelessthere are other more specializedmethods. A very commonapproad
is to generatethe individuals in a greedymanner, which meansthat every individual
is constructedin a way sud that at every time, the next geneis given the value that
optimizesthe evaluation function for that individual. Occasionally the solutionsmay
be somehav seededn areaswheresolutionsare likely to be found.

2.3.5 Parent Selection

Selectionis the method through which certain elemerts in the population are chosen
to be combined. This selectionmedanism tries, in general,to chooseparens that
arelikely to producea high-quality descendan Typically, two individuals are chosen
two reproduce and yield descendats. Di erent kinds of selectionmedanism are:
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Fitness Prop ortional Selection:  consistsof giving a certain probability
to be chosenfor ewery individual. This probability depends directly on the
absolute tness of the individual ([119). The main drawbad of this medanism
is that the bestcandidatesare very likely to take over the whole population very
quickly. This method is often called roulette-whel seletion.

Ranking Selection: this method is very similar to the previousone. The
di erence is that, in this case,the individuals are ranked accordingto their
tness, and then probabilities are given basedon the ranking rather than on
the tness itself ([11]).

Tournamen t Selection:  this is may be the simplest medanism, and also
the least time-consuming. It consistson choosing k individuals completely at
random, and then selectingthe two individuals with highest tness function.
Obviously, the complexity of this method dependson the value of k.

There are many other methods, mainly variations of the onesdescriked above.
Again, the readeris referredto [69) for more details.

Multiparen t Selection Isto worth mertioning that somealgorithms implemernt a
multiparent selectionscheme. This meansthat, independerily of the selectionmethod
they use,more than two parerts are selectedfor combination. We detail the kind of
conbination methods for this type of selectionin the next section.

2.3.6 Repro duction

This operator is in chargeof conmbining the parerts in sud a way that a high quality
individual (descendat) will be obtained. This medanismis alsoknown ascrossover
In someGAs, this operator is able to generatemore than one descendanh (usually
two), but we will assumefrom now on that only one descendatis going to be gen-
erated. Thus, di erent crosseer operators are:

One point crossover: this is the most popular method. It consistson choos-
ing a point randomly, and copying the genesof a parert, from the beginning
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until this point, to the descendaty and the genesof the other parert from that
point till the end.

As an example,imagine we have two parerts of the form:

h010011110i
h000110100i

1

2

and k = 5 is the crosseer point, the descendahwould either be
h01001/0100i

or
h00011/1110i

Note that extendingthis operator to generatetwo descendats is trivial.

Multiple point crossover: is basedon the previousoperator, and its only
di erence is that insteadof 1 point, seeral k points are chosenrandomly. Then,
to generatea descendanit would copy the genesof ead parert in turns after
ead crossw@er point.

Uniform crossover: isslightly dierent than the previousone. It treats eah
geneindependertly and decidesfrom which parert it is going to be inherited
(typically with the sameprobability).

These methods are the most common onesin the literature. Other more complex
onescan also be found. It is also very commonto implemert a type of uniform
cross@er whereinstead of proabilities, the decisioncriteria is basedon the tness of
the descendah

Multiparen t Com bination

As we mertioned in the previous subsectionit is also possible (although not very
common)to implement a multiparental combination. Instead of 2 parerts, k parerts
are selectedand conmbined. Thus, combination methods for this option tend to be
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di erent from those of the traditional scheme. Thesemethods can be categorizedas
follows:

Generalizinguniform crosseer ([166]).
Generalizingmultiple point crossweer ([64]).

Generalizingarithmetic combination operators ([221]).

To know more about the e ciency and suitability of this type of combination on
certain structures of the seart space(landscapes) consult [68].

2.3.7 Mutation

This operator is the sourceof great diversity. It is basedin the biological fact that
somegenescan mutate for di erent reasons,and thus, the descendah can acquire
genesthat are from neither of its parerts. The most commononesare:

Random bit modi cation: consistson changingthe value of somebits with
a given probability. The operator changesthe value of every bit in the sequence
with a certain probability. If the represemation is binary, the e ect is that of
ipping a bit, either from 0to 1 or from 1to O.

Swap mutation:  simply selectstwo genes(at random) in the sequenceand
swapstheir values. Imagine the individual:

hO[1]0[0]10100i
and the swapping genesl and 3, the mutated individual would be
hO[0]0[1]10100i

Insert mutation: choosestwo genesat random and movesthe secondone
next to the rst. Again, if we have the individual

hO[1]00[1]0100]
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and the inserting genesl and 4, the mutate individual would be
hO[1][1]000100i

Scramble mutation:  selectsaregionin the sequencand randomly scranbles
its values. For example,

h[0100]10100i
and the regionfrom 0 to 3, a possiblemutate individual would be

h[LO00]10100i

Note that all these operators can be applied to any kind of represemation, even
though the illustrations assumea binary represemation.

Many other complexand specializedmutation operators can be found in the lit-
erature, including the oneswhere the mutation is not random but biased by the
subsequenvalue of the tness function of the individual.

2.3.8 Selection of the New Generation

As we have previously introduced, this is the medanismthat replacesthe last pop-
ulation by a new one. In order to do so, somealgorithms completely replace the
previous population for the new set of descendats or o spring. Howewer, this is
usually not a very e ectiv e technique, and GAs normally implemert medanism to
generatethe new population from both, the previous one and the o spring. Among
thesemedanism we can distinguish:

Fitness based: selectionfocuseson keepingthe individuals with higher tness
for the next generation.

Generationsbased: selectiontakes into account the number of generations
passedsinceits creation, and replacesthen those individuals which have been
in the population for a larger amourt of generations.



CHAPTER 2. PURE APPROACHES 59

ReplaceWorst: sometechniquestend to replacethe worst x individuals in
eadh step. Many of thesetechniquesdo not presen a generationalmodel as
shovn in gure 2.8, but a di erent model explainedin section2.3.10.

A technique assaiated with this operator (independert of the metanismtype) is to
always maintain the highest quality individual in the population. This technique is
usually referredto as elitism.

2.3.9 Termination

The termination condition indicateswhenit is time for the algorithm to stop. At this
point, the algorithm will usually return the best individual accordingto its tness
function. We can distinguish two kinds of termination condition:

Objectiv e reached: whena GA is implemerted to read a certain goal (i.e.,
a solution of a certain quality), reading that goal should be the indication for
the algorithm to stop.

External conditions: Howewer, the previous caseis very rarely achieved,
due to the stochastic nature of thesealgorithms. Therefore,a di erent criteria
must be used. Di erent conditions include:

{ Fixed number of generationsreaded.

{ Maximum time allowed reated.

{ Fitnessimprovemert doesnot occur for a certain period of time/generations.

{ Manual inspection.

{ A conbination of the above.

2.3.10 Evolutionary Mo dels

This last issuedealswith the structure of the algorithm rather than with the nature
of its operators. There two well-known kinds of ewlutionary models:
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Generational Mo del: this is the model corresppndingto gure 2.8. In eat
generationa setof parerts are selectedo generatea new population of the same
sizeasthe previousone. This new population is often called o spring. The old
population will be replacedby the new one (o spring) or by a conbination of
both (as explainedin section2.3.8).

Steady State Mo del: in this model the population is not replacedat once.
Instead, only a certain number of old individuals is changed. The percertage
= (where s the sizeof the population) of replacedsolutionsis called the
geneational gap This technique was introducedin [233 and has beenwidely
studied and applied sincethen ([228, 193).

For amoretechnical point of view on Evolutionary Computation and Evolution strate-
giesconsult [23].



Chapter 3
Hybrid Approac hes

Our nal hybrid incorporates featuresfrom Constraint Programming, Local Seart
and Genetic Algorithms. Sincehybrids incorporating thesethree techniquesare al-
most non-existen, we are goingto review somestate-of-the-art approahesthat com-
bine these techniquestwo by two. Thus, in this chapter we are going to review
di erent hybrids divided into three sections:

Constraint Programming and Local Seart hybrids, including SAT procedures.
Memetic Algorithms which introduce Local Seart in Genetic Algorithms.

Genetic Algorithms and Constraint Programming hybrids.

3.1 CP and LS

Many conbinatorial problemscanberepreseted and solvedwithin the generalframe-
work provided by Constraint Satisfaction Problems (CSP), which allows a very nat-
ural modeling of many practical applications, suc as planning, sdeduling, time
tabling, vehiclerouting, etc.

Seart algorithms for solving CSPsare usually categorizedinto local seart and
systematic seard algorithms. Since both approades have their own advantages,
combining them appearsvery promising. As aresult, thereis a growing interestin the
dewelopmen of new hybrid algorithms that conbine the strength of both techniques.

61
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3.1.1 A general view

Let us review the de nition of a Constraint Satisfaction Problen1 a CSP P =
(X;D;C) is de ned by a set of variables X = fxy;::;X,0, a set of n nite value
domainsD = fDy;::;;D,g, and a set of ¢ constrairts or relations C = fRy;::;; R.Q.
A constrairnt Ry is a pair (vars(Ry);rel(Ry)) de ned asfollows:

vars(Ry) is an orderedsubsetof the variables,calledthe constraint scheme The
size of vars(Ry) is known as the arity of the constrairt. A binary constraint
hasarity equalto 2; a non-binary constraint hasarity greaterthan 2. Thus, a
binary CSP is a CSP whereall constrains have arity equalor lessthan 2.

rel(Ry) is a set of tuples over vars(Ry), called the constrairt relation, that
speci es the allowed combinations of valuesfor the variablesin vars(Ry). A
tuple over an orderedsetof variablesX = fXy;:::;Xxgis an orderedlist of values

Solving a CSP means nding an assignmen for ead variable that doesnot violate
any constrairt.

Algorithms for solving CSPsfall into one of two families: systematic algorithms
and local seart algorithms.

Systematic algorithms typically start from an empty variable assignmen that is
extendedin a systematicway by adding individual tentativ e assignmets until either
a solution is found or the problemis detectedinconsistert (there is no solution for the
problem). Crucial to the e ciency of thesemethodsis that ead decision(branch) is
immediately propagatedby local consistencytechniqueswhich prune the seart space
(mainly, though not only) by deleting valuesfrom variables' domains. Backtracking
occurs when a dead-endis readed, typically becausethe propagation medanism
made a variable's domain empty (produceda domain-wipout, asit is called). The
biggestproblem of this approad is that it requiresan important computational e ort
and thereforeit encouners somedi culties with large scaleproblems;it also might
su er from early mistakesin the seard which cancausea wholesubtreeto be explored
with no success.Thesemethods are usually improved by adding speci ¢ techniques
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sud aslook-badk enhancemets (backjumping, learning) or look-aheadmedanisms
(ltering techniques, variable or value ordering heuristics)! Thus, we can say that
these algorithms are complete, systematic, and they seard through the space of
partial assignmets.

Local seart algorithms mainly rely on the useof heuristicsto e cien tly explore
interesting areasof the seard space. They typically start from a complete variable
assignmen and perform an incomplete exploration of the seart spaceby repairing
unfeasiblecompleteassignmets. Local seart algorithms are capableof following a
local gradiert in the seart space. Even though thesemethods can better deal with
large-scaleproblems of certain kinds, their main drawbadks are that they are not
guararteed to nd a solution ewven if there is one, cannot collect all solutions, and
cannot detect inconsistency Thus, we can sa that thesealgorithms are incomplete,
non-systematic(they usually follow a local gradiert which doesnot ensureexhaustive
exploration), and they seart through the spaceof completeassignmets, moving from
oneto another accordingto certain prede ned rules of \neighbourhood".

In terms of the eld terminology, local seart stands for the simple strategy of
performing local changesto a starting solution in order to decreasea given cost
function. The special heuristics that guide this process,mainly to avoid or escag
local minima are called "meta-heuristics”. Howewer, for simplicity, we will refer to
them aslocal seard algorithms through all the review. If the readeris interestedin
meta-heuristicswe recommend[159 for an extensiwe review.

A promising idea for producing more e cien t and robust algorithms consistsin
combining theseparadigmsin orderto take advantage of their respective assets.Many
existing proposalsprovide di erent forms of hybridization betweenboth methods, but
they often deal with very speci ¢ classesf problemsand also mix satisfaction and
optimization. We are goingto categorizethosehybrid approatesinto three di erent
branches:

1. The loosestform of integration is to use both local and systematic seard,

Yindustrial applications of constraint modeling, in particular, have proved the importance of
specialized ltering techniques for prede ned glokal constraints, e.g. that some variables have all
dierent values, or cardinality constraints suc as \each machine can have at most k shifts" that
arise frequertly in practice.
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but separately e.g. perform local sear® after or before systematic seart,
interleaved or in parallel. Portfolio or time-slicing techniquesmay for example
allocate time and processingpower to ead of a variety of solvers, which may
be local or systematic, accordingto various strategies. While there are often
computational advantagesto be gainedfrom this approad, it doesnot represen
areal degreeof integration, and is thereforeleft outsidethe scope of this chapter.

2. Perform systematic sear® improved by local seard. We distinguish three di-
rections within this category:

Over completeassignmets. Typically for optimization or repair-like tech-
niques.

Over partial assignmets. In construct and repair approades.

Over global constrairts. Local seart is basically usedto prune support
valuesin global constrains.

3. Perform local sear® improved by complete searti. We can distinguish three
di erent brancheswithin this category:

Usecompleteseart to explorethe neighborhood.
Use consistencytechniquesto prune the seart space.

Record nogaods (learnt constraints that represem an explanation of do-
main wipe-outsfound during sear@) in order to achieve completeness.

It is alsoworth mertioning a recerily proposedgeneralframework to encloseall these
methods: PLM, which stands for Propagation, Learning and Move. The authors
claim that any algorithm can be decompmsedin thesethree componerts. Thus, any
method could be implemerted by specifying ead of thesethree elemeitts.

The chapter is organizedas follows. Section2 and 3 review hybrid approades
from the secondand third categoriesespectively. Section4 describesthe PLM frame-
work. Section5 introduceshybrid methods for the SAT problem which we alsofound
interesting to address. A necessarydiscussionabout hybridization (what has been
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doneand what we believe should be pursuedin the future) is presened in section6.
Finally, section7 is dedicatedto conclusionsand future work.

3.1.2 Local Search enhancements for Complete Search

Complete seart and constraint programming algorithms have beenthe most used
methods for solving constrain satisfaction problems. After the proved superiority
of local seart methods in many problem instances,trying to incorporate features
from local seart into complete seard was a goal that seemedworth pursuing. As
introducedin the previoussectionwe will distinguish amongthree di erent branches
within this hybridization category

Local search over complete assignments

This type of method is particularly suited for optimization purposes. It is very
straightforward to perform local seard from an initial solution obtained by system-
atic seart to improveits tness. Usually, in the constrairt programmingframework,
this issuewould be tackled using branch and bound techniques. Howewer, this can
resultin a uselesexploration of the seard spacewherevisiting di erent brancheswill
not lead to a substartial changein the cost function. Thus, it seemsvery promising
to introducelocal seard&r medanismsto more e cien tly explorethe neighborhood of
the constructed solution.

Local seart can also be applied to a set of global seard generatedsolutions.
Global seard will only be usedasa way to produceseeral initial solutionson which
a local searty improvemert phaseis performed. In this cortext, it is important to
generatestarting solutionsthat are diverseenoughfor the later exploration. Limited
DiscrepancySeart ([112]) is an interesting way of generatinga diversi ed initial set
of solutions.

We will not further explore this branch of hybrid algorithms sinceit does not
represem a clear e ort for integration. Local seard is typically performedover con-
structed solutions, thus, both methods canevensharethe sameinformation structure.
A moreinterestingideais to perform local seart at internal nodesof the seart tree,
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i.e. local seart over partial assignmets, an ideawe tackle in the next subsection.

Local search over partial assignments

This is a very interesting kind of hybridization becausethe degreeof integration
achieved is more sophisticated. Thesemethods typically perform an iterativ e exten-
sion of a consiste partial assignmen until all problem variables are instantiated.
If the tentative extensionreadiesa dead-end,it is necessaryto badtrack and pro-
duce alternative instantiations. At this point we can nd methods which perform a
reparative stage,while othersintroducethe local seart like techniquesto remove in-
consisten variablesinsteadof badtracking. Also, somemethodsimplemert a CP-like
seart (instead of a greedyconstruction) to extend the consister partial assignmenh
and to prune the seard spaceaswell.

A construction and repair approach Merging constructive and reparative fea-
turesinto hybrid seart hasbeeninvestigatedin di erent ways. Distinguishingamong
thesevarious forms of hybrid seard is a matter of stating the degreeof integration
betweenthe two approates. We can nd methods where the integration is loose,
di erent constructive and reparative modules exdhangeinformation while operating
independerly ([168,[236]). In other approateswe encourier a higher degreeof in-
tegration, wherethe reparative processemploys constructive methods to explorethe
neighborhood ([197],[194).

A Construction and Repair approat with a higher degreeof integration is pre-
serted in [34]. They introducea generalhybrid method namedCR, and then proceed
to specify it in order to provide a fully operational searty method called CNR.

CR is a genericseard framework which integratesboth constructive and repar-
ative featuresas operators. Seart is then performedin two alternating stages. A
construction stagewherea consisten partial assignmen is iterativ ely extendeduntil
inconsistencyor complete consistencyis proved. And a repair stagewhich modi es
the current inconsistert assignmen until it becomesconsisten.

CNR standsfor Construction and Neighborhood Repair seard, and it represers
an instantiation of the CR framework described above. In the constructive stage,
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an implemertation of the extend function is provided. It includesboth variable and
valueordering heuristics,aswell asa consistency function which performsamodi ed
version of arc-consistency In the reparative stagea neighborhood of an assignmen
is speci ed. At ead time, a menber of the neighborhood will be selectedgreedily
according to a cost function f. This cost function evaluates partial assignmets
taking into accoun not only the number of variableswith empty domainsbut also
how constrained the assignmenhis. They alsoprovide di erent repair operatorswhich
give rise to di erent neighborhoods.

The experimertal results shovn in [34] correspnd to the open-shopsdieduling
problem. The algorithm is tested on three sets of bendimarks from the literature:
Taillard instances([217]), Brucker instances([29]) and Gueret & Prins instances
([105]). The algorithm's performanceis comparedagainst v e di erent methods:
the geneticalgorithm of Prins ([182]), the Tabu Decision-Repairalgorithm of Jussien
and Lhomme ([133]), two Tabu seardr methods of Alcaide ([5]) and Liaw ([146]), and
the Branch-and-Bound algorithm of Gueret and Prins ([104]). Authors assurethat
their algorithm outperforms all these methods in every instance exceptfor a single
9X9 one;and it alsoyields strictly better solution quality for every 10X10instance.

Impro ving The Scalabilit y of Backtrac king Other methods aim at improving
the scalability of badtracking through the integration of local seart techniques. An
early exampleis basedon dynamic badtracking [92], an \in telligent” badktracking
technique able to badktrack to a variable without removing the remaining assign-
merts, while dynamically reorganizingthe seart tree. Partial Order Dynamic Badk-
tracking ([93]), improvesthe scalability of Dynamic Badktracking without sacri cing
completenessThe main feature that introduceswith respect of DB is the allowance
of greater exibilit y in the choice of the badtracking variable.

Another hybrid approad is to use systematic badtracking techniquesin a non-
systematic ways. In [143, Iterative Sampling is introduced. It simply consistsof
restarting a constructive sear® ewery time inconsistencyis proved. Howewer, this
approad requiresa lower degreeof integration. It is nonethelessvorth merioning
that variations on this approad have beenshavn to outperform both local seart
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and badktracking methods on certain problems([46],[99).

A new approad called Incomplete Dynamic Backtracking (IDB) is descriked in
[177. IDB is inspired by Dynamic Backtracking and Partial Order Dynamic Badk-
tracking, and is ableto jump badk to an earlier variable without removing the remain-
ing assignmets. It allows total exibilit y in the choice of the variable to badtrack
with, and it alsorecordsno information about the visited seard space,thus sacri c-
ing completenessThe authors claimsthat this form of badtracking is indeeda local
sear® in a spaceof consisten partial assignmets.

IDB's schemais quite simple: it proceedsby randomly selectingunassignedvari-
ables,and assigningvaluesto them following a certain value ordering heuristic; when
a dead-endis reached it badtracks by randomly removing seeral assignmets. Ter-
mination is only guararteed when a solution is found.

More speci cally, IDB implemerts forward cheding asa form of constrairt prop-
agation. It is thusimportant to adapt this consistencytechnique to a random unas-
signmen of variables,sinceit hasto be capableof leaving the state of thosevariables
asif forward chedking had beenonly applied to the currertly assignedvariables. It
alsoimplemerts a minimum-domain (MD) heuristic for variablesselection,while val-
uesare only selectedif they do not generateany con icts and if propagating them
causesno domain wipeout. Among theseallowed values,the one that was assigned
the last, is selectedwherepossible. Howeer, IDB attempts to usea randomdi erent
value for onevariable every time a dead-endis readed.

Another issueis how to unassignvariables when inconsistencyhas been proven.
IDB provides a heuristic that consistsof selectingvariableswith the largest current
domain, breaking ties randomly.

Finally, in order to adapt this schemato optimization problems,ideasfrom the
Constraint Programming framework are borrowed. It simply restarts the seart after
ead solution until the rst dead-endoccurs, reusingthen asmany assignmets from
the previoussolution as possible.

The approad is testedthrough seeral known problems: the n-queensthe Golonb
ruler and the maximum cliques problem. The n-queensproblem is used mainly to
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introducethe algorithm; on the Golomb ruler it improved the scalingof constrained-
basedapproates and achieved better solutions than genetic algorithms. On maxi-
mum cliques, it outperformed many di erent algorithms and was only inferior to a
sophisticatedlocal searét method ([14]).

Scheduling and Timetabling In many caseswe nd very speci ¢ approadesto
deal with very specic problems. Someof them are easily extendedto a general
cases,while others introduce various problem-tailored rules that are very hard to
generalize. Thus, it is interesting to study those methods within the cortext of the
type of problemsthey focus on. In this particular subsection,many methods have
beendewted to solving Stheduling and Timetabling problems.

Sdeduling and Timetabling problemsare often tackled with constrairnt program-
ming techniques,and asin other application areas,hybridization appearedpromising.
Someof the approates descrited next deal speci cally with this application area,
and are not always easyto extend to a more generaldomain.

In [214 authors employ a proposeand reviserule-basedapproad to the course
timetabling problem. Every time the construction reachesa dead-enda local change
rule attempts to nd a possibleassignmen for the unsdeduledactivity. They only
perform a single step before restarting the construction, and their aim is only to
accommalate the pending activity.

Another approad is to use a heuristic constructive medanismin order to nd
an initial solution, and then apply a local seart technique to improve it. In [235,
authors implemert an algorithm to solwe a timetabling problem by meansof com-
bining an arc-consistencybasedconstruction and a min-con ict hill climbing stage.
The construction phaseacceptsconstrairt violations, and when a complete solution
is produced, the hill-climbing phasereducesthe overall penalty.

A very interesting algorithm is descrited in [197. It is similar to the other tech-
nigues introduced above, i.e., it constructs a tentativ e solution until a dead-endis
readied, and then it performs a local seart phase over the partial instantiation
reached. Howewer, it hastwo new features:

1. It performsa full run of local seard, insteadof a xed number of local changes.
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It alsorelieson well-studied local seard algorithms, instead of implemerting a
set of problem speci ¢ moves.

2. It introducesa look-aheadfactor that adds information to the cost function,
in order to provide a better guidance towards more promising areasin the
seard space,not only taking into accoun feasibility but also possibility of the
partial solution to be completed. This look-aheadfactor is basedin the min-
con icts heuristic, which courts the number of uninstantiated valuesfor every
uninstantiated variable.

This approad featuresthe possibility to be applied to both seart and optimization
problems. This is achieved due to the exibilit y of the scorefunction which allows
di erent combinations of weights to take into accour feasibility, optimality (if neces-
sary) and look-aheadin many proportions. Depending on the weighs given to eah
aspect the seart would be directed towards di erent regions: for example, a high
weight for feasibility would direct the seart towards feasibleregions(which authors
arguenot to be e cient dueto the extremerisk to get trapped on local minima).

This technique is applied to solwe the coursetimetabling problem. The author
implemerted three di erent versions:with random hill climbing, steepest hill climb-
ing and min-con ict hill climbing ([160). The results showv that conmbined methods
perform better than pure local seart methods, and the best of them is the onethat
introducesmin-con ict hill climbing. The algorithm is also applied to tournamert
sdheduling yielding results that con rm the sameconclusion.

Unfortunately, a considerableamourt of researt is dewoted to algorithms specif-
ically tailored to the problem at hand. Even though it canresult in a very e ective
algorithm that outperforms previousworks, it is hard to extract conclusionsfrom it.

A very speci c approad for atimetabling problemis presered in [48]. This paper
describes an algorithm for an examination timetabling problem usedat the "Ecole
desMines de Nantes".It is a constrairnt-based approad that introduceslocal repair
techniques. An extra feature that this problem preserts is that the timetable hasto
be generatedin lessthan 1 minute.



CHAPTER 3. HYBRID APPROACHES 71

The problem it tackles consistsof stheduling examinationscomposedof four sub-
jects. For ewery day, for ewvery subject, every candidate hasto be assignedto one
examinerduring one period.

The algorithm solvesthe problem in two consecutie steps:

1. A rst step called preassignmen that reducesthe domains of the variables
making them consistenn with a de ned set of required constrairts.

2. A secondstep called nal assignmen which assignsa period to every candidate
from the preassigneddomains.

In the preassignmen step the domainsof the variablesare reducedfollowing this
criteria:

Every examinershould have the samenumber of candidates.
Ead candidatetakesan examin the languagehe chooses.
No candidate should meet an examinerwho comesfrom the samesdool.

All candidatesare then preassignedead to four examiners(one for ead sub-
ject).

In the nal step the algorithm seardies for a solution. The method attempts
to assignevery variable following a smallestdomain heuristic. When a dead-endis
readed, seeral speci ¢ local repair techniquesare applied: free assignedcandidates
that would be consistenly assignedin the current state to the current examiner,
extend the previoustechnique to other examiners;swap already assignedexaminers
and ched the consistencyof the resulting instantiation; and nally , swap examiners
without cheding.

The program was validated on ft y hand-madeinstancesplus thirteen real ones.
Sincethe problemis very speci ¢ they do not provide any comparison. Howewer, they
are able to solwe instancesin lessthan a second(for the real ones),and eight seconds
at most for the hand-madeones.
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Over Global Constrain ts

In the last years,the constrain programming community hasshown a great interest
in global constrairts. CP models have becomemore and more focusedon a few
number of global constrains. For instance,the Travelling SalesmanProblem (TSP)
hasbeencertred on onesingle TSP constraint ([19]). Moreover, Knapsadk constrains
([219,[73]), or ow constrairts ([28],[21]) have lately beendeweloped.

Constraint propagation on theseglobal constrairts is usually improved by a spe-
cialized Itering algorithm. These algorithms are usually basedon Operation Re-
seart polynomial algorithms. Well known global constrains sud as AlIDi er ent
and Cardinality Constraints have beenthoroughly studied aswell ([188,[227],[18%).

Consequetly, somee ort has lately been certered on dewloping local seart
techniquesas ltering algorithms for global constraints. Thus, global constrairts for
local seart rise asa compromisebetweenthe generality of low-level CSP-basedocal
seart and the e ciency of problem-tailoredlocal seart encalings.

A very straightforward approad for the Dynamic Job-Shop Sdeduling problem
is introduced in [167. A global seart cortrol selectsamong a set of global con-
straints that implemert their selectionof heuristic, their improvemert heuristic and
their update functions; variablesemploy a commoninterfacethat links all the global
constrairts and permits updating their states.

Resultsfor the dynamic job-shop scheduling are provided aswell. Basedon these
experimertal results, authors intend to boost performanceby implemerting various
extra features: randomization to esca local minima and plateaus; random walks
(random moves in the seard spacewhich disregard the cost function value) that
can be included by allowing a secondimprovemert heuristic for ead constrairt that
performs the mertioned variation of a random variable; a taboo list is usedfor the
global seard cortrol's constraint selection. They also provide di erent heuristics
(using more knowledgeor beingmore o ensive) and shav a comparisonamongthem.

Another interesting approad is descrited in [20]. Authors implemert a Branch
and Move technique which consistsof usingthe support of the main global constrairt
of the problem as a guide for the branching strategy.

The approad divides the problem into seweral global constrairts. It selectsthe
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main global constraint of the problem and an elemen of its support (a variable-value
pair which is consistert with the current domains). This elemen has assciated a
function that signi es the distanceto the current support with respect to all other
constrairts. This distanceis a measureof the quality of the pair, i.e. how far is the pair
from being consisten to ead constrairt; if the function is null it meansthe elemen
is a solution, otherwisethe algorithm selectsa constrairnt with maximum valuefor the
mertioned function, and then the algorithm brancheson a constraint whosesupport
set does not include the elemen. The seart proceedsby successigly considering
sub problems (including the branching constrairt and including the complememary
decision).

Local seard is introduced before ead elemeit's choice. A desceh procedureis
applied to a neighborhood structure for the main constrairt.

Authors also provide an empirical comparisonfor the TV-break problem. The
algorithm is comparedagainstother CP, LS and Mixed Integer Programming (MIP)
methods. It is claimed that the approadr nds good solutions very quickly, and it
is always better than the other approadesexceptfor a few instanceswherethe CP
approad is equalor better.

3.1.3 Intro ducing Complete Search mechanisms in Local Search

Alternativ ely to the approades discussedin the previous section, where complete
sear® is enhancedthrough local seart, onemight try insteadto introducecomplete
seart characteristicsinto local sear®. This might be motivated by e ciency reasons
and alsoasa way to addressthe lack of completenes®f local seart. In this casewe
di erentiate three di erent brandhes:

CP for neighborho od exploration

In the last years,local seart technigueshave beenmore and more directed towards
the use of larger and more complicated neighborhoods. Howewer, the standard way
of searding the best neighbor is to iterate over the neighborhood, testing its tness
and/or its feasibility. Moreover, real world problems usually require se\eral side
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constrairts, which yield a smallerfeasiblespace.Thus, getting stuck on local minima
is more likely to happen, and exploring those neighborhoods by simple enumeration
becomesne ectiv e.

A very referencedwork ([204]) introducesa new searty method named Large
Neighborhood Seart (LNS). LNS is a hybrid approad for solving vehicle rout-
ing problems. It exploresa large neighborhood which consistsof removing and re-
inserting visits usinga constrairt basedtree seard. Also, it usesLimited Discrepancy
Seart (LDS [117) to re-insertvisits. It is basically a technique that movesthrough
the seart spacein a local seard fashion, but that usesconstrairt propagation to
evaluate the costand legality of the move.

The algorithm is basicallya processof cortin ual relaxation and re-optimization. It
achievesthis through a technique of relaxing and re-inserting visits. The re-insertion
processmakesuseof the full power of constraint propagationand heuristics. A branch
and bound technique is usedto examinethe whole seart tree for the re-insertion of
minimum cost. Variable ordering heuristics reducethe size of the seart tree, while
value ordering heuristics guide the seart towards a solution. Finally, in order to
explorethe seart tree, the algorithm includesLDS which directs the seart towards
an increasingnumber of discrepancies (i.e. number of branches taken against the
value ordering heuristic).

The algorithm is then appliedto solvethe capacitatedvehiclerouting problemand
the sameproblem with time windows. LNS is comparedagainst the best methods
implemerted in the eld of OperationsResearh, andit is extremelycompetitiv e: both
in its averageperformanceand in terms of its ability to produce new best solutions.

CP for search space pruning

A way of pruning or reducing the seart spaceis to add symmetry constrains to a
symmetric problem. Howewer, this haslately beenproved as an ine cien t technique
for local seart ([179).

Many local seart approathesimplemert a technique to reducethe seard space,
mainly for optimization problems: limit the neighborhood to only feasibleassignmets
([107)). Others([6]) featurea strategy which consistsof allowing unfeasiblenavigation
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but only for a given number of steps.

Howewer, in [17]] we nd an interesting approad that combines CP models of
the neighborhood and powerful propagation techniques. As the authors argue, the
paper proposesa novel way of looking at local seart algorithms for combinatorial
optimization problems. The approad introducesa neighborhood exploration used
instead of performing branch and bound seara.

This adaptation of local seard to the constraint programming framework relies
on a particular neighborhood structure. Local seard will iterate a branch and bound
like seart on a dierent seart space. The exploration of the branch and bound
strategy is translated to an examination of the neighborhood of a solution. Moreover,
modeling constrairts and lower bounds will help prune the seart spaceover the
whole neighborhood.

The approad is calledbranch and bound becausat brancheson a certain variable
andit alsoboundsthe costof partially constructedneighborhoods. Recordingthe cost
of the best neighbor found so far and computing lower bounds for partial neighbors
is thereforea way to reducethe unexploredneighborhood.

This techniqueis very interestingbecausat impliesthe descriptionof two di erent
models: a CP model of the problem and a neighborhood model of a solution. There
existsa one-to-onemapping betweenthe set of solutions of the CP model and the set
of neighbors which comnunicate through interface constraints. Local seard is then
formulated as a sequenceof CP tree seartieson auxiliary problems.

While the algorithm is seardiing for a neighbor the original model is also active,
which can result in a propagation that can also reduce the seart space. Thus,
constrairnts are used not only for testing feasibility but also for removing sets of
infeasible neighbors during seard. Ultimately, the neighborhood exploration will
tend to nd the neighbor that optimizesa given cost function.

In orderto evaluate the approad, it is tested on the Traveling SalesmanProblem
with Time Windows (TSPTW), with instancesfrom the literature and the model
descrited in ([172)). The resulting obsenations are vague,though the authors claim
that the pruning yields savings on the number of neighbors.

This type of approat has a clear advantage: there is a clear separationbetween
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problem modeling and problem solving which facilitates the addition of side con-
straints, very commonin real-life problems.

Nogo od recording to achieve completeness

There are not many approatesthat attempt to implemert a completelocal seart
algorithm. Furthermore, apart from tabu seard, most of the local seard approathes
are memoryless. However, we will seein the SAT sectionthat this goal has been
pursuedin that eld.

Nonetheless,we can nd a complete local seart approad in the local seard
literature ([91]). This method introducesa new neighborhood seart heuristic which,
making e ectiv e useof memorystructure, achievescompletenessThe approad called
completelocal seard with memory (CLM) keepstrack of the visited solutionsin order
to prevert the sear® from exploring them againat later stages.Memory standsfor a
special spacefor storing solutions generatedby the heuristics;its sizeis the number
of solutionsthat it can store.

The algorithm is basedon maintaining three di erent lists of solutions:

A LIVE list which contains available solutions.
A DEAD list which storessolutionsthat were LIVE at somestage.

and A NEWGEN list for new solutions that are generatedby the heuristic
during the current state.

The method starts with initial solution which is stored in LIVE. Then, iterates by
choosing and exploring a given number of solutionsfrom LIVE, transferring them to
DEAD; at the sametime good quality neighbors are generated. Theseneighbors are
chededfor menmbershipin any of the three lists, if non of the lists corntains them they
are storedin NEWGEN. After all solutions have beenexplored,they are transferred
from NEWGEN to LIVE.

Di erent stoppingrulesare studiedin the paper. Wheneer oneof them is readhed
a genericlocal seart is applied to ewery solution in LIVE and the optimal solutions
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are addedto DEAD. Finally, the heuristic returns the best solution found in DEAD.
The choiceof the stoppingrule will substartially perturbate algorithm's performance.

The experimental setting is designedo comparethe algorithm againsttabu seard
on the traveling salesmanproblem (TSP) and the subsetsum problem (SSP). After
some parameter tuning e ort, the algorithm yielded better quality solutions than
tabu seart and took lesstime for the TSP; howeer, for the SSE tabu seard was
slightly slower but achieved marginally better results on the average.

Another very promising approad is that of Weak-commitmen seard ([233).
Even though it might not t in this category it represeis an e ort in dewloping
complete local seart algorithms. Weak-commitmen seard is able to revise bad
decisionswithout exhaustive seart, while maintaining completenessand featuring
the possibility of introducing various heuristics to operate oncea consisten partial
solution is constructed.

It is a very special technique wheretwo parallel setsof variablesare maintained:
vars-left and partial- solution. Vars-left is initialized to a tentativ e solution while
partial-solution is assignedto an empty set. The algorithm will proceedby moving
variables from one set to the other, while recording abandonedpartial solutions as
nogaods. The seard iterates the following steps:

1. Ched if all variablesin vars-left are consisten with the nogoods. If so, the
current assignmen is a solution.

2. Choosea variable and value pair in vars-leftthat violates someconstrairts and
createa setwith the valuesthat are consistem with partial-solution.

3. If the setis empty and partial-solution is alsoempty, it meansthat there exists
no solution; if partial-solution is not empty, it is addedasa nogood and all its
elemerts transferredto vars-left

4. If the setof consisten valuesis not empty, the variable and value pair is removed
from vars-left and a value that minimizes the number of constrairt violations
with vars-leftis assignedto the variable and both addedto partial-solution.
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The author providesa comparisonof the algorithm againstthe min-con ict bad-
tracking and the breakout algorithm ([162]), on problemssud asthe n-queens,the
graph-coloringand the 3-SAT problem. An extensiwe discussionof the performance
of the methods on every domain is provided aswell. As a summary; it is enoughto
say that weak-commitmen is 3to 10times moree cien t than both other approadtes.

3.1.4 The PLM Framew ork

In this sectionwe descrile the PLM framework which was introducedin [134 and
[135. As we have mertioned before, the authors claim that any algorithm (either
systematicor local) can be decompsedinto three componerts: a Propagation com-
ponert, a Learning componert and a Moving componert. They also shaov that this
genericframework is a usefulbasisfor new seart algorithms that combine constrairt
programming and local sear®; yielding a family of algorithms which they call the
decision-repair family.

The Three Comp onents

We are goingto briey summarizethe three di erent seart componerts:

The Propagation componert is usedto propagateinformation whena decision
is made during seartr. They divide this componert into two operators: a
Itering operator which removes parts of the seart spacethat do not cortain
any feasiblesolutions, and a checking operator which cheds if a solution can
exist.

The Learning componert is usedasa medanismto avoid the exploration of
states that have beenproved not to contain a solution. This componert also
has two operators: recording and forgeting

The Moving componert, whoseaim is to explore the seard space. There
are two moving operators aswell: a repair operator to be usedwhen a dead-
endis readhed and a extendoperator which incorporatesnew information when



CHAPTER 3. HYBRID APPROACHES 79

not enoughinformation about the existenceof a solution, or lack thereof, is
provided.

They also provide a taxonomy of seart algorithms introducedto characterize any
given technique using di erent valuesfor the three componerts.

The Propagation component Its ltering operator cantake di erent valuessud
as: a simple consistencyched, forward-cheding, arc-consistencybound-consistency
etc.

Its cheding operator can be non-existernt or pragmatic (asin [131]).

The Learning Comp onent This componert is only characterizedby the lifetime
of the recordedinformation: not used, single use, time-bounded use, size-lbunded
use,etc.

The Moving Comp onent In this casetwo di erent typesof movemeris can be
achieved: a badtrack-like type of move, and a jump-like move (which is the caseof
local seard algorithms that jump from a given state to a neighboring one).

With this taxonomy authors provide a characterizationof several known algorithms,
sudr asBT, MAC, MAC-CBJ, GSAT, etc.

The Decision-Repair Family

In [139, the authors also presern a new family of algorithms by specifying the three
PLM componerts. It is basedon the idea of conmbining the propagation-basechature
of mac-dbt ([132)) and the freedomgiven by a local seart algorithm sud as tabu
sarch ([99]).

In terms of the PLM framework, this family would be characterizedby: starting
with an empty set of decisions;using a standard Itering algorithm for reducingthe
variablesdomains;recording explanationsfor the encourered dead-endsand storing
them in a tabu list; forgetting the oldest explanation when the tabu list is full;
classicallyextending the information by adding new decisions(variable assignmen
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domain splitting, etc.); and repairing by heuristically selectinga decisionto undo
from the last computed explanations.

A decision-repairalgorithm (DS) is tested on the open-shopsdeduling problem.
Hard instancesare generatedusing results preserted in [105, and the algorithm is
comparedagainst an intelligent badctracker ([104]) and a genetic algorithm ([182)).
DS is better than both approahesup to size9X9, while for 10X10instancesit is still
better than the badtracker but it is matched by the geneticalgorithm.

3.1.5 The Satis abilit y Problem (SAT)

The dewelopmert of hybrid approatesfor SAT is clearly of interest for the topic
of this thesis. The time-line for hybrid SAT methods is similar to that for their
analoguesn constrairt satisfaction. After the appearanceof local seard algorithms
that outperformed complete seartr methods for certain instances,the needfor hy-
bridization raised as a great opportunity. The main direction initially followed was
randomization techniquesfor complete seart solvers. Afterwards, a new direction
focusedon deweloping a more sophisticatedintegration. We can distinguish two dif-
ferert branches:

Adding new learnt clausesin order to achieve completenessand/or boost per-
formance

Improving stochastic local seart on structured problemsby e cien tly handling
variable dependencies.

We brie y review someof thesemethods in the next subsections.

Randomizing complete search solvers

The heavy-tailed cost distribution phenomenonis the causeof unpredictability in
running times for complete seart algorithms ([98]). Randomization is meart to
eliminate heavy-tails and thus boost complete searti methods performance. A few
works have beencertered on randomization;in [46], authorsimplemert an algorithm
that employs a variable order randomizationand a restart strategy. Howe\er, it is not
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until [98] whenthe rst explanation for the potential succesf this kind of strategy
is provided.
The approad descriked in [99] is characterizedby two di erent techniques:

Randomization  In systematic proceduresa consistert assignmen is iterativ ely
extended. A newunassignediariable is heuristically selectedat eat time. If di erent
variables appear to be equally good, a xed rule is applied to chooseone of them.
It is there, in that step of tie-breaking, where randomization is applied. It simply
consistsof choosingamongthe equally ranked choicesat random.

Howewer, it is possiblethat, for certain heuristic functions, no equally ranked
variables appear. In order to deal with this, authors introduce a new parameter to
the algorithm. It is meart to provide a certain percertage of the highestscoreto be
consideredequally good. This expandsthe choice-setfor random tie-breaking.

With thesefeaturesthey ensurethat ead run of the algorithm on the samein-
stancewill dier in the order in which choiceswill be made. They claim it can be
advantageousto terminate the searth whenit appearsto be stuck. Therefore,they
are forced to introduce a cuto parameterto limit the seart to a given number of
badtracks.

Restarts  After the mertioned cuto, the seart isrestarted from scratd, i.e. restart

ing at the root of the seard tree. Authors claim that this strategy clearly prevens
the algorithm from getting trapped in the long tails on the right of the heavy-tailed
distribution.

The performanceof this techniqueis mainly determinedby the value of the cuto
parameter. Authors arguethat a low value could be usedto exploit the left part of
the distribution, and thus allowing the algorithm to solve se\eral instancesafter a
su cien t number of restarts. A thoroughly study of the impact of the cuto value on
the algorithm performanceis provided as well.
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Adding new clauses

After nding in the 90'sthat local seart performswell for many SAT problems,the
following approadesfocusedon deweloping a strategy for escapinglocal minima. A
rst approad wasto dynamically increasethe weights of clausesasseart progresses
([162],[203]). Howewer, a more powerful and promising technique was introducedin
[33] and [234. Both approadessuggestedthat adding implied clausesis explicitly
better then adding duplicate clausesand it alsoadcievesthe samee ect asin clause
weighing.

In [33], adding newclausesds viewed asa way to make the slope of the seart space
smoother than the simple weighting. Authors claim that this approad is roughly
four to ten times faster than weighting in terms of the number of seart steps, for
the speci ¢ weighting schemethey use.

The algorithm (ANC) works asany local seart algorithm with a weigh strategy.
Moreover, as authors have pointed out, increasingthe weight of a clausecan be seen
equivalent to adding another equal clauseto the formula. The only problemsis how
to nd thesenew clauses.The solution adoptedin this caseis to selectresoherts of
two clausesa widely usedtechnique in nogood recordingin systematic SAT solwvers.

This method is comparedagainsta similar approad (WEIGHT) deweloped by the
sameauthors ([32]). They presen di erent kinds of instance: a completely random
kind of formula, a hard random-generatedtype that makes use of AIM Generators
([8]), and a few natural oneson fault diagnosisof VLSI design. ANC is signi cantly
better than WEIGHT in terms of moves, but no time comparisonis provided, and
ANC is supposedto spend a larger amourt of time per move.

Even though [162 argued that increasingthe cost of visited local minima can
evertually solve a satis able instance but cannot easily detect unsatis abilit y, [75
shaved that local searth can becomecomplete by adding new clausesand without
embeddingit in a tree-like framework.

Thus, how to generatenew implied clausesis the key feature for achieving com-
pletenessin [75]. Authors ensurethat no local minima are left after all possible
implied clauseshave beengenerated. It is clear that this approad can su er from
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worst-caseexponertial spacecomplexity, but authors arguethat, in practice, the al-
gorithm usually either nds a satisfying assignmenh or generatesthe empty clause
beforethat can happen.

The algorithm schemeresenbles that of many local seart algorithms for SAT.
The seart proceedsby iteratively changing the value of a single variable in the
current assignmeh Randomnesss not fundamertal, and thereforethe seart moves
to a neighboring assignmen only if it is strictly better. When this is not possibleit
meansthat a local minimum hasbeenreahed. At this momert, the clausegenerator
must produce a new implied clause,and it is critical that this is achieved in nite
time.

The clausegeneratorprovided is called Neighborhood Resolution. For ead literal
in ewvery violated clausea di erent clausecritically satis ed by the negation of the
literal is seardied; a new clauseis generatedby resolvingthe two clauses.If this new
clauseis not empty it is addedto the formula. The authors dewelop seweral theorems
to prove that this approad is complete.

Furthermore, se\eral other featuresare discussed:unit propagation whena unite
clauseis generated;equivalert literal detection asa limited form of equivalencerea-
soning; a resolution between similar clauses,if they only dier on the polarity of a
singleliteral; and appropriate data structures with the help of doubly-linked lists.

The empirical evaluation for this approad is one of the most complete we have
seen. It is basedon the instancesand the protocol of the 2003 SAT Competition
([207], [124). Thus, the algorithm is comparedagainst many state-of-the-art solvers
using a broad collection of 996 problems. Comparisondemonstratesthat Complete
Local Seard (CLS) is of practical interest. It is very competitive, and it yields close
results (mostly better) to local seartqr methods on problems where local seart is
more e cien t, and relatively closeresultsto completeseardt methods on handmade
and industrial instances.Authors claim that had it ertered the competition, it would
have achieved the best solver on satis able random instancesaward. It is only out-
performedby RSAPS ([127]) on few random series.

Another completelocal searty method for SAT is presered in [20€. It is based
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on the approad descriked above, and it diers in the way they generatenew im-
plied clauses.It alsousesa form of resolution but over an ordering of propositional
variables, which potertially can greatly reducethe number of generatedresolerts
without sacri cing completeness.

Impro ving local search by handling variable dependencies

Stochastic local seart approatesfor SAT becameprominent when independertly
Selman, Levesque,and Mitchell ([202]) as well as Gu ([103]) introduced algorithms
basedon hill-climbing. One form of improving stochastic local seart is to e cien tly
handle variable dependencies,and it is also one of the ten challengesproposed by
[20]7]. Combining systematicand stochastic seart was suggestedasa way to acieve
it. GSAT ([202)), alocal seart algorithm for SAT wasconbined with dynamic badk-
tracking ([92]) in [93. TSAT ([55]) integratesthe extraction of variable implications
to a tabu seart method.

Another interesting approad is descriked in [10§. The main ideais to usevari-
able dependenciedo construct implications and equivalencesbetweenliterals. This
is achieved by combining two well-known algorithms sud asWalksat ([153]) and Satz
([249). The algorithm proceedsby iterativ ely extendingthe current assignmenh using
Satz. When a xed depth in the seart tree is readed it constructsthe literal impli-
cation graph. The implication graph is reducedto its collapsedstrongly connected
componerts graph. Every componert is viewed as an equivalenceclasswhich is rep-
reserted by a singleliteral. Furthermore, the transitive closureof the implication is
generated.Walksat is applied to the reducedformula along with a tabu list to forbid
any cycling. The processcortinuesuntil either a solution is found or a xed depth of
the Satz tree is readed.

The hybrid WalkSatzalgorithm is then comparedagainstWalksat and Satzon sev-
eral problems: latin squares,DIMA CS instances,superscalarprocessorveri cation,
Beijing-Challengebendimarks, and Kautz & Selmanplanning problems. In general,
comparedto Walksat, WalkSatz reducesthe number of ips requiredto reac a solu-
tion, and presens a good behavior whensolving hard instances.Howewer, Satz seems
to perform signi cantly better, at leastin terms of computation time.
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It is also worth mertioning UnitWalk ([117)), which conmbines local searh and
unit clauseelimination aswell. It is, indeed,basedon Walksat and GSAT, mingling
the ideasof both algorithms into a single one. UnitW alk has beenone of the most
successfublgorithms for random instancesin the past SAT competitions?.

3.2 Memetic Algorithms

Memetic Algorithms (MASs) is a population-basedapproad for heuristic seart in
optimization problems. Someresearters view them as hybrid genetic algorithms.
The rst useof the term Memetic Algorithm in the literature wasin 1989in [163,
where a heuristic that incorporated Simulated Annealing with a cooperative game
between agerts, and the use of a cross@er operator was applied to the Traveling
SalesmanProblem.

It hasbeenarguedthat it is essetial to incorporate someform of domain knowl-
edge into ewlutionary algorithms in order to arrive at a highly e ective seart
([102 79, 10)). In [156 an assumptionis given to support this fact. We can see
in gure 3.1 the possibility of conmbining problem-sgeci ¢ heuristics and an Evolu-
tionary Algorithm (EA) into a hybrid algorithm. It is alsoassumedhat the amourt
of problem-dependart information is variable and canbe adjusted: the more informa-
tion, the morethe curve will resenible a problem-sgeci ¢ method, the lessinformation
the moreit will approad to a EA method.

Sometimes,an EA is applied to a problem wherethere is already large amourts
of information available. It seemsa good idea to use this information to create
specializedoperators and/or good solutions. In thesecasest is commonknowledge
that a hybrid EA performs better than any of the techniquesit incorporates alone.
Note that this is not re ected in gure 3.1.

Another issuewhich is often usedas a motivation by researtiersis Dawkins' idea
of "memes" ([50]). Theseare viewed as units of cultural transmission rather than
biological transmission (genes). These "memes" are also selectedfor reproduction
basedon somemeasureof quality (typically either utilit y or popularity). Sincethe

2http://www.satcomp etition.org
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Figure 3.1: EA performanceview from [156

idea was created it has been extended by many authors ([25, 30])). We can view
these"memes" from two di erent points of view: rst, asagers that can transform
a promising candidate solution; and second,as a learning phasewhere memescan
in uence genot/pes.

3.2.1 Intro ducing Local Search

We have introduced the Local Seart (LS) framework in the previous chapter. As

we know, it is a heuristic technique for solving conbinatorial problemsby exploring

neighborhoods of solution in order to optimize a given objective function. Introduc-

ing LS into a GA can be seenas an improvemen or dewelopmernal learning phase
within the ewlutionary stcheme. We have to considerthen whether those changes
(acquiredtraits) should be kept, or whether the improvemert should be awarded to

the individuals of the original population.
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Lamarc kianism and the Baldwin E ect

The issue of the inheritance of acquired traits (memes)was a major issuein the
nineteerth certury. Lamarck arguedin favor, while the Baldwin E e ct ([12]) sug-
gestedthat favorable adaptation can be achieved without changesin the individuals.
Modern theoriesof geneticsstrongly support the latter point of view.

Howewer, working with computer algorithms we are not subject to thosebiological
constrairts, and thus, both schemescan be perfectly valid. In generalMAs are called
Lamardkian if the result of the local seart phasegeplaceghe original individual, and
Baldwinian if the original solution is kept, but the result of its changesis somehav
re ected in its tness function (for example,after applying local seard to a solution,
maintain the original solution and incorporate the value of the resultant objective
function in its tness). There are many studiesin the literature that have tried to
extract the bene ts from using oneor the other ([125, 222 230). In the most recert
work it seemghat either pure Lamardkianism or a probabilistic combination of both
are the preferredapproades.

3.2.2 A Memetic Algorithm

As we have seenso far, a Memetic Algorithms is a Genetic Algorithm that uses
problem-speci ¢ knowledgeor incorporatesLocal Seart to any of its operators. Fig-
ure 3.2 shows all the placeswhere thesetechniquescan be introduced within a GA
scheme (remenber gure 2.8). In the following we are going to descrike all these
possibilities focusing mainly on the introduction of Local Seard.

Initial Population

Typically, GAs generatetheir initial populations at random. Howewer, it is very
straightforward to introducespeci ¢ knowledgeof the problemin this step. Although
LS techniquesare not usually applied at this point, it is preciselyto them that GAs
should pay attention: heuristic solutions that are known to be good as a seeding
heuristic for a LS algorithm for a given problem can easilybe adaptedto generatean
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Figure 3.2: A GA schemeand possibleways of hybridization

equally good initial population for a GA.3

Howewer, there are MA that incorporate LS as a pre-stepto generatethe initial
population. Scatter Seart ([147)), typically generatesa set of individuals and then
applies a form of LS to them in order to generatethe initial population with the
resultart solutions.

In any case,the purpose of this improvemert is to have a high quality initial
population. Nonethelessjn [2164, the authors performedan examination of the e ect
of varying the proportion of the initial population of a GA that was derived from
high quality solutions. Their conclusionswere:

Small proportions of derived solutions aided the GA.
Averageperformanceimprovesas proportion increases.

The best performanceis achieved from a more random initial population.

SNote that in this section we use the term GA instead of MA since we consider that these
improvemerts are incorporated into a GA to yield a MA.
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Thus, we can concludethat asthe proportion increasesso doesthe averageper-
formancebut at the sametime, the variancein performancedecreases.

Local Search as Crossover and/or Mutation

This idea is very straightforward: apply a certain LS technique as a Crosswer or
Mutation operator. Mutation and LS are intrinsically the samekind of technique,
they changethe genotype of the individuals. The di erence is that mutation israndom
and LS is heuristic.

Someapproadiesin the literature report good results when introducing LS at
this point. For example,in [223, a modi ed one point crosseer operator used for
protein structure prediction is introduced. The modi ed operator made use of some
problem-speci ¢ knowledgeby explicitly testing all the possibledi erent oriertations
of the two fragmeris to reconbine in orderto nd the most energeticallyfavorable.
If no feasible conformation was found, a di erent crosseer point was chosenand
the processrepeated. This can be seenas a simple introduction of LS into the
reconbination operator.

In [130, the authors propose a simple crossover hill-climber in which all the
possible 0 springs arising from one point crosseer are constructed and the best
chosen.

In [82], a more complex approad is presetted: a distance preservingcrossoer
operator for the Traveling SalesmanProblem (TSP). The intelligent part of the op-
erator is basedon a nearest-neighor heuristic to join together the subtours inherit
from the parerts, thus, explicitly exploiting instance-sgci ¢ edgelength information.

Local Search applied to the outcome of recom bination

The most commontechnique of hybridization of GAs is via the application of one or
more stepsof improvemert to individuals of the population during the ewolutionary
cycle. LS is typically applied to whole solutions createdby mutation or crosswer.
Perhapssurprisingly, the e ort to useGAs to ewlvearti cial neural networks gave
a greatdeal of insight into the role of learning, Lamardkianism and the Baldwin e ect
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to guide ewlution ([116, 125 152 231]). It alsosened to reinforce the opinion of
se\eral researtiers of the usefulnessof incorporating local seart and domain-based
heuristics.

It is of especial interest the formal proof in [141], which indicatesthat in order to
reducethe worst-caserun times, it is necessaryo choosea local seart» method whose
move operator is not the sameasthose of the crosseer and mutation operators.

This is also a feature of the MA Scatter Seard previously introduced. Not only
applies local seard to the pre-initial population, but also to every new generated
individual after reconbination.

Hybridisation  during fenot yp e-to-genot yp e mapping

A widely used hybridization of GAs with other heuristics is during the genotpe-
to-fenotype mapping. Many approadies have been proposedin the literature for
timetabling and sceduling problems ([111]) or for the vehicle routing approad
([218).

([218) preserns a complextwo-phasealgorithm to solve the VehicleRouting Prob-
lem with Time Windows (VRTW). The rst phaseis a GA and the secondphaseis
a local post-optimization algorithm. In the GA the population is represeted by se-
guencesof o sets. The Genetic Sectoringmethod (as it is called in the paper) uses
a geneticalgorithm to adaptively seart for sectorrays that partition the customers
into clusters sened by ead vehicle. This does not always yield feasible solutions,
that is why it needsto be improved by meansof a local optimization processthat
moves customersbetweenclusters.

It is alsointeresting the approat preseried in [43]. It introducesconceptsfrom
Greedy Randomized Adaptive Seart Procedures(GRASP?) into the genotype-to-
fenotype phaseof a GA to solve the Golomb Ruler Problem. The genoype in this
caseis a vector of GRASP parametersthat indicates which choice to make when
assigningthe next mark of the ruler during the genot/pe-to-fenotype mapping.

As it can be seen,there is a commonthread in all theseapproades, which is to

4GRASP is a metaheuristic that can be seenas a two step iterativ e process:construction an local
seard. Consult [194 and [175 for the related reactive GRASP.



CHAPTER 3. HYBRID APPROACHES 91

Population

7 Daversification Generation

Method e @ ®
; | 00°%

* o

A

Improvement p Eeference Set
ry IMethod Tpdate Method .
Solution Combination| Check Stop .. Reference
ethod criterion . Set
W® | o
. .< Subszet Generation . ﬂ;:;;&n
Method 3

Y
Homore new
Diversification Generation
Method

Figure 3.3: A genericSSalgorithm diagram

solutions

make useof existing heuristics and domain speci ¢ knowledge.

3.2.3 Scatter Search: A Popular MA

We have previously mertioned the Memetic Algorithm known as Scatter Seard. It
is a generictemplate of a kind of MA which is thoroughfully descriked in [143. It
is of greatimportance for this researt sincethe nal hybrid is goingto be basedon
this particular scheme.

Figure 3.3 shows the diagram of a genericScatter Seard Algorithm. It starts by
generatingthe initial population and improving it by meansof a heuristic procedure.
From the population a high quality set of individuals is included in the Reference
Set. From there the algorithm will selectindividuals to combine and improve the
descendats as well. The ReferenceSet is then updated with the new individuals
and the processis repeated until no more solutions can be addedto the Reference
Set, when somerestarting medanism is introduced, or nally , when somestopping
criterion hasbeenreaded (typically max number of generationsor time limit).

Let us review ead of thesestepsmore thoroughly:
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Div ersi cation Generation Metho d

In this step a starting set of solutions is generated. Through some medanism, a
certain level of diversity is guararteed. This is usually achieved by generatinghigh
quality solutionsand diversesolutions as separategoals. Thesesolutionswill now be
improved in order to be transferredto the ReferenceSet.

Impro vement Metho d

After the pre-initial population has beengeneratedor whenewer a new individual is
created, an improvemen method is applied to the solution. This method is usually
a heuristic local seard proceduresud astabu seard or simulated annealing.

Reference Set Up date Metho d

The ReferenceSetis now lled with the solutionswith higherquality from the previous
steps. The notion of quality hereis not limited to the value of an objective function,

diversity is a key factor to decidewhether a solution must be kept on the reference
setor not.

Subset Generation Metho d

This steps will de ne the subsetsof individuals of the referenceset to be latter
reconbined. Theseare the genericsubsetsto be generate:

All 2-individuals subsets.

3-individuals subsetgeneratedfrom the 2-individuals subsetsby addingthe best
solution not included in the subset.

4-individuals subsetsgeneratedin the samefashionfrom the 3-individuals sub-
sets.

The subsetsconsisting of the best n elemerts, beingn = 5 to the size of the
referenceset.
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Note that somesubsetscan be repeated, simple and e cien t techniquesto avoid
that are presenied in [94].

Solution Com bination Metho d

This method consistsof conmbining the individuals of the previously generatedsubsets.
It is typically dependart of the speci c problem. It can also generateone or more
solutionsdependingonits implemenration. It isalsoimportant that the newsolutions
are generatedin a deterministic fashion;then, that will be recordedin order not to
combine the samesubsetsin subsequeniterations.

3.3 Genetic Algorithms and CP

In this sectionwe are goingto review state-of-the-art approadesthat introduce Con-
straint Programming techniquesinto GAs. Note that this sectioncould fall into the
categorydescrited in the previoussection;theseapproatescan be seenas Memetic
Algorithms, sincethey are GAs that incorporate problem-speci ¢ knowledgein some
stepsof the ewlutionary scheme. In this case,this knowledgefalls into the eld of
Constraint Programming, and thus, we have decidedto separateit and descrike it in
a di erent section.

3.3.1 Handling Constrain ts

The rst issueto descrite is constrain handling. Remenber that in a constraint
satisfaction problem(CSP) we are given a set of variables,where ead variable hasa
domain of values,and a setof constrains acting betweenvariables. The problem con-
sistsof nding an assignmen of valuesto variablesin sud a way that the restrictions
imposedby the constraints are satis ed.
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conbinations of thesevariable values. Thus, solvingthe CSP is equivalert to nding
a completeassignmenfor the variablesin X with valuesfrom their respective domain
setD, sud that no constrairt C; 2 C is violated.

The issueis thus, how to handle these constraints: either directly or indirectly
[63].

Direct handling leavesthe constrairts asthey are,and enforcesthem somehav
during the executionof the algorithm; while,

Indirect handling involvestransforming the constrairts into an optimization
objective (included in the tness function), which the EA will pursue.

Direct handling is not generallyoriented for EA dueto the lack of an optimization
function in the CSP, which would result in no guidancetowards the objective. Thus,
indirect handling is the best suited approad for EA, although a mixed strategy where
someconstrains are enforcedand someare transformedinto an optimization criteria
is suited as well.

Whene\er a direct handling approad is chosen,the algorithm will have to face
many problems,especially becausehe combination and mutation operatorsare blind
to the constraints, and reconbination of two feasiblesolutions canyield an infeasible
one. Approadchesto solwe this are:

Repair infeasibleindividuals.
Eliminate infeasibleindividuals.
Maintain feasiblity with special purposeoperators.

Transformingthe sear® space.

Repairing infeasible solutions implies deweloping a repair operator which is very
problem-dependart. If implemerted properly can nonthelessproducee cien t results
(see[159 for a comparative study). Eliminating infeasible individuals is not very
e cient and hardly ewver used. Maintaining feasiblity is also very problem-speci c;
note that in order to maintain this, the initial population needsto be feasible,which
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is in itself NP-hard sometimes,and obviously not an option when dealing with con-
straint satisfaction problems. Finally, transforming the seart spacecan simplify
the problem and allow an e cient GA. The new seard spaceis decaled to create
feasiblesolutionsand it alsoallows a free seart for the GA.

On the other hand, indirect constraint handling is typically performedby adding
penaltiesto constraint violations. Thesepenaltiesare incorporated into the objective
function in order to drive the seart towards a feasiblesolution. Constraint penal-
ties represen distance to feasibility. This approad is usually the best suited for
constraint satisfaction problemsbecauseit is general,and allows the problem to be
transformedinto an optimization problem. Howewer, it is sometimescomplicatedto
mergepenaltieswith objective function. It is alsoknown to perform poorly for sparse
problems.

In the next sectionswe will reviewdi erent GAs for solving constrairt satisfaction
problems,divided into three di erent groups:

Heuristic basedmethods.
Adaptive basedmethods.
Memetic Algorithms for CSPs.

Note that all the techniques presen either an indirect or a mixed direct and
indirect constrain handling approad.

3.3.2 Heuristic based metho ds

The methods reviewed here have in commonthe fact that they all extract heuristic
knowledgefrom the structure of the constrairs to be incorporated in the GAs.

Heuristic Genetic Op erators

This technique hasbeenintroducedin [65, 66]. It studiesthe possibility to incorporate
exiting CSP heuristics into genetic operators. These operators are mutation and

SIf we weretrying to nd a feasiblesolution for a problem and the initial population was feasible,
then the problem would be already solved
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multi-parent crosseer, which are guided by the sameheuristic: selectthe variables
which appearin more constrairt violations and instantiate them with the value that
minimizestheseviolations.

Thus, the mutation operator will selecta certain number of variablesin the in-
dividual and will changetheir values so as to minimize the number of constrairt
violations. The multi-parent crossaer will proceedsimilarly, only that in this case
only the valuesfound in any of the parerts will be taken into consideration.

Kno wledge Based Fitness

In this case,information about the constrairt network is incorporated in the tness
function and in the geneticoperators (see[191, 197) aswell.

The tness function is called arc- tness and it consistsof the sum of the error
evaluations of the violated constrains. The error evaluations of a constrairt is the
number of variablesin its scope plus the number of variablesconectedto them in the
constrairt network.

The mutation operator (called arc-mutation) simply selectsa variable randomly
and instantiates it with the value that minimizesthe sum of error evaluations The
crossw@er operator which is called constraint dynamic adaptivearc-crossoverbasically
constructsa new individual by focusingon constrairts and selectingthe valuesof the
variablesin those constrairts from one parert or the other in order to minimize the
tness function aswell.

Moreover, it includesa heuristic parent selectionmedanismthat dividesthe pop-
ulation in three di erent groups,basedon the value of their objective functions.

The Glassbox Approac h

In [15Q 151, 44] it is descriked a GA to solve CSPsbasedon pre and post-processing
techniques. In particular, in [150, the algorithm deweloped relies on the transforma-
tion of the constrairts into a canonicalform. This rewriting of constraints is called
constraint processingand is performedin two steps:

1. Elimination of functional constrains.
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2. Decomposition of the CSP into primitiv e constrairts in the form of inequalities.

With all the constrairts in primitiv eform, a singlerepair-basecdheuristic is applied.
This heuristic is called degendencypropagation and it attempts to repair violated
constrairts in random order.

Note that at the end of the repairing processhe individual might not be a feasible
solution, sincerepairing violated constraints can produce other constraint violations.

Coevolutionary Approac h with Heuristics

In [109 108, we can nd a coewlutionary algorithm where the host population is
parasitedon by a population of schemata. Schemataare individuals which have some
of their variablesinstantiated with an unknown value. The interaction betweenthe
population is performedusing two medanisms:

Superp osition: a parasite nds a match in the host population and it simply
instantiates the unknown variableswith the valuesof its host. This is performed
in order to calculatethe tness function of the parasite individuals.

Transcription: it randomly choosesvariables of an individual and replaces
their valueswith the unknown valuesof the parasite population.

The host tness function is not only basedon constraint violations, but it is
also normalizedto a range from O to 1 taking into accoun the number of violated
constrairts versusthe total number of constraints. The host mutation and crosseer
operators are standard (random mutation and one-point crosseer).

Hybrid GRASP-Ev olution

The method preserted in [3]] is slightly dierent from the rest of the approates
in this category The algorithm doesnot presert any speci c-problem features, but
it incorporates a novel genotype-to-fenofype mapping. The population is a set of
GRASP parametervectorsasin [43]. In the samemanner,the value of ead parameter
de nesthe exactcandidateto select,insteadof a rangefor arandomselectionasin the
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generalcasein GRASP. This is dueto the stochastic genot/pe-to-phenolype mapping
that would yield, which will, thus, add a level of complexity in the algorithm.

The initial problemis transformedinto that of nding an optimal ordering for the
variablesthat will yield a feasiblesolution. Thus, the vector of GRASP parameters
allows to choose,amongthe ranked variables, which oneis goingto be instantiated
next.

The basicprocedurefor assigninga variable within the genolype-to-fenoype map-
ping is as follows:

1. Presen the variablesavailable for selection.

2. Apply the dom/degreeheuristic to thesevariables.

3. De ne the resultant Restricted Candidate List.

4. Selectthe candidate variable that the GRASP parametersvector indicates.
5. Instantiate the variable with the best value possible.

6. Re ect this selectionand instantiation in the correspndart position of a vector
that represems an actual tentativ e solution of the problem.

3.3.3 Adaptiv e based metho ds

All the methods included in this categorysharethe commonemphasison adaptation
featuresrather than on heuristic operators.

The Coevolutionary Approac h

This approat hasbeentested on many di erent problems([169,17Q). Interestingly,
it hasbeenapliedto solve CSPsin [71, 22€. It consistsof two populationsthat ewlve
in a predator-prey model: a population of candidate solutions and a population of
constrairts.

The tness of the individuals of both populations is basedon a history of en-
counters Encourters are matchings betweenconstrairnt and individual which reward
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the individual if it satis es the constrairt, or reward the constrairt otherwise. This
results in a higher tness for constrairts that are often violated, which meansthat
the algorithm will focuson harder constrains.

Mutation and crossweer are only performedin the population of candidate solu-
tions. The crossw@er operator aims at generatingdiverseindividuals.

Step-Wise Adpatation of Weights

The Step-WiseAdaptation of Weights (SAW) medanismwasintroducedin [70, 225
as an improved version of the weight adaptation meanism presened in [67]. The
basicidea behind this medanismis that constrains that are not satis ed and vari-
ablescausingconstrairt violations after number of stepsmust be hard, and so they
should be given higher weighs.

This algorithm presens a steady state model with a represemation basedon per-
mutation models. A permutation is transformed into a solution by a decaler that
simply instantiates variables, in the order in which they occur in the chromosome,
with the rst feasiblevalue; if this feasiblevalue doesnot exist, the variable is then
left uninstantiated. Uninstantiated variablesare penalizedand the tness of a chro-
mosomeis the sum of all thesepenalties.

3.3.4 MAs for solving CSPs

We have separatedthesetechniquesbecausehey not only introduce CSP like med-
anismsbut also Local Searti. These are the most similar approadhesto our nal
hybrid. They are, howewer, di erent in the sensethat they only incorporate knowl-
edge of the constraint network for solving a CSP, instead of actually including a
CP-like procedurewithin the algorithm.

Genetic Local Search

A Genetic Local Seard Algorithm for solving CSPsis presened in [15]. The basic
schemeconsistsof the application of geneticoperatorsto a population of local optima
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producedby a LS algorithm. The processsiterated until either a solutionis generated
or the maximum number of generationsis readed.

The LS algorithm usedis a Repair and Improve heurisitic: it repairs the pop-
ulation by extracting and extending ewvery candidate, and improvesit by applying
arc-consistencydeleting and extending.

Since the algorithm deals with feasible partial instantiations, in this case,the
tness functions correspndsto the number of instantiated variableson the individual.

Evolving Hill-Clim bers

In [58 59 we nd a GA with a very small population (that is why it is called micro-
evolutionary) whosepopulation is a set of hill-climbers.
Every candidate solution contains four di erent elds:

Field 1: is a chromosomecortaining ead object.
Field 2: isthe tness of the individual.
Field 3: determinesthe heursitic-basedmutation operator.

Field 4: isthe individual's family identi cation number®.

The ewaluation function determinesthe individual's tness by substracting the
weights of all violated constrairts. The algorithm ewlvesthe population using sev-
eral cross@er and mutation operators, and also applying an adaptation schemethat
awards the operatorsthat yield superior o springs.

Most of these methods are compared using random binary CSPsin [45]. Other
classi cations are available in the literature ([157, 155).

8Family or relatednessis a mecanism to reducethe number of duplicates within the population
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Chapter 4

CP and SAT for the Quasigroup
Completion Problem

The QuasigroupCompletion Problem (QCP) is a very challengingbendimark among
combinatorial problems, which has been the focus of much recen interest in the
areaof constraint programming. It hasa broad range of practical applications[101];
it has beenput forward as a bendimark which can bridge the gap between purely
randominstancesand highly structured problems[100; and its structure asa multiple
permutation problem[229 is commonto many otherimportant problemsin constraint
satisfaction. Thus, solutionsthat prove e ective on QCPshave a good chanceof being
usefulin other problemswith similar structure.

In this chapter, we presen seweral techniqueswithin the constraint programming
and SAT frameworks that together allow us to solve signi cantly larger QCPs than
previously reported in the literature. Speci cally, [10]] reports that QCPs of order 40
could not be solved by pure constraint programmingapproades,but could sometimes
be solved by hybrid approatescombining constrain programmingwith mixed integer
programmingtechniquesfrom operationsresearti. We shaow that the pure constrain
satisfaction approad can solve many problemsof order 45 in the transition phase,
which correspndsto the peak of di cult y. Our solution builds upon someknown
ideas, sudh as the use of redundart modeling [36] with primal and dual models of
the problem connectedby channeling constraints [229, with somenew twists. For

102
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example,we will considermodels consistingof only channeling constrairts, without

any primal or dual constrairts, and we demonstrateempirically for the rst time the
usefulnesf channeling constrairts linking seweral pairs of models of a problem, an
idea that was considered,but only theoretically, in [35] and [213. In addition, we
presen a newvalueordering heuristic which provesextremelye ectiv e,andthat could
prove usefulfor many other problemswith multiple models. The ideaunderlying this
heuristic, which originatesin the work of [35, 21]] for single permutation problems,
is that selectinga value for (say) a primal variable is in practice in the presenceof
channelingconstrairts alsoa choiceof the dual variablescorrespnding to that value;
therefore we can use variable selection heuristics on the dual variables to choose
the valueto assignto the previously chosenprimal variable. Finally, we shav how
redundart constrains canbe usedto \compile arc consistencyinto forward chedking",

that is, to ensurethat the latter hasas much pruning power asthe former but at a
much lessercostin constrairt cheds.

It is interesting to note that our approad involvesonly binary constrairts, which
seemdo go againstcommonwisdomabout their limitations |when cortrasted with
the useof non-binary constraints sud asalldi [18§| in solving quasigroupcomple-
tion problems[213. It is certainly an interesting issue,which we plan to addressin
the future, whetherthe useof alldi couldyield even better resultsthan our approat
when coupledwith other ideasin this work.!

The idea of redundart modeling was rst introduced by [36]. The bene ts of
adding redundart constrairnts to somegiven model to improve pruning power were
well-known in the literature, but [36] went a stepfurther by consideringthe redundart
combination of full modelsof a problem, wherethe modelsmay involve di erent sets
of variables. This combination is achieved by specifying how the various models
relate to ead other through channelingconstraints, which provide a mapping among
assignmets for the di erent models. The conbined model cortains the original but
redundart modelsas submalels. The channelingconstrairts allow the sub-madelsto
cooperate during constrairt-solving by propagating constrains amongthe problems,

1Besidesthe obvious computational limitations in running large experimental suitesof hard QCP
problems, we were limited in this aspect by the unavailabilit y of open sourcealldi code.
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providing an extra level of pruning and propagation which results in a signi cant
improvemert in performance.

Another important modelingideathat we useis that of permutation problems(see
e.g. [211 229). A constraint satisfaction problem (CSP) is a permutation problem
if it hasthe samenumber of variablesas values,all variableshave the samedomain
and ead value can be assignedio a unique variable. Thus, any solution can be seen
as assigninga permutation of the valuesto the variables. In the samemanner, a
multiple permutation problem hassome(possibly overlapping) setsof variables,ead
of which is a permutation problem. QCP is a paradigmatic example of a multiple
permutation problem.

Moreover, we perform a systematic study of modelling choicesfor quasigroup
completion, testing a variety of solvers and heuristics on various SAT and CSP en-
codings. The clear winner is the SAT 3D-encaling, specially with the solver Satz
[144, closelyfollowed by the solver Satza [62] on the sameencaling. As thesetwo
solvers are quite di erent (one usesa strong form of lookaheadin its heuristic, but
no badkjumping or learning, while the other relies heavily on the last two), the 3D
encaling appearsto be quite robust as a represemation. On the other hand, CSP
models perform signi cantly worsewith the two solverswe tried, and standard SAT
encalings generatedfrom the CSP models are simply too large in practice. These
results strongly suggestthat the 3D encaling canturn out to be quite competitivein
other permutation problems(many of which arisein quite practical problems[11§)
when comparedwith the currently preferredchannelling models.

The reasonsfor this appear to be twofold. First, we can shav that the 3D en-
coding (which is basicallythe \SAT channellingmodel” of [11§ extendedto multiple
permutations and dual models) exactly capturesthe channelling models of QCPs as
de ned in this thesis, but in a much more conciseway, by collapsingprimal and dual
variables. Further, we can shawv that the 3D encaling capturesthe \support SAT
encaling” of the channelling model, henceby results of [89], that unit propagation
on the 3D encaling achievesthe samepruning asarc consistency(MAC) in the CSP
channelling model. Theseresults appear easyto extrapolate to other permutation
problems(or similar oneswith "channelling constrains"), which have received a lot
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of recert attention [35, 229 118. Secondempirically, we identify Satz'sUP heuristic
as crucial to its successn this domain; as shovn by the fact that, when importing
the heuristic into our CSP solwers, we obtain signi cant improvemerts in their scala-
bility. Further, the improvemerts are much smallerif we only uselookaheadto detect
potential wipeouts(i.e. for \failed literal detection"), but choosevariablesinstead by
someother standard heuristic sudy as min-domain.

The rest of the chapter is organizedas follows: rst we introduce Quasigroups
and the QCP problem, then we detail the modeling and heuristic used and give
experimertal results; Afterwards, we introduce SAT models and solvers, compare
results against CSP solversand introduce SAT featuresin our CSP solver to provide
a new comparison.Finally, we presen the lessondearnt from this researt.

4.1 Quasigroups

A quasigroupis an orderedpair (Q; ), whereQ is a setand is a binary operation
on Q sud that the equationsa x = bandy a = b are uniquely sohable for every
pair of elemerts a;bin Q [10]. The order n of the quasigroupis the cardinality of
the set Q. A quasigroupcan be seenasann n multiplication table which de nes
a Latin Square,i.e. a matrix which must be lled with \colors" (the elemerts of the
set Q) sothat the colorsof eat row are all distinct, and similarly for columns.

Early work on quasigroupsfocused on quasigroup existence problems, namely
the questionwhether there exist quasigroupswith certain properties, solving se\eral
signi cant open mathematical problems[20§. We focus instead on the quasigoup
completion problem (QCP), which is the (NP-complete [38]) problem of coloring a
partially lled Latin square.

4.1.1 Quasigroup Completion Problem

Imagine you have an empty Latin square,and that you color someof its cellsand left
someothers empty. Trying to extend that partial coloringto a solution (if possible)
de nes the Quasigoup Completion Problem
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QCP sharewith many real world problemsa signi cant degreeof structure, while
at the sametime allowing the systematicgenerationof di cult problemsby randomly
lling the quasigroupwith preassignedcolors. It is thus ideally suited as a testbed
for constraint satisfaction algorithms [10J. Experimertal studies of the problem
have con rmed its interest for researty, by for examplehelping to discover important
patterns in problemdi cult y sud asheavy-tailed behavior [98].

Instances of QCP

It is also important to introduce types of instancesfor the quasigoup completion
problem Not only in order to establisha framework for the experimerts, but also
becausehe study of its hardnessand its complexity are within the state of the art in
this problem. There alsoa needof a sourceof satis able instancesfor the evaluation
of somealgorithms.

Under this perspective we candi erentiate two kinds of instancesfor this problem:

QCP We have introduced the QCP problem in the initial sections,and it is an
NP-complete problem [38] which has an interesting phase transition phenomenon
with an asseiated easy-hard-easyattern asa function of the fraction of number of
preassigneccolors. This kind of instancesthat we will referto as QCP from now on,
are generatedin a way that canbe solvable or not. This meansthat we cannotassure
its sohability becauseof the way they are generated.

Within this kind we can distinguish betweenthose instanceswhich are trivial ly
unsohable, which meansthat the preassignmen itself violates one ore more con-
straints; and those which we do not know its sohability until a complete algorithm
terminates without nding a feasiblesolution.

QWH As menioned above, there is a needfor hard solhable instances,in order to
have a sourcefor evaluating for examplelocal seart algorithms. The quasigoup with
holes (QWH) problem was proposedin [2] asa way to Il this need.
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QWH instancesare given this name becauseof the way they are generated?: (1)
rst generatea complete Latin squareaccordingto the Markov chain Monte Carlo
approat proposedby Jacobsonand Mathews [12§; punch a fraction p of \holes"
in the Latin squarein an uniformly distributed manner. The resulting partial Latin
squareis guararteedto be sohable. We canalso nd two di erent typesof instances
within QWH:

Random This kind of instancesare generatedpunching holes at random. This
was the rst kind of instancesgeneratedand studied, thus we know that its phase
transition coincideswith d1:6 n%%%e holesfor order n.

Balanced Lately, this kind of instanceshave beenstudied and it seemsthat they
are much harder than random ones. They are generatedin a way that the number of
holesin eat row and in ead column is more or lessthe same.

4.2 Mo delling and solving QCPs as a CSP

Our rst stepthrough improving e ciency solving QCPsis dueto an e ort to make
competitive an initial implementation for this problemthat yielded very poor results
when comparedwith the literature. Guided by this objective and after studying
sometechniquesand approadiesappliedto solve QCPs (thoseintroducedin previous
sections)we found an implemertation and an heuristic that yields promising results.

4.2.1 Not-equal implemen tation

First of all we introducethe initial implemertation of the problem, to which we will
refer asthe primal model

This model represets cellsof the Quasigroupas variableswhosedomainsare the
set of possiblecolorsto be assigned:

2We thank Carla Gomesfor providing us with the Isencale generator, which was usedfor gener-
ating satis able instancesfor the experimernts that are presened in the next sections
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Xij 2 11,:5n08 ;]
Xij = k 8i;j sudthat QCP;; = k
not equal(x;1;Xi2);not equal(X;1;X;3);::;;not  equal(Xi.1; Xin) 8i
not eaqual(xyj;Xzj);not  equal(Xyj;Xs;j); i not  equal(Xqj; Xnj) 8j

It is important to note that we rst choosea not-equalimplemertation instead of
an alldi one. This electionwas maintained for all the experimerts from now on.

4.2.2 Redundant models

Redundancyis a double-edgedword: it canhelp propagationby allowing morevalues
to be pruned at any given point in the seard, but it can also hinder it by forcing
it to processa larger set of constrairts. Fortunately, more ne grained distinctions
are possible,as we might chooseto combine only parts of various models. We could
not speak of conbining modelsif we don't usetheir respective setsof variables, but
it will often be advantageous(as we will see)to drop someof the constrains from
one or more modelsthat becomeredundart when making the conbination. If we do
this, howewer, we must be careful to ensurethe correctnessand completenesof the
combined model.

Seweral modelscanbe de ned for QCPs, asdescribed next. While all modelshave
the samelogical status, it is commonto distinguish betweenprimal and dual models.
The distinction is only a matter of perspective, specially in permutation problems,
wherevariablesand valuesare completely interchangeable.

Primal Mo del This is the model introduced before,and we will refer to it as pr
model for short.

Row Dual Mo del Therearedierent waysto formulate dual modelsfor a multiple
permutation problem. Here we considerdual models for ead of the permutation
subproblems(as opposedto a single dual model of the primal problem), and group
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them by row and column, to obtain two complete models of QCPs. In the row dual
model, the problem is reformulated as the question of which position (column) in
a given row has a given color. The row dual variablesare the setR = fry j 1

i n; 1 k ngwherery is the kth color in the ith row. The domain of eah
variable is againthe setD = fj j1 ] ng, but now the valuesrepresen columns,
i.e. the positionsin row i where color k can be placed. The row dual constraints
are similar to the primal constraints. There are n? constrairts of the form ry 6 ry,
wherery;ry 2 R and | 6 k, which meansthat two colorsin the samerow must
not be assignedto the samecolumn; and n? constrairts of the form ry 6 rix where
r;rjk 2 R andi 6 j, which meansthat the samecolor in di erent rows must not

A simple symmetry argumen shows that this model also fully characterizesthe
problem.

Column Dual Mo del The seconddual modelis composedofthe setof dual models
for ead column permutation constrairt, represeiing the colorsin ead column. The
column dual variablesarethe setC = f¢gxj1 | n; 0 Kk ngwheregy is the
kth colorin the jth column. All variableshave domainD = fij1 k ng, wherei
represeits the rows wherecolor k canbe placedin the j th column. Similar to the row
dual model, we have column dual constraints of the form ¢jx 6 ¢; wherec;¢; 2 C
and k 6 |, which meansthat two colorsin the samecolumn must not be assignedo
the samerow; and of the form c¢jx 6 cx wherecy;cx 2 C andj 6 |, which means
that the samecolor in di erent columnsmust not be assignedo the samerow.

This model also fully characterizesthe problem. We refer to the conbination of
both dual modelsasthe dl model.

4.2.3 Combining the Mo dels

A channeling constraint for two modelsM; = (X1;F1;Cy) and M, = (X5, F2;Cy) is
a constraint relating variablesof X ; and X, [36]. We will considerthe following kinds
of channelling constrairt:
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Row Channeling Constraints: Constraints for the n row permutation con-
straints, linking the primal model with the row dual model:

Xij :k, rik:j:

Column Channeling Constraints: Corresponding to the n column permutation
constrairts, they link the primal and the dual column models:

Xij =k, Cjk:i:

Triangular Channeling Constraints: Theseconstrains link both dual models,
closinga \triangle” amongthe three models:

Gk=1, rkx=/j:

Giventwo or moreredundart, completemodels, we can obtain a conbined model
by simply implemerting all the modelsand linking them by channelling constrairns.
Thus the full combined model or pr-dl-ch2-model resulting from the above models
is the model consistingof primal and dual variablesand constrairts, linked together
by row and column channelling constrairts.®> More generally aslong asa combined
modelincludesa completemodel of the problem asa submadel, we are freeto add any
set of variablesor constrairts from other models, with the only requiremen that in
order to add a constrairt all its variablesmust belongto the combined model. Thus,
for example, given the primal variablesand constrairts, we may chooseto add any
number of dual and channelling constrairts aslong asthe correspnding variablesare
alsoadded. For example,we may decideto useonly the row dual variablestogether
with the row dual constrairts and/or row channelling constraints. Nothing is lost by
not including parts of the dual models, sinceall the necessaryinformation is presen
in the primal model.

In fact we cantake this asfar asremoving all primal and dual constraints! Walsh
[229 shows that arc consistencyon the channelling constrairts for a permutation

3We don't consideradding the triangular constraints until later.
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problem dominatesin pruning power over arc consistencyover the binary not-equal
constrairts. Intuitiv ely, this meansthat nothing is gained by adding the not-equal
constraints oncewe have the channellingconstrairts. Note that this doesn't prove the
superiority of a model with only channelling constraints over, say, the primal model,
asthe former also has many more variablesand constrairts; this issueis empirically
examinedlater. It is important howewver to show that the model consistingof primal
and dual variables, with only row and column channelling constrairts, but without
the primal or dual constraints (i.e. alldi or not-equal) is also a complete model of
the problem. We refer to this model as the bichanneling model or ch2:

Prop osition 4.2.3.1. The bichannelling model is equivalert to the primal model,
henceit providesa full characterization of QCPs.

Proof. If the two models had the sameset of variables and ass@iated domains, we
could de ne equivalencejust as having the sameset of solutions. Sincethat's not
the casehere, we needto provide instead a one-to-onemapping betweensolutions of
either model.

Let us say that a primal assignmety or P-assignmen for short, is an assignmenh
of valuesto all the primal variables,and a PD-assignmeh an assignmento all primal
and dual variables.

The proposition can then be phrasedmore exactly in terms of the following two
claims.

Claim 1: Any P-assignmeh A which satis es the (primal) alldi constrairts can
be extendedto a PD-assignmenh B which satis es the channelling constraints. To
extend A to B, we just pick ead label x; = k from A andsetry = j and gy =i in
B. To seethat B is well-de ned, note that ewvery ry getsassigned,since A must use
all available colorsin orderto Il row i in accordancewith the primal constrairns;
and that any given ry is assignedat most once, since otherwise we would have
Xj = Xin for distinct columnsj and h, in cortradiction with the fact that A satis es
the primal constrairts. Similarly for any ¢jx. HenceB is well-de ned, and it satis es
the channelling constrairts by construction.
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Claim 2: Any PD-assignmeh B satisfying the row and column channelling con-
straints, is sud that its primal subsetA satis es the primal constrains. Suppose
not. Then B assignsthe samevalue k to two primal variablesx; and xj, forj 6 h
(or the completely symmetric casewhere it is row indexesthat vary). But sinceB
satis es the row channelling constrairts, B should satisfy rix = | and ri = h, which
is impossible. O

Yet another combined model we will considerlater is the trichannelling madel,
or ch3 for short, which adds the triangular channelling constraints to ch2, but still
keepsaway from the primal and dual constraints. Given the above proposition, ch3
is alsoa completemodel, and redundartly so.

4.2.4 Variable and Value Ordering

It is well know that the order in which we make our choicesas to which variable
to instantiate, and with which value, can have a major impact in the e ciency of
seart. As already pointed out, all the results reported here use the min-domain
variable ordering heuristic (often denoteddon), which at ead seart node choosesa
variable with the smallestdomainto instantiate. The reasonfor this is simply that we
obtained better results with it than with other alternativeswe tried. Theseincluded
more ne-grained heuristics sud as dom+degreeand dom/degree yielding further
con rmation to previousresults by [36] and [21] on simple permutation problems.
These other heuristics would often make no di erence with respect to dom* but
when they did it was most often to the worse. (We did not perform a systematic
comparison,though.) We also considereda number of variants of the above which
took into accourt the (primal or dual) model to which variablesbelong,e.qg. selecting
only amongprimal variables,or only amongprimal variablesunlesssomedual variable
had a singleton domain, etc. Thesevariants would often signi cantly underperform
the previousones,sowe didn't pursuethem further.

4This is not much of a surprise, since the degreeof a variable (number of constraints in which
it is initially involved) cannot discriminate much among variablesin a QCP; though this could also
depend on details of implemertation sud as whether constraints are generatedfor variables that
are explicitly or implicitly assignedby the initial coloring.
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[35 introduced a min-domain value ordering heuristic to apply when dual vari-
ablesare available during the seard. The ideais to choosethe value suc that the
correspnding dual variable hasthe smallestcurrent domain. To generalizethis idea
to multiple permutation problems,we needa way to take into accoun the two dual
models. The onethat worked best is what we might call the min-domain-sumvalue
seletion heuristic (or more briey vdom+the 'v' standing for value). Oncea primal
or dual variable is selected we needto choosea valuefor it. Sinceany sud value cor-
respondsto onespeci ¢ variable from ead of the two other models, we selectthe value
whosecorresppnding two variableshave a minimal \combined" domain. Speci cally,
sa&y we have chosenx; . Then we choosea color k from its currertly active domain
for which the sum of the current domain sizesof ry and ¢ is minimal amongthe
currertly available colorsfor x;; . Similarly, if the chosenvariable is a dual one, say
I, we choosea columnj for this variable as a function of the current domain sizes
of the correspnding variablesx; and ¢.

4.2.5 First experiments on balanced instances

Our initial results on the various models were in fact quite favorable to the bichan-
nelling model. In order to presen them, we needto say a few words about the ex-
perimerts in this section. First, in order to make our results comparablewith others
appearingin the literature, all instanceswere generatedusingthe Isenode generator
of QCPs. This generatorbeginsby randomly coloring an empty quasigroupusing a
local seart algorithm, and then randomly decoloringsomecells. Henceall problems
in our suites have a solution. All instancesare of the \balanced" kind, which are
known to be the hardest[101]; and most instancescorrespnd to problemswith 60%
cells preassignedwhich is closeto the transition phaseand correspndsto a peak
in problem hardness.Second,all experimerts hereare run with a slightly optimized
variant of van Beek'sGAC library, which comesas part of the CSP planning system
CPLAN [224, and which implemerts generalizedarc consistency(though in our case
we only needits binary version,which is equivalert to the MAC algorithm [22]). As
discussedbelow, neither CBJ nor nogaod learning seemto help in QCP, contrary to
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% preassign! 20% 42% 80%
order | % solved | mean | median | mean| median || mean | median
30 100% 0.94 0.93|| 0.43 0.25| 0.03 0.02
35 100% 1.99 1.99| 0.71 0.53|| 0.05 0.05
40 100% 4,98 498| 2.51 1.09| 0.08 0.08

60% preassigned
order | % solved | timeout | mean (solved) | median (all)
30 18% 100 48.74 100
35 22% 3600 903.07 3600
40 10% 3600 1751.90 3600

Table4.1: Experimertal resultsfor the bichannellingmodel, MAC, no value ordering.

the experiencein many other domains,hencethey are disabledin our tests. Also, all
experimerts usethe min-domain variable selectionheuristic, which we found to be
uniformly the bestamongthe oneswe tried (seealso[36, 211] and the discussionin
Section4.2.4).

We can distinguish two di erent momerts in theseexperiments:

Before applying our heuristic

In our initial tests, we found that the bichannelling model ch2 could solve many
problemsthat were out of readh for the other models, including many order 35 and
someorder 40 quasigroupswith 60%preassignedells. Table 4.1 shovs meantime for
solved instancesand mediantime for the whole sample,both in secondsand percen
of solved instanceswithin the given timeout (alsoin seconds)or setsof 50 instances
of orders 30, 35 and 40, and 20, 42, 60 and 80% preassignmet (Theseresults are
alsoplotted in Figure 4.1 later.)

Our data con rm the existenceof a peak of di cult y around 60% preassignmen
[101, whereasproblemswere trivially solhable with all other percentageswe tried.
Eventhough the resultswere promising, specially whencomparedwith other models,
they were also disappointing, in that the number of problemsthat we could solve in
the transition phasewas rather limited for various dimensions. (Note that in these
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pr pr-dl pr-dl-ch2 ch2
time chedks time chedks time chedks | time | chedks
1.45 1.30 1.93 1.69 1.90 1.69 1 1

Table 4.2: Comparisonof various models using MAC and no value ordering.

cases,median time is the sameas timeout becauselessthan 50% of instanceswere
solved.) Newerthelesswe decidedto pursuefurther the bichannellingmodel basedon
the somewhatanecdotal evidenceof its clear superiority over other models. As the
following sectionsshav, we succeededn this goal.

For the sake of a moresystematiccomparison,we presen herea simplecomparison
of the variousmodels. Due to limited available time, we chosethe 29 easiestproblems
(as measuredwith the approades deweloped later) for order 30 quasigroupswith
60% preassignmen These are still relatively di cult problems closeto the phase
transition: the ch2-model took a total of 6624 secondson the 19 problems (66%)
in the sample that were solved with all tested models in lessthan 1800 seconds,
yielding an averageof 348.6secondger solved problem, and a mean (over the whole
sample) of 574.16s. Table 4.2 shows the result of a comparison between various
modelson this sample. The table providesthe ratios in the accunulated data in time
and constrairt cheds over the solved problems, relative to the performanceof ch2.
Note that all modelstried exactly the samenumber of assignmets in all problems,
empirically con rming the fact that arc consistencyhas identical pruning power in
all four models.

We conjecture that theseratios will increasewith problem dicult y. But there
is little point on belaboring these data, as much better solutions are available, as
discussedn the following sections.

Intro ducing value ordering

The resultswhenthe rst combined model was usedwith the min-domain-sumvalue
ordering heuristic were quite surprising, as it outperformed previous tests in three
ordersof magnitude in somecases.For example,for the instance bqwh-35-405-5.pls
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00000

50
% Preassi ignment

Figure 4.1: Mean solution time on QCPs of order 30, 35 and 40 with (vol) and
without (vo0) value ordering.

(balancedinstance of order 35 and 60% preassignectcells) it took 2905 secswithout
value ordering and only 0.40secswith it. For a more generalpicture, Figure 4.1 plots
the data of Table 4.1, obtained with lexicographicvalue ordering, againstthe results
over the samesamplewith dom-+value ordering.

Encouragedby this performance,we generateda set of 100 balancedinstances
of orders 30, 35, 40 and 45, with 60% preassignmenh Table 4.3 shovs median and
meantime in seconddthe latter taken only over solved instances),percert of solved
instancesand timeouts, in solving these instanceswith the new variable ordering

heuristic.
order | mean | median | % solwed | timeout
30 148.84 | 174.11 68% 1000
35 | 533.43| 163.48 84% 3600
40 | 732.94 | 1010.82] 68% 5000
45 | 1170.81| 2971.40, 56% 6000

Table 4.3: The min-domain value ordering heuristics at the phasetransition, using

MAC.

Theseresultsare signi cantly better than thosepreviously found in the literature,
aswe can solve over 50% of balancedQCPs of order 45 at the phasetransition. [10]]
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reports that pure constraint programming approades, even when using specialized
forms of arc consistencyfor non-binary alldi constraints and a commercial solver,
could not solve any problem of order 40 in the phasetransition.

We consideredother ways of conmbining domain sizessud asminimizing the prod-
uct of the correspnding domain sizes(min-domain-product or vdom?, and their cor-
responding maximizing versions,without success.Perhapsthere is no deepreason
why vdom-+was so clearly superior to vdom* Maximizing versionswere clear under-
performers,and there is a reasonableexplanation for it. For concretenessgonsider
choosinga value with the maximal conmbined domain of the correspnding variables,
e.g. avaluek for a primal variable x;; sud that domain-sizgr )+ domain-sizécy) is
maximal (over the colorsavailable for x;; at the currert stageof seard). While large
domain sizesare usually indication of lesstightness, and thus could be conjectured
to capture the idea, often cited in connectionwith value ordering, of selectinga value
which is\more likely to leadto a solution”, in this casethey have exactly the opposite
e ect. When x; = k is the maximal labelling accordingto this criteria, the domains
of ry and ¢ are immediately pruned into singletons. Hencea maximizing choice
producesmaximal pruning, which is the opposite of what is desired. And corversely
heuristics sud as vdom+choosevaluesthat producethe least pruning.

4.2.6 Compiling AC to FC with redundan t constrain ts

Our next and last step (in this subsection)in improving our solution derived from an
examination of the pruning behavior of the bichannelling model with arc consistency
Supposex;; is assignedk at somepoint during the seard. The GAC implemertation

of CPlan beginsby cheding arc consistencyfor constraints with a single uninstan-
tiated variable, i.e. doing forward cheding, which forcesthe domainsof ry and ¢
to becomethe singletonsf | g and fig respectively, and alsoprunes,for ead h 6 Kk, j

from riy, and i from ¢,. Arc consistencywill further discover (if not already known
at this stageof the seart):

Xin 6 k for any columnh 6 j, sinceotherwisery = h6 j;

hencealsoc, 6 i for any columnh 6 j, sinceotherwisexi, = k;
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similarly, xp; 6 k for any row h 6 i, sinceotherwisery = h6 j;
hencealsorn 6 j for any row h 6 i, sinceotherwisexp = K;

It is not di cult to show that GAC cannotprune any morevaluesasa result of an
assignmenh to a primal variable, unlessone of the listed prunings reducesa domain
to a singleton. All theseare useful prunings, but GAC does much more work than
neededto obtain them. Eadch oneof the pruned values{ onefor ead Xin ; Xp; ; Chk; Mk,
potertially 4(n 1) pruned valuesand variablesfrom a singleassignmenh { requires
GAC to ched all the constraints in which the correspnding variables are involved,
namely2(n 1) or (n 1) constraints for, respectively, the primal and dual pruned
variables (further, in the CPlan implemertation all a ected variables have all their
valuestested, even if at most onewill be pruned). This is wastede ort, asno addi-
tional pruning is achieved. One can however obsene that most of the pruning power
can be derived simply by assigningthe variables whose domain becamesingletons
(either directly through channelling constrairts or indirectly when pruning a single
value results in a singleton) and doing forward cheding on them. To seethat the
remaining values pruned by GAC (namely the secondand fourth items above) are
alsopruned by FC with the trichannellingmodel, obsenethat ¢, 6 i sinceotherwise
ri« = h 6 j usingthe correspnding triangular channelling constrairt, and similarly
rnk 6 j sinceotherwisecyy = h 6 i.

We remark that the samee ect canbe achievedin di erent ways, e.g. the bichan-
nelling model supplemered with the dual not-equal constraints also allows forward
cheking to derive the sameconsequences.

Results with the tric hannelling model Table 4.4 comparesthe bichannelling
model ch2, using only row and column channelling constrairts with GAC, versusthe
trichannelling model ch3 with the three kinds of channelling constrairts using only
FC, in both caseswith the min-domain-sumvalue ordering. Each sample consists
again of 100 balancedinstanceswith 60% preassignmetithe accunulated valuesare
over the problemssolved by both approadieswithin the giventimeout. The median
times are on the other hand over the whole sample. Accumulated times arein seconds
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while the other accunulated valuesare in millions of chedks and tried assignmets

respectively.
ch3-fc ch2-ac ratios
order | acc. time | median | solved || acc. time | median | solved || acc. time | median
30 6445.44 | 153.04| 78% 9557.83 | 174.11| 68% 1.48 1.14
35 29691.18| 152.16 | 86% | 45341.22| 163.48 | 85% 1.53 1.07
40 33015.14| 637.18| 73% | 48682.04| 1010.82| 68% 1.47 1.59
45 38569.95| 1650.52| 59% | 61469.78| 2971.40| 56% 1.59 1.80
chedks visits
order | ch3-fc | ch2-ac | ratio || ch3-fc | ch2-ac]| ratio
30 29886 | 80206 | 2.68 | 431 658 | 0.15
35 114572| 279003| 2.44 || 1617 218 0.13
40 | 205247| 445790| 2.17 || 2769 331 | 0.12
45 | 108276| 321632| 2.97 | 1489 236 | 0.16

Table 4.4: The ch3 and ch2 models compared,with value ordering.

Thesetables shav that there is a signi cant improvemert in time with the ch3

model usingonly FC, and this canbe traced to the large savings in number of cheds.

On the other hand, ch3 with FC tries almost one order of magnitude more assign-

merns, which arisefrom the fact that it must instantiate the variablesasseiatedto a

given assignmeh madein the seart tree in order to extract the sameconsequences

as AC with ch2; these added tried assignmets do not howewer translate into any

more cheds or more true badtracking.

The resultsin this table are not however as straightforward to obtain asthe for-

mal result on the equivalert pruning power may suggest.Indeed,our rst attempt at

implemerting ch3 resultedin a slight but noticeableslondown! On further examina-

tion, we realizedthat this wasdueto the implemertation of the min-domain variable

ordering heuristic, which could selectmany other variableswith a singleton domain
before the variables ass@iated with the last assignmety as a result, obtaining the
sameconclusionsas AC could be signi cantly delayed. We solved the problem by

keepinga stad of uninstantiated variableswith singletondomain, and modifying the

min-domain heuristic to pop the most recen variable from that stadk whene\er it
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wasnot empty. This ensureghat FC considersthosevariablesthat have just become
singletonsimmediately. The solution has newerthelessan ad-hoc avor, and suggests
that for domainssud as QCPs, where propagation often forcesa value for variables
asopposedto merely pruning part of their domain, a more SAT-lik e propagationmay

be moreindicated; in other words, it is not always su cien t to rely on the min-domain

heuristic to propagatein a timely fashionforcedvalues.

Finally, the following gures display a more detailed picture of how ch2 and ch3
compare, showving the time taken to solwe all 100 problemsin ead set, sorted by
di cult y, for order 40 and 45 quasigroupsat the phasetransition. As it canbe seen,
the ch3 model is almost always superior, but there are someanomaliesthat are worth
investigating further.

ch3fc vs ch2ac
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~ Timeac
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(100 problems of order 40, 60% preassigned, sorted by timefc)
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ch3fc vs ch2ac

6500+
6000+

5500+
5000+
4500+
4000+
3500+
3000+

time (seconds)

2500+ \ Timefc
~ Timeac

2000
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(100 problems of order 45, 60% preassigned, sorted by timefc)

4.3 Intro ducing SAT to the QCP

This section presens the introduction of SAT techniquesto the QCP problem. It

alsoperformsa comparisonof SAT and CSP methods for solving this problem. First

we are going to review the SAT and CSP models for the QCP and presen some
experimertal results for sewveral SAT problems. Then, we are going to theoretically
comparethe SAT and CSP encalings and to introduce a very e ectiv e technique to

our CSP soler. Finally, a comparisonof all methods consideredis provided.

4.3.1 SAT and CSP Encodings

The two SAT encalingsof the QCP of order n consideredn this researt, introduced
in [134, usen Booleanvariablesper cell; eat variable represeits a color assignedo
a cell, and the total number of variablesis n. The mostbasicSAT encaling, which is
known as 2-dimensional(2-D) encaling, includesclauseshat represem the following
constrairts:

1. at leastone color must be assignedto ead cell (ALO-1);
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2. no color is repeatedin the samerow (AMO-2); and

3. no color is repeatedin the samecolumn (AMO-3).

The other encaling, which is known as 3-dimensional(3-D) encaling, addsto the
2-D encdling redundart clausesthat represem the following constrairts:

1. ead color must appear at leastoncein ead row (ALO-2);
2. eath color must appear at least oncein ead column (ALO-3); and

3. no two colorsare assignedio the samecell (AMO-1).

Both encalings have O(n%) clauses.The labels asseiated to ead clauseset are
explainedlater.

For the sake of brevity and clarity, the only CSP encaling we descrike is the
\bic hannelling model". It consistsof:

A setof primal variablesX = fx; j1 i n;1 | ng; the valueof x; is
the color assignedo the cell in the ith row and jth column, and n is the order
of the quasigroup,i.e. the number of rows and columns.

Two setsof dual variables R = frix j1 i n; 1 k ng, wherethe value
of ry is the columnj wherecolor k occursin row i; and C = f¢ j 1 ]

n, 0 Kk ngwherethe value of ¢jx represets the row i wherecolor k occurs
in columnj .

colors, columns, and rows. Variables of di erent types are linked by channelling
constrairts:

Row channeling constraints link the primal variableswith the row dual vari-
ables:xj = k, ryg=j:

Column channeling constraints link the primal variableswith the column dual
variables: xj = k, Gy =i
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% solved mean median
order | Cha Berkmin Satzoo Satz | Cha Berkmin Satzoo Satz Cha Berkmin Satzoo Satz
35 99 100 100 100 59 24 37 6 3.2 0.5 16 1.2
37 96 99 100 100 232 173 129 42 24 4.7 5 58
40 82 86 96 99.5 518 590 861 539 288 112 142 41
43 50.5 62 785 84 279 1487 1799 1243 1085 2178 815 358
45 46 46 59,5 68 380 1312 1021 1181| > 12000 > 12000 1857 1184

Table 4.5: Comparisonof Cha, Berkmin, Satzao and Satz on the 3-D encaling.
Time in secondsmeanof solved instances.Cuto 12000seconds.1 GHz.

This model is a completemodel of the problem; in particular, the socalled primal
constrairts, which explicitly state that no two colorscan be repeatedin any onerow
or column, are redundart, and hinder propagation. CSP \channelling" encalings for
permutation problems similar to the one presened here are discussedat length in

[119.

4.3.2 Experimental results on random QWH instances

We consideredour state-of-theart SAT solvers: Satz[144, Cha [163, Berkmin [97],
and Satzo [62]. We chose Satz becausesomeauthors have claimed that it is the
best option to solve QCPs; our experimertal results provide evidenceof this claim
too. We choseCha and Satza becausethey were the winners of the two last SAT
competitions, and Berkmin becauseit is often competitive with Cha . In addition,
we tested two CSP solvers, the GAC library describedin [224, and the MAC solver
by Regin and Bessiere[22]. Note that for binary CSPsthey are simply dierent
implemertations of the MAC algorithm.

The instancestested in our experimerts are of the QWH type (quasigroup with
holes[134, generatedwith Isencode), are all satis able, and are located near the
phasetransition.® Our samples,with 200instancesead, did not cortain \balanced"
problems,which are reported to be the hardest;still, we did verify that they are much
harder for all solversthan the balancedproblemstested and discussedn the previous
section,which were not closeenoughto the phasetransition for their class.

5Speci cally, QWH instancesof order n are generatedwith d1:6 n'>e holes.
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% solved mean (solved) median
order | Satz GACvo | Satz GACvo | Satz GACvo
35 100 37 6 2970| 1.2 > 12000
37 100 11 42 2572| 5.8 > 12000
40 | 995 7| 539 4546| 41 > 12000

Table 4.6: Comparisonof Satz on the 3-D encaling and GAC-vo. Time in seconds.
Cuto 12000seconds.l Ghz.

Of all the solutions tried, we can discard the 2D SAT encading and the primal
CSP models, as they give signi cantly worseresults. Of the remaining encalings,
the 3D encaling was clearly superior with the four SAT solvers, with Satz scaling
somewhatbetter than Satza and both much better than cha. On the other hand,
the CSP approad which usesMAC on the bichannelling model, scaledmuch worse
on the (harder) problemstested in this section. There is therefore a clear dividing
line between SAT and CSP encalings in terms of performance. Table 4.5 provides
the data for SAT solwers,and Table 4.6 comparesour best SAT solver with the CSP
approad (labelled GACvo), which seemsto be the best onein the literature, using
GAC onthe bichannellingmodel with a specialvalue orderingheuristic (hamedvdom+
in that paper). Note that the ratio of solved problemsfor GACvo is much lower than
reported in the previous sectionsfor problemsof the sameorder, and that's because
our instancesare harder®

Discussion  We will now explore potential explanationsfor theseobsenations, and
ways to improve theseresultsfor the CSP approadiesdrawn from theseexplanations.
Our rst focuswill be on comparingrepresemations; later we considersolver-speci ¢
issues(most importantly, the extra level of propagation and the heuristics of Satz).

5The improvemerts reported for the tric hannelling model do not a ect scaling behavior, and are
pretty much subsumedby the stronger forms of lookahead discussedlater. Hencewe did not test
this model in this section.
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4.3.3 Comparing models

In order to compareour models formally, we needa small detour through SAT en-
codings of CSP madels a third modelling option that we have not consideredso far.
In this cortext, the many-valued CSP variables are represeted by meansof a set
of boolean variables, one for ead possibleassignmeh So, for example, a primal

CSP domainsis then captured by including one ALO (\at leastone") clausefor eat
variable, specifying that the variable must take at leastoneof its possiblevalues,and
O(n?) AMO (\at most one") clauseswhich specify, for every pair of possiblevaluesof
a variable, that they cannot be satis ed simultaneously In our bichannelling model,
we would have variablesx; = k, ri = j and ¢y = i, for ead triple j;k;i, for a total
of 3n3 variables.

De ne the minimal supprt enading of the bichannelling model as that consist-
ing of AMO-ALO clausesfor the three variable types,together with the channeling
clauses xj = k_ri = j and: ri = j_X; = k, which directly encalethe equivalence
Xi1 =] , rij = k which de nes the constrairt betweenx; and ry (and similarly for
column channelling constrairts). Clearly, the channelling clausescompletely charac-
terize the channelling constraints, hencethe minimal support encaling is a complete
model.

The supprt enading, as de ned in [89], encalesa constraint betweentwo vari-
ablesX and Y by adding, for ead possiblevaluev of X, the clause: X = v_Y =
vi_ i Y = v, wherevy; ;v is alist of all valuesw in the domainof Y sud that
(v;w) satis esthe constrain, i.e. alist of supports for the assignmen X = v. For the
bichannellingmodel, we can obsene that the channelling clausesof the minimal sup-
port encading already encale the supports for x; = k andw = j. For valuesv 6 Kk,
the supports for xj = v aregivenby the clause: Xj = V_ | ... rk = h, and

.....

Prop osition 4.3.3.1. Unit resolution obtains the sameresults on the minimal sup-
port encaling asin the support encaling of the bichannelling model.

Proof. Consider e.g. the constraint between x;; and rij, (a similar analysis holds
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for column channelling constrains). Sincethe channelling clausesare presened in
the minimal encdaling, it su ces to shawv that the e ect of unit propagation on the
additional support clausesis also obtained without them. For v 6 2 we have the
support clause: Xj1 = Vv _ thf 1::nghe1 Fi2 = h. We considertwo cases. First,
remaining clausesamply : xj; = v. Unit resolutionon the ALO for ri, obtainsri, = 1,
which together with the channelling clausesyield x;j; = 2, and with the AMO for X,
: Xj1 = V. Second,supposexj; = Vv is true and, sa, ri, = 1lthroughri, = n 1
are all false;we needto shaw that ri, = n follows by unit resolution. Now, Xj; = v
implies through AMO : x;; = 2, and thus : rj; = 1 using the channelling clauses.
This togetherwith the hypothesisof the caseand the ALO for r;, allows usto obtain
ri- = n, asdesired. O

Our secondobsenation is that the binary theory consisting of the channelling
clausesfor all constraints can be simpli ed using a strongly connectedcomponerts
(SCC) algorithm sud asin [53]. The SCCswill consistpreciselyof the triplets of
booleanvariablesof the form x;; = k, ri = j and ¢ = i. The SCC-basedalgorithm
would then replaceead sud triplet by a singlevariable, which we may appropriately
call xj ¢, asin the 3D SAT encalings, and perform the appropriate replacemets in
the remaining clauses.The result is the following:

The ALO and AMO clausesfor the CSP variables becomeclausesof the 3D-
encaling. Speci cally, the clauseslabelled ALO-k and AMO-k (1 k  3)
in the 3D-encaling are the result of rewriting the ALO and AMO clausesfor
the primal variables(k=1), row dual variables(k=2) and column dual variables
(k=3) in the minimal channelling encaling.

The channelling clausesbecometautologies after variable replacemety, sothey
can be eliminated.

The SCC-simpli cation formally captures the intuitiv e idea that the triplet of
variablesx; = k, rig = j and g = i all \mean the same" {color k is in cell (i; j ){,
and hencethat ead triplet canbe \collapsed" into a single booleanvariable x;; i, as
donein the 3D encaling (and in the \SAT channelling model" of [11§).
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% solved mean median
order | GAC-HLA MAC-HLA Satz | GAC-HLA MAC-HLA Satz | GAC-HLA MAC-HLA Satz
35 98 98.5 100 428 586 6 131 129 1.2
37 86 89.5 100 1360 1913 42 882 822 5.8
40 52 58 99.5 1770 3033 539 5304 8411 41
43 30 39 84 1342 2668 1243 > 12000 > 12000 358
45 24 26 68 2810 3585 1181 > 12000 > 12000 1184

Table 4.7: Comparisonof GAC-HLA, MAC-HLA and Satz. Time in secondsmean
of solved instances.Cuto 12000seconds.1 Ghz.

% solved mean median
order | MAC-LA MAC-HLA | MAC-LA MAC-HLA | MAC-LA MAC-HLA
30 96 100 544 18 482 9
33 91 100 1753 187 1256 52
35 58 98.5 2714 586 4487 129

Table 4.8: Comparisonof MAC-LA and MAC-HLA. Time in secondsmeanof solved
instances.Cuto 12000seconds.1 Ghz.

Prop osition 4.3.3.2. Unit resolution on the 3D model hasthe samepruning power
as MAC on the bichannelling model.

Proof. [89] shaws that unit resolution on the support encaling of a CSP problemis
equivalent to MAC on the original problem. We have just shovn that unit resolution
on the minimal support encaling is equivalent to unit resolution on the support
encaling of the bichannelling model, and that the 3D encaling is simply the minimal
support encaling after SCC simpli cation, which doesnot a ect the power of unit
resolution. ]

Thus, the 3D model exactly capturesthe bichannellingmodel, without loosingany
propagation power, but with 3 times fewer variables (n? instead of 3n®) and without
the 4n3 channelling clausesof the minimal channelling model. We did in fact try to
solve QCPsusing a direct encaling of the bichannelling model, with very bad results
due to the size of the resulting theories. The above propositions seemto go a long
way toward explaining the succes®f the 3D model.
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For each free variable x such that PROP,(x) is true do
(let F%and F %two copiesof the formula F under consideration)

FO:= unit-propagation(F°[ fxg);
F90:= unit-propagation(F%q f: xg);
If 22 F%and 2 2 F%then return "F is unsatis able"
If 2 2 FOthen x:=0, F ;= F
else if 2 2 F%then x:=1, F := FO°
If 2 62F%and 2 62F ©then
let w(x) denote the weight of x
w(x) := number of times that non-binary clausesof F
have beenreducedwhen deriving F°
w(: X) := number of times that non-binary clausesof F
have beenreducedwhen deriving F %°

For each freevariable x do
H(x) := w(x) w(: x) 1024+ w(x) + w(: X);
Branch on the free variable x with greatestH (x)

Figure 4.2: The variable selectionheuristic of Satzfor PROP (x; 4)

4.3.4 Satz's heuristic in QCPs

We now turn to solver and domain-speci ¢ featuresthat may explain the obsened
performance. Thus our next step was to analyzein depth the behavior on QCP
instancesof the bestsolwer, Satz, soasto incorporate new propagationtechniquesand
heuristicsinto the CSP solversfrom the insights gained. Beforegoinginto details, let
usrecallthe variable selectionheuristic that implemerts Satz, which combinesMOMS
(Maximum Occurrencesin clausesof Minimum Size) and UP (Unit Propagation)
heuristics. In both heuristics, the goalis to maximize the power of unit propagation.
MOMS picks one variable among those that occur the most often in minimal size
clauses,sincetheseare more likely to result in propagation. UP goesa step further

by actually measuringthe number of propagationsfrom ead choice. It examines
ead variable p occurring in a given CNF formula by respectively adding the unit

clausesp and : pto , and independerily making two unit propagations,which are
usedto derive a scorefor ead variable. As a secondarye ect, UP detectsso-called
failed literalsin , which when satis ed falsify in a singleunit propagation.
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In order to reducethe time required to propagateall literals, Satz appliesUP to
a restricted number of variables that occur in binary clausesby applying a unary
predicate, called PROP,, which is de ned asfollows:

De nition 4.1. Let beaCNF formula; let PROP(x; i) beabinary predicatewhich
istrue i variable x occursboth positively and negatively in binary clausesof , and
there are at leasti occurrencesof x in binary clausesof ; andlet T be an integer.
PROP,(x) isde ned to bethe rst ofthe three predicatesP ROP(x; 4); PROP (x; 3); tr ue
(in this order) whosedenotational semairtics cortains morethan a xed number T of
variables. T is setto 10in Satz.

After applying unit propagationto a restricted number of variablesand detecting
failed literals, the heuristic of Satz weights literals with di erent criteria depending
on the predicate applied. For example,when PROP(x; 4) is applied, the heuristic
scoresead literal (x;: x) with the number of times that non-binary clauseshave
beenreducedwhen propagating the literal. The pseuda@ode of the variable selection
heuristic of Satz for PROP(x; 4) is shavn in Figure 4.2. Function H (x) is usedto
reach a good balance between weights of positive literals and weights of negative
literals.

When solving QCP instancesusingthe 3-D encaling with Satz, we obsened that
Satz almost always usesthe predicate PROP (x; 4), which requiresx to occur in both
positive and negative binary clauses,with at least 4 occurrencesin total. A closer
look at the 3-D encaling revealsthat Booleanvariablesthat ful ll PROP (x; 4) model
CSPvariableswith domainsize2. The reasonis that positive literals only occurin the
ALO-1, ALO-2 and ALO-3 constrairts, hencethe only way to have x occur positively
in a binary clauseis when one of these clausesbecomesbinary, in which casethe
correspnding (primal or dual) CSP variable has domain size 2. Further, it is easy
to show that the variablesin sud positive binary clauseshave at least three other
negative occurrencedrom AMO clausessothat PROP(x; 4) holds. This analysisled
us to incorporate the technique of failed literals and the heuristic of Satz into CSP
solvers asfollows:

1. For eat free CSP variable of domain size 2, we propagate eat value of the
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domainin orderto seeif the domaincanbereduced. As aresult, the domaincan
remainasbefore,canbe a singletonor canbe empty. In the rst caseweweigh
the variable using the balancefunction H of Satz's heuristics, wherew(x = i)
is the number of times that domainshave beenreducedafter propagating the
valuei. In the secondcase,we x the variable to the only value of its domain.
In the third case,we have detectedan inconsistencyand we badtrack.

2. We selectthe rst free CSP variable of domain size 2 with greatestvalue of
function H.

3. If there is no candidate variable in step 2, we apply the default heuristic of the
CSP solwer (for example,min-domain).

The above descriptioncorrespndsto what we will call simply look-aheadheuristic
(LAH). We referto the versionof GAC (MAC) that incorporatesLAH asGAC-LAH
(MA C-LAH).

4.3.5 New experimental results on random QWH instances

To assesghe performanceof LAH we performed an empirical investigation. In the
rst experimernt we comparedSatz with GAC-LAH and MAC-LAH on setsof 200
instancesof order 35, 37, 40 and 45 of the hard region of the phasetransition. The
results obtained are showvn in Table 4.7. We obsened that Satz outperforms GAC-
LAH and MAC-LAH, but the di erences are not sodramatic aswith GAC-vo, which
wasthe most competitive CSP option to solve QCPs. MAC-LAH seemdo be slightly
superior to GAC-LAH.

In the secondexperimert, we analyzed if the improvemens achieved on CSP
solversare dueto the useof lookaheadto detect potential wipeoutsor to the heuristic
function. To this end, we comparedMAC-LAH with a variant MAC-LA which uses
the samelookaheadbut choosesvariablesof minimum domain sizeinstead of applying
the heuristic function H to a reducednumber of variables;we refer to that versionas
MAC-LA. The resultsobtained, shavn in Table4.8, clearly indicate that the heuristic
function plays a certral role.
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Figure 4.3: Percer solved for the main solers.

Newertheless failed literals do achieve an extra-level of consistencyin eat sear®
node over that of plain unit propagation, and a natural questionto ask is whether
stronger forms of consistencycould yield better results. We experimerted with
stronger forms of lookahead without successbut did not try alldifferent con-
straints. Hall's Theorem, as presented in [227, statesthat:

"the constraint alldifferent  (Xxq;:::;Xn) with respective variable domains

K> Dif"

Howewer, we obsened experimertally that, for the QCP and the solwers consid-
ered, the condition of the theoremis only violated by subsetsof three CSP variables
with domain sizetwo. It is easyto shaw that the lookaheadphaseof our heuristic,
whenappliedto a variable of domain sizetwo, nds a cortradiction for the two values
of the domain and badktracks. Soin practice we may be getting the samepruning
power aswith Hall's theorem.

As a summary of our main results, Figure 4.3 comparesthe main approades
discussedin this work in terms of scalability, plotting percert of solved instances
againstthe order of quasigroups.It canbe seenthat SAT encalingsstill scalebetter,
but that the incorporation of the lookahead heuristic inspired by Satz goesa long
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way toward bridging the gap betweenthe best CSP model available to date, GAC-vo,
and the SAT approades.

4.4 Lessons learnt

Constraint Satisfactionand SAT techniquesare very powerful techniquesfor solving

optimization problems. They rely on propagation techniquesto reducethe seart

spaceand on heuristic to drive the seart e cien tly. Hereis the list of usefullessons
we have learnt:

Both techniques seemto be specially suited for satisfaction rather than for
optimization.

Both approadesstrongly rely on propagation medanisms,and their e ciency
on a given problem seemgo be related to the speci ¢ trade-o betweenseard
and propagation.

Heuristics have a huge impact on both techniques, although it is not possible
to nd the optimal heuristic to apply to any problem, nor evento any instance
of the sameproblem.

They seemnot to be suited for very large seart space,due to their complete
nature, and their impossibility to generatenear-optimal solutions.

They are howewer necessarywhen we needto nd the optimal solution or all
the solutions of a problem.



Chapter 5

Local Search for the Social Golfer
Problem

The sccial golfer problem has attracted signi cant interest sinceit was rst posted
on sci.op-research in May 1998. It consistsof schedulingn = g p golfersinto g
groups of p players every week for w weeksso that no two golfersplay in the same
group morethan once. An instanceof the sccial golferis speci ed by atriple g p w,
where g is the number of groups, p is the size of a group, and w is the number of
weeksin the schedule.

The sdeduling of sccial golfersis a highly combinatorial and symmetric problem
and it is not surprisingthat it hasgeneratedsigni cant attention from the constrairt
programming comnunity (e.g., [72, 209 178 200 199 13 184). Indeed, it raises
fundamenally interesting issuesin modeling and symmetry breaking, and it hasbe-
come one of the standard bendimarks for ewvaluating symmetry-breaking schemes.
Recen dewelopmerts (e.g., [13, 184) approad the scheduling of sccial golfersusing
innovative, elegarn, but alsocomplex,symmetry-breakingsdemes.

This researtr approadesthe problem from a very di erent angle. It proposesa
local seart algorithm for sdeduling sacial golfers, whoselocal moves swap golfers
within the sameweek and are guided by a tabu-sear®r meta-heuristic. The local
seart algorithm matches, or improvesupon, the best solutions found by constrairt
programming on all instancesbut 3. It alsofound the rst solutionsto 11 instances

133
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that werepreviously openfor constrairt programming! Moreover, the local seart al-
gorithm solvesalmostall instanceseasilyin afew secondsand takesabout 1 minute on
the remaining (harder) instances. The algorithm alsofeaturesa constructive heuristic
which trivially solves many instancesof the form odd odd w and provides good
starting points for others.

The rest of the chapter is organized as follows. After reviewing some related
work it starts by describingthe basiclocal seard algorithm, including its underlying
modeling, its neighborhood, its meta-heuristic, and its experimertal results. It then
presens the constructive heuristic and reports the new experimertal results when
the heuristic replacesthe random con gurations as starting points of the algorithm.
Finally, the chapter concludesby giving a set of lessondearrt.

5.1 Solving the Social Golfer Problem

There is a considerablebody of work on scheduling sccial golfersin the constraint
programming comnmunity. Referenceg13, 184 descrike state-of-the art results using
constrairt programmingand are excellert starting points for morereferences.Seealso
[199 for interesting theoretical and experimertal results on the sccial golfer problem,
aswell asthe description of SBDD, a generalschemefor symmetry breaking. Agren
[3] descrilesa tabu-seart algorithm for sdheduling sccial golfers,wherethe neighbor-
hood consistsof swapping the value of a single variable and whereall constrairts are
explicit. The resultsarealsofar in quality and performancefrom thosereported here.
The neighborhood usedin this researt, which implicitly maintain the group and week
structures, and the randomizedtabu-list strategy are fundamernal in scheduling hard
instances.Another local seart approad is introducedin [18(, wherethe symmetry
breakingis showvn cournter-productive for local seart and adding symmetries(super-
symmetries) is proposedinstead. Hybrid local seard and constraint programming
approades have beentried on the sccial golfer problem [177. In both cases,the
results are signi cantly dominated by those preserted in this chapter. The idea of

For the current statuses of the instances, see Warwick Harvey's web page at
http://www.icparc.ic.ac.uk /wh/ golf .
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weeks group 1 group 2 group 3 group 4 group 5
week 1 12345 678910 |1112131415|1617181920| 2122232425
week 2 | 16111621 | 27121722 | 38131823 49141924 | 510152025
week 3| 17131925 | 28142021 | 39151622 | 410111723 | 56121824
week 4 | 18151724 | 29111825 | 310121921 | 46132022 57141623
week 5| 19122023 | 210131624 | 36141725 47151821 58111922
week 6 | 110141822 | 26151923 | 37112024 48121625 59131721

Table5.1: A solution for the problem5 5 6

separatingthe problem constrairts into soft and hard constrairts is part of the folk-
lore of local sear®. It was studied theoretically and experimertally in [74],in which
conditions to presene connectivity are discussed.The connectivity is trivial in the
applications consideredhere sincefeasiblesolutions are permutations.

5.2 The Social Golfer

Thi application is the well-known sccial golfer problem, which hasattracted signi cant
interest sinceits posting on sci.op-research in May 1998. It is alsoproblem 10in
the CSPLIB [90]. The sacial golfer problem consistsof sthedulingn = g  p golfers
into g groupsof p players every weekfor w weeksso that no two golfersplay in the
samegroup more than once. An instance of the sacial golfer is speci ed by a triple
g p w, whereg is the number of groups, p is the size of a group, and w is the
number of weeksin the sthedule. Figure 5.1 depictsa solutionforthe 5 5 6 sccial

golfer problem.

5.2.1 The Mo deling

There are many possible modelings for the sccial golfer problem, which is one of
the reasonst is sointeresting. This paper usesa modeling that assaiatesa decision
variable x[w; g; p] with every position p of every group g of every weekw. We consider
eeryw; 2 W, g 2 Gandp 2 P, whereW = 1w, G = 1l.:;gand P = 1:p. We
abusenotation and denoteany given weekasw, group asg and position as p.
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Given a sdhedule , i.e., an assignmeh of valuesto the decisionvariables, the
value (x[w;g;p]) denotesthe golfer scheduledin position p of group g in weekw.
There are two kinds of constrairts:

1. A golfer plays exactly oncea week;

2. Two golferscan play together at most once.

The rst type of constrairts is implicit in the algorithms presened in this paper: It

is satis ed by the initial assignmets and is presened by local moves. Therefore,in

this section,we always assumethat sdhedulessatis esthe rst setof constrairts. The
secondset of constrairts is represeted explicitly. The model contains a constrairt

m[a; b] for every distinct pair (a;b) of golfers: Constraint m[a; b holds for an assign-
ment if golfersa and b are not assignedmore than onceto the samegroup. More
precisely if # (a;b) denotesthe number of times golfersa and b meetin schedule

ie.,

# ()= #f(w;0) j9p;p°2 P 1 (x[wigipl) = a& (x[w;g;pT) = bg;
constraint m[a; b] holds if
# (a;b) L (5.1)

To guide the algorithm, the model also speci es violations of the constrains. In-
formally speaking, the violations (m[a;b]) of a constraint m[a;b] is the number of
times golfersa and b are scheduledin the samegroup in sthedule beyond their
allowed meeting. In symbols, and generalizing

(m[a; b)) = max(0;# (a;b 1): (5.2)

As a consequencehe sccial golfer problem can be modeledasthe problem of nding
a sthedule minimizing the total number of violations f ( ) where

X
f()= (m[a;b)): (5.3)

a;b2G
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and Gisthe setofg pgolfers. A schedule with f( ) = Oisasolution to the sccial
golfer problem.

5.2.2 The Neigh borho od

The neighborhood of the local seard consistsof swapping two golfersfrom di erent
groupsin the sameweek. The set of swapsis thus de ned as

S = f(hw; g pai; hw; g p2i) jW 2 W;0150 2 G;p1;p2 2 P01 6 G0

Note that the neighborhood is connectedsince a feasible solution, if it exists, can
always be obtained by swapping golfersin the sameweek.

It is more e ective howewer to restrict attention to swaps involving at least one
golferin conict with another golferin the samegroup. This ensuresthat the algo-
rithm focuseson swapswhich may decreasehe number of violations. More formally, a
triple hg; w; pi is saidto bein conict in sdhedule , which is denotedby  (hg;w; pi);
if

9p°2 P: (m[ (x[w;g;p]); (x[w;g;p]) > L (5.4)
With this restriction, the setof swapsS ( ) consideredfor a schedule becomes
S ()="f(wigpii;hw; ;i) 2S j  (hw;g; pii)g:
The neighbors of a sthedule is given by
foxwgpl) $  (XIW; G p2l) | (hw;gr;pad s tw; g p2i) 2 S ()

5.2.3 The Tabu Comp onent

The tabu componert of the algorithm is basedon three main ideas. First, the tabu list
is distributed acrossthe variousweeks,which is natural sincethe swapsonly consider
golfersin the sameweek. The tabu componert thus consistsof an array tabu where
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tabu[w] represets the tabu list ass@iated with weekw. Second,for a given weekw,
the tabu list maintains triplet ha;b;ii, wherea and b are two golfersand i represets
the rst iteration where golfersa and b can be swapped again in weekw. Obsene
that the tabu lists store golfers, not positions hw; g; pi. Third, the tabu tenure, i.e.,
the time a pair of golfers(a; b) staysin the list, is dynamic: It is randomly generated
in the interval [4; 100]. At iteration k, swapping two golfersa and b is tabu, which is
denotedby
tabulw](a; b;k);

if the Booleanexpression
ha;b;ii 2 tabuw] & ik

holds. As a result, for schedule and iteration k, the neighborhood consistsof the
set of sthedulesobtained by applying movesin

S'(;k)=f(ttz) 2S ()] tabuw]( (x[ta]); (x[ta]); K)g:
wherewe abusenotations and usex[hw; g; pi] to denotex[w; g; p].

Aspiration  In addition to the non-tabu moves, the neighborhood also considers
movesthat improve the best solution found sofar, i.e.,

S(: )=f(tstx)2S () jf( X[tl$ x[t]) < F( )g;

where [x; $ X;] denotesthe schedule in which the valuesof variablesx; and x;
have beenswapped and  denotesthe best solution found sofar.

5.2.4 The Tabu-Search Algorithm

Figure 5.1 depictsthe basiclocal seard algorithm SGLS,which is a tabu seard with
arestarting componert. Lines2{7 perform the initializations. In particular, the tabu
list is initialized in lines 2{3 and the initial scheduleis generatedrandomly in line 4.
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Lines 5{7 then initialize the best schedulefound sofar , the iteration courner Kk,
and the stability courter s. The initial con guration randomly schedulesall golfers
in the various groupsfor every week, satisfying the constraint that ead golfer plays
exactly oncea week.

The core of the algorithm are lines 8{23. They iterate local movesfor a given
number of iterations or until a solution is found. The local move is selectedin line 9.
The key ideais to selecta swap in

S' (K[ S )

minimizing

f( Ix[td$ Xtz]]):
Obsene that the expressionf ( [X[t1] $ X[t2]]) represems the number of violations
obtained after swappingt; andt,. The tabu list is updatedin line 11, wherefunction

week is de ned as
week< w;g;p>) = w:

The newsdeduleis computedin line 12. Lines 13{15 update the bestsdedule,while
lines 16{20 specify the restarting componert.

The restarting componert simply reinitializes the seard from a random con g-
uration whene\er the best sthedule found so far has not beenimproved upon for
maxStableiterations. Note that the stability courter s is incremerted in line 22 and
resetto zeroin line 15 (when a new best scheduleis found) and in line 18 (when the
seart is restarted).

5.3 Exp erimen tal Results

This sectionreports the experimertal resultsfor the SGLSalgorithm. The algorithm
was implemerted in C and the experimerts were carried out on a 3.06GHzPC with
512MB of RAM. Algorithm SGLSwasrun 100times on ead instanceand the results
report averagevaluesfor successfuruns, as well as the percertage of unsuccessful
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1. SGLYW;G;P)
2. forall w2 W
3. tabulw] fg;
4, random con guration;
5. ;
6. 0;
7. 0;
8. while k maxlt & f( )> 0do
9. select (t1;t2) 2SY(;k) [ S(; )
minimizing f( [x[ti]$ X[t2]]);
10. random ([4,100]);
11. tabulweek(t,)]
tabulweek(t,)] [ fh (X[ta]); (X[tz]);k + ig;
12. [X[t:] $ X[t
13. if f( )<f( )then
14. ;
15. s 0
16. else if s> maxStablethen
17. random con guration;
18. s 0
19. forall w2 W do
20. tabulw] = fg;
21. else
22. S++;
23. k++;
Figure 5.1: Algorithm SGLSfor Sceduling Sccial Golfers
runs (if any).

140

Tables5.2and 5.3 report the experimertal resultsfor SGLSwhentrying to match

the constrain-programming results. Note that no explicty comparisonis given for

constrairnt-programming approades since all the methods in the literature merely

report single instancesusually solved for a lower number of weeks. Given a number

of groups g and a group size p, the tables only give the results for those instances

g p w maximizingw sincethey alsoprovide solutionsfor w< w. Table5.2reports

the number of iterations (moves), while Table 5.3 reports the executiontimes. Bold

entries indicate that SGLS matches the best known number of weeksfor a given
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size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
g w | w | w | w | w | w | w | w |
6 8 282254.0 6 161530.3 | 6 16761.5 3 15.8 - - - - -
7 9 12507.6 7 274606.0 5 102.9 4 100.4 3 23.4 - -
8 10 653.9 8 3231415 | 6 423.7 5 1044.9 4 2375 4 153301.6 - -
9 11 128.3 8 84.4 6 52.7 5 55.5 4 44.8 3 27.7 3 439 - -
10 | 13 45849.1 9 100.2 7 80.8 6 110.7 5 94.6 4 61.8 3 361 3 533
Table 5.2: Number of Iterations for SGLSwith Maximal Number of Weeks.
Bold Entries Indicate a Match with the Best Known Number of Weeks.
size 3 size 4 size 5 size 6 size 7 size 8 size 9 size 10
g w T %F | w T %F | w T | w T | w T | w T | w T |w T
6 8 4893 6 6 47.75 6 107.18 3 0.01 - - - - - - - -
7 9 3.06 7 107.62 8 5 0.07 4  0.09 3 0.03 - -
8 10 0.23 8 207.77 9| 6 0.37 5 121 4 0.39 4  360.00 - -
9 11 0.08 8 0.09 6 0.09 5 0.13 4 014 3 0.09 3 019 - -
10 | 13 30.82 9 0.16 7 0.19 6 034 5 041 4 0.33 3 020 3 039

Table5.3: CPU Time in Seconddor SGLSwith Maximal Number of Weeks.
Bold Entries Indicate a Match with the Best Known Number of Weeks.

number of groups and a given group size. The percertage of unsuccessfuruns is
shavn betweenparerthesesin Table 5.3.

As canbe seenfrom the tables, Algorithm SGLS nds solutionsto all the instances
solved by constraint programming except4. Moreover, almost all erntries are solved
in lessthan a second. Only a few instancesare hard for the algorithm and require
around 1 minute of CPU time. Interestingly, algorithm SGLS also solves 7 new
instances(with formathg s wi: 9 4 9,9 5 7,9 6 6,9 7 59 8 4,
10 5 8and10 9 4. Thosearenot shavn in the tablesbut more detail on these
are given below.

It is interesting to obsere that algorithm SGLS doesnot break symmetriesand
doesnot exploit speci ¢ properties of the solutions. This cortrasts with constrairt-
programming solutions that are often quite sophisticatedand involved. See,for in-
stance,the recert papers|[13, 184 which report the useof very interesting symmetry-
breaking schemesto sdedulesccial golfers.
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weeks | group 1 [ group 2 | group 3 | group 4
week 1 123 456 789 101112
week 2 147 1025 8113 6912
week 3 159 1026 7113 4812
Table 5.4: The initial con guration for the problem4 3 3
weeks group 1 group 2 group 3 group 4 group 5
week 1 12345 678910 |1112131415|1617181920| 2122232425
week 2 | 16111621 | 27121722 | 38131823 49141924 | 510152025
week 3| 17131925 | 28142021 | 39151622 | 410111723 | 56121824
week 4 | 18151724 | 29111825 | 310121921 | 46132022 57141623
week 5| 19122023 | 210131624 | 36141725 47151821 58111922
week 6 | 110141822 | 26151923 | 37112024 48121625 59131721

Table 5.5: The initial con guration for the problem5 5 6

54 A Constructiv e Heuristic

The quality of SGLS can be further improved by using a constructive heuristic to
nd a good starting, and restarting, con guration. The heuristic [39] trivially solves

P P
solutions) for other instancesas well.

(p + 1) instanceswhen p is prime and provides good starting points (or
Examples of sud initial con gurations are
given in Tables5.4 and 5.5, which will be usedto explain the intuition underlying
the constructive heuristic. The heuristic simply aims at exploiting the fact that all
golfersin a group for a given weekmust be assigneda di erent group in subsequen
weeks.As a consequencehe heuristic attempts to distribute thesegolfersin di erent
groupsin subsequehweeks.

Table 5.5 is a simple illustration of the heuristic with 5 groupsof size5 (i.e., 25
golfers)and 6 weeks.The rst weekis simply the sequencd...25. In the secondweek,
groupi consistsof all golfersin positioni in week1. In particular, group 1 consistsof
golfersl; 6; 11; 16, 21, group 2 is composedof golfers2; 7; 12,17, 22 and soon. In other
words, the groups consistof golfersin the samegroup position in week1. The third
weekis mostinteresting, sinceit givesthe intuition behindthe heuristic. The keyidea

is to try to selectgolferswhosepositionsare j,j+1,j+2,j+3,j+4 in the rst week,the
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1. heuristicSchedule  (w;g;p)

2. n g p

3. Po hL:::;ni;

4. forall we2 Liw 1

5. Pwe schedueWeekwe;q; p;n);
6. scheduleWeek (we;g;p;n)

7. Pwe Hli;

8. po O;

9. o 1

10. we 1,

11. forall go2 1::n 1

12. s select (gr;(po+ )% p);
13. po position (s);

14. g (gr+ 1)%g;

15. Puwe Pue i bsi;

16. return Pye;

Figure 5.2: The Constructive Heuristic for Stheduling Sccial Golfers

addition being modulo the group size. In particular, group 1 is obtained by selecting
the golfersin positioni from groupi in week1, i.e., golfersl; 7; 13,19, 25. Subsequen
weeksare obtainedin similar fashionby simply incremening the o set. In particular,
the fourth weekconsiderssequencesf positionsof the form j,j+2,j+4,j+6,j+8 andits
rst groupis 1;8;15 17, 24. Table 5.4 illustrates the heuristic on the 4-3-3instance.
Note that the rst groupin week?2 hasgolfersin the rst position in groupsl, 2, and
3in weekl. Howewer, the rst golferin week4 must still be sdheduled. Hencethe
secondgroup must selectgolfer 10, as well as golfers2 and 5.

Figure 5.2 depicts the code of the constructive heuristic. The code takes the
convertion that the weeksare numberedfrom Oto w 1, the groupsfromOtog 1,
and the positionsfrom Oto p 1, sincethis simpli es the algorithm. The key intuition
to understandthe code is to recognizethat a week can be seenas a permutation of
the golferson which the group structure is superimposed. Indeed, it su ces to assign
the rst p positionsto the rst group, the secondset of p positions to the second
group and so on. As a consequencethe constructive heuristic only focuseson the
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The top-level function is heuristicSchedule  which speci es the rst weekand
calls function scheduleWeeek for the remaining weeks. Sceduling a weekis the
core of the heuristic. All weeksstart with golfer 1 (line 7) and initialize the position
poto O (line 8), the group number gr to 1 (line 9), andthe oset towe 1. The
remaining golfersare scheduledin lines 11-15.

The key operation is line 12, which selectsthe rst unscheluled golfer s from
group gr of weekO (speci ed by Pg) starting at position (po+ )% p and proceeding
by viewing the group asacircular list. The next threeinstructions update the position
po to the position of s in group gr of weekO (line 13), incremert the group to select
a golfer from the next group, and extend the permutation by concatenatings to
Pwe. By speci cation of Select , which only selectsunstheduledgolfersand the fact
that the heuristic selectsthe golfersfrom the groupsin a round-robin fashion, the
algorithm is guararteed to generatea permutation.

5.5 Experimental Results using the Constructiv e
Heuristic

This sectiondiscusseghe performanceof algorithm SGLS-CHthat enhancesSGLS
with the constructive heuristic to generatestarting/restarting points. Although the
starting point is deterministic, the algorithm still usesrestarting, since the seart
itself is randomized,i.e., ties are broken randomly.

5,51 The odd odd w Instances

It is known that the constructive heuristic nds solutionsforp p (p+ 1) instances
when p is prime. Moreover, it also provides solutionsto many instancesof the form
odd odd w aswe now shov experimertally. The results were performed up to
odd = 49. For all (odd) prime numbers p lower than 49, the heuristic solves the
instancesp p w, wherew is the maximal number of weeksfor p groupsand periods.
When odd s divisible by 3, the heuristic solvesinstancesof the form odd odd 4,
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when odd is divisible by 5, it solvesinstancesof the form odd odd 6, and when
oddis divisible by 7, it solvesinstancesof the form odd odd 8. For instance,the
constructive heuristic solvesinstance49-49-8.

It is interesting to relate theseresultsto mutually orthogonal latin squares. In-
deed,it isknown that nding a solution for instancesofthe formg g 4isequivalent
to the problem of nding two orthogonallatin squaresof sizeg. Moreover, instances
ofthe formg g n areequivalert to the problemof nding n 2 mutually orthog-
onal latin squaresof sizeg [39, 199. Instancesofthe formg g 4 canbesolvedin
polynomial time wheng is odd. This providessomeinsight into the structure of these
instancesand somerationale why the constructive heuristic is able to solve many of
the odd odd w instances.Table 5.6 summarizesthe resultsonthe odd odd w
instances. The columnsrespectively specify the instances,the largestw found by the
constructive heuristic, and the number of weeksw for the scacial golfersthat corre-
spondsto the best lower bound on the latin squareas given in [40]. Rows in bold
facesindicate closedinstances. This constructive heuristic hasbeenextendedto deal
with other typesof instancein [113.

It is interestingto obsene that the lower boundson the mutually orthogonallatin
squaresvary signi cantly. Indeed, the lower bound for size17 is 16, while it is 4 for
size 15. Theselower bounds give someadditional insights on the inherert dicult y
of theseinstancesand on the behavior of the constructive heuristic.

55.2 Hard Instances

Table 5.7 comparesthe tabu-seard algorithm with and without the constructive
heuristic on the hard instancesfrom Table5.3. Notethat 7 7 7and7 7 8are
now trivially solved, aswell as9 9 4 which was also open. SGLS-CH does not
strictly dominatesSGLS, asthere are instanceswhereit is slightly slowver. Howe\er,
on someinstances,it is clearly superior (including on 8 8 5 which can now be
solved). Algorithm SGLS-CHalsocloseswo additional openproblems:7 5 6and

2A Latin Square corresponds to a Quasigroup, explained in chapter 4. Two Latin Squaresof
order n are said to be orhtogonal if one can be superimposed on the other, and ead of the n?
combinations of the symbols occurs exactly onein the n? cells of the array
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instances | CH :w | Gol:LB
3-3-w 4 4
5-5-w 6 6
7-7-w 8 8
9-9-w 4 10
11-11-w 12 12
13-13-w 14 14
15-15-w 4 6
17-17-w 18 18
19-19-w 20 20
21-21-w 4 7
23-23-w 24 24
25-25-w 6 26
27-27-w 4 28
29-29-w 30 30
31-31-w 32 32
33-33-w 4 7
35-35-w 6 7
37-37-w 38 38
39-39-w 4 6
41-41-w 42 42
43-43-w 44 44
45-45-w 4 8
47-47-w 48 48
49-49-w 8 50

Table5.6: Resultsonthe odd odd w Instances

10 4 10. Table 5.8 depicts the performanceof algorithm SGLS-CH on the new
solved instances.

5.5.3 Summary of the Results

Table 5.9 summarizesthe results of this work. It depicts the status of maximal
instancesfor SGLS-CHand whetherthe instancesare hard (more than 10 seconds)r
easy(lessthan 10 seconds).The resultsindicate that SGLS-CHmatchesor improves
the best results for all but 3 instances. In addition, it produces1l new solutions
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random new
instances I T %F I T %F
6-3-8 282254.07 48.93 6 250572 43.84 4
6-4-6 161530.35 47.75 168000 49.66
7-4-7 274606.00 107.18 200087 124.15
8-4-8 323141.52 107.62 8 316639 141.91 3
8-8-4 153301.61 360.00 8380.45 19.54

8-8-5 { {
10-3-13 | 45849.00 30.82

100 | 108654.00 496.82

51015.00 34.28

Table 5.7: ComparisonbetweenSGLS and SGLS-CH.

instance I T | %solved
7-5-6 | 487025.0, 370.50 10
9-4-9 | 469156.4 402.55 100
9-5-7 4615.0/ 5.39 100
9-6-6 | 118196.7| 196.52 100
9-7-5 | 64283.9| 155.16 100
9-8-4 1061.3| 2.92 100
10-4-10 | 548071.6) 635.20 100
10-5-8 | 45895.4| 76.80 100
10-9-4 5497.9| 24.42 100

Table 5.8: Experimertal Resultsof SGLS-CHon the New Solwed Instances.

with respectto earlier results. Theseresults are quite remarkable given the simplicity
of the approad. Indeed, constrairt-programming approades to the social golfer
problemaretypically very involved and useelegan, but complex,symmetry-breaking
techniques. Algorithm SGLS-CH,in cortrast, doesnot include any sud symmetry
breaking.

It is interestingto obsene the highly constrainednature of the instancesfor which
SGLS-CH does not match the best-knovn results. Henceit is not surprising that
constrairnt programming outperformslocal seard on theseinstances. Note also that
Brisset and Barnier [13] proposeda very simple constraint-programming model to
sole 8 4 9 in a few seconds. So, once again, there seemsto be a nice com-

plemertarity between constrain programming and local seart on the sccial golfer
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size3 size4d size5 size6 size7 size8 size9 sizel0
#groups | w status | w status | w status | w status | w status | w status | w status | w  status
6 8 Hard 6 Hard | 6 Hard 3 Easy | - - - - - - -
7 9 Easy 7 Hard | 6 New | 4 Easy | 8 New | - - - - -
8 10 Easy 8 Hard | 6 Easy |5 Easy | 4 Easy | 5 Hard | - - -
9 11 Easy 9 New |7 New |6 New |5 New [4 New |4 New -
10 13 Hard |10 New | 8 New | 6 Easy |5 Easy | 4 Easy | 4 New |3

Table 5.9: Summary of the Resultsfor SGLS-CHwith Maximal Number of Weeks.
Bold entries represem a match or an improvemen over existing solutions.
The status is new (for improvemen), hard (> 10 seconds)and easy( 10 seconds).

problem.

5.6 Lessons learnt

Local Seard is a heuristic algorithm that relieson a tness function and a neighbor-
hood structure to drive the seard towards high quality solutionsin the seard space.
Hereis the list of lessonswe have learnt:

LS is better suited for optimization, although it is alsoe ectiv e for satisfaction.
Howewer, in the latter caseit is not possiblefor the LS algorithm to nd all the
solutions.

LS algorithms tend to quickly corvergeto a local optima, howeer, it is some-
timesverydi cult to escagfromit anddirect the seard towardsglobaloptima.

LS can be easily fed with constructive heuristicsto generateinitial candidate.
This hasa great impact on the performanceof the algorithm.

Tabu seart is a very powerful LS technique sinceit allows degradingmovesto
help escape local optima while not excessiely degradingthe solution quality,
and it alsomaintains abstractionsof visited solutionsin orderto avoid revisiting
them during seard.

LS algorithms are not very di cult to implemert and the mosttime consuming
part is usually dewoted to comeup with the right modeling and data structures.




Chapter 6

A Memetic Algorithm for the
Golom b Ruler Problem

Finding Golomb rulers is an extremely challenging combinatorial problem which has
received considerableattention over the last decades.An n-mark Golomb ruler is an

that all distances
m m (I i<j n) (6.1)

are distinct. Eadh integer m; correspndsto a mark on the ruler and the length of
the ruler is the di erence m, m;. By corvertion, the rst mark m; can be placed
in position 0, in which casethe length is given by m,. An n-mark Golomb ruler is
optimal if there exists no n-mark Golomb ruler of smallerlength.

Golomb rulers have applicationsin a wide variety of elds including radio comrmu-
nications ([27, 114]), x-ray crystallography ([26]), coding theory ([56, 139), and radio
astronony. Moreover, becauseof their highly combinatorial nature,* they have be-
comea standard bendhmark to evaluate and comparea variety of seart techniques.
In particular, genetic algorithms, constraint programming, local seard, and their
hybridizations have all beenapplied to the problem of nding Golomb rulers (e.g.,
[43,76, 173 176 21Q 213).

1The seart for a 19-mark Golomb ruler took approximately 36,200CPU hours on a Sun Sparc
workstation using a very specializedalgorithm [56].

149
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This researth proposesa novel hybrid ewlutionary algorithm for nding near-
optimal Golomb rulers in reasonablgime. The algorithm embedsa local seard into
a geneticalgorithm and outperforms earlier geneticalgorithms, as well as constrairt
programmingalgorithms and their hybridizations with local seard. In particular, the
algorithm quickly nds optimal rulers for up to 13 marks and was ableto nd opti-
mal rulers for 14 and 15 marks, which is clearly out of read for the above menioned
algorithms. The algorithm also nds near-optimal rulers in reasonabletime, clearly
indicating the e ectivenessof hybrid ewlutionary algorithms on this highly conbi-
natorial application. Of particular interest is the conceptualsimplicity and elegance
of the algorithm.

Even though there are solutions for higher number of marks for other complete
sear® approades, ewlutionary algorithms have the advantage of providing good
guality solutionsin a short period of time. This is a main cortribution of this re-
seart aswell, providing high quality solutions (improving all previous ewlutionary
approades)in a few secondsor minutes.

The main technical cortribution of the novel hybrid ewlutionary algorithm is its
focus on feasibility. Indeed, the main step of the ewlutionary algorithm isto nd a
Golomb ruler of a speci ed length (or smaller), usingconstrairt violations to guidethe
seart. Near-optimal rulers are obtainedindirectly by solvinga sequencef feasibility
problems.

The rest of this chapter starts by a brief overview of related work. It then preserts
presens the local seart and the hybrid ewlutionary algorithms for nding Golonmb
rulers of a speci ed length, before generalizingthe algorithm to nd near-optimal
rulers and concludingwith the lessondearrt.

6.1 Finding Golom b Rulers

Two main approadescan be essetially consideredfor tackling the Optimal Golomb
Ruler (OGR) problem with EAs. The rst oneis the direct approad, in which the
EA conductsthe seard in the spaceSg of all possibleGolonmb rulers. The second
oneis the indirect approad, in which an auxiliary S,.x spaceis usedby the EA. In
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this latter case,a decaler [14Q must be utilized in order to performthe S;ux ! Sg
mapping. Examplesof the former (direct) approad are the works of Soliday et al.
[213, and Feeney[76. As to the latter (indirect) approad), we can cite the work
by Pereiraet al. [173 (basedon the notion of random-keys [18]), and Cotta and
Fernandez[43] (basedon ideasfrom GRASP [19(). This latter paper is speci cally
interesting since generalizationsof the core idea presened there have beenusedin
this work. To be precise,the key ideawasusing a problem-avare procedure(inspired
in GRASP) to perform the genot/pe-to-phenotpe mapping. This method ensured
the generation of feasible solutions, and was shavn to outperform other previous
approades.

In 1995, Soliday, Homaifar and Lebby [213 useda geneticalgorithm on di erent
instancesof the Golomb ruler problem. They chosea direct approat where eadt
chromosomeis composed by a permutation of n 1 integersthat represems the
sequenceof the n 1 lengths of its segmets. Two ewvaluation criteria were followed:
the overall length of the ruler, and the number of repeatedmeasuremets. This latter
quartity was usedin order to penalizeinfeasible solutions. The mutation operator
consistedof either a permutation in the segmeh order, or a changein the segmeh
lengths. As to crosseer, it was designedto guarartee that descendats are valid
permutations.

Later, Feeneystudied the e ect of hybridizing genetic algorithms with local im-
provemert techniquesto solve Golomb rulers[76]. The direct represemation usedcon-
sisted of an array of integerscorrespnding to the marks of the ruler. The crosseer
operator was similar to that usedin Soliday et al.'s approad although a sort pro-
cedurewas addedat the end. The mutation operator consistedin adding a random
amourt in the range[ x;X] -wherex is the maximum di erence betweenany pair
of marks in any ruler of the initial population{ to the segmeh mark selectedfor
mutation. As it will be showvn later, we can use a similar conceptin order to de-
ne a distance measureon the tness landscape. Pereiraet al. presened in [173
an indirect approad basedEA using the notion of random keys [18] o codify the
information contained in ead chromosome. The basicidea consistsof generatingn
random numbers (i.e., the keys) sampledfrom the interval [0; 1] and orderedby its
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indices of the keys thus result in a feasible permutation of f1;, ;ng. A similar
evaluation criteria as descrilked in [213 was followed. They also presened an alter-
native algorithm that adds a heuristic, favoring the insertion of small segmets. A
related approat has beenpresetted in [43]. This proposalincorporatesideasfrom
greedy randomizedadaptive seart procedures(GRASP) [19Q in order to perform
the genotpe-to-phenoype mapping. More precisely the mapping procedure pro-
ceedsby placingead of the n 1 marks (the rst mark is assumedo be a; = 0) one
at a time; the (i + 1) mark can be obtained asaj,; = a + |;, wherel; > 1 is the
i th segmen length. Feasiblesegmen lengths (i.e., those not leading to duplicate
measuremets) can be sortedin increasingorder. Now, the EA needsonly specifying
at ead stepthe index of a certain segmen within this list (obviously, the cortents of
the list are di erent in eat of thesesteps). This implies that ead individual would
be a sequencdr ; I'n 11, wherer; would be the index of the segmeh usedin the
i th iteration of the constructionalgorithm. Notice that in this last placemen stepit
doesnot make senseo pick any other segmen length than the smallestone. For this
reason,r, 1 = 1; hence,solutionsneedonly specify the sequencér 4; Iy 2. This
represemation of solutionsis orthogonal[184, i.e., any sequenceepreseis a feasible
solution, and hence,standard operators for cross@er and mutation can be usedto
manipulate them. This GRASP-basedapproad wasreported to perform better than
the previous (indirect and direct) approadied mertioned.

6.2 Golom b Rulers of Fixed Lengths

This section describes hybrid ewlutionary algorithm for nding Golomb rulers of
speci ed lengths. It starts with the problem modeling, then descrikesthe local seart
and the hybrid ewlutionary algorithms, and concludeswith the experimenrtal results.
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6.2.1 Mo deling

The problem modeling in the hybrid ewlutionary algorithm is natural and asseiates
adecisionvariable my, with every mark x. Givenaruler ,i.e.,anassignmen of values
to the decisionvariables,the value (my) denotesthe position of mark x within the
ruler. Sincethe length | of the ruler is known in this section,the values (m;) and

(my,) are xed to O and | respectively. There are three kinds of constrairts in the
Golomb ruler:

1. The marks have di erent positionsin the ruler.
2. The marks are ordered,i.e., (m;) < (Mj.+1).

3. The distancesd; = m; m; (j > i) areall dierent.

The rst two types of constraints are implicit in the algorithms presened in this
work: They are satis ed by the initial assignmets and are presened by local moves
and geneticoperators. The goal of the algorithms is thus to satisfy the third set of
constrairts.

To guide the seart, the algorithms use a notion of constrairt violations on the
distances. The violation (d) of a distanced in a n-mark ruler is the number
of times distance d appears betweentwo marks in the ruler beyond its allowed
occurrencesj.e.,

(d) = max(0;#fdj =dj1 i<j ng 1) (6.2)
whered; = (m;) (m;). The violations ( ) of a n-mark ruler is simply the
sum of the violations of its distancesd, i.e.,

X
()= (d) (6.3)
d2D

whereD = fdi; j 1 i<j ng. Obviously, aruler with ( )= 0isa solution
to the Golonb ruler problem.
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6.2.2 The Tabu Search

We now turn to the tabu seard algorithm for nding Golomb rulers of specied
lengths.

The Neighborhood The movesin the local seart consistsof changingthe value
of a singlemark. Sincethe marks are ordered,a mark x canonly take a value in the
interval

I (X) = [ (mx 1) + 1; (mx+1) 1]:

As a consequencethe setsof possiblemovesis
M()=f(x;p) j 0O<x<n&p2l (X)g
Obsenethat (m;) and (m,) are xed to O and|.

The Tabu Comp onent The tabu componert of the local seard prevents a mark
from being reassignedhe samevalue for a number of iterations. The tabu list thus
consistsof a triplet hx; p;ii, wherex is a mark and p is a possibleposition for mark
x and i represets the rst iteration wheremark x can be assignedto p again. The
tabu tenure, i.e., the number of iteration (x; p) stays in the list, is dynamic and is
randomly generatedin the interval [4; 100]. For aruler and an iteration k, the set
of legal movesis thus de ned as

M*(;k)=f(x;p)2M()]: tabu(x; p;k)g:

wheretabu(x; p; k) holdsif the assignmehm,  pis tabu at iteration k. The tabu
status can be overridden wheneer an assignmeh would reducethe smallestnumber
of violations found sofar. In other words, if  is the ruler with the smallestnumber
of violations found sofar, the neighborhood alsoincludesthe moves

M (o )=fxxp2M(C)] (Ime p)< ()9
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where [my  p] denotesthe ruler wherevariable my is assignedo p.

The Tabu-Search Algorithm  We are now readyto presen the basiclocal seart
algorithm grls . The algorithm, depictedin Figure 6.1, a tabu seart with an inten-
si cation componert?. Lines 2-6 perform the initializations. In particular, the tabu
list is initialized in line 2, the initial ruler is generatedrandomly in line 3, while lines
5 and 6 initialize the iteration courter k, and the stability courter s. The initial

con guration randomly assignsvaluesfor all marks, satisfying the constrairts that
eat mark is assignedio a di erent value and are ordered. Moreover, the position of
the rst mark is O and the position of the last mark is the length | of the ruler. The
bestruler found sofar  isinitialized to . The coreof the algorithm are lines 7-21
which perform local movesfor a number of iterations or until a solution is found. The
local move is selectedin line 8. The key ideais to selectthe best assignmen in the
neighborhood

MT(Kk I M (5 )

i.e., the non-tabu moves and those which improve the best ruler. Obsene that the
expression ( [my  V]) represets the number of violations obtained after assigning
p to mark x. The tabu list is updated in line 10, and the new ruler is computedin

line 11. Lines 12-14update the bestruler, while lines 15-18specify the intensi cation

componert. The intensi cation componert simply reinitializes the seart from the
best available ruler whenewer no improvemert in the number of violations took place
for maxStableiterations. Note that the stability courter s is incremeried in line 20
and resetto zeroin line 14 (when a new bestruler is found) and in line 17 (when the
seart is restarted).

6.2.3 The Hybrid Evolutionary Algorithm

We now turn to the hybrid ewlutionary (HE) algorithm for nding Golomb rulers
of speci ed lengths. The algorithm maintains a population of rulers and performs

2Remenber that intensi cation consistsof maintaining a list of good solutions that the algorithm
will revisit at somepoint during the seart



CHAPTER 6. A MEMETIC ALGORITHM FOR THE GOLOMB RULER PROBLEM 156

grls (n,l)
tabu fg;
randomConfigura tion (n,l);

s 0
while k maxlt & ( )> 0do
select (x;p)2M*(:kK[ M (: )
minimizing  ( [my  p]);

1.
2
3
4,
5. k O
6
7
8

9. random ([4,100]);
10. tabu tabu[ fhx;p;k+ ig;
11. [my pl;

12. if ()< ( )then

13. ;

14. s 0

15. else if s> maxStablethen
16. ;

17. s 0

18. tabu fg;

19. else

20. St+;

21. K++;

Figure 6.1: Algorithm grls for Finding Golomb Rulers

a number of iterations until a solution is found. Ead iteration selectstwo rulers in
the population and, with someprobabilities, crossesand/or mutates them. The two
rulers so obtained replacetheir parerts in the population. Each of thesestepsis now
reviewed in more detail.

Selection Ead iteration selectstwo rulers in the population (the parerts). Two
strategieswere studied for selectingthe parerts: a random strategy which randomly
selectstwo rulers from the population and a \roulette wheel" strategy that biasesthe
seard toward rulers with fewer violations.
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Crossover The HE algorithm usesa one-point crossaer for crossingtwo rulers
and . It selectsa randomnumber k in 1..n. The rst child is obtained by selecting
the rst k marksfrom ; andthe remainingn Kk marksfrom 5. The secondchild
is obtained in a similar fashionby swapping the role of the parerts. There is a minor
di cult y to addresswhen crossingtwo rulers: the two rulers may include the same
markers. Considerthe two parers

h015122334374144i
h036101623394244i

1

2

and k = 5. Without extra care,the rst child would be
h0151223/ 23394244

repeating position 23. Instead, the crosseer selectsthe last n  k elemerts in
which are not found in 1, giving

h0151223/ 16394244i.
The ruler is then orderedto obtain the rst child
h015121623394244i.

The secondchild is obtained in a symmetric way.

Mutation ~ Mutations in the HE algorithm are performedby the local seart grls .
The best solution obtained by grls is the result of the mutation, unlessthis solution
is already in the population. In this last case,the mutation is simply the ruler when
the local seard terminates. This designchoiceis motivated by the desireto presene
diversity during the seard.

Restarting Policy The algorithm is restarted from scratch when the diversity of
the population istoo low. The restarting policy is basedon the empirical obsenation
that the population is not diverseenoughwhentoo many rulers have few violations.
As a consequencethe HE algorithm restarts when more than half of the population
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1. grhea (n;l)

2 forall i 2 1::PopulationSize

3 [ frandomConfigura tion (n;l)g;
4, g O

5. while g maxGen & () > 0do
6 i 0

7 T

8 while i populationSizedo

9. select ( 1; 2) 2 ;

10. with probabilit y P

11. (15 2 crosseer( 1; 2);
12. with probabilit y P,

13. 1 grls (1);

14. > grls ( 2);

15. * 1 Of o1 20

16. i i+ 2

17. *;

18. g g+ 1;

19. if diversity() <

20. forall i 2 1::PopulationSize
21. [ frandomConfigura tion (n;l)g;

Figure 6.2: Algorithm grhea for Finding Golomb Rulers

hasfewer violations than a speci ed threshold . This strategy is only applied when
the parerts are selectedusing the \roulette wheel" strategy which hasa tendencyto
decreasdhe diversity of the population signi cantly over time. In the following, we
usediversity() to denotethe medianviolation in and () to denotethe smallest
violation in .

The Hybrid Algorithm  We are now ready to presen the HE algorithm grhea
which is depictedin Figure 6.2. Lines 2-4 perform the initializations. In particular,
the population is randomly generatedin lines 2-3 and the generation courter g is
initialized in line 4.

The core of the algorithm is in lines 5-21. They generatenew generationsof
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CPU Time(secs) Local Moves Failures CLS

# marks avg mdn avg mdn | %F MaxGen time Uns. | Backtracks CPU Time
5 0.0 0.0 3.46 1 0 10 - 15 0.0
6 0.0 0.0 8.78 5 0 10 - 24 0.0
7 0.0 0 42.44 21 0 10 - 145 0.0
8 0.03 0.02 1125.54 564 0 10 - 5114 0.08
9 0.24 0.19 5711.32 4339.5 0 10 - 23118 0.47
10 3.49 2.29 5674.5 37479.5| O 10 - 74860 1.87
11 8.15 5.86 84606.2 60836.5| O 10 - 269905 8.16
12 199.45 166.75| 1531640.67 1288230.5| 1 20 2411.1 2005597 72.2
13 1071.74 959.55| 5655670.67 4969063 1 50 990.36| 20360198 860
14 1013.2 3861.69| 3939817.5 14965000y 98 50 3860.93

Table 6.1: Experimertal Resultsof grhea for Rulersfrom 5 to 14 Marks.

rulers for a number of iterations or until a solution is found. The new generationis
initialized in line 7, while lines 8-16 create the new generation. The new rulers are
generatedby selectingthe parerts in line 9, applying a crosseer with probability P,
(lines 10-11), and applying a mutation with probability P, (lines 12-14). Note that
the function grhea ( ) denotesthe executionof grls starting from ruler . The new
rulers are addedto the new population in line 15. The new population becomeshe
current population in line 17. If the new population is not diverseenough(line 19),
it is reinitialized from scratch (lines 20-21).
Exp erimen tal Results Table 6.1 reports the experimertal results for algorithm
Algorithm grhea was run 50 times for ead ruler with a population size
of 50 and with a maximum of 10,000iterations for the local seartr. The crosswer
and mutation probabilities were both set to 0.6 and the diversity parameter is
setto 5. Theseparameterswere determinedfrom a limited number of experimerts
and can certainly be tuned for speci ¢ instances.Only resultswith roulette selection
are reported. The results of random selectionare relatively close,but near-optimal
results only useroulette selection.

The results are comparedto those of [17€, where a hybrid Complete and Local
Seart algorithm named Constrained Local Seard (CLS) is introduced. Note that
CLS performs better for higher number of marks but it is not able to solve rulers of

grhea .
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14 marks while our algorithm is.

6.3 Near Optimal Golom b Rulers

The algorithms described so far compute Golomb rulers of speci ed lengths. This
sectiondiscussesow to generalizethem to nd near-optimal Golomb rulers.

6.3.1 The Dicult vy

Consider rst the problem of generalizingthe tabu-seart algorithm for nding near-
optimal Golomb rulers. A natural approad is to solve a sequencef feasibility prob-
lems. Starting from an upper bound| on the optimal length of the ruler, the algorithm
then seardesfor rulers of length I, I 1, ... until no solution can be found. This
approad, although conceptuallysimple, performspoorly. Indeed,it essetially solves
a sequenceof mostly unrelated problems, since no information is reusedacrossthe
seartesand, in addition, the seard for a ruler of length | is not necessarilysimpler
than the seard for a ruler of smallerlength.

A secondapproad consistsof integrating the ruler length aspart of the objective
function and to considerthe last mark m, as a decisionvariable. The objective
function now conbines constrairt violations and the ruler length in order to guide
the seart toward optimal rulers. The violations and the length can be combined
in di erent fashions. Howeer, preliminary experimertal results with this approad
were not encouraging,although there may exist e ective ways to conmbine thesetwo
con icting objectivese ectiv ely for tabu-seart or other meta-heuristics.

6.3.2 Generalizing the Hybrid Evolutionary Algorithm

Interestingly, the HE algorithm can be generalizedto produce an indirect, but ef-
fective, approad for nding near-optimal Golomb rulers in reasonabletime. The
approad consistsagain of solving a sequencef feasibility problems,starting from an
upper bound | and producing a sequenceof rulers of length [, > 1, > .. > |} > 11,
The key idea however is not to x the length of the ruler in the HE algorithm. More



CHAPTER 6. A MEMETIC ALGORITHM FOR THE GOLOMB RULER PROBLEM 161

gr ohea (n; u)
gr ghea (n; u);
while ()= 0do

gr ghea(n,length ( )-1);

1.
2
3
4,
5
6 return ;

Figure 6.3: Algorithm gr ohea for Near-Optimal Rulers

precisely the new HE (gr ghea) algorithm considersthe last mark m, asa decision
variable whosevalue is at most |, wherel is the best available upper bound. The
initial population consistsof random rulers whoselengthsare at most|, but arelikely
to be shorter. Crosswer operationsproceedasbefore. Mutations are againperformed
by the local seart algorithm which still minimizesthe number of violations but now
considersthe last mark as a decisionvariable. This algorithm di ers from the previ-
ousoneonly in lines13and 14 ( gure 6.2), whereinstead of usingthe grls , it would
make useof a slightly modi ed procedurewhich will take into accoun the last mark
of the ruler; this translatesto the fact that (m,) is now not xed (seeremark in
equation 5). Note that the length of the ruler is not incorporated in the objective
function which focusesexclusiwely on feasibility.

The generalizedHE algorithm gr ohea for nding near-optimalrulersis depicted
in Figure 6.3. Givenan upper boundu onthe length of an n-mark ruler, the algorithm
rst seartesfor a ruler of length at most u (line 2). It then performsa number of
iterations, ead of which producingrulers of smallerlength (lines 3-5), until no feasible
solution can be found for a speci ed length. The main stepis in line 5: It usesthe
HE algorithm gr ghea for nding a ruler of length smallerthan length ( ), where

is the smallestruler found sofar and length () is simply the value (m,) of
the last mark. Note alsothat algorithm gr ghea is the HE algorithm grhea (n;I)
presened earlier, exceptthat the last mark is now a decisionvariable and the initial
population are rulers whoselength is at most | but may be shorter.

Algorithm gr ohea is bestviewed as solving a sequencef feasibility problemsto
nd rulers of decreasinglengths. Howewer, algorithm gr ohea does not arti cially
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hgrasp gr ohea
#marks | Opt Best Median Time Best Median Time Last(time) Opt(time)
11 72 | 74(2.8) 74(2.8) 15 72 72 0.3 0.3 0.1
12 85 | 94(10.6) 95(11.8) 2.4 85 91(7.1) 2.3 1 1.8
13 106 | 111(4.7) 114(7.5) 3.6 106 112(5.6) 3.9 2 1.7
14 127 | 135(6.3) 139(9.4) 5.3 |131(3.1) 136(7.1) 6 3.2 40.7
15 151 | 162(7.3) 169(11.9) 7.6 | 158(4.6) 164(8.6) 8.7 4.7 -
16 177 | 189(6.8) 197(11.3) 11.3|187(5.6) 195(10.2) 13.4 5.9 -

Table 6.2: Experimertal Resultsfor the gr ohea Algorithm. Time in minutes.

constrain the ruler length. Instead, the seard is directed by constraint violations
and the length of the ruler, i.e., the value of the last mark, is modi ed appropriate
to minimize violations.

6.3.3 Exp erimen tal Results

Table 6.2 reports the experimenrtal results for algorithm gr ohea and comparethem
with the hgrasp algorithm of [43]. All experimens use a roulette wheel selection
and are basedon the following settings. The maximum number of iterations for the
tabu seart is 10, 000,the sizeof the population is 50, the probabilities P, and P, are
both 0:6, and is 5. For a n-mark ruler, the algorithm usesthe optimal length of an
n+ 1-markruler asinitial upper bound and is iterated until no improvedruler is found
for two successig generations,exceptfor n = 16 wherewe usethree generations.The
gr ohea is run 30times for ead ruler (like the hgrasp in [43]). Finally, we alsolet
algorithm gr ohea without time/generation limits to determine whether it can nd
optimal rulers (theseresults are for a small number of runs). Both algorithms were
run on similar madines.

The table reports the bestand medianlengthsfor rulerswith 11to 16 marksfound
by algorithms hgrasp and gr ohea within their time limits (algorithm gr ohea
easily nds optimal rulers for smaller lengths). It also reports the averagetimes of
both algorithms in minutes. In addition, for algorithm gr ohea, the table alsogives
the time to nd the last solution (if it is not the optimal solution the algorithm will
keepon trying to nd it, but it might not be ableto nd any other ruler, in that
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case,we report time to nd the last valid ruler). The last column reports the time of
gr ohea to nd optimal rulers.

The resultsare particularly impressiwe. First obsenethat gr ohea systematically
nds optimal rulers up to 11 marks very quickly. Algorithm hgrasp doesnot nd
optimal rulers systematically even for 10 marks and never nds optimal rulers for 11
marks. Algorithm gr ohea also nds optimal rulers for 12 and 13 marksin lessthan
two minutesand for 14 marksin about 40 minutes. Algorithm gr ohea alsoimproves
the near-optimal solutions signi cantly. For 14 marks, the best solutions of gr ohea
arewith 3.1%of the optimal rulers (instead of 6.3%for hgrasp ) in about 6 minutes.
They are with 4.6%and 5.6%for 15 and 16 marksin about 9 and 13 minutes. These
represem improvemerns ranging from 1.4%to 3.2% comparedto hgrasp . Similar
results are obtained for median valuesas well.

A fundamertal bene t of gr ohea isits ability to improve its solutionsover time,
which doesnot seemto be the caseof prior genericand/or hybrid ewlutionary al-
gorithms. Contrary to gr ohea, earlier algorithms were not able to nd optimal
solutions for 13 and 14 marks. Algorithm gr ohea also nds a solution of length
153in about an hour on 15 marks (151 is the optimal length), showing that better
solutions can be found when the algorithm is given more time. This is particularly
interesting given the natural modeling and conceptualsimplicity of the algorithm.

It is alsoimportant to stressthat theseresults were obtained without tuning of
the parameters. In particular, larger instancesare likely to bene t from longertabu
seartiesand, possibly more sophisticatedcross@ers. But the results clearly indicate
the potential of hybrid ewlutionary algorithms for nding near-optimal rulers.

6.4 Lessons learnt

Genetic Algorithms are population-basedalgorithms that are easily hybridized with
LS techniques. Contrary to the opinion of many researtierswithin the combinatorial
optimization eld, they can be very e cien t when solving hard problems, and espe-
cially when generatingfast near-optimal solutions. Hereis the list of lessonsve have
learnt:
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GAs arevery usefulto provide a framework in which to maintain a setof diverse
and high quality solutions.

Reconbination operators can sometimesyield valid, optimal or near-optimal
solutions.

When solving hard conmbinatorial problemsthey greatly bene t from the incor-
poration of LS techniquesthat allow a faster corvergence.

A fast convergenceof the population is also problematic. Restarts and other
medanismareneededn orderto regeneratehe population and drivethe seart
towardsdi erent regionsin the seart space.Howewer, it is not always straight-
forward to implemert the right restarting condition.

The Local Seart is greatly enriched by having a population of diversesolutions.
LS typically improvesa solution until it getsstuck on a local optima, whenthe
algorithm commonly restarts and attempts to improve a di erent solution. In
this case,we canseeit asif the LS had a set of good solutions available at any
time to be optimized in turns.

GAs can not only incorporate LS proceduresto improve the e ciency of their
reconbination operators, but alsouseinformation yielded by those processeso
dynamically adapt themseles.
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Chapter 7

Adding CP and Clustering to Solve
the Golom b Ruler Problem

In this section a new hybrid algorithm is preserted in two steps: rst a very so-
phisticated memetic algorithm; and second,the introduction of CP and clustering
techniquesto boost performance. As in the previous chapter, the problem we are
goingto be dealingwith is that of the Golomb Ruler. Remenber that Golomb Rulers
[9, 26] are a classof undirected graphsthat, unlike usualrulers, measuremorediscrete
lengthsthan the number of marks they carry. More formally, a n-mark Golomb ruler

sudh that all distancesm; m; (16 i< | 6 n) aredistinct. Ead integerm; corre-
spondsto a mark on the ruler and the length of the ruler is the di erence m,, m;.
By corvertion, the rst mark m; canbe placedin position 0, in which casethe length
is given by m,,.

The particularity of Golomb Rulersthat on any givenruler, all di erencesbetween
pairs of marks are unique makesthem really interestingin many practical applications
(cf. [76, 187). It turns out that nding optimal or near-optimal Golomb rulers (a n-
mark Golomb ruler is optimal if there existsno n-mark Golomb ruler of smallerlength)
is an extremely challenging conmbinatorial problem. To date, the highest number of
marks for which the optimal Golomb ruler (OGR) is known is 23 marks® [205 19§.

1The seart for an optimal 19-marks Golomb ruler took approximately 36,200 CPU hours on
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Finding optimal Golomb rulers has thus becomea standard bendimark to evaluate
and comparea variety of seart techniques. In particular, ewlutionary algorithms
(EAS), constraint programming(CP), local seart (LS), and their hybridizations have
all beenapplied to this problem (e.g.,[76, 43, 173 176 210 213).

In thesenext sections,we preser a hybrid EA designedto nd optimal or near-
optimal Golomb Rulers. This algorithm makesuseof both an indirect approat and
a direct approad in dierent stagesof the seard. More speci cally, the indirect
approad is usedin the phasesof initialization and restarting of the population and
takes ideas borrowed from the GRASP-basedewlutionary approad published in
[43]. The direct approad is consideredin the stagesof reconbination and local
improvemen; particularly, the local improvemert method is basedon the tabu seart
(TS) algorithm descrikedin the previouschapter. Experimertal resultsshaw that this
algorithm succeedsvhere another ewlutionary algorithms did not. OGRs up to 15
marks (included) can now be found. Moreover, the algorithm producesGolomb rulers
for 16 marks that are very closeto the optimal value (i.e., 1.1%far), thus improving
signi cantly the results previously reported in the EA literature. Finally, we shaov
the last improvemerns which rely on clustering to achieve diversity in the reference
setand completeseard to attempt to nd optimal rulers at the reconbination step.
Theseenhancemets produce superior results, and the new hybrid is now capableof
solving rulers up to 16 marks. The chapter concludeswith a brief summary and a
review of all the lessonslearnt throughout the thesis and how they are re ected in
this last hybrid.

7.1 Scatter Search for the Golom b Ruler Problem

Scatter seart (SS)is a metaheuristic basedon population-basedseart whoseorigin
can be traced bad to the 1970sin the context of combining decisionrules and prob-
lem constraints [143. Figure 7.1 depictsthe SStemplate. Among the saliert features

a Sun Sparc workstation using a very specialized algorithm [56]. Optimal solutions for 20 up to
23 marks were obtained by massiwe parallelism projects, taking seweral months for ead of those
instances[187, 85].
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Figure 7.1: A genericSSalgorithm diagram

solutions

of SSwe can cite the absenceof biologicalmotivation, and the emphasisput in the use
of problem-avare medanisms,suc as specializedreconbination procedures,and LS
techniques. In a striking exampleof corvergen ewlution, theseare also distinctive
features of memetic algorithms (MAs) [164. Indeed, although SSewlved indepen-
dertly from MAs, SScan be regardedwith hindsight asa particular caseof MA (or,
at least, as an alternative formulation of a common underlying paradigm). There
is just oneremarkable methodological di erence betweenmainstream versionsof SS
and MAs: unlike other population-basedapproates, SSreliesmore on deterministic
strategiesrather than on randomization. At any rate, this generalmethodological
principle is exible. This is particularly the casein our approad, in which we usea
non-deterministic componert within our algorithm. For this reason,we will usethe
terms MA and SSinterchangeablyin the context of this work. In the following we
will describe ead of the componerts of our algorithm.



CHAPTER 7. ADDING CP AND CLUSTERING TO SOLVE THE GOLOMB RULER PROBLEM

7.1.1 Div ersication Generation Metho d

The diversi cation generationmethod senestwo purposesin the SSalgorithm con-
sidered: it is usedfor generatingthe initial population from which the referenceset
will be initially extracted, and it is utilized for refreshingthe referenceset wheneer
arestart is needed.

The generationof new solutions is performed by using a randomized procedure
that tries to generatediverse solutions. The basic method utilizes the GRASP-
decdaling techniquesintroducedin [43. Solutions are incremertally constructed as
follows: in the initial step, only mark m; = 0 is placed; subsequetty, at eat step
i an orderedlist is built usingthe n rst integersl;; ;l, sud that placing a new
mark m; = m; 1+ 1;,16 j 6 n, would result in a feasibleGolomb ruler. A random
elemen is drawn from this list, and usedto place mark m;. The processis iterated
until all marks have beenplaced. Notice that this resultsin a feasiblesolution.

A variant of this processis usedin subsequet invocations to this method for
refreshingthe population. This variant is related to an additional dynamic constrairt
that is imposedin the algorithm: in any solution, it must hold that m,, < L, wherelL
is the length of the best feasibleGolomb ruler found sofar. To ful ll this constrairt,
new solutionsare constructedby generatingtwo feasiblerules following the procedure
descriked before,and submitting them to the combination method (seeSect.7.1.3),
which guararteescompliancewith the mertioned constrairt.

7.1.2 Local Impro vement Metho d

The improvemert method is responsible for enhancingraw solutions produced by
the diversi cation generation method, or by the solution conbination method. In
this case,improvemert is achieved via the useof a tabu-seart algorithm. This TS
algorithm works on tentativ e solutions that may be infeasible,i.e., there may exist
somerepeated distancesbetween marks. The goal of the algorithm is preciselyto
turn infeasiblerulers into feasibleones,respecting the dynamic constraint m,, < L.
Whene\er this is achieved, a new incumbent solution is obviously found.

To guide the seart, the algorithm usesa notion of constrairt violations on the
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distances. The violation (d) of a distanced in a n-mark ruler is the number
of times distance d appears betweentwo marks in the ruler beyond its allowed
occurrencesj.e.,

(d)=max(0;#fd; =dj 16i<j6ng 1) (7.2)

whered; = m; m;. The overall violation ( )ofgn-mark ruler is simply the
sum of the violations of its distancesd, i.e., ( )= o (d), whereD = fd; j
16 i<j6 ng.

The movesin the local seart consistsof changing the value of a single mark.
Sincemarks are ordered, a mark my can only take a value in the interval | (x) =
[my 1+ 1;my;  1]. As aconsequencehe setof possiblemovesisM () = f(x;p) j
A<x<n ™ (p21 (x)g. Obsene that m; is xed to 0, and m, is not allowed
to grow. To prevert cycling, a tabu list of movemerts is kept. The list storestriplets
hx; p;ii, wherex is a mark, p is a possibleposition for mark x, and i represets the
rst iteration where mark x can be assignedto p again. The tabu tenure, i.e., the
number of iterations (Xx; p) stays in the list, is dynamic and randomly generatedin
the interval [4; 100]. For a ruler and an iteration k, the set of legal movesis thus
de ned as

M*(;k)=f(x;p)2M()]: tabu(x; p;k)g:

wheretabu(x; p; k) holdsif the assignmehm,  pis tabu at iteration k. The tabu
status can be overridden whenewer an assignmeh reducesthe smallest number of
violations found sofar. Thus,if isthe ruler with the smallestnumber of violations
found sofar, the neighborhood alsoincludesthe moves

M (: )=fxp2M()] (Ime ph< ()9

where [my  p] denotesthe ruler wherevariable my is assignedo p. To intensify
the seard, the current solution is reinitialized to the initial ruler o (in the actual TS
run) wheneer no improvemert in the number of violations took placefor maxStable
iterations. The algorithm returns the best solution  found. Fig. 7.2 shows the
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completepseuda@ode of the TS algorithm.

1. TS( o)

2 tabu fg;

4. 0

5. k O

6 s 0

7 while k6 maxlt & ( )> 0do

8 select(x;p)2M*(;kK[ M (; )
minimizing  ( [mx  p]);

9. random ([4,100]);

10. tabu tabu[ fhx;p;k+ ig;

11. [my pl;

12. if ()< ( )then

13. ;

14. s 0

15. else if s> maxStablethen

16. 0

17. s 0

18. tabu fg;

19. else

20. S++;

21. k++;

22. return ;

Figure 7.2: Pseudaode of the TS algorithm

7.1.3 Solution Combination Metho d

The combination of solutionsis performedusing a procedurethat bearssomeresem-
blancewith the GRASP-decaling mertioned in Sect.7.1.1. There are someimportant
di erencesthough: rstly , the procedureis fully deterministic; secondly the solution
producedby the method is ertirely composedof marks taken from either of the par-
ents; nally, the method ensuresthat the m, < L constrairt is ful lled.

The combination method beginsby building a list L of all marks x presef in
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either of the parerts, sud that x < L 2. Then, starting from m; = 0, a new mark x
is chosenat eat stepi sud that (i) m; ; < X, (ii) there existn i marks greater
than x in L, and (iii) a local optimization criterion is optimized. This latter criterion
iS minimizing P J'le (x  m))?+ (x m; 1), where is the partial ruler. This
expressioninvolves minimizing the number of constrairts violated when placing the
new mark, aswell asthe subsequenincreasein length of the ruler. The rst term is

squaredto raiseits priority in the decision-making.

7.1.4 Subset Generation and Reference Set Up date

This subsetgenerationmethod createsthe groupsof solutionsthat will undergocom-
bination. The conbination method usedis in principle generalizableto an arbitrary
number of parers, but we have consideredthe standard two-parert reconbination.
Hencethe subsetgenerationmethod hasto form pairs of solutions. This is done ex-
haustively, producing all possiblepairs. It must be noted that sincethe conmbination
method utilized is deterministic, it doesnot make senseto combine again pairs of
solutionsthat were already coupledbefore. The algorithm keepstrack of this fact to
avoid repeating computations.

As to the referenceset update method, it must produce the referenceset for the
next step by usingthe currert referenceset and the newly producedo spring (or by
using the initial population generatedby diversi cation at the beginning of the run
or after arestart). Se\eral strategiesare possiblehere. Quality is an obvious criterion
to determine whether a solution can gain membership to the referenceset: if a new
solution is better than the worst existing solution, the latter is replacedby the former.
In the OGR, we considerthat a solution x is better than a solution y if the former
violates lessconstrairts, or violates the samenumber of constrairts but hasa lower
length. It is alsopossibleto gain memnbership of the referencesetvia diversity. To do
S0, a subsetof diverse solutions (i.e., distant solutionsto the remaining high-quality
solutionsin the set{ an appropriate de nition of a distancemeasures neededfor this
purpose)is kept in the referenceset, and updated wheneer a new solution improves

2It might happen that the number of such marks were not enoughto build a new ruler. In that
case,a plain solution with length 1 (that is, the worst possiblevalue) is returned.
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the diversity criterion.

If at a certain iteration of the algorithm no update of the referencesettakesplace,
the current population is consideredstagnated, and the restart method is invoked®.
This method works asfollows: let  be the sizeof the referenceset; the best solution
in the referenceset is presened, = ( 1)=2 solutions are generatedusing the
diversi cation generationmethod and the improvemen method, and the best 1
out of these solutionsare picked and insertedin the referenceset.

7.2 Experimental Results

To ewvaluate our memeticapproad, a setof experimerts for problemsizesranging from
10 marks up to 16 marks has beenrealized. In all the experimerts, the maximum
number of iterations for the tabu seard wassetto 10,000, the sizeof the population
andreferencesetwas190and 20respectively, and the arity of the combination method
was 2. The referenceset is only updated on the basisof the quality criterion. One
of the key points in the experimertation has been analyzing the in uence of the
local seard strategy with respect to the population-basedcomponert. To this end,
we have experimerted with partial Lamarckism [125, that is, applying the local
improvemert method just on a fraction of the members of the population. To be
precise,we have considereda probability p, for applying LS to ead solution. The
valuesps 2 10:1;0:2; 0:4; 0:6; 0:8; 1:0g have beenconsidered.All algorithms wererun
20 times until an optimal solution was found, or a limit in the whole number of
evaluations was exceeded.This number of evaluations was set soasto allow a xed
averagenumber e of LS invocations (e = 10,000 TS runs). Thus, the number of
evaluations waslimited in ead of the instancesto e=ps. This is a fair measuresince
the computational costis dominated by the number of TS invocations.

Table 7.1 reports the experimenrtal results for the di erent instancesconsidered.
Row MAXxx correspndsto the executionof the MA with a local improvemert rate

3Notice that the TS method usedfor local improvemert is not deterministic. Thus, it might be
possiblethat further applications of TS on the stagnated population resulted in an improvemert.
Howewer, due to the computational cost of this process,it is advisableto simply restart.
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10 11 12 13 14 15 16

hgrasp Best N/A 2.8 10.6 4.7 6.3 7.3 6.8
Median N/A 2.8 11.8 7.5 9.4 11.9 11.3

gr ohea Best 0 0 0 0 3.1 4.6 5.6
Median 0 0 7.1 5.6 7.1 8.6 10.2

MAL1.0 Best 0 0 0 0 1.6 0 4.0
Median 0 0 0 0 2.4 4.0 6.2

MAO.8 Best 0 0 0 0 0.8 1.3 2.3
Median 0 0 0 0 1.6 3.3 5.6

MAO.6 Best 0 0 0 0 0.8 0 2.8
Median 0 0 0 0 1.6 4.0 6.2

MAO.4 Best 0 0 0 0 0 1.3 1.1
Median 0 0 0 0 1.6 4.0 5.6

MAO.2 Best 0 0 0 0 0 0.7 3.4
Median 0 0 0 0 1.6 4.0 6.2

MAO.1 Best 0 0 0 0 0 0.7 3.4
Median 0 0 0 0 1.6 3.3 5.6

Table7.1: Relative distancesto optimum for di erent probabilities of the MA and the
algorithms gr ohea and hgrasp . Globally best results (resp. globally best median
results) for ead instance size are shovn in boldface (resp. underlined). Results of
hgrasp are not available for 10 marks.

of ps = xx. The table reports the relative distance (perceriage) to the known
optimum for the best and median solutions obtained. The table also shows the
resultsobtained by the algorithms describedin [43](i.e., hgrasp ) andin the previous
chapter (gr ohea). Algorithm hgrasp is groundedon the ewlutionary use of the
GRASP-basedsolution generationmethod usedin the basic diversi cation method
of our algorithm. As to algorithm gr ohea, it providesthe best results reported in
the literature for this problem via a population-basedapproad, and thereforeit is
the bendimark referencefor our algorithm. Speci cally for this latter algorithm, as
reported in the previous chapter, the maximum number of iterations for the tabu
seart was also 10, 000, the size of the population was 50, and the probabilities pn,
and px were both setto 0.6. Both algorithms (gr ohea and hgrasp ) wererun 30
times for ead ruler.
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Figure 7.3: (Top) Computational e ort (measuredin number of TS invocations) to
nd the bestsolution. (Bottom) Statistical comparisonof the computation e ort. In
ead cell, the results ((+'=signican t, ~ '=non-signi cant) correspnd from left to
right to instancesizesfrom 10 up to 16.

The results are particularly impressie. Firstly, obsene that our memetic algo-
rithm systematically nd optimal rulersfor up to 13marks. gr ohea is alsocapableof
ewvertually nding someoptimal solutionsfor theseinstancesizes,but notice that the
medianvaluesaredrastically improvedin the MA. In fact, the medianvaluesobtained
by the MA for theseinstancescorrespnd exactly to their optimal solutions. Compar-
atively, the resultsare even better in larger OGR instances:our MA can nd optimal
ORGs ewen for 14 and 15 marks, and computeshigh-quality near-optimal solutions
for 16 (i.e., 1.1%from the optimum). Theseresults clearly outperform gr ohea; in-
deed,the latter cannot provide optimal valuesfor instancesizeslarger than 14 marks.
Moreover, all MAxx signi cantly improve the medianvaluesobtained by gr ohea on
the larger instancesof the problem. Theseresults clearly indicate the potential of
hybrid EAs for nding optimal and near-optimal rulers.
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We have also conducted statistical tests to ascertain whether there are signi -
cant performancedi erences betweenthe di erent LS application rates. This has
beendone using a non-parametric Wilcoxon ranksum test (results are not normally
distributed). Except in three head-to-headcomparisonsfor 14 marks (ps = 1:0 vs
pPs = 0:8andps = 0:1, and ps = 0:4 vsps = 0:1), thereis no statistically signi cant
di erence (at the standard 0.05level) in any instance sizefor the di erent valuesof
pis- While this is consistert with the fact that the averagenumber of TS invocations
is constar, it raisesthe issueof whether the assaiated computational cost is the
sameor not. The answer to this question can be seenin Fig. 7.3. As expected, the
computational cost increaseswith the size of the problem. Quite interestingly, the
averagecost decreasedor 16 marks. This behavior owesto the higher di cult y of
the problem for this latter size: the algorithm quickly reactesa near-optimal value
(a remarkable result), and then stagnates(longer runs would be requiredto improve
the solutions from that point on). The table at the bottom of Fig. 7.3 shows the
outcome of the statistical comparisonbetweenthe computational cost of the MA xx
for a given instancesize. As it can be seen,the di erences are almost always signi -
cant for the lower range of sizes,and progressiely becomenon-signi cant asthe size
increases. For 16 marks, there is just one caseof statistically signi cant di erence
of computational cost (pis = 0:4 vs ps = 0:8). Sincethe small valuesof pis imply a
lower computational costfor instancesizesin the low range,and thereis no signi cant
di erence in either quality or computational cost with respect to higher valuesof pys
in the larger instances,it seemghat valuesp 2 f0:1; 0:2g are advisable.

7.3 New Impro vements

The algorithm preserted this far yields very impressiwe results, however, we want
to pursue it further. There are two aspects (among others) that we can improve
very straightforwardly. First, we realized that Constraint Programming can be of
help at somepoint. Second,we beliewe that diversity in the population is almost as
important asthe quality of it. Let usthen introduce the new featuresincorporated
into our algorithm:
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7.3.1 Solution Combination by Complete Search

Reconbination methods are usually introducedin order to generatenew high quality
and diverseindividuals. Our current reconbination medanism achievesthesegoals,
however what we pursuehereis somethingdi erent. Wearetrying to generateoptimal
solutionswith this operator.

We have beendealingwith valuesof marksthrough all this researt.. Now we turn
to look into the distancesbetweenmarks. We realizedthat a complete seart pro-
cedurethat incorporates propagation techniqueswould be perfectly suited to seart
for a solution when fed with the appropriate distances. Complete Seart procedures
tend to be very ine cien t with very large sear® spaceshowever we can limit that
in this caseby only taking into accoun the distancesbetweenmarks of the two indi-
viduals to be combined. For example,imagine we have the two rulers of 9 marks to
be conbined:

h015132334475055i
h027111224304047i

N
11

The distancesbetweenmarks of both rulers are

[1,2,3,4,5,6,7,8,10,11,12,13]

Note that we only considerdistancesbetweentwo consecutie marks i; j where
i+ 1=j. To fully characterizethe problem we needto take all the distancesinto
accour, howewer theseare the distancesthat we are going to restrict.

Thus, we usethose distancesto feeda complete seart procedurewhosegoal is
to quickly attempt to generatevalid rulers (hopefully optimal). In order to do that
we needto formulate the problem as a CSP. Now, the variables are distancesDj;
betweenmarks (wherei < j). The domain of the variablesD; wherei + 1= j is
reducedto the valuespreviously shavn. The rest of the variablescan take any value
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within 1::m wherem is the length of the ruler®. The set of constrairts is as follows:
Dij 6 Dy 8 i 6 kandj 6 |

Since we are going to executethis procedure within the MA cycle, we can take
advantage of dynamic information, sud as the length  of the shortest valid ruler
in the population. This is explicitly indicated in the procedure by introducing a
constrairt:

min (ly) <

wheremin (ly) is the minimum length possiblefor a partial ruler k.

Empirical Observ ations

We have now fully characterizedthe problem our completeseart procedureis going
to be dealingwith. Howewver we found two options at this point:

Usea Constraint Programming solver,

or take advantage of the data structures already implemerted in our algorithm.

The rst option implies we can plug a bladk-box to our MA to which we passa set
of distancesand then expect a solution or a con rmation that no valid solution canbe
found. We can take advantage of e cien t propagation techniquesand sophisticated
heuristics.

On the other hand, taking advantage of the structures already implemerted, we
can focus on instantiating only variables Dj correspnding to distancesbetween
consecutiv marks; if we instantiate the variablesin the sameorder as they would
physically appear in the ruler, we can easily calculate the rest of the distancesand
thus, ched the validity of the partial solution very quickly. This can be viewed as
limiting the seard variablesto the onesrepreseting distancesbetweenconsecutie
marks and using a lexicographicvariable ordering heuristic. Note that in this case

“Note that the value of m is not important aswe will soon clarify
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we do not needto worry about the value of m, upper bound in the value of the non-
consecutie distances,sincewe are not focusingthe seart on them, but only on the
consecutie ones.

Both approahesweretested and we found that the latter was consistenly faster
than the former; as it allows us to ignore non-consecutie distance variables. Still,
the reduction of the seart spacewas not enoughto yield a very fast medanism.
Remenber that we implemert this procedureas a conbination operator, and thus,
we cannot dewote more than a few seconddo it.

In our experimertal tests we discoveredthat, when reducing the seard spaceto
consideronly the consecutie distancesof the optimal ruler, the procedurewas able
to nd a solution in lessthan a secondfor up to 14 marks, and lessthan 5 seconds
for 15 and 16 marks. Howewer, introducing more distancessloved down the process
exponertially, and if within those distancesa valid solution was not possibly found,
the time cost grew inmensely

The nal procedure

After a few more experimerts we designedthe next medanism:
1. Selectthe two rulers to be combined.
2. Calculate the consecutie distance$

3. Randomly selectn + 3 distancesfrom the previousstep, being n the number of
marks in the ruler (which is 4 distancesmore than needed).

4. Run the completeseart procedurewith thosedistances,with atime limit of 4
seconds.

5. If avalid solution was found, return it, if not call the old reconbination med-
anism.

SNote that somedistancesmight be repeated; for example,in two 15 mark rulers (14 consecutive
distances)we typically nd around 20 di erent distances.
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Note that this procedurecan also nd near optimal rulers if the chosendistances
permit it. Obviously, we can be missing somepotential optimal rulers by randomly
selectingn + 3 distances,but we found it to be the besttrade-o betweentime and
e ciency. That is, if there wasa valid solution for the given distances,the complete
seart procedurewould almost always nd it within the giventime limit.

7.3.2 Diversity in the Population: Clustering

We alsorealizedthat the population got stuck very frequerily. The solutionsprovided
by the LS medanism were of high quality, and thus corvergedvery quickly to the
sameregion of the seart space. Restarts were required to drive the seard towards
di erent regions. Sincethe population was selectedin an elitist fashion, many times,
the algorithm wasunableto generatebetter individuals that could be includedin the
referenceset.

Diversity isthusakey aspect of a population in orderto provide the algorithm with
individuals di erent enoughasto generatenew solutions of relatively high quality.

In this sensewe directed our e orts towards implemerting a clustering algorithm.
Clustering dealswith nding a structure in a collection of unlabeleddata, and it can
be consideredhe mostimportant unsupervisedlearning medanism;aloosede nition
of clustering could be "the processof organizingobjects into groupswhosemenbers
are similar in someway". A cluster is therefore a collection of objects which are
"similar" amongthem and are "dissimilar" to the objects belongingto other clusters.

In our population we have individuals that are vectorsof marks, howewer, we are
goingto transform them into distancesbetweenmarks asin the previoussubsection.
Our goalisthusto groupindividuals with similar setsof distancesin the samecluster.
The algorithm for clustering is very simple;imagine we consider clusters:

1. Transform the vectors of marks into vectors of distances. Actually, in binary
vectors that indicate whether a distanceis included in the individual or not.
For example,the individual represeting a 9 marks ruler

1= h015132334475055i
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will be transformedinto
X(1)=[2011100101101000...]

wherea 1 in x( )[i] indicatesthat the distancei is included in the individual
1, Wherei rangsfrom 1 to three times the number of marks®.

2. Calculate random certroids. The certroids are the vectorsthat represem the
clusters,their certral points. Thus, the certroids are vectorsof the samelength
as the individuals that characterize a cluster. If we already had the vectors
separatedin clusters,the certroid of a cluster k; would be a vector:

a & 4
Jkijikij Tiki]

centroid(kj) = [ ] (7.2)
wherej k; j is the number of vectorsin clusterk; and g; is the number of vectors
in cluster k; in which thet j -th bit is setto 1. Sincewe have no clustersyet we
calculate the certroids randomly.

3. Assign ewery vector to its nearestcertroid, creating thus the clusters. The
distancemeasurewe useis that of the cosineof the anglesformed by the vector
and the certroid, and it is explainedin the Clustering section of the appendix.

4. Recalculatethe certroids with the now real information of the vectorsin the
clusters.

5. Repeat steps3 and 4 until no certroid is changedin step 4 or until a maximum
number of iterations is reaced, in our caselO.

Our population is now divided into clusters. This fact itself doesnot ensurediver-
sity in the ReferenceSet. To maintain a high degreeof diversity without harnessing
its quality we rank the vectorsin ewery cluster and then selectthe best! individuals
from ead cluster, and we include them in the ReferenceSet.

5This limit | wasimposedafter the obsenation that optimal rulers try to incorporate the lowest
di erent distancesbetweenconsecutive marks sothat the ruler's length is minimized
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14 15 16

MAO.1 Best 0 0.7 3.4
Median 1.6 3.3 5.6

MA+5-4 Best 0 0 0
Median 0 0.7 2.8

MA+10-2 Best 0 0.7 2.3
Median 0 0.9 3.7

MA+20-1 Best 0 0.7 3.4
Median 0 0.9 3.4

Table 7.2: Relative distancesto optimum for di erent probabilities of the MAO.1
and the improved algorithm MA+. Globally bestresults (resp. globally best median
results) for ead instancesizeare showvn in boldface(resp. underlined).

Note that this processis relatively time consuming,and thus, it is only performed
for the initial population and after a restart. Howeer, at any generation,the algo-
rithm updatesthe ReferenceSetin a way that the premisethe best! individuals of
each cluster are maintained in the Referene Set is satis ed.

7.4 Final Exp erimen tal Results

In this sectionwe shaw results for our Memetic Algorithm after the incorporation of
the newfeatures. The experimerts have beenperformedover rulers of 14to 16 marks,
and with probability ps = 0:1, which we found to be one of the most consisten ones
after the previous experimerts; and with the sameother parametersas in the last
experimertal results.

Regarding the diversity medanism, we have performed three di erent sets of
experimerts varying the valuesof the clustering parameters. Thesedi erent setsof
parametersare: =5! =4, =10! =2,and = 20! = 1.

Table 7.2 depicts the results for these new experimerts and a comparisonof the
results preserted in section7.2 for ps = 0:1. As a rst result we can seethat for 14
marks the algorithm MA+ always nds the optimal solution, which did not happen
with MAO.x. Secondand maybe more important is that we are now able to solve a
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16 marks ruler. Also note that all the median valuesof MA+ are superior to those
producedby MAO.1. MA+5-4 seemdo dominate the rest of the instancesof MA+.

7.5 Summary

To summarizeour newly born algorithm we must remenber that it is basedon a
Scatter Seart ([142]) scheme,which usesGRASP featuresfor initialization and re-
conbination, and introducesa tabu seardy medanismfor improving individuals. This

algorithm is enriched with a complete seard procedurealso usedfor reconbination

whosepurposeis basically to try to read an optimal solution at any point in the

execution of the algorithm (rather than provide high quality individuals). Finally,

the diversity of the population is ensuredby meansof a clustering algorithm that

divides the individuals in di erent clusters,and a selectionmedanism that chooses
the best! individuals from ead cluster to be part of the referenceset.

A di erent point of view is the following: A Local Seartt and a Complete Seard
medanism feed ead other through a common population whosediversity is main-
tained by a clustering technique. According to this, tabu seard and the complete
sear® reconbination would be excianging solutions in order to nd the optimal
one, obtaining and returning thesesolutionsto a diversi ed population. Moreover, a
GRASP medanismhelpsconstructing the initial population and conservingit (creat-
ing high quality and alsodiverseindividuals). All this, sustainedby a Scatter Seart
sthemethat holds everything together.

7.5.1 Lessons learnt revisited

Hereis a brief explanation of how we have dealt with someof the lessondearnt during
the previous chapters, and how thoselessonsare re ected in this nal hybrid:

Constraint programming is especially suited for satisfaction problems; even
though this is an optimization problem we have transformed it into a satis-
faction onein the sensethat we only askfor a feasiblesolution to the complete
seart procedure(to be found amongthe selecteddistances).
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Propagation and Heuristics are key featuresin the constraint programming
framework; howewer, we have limited our heuristics here in order to take ad-
vantage of the already existert data structures, although we have maintained a
form of propagation related to the available distancesand to the length of the
potential ruler.

Constraint Satisfaction techniques encourter many di culties when dealing
with very large seart spaces.Note that the de nition of seart spacedepends
on the number of variablesand alsoon the sizeof the domains. While we cannot
reducethe number of variables,we have reducedthe number of valuesthat the
completeseard procedurehasto deal with; thus, harnessingcompletenesdgor
the sake of speed.

LS greatly bene ts from the introduction of constructive heuristics as initial
solution generators.In this case,both the GRASP initialization procedureand
the GRASP reconbination operator allow the LS to init the seard from high
quality solutions.

LS techniqueshave the major drawbadk of getting stuck on local optima. The
introduction of clustering an the resultant diversity of the population allow the
LS procedureto be fed with diverseand high quality solutions, ead of which
have relatively high probabilities to yield a solution or at leastnot to converge
to the sameregionin the seart space.

Memetic Algorithms presen the dangerto quickly convergeto the sameregion
of the seard spacewithout nding optimal solutions. It is sometimeshard to
decidewhento restart the population in order to regenerateit. Scatter Seard
provides a natural way to deal with this issue: restart when no new solutions
can be introducedin the referenceset. This, and the new diversity medanism
ensurethat the algorithm will maintain a diversepopulation and will restart in
the exact momert in which this is not possibleto achieve anymore.

Finally, we have discussedhbout the LS beingfed with diverseand high quality
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solutions. In this case,diversity is maintained thanks to the clustering and se-
lection techniques,and the quality is maintained by the GRASP reconbination
operator. Also, the complete procedurebene ts from this diversity and high
quality, it constartly considersdi erent sets of distanceswith relatively high
probabilities to cortain a solution (this is perturbed by the random selectionof
a certain number of them, beforethey are passedto the complete procedure).



Chapter 8
Conclusions and Future Work

This last chapter is dewted to the conclusionegierived from the researt deweloped
for this thesis,and to the future work that follows from ewvery researt in every eld
including hybrids.

8.1 Conclusions

Throughout this thesiswe have presented seeral approadesto solwe di erent hard
combinatorial optimization problems. We have succeededh dewelopinge ectiv etech-
niquesto solvwe these problems, and we have also created a new hybrid that incor-
porates medanismsfrom the Constraint Programming, Local Searth and Genetic
Algorithm's frameworks.

Within the CSP framework we have introduced two novel aspectsin redundart
modelling for multiple permutation problems:

A novel value ordering heuristic which takesinto accour the primal and both
dual models,and which generalizedor multiple permutation problemsideasin-
troducedin ([35, 21]] for simple permutation problems. The speedupproduced
by this heuristic is quite remarkable, up to three orders of magnitude in some
cases.

The use of channelling constrairts linking more than a single pair of models

186
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to provide forward chedking with the samepruning power as arc consistency
at a much smallercostin constraint cheds, and thus in performance,provided
that orderinge ects aretakeninto accoun in the min-domainvariable selection
heuristic.

We have alsoshavn that SAT encalingsallow for much more scalablesolutionsin
QCP problems,in particular whencomparedto previousresultsin the literature. We
have explained this performanceby properties of the represemation and by solver-
speci ¢ features;and we have shovn that thosefeaturescanalsobe fruitfully exploited
in CSP modelsto get much better CSP solutionsthan before.

In the next researt work we have reconsideredhe sdheduling of sacial golfers,a
highly combinatorial and symmetric application which hasraisedsigni cant interest
in the constraint programmingcommnunity. It preseried an e ectiv e local seard algo-
rithm which found the rst solutionsto 11 new instancesand matched, or improved
upon, all instancessolved by constraint programming solutionsbut 3. Moreover, the
local seart algorithm wasshaovn to nd almost all solutionsin lessthan a couple of
secondsthe harder instancestaking about 1 minute. The algorithm also featuresa
constructive heuristic which trivially solvesmany instancesof the form odd odd w.

Finding Golonmb rulers is an extremely challenging optimization problem with
many practical applicationsthat have beenapproadedby a variety of seart methods
in recert years. It conbineshard and densefeasibility constrairnts and an optimization
function to minimize the length of the ruler. Relatedto this, we have preserted:

A hybrid ewlutionary algorithm gr ohea to nd near-optimal Golonb rulers
in reasonabletime. The algorithm is conceptually simple and usesa natural
modeling. It incorporatesa tabu-sear@ algorithm for mutation and a one-point
crosswoer to crosstwo rulers. It optimizesthe length of the rulers indirectly by
solving a sequencef feasibility problems.

We have preserted a memeticapproad for nding near-optimal Golomb rulers
at an acceptablecomputational cost. The MA conbines, in di erent stagesof
the algorithm, a GRASP-like procedure(for diversi cation and recomnbination)
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and tabu seart (for local improvemert) within the generaltemplate of scatter
seartr. The results of the MA have been particularly good, clearly outper-
forming other state-of-the-art ewlutionary approatesfor this problem. One of
the aspects on which our analysis has beenfocusedis the in uence of the LS
componert. We have shown that lower rates of Lamarckianism achieve the best
tradeo betweencomputational cost and solution quality.

We have introducedse\eral improvemerts to the previousalgorithm (complete
seart and clustering) to yield outstanding results: we are able to solve a 16
marks ruler and to consistenly solve every 14 mark rulers. The algorithm
tested using di erent setsof parametersreferredto the clustering medanismis
consistetly superior to the previousalgorithm without the improvemerts.

Finally, we have presetted a new hybrid algorithm. This algorithm is basedon
a Scatter Searth template and includes a complete seart inherited technique to
combine individuals, and a clustering procedurewhich we apply to our population in
order to adhieve a higher degreeof diversity. Results of this hybrid for the Golomb
Ruler Problem are superior to those presened in previous chaptersin this thesis.

8.2 Future Work

There are many issueto persuewithin this thesis. Remenber that every chapter deals
with a di erent kind of problem and a di erent kind of technique. Thus, possible
future work in ead of thesedi erent researth works will be the following:

8.2.1 CSP and SAT

Many issuesremain to be explored. While we did try a number of alternativesto the
preserted value ordering heuristics without successpthers may be more successful.
There are someanomaliesin the behavior of the ch3-fc approad vs ch2-ac which
could be symptoms of more subtle e ects than the ordering e ects reported above,
and which needto be explored. There is nally the issueof why CBJ and nogaod
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learning did not help in this problem, which may in part suggestthat in a sense
randomnessdominatesover structure in QCPs, but which should at any rate be an

incertive to dewelop more e ective implemertations of these techniques so that at

least they do not hurt whenthey do not help.

It would be interesting to seewhether the combination of the ideasof this paper
with either alldi constrairts or Operations Researt techniquescould yield further
improvemers in our ability to solve larger QCPs. For example,we mertioned that
the samee ect acdhieved by introducing triangular channelling constrains would be
achieved by reintroducing instead the dual not-equal constrairts, which in turn could
be replacedby dual alldi constrains.

On the other hand while we canexplain Satz'sperformanceand exploit its features
in CSP approadies,a similar study could be carried out for satzoco. This might help
in understandingthe role of CBJ and learning in QCPs, as they do not help with
QCPs formulated as CSPs (as mertioned above). Moreover, we plan to study the
e ect of many-valued models [7] as an intermediate and potertially more concise
represemation betweenSAT and CSP.

8.2.2 Local Search for Scheduling Social Tournamen ts

Let us rst point out a number of interesting obsenations. First, the sccial golferis
a problem wherethe properties of the instancesseemto determine which approah
is best positioned to solve them. In particular, hard instancesfor constrairt pro-
gramming are easyfor local seart and viceversa. There are of courseother applica-
tions wherethis alsoholds. What is interesting hereis the simplicity of local searh
comparedto its constraint programming courterpart and the absenceof symmetry-
breaking sthemesin local seard©r. Whether this obsenation generalizesto other,
highly symmetric, problemsis an interesting issuefor future work. See,for instance,
[18Q 18] for early results along theselines.

Moreover, we are interested by the e ect of the seedingheuristic. It not only
constructsoptimal solutionsfor se\eral instances,but represetts an e ectiv e starting
point for the algorithm. Howewer, we believe that a deeper study on its e ects should
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be performedin order to adapt the heuristic to certain instancesand to dewelop new
intensi cation and diversi cation medanisms.

8.2.3 Golom b Rulers

We are currertly exploring alternatives for some of the operators used in our al-
gorithm. Preliminary experimerts with multi-tier referencesets{i.e., including a
diversity section{ do not indicate signi cant performancechanges.A deeper analysis
is newerthelessrequired here. In particular, it is essetial that the particular dis-
tance measureusedto characterizediversity correlate well with the topology of the
seart landscape induced by the reproductive operators. De ning appropriate dis-
tance measuresn this cortext (and indeed,cheding their usefulnessn practice) will
be the subsequenstep. Howewer, the clustering medanismadievesa high degreeof
diversity that might be su cien t.

As for the nal hybrid resulting of the introduction of the new improvemerts,
there is a very obvious obsenation: the SSand the LS deal with marks, while the
Clustering and Complete Seart dealwith distances.We plan to make it uniform and
possiblyimplemert all the techniquessothey can deal with distances.More e cien t
clustering techniquesare alsoworth being studied.

8.2.4 Developing Hybrids

On the other hand, we are still also very interestedin deweloping new hybrid algo-
rithms. Wearecurrertly dewting somereseart: on hybrid local seart and constrairt
programmingalgorithms. Namely, we are experimerting with a form of Limited Dis-
crepancySeart ([112])for Local Searth. Wearealsoin the rst stagesof developmernt
of a LS algorithm which will incorporate a heuristic basedon constrairt propagation.
Memetic Algorithms are still of great interest as well.



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 191

Conclusiones y Trabajo Futuro

Este ultimo captulo esta dedicadoa las conclusionegyeneradagpor cadatrabajo de
investigacon, as comoal trabajo futuro a realizar en cada campo, incluyendoen el
desarrollode h bridos.

Conclusiones

En estatesis hemospresertado diversosenfagues para resolher problemasde opti-
mizacion combinatoria. Hemostenido exito al crear tecnicasefectivas para resoher
estetipo de problemas,y hemoscreadotambien un nuew h brido que incorpora
mecanismosde la programacbn con restriccciones,de la busquedalocal y de los
algoritmos ewlutiv os.

Dentro del campo de los CSP hemosintroducido dos aspectos novedososen el
modeladoredundarte de problemasde multiples permutaciones:

Una nuewa heur stica de ordenacon de valoresque tiene en cuerta los modelos
primal y dual, y que generalizalas ideasintroducidasen ([35, 211] para proble-
masde multiples permutaciones. La gananciaen cuarto atiempo de resultados
esbastarte notable, llegandoa serde hasta 3 ordenesde magnitud en algunos
casos.

El usarrestriccionesde canalizacon uniendomasde dosmodelospara conseguir
gue forward cheding tenga el mismo poder de poda que arco-consistenciag
un menor precio en terminos de chequeosde restricciones,y, por lo tanto, en
e ciencia.

Tambien hemosmostradocomolas codi caciones SAT permiten una mayor escal-
abilidad de solucionesen el problemade completitud de cuasigrups, en concreto, al
compararlocon resultadospreviosdisponiblesen la literatura. Hemosexplicadoesos
resultadosenterminosde la represemacion y delosresolutores)y hemosdemostrados
gueestascaractersitcaspuedensertambienimportadasal enfoqgue CSP para obtener
resultadossuperiores.
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En el siguiente trabajo de investigacon hemosreconsideradda calendarizacon de
gol stas scciales,un problemaaltamente conbinatorio y simetrico que ha generado
graninteresenla comunidad de la programacbn conrestricciones.Hemospresenado
un algoritmo de busqueddocal queencuertra la primera solucion para11linstancias,y
empataconel resto, exceptopor 3 instancias,conlosresultadosconseguidosnediarte
otras tecnicasde programacon con restricciones. Ademas el algoritmo de busqueda
local encuerra las casitodaslas solucionesen menosde un par de segundosmientras
gueinstanciasdif cilesapenastardan un minuto. El algoritmo tambienincorpora una
heur stica constructiva queresuele muchasinstanciasdela formaimpar impar w
trivialmente.

Encortrar Golonb rulers esun problemade optimizacion conmbinatoria muy dif cil
gue tiene diversasaplicacionespracticasy que setratado desdediferertes enfoques
en los ultimos tiempos. Combina restriccionesdurasy densasde satisfaccon con un
funcion a minimizar que correspnde a la longitud de la regla. En relacion con esto
hemospresenado:

Un algoritmo ewlutivo h brido gr ohea para encorrar reglas cuasioptimas
en un tiempo razonable. El algoritmo es conceptualmete simple y usa un
modelo natural. Incorpora una busquedatabu como operador de mutacion y
una reconbinacion de un punto. Optimiza la longitud de las reglasmediarte la
resolucon de una sequenciade problemasde satisfaccon.

Hemospresertado un enfoque memetico a un coste computacional aceptable.
El algoritmo conbina un procedimierto tip o GRASP y busquedalocal dertro
del esquemadel "Scatter Sear®". Los resultadosson claramerte superioresa
resultadosprevios del estadodel arte. Un aspecto en el que nos hemoscen-
trado esen el metodo de mejoralocal y su in uencia en los resultados. Hemos
mostradocomotasa bajas de Lamardkianismo consiguenel mejor balanceertre
costecomputacionaly calidad en la solucon.

Hemosintro ducido diversasmejorasal algoritmo anterior (busquedacompletay
clustering), consiguiendograndesresultados: siendocapacesde resoher reglas
de hasta 16 marcas, y resolviendohasta 14 marcas sistematicamerte. Este
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nuewo algoritmo seha probado usandodistintos parametrospara el mecanismo
de clustering siendoconsistetemerte superior al algoritmo previo en cadacaso.

Finalmente, hemospreseriado un nuewo h brido queesta basadoen el esquemalel
Scatter Seart y que incluye busquedacompleta para la reconbinacion y clustering
para obtenerun mayor grado de diversidaden la poblacion. Los resultadosobtenidos
sonsuperioresa cualquier resultado presenado en captulos anteriores en la tesis.

Trabajo Futuro

Hay muchos temas que abordar despies de estatesis. Recordadque cada captulo
trata diferertes problemascondiferertestecnicas.As pues,el possibletrabajo futuro
en cadauno de estosaspectoses:

CSP y SAT

Hay muchos aspectosa explorar. A pesarde que probamosdiversasalternativas de
ordenacon de valor sin exito, sera interesarne utilizar otras nuevas. Tambien hay
ciertasanomalas en el compartamierio de los modelosuno frente a otro que podr an
ser causadogpor algo mas que la ordenacon y que merecela penaseanestudiadas.
Otro aspecto esporque CBJ y el aprendizge de "nogoods" no esde ninguna ayuda,
lo cual puedesigni car que la aleatoriedaddomina sobrela estructura en QCPs.

Sera tambien interesarie ver si la combinacion de otras ideascomola restriccion
alldi o tecnicasde investigacon operativa puedenayudar a mejorar los resultados.
Por ejemplo, hemosmostrado que el efectode introducir las restriccionesde canal-
izacion triangulares es el mismo que reintroducir las desigualdadesiuales,lo que se
podr a reemplazarpor alldi duales.

Por otro lado, tras explicarla e cacia de Satzy aprovedar suscaractersticas,sera
interesarte realizar el mismo estudio para el resolutor Satza. Esto podr a ayudar a
ertender el efectode CBJ y aprendizge en QCPs. Ademas, planeamosestudiar el
efecto de modelos multi-valuados[7] como un metodo intermedio y potencialmerie
mas conciso.
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Busqueda Local para Calendarizaci on de Torneos Sociales

Antes de nada hay que indicar una serie de obsenacionesinteresaries. Primero, el
gol sta sacial esun problemadondelas propiedadesde las instancias parecendeter-
minar que enfagque es mejor para resoherlas. En concreto, instancias dif ciles para
CSPs con busquedacompleta son faciles para la busquedalocal y vicewversa. Hay
otros dominios en los que estotambien ocurre. Lo interesarte aqu esla sencillezde
la busquedalocal comparadacon la completa, en la que se encuerran mecanismos
derotura de simetr asmuy complejos. El hedo de que estaobsenacion puedagener-
alizarsepara problemasaltamente simetricosespara estudiarenel futuro. Consultad,
por ejemplo,[18Q 18]] paratrabajo en estal nea.

Ademas, estamosinteresadosen el efectode la heurstica constructiva. No solo
construye solucionesoptimas para varias instancias, sino que adenas constituye un
punto de partida efectivo para el algoritmo. Sin embargo, habra que realizar un
estudiomasdetallado para poder adaptar la heur stica a otras instanciasy desarrollar
nuewos metodos de intensi cacion y diversi cacion.

Golom b Rulers

Actualmente estamosestudiandoalternativasa ciertos operadores.El usode subcon-
juntos de masde dosindividuos parala reconbinacion esuna posibilidad a investigar.
De momerto, el incluir una zonade diversidadno canmbia losresultados. En cualquier
casosera importante hacerun estudio mas detallado de la medida de distancia que
caracterizala diversidaddela poblaciony quedebe hallarsecorrectamerte relacionada
con la topologa del espaciode busqueda.Sera interesarte de nir otros tip osde me-
didas distancia mas apropiadas. Sin embargo, pareceque el uso de clustering como
mecanismopara conseguirdiversidad essu cientemerte efectivo.

En cuarto al h brido nal resultarte de la introduccion de las nuevas mejoras,
hay una obsenacion directa: Scatter Sear® y tabu manejan marcas mientras que
clusteringy la busquedacompletautilizan distanciasertre marcas. Sera corvenierte
conseguirque estoseauniformey posiblemerte, traducir todo a distanciasertre mar-
cas. Tambiensera interesarie estudiar otros mecanismogle clusteringmase cientes.
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Desarrollo H bridos

Por otro lado, todav a estamosmuy interesadosen la creacbon de nuewos algoritmos
h bridos. Actualmente estamosdesarrollandoh bridos de busquedacompletay lo-
cal para CSPs. Por ejemplo, estamosexperimertando con una forma de "Limited
DiscrepancySear®" ([112) para busquedalocal. Tambien estamosen las primeras
etapasde desarrollode un algoritmo de busquedalocal que incorporara un heuristica
basadaen la propagacon de restricciones.Ademas, los algoritmos memeticos siguen
siendode interes.



App endix A

GRASP and Clustering

In this appendix we are going to briey introduce two techniquesthat have been
usedin the last hybrid deweloped for this thesis. Sincethis techniquesare not the
focusof our researty, but only tools we have utilized to improve the e ciency of our
technique, we beliewe that a brief appendix is better suited to introduce them.

A.1 Greedy Randomized Adaptiv e Search Pro ce-
dures (GRASP)

The GRASP (Greedy RandomizedAdaptive Seart Procedure)metaheuristiccan be
viewed as an iterativ e process,ead iteration consistingof two phases:construction
and local seard ([78]). The construction phasebuilds a solution whoseneighborhood
is investigated by the local seart procedure. During the whole process,the best
solution is updated and returned at the end of a certain number of iterations. Figure
A.1 illustrates the basic GRASP procedure.

Any local seard algorithm canbe incorporated to improve a solution: tabu seard
and simulated annealing ([54, 147), large neighborhoods ([4]) or variable neighbor-
hood seart ([161]). Howewer, we are interested in the greedy construction phase,
where a tentativ e solution is built in a greedyfashion.

Randomly generatedsolutionsare usually of a poor quality, while greedygenerated
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pro cedure GRASP(maxlt,seed)

. Read.Input()

2. for k=1,:::, maxlt do

3 Solution  Greedy Randomized Construction(seed);
4. Solution  Local_Seart(Solution);
5

6

7

[EEN

Update_Solution(Solution);
. end;
. return Best.Solution;
end GRASP

Figure A.1: The GRASP pseudaode

solutionstend to be attracted by local optimum?, dueto the lessamourt of variability.
A semi-geedy heuristic ([77]) adds variability to the greedy algorithm. A certain
greedyfunction yields a ranked candidatelist, which is calledrestricted candidatelist
(RCL). An elemen from that list is randomly selectedand addedto the solution.

The procedureto construct the semi-geedy solution is depictedin Figure A.2. A
key stepin this pseud@ode is the selectionof an attribute from the RCL. This canbe
performedusing a qualitativ e or quartitativ e criterion. In the former, the elemet is
selectedamongthe k bestelemerts; while in the latter, the elemen is selectedamong
the elements with a quality percentage of the greedyvalue,where 2 [0; 100]. Note
that k= 1 or = 100yields a pure greedyselection.

A.1.1 Reactiv e GRASP

As can be seenin the proceduredescriked below, the selectionof the k parameteris
problematic. The useof a xed value for this parameter could hinder high quality
solutions([174). A learning-basedstrategy named reactive GRASP was introduced
in [179, selectinga di erent value in ead iteration from a nite set of values. The
selectionof a certain value in a given iteration can be chosenon the basis of the
goodnessof the bestsolution generatedby this parameter. A possibility is to maintain

ILocal optima are points in the searh spacefrom where a local seard algorithm cannot escae,
and thus a restart is necessaryin order to explore other regions.
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pro cedure Greedy_Randomized Construction(seed)
1. Solution :
2. Evaluate the incremerntal costsof candidate elemerts
3. While Solution is not complete do
4 Build the restricted candidate list RCL
5. Selectelemern s from RCL at random
6 Solution  Solution [ fsg;
7 Reealuate the incremertal costs;
8. end;
9. return Solution;
end Greedy_Randomized Construction

Figure A.2: The Greedy RandomizedConstruction pseudaode

a vector of parametervaluesto usein ead iteration, wherea position p; denotesthe
value of the parameterthat seresto choosethe i th candidate. We refer to this
vector as GRASP parametersvector.

For example,a certain position of the GRASP parametersvector p; = 3 makesus
choosea random candidate amongthe four best candidates,for the i  th decision,
in the RCL list (From now on we will considerthat the rst valuein the RCL is in
position 0 and the last onen 1, wheren would be the length of the RCL).

A.2  Clustering

Clustering dealswith nding a structure in a collection of unlabeleddata, and it can
be consideredhe mostimportant unsupervisedlearning medanism;aloosede nition
of clustering could be "the processof organizingobjects into groupswhosemenbers
are similar in someway". A cluster is therefore a collection of objects which are
"similar" amongthem and are "dissimilar" to the objects belongingto other clusters.

The goal of clustering is to determinethe intrinsic grouping in a set of unlabeled
data. In general,there is no absolute best criterion which would be independen of
the nal aim of the clustering. It is ultimately the userwho hasto provide the criteria
that will yield resultsto better suit his needs.
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Howewer, whenimplemerting a clustering algorithm, seeral requiremerts should
be satis ed: scalability, possibility of dealingwith di erent typesof attribute, discov-
ering clusterswith arbitrary shape, ability to deal with noise,insensivity to order of
input records,high dimensionality, interpretability and usability (among others).

Current clustering techniquessu er from the following drawbadks:

They do not usually addressall the requiremens adequatelyand concurrertly.
Time complexity is a major problem when dealingwith large number of data.
In many occasionsthe e ectivenessdependson the de nition of distance.

Distance has to be de ne when it is not obvious, which might be di cult,
especially when dealingwith multi-dimensional spaces.

The result of the clustering algorithm can be interpreted in di erent ways.

A.2.1 Clustering Algorithms

Clustering Algorithms can be classi ed as follows:
Exclusive Clustering.
Overlapping Clustering.
Hierarchical Clustering.
Probabilistic Clustering.

In the rst casedata are grouped in an exclusive ways, this meansthat ewvery
individual piece of information is included in one cluster and cannot be include in
another one. On the cortrary, the secondtype usesfuzzy setsto cluster data, so
ewvery point belongsto di erent clusterswith a certain degreeof memetership. The
hierarchical clustering algorithm is basedon the union betweenthe two nearestclus-
ters; the beginning condition is performed by setting every point as a cluster, and
after a few iterations it readhesthe nal cluster. Finally, the last type of clustering
algorithm relys on a completely probabilistic approad.
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K-Means Algorithm

This is one of the most popular clustering algorithms that fall in the category of
Exclusive Clustering. Sincethis is the clustering method usedin our hybrid, we are
goingto briey detail it here.

It is indeed one of the simplest unsupervised learning algorithms ([149). The
procedurefollows a simple and easyway to classifya given data setthrough a certain
number of clustersk xed a priori. The main idea is to de ne k certroids, ead
one correspnding to ead clustering. The next step is to asseiate ead point to
its nearestcertroid. This yieldsa rst grouping of the data. At this point we need
to re-calculatethe k new certroids as barycerters of the clustersresulting from the
previous step. After the new certroids have beencalculated, ead point needsto be
re-assaiate to a certroid again. The algorithm now iterates this processuntil either
no cluster changesfor any point occur or a stopping criterion is readed.

This algorithm aims at minimizing an objective function, in this casea squared
error function:

XX

J= kxd) ¢ k2 (A.1)

j=1 i=1

where kxi(” ¢ k? is a chosendistance measurebetweena data point xi(” and the
cluster certroid ¢, indicating the distanceof the n data points from their respective

cluster certres.

A.2.2 Distance Measure

As we have previuosly stated, de ning the distance measureis a problematic task.
If the componerts of the data instance vectors are all in the same physical units
(metric), then it is possiblethat the simple Euclidean distance metric is su cient to
group similar distances. Howewer, even in this case,the Euclidean distance can be
misleading. It is dependart from the range: if one metric spansthe range [0:0; 0:5]
and another spans[0:0; 1000], the maximum deviation in the rst would have little
e ect onthe total distance,while even a modest separationin the secondwould have
a much larger e ect. To remove this dependencyit is important to standarize the
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values. In order to achieve this, the following stepsmust be taken:

1. Sumthe valuesof the metric over all objects and divide the sum by the number
of objects.

2. Substract this averagevalue from the metric in all objects.

3. Sum the squaresof these new values, divide the sum by the total number of
objects and take its square-rat. This is the standard deviation of the new
values.

4. Divide the metric by the standard deviation in ead object.

Assumenow that ead object is described by a real-valued array of metrics of
length K, the i-th object x; hasthe array xy; for k = 1;2;:::;K. The generalform
for the distance,which is calledthe Ly norm, betweenobject i and certroid j is

)(( . . 1—
Lnig = [0 iXai X JPT°° (A.2)
k=1
When p = 1 this distancemeasureis known asthe Manhattan distance,while for
p= 2it is known asthe Euclideandistance.

Binary Data

When dealing with binary arrays of data, the distance measuresde ned so far are
not valid. Even though there are many possibilities, the simplest oneis to usethe
cosinesimilarity function ([19€]). The cosinesimilarity function CS; betweenobject
i and | treats the objects asvectorsand it calculatesthe cosineof the anglebetween
thesevectors. This similarity, which is alsoknown asthe Ochini coe cien t, is given
by the expression =

K
_; XkiXkj
CSj = gp—tel kPL:‘ (A.3)

2 2
k=1 Xki  ki=1 Xk

Note that asthe objects becomemore similar, CS;; approadies1.0.
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