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Motivation and plan of the thesis 

Motivation 

Theoretical Computer Science is a basic discipline of Computer Science, 
because most of the advances in this field are supported on solid results from that 
discipline. It started with concurrent developments in formal logics, digital electronics 
and linguistics, which gave rise to the Theory of Formal Languages and Automata, a 
main subject of study for every computer scientist. 

In the last years, perhaps due both to the rise in the computing power of 
computers and to the nearness of the physical limits in the miniaturization of electronic 
components, there has been a resurgence of interest about formal computational models, 
which could be an alternative to the classic architecture proposed by John von 
Neumann. 

Many of these models are inspired by the way in which nature solves efficiently 
very complex problems. Natural systems are thus formalized and their properties 
studied. Most of them are computationally complete, therefore they are considered new 
programming paradigms. We can mention, for example, cellular automata, and the use 
of parallel-derivation grammars, which were designed during the sixties, respectively by 
John,von Neumann and Aristid Lindenmayer, as a discrete alternative to traditional 
simulation techniques, based on continuous functions and differential equations. Other 
examples are quantum programming, or computations inspired by DNA, cellules, and 
their membranes and different constitutive parts: 

This situation shows, therefore, a wide range of abstract architectures, which are 
as powerful as conventional computers and, sometimes, even more efficient. Most of 
them improve the execution time (performance) needed to solve NP-complete problems, 
providing non-exponential solutions. In this thesis we shall use cellular automata and 
Lindenmayer systems. 

With all these new tools, a new basic problem appears: how to program these 
architectures, or, in -other words, how to design particular instances of these 
architectures that, can solve some specific problem. To imagine the difficulty of the 
answer, it is enough to remember that this question, focusing on traditional computers, 
has required the development of its own branch of engineering: Software Engineering. 

The hardest difficulty to program these architectures is the fact that they are, in 
general, specialized to solve some very particular types of problems or, at least, 
problems that are encoded in a specific way. For instance, in the case of DNA-
computing, it is possible to find a string of symbols complementary to a given input 
string, with a performance independent of the length of the input string. Cellular 
automata have been applied to simulate several physical processes, which have in 
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common the possibility of dividing the space in a regular way. Finally, Lindenmayer 
systems (or p arallel-derivation grammars) c an simulate processes that s imultaneously 
change in a different way at different locations. 

Nevertheless, in most of the cases, there are no tools to program these 
architectures, as there are with general-purpose computers. We might say that we are as 
far from our goal as the programmers of the ENIAC computers were from CASE tools. 
We do not have compilers, not even assemblers, and sometimes it is hard to imagine 
which is equivalent to machine code. 

On the other hand, genetic algorithms are inspired by the mechanism of 
reproduction and natural selection (reproduction of the fittest individual of the 
population), with differentiation (recombination ofthe parents' genetic information and 
the possibility of mutations). I t has been proven that these algorithms provide an 
efficient way for stochastic search of near-optimal (good enough) solutions for many 
kinds of problems. The only condition to use genetic algorithms is to represent the 
possible solutions in a proper way. This requisite is not really a restriction, because any 
computer-based solution of a problem requires the problem to be codified. 

Automatic programming (writing programs that write programs) is one ofthe 
objectives of Computer Science, of special interest for this thesis. Automatic 
programming can be considered as the search for a program that performs the required 
task, among the set of all the possible programs. Therefore, it is possible to use genetic 
algorithms to solve this problem. This approach is called genetic programming. 
Candidate programs are individuals which have to compete for reproduction and to 
remain in the next-generation of candidate solutions. Genetic prograrnming can 
sometimes produce automatically programs with better performance than hand-made 
programs. 

Grammatical evolution is one of the most recent variations of genetic 
programming, that generalizes this process in a way independent of the programming 
language. Throughout this* thesis, we shall use both classical genetic algorithms and 
grammatical evolution. 

Let us take a superficial look at the main concepts that wi l l be considered during 
the development of this thesis. In the next part, the state of the art about all those 
concepts wi l l be described in depth, as needed by the remainder ofthe thesis. 

Fractals 

There is not a general agreement in the definition oí fractal. This term is used to 
refer to phenomena that share some mathematical characteristics: 

• They behave as objects with a different dimension as the one that would 
apparently correspond to them. For instance, Peano defined a curve able to cover 
completely a surface; so, this curve (one-dimensional) behaves as a plane (two-
dimensional). Classic definition of dimension is related to the degrees of 
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freedom of the studied object. Dots, curves, surfaces and volumes have, 
respectively, dimensions 0, 1, 2 and 3. This anomaly motivates the definition of 
fractal dimension, which allows assigning a fractional number to the dimension 
of an object. Consequently, a curve that behaves as a surface has a dimension 
close to 2; an object defined as a surface, but with a dimension of 2.8, wi l l 
behave and share more properties with volumes than with surfaces. Several 
algorithms to calculate the fractal dimension have been proposed (e.g. 
Hausdorff-Besicovitch), though all of them provide the same value except for 
slight differences. 

• In a fractal object, it is usually possible to find copies of itself, regardless of the 
scale used. 

Formally, there are three main ways to represent fractal sets or phenomena: 

• The limit between the convergence and divergence domains for some recursive 
complex-variable functions (as in Julia and Mandelbrot sets). 

• The figure obtained as the limit (after an infinite number of iterations) of a base 
graphic (the initiator) using always the same transformation (the iterator). 

• Random or Brownian movements. 

Fractal geometry,, therefore, completes some deficiencies of classic geometry. 
But its interest is not only theoretical; fractals have shown their expressive power for 
modeling many complex phenomena in the real world: meteorology., c ardiac rhythm, 
economic fluctuations, etc. 

Cellular Automata 

Some biological systems create new individuals as copies of themselves (this 
property is called self-reproduction). Cellular automata, which try to model this 
characteristic, are mathematical abstractions of physical systems in which time, space 
and the variables that describe the states of the system are discrete. A cellular automaton 
has three main components: a finite automaton, a regular and not necessarily finite grid 
(which can be considered as a generalization of a matrix), and a rule for determining the 
neighborhood (the set of cells considered neighbors of a given cell in the grid). Each 
cell in the grid contains a copy of the finite automaton. 

The global behavior of a cellular automaton can be described locally, because 
each finite automaton in the grid has as inputs the states of its neighbors. Even though 
finite automata are very simple devices, they can behave globally as very complex 
dynamic systems. Therefore, cellular automata have theoretical and practical interest: 
they have been used in simulation (traffic, geographic growth of cities, etc.), and some 
of them have the same theoretical computational capacity as universal computers, to the 
point that they have been considered apt for designing parallel computers. 
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Lindenmayer systems 

Lindenmayer systems (or L-systems, in brief) were defined to describe multi- -
•cellular organisms whose shape and size changes with time, and whose different parts 
change in a different way. These systems are known .as developmental systems. L -
systems are. parallel-derivation grammars,. i.e. their production rules are applied 
simultaneously. They have been used successfully to simulate various biological 
processes, such as plant growth, leaf development, seashell pigmentation, etc. They are 
also usefulto represent other phenomena with complex behavior, such as some fractal 
objects, especially those of the initiator-iterator type, although an extension called 
parametric L-systems has been defined that is capable of representing the families of 
Mandelbrot and Julia fractals, and the like. 

Genetic algorithms 

Genetic algorithms perform stochastic searches inspired by the mechanisms of 
natural Selection, identified by Charles Darwin, which, basically, are the survival of the 
fittest, the introduction of changes in the individuals by means of mutations, and sexual 
reproduction of the best adapted, to transmit part of their genetic legacy to their 
progeny. A genetic algorithm uses the following components: 

• A representation of the possible solutions to the problem to be optimized by 
means o f genetic a lgorithms. E ach c andidate s olution i s u sually e ncoded asa 
string of symbols called chromosome or genotype. So the search space is a set of 
chromosomes or genotypes. 

• A method for generating an initial population. 

• A function that evaluates the nearness of a candidate solution to the target of the 
search. This function is usually called the fitness function. 

• A set of genetic operators that combine the chromosomes of a generation to 
produce the next one. The two basic operators are recombination and mutation. 
The first one combines two •chromosomes, splitting each one at one or several 
random positions, and mixing the parts together, producing two new 
chromosomes. Mutation, on the other hand, changes randomly the value of some 
positions in the chromosome. 

At each generation, the fittest chromosomes are chosen. Genetic operators are 
applied to them to produce a new generation. This process is iterated until the fitness 
converges to a certain value. Some parameters of the algorithms are the size of the 
initial population, the way in which the random selections are made, the mutation rate 
(number of the individuals that mutate), the number of mutations, the size of the. 
reproducing population, the total number of generations, etc. 
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Grammatical evolution 

Grammatical evolution is a technique based on genetic algorithms, originally 
applied to automatic programming, that uses the grammar of the programming language 
to p ropose a n ew g eneral m echanism t o t ranslate from g enotypes t o p henotypes i n a 
deterministic way that minimizes syntactic mistakes. I f the grammar of a different 
programming language is used, no further changes are necessary to automatically 
generate programs in the new language. 

Grammatical evolution has shown to be as adequate as traditional genetic' 
programming techniques and, for some benchmarks, even to improve the performance. 

Objectives of this thesis 

The objective of this thesis is double: 

• To study the design of Lindenmayer systems and cellular automata to solve a 
given problem. We shall consider the application of genetic algorithms and 
grammatical evolution to handle this question. 

• To complete the study of the equivalences between L-systems and cellular 
automata that the tutors of this thesis have previously worked on. 

Application of genetic algorithms, to design cellular automata 
that solve completé problems 

The history of the evolution of cellular automata using genetic algorithms begins 
with Normal Packard and his team. They wanted to obtain binary one-dimensional 
cellular automata, to solve a classic classification problem, .where the automaton should 
converge to a word with only ones i f the initial word has more ones than zeros, and vice 
versa. . 

In this thesis, we use a genetic algorithm (among other techniques) to solve the 
problem of designing a cellular automata that "solves a particular problem: Conway's 
game of life. 

Application of grammatical evolution to design Lindenmayer 
systems that solve concrete problems. 

As previously mentioned, grammatical evolution proposes a variant to genetic 
programming, which can be used when we have a grammar that the candidate solutions 
must conform to. I t seems natural to use grammatical evolution, rather than classical 
genetic techniques, when the candidate solutions are Lindenmayer systems (a kind of 
grammars). , . 
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The supervisors of this thesis have previously developed an algorithm to 
compute the fractal dimension of some initiator-iterator fractals, represented by means 
of Lindenmayer systems. The algorithm obtains the dimension directly from the 
grammar. . 

» 
In this thesis, the indicated algorithm wil l be used in the fitness function, to find, 

by means of grammatical evolution, L-systems that represent initiator-iterator fractals 
with a certain dimension. This problem can have practical interest, given that some 
industries are using elements with fractal geometry, because they improve the results 
obtained with traditional approaches. We can mention, in particular, the development of 
fractal antennas. « ' 

Study of the equivalences between L-systems and cellular 
automata 

Apart from the differences between these two models, which wi l l be shown in 
the first part of the thesis, L-systems and cellular" automata share many properties, and it 
seems interesting to compare them. Their structural 'similarities have been underscored 
by applying both models to genetic programming in different works. The supervisors of 
this thesis have tackled previously the design of L-systems equivalent to given cellular 
automata. One of the objectives of the thesis is to finish this study in the reverse 
direction, by designing cellular automata equivalent to given L-systems. 

In this thesis, cellular automata are considered equivalentto L-systemifthey 
generate the same language. The study begins with the simplest L-systems, PDOL. As 
explained in further chapters, PDOL stands for propagative (i.e. the symbols cannot be 
eliminated in the process of derivation), deterministic (i.e. each symbol can only be 
transformed in one way), and context-free (i.e., the transformation process is 
independent of the context) L-Systems. Next, rules that make it possible to delete 
symbols are added to build cellular automata equivalent to DOL systems (which are not 
necessarily propagative). Finally, context-dependent production rules are, introduced, so 
as to design CA's equivalent to DIL systems (deterministic Lindenmayer systems with 
interactions). 

Plan of the thesis 

This thesis consists of five parts. 

The first part (the one you are reading) describes the motivation and shows the 
plan of the thesis. 

The second part introduces the basic concepts used in the thesis, and is divided 
into six chapters {"Evolutionary Algorithms", "Fractals", "Lindenmayer Systems", 
"Fractals andL indenmayer Systems ", " Cellular A utomata " a nd " Cellular A utomata 
and Lindenmayer Systems"). 
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The third part describes the original results of the thesis, and divides into five 
chapters {"Design of Fractal Curves with a given dimension by means of Grammatical 
Evolution", "Evolving the Game of Life", "Cellular Automata Equivalent to PDOL 
Systems", "Cellular Automata Equivalent to DOL Systems" and "Cellular Automata 
Equivalent to DLL Systems "). 

The fourth part explains the conclusions and open lines of work. 

The last part contains references. . 
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Basic Concepts 





Chapter 1 

Evolutionary Algorithms 

1.1. Overview 

Evolutionary Algorithms (EA) are stochastic searching algorithms whose search 
methods are based on natural evolution, Darwinian theories of fighting for survival, 
genetic inheritance, natural selection and reproduction of best individuals [Gol89]. They 
provide robust search in complex space, and are computationally simple but powerful 
for finding optimal solutions in general search spaces. EA consider simultaneously 
several potential solutions that are treated as individuals to form a population. The 
individuals interact with each other and create new individuals to form a new 
generation. 

The history of EA goes back to the middle of the 1960's, when three main 
branches o f E A were defined: Genetic Algorithms (GA) b y Holland [Hol67][Hol74], 
Evolutionary Programming (EP) by Fogel [Fog66], and Evolutionary Strategies (ES), 
by Beine, Rechenberg and Schwefel [Rec65][Rec73]. 

GA's have been applied successfully to solve a large number of problems in 
diverse disciplines.- Several examples in optimization, automatic programming, 
economy, biology and ecology are described in [Mit96]. 

The following paragraphs briefly introduce GP, ES and EP. The reader can find 
a more detailed description in the references chapter. 

GA and a recent variant of GP named Grammatical Evolution (GE) are used in 
depth in this thesis. 

1.2. Genetic Algorithms 

Figure 1-1 shows a possible scheme of a GA with the following main three 
steps: 

• Generating an initial population. 

• Re-ordering the population according to a fitness function. 

• Generating a new population, by replacing the offspring of the better individuals for 
the worse. 

Each step wi l l be described in subsequent sections. 
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1. Generate an initial population 

2. Compute the fitness of every individual 

3. Sort the population from higher to lower fitness. 

4. I f the highest fitness individual's fitness is higher than the target fitness, stop 
and return this individual. 

5. From the sorted population created in step 3, remove the individuals with least 
fitness and take the individuals with most fitness. Pair them. Each pair generates 
another pair, a copy of their parents, modified according to genetic operations. 
The new individuals are added to the remaining population and their fitness is 
computed. 

6. Go to step 3. , s * 

Figure 1-1: Pseudo-code of a standard genetic algorithm 

1.2.1. Individuals and Initial Population 

Genetic algorithms work simultaneously on a population of possible solutions, 
usually represented by means of vectors or strings of symbols. These strings are treated 
as the population's genotypes. Genetic operators only handle the genotypes, because 
they are easier to manipulate than the candidate solutions themselves. 

For example, i f the algorithm is looking for an automatically written C program 
that performs a given task, genetic operators are easier to apply on each program's 
genotype, rather than on the actual C functions. 

The initial population is usually generated at random, but it is worth noticing 
that the actual population used has an important influence on the convergence of the 
GA. 

1.2.2. Fitness Function (Evaluation) 

This function gives the highest values to the fittest individuals; therefore i t 
evaluates how much each individual is close to the optimal solution. It has been proved 
[Gol89] that GA maximizes fitness functions. 

1.2.3. Generating a New population: genetic operators 

After ordering the population according to the fitness values of its individuals, a new 
population is generated. Genetic operators (crossover, mutation, elision, duplication...) 
are applied to the offspring of the best individuals, which then replace the worst 
individuals. There are other several possible approaches to select the better individuals 
[Gol89], but they are not used in this thesis. 
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Crossover 

There are several different approaches to implement crossover. In this thesis, it 
wi l l be done as described below: 

Each p air o f p arents generates t wo n ew i ndividuals b y s wapping s egments o f 
themselves. A single position inside both parents is randomly selected; each child has a 
different section of each parent's genome: the first half of the first parent and the second 
half of the second parent for one of them, and the first half of the second parent and the 
second half of the first parent, in that order. This approach is called one-point crossover. 

, For example, let us take two parents in the t-th generation (X\ arid X^) 

Xi l =<ai , . . . ,an> 

and 

X 2 =<bi , . . . ,bn>. 

Let us assume crossover point is i , where 1< i<n. The offspring would then be 

Xj =<ai,...,a i>b i+i,...,bn> 

Xj =<bi,...,b¡, a¡+i,...,an> 

for some i and j in the new population. 

Mutation 

Mutation changes the value of some randomly chosen genes. It is known, from 
biology and ecology, that mutation introduces variability and diversity into the 
populations. 

Mutation can be applied to every bit in the genome with a (usually small) 
probability, or it may be applied to a single bit with a much higher probability. This is 
the approach we are using in this thesis. 

For example, let Xi lbe a genotype with 9 binary genes in some generation t. 

X i l = <1,0,1,1,0,L0,1,1> 

Let 6 be a randomly selected position (between 1 and 9). After mutation, X;1 

could become 

<1,0,1,1,0,0,0,1,1 > 

Other genetic operators 

Two other genetic operators are also frequently used in GA's: 
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* Duplication: a segment, randomly chosen from one individual, is added 
at a given position of (possibly) another individual. 

• Elision: one or more genes are deleted at random from the genome of an 
individual. 

These two operators make it possible to mix, in the same population, genotypes 
of different lengths. 

1.3. Genetic programming (GP) 

Koza [Koz89] introduced GP as a model for automatically generating LISP 
programs to solve a given task. 

Unlike genetic algorithms, GP does riot represent the genotype as strings of 
symbols. Programs are represented in GP by means of trees, to minimize the possibility 
of generating syntactic mistakes. New versions of the genetic operators are defined 
accordingly. Koza has successfully applied his approach to a wide range of problems. 

1.4. Evolutionary Strategies (ES) and Evolutionary 
Programming (EP) 

ES are used to evolve populations of fixed length real vectors. ES offer a 
general-purpose search technique for any domain that can be modeled in this way. New 
definitions of the genetic operators are needed. For example, mutations are conceived as 
perturbations that satisfy several statistical conditions, crossover can be implemented as 
the average of the set of parents, etc. 

EP is very similar to ES. One of the main differences is that EP does not use the 
crossover operator. 

1.5. Variants of the classical GA/GP scheme 

Standards GA's can be enriched by a number of mechanisms identified in 
biology and ecology. For instance, coevolution is a phenomenon present in natural 
evolution. Different species coexist and interact in the same habitat (such as herbivores 
and carnivores). I f a species improves develops an improved feature to survive, (for 
example, i f the prey population develops new techniques to escape from their predators 
by running faster, better camouflage, etc.), the other species must improve itself (in our 
example, the carnivores wi l l have no alternative to develop better attacking strategies 
such as stronger claws, better eye sight, etc. [Par97]). 

Coevolving GA's have been successfully applied to various problems, such as: 
constraint satisfaction problems [Par94b], evolving neural nets for classification 
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[Par94a], process control [Par98], path planning [Par97a], and the evolution of cellular 
automata (CA) for density classification[Par97b]. 

GA's are also subject to a continual revision by the researchers. In the last years 
[Gold02] a big amount of work is being made about the concept of competent GA's. 
This family of GA's offers a general purpose black box GA tool, ready to use without 
any modification, whatever the domain in which it wi l l be applied. Deceptive problems 
are a family of tasks particularly difficult to solve by GA's. Competent GA's must be 
able to solve this kind of problems. Gene linkage (the relationship between gene loci 
and their functionality) and parameter tuning are some of the problems that competent 
GA's must solve. Goldberg's Messy GA's [Gold02] is one of the most promising 
approaches to competent GA's. 

1.6. Grammatical evolution (GE) 

Grammatical evolution is a grammar based variable-length binary string genome 
system, originally applied in the area of automatic programming (as a variant of GP) to 
generate programs or expressions in arbitrary programming languages to solve 
particular 
problems|>íeil03]|>íeil01]|>feil99a]|^eil99b]|>reil99c]|^ay98a][Ray98b][Ray98c][Ray 
98d]. 

GE reinforces the biological inspiration byj adopting a genotype-phenotype 
distinction and introducing a genotype-phenotype mapping that is directed by the 
grammar of a given programming language. The grammar is a plug-in component of the 
system that determines the syntax and the language of the output code. So, i t is possible 
to evolve programs in an arbitrary language simply by plugging-in the corresponding 
grammar. As a result of this approach^ the genotype representation and the genotype-
phenotype mapping become standardized, and the. evolutionary engine remains 
independent of me target programming language. 

1.6.1. Genotype-Phenotype mapping 

GE genotype-phenotype mapping is inspired in the biological process that 
produces phenotypic effects in the final individual (traits such as hair color, for 
example) starting from its genetic material, encoded in the organism's DNA. These 
molecules are first translated into mRNA (messenger RNA), which directs the 
generation of proteins corresponding to the sequences of the bases, which code for 
amiiio-acids. Proteins are fundamental components in this process, because they have 
functional meaning for the organism at the phenotype level. 

In a GE'system, the genotype representation (strings of bits read as strings of 
integers) has the role of the genetic material (DNA/RNA), the grammar of the target 
programming language acts as the rules to obtain the amino-acids from the base 
sequences in the genetic material, the programs obtained by means of GE are equivalent 
to proteins, and the result of their execution is similar to their phenotypic effect in the 
biological model. 
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In typical GE applications, the genotype is used to map the axiom of the 
grammar onto a word of its language by iterating the following steps: 

» 1. Read the next 8 bits and compute the corresponding "codon" integer value. 

2. Select the next non-terminal symbol (the leftmost non-terminal symbol) in 
the current sentential form (derivated.from the axiom). 

3. Select a production rule to be applied, by means of the following 
computation: the rule number is the remainder of the division of the codon 
integer value by the number of different production rules for the current non­
terminal. 0 is always the first rule number for eve^y non-terminal. 

• 4. Apply the selected rule to the corresponding non-terminal symbol, to get a 
new derived sentential form. 

The process iterates until one of the following conditions holds: 

Í . A complete program is generated, that is, the derivation process produces a 
sentence in the language of the grammar (a word made exclusively of 
terminal symbols). 

2. The end of the genome is reached. 

GE may apply a wrapping mechanism to reuse the genetic material i f the latter 
condition holds, in which case the algorithm wi l l stop when a predefined threshold on 
the number of wrappings is reached. The wrapping mechanism is inspired by the gene-
overlapping phenomenon present in many organisms. 

Example 

Let us use the following context free grammar: 

{NR.TR.SR.PR} . 

Where 

• N R is the set of non terminal symbols: 

NR={<expr>,<op>,<pre-op>,<func>,<heáder>,<body>,<declarations>,<code>, 
<return>}. 

• TR is the set of terminal symbols: 

fR={sin , + , - , * , x , 1 . 0 , ( , ) , float, s y m b , { , } , ; ,a ,=} 

• SR=<expr> is the axiom. 

• PR is the set of production rules. . 

P R = { <expr>::=<expr><opxexpr> | (<expr><opxexpr>) 
L<pre-opxexpr> | <pre-op>(<expr>) | <var>, 
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<op>::=+ I - | * | / 1 , 
<pre-op>::=sin, 
<var>::=1.0|X|, 
<func>: :=<header>, 
<header>::=float symb (float x){<body>}, 
<body>::=<declaration><code><return>, 
<declarations>::=float a;, 
<code>::= a=<exp>;, 
<return>::= return(a); 
} 

Notice that: 

• The language generated by this grammar is a subset of C functions with a float 
result and a float parameter. A l l of them have the same structure: 

float symb (float x) 
, { 

a-<expr>; 
return(a); 

' } 

• That is, genotypes only differ in the expression assigned to the variable a. 

Therefore, the grammar can be reduced to the following subset of the production 
rules, w here w e h ave n umbered i ndependently t he r ules t hat s hare t he s ame 1 eft-side 
symbol: 

{ <expr>::=<expr><op><expr> 
| (<expr><opxexpr>) 
| <pre-op>(<expr>) 
| <var> 

<var>i:=x 
| 1.0 • 

<pre-op>::=sin 
<op>::= + 

1 -
1 / 
I * 

(0) 
(1) 
(2) 

• (3), 
(0) 
(1), 
(0), 
(0) 
(1) 
(2) 
(3) 

Let us map the following genotype: 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

steps: 
The genotype-phenotype mapping starts with the first codon and follows these 
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220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

As explained before, we start on the axiom. The initial sentential form is thus 

<expr> 

We must find the leftmost non-terminal symbol, in this case the only one, 
<expr>. 

• <expr> is the left hand side of 4 rules, so the rule to be applied is number 
220 mod 4 = 0 (that is, <expr> becomes <expr><opxexpr>), and the next 
codon wi l l be considered. 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

The second sentential form is: 

<expr><opxexpr> 

• The highlighted <expr> is the next nonterminal symbol to be considered. So 
the rule number 240 mod 4 = 0 is applied again and the next codon is read. 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

The third sentential form is: 

<ax/>rxopxexprxopxexpr> 

• As in the two previous steps, rule (0) <expr>::=<exprxopxexpr> is used 
again to replace the highlighted <expr> 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

The fourth sententiarform is: 

<&t J p/ , xopxexprxopxexprxopxexpr> 

• At this point, rule <expr>::=<var> is used, because 203 mod 4 = 3. 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

The fifth sentential form is: 

< v a r x o p x e x p r x o p x é x p r x o p x e x p r > 
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• <var> is the leftmost non-terminal symbol. <var> is at the left hand side of 
two rules, and 101 mod 2 = 1. Rule number 1 (<var>::=1.0) wi l l be applied. 

220 I 240 I 220 I 203 I 101 I 53 I 202 I 203 I 102 I 55 I 220 I 202 I 243 I 130 I 37 I 202 I 203 I 140 I 39 I 202 I 203 I 102 

The sixth sentential form is: 

1.0 <&pxexprxopxexprxopxexpr> 

• <op> is now the leftmost non-terminal symbol. <op> is the left hand side of 
four rules, and 53 mod 4 = 1 . Rule number 1 (<op>::=-) is applied. 

220- 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

The seventh sentential form is: 

1.0- <ex/w*xopxexprxopxexpr> 

• 202 mod 4 = 2, thus <expr> is replaced by <pre-op>(<expr>). 

220 I 240 I 220 I 203 I 101 I 53 I 202 I 203 I 102 I 55 I 220 I 202 I 243 I 130 I 37 I 202 I 203 I 140 I 39 I 202 I 203 I 102 

1.0-^re-op>(<expr>)<opxexprxopxexpr> 

• <pre-op> is associated to only one right hand side (sin), so this derivation 
does not consume any codon. 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

1.0-sin(<K3c/>r>)<op><expr><op><expr> 

• <expr> is now replaced by the right hand side of rule with number 3 (<var>), 
because 203 mod 4 = 3. 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

1.0-sin(<va/">)<opxexpr><opxexpr> 

<var> wi l l be replaced by its rule (0), "<var>::=x", because 102 mod 2 = 0. 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 
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1.0-sin(x) <&pxexprxopxexpr> 

<op> wi l l be replaced by its fourth right hand side (*) because 55 mod 4 = 3. 

220 I 240 I 220 I 203 I 101 I 53 I 202 I 203 I 102 I 55 I 220 I 202 I 243 I 130 I 37 I 202 I 203 I 140 I 39 I 202 I 203 I 102 

1.0-sin(x)* <axprxopxexpr> 

• This time, rule number 0 (<expr>::=<exprxopXexpr>) is applied to 
<expr>, because 220 mod 4 = 0 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

1.0-sin(x)* <ac/>rXopXexpr><opxexpr> 

<expr> is now replaced by its rule number 2 (<expr>::=<pre-op>(<expr>)), 
because 202 mod 4 = 2 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 ,37 202 203 140 39 202 203 102 

1.0-sin(x)* ^re-0jp>(<expr>)<opxexpr><opxexpr> 

As previously explained, <pre-op> wi l l always be replaced by sin without 
consuming any codon. 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 3? 202 203 102 

1.0-sin(x)*sin(<eccjpr>)<opXexpr><op><expr> 

• Now 243 is consumed to replace <epxr> by <var>, because 243 mod 4 = 3 

220 240 220 203 101 53 202 203 102 55 220 202 243 130 37 202 203 140 39 202 203 102 

1.0-sin(x)*sin(<vfl/4>)<opXexpr><opxexpr> 

• 130 mod 2 = 0, so <var> is replaced by x, which corresponds to applying 
rale number 0. 

The interested patient reader can easily follow the algorithm in the same way 
and get the sequence of expressions that follows: 

l-sin(x)*sin(x)<opXexpr><opxexpr> 3 7 m o d 4 = l 
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l-sin(x)*sin(x)-<expr><opxexpr> - 202 mod 4 = 2 
l-sin(x)*sin(x)-<pre-op>(<expr>)<opxexpr> 
l-sin(x)*sin(x)-sin(<expr>)<opxexpr> 203 mod 4 = 3 
l-sin(x)*sin(x)-sin(<var>)<opxexpr> 140 mod 2 = 0 
l-sin(x)*sin(x)-sin(x)<opxexpr> 39mbd4 = 3 
l-sin(x)*sin(x)-sin(x)*<expr> 202 mod 4 = 2 
1 -sin(x)*sin(x)-sin(x)*<pre-op>(<expr>) 
l-sin(x)*sin(x)-sin(x)*sin(<expr>) 203 mod 4 = 3 
l-sin(x)*sin(x)-sin(x)*sin(<var>) 102mod2 = 0 
1 -sin(x)*sin(x)-sin(x)*sin(x) 

Once a correct phenotype is produced (a correct sentence in the language of the 
grammar), the mapping finishes. * -

Applications 

The authors of GE have applied their approach to automatically program 
solutions for a wide range of problem and domains: 

• Symbolic regression and integration 

f The Santa Fe ant trail 

• Caching algorithms 

They have also tested the performance of GE as compared with other classical 
GP approaches [Neil03]. 
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Chapter 2 

Fractals 

2.1.Overview 

Euclides (430-360 BCE) is considered the father of Classical Geometry, which 
studies ordinary and (in some way) "regular" shapes (points, lines, surfaces and 
volumes, such as ellipses, circles, polygons, polyhedrons, etc.). One of the main 
concepts in Geometry is dimension, which is associated to the number o f degrees of 
freedom for each object, that is, the number of parameters needed to define each point" 
in the object. So, points have 0 dimension, lines 1, surfaces 2, volumes 3, and so on. 

These dimensions were the only way to describe shapes for many centuries; 
objects too complex (most of the real objects: clouds, mountains, coastlines, etc., plus a 
few well known monstrous mathematical objects as, for instance, a curve defined by 
Peano able to fill a surface) remain out of the scope of Classical Geometry. 

The history of fractals began with mathematicians' attempts to study such 
strange objects. Problems apparently trivial did not have a clear answer in Classical 
Geometry. For example: the lengths of coastlines or of the borders between countries 
depend on the method used to compute them. The underlying difficulty is the fact that 
these curves ( i f coastlines and borders can be considered curves) have so much 
complexity, that it is always possible to find more detail, and hence a greater length, 
while zooming in. Classical dimensions have no meaning in these cases, so Mandelbrot 
[Man75] suggested using real positive values, rather than natural numbers, to express 
the dimension of such objects. Mandelbrot also considered a wide diversity of strange 
phenomena and coined the tena, fractal to describe them, because they share a few (not 
necessarily all) curious properties, such as self-similarity (the same shapes are found at 
different levels with different scales all over the set), underivability at every point, 
infinite length covered in a finite space, difficulties to calculate their dimension, etc. 
In the next sections, different types of fractals wi l l be introduced, although only one of 
them (initiator-iterator fractals) is considered in depth in the present thesis. 

This chapter ends with an overview of several applications of fractals, and a 
brief definition of multi-fractals. 
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2.2. Categorizing Fractals 

Most fractals have been represented by means of the following methods: 

2.2.1. Initiator-Iterator Fractals 

This kind o f fractals i s d efined b y means o f two shapes, the initiator and the 
iterator. The fractal is defined as the limit curve after an infinite number of 
transformations from the initiator. Transformations are obtained by applying the iterator 
to each segment of the initiator in the curve at the previous stage. Many famous 
monstrous curves can be constructed by means of this method, such as Cantor set, von 
Koch snowflake, Peano's curve, and Sierpinski's gasket. 

Cantor set 

The initiator is a single segment. The iterator wi l l erase a segment of length 1/3 
from the central part of each segment in the previous step. After applying the process an 
infinite number of times, the number of segments increases to infinite and the length of 
the segments-decreases to 0. Figure 2-1 illustrates the first 4 steps in this process. 

Figure 2-1: The first four steps in Cantor set construction • 

The reader may infer from the definition that the set contains an infinite number 
of segments, but the length of the complete set is 0, because each segment has length 0 
and an infinite sum of 0's equals 0. It is obvious that Cantor set is a very strange one. 
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Von Koch snowflake 

In this case, the iterator replaces the middle part of the 
initiator shape by the remaining two sides of an equilateral triangle. 

Figure 2-2 illustrates the first five steps to build Von Koch 
snowflake. Two odd properties of this curve are that it has no 
tangent at any point (when the length of-each segment goes to 0, 
every point is a vertex of some equilateral triangle), and that it 
represents a walk of infinite length comprised in a finite space. To 
explain this last property, let us study the length of segments at step 
N , and the total length. They are respectively equal to (l/3n) and the 
total length is equal to (4/3)n. Table 2-1 ([Fla98]) illustrates the 
relation between the lengths of the segments and the total curve 
length. 

Figure 2-2: Von Koch's curve 

Step 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

• 

100 

Number of segments 
1 
4 
16 
64 
256 
1024 
4096 
16384 
65536 
262144 

•, 

1.60694xl060 

Length of a segment 
1 
0.33333 
0.11111. 
0.037037037 
0.0123457 
0.00411523 
0.00137174 
0.000457247 
0.000152416 
5.08053xl0"5 

• ' 

1.94033x1o-48 

Total length , 
1 
1.333333 
1.7777778 
2.37037 
3.16049 
4.21399 
5.61866 . 
7.49154 . 
9.98872 
13.3183 

• 

3.11798xl012 

Table 2-lThe length of Von Koch curve. 

* 
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Peano's curve 

In 1890, Giuseppe Peano defined a curve that can be represented by means of an 
iterator that divides the segment into thirds and replaces the central part of the segment 
with 7 segments of length 1/3, forming two squares around the removed middle third 
part. Peano's curve is continuous, that is, it is drawn without lining the pen of the paper. 
Figure 5.3 shows its iterator. 

Figure 2-3: The iterator of Peano's curve 

Peano's curve completely fills up the unit square that contains its initiator, and 
has also, like von Koch's snowflake an infinite total length : „ 

2.2.2. Random Fractals 

Self-similarity may be regular or random. In the preceding examples, the 
generated fractals are very regular. This kind of regularity is not frequent in natural 
shapes that rather exhibit, to some extent, a random self-similarity. 

This is the case of a plethora of phenomena from bacteria colonies to clusters of 
galaxies. An example of a random fractal, called a Brownian-motion, fractal was used to 
describe the motion of a particle in a gas or a liquid. It is defined as a random walk in 
the Cartesian plane in the following way: starting at some initial point, just move to any 
other point in the Cartesian plane with equal probability. An example can be seen in 
figure 2-4. It shows clearly its scale-independent self-similarity. 
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Figure 2-5 shows other similar phenomenon: bacteria aggregation. 

Figure 2-4: Example of a Brownian-motion fractal, from [Int]. 

Figure 2-5: Illustrates an example of a bacteria aggregation fractal [Int]. 

2.2.3. Other ways of defining fractals: affine transformation 
fractals and iterated function systems 

Affine transformation fractals can be constructed by iterating a fixed original 
pattern with different scaling factors. The copies of the pattern must remain in the same 
position with respect to the other generated copies, at each iteration. 

Several algorithms can be used to generate fractals in this way. One of them is 
MRCM (Multiple Reduction Copy Machine), where a regular self-similar recursive 
function is used. The combination of geometric transformations (translation, rotation, 
scale factors) applied in MRCM is the same through all the process. The result of the 
algorithm is obtained when the number of iterations goes to infinite. 
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Iterated Function Systems (IFS) is a method similar to MRCM. Instead of 
iterating the complete initial shape, only a subset of points chosen at random is handled. 

2.2.4. Iterative Dynamical System Fractals. 

Some Fractals appear as the boundary between convergence and divergence of 
certain recursive mathematical functions in the complex domain. The most!famous 
fractals of this kind are Mandelbrot and Julia sets. 

Mandelbrot set is the boundary between the convergence and divergence 
domains of the recursive complex function: 

Zn^l=Azn)=Zn +C, • 

where c=cx+cy i is taken from a ball in the complex plane and ZQ=0. 

Julia set is the boundary between the convergence and divergence domains of 
the recursive complex function: , 

Zn+i=f(Zn)=Zn +C, 

where c=cx+cy i is a fixed complex point and ZQ is taken from a ball in the complex 
plane. [Man77]. 

2.3. How can we estimate the dimension of fractals 

The concept of dimension is very old and seems easy and evident. We live in a 
space with three dimensions: length, width, and depth. Some of the objects in our 
environment are approximately bi-dimensional: a sheet of paper, a picture. Others have 
a single prevalent dimension: a distant road, a pencil line drawn on paper. What we call 
dimension may sometimes be defined as the number of directions in which movement is 
allowed. 

Things appear very clear and elegant: dimensions are consecutive integers: 0 (a 
point), 1 (a line), 2 (a surface), 3 (a volume), with no doubtful cases. Some do exist, 
however, as Mandelbrot proved in his famous book on fractals [Man77]. Depending on 
the size of the observer, a ball of thread can be considered as 

• A point (zero dimensions) i f the observer is very large (a mountain, a planet) or 
very far away. 

• A sphere (three dimensions) i f the observer is comparable to the size of the ball 
(a human being) and is located near the ball. 

• A twisted line (one dimension) i f the observer is smaller than the ball (an ant) 
and very near it. 
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• A twisted cylinder (three dimensions) i f the observer is much smaller than the 
ball (a bacterium). 

• A set of isolated points (zero dimensions) i f the observer is even smaller and can 
see the atoms. 

• A set of spheres (three dimensions), i f the observer's size is comparable to that 
of the atoms. 

• And so forth. 

Therefore, it seems necessary to revisit the definition of dimension. In the 
following sections several approaches' to estimate fractal dimension are briefly 
described. 

2.3.1. Hausdorff dimension 

In 1919, Hausdorff proposed a new definition of dimension, applicable to such 
doubtful cases, to distinguish them from normal surfaces and lines. With his definition, 
strange curves in the plane may have a fractional dimension between 1 and 2. For 
instance, Peano's curve, which covers a complete square, has a Hausdorff dimension of 
2, while Von Koch snowfiake has a Hausdorff dimension o f about 1.261. 

The Hausdorff dimension of a curve is considered very difficult to compute and 
is not practical for calculation, because of its abstract characteristics. 

Benoit Mandelbrot, who coined the term fractal in 1975, gave the first definition 
of a fractal based of the Hausdorff dimension, as mentioned before: 

Definition: A fractal is a set for which the Hausdorff dimension strictly exceeds 
the topological dimension. 

2.3.2. Richardson-Mandelbrot dimension estimation 

Richardson found a linear relation between the logarithm of the measured length 
and the logarithm of the unit used for measuring it, and considered the slope of this line 
as a good indicator of the curve. Mandelbrot associated that slope to, the concept of 
fractal dimension. 

This method computes the fractal dimension of a curve as a quotient of two 
measurements taken while "walking" the fractal line in a number of discrete steps. We 
take as a unit the distance between the beginning and the end of the fractal line to be 
walked. The first measurement is Pi; the length of the step used, or pitch length, which 
must be constant during the whole walk. The second is the number of steps needed to 
reach the end of the walk by following the fractal curve, N (pt). 

We call Dpi the number for which the following relation holds: 
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N(Pi)«PfDpi 

I f we take logarithms on both sides of this equation, we obtain 

logtN(Pi)]=-DP1log(Pi) 

The fractal dimension is the limit of Dpi when PI goes to zero: 

' - log[W(i>)] v 

DP¡ = hmpUo 
logO/) 

2.3.3. Box Counting 
* • . • • ' 

This method computes the fractal dimension of a curve as a quotient of two 
measurements taken while covering the fractal curve with a set of boxes. N(d) denotes 
the number of boxes with size of length d which are necessary to cover the curve, 
considered as a set of points in the two-dimensional plane. Box dimension is defined as 
the exponent Db in the equation 

N (d) « d -D" 

I f we take logarithms on both sides of the equation, we obtain 

log[N(d)]=-Dblog(d) 

The fractal dimension is defined as the limit of Db when d goes to zero 

f-\og[N(dj¡) 
£ 6 = l i m ^ 0 

log(¿) 

There are many variations to this algorithm. Some of them assign a weight to 
each box, depending on the number of points it contains. Instead of computing the 
number of boxes, another variation estimates the information entropy for the set of 
boxes, where the number of points is considered to be the* information. 

Alternative ways of calculating Box dimension, change the shape and the nature 
of the set of boxes. Square-shaped boxes are usually used to define a grid on the image; 
other approaches place the boxes at any position and orientation. Families of concentric 
circular boxes with increasing radius are also used. 

"•With this definition, Mandelbrot associated a fractal dimension to strange 
objects such as Cantor set, Koch snowflake and Peano's curve: Cantor set has a fractal 
dimension equal to log(2)/log(3) s0.63093, which seems intuitively correct, because it 
is a set of isolated points that we cannot consider either as a curve or a point. Von Koch 
snowflake has a Richardson-Mandelbrot dimension of log(4)/log(3)=1.26186, which 
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means that its behavior is more complex than that of a curve, but doesn't reach to fill a 
two-dimensional s urface. It i s a lso c lear t hat t he t otal 1 ength o f v on Koch's c urve j. s 
infinite. Peano's curve has a Richardson-Mandelbrot dimension equal to 2, which seems 
intuitively correct, because, when the number of iterations goes to infinite, it completely 
fills" the bi-dimensional region that includes its initiator. 

2.4. Multi-fractals 

In natural phenomena with a fractal structure, it.usually happens that there is not 
a uniform fractal dimension applicable all over the set. This means that different parts of 
the fractal wi l l have different dimensions (different degrees of complexity). Therefore, 
while the global fractal dimension represents the global complexity of the whole object, 
different parts of the object may have different dimensions. 

Multi-fractal structures are found in various contexts, where they are usually 
represented by multiplicative cascades of random processes. 

2.5. Application of Fractals 

This section briefly introduces some of the areas where fractals have been used, 
such as Physics, Chemistry, Astronomy, Geology, image compression, Psychology, 
Economics, "medical imaging, et cetera. 

Many natural phenomena are better described using fractional dimensions. 
Fractals are thus used as descriptive models for the growth of plants, particle 
aggregation, river cartography, realistic images, and similar phenomena. Fractal 
dimension characterizes most of the properties of these models. 

In image processing, fractals are considered useful approaches to analyze and 
quantify the complexity of images. The fractal dimension of an image is a parameter 
that makes it possible to study the roughness or the smoothness of digitized images. For 
example, for 2-D images, the fractal dimension should he between 2 and 3. A fractal 
dimension .closer to 2 represents smooth images. A 3-D representation of a 2-D 
digitized image is possible by associating to the third dimension the intensity of each 
pixel in the 2-D image [Dat02]. ' 

Fractals have also been used for medical imaging, to analyze X-ray medical 
images, or to check the quality of ultrasonic C-scan images of glass-epoxy and carbon-
epoxy composite laminates containing flaws. Fractal dimension has been used to 
characterize mammographic patterns [Li97], trabecular bones [Maj99], etcetera. 

The physical characteristics of some bodies are related to the fractal dimension 
of their surfaces [MelOl]: the growth pattern of bacteria has a fractal dimension of 1.7. 
Another example is geological patterns: the fractal dimension of clouds is 1.30-1.33; 1.7 
for snowflakes; 1.05-1.25 for coastlines in South Africa or Britain; 1.28-1.90 for woody 
plants and trees; et cetera. [Tay02]. 
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In medicine; fractal dimensions have been found for various bio-molecules, such 
as DNA and proteins. For instance, the fractal dimension of Lysozyme (egg-white) is 
1.614, for hemoglobin it is 1.583, for myoglobin 1.728 [Ian96]. The fractal dimension 
of the perimeter of surface cell sections has been used to distinguish healthy cells and 
cancerous cells [Bau99]. In analytical chemistry, the fractal dimension is used as a tool 
to characterize chemical patterns and problems of sample homogeneity [Dan02]. Á 
given fractal dimension makes it possible to simulate a variety of systems: fluid 
extraction or contaminant mitigation techniques [MelOl], thehybnd orbital model o f 
proteins [TorOl], or the growth of conflict rate in aircraft flays [MonOl]. 

Antennae are electromagnetic devices designed to radiate or capture signals. 
Some of their characteristics are gain, bandwidth, return loss and resonant frequencies. 
In the last years, fractal geometry has provided a new approach to traditional antenna 
design methods [VinOl]. Several classical fractals of the initiator-iterator kind (von 
Koch Snowflake, Sierpinski's gasket, for example) have been proposed as antenna 
prototypes. Certain properties of fractal antennae are related to their fractal dimension: 
an increase in the fractal dimension may be translated into higher gain, low return loss 
and a shifting down of the resonant frequencies. 

Multi-fractals have been applied to different areas, such as signal processing 
[Rel02], earthquake distribution analysis [HarOl] and network data traffic modeling 
[Rie99] [RibOl] [Abr02] [SarOl]. 
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Chapter 3 

Lindenmayer Systems (L-Systems) 

' 3 .1 . Overview 

Lindenmayer systems (L-systems) were originally created by Aristid 
Lindenmayer [Lin68] to study formal languages. They were then used as formal 'discrete 
models of plant development and other biological development systems of different 
multi-cellular organisms. Lindenmayer defined a new type of grammar (a parallel 
derivation grammar), which differs .from the normal Chomsky grammars (sequential 
derivation grammars) because the rules are applied simultaneously, rather than one at a 
time. -

An L-system consists of an alphabet fa set of symbols), an initial string called 
the axiom and rewriting rules called production rules. The production rules are applied 
recursively; in the first iteration they are applied to the axiom. 

, L-systems have many interest properties such as their simplicity, variety, 
modularity, and universality [Goe91]. They have been successfully applied to the 
simulation of biologic processes such as plant growth, leaf development, pigmentation 
of snail shells, and several others [Pru90][Pru94][Pru98]. Recently, many investigations 
of artificial life are trying to use L-system to simulate and generate realistic images that 
model plants, simulate branching and flowering patterns, or study the influence of the 
environment (light, nutrients and mechanical obstacles) on a developing p lant, as we 
can see in figures 3-1 to 3-3. Discreet mathematical models and symbols based on 
formal languages and abstract machines have proved to be a useful tool for such 
applications. 

Figure 3-1 :Development process of an artificial tree using a special type of L-systems 
called stochastic L-systems (from [Pru94]). 
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Figure 3-2: A model of a date palm tree simulated by an L-system variant ( f rom [Pru95]) . 

Figure 3-3: Found in [Pru95], illustrates the development of a plant 

K 

Lmdenmayer systems are also appropriate to represent fractal objects, including 
not only iterated geometrical transformations (as Cantor dust, the Sierpinsky gasket or 
the Von Koch snow flake), but also fractal sets found in the complex plane, as 
Mandelbrot or Julia sets [Ort02]. Lindenmayer systems can also represent the evolution 
of discrete mathematical models such as Von Neumann auto-reproductive cellular 
automata, and McCulloch and Pitts neuronal models. 
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3.2. Classes of L-Systems 

Lindenmayer derivation grammars, also called L systems, can be classified in 
different ways. In the next sections, some of these classes wi l l be defined, specially 
those that wi l l be used later in this thesis. > 

3.2.1. OL Systems 

OL systems are context-free L-systems; that is, each symbol is replaced by the 
same right hand side of the rule wherever it is found. The transformation of a symbol 
does not depend on the symbols close to it. As there is no interaction, between a symbol 
and its neighbors in the derived strings, OL systems are also called L-systems without 
interactions. 

DOL Systems 

DOL systems are OL systems where two different rules may not have the same 
left-hand side symbol. These systems are also called deterministic L-system without 
interactions. 

A DOL system is a three-fold with an alphabet (a finite non-empty set of 
symbols), a set of production rules that deterrnines the only way each symbol of the 
alphabet can be changed in a derivation, and a starting word or axiom. A derivation of a 
word in a DOL, system is the new word obtained when each symbol in the word is 
replaced by applying the allowed transformations. 

Formal definition 

A DOL system is the three-fold 

where: ' 

2 & O is a non-empty set of symbols, the alphabet.. 

P c Sx£*|Va G Z => 3\a eZ.*„a ::= a e P 
1 " , is the set of production 

rules. 

0 ' " • M _ I
 } is the axiom and \CQ \ is the length of the word © (the 

number of its symbols). 

The following expression 
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x=>sy 

means that word y is derived from word x by means of the production rules of system 
S. When it is clear which system is used, the following expression indicates the same 
fact: 

x => y . " 

The set of words that can be derived from the axiom is called the language of a 
DOL system. 

Example 1 

Let S be the following DOL system 

S = { E = { A , B } , P = { A : : = B , B : : = A B } , A} 

We can get the following derivations from the axiom: 

Stage 0: A 
Stage 1:B 
Stage 2: AB 
Stage 3: BAB 
Stage4:ABBAB 
Stage5:BABABBAB 
Stage 6: ABBABBABABBAB 
Stage 7: BABABBABABBABBABABBAB 

I f we count the length of each string, we obtain the Fibonacci sequence of 
numbers: 

1 1 2 3 5 8 13 21 34 55 89 

Consider the DOL system G={£, h, co}. We define hn as the number of times the 
production rules have been applied to the axiom co, as follows: 

h(h(h...h(0£>))...)) 

The growing function of G (denoted fc(n)) is defined as follows: 

fG :N-»N, f G ( n ) - H h » | 

where the growing sequence of the G system is: 

{ | h » | } , n e N : 

Example 2 

Let ¿Fibonacci ={{a,b},{a::=b,b::=ab},a}. Table 3-1 shows the first five derivation 
steps, and the first five elements in the growing sequence. 
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hn(co) |hn«o)| 
0 
1 

.2 
3, 
4 
5 

a 
b 
ab 
bab 
abbab 
bababbab -

1 
1 
2 
3 
5 
8 

Table 3-1: Derivation steps that generate the Fibonacci sequence 

POL and PDOL Systems 

I f no rule in a OL-system has the empty word (X) in its right hand side, the 
system is called a propagative L-system or POL. 

An L-system can be at the same time deterministic and propagative.. These 
systems are called PDOL. 

3.2.2. <k, l>IL Systems 

In the same way that Chomsky context-free grammars can be extended to 
context-sensitive grammars, OL-systems can be extended to L-systems with interaction, 
or EL Systems, i.e., the left-hand side of the rules can contain strings instead of single 
symbols. These strings indicate the symbol that wi l l be transformed and the context in 
which the rule can be applied. The size of the context must be the same in every rule. 
This may be problematic i f a symbol is too close to the beginning or the end of the 
string. In these cases, to solve this problem, a new symbol wi l l be used, to fill the 
context. Such a symbol can only appear at the beginning or the end of the string. 

These systems are called Lindenmayer system with <k,l> interactions, where k 
is the size of the left-hand side context, and l i s the size of the right-hand side context, k 
and 1 cannot be negative values. 

Formally 

A <k,l> I L system is a four-fold (S,P, g,co) where: 

S is the alphabet. 

co the axiom. 

P the set of production rules. •• , 

g i Z is the symbol added to the context outside the word boundaries, 
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such that 

l . I f©ia© 3 : :=©4e P then i f . 

• w,= wtgw} for some wvw e (E^{g})*?then w, e{g}* 

• w3= w3gw3 for some w3,w3 e (E ^{g})* , then ^3 s {g}* 

2. For every wlaw.i ::= w4 e (£v{g})k x (Zu{g}) ' such that w,, w3 satisfy the two 

. conditions in point 1, there exists w4 e P 

3.2.3. Systems with tables 

To simulate some kind of processes, it may be necessary to consider more than 
one set of production rules, to be applied in different circumstances. These systems are 
L-systems with tables or TL systems. 

Formally 

A TOL system is a triple fold (2, p ,©) • 

Where * * 

E and © are defined as previously. 

p The set of the tables of the system, a finite non-empty set. 

Each element P in p, called a table, is a finite non empty subset of SxE such that 

VaeS (3cceE* I a:: = cceP). 

3.2.4. Systems with extensions 

' To simulate some biological systems, it is convenient to specify a subset of the 
alphabet in the L-system, so that the language generated by the L-system only contains 
the words that are made of symbols in that subset. In this case, we say that the system 
has extensions. An EOL system is a system without interactions and with extensions. An 
EIL system is a system with interactions and with extensions. A n ETOL system is a 
system without interactions, with tables and with extensions. 

3.2.5. Other combinations 

The previous definitions describe the most common families of L-systems. It is 
possible to have other combinations of these properties, for example, DIL systems, 
PDIL systems, DTL systems, etc. 
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3.2.6. Other L-System extensions 

• Bi-dimensional I L - systems 

In bi-dimensional I L systems, the words are matrices of characters, rather than 
linear strings. The context is determined- by a function c that generates the horizontal 
and vertical displacements of the context symbols with respect to the current symbol.' 

Formally 

A bi-dimensional <k, 0> I L system is defined as the five-fold <E,P,g,co,c> 

where 

S, P, g, © were defined previously, 

c: [ l , K ] n N - K - l , 0 , l } . 

• Probabilistic L-Systems 

A probabilistic L system differs from other L-systems because each production 
rule has an associated probability (R, p(R)), where R is the derivation rule and p(R) its 
probability of being applied. The sum of the probabilities associated to all the rules 
applicable to a symbol must be 1. 

• Parametric L-Systems 

Real parameters or arguments can be associated to the symbols of the alphabet. 
For example, while in standard L-systems, the production rules have the form. 

A::=BCD 

in parametric L-Systems it is possible to associate an argument to each symbol, plus the 
conditions that argument must satisfy. For instance, i f we have the following rule: • 

, A(t):t>5 ::=B(t+l)CD(t05,t-2) it wi l l be applied only when t>5. 

3.3. L-System Design 

The first step while designing an L-system for simulation (e.g. to construct a 
biological model) consists of understanding the specifications of the model and the way 
in which the Lindenmayer system should work. Once this is understood, the task for 
solving the concrete problem must be designed. There are two main methods to design 
such L-systems: ad hoc manual solutions and genetic algorithms. 
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3.3.1. Ad-hoc solution 

In many previous works, L-systems were designed by hand to solve specific 
tasks, and then they were implemented to be run on a computer 
[Pru94][Pru95][Pru98][Ort02]. We can describe the ad-hoc solution as the following 
process: 

• Reading thoroughly and understanding the way in which the 
defined Lindenmayer system works. 

• Listing the required input-output. 

• Writing the process inthe form of an algorithm., 

• Implementing the system with the appropriate axiom and 
production rules. 

• Validating the system with different axioms and productions 
to identify its limitations. 

The manual synthesis of L-systems modeling the morphogenesis of a particular 
biological species is a difficult task. For that reason, the use of evolutionary algorithms 
facilitates the L-system design. An example of manual L-system design to simulate an 
ecosystem, with appropriate definition of L-systems and their production rules, is 
described at [OrtOO], which simulates a biological system where many different species 
exist and interact among them. , 

3.3.2. Genetic L-System programmmg 

EAs have b een u sed t o evolve s olutions to p roblems i n m any different areas, 
including L-system design problems. Previous work by other authors has applied 
genetic algorithms to L-systems. Many researches have designed L-systems that can 
simulate different kinds of biological models by means of EAs. 

First, a random population of L-systems is generated. Next, an EA is applied for 
a specific number of generations to achieve the pre-defined goal or the proposed model. 
Ochoa [Och98] evolves DOL systems with a single rule that generate shapes similar to 
plants. Jacob [Jac94][Jac96a][Jac96b] used genetic programming techniques to find the 
proper axiom and the production rules that describe growth processes of plant structure, 
to model the growth of a real plant (see figure 3-4). Other authors [Hor03][Tra96] 
evolve parametric L systems (an extension of Lindenmayer grammars). In this thesis a 
different approach wi l l be used, grammatical evolution, which provides a better parallel 
to biological evolution. 
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Figure 3-4: Plant growth simulation using Genetic Programming and L-systems, from [Jac94] 
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Chapter 4 

Fractals and L-Systems 
* 

4.1. Overview 

In previous chapters, different types of fractals were introduced. One of them is 
the initiator-iterated fractal. As we know, an L-system starts with the axiom and applies 
a set of production rules to generate derivations. Clearly we need a graphical 
interpretation o f t he w ords d erived b y t he L-system t o o btain a v isible fractal o bj ect 
from them. • 

There exist two different kinds of graphical interpretations of L-systems; the 
most common one is called turtle graphics. Another method is known as vector 
graphical interpretation. In the following sections the two methods wi l l be discussed. 
Then a method for calculating the fractal dimension of the generated fractal wil l be 
discussed. * . " ' . . " . 

4.2. Turtle Graphics Method 

Turtle graphics were introduced by Papert at 1980 [Pap80]. He devised it to 
make computers and algorithms easier to understand for kids. In 1984, Smith [Smi84] 
used this method for the first time to give a graphical interpretation to L-system strings. 
His work encouraged other researchers to develop more applications related to various 
"disciplines. 

A turtle graphic is considered as the trail left by an invisible turtle that follows 
very precise but brief motions defined by its position and the direction of its movement. 
The turtle, changes its position by moving forward a specific distance m, and its 
direction by rotating an angle a. The turtle graphic interpretation can be applied at 
different levels of complexity. 

The turtle graphic interpretation (T,cc) used in this thesis is one of the simplest' 
versions, where the alphabet of the related L-system can be expressed as the union of 
four disjoint subsets: 

£= N u D u M u {),( ,+,-} 

where 

A s N Leaves the state of the turtle unchanged. N is called the set of non­
graphic symbols. " 
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Fe D Moves the turtle one step forward, in the direction of its current angle, 
leaving a visible trail. D is called the set of draw symbols. 

f s M Moves the turtle one step forward, in the direction of its current angle, 
with no visible trail. M is called the set of move symbols. Using move symbols, Cantor 
set fractals are easy to generate. 

( Pushes the turtle state in the stack. 

) Pops and restores the turtle state from the stack. 

+ Rotates the direction the turtle is pointing by a positive angle a. 

Rotates the direction the turtle is pointing by a negative angle a. 

a The unit rotation angle, restricted to 2kTI/n with k , n integers. 

A given fractal can be represented (with an appropriate scale factor) by means of 
the four components-of an L-system, a turtle interpretation, an angle step and a distance 
step. 

4.3. Vector Graphics Method 

In this family of graphical interpretations, each symbol in the alphabet of the L-
system is associated to a vector in a rectangular Cartesian system. A word derived by 
the L-system can be graphically represented as a concatenation of the vectors associated 
to the symbols that make the word. As the turtle can leave (or not leave) a visible trail, 
the vector graphics interpretation wi l l assign a visibility coefficient to each symbol in 
the L system alphabet. This makes it possible to represent non-connected curves. For 
the visibility coefficient, we wi l l assume that 0 means invisible and 1 means visible. 

Branching fractals can be obtained with a vector graphical interpretation, since i t 
is possible to come back to the start point of the branching, by returning by the same 
way in the opposite direction. This can be achieved if, for every vector associated to a 
symbol, an opposite vector is associated to some other symbol. 

Formally 

V ; £ - » { 0 , l } x 9 l 2 

Where {0,1} indicates the visibility or the invisibility of the vector, and 9Í2 

indicates the Cartesian X-Y System. 
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4.4 Equivalence between the Turtle and Vector graphical 
representations of L-systems 

To represent complex fractals, non-standard extensions of L-systems were 
proposed by different authors. In a previous work by Alfonseca and Ortega [A1Í97], 
DOL systems were used to provide a wide range of fractals using the two graphical 
interpretation methods mentioned above. In this approach, the DOL system is isolated 
from its graphical interpretation, i.e. the same L-system may generate completely 
different fractal curves by changing the graphical interpretation. 

We call the pair GL = (L, G) a Lindenmayer graphic, where L is a Lindenmayer 
system, and G is a graphical interpretation (using either turtle graphics or vector 
graphics). When the graphic interpretation is of turtle type, we call GL a Lindenmayer 
turtle graphic. 

[A1Í97] proved that both methods are equivalent, in the sense that a fractal that 
can be represented by an L system with one type of graphical interpretation, can also be 

' represented by a (different) L system and the other type of graphical interpretation in a 
wide family of cases. This equivalence between the two methods has. important 
advantages, as the turtle graphic interpretation is more flexible for actions such as area 
filling and coloring, while vector graphics are usually faster. Thus, it may be useful to 
be able to build a Lindenmayer turtle graphics from an equivalent vector graphics or 
viceversa. 

We call TGDOL the set of all DOL systems that represent fractals by means of 
the turtle graphics interpretation (T,a). 

We call VGDOL the set of all DOL systems that represent fractals by means of a 
vector graphics interpretation. 

. For the two methods to be equivalent, a few restrictions must be taken into 
account: 

First, the strings (rules) of the DOL system under the turtle graphics 
interpretation must be angle-invariant, which means that the direction of the turtle at the 
beginning and the end of the string should be the same. This restriction is not really 
important; as it can always be fulfilled by adding a certain number of + or - symbols to 
the end of the string. 

We call AITGDOL to the set of all angle-invariant JGDOL-schemes, where all 
the right-band sides of the rules in TGDOL are angle invariant strings." 

In the same way, vector interpretation graphics must have some conditions and 
modifications to achieve the equivalence. 

A VGDOL with a Vector Interpretation V I is called a rationally related DOL 
system (RRVGDOL) i f both the set of modules and the set of angles of all the vectors in 
V I are rationally related. This means that, for any finite rationally related scheme with a 
vector graphics interpretation, there exist two real numbers r and a such that all the 
modules of the vectors in V I are positive integer multiples of r, and all the angles of the 
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vectors in V I are positive integer multiples of a. A VGDOL system must be rationally 
related to be able to be transformed into an equivalent TGDOL. 

Alfonseca and Ortega [Alf97] introduced two equivalence theorems between the 
two families of graphical interpretations RRVGDOL and AITGDOL as follows: 

Theorem 1 

For every AITGDOL system which represents a fractal with the usual turtle 
graphics interpretation and a=(2xkxn)/n there exists a fractal-equivalent RRVGDOL 
system. 

For every AITGDOL scheme which represents,a set o f fractals with the usual 
turtle graphics interpretation and there exists a fractal-equivalent RRVGDOL scheme. 

Theorem 2 

For every RRVGDOL system which represents a fractal with a vector graphics 
interpretation, there exists a fractal-equivalent AITGDOL system. 

For every RRVGDOL scheme which represents a set of fractals with a vector 
graphics interpretation, there exists a fractal-equivalent AITGDOL scheme. 

For the proof and some examples, refer to [Alf97]. In this thesis, only turtle 
graphics are used to generate fractals. 

4.5. Computing the dimension of initial-iterated fractals 

In chapter 2, d ifferent m ethods for c alculating the d imension o f fractals w ere 
mentioned. In this section, the fractal dimension computed by Alfonseca and Ortega 
[Alf01a][Alf00a] is introduced. Similarly to typical ways for calculating the fractal , 
dimension, it is obtained as the ratio between how much the curve grows in length and 
how much it advances, but it differs because the calculation of the dimension is done by 
operating directly on the L-system that represents the fractal curve, without performing 
any graphical representation. Obviously, computing the fractal dimension through 
operations on strings is an easier method than the computation of a limit. 

Each word in the derivation represents a step of the recursive generation of the 
fractal curve. The production rules embody the allowed transformation between 
configurations. Therefore, the growth of the words is related to the corresponding 
growth o f t he. c urve. T he. g raphic i nterpretation of the L-system m akes i t p ossible t o 
assign bi-dimensional co-ordinates to the letters in each word. Once these co-ordinates 
have been computed, it is straightforward to obtain the distance between the different 
points. These distances may be used as a measure of how much the curve grows in 
length. This method for computing the dimension of the fractal curve wi l l be,used in 
chapter 7. 
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The algorithm in [Alf01a][Alf00a] applies to a set of fractal curves which can be 
represented by an L system containing a single draw symbol and no move or non­
graphic symbols. The production set, therefore, consists of a single rule, apart from the 
trivial rules for symbols +, -, (and). In fact, the algorithm may be applied to other more 
complicated L-systems, but we won't need them in this thesis. 

Informally, the algorithm takes advantage of the fact that the right side of the 
only applicable rule provides a symbolic description of the fractal generator, which can 
thus be completely described by a single string. The algorithm computes two numbers: 
the length N of the visible walk that follows the fractal generator (equal in principle to 
the number of draw symbols in the generator string, but see below), and the distance d 
in a straight line from the start to the end point of the walk, measured in turtle step units 
(this number can also be deduced from the string). The fractal dimension would thenbe: 

íog(d) 

The example given below illustrates the use of the algorithm. 

The PDOL scheme 

F::=F+F-F+F 
• . +::= + 

with axiom F--F--F, and a turtle graphic interpretation, where {F} is a draw symbol, and 
the step angle is 60 degrees, represents von Koch snowflake curve. 

The string to be considered is the right hand side of the rule: 

F+F-F+F 

This string describes the fractal generator. The number of steps along the walk 
(N) is the number of draw symbols in the string, 4 in this case. The distance d between 
the extreme points of the generator, computable from the string by applying to it the 
turtle interpretation, is 3. Therefore, the dimension is: 

D= ! ^ ^ = 1,2618595071429... 
log(3) 

in accord with the results obtained by other methods, specified by [Man77], 

The algorithm presents the following problems: 

• The distance d in the denominator may be zero. Computed by the previous 
formula, D becomes zero. These cases may be excluded, as they do not give rise 
to fractal curves, but to the same figure indefinitely repeated. 

• The d istance if i n t he d enominator m ay b e o ne. C omputed b y t he formula, D 
becomes infinite. These cases are also excluded, because in every step of 
derivation the curve expands and is not limited to a finite space. Therefore it is 
not a fractal in the strict sense. 
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• The length N of the visible walk may not be equal to the number of draw 
symbols in the generator string. This may happen in two ways: 

o The turtle graphic associated to the string passes more than once along a 
set of points with a non-zero measure. The algorithm takes this case into 
account, by computing a non-integer N . 

«The turtle'graphic associated to a derivation of the string passes more than once 
along a set of points with a non-zero measure. The algorithm also computes this case by 
taking a c ertain n umber o f d erivations u ntil the q uotient c onverges. F or p erformance 
reasons, this approach won't be used in this thesis. 

For the algorithm itself and further examples, refer to [Alf01a][Alf00a]. 
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Chapter 5 

Cellular automata 

5.1. Overview 

Cellular automata (CA) were o riginally introduced b y Von N eumann i n 1966 
[Neu66] as a formal model of self-reproducing biological systems. 

Cellular automata are a mathematical abstraction method, where the space, time 
and states that describe the state of the system are all considered discrete. A cellular 
automaton [Bur70][Kar95][Wol86] has three main components: a. finite automaton, a 
regular lattice (grid) not necessarily finite, each of whose cells contains a copy of the 
finite automaton, and a neighborhood rule that defines the set of neighbor cells to every 
position in the grid.' 

The global behavior of a cellular automaton may be described locally, because 
each finite automaton in the grid takes as input the states of its neighbors. However, 
cellular automata with simple local behavior may give rise to complex dynamic systems 
[Wei91]. • ' 

The set of particular states of all the automata in the grid of a CA at" a given time 
is called a configuration. The grids can be seen as matrices of states with a given 
dimension. The most used grids are one-dimensional and bi-dimensional. 

Cellular automata have been successfully used in The practical domain, in many 
different ways as simulation tools for a wide variety of disciplines: physical modeling 
and simulation [Man90], biology [Erm93], fluid dynamics [Mar86], pattern recognition 
[Bor91], to study the logical organization behind self-reproduction [Lan84]; traffic 
simulation [Nag94] [Sch93], and urban development simulation [Mes99][War99]; and 
in the theoretical domain, where they have been used as parallel computer abstract 
architectures [Ima98] [Lin90] [Mor92] [Tof77]. In [Nor89][Cul90] cellular automata 
were connected with formal languages. They have also been used as a standard method 
to study other decentralized spatially extended systems . CA's have also been used as an 
alternative method to solve differential equations [Tof77], and to simulate several 
physical systems where differential equations are useless or difficult to apply [Tof77] 

5.2* Description and types of Cellular automata 

There are many different types of cellular automata that differ on their 
components. These components are the states of the cell, the geometrical form of the 
lattice, the neighborhood of a cell, and the local transition function. In the following, we 
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wi l l give a standard formal definition of classic cellular automata, indicating later some 
of their more or less usual variants. 

5.2.1. Lattice 

In cellular automata, sets of finite automata are distributed over a regular 
topological structure, usually associated with a matrix, with no limitation on its 
dimension (possibly infinite, even). 

Definition 

Given a set E, 

given n sets of indices not necessarily finite (subsets of increasing contiguous integer 

numbers starting at 0) {I¡}"~1 , i j c Z V z . 

an n-dimensional lattice over E is any function 

R: IoxIix. . .xIn . i -> E, 

R(i0,...,in-1) = Ro,...,n-l Or R[i0,.-..,in-l] 

V(i 0 , . . .,in-i)el0xlix...xln.1 

Both notations wi l l be used. 

Examples 

• Roo over SR represents all the infinite vectors of real numbers. 

• Roo,» over {0,1} represents an .infinite Boolean two-dimensional lattice (grid). 

• R3.3.3 over Z represents a tridimensional lattice (grid) of integer numbers 
with a 3x3x3 dimension. 

Theoretically, cellular automata may be considered to include an infinite lattice, 
but in practice the lattice is always finite. Simulating infinite lattices can be done by 
means of the periodic boundary condition, with a circular neighborhood, that is, for both 
rows and columns, the first and the last ones are neighbors. 

5.2.2. Neighborhood 

The transition function defines the next state of the cell depending on its current 
state and the states of its neighbors (which act as the input to the finite automaton in 
the cell). There are different ways to define the neighborhood. The most common 
neighborhoods are the following: 
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Von Neumann's neighborhood 

• In a bi-dimensional grid, Von Neumann's neighborhood, takes into account the 
cell and its four nearest neighbors according to the Euclidean distance (see 
figure 5-1). 

V N =(5,((0,0),(0,1),(1,0),(0,-1),(-1,0)) where 5 is the number of neighbors 

((0,0), (0,1), (1,0), (0, -1), (-1,0)) is the offset vector 

t 
t 

Figure 5-1: Von Neumann neighborhood in a bi-dimensibnal grid with a central position. 

• In a tri-dimensional grid, Von Neumann's neighborhood considers the cell 
under study and its six nearest neighbors according to the Euclidean distance 
(see figure 5-2). 

VN=(7,((0,0,0),(0,1,0),(1,0,0),(0,-1,0),(-1,0,0),(0,0,1),(0,0,-1))) 

¿1 

y 
s 6? 

Si 

Figure 5-2: Von Neumann's neighborhood in a tri-dimensional grid with a central position. 

• Von Neumann's neighborhood can be generalized for an n-dimensional lattice 
in the expected way. 



Moore's Neighborhood 

Moore's neighborhood considers the current cell under study and its eight 
nearest neighbors according to the Euclidean distance. * 

Formally, in a bi-dimensional lattice, Moore's neighborhood would be the 
following, also shown in figure 5-3: 

V M = (9, ((0,0), (-1,1), (0,1), (1,1), (1,0), (1, -1), (0, -1), (-1, -1), (-1,0))) 

^ f ^ 

V 
• * -

• 

¡4 

W X J 
4 

• 

• • 

• 

Figure 5-3: Moore's neighborhood 

5.2.3. Local Transition Function 

A local transition function defines the next state of each finite automaton, given 
its current input (the set of the states of its neighbors) and its own state. 

f:QxQk ->Q is the transition function that assigns, a next state to each 
automaton in the grid, depending on its current state and the states of its k neighbors. 

This function may be described by means of two different representations forms: 
Wolfram representation and De Bruijn graphs. 

Wolfram Representation 

Wolfram [WÓ183] introduced a convenient numbering scheme for elementary 
CA's. First, all possible neighborhood configurations are written as binary numbers and 
listed in decreasing order. 

In the-simplest CA the set of possible states is {0,1} and the lattice is one-
dimensional. The neighborhood considered consists of the three nearest neighbors 
(right, left, and the current cell state). The number of possible neighborhood 
configurations is 23 = 8, and the number of possible transition functions is 28 = 256. 
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Neighborhood Transition Transition Transition ... Transition ... Transition 
Configuration function 0 function 1 function 2 function 54 function 

255 

000 
001 
010 
011 
100 
101 
110 
111 

. 0 
0 
0 
0 
0 
0 
0 
0 

1 
0 

. 0 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 

* 
0 
1 
1 
0 
1 
1 
0 
0 

Table 5.1: Wolfram representation of elementary CA's. 

De Bruijn Graphs 

For one-dimensional lattices, De Bruijn graphs represent the CA in the 
following way, which wi l l be clearer with an example: "Transition function 54" is 
represented as in figure 5-4. The names of the nodes represent the state of the current 
cell in the lattice and their neighbors in two different ways. There is an arrow from each 
node whose name represents the state of the left neighbor and the current cell, to the 
node whose name is made of the states of the current cell and its right neighbor, labeled 
with the value of the transition function for that neighborhood configuration. So, for 
instance, j{\ 10)=0. Therefore, there is an arrow from node 11 to node 10, with label "0". 

Figure 5-4: De Bruijn representation of rule 54 (from [Del98]). 

5.2.4. Classic Cellular Automata 

A Classic cellular automaton consists essentially of the following elements: 

• A finite set of input symbols. 
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• A finite set of states. 

• A lattice, of any dimension, where each cell contains a deterministic finite 
automaton. 

• A deterministic transition function, defining the next state of the automaton 
given its current input and state. This function is sometimes described by 
means of a transition table. 

• An initial state of the automaton, a distinguished member of the set of states. 

• A finite set of objective states. 

• The current state. 

Definition 

Given R, the n-dimensional grid of the automata. 

Given Q, the set of all possible states of the cells in R. 

We call configuration of R and Q in time t, and write i t C(R, Q, t) or simply C(t) 
i f there is no ambiguity respect to the considered grid and the set of states, an injunctive 
function C depending of time, which assigns at every instant in time one state to every 
automaton in the grid. 

c(R,Q,t):R^-Q 

A d-dimensional deterministic cellular automaton is the .six-fold 

(G,G0,Q,V,fj) 

where 

G isa d-dimensional grid of automata. 

Q is the finite and non-empty set of possible states of the automata in the grid. 

G0 is the initial configuration, a mapping G0:G->Q that assigns an initial 
state to each automaton in the grid. 

V = (k,N) is a one-dimensional neighborhood. 

f'-QxQk^>Q is the transition function that computes the next state of each 
automaton in the grid, depending on its current state and the states of its k neighbors. 

T is a finite and non-empty set of final states of the automaton in the grid. 
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A well-known deterministic cellular automata known as the game of life is 
discussed in the next section. 

The game of life 

Introduced by John Conway [Con], the game of Life is a very simple cellular 
automaton that gives rise to extremely complicated behavior, and has been proved to be 
computationally complete, being able (in principle) to perform any computation which 
may be done by digital computers, Turing Machines or neural networks. 

The cellular automaton associated to the game of Life is defined thus: 

• The grid is rectangular and potentially infinite. 

• The set of neighbors to a point in the grid consists of the point itself plus the eight 
adjacent points in the eight. main directions. in the compass (Moore's 
neighborhood). 

• Each finite automaton has two states: empty (also called dead; represented by a 
zero or a space character) and full (also called alive, represented by a one or a star 
symbol *). The set of states is thus represented by the two Boolean numbers 
{0,1}, or the two characters:' *'. 

• The transition function is defined by the following simple rules: 

o l i the automaton associated to a cell is in the empty state, it goes into the 
-full state i f and only i f the number of its neighbors in the full state is 
exactly three. 

o I f the automaton associated to a cell is in the full state, i t goes into the 
empty state i f and only i f the number of its neighbors in the full state is 
less,than two or more than three. 

o In any other case, the automaton remains in the, same state. 

Each time step is called a "generation". The set of all the cells alive at a given 
time step is called the "population". In figure 5-5 we see 2 successive generations of the 
game of life. ' 

Figure,5-5: a) One initial configuration for Conway's Life, b) The second generation. 
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5.2.5. Cellular automata variants 

There are many different types of cellular automata, depending on the 
differences of their components. These components are the states of the cell, the 
geometrical form of the lattice, the neighborhood of a cell, and the local transition 
function [SarOO]. In the next section several types of cellular automata wil l be explained 

• Cell states 

In the classical model, all the cells have the same set of attributes, but it is 
possible to extend the model to allow each cell to have a different set of states. 

• • Topology óf the lattice 
c 

Cellular automata can differ in the dimension of their grid and the shape of their 
cells. The most common grids are one-dimensional and bi-dimensional. In the classical 
model all the cells have the same shape. 

• Neighborhood 

The transition function defines the next state of the cell depending on it current 
state and its neighborhood. There are different ways to define the neighborhood as 
mentioned previously. 

• Transition function 

In the classical model, the transition function is the same for all cells. Cellular 
automata that use different functions for different cells are called inhomogeneous 
cellular automata." Types of cellular automata that use different transition functions have 
been studied in connection to VLSI applications [Ser90] [Cha97] [Sar98]. 

Non-deterministic and stochastic cellular automata use respectively non-
deterministic and probabilistic transition functions. 

5.3. Cellular automata and the edge of chaos 

Wolfram [Wol94] studied the one dimensional binary CA, and noticed that they 
reveal the full behavior spectrum of dynamical' systems. He proposed a qualitative 
classification of all CA's in four groups: 

Class I : is related to limit points (homogeneous state) in the phase space, 
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Class I I : is related to limit cycle (periodic structure). 

Class I I I : is related to chaotic behaviors, unpredictable space-time behaviors. 

Class IV: is related to complex behaviors, sometimes long-lived. 

Some Class TV CA's are assumed to support universal computation. 

This classification was initially proposed for one-dimensional cellular automata, 
and was later extended by Packard [Pac88] to include bi-dimensional cellular automata. 

Langton [Lan90] studied the relationship between the average dynamical 
behaviors of cellular automata. He hypothesized that there is a virtual value that forces 
the CA to change its behavior from one class to another. He called this value lambda 
(A,). The lambda of a given CA rule is the fraction of non-quiescent output states in the 
rule table, where the quiescent state is arbitrarily chosen as one of the possible k states. 
For bináry-sta.fe CA's, the quiescent state is usually 0 and therefore lambda equals the 
fraction of output-1 bits in the rule table. 

Langton assumed that CA's capable of universal computation would have a 
critical X value corresponding to a phase transition between ordered and chaotic 
behavior [Mit94]. He used various statistics methods to classify CA average behavior at 
each X value. 

5.4. Cellular Automata Programming 

Programming cellular automata to solve a specific predefined task is considered 
very difficult, because i t is very hard to design or modify the local cellular automata 
dynamics, in order to perform the pre-specified global task. The best known problems 
tackled in CA programming are the task classification problem, generating random 
numbers, and synchronization. However, many researchers attempt to solve these 
problems with different techniques, to obtain a higher performance. This problem is still 
open. 

Another problem under study concerning CA's is related to signal 
transformation: how the information in the cellular automata can be interpreted as 
signals that propagated across the lattice, as we wi l l see in following sections. 

5.4.1. Task classification problem 

The task problem mostly tackled in one-dimensional grids consists in foreseeing 
i f the CA, after a predefined number of iterations, wi l l relax to a configuration of all O's 
or all 1 's, depending on the initial configuration. I f the initial configuration has a 
majority of 1 's, the CA should relax to all 1 's or to all O's. As previously mentioned, the 
CA is governed by local interaction rules," which means that there is rib information 
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given to the automata about its global behavior when the neighborhood configuration is 
very small, compared to the size of the grid. 

This problem is considered a complex computation problem that CA should 
solve, where the local transition function is jencoded as a program that should execute 
the input (encoded as the initial configuration) and, after a number of generations, give 
rise to the output, in the form of another spatial configuration [Hor99]. 

5.4.2. GAs: How they work with CA 

Genetic algorithms and evolutionary computation have been used with CA's 
since 1988, when Packard [Pac88] attempted to evolve the transition function rales of 
one-dimensional cellular automata to find a better performance of the Gacs-
Kurdyumov-Levin rule [Kur78]. A GKL CA. is a one-dimensional lattice with two 
states (0,1) and a (-4,0,1) neighborhood, whose the lattice size is 149. He analyzed the 
frequency of the CA transition function in the population as a function of the Langton 
parameter X. In the final generation of his GA experiments, two different peaks were 
observed in the frequency distribution around critical values of X. Considering that 
Langton associated the critical value of X as a parameter o f the phase transition from 
periodic to chaotic boundaries, and claimed that at this value the complex behavior 
occurs [Hor99], Packard hypothesized that: 

1. CA's that are able to perform complex computation are found near the critical 
value of lambda. 

2. When CA rules are evolved to perform a complex computation, evolution wi l l 
tend to select rales with lambda values close to the critical values. -

Mitchell and her colleagues [Mit93] conclude that there is no evidence for a 
generic relationship between X and the computational ability of a CA. They repeated 
Packard's experiment but did not .get the same results as. those Packard obtained. The 
difference between their experiment results and the results obtained by Packard is 
probably due to additional mechanisms in the CA's used in the original experiment, that 
were not reported byPackard. 

Later, other researches" [Mit93][Mit94a][Mit94b] have tried to • use genetic 
algorithms with different parameters, or other evolutionary algorithms, to obtain better 
performance than the handmade CA's designed by Gacs, Kurdymov and Levin. 
However, it was assumed that it is impossible to obtain 100% performance. 

Capcarrere [CapOl] assumed that two conditions are necessary to correctly 
classify a CA. First the density of the initial configuration must be preserved overtime 
and, secondly, the density of the rule table must be one-half. This means that the 
proportion of ones and zeros of the rules should be equal. 

Other works [Sip96a][Sip96b] have used GA to evolve non-uniform CA's to 
solve different topics of CA programming, such as the density classification problem, 
random number generation, ordering, or rectangle filling, where some of this tasks 
where done on bi-dimensional CA. 
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Paredis [Par97] used Co-evolutionary Genetic Algorithms (CGA), where two 
non-interbreeding populations are co-evolved (CA function rules and initial 
configurations), which interact as predator and prey. Co-evolutionary Genetic 
Algorithms produce better performance than the handmade CA's designed by Gacs, 
Kurdymov and Levin. 

Synchronization 

The idea of programming CA's to perform synchronization tasks has to do with 
finding cellular autómata that can recover the initial configuration, after N iterations, to 
obtain periodic patterns around configurations of all O's or all l 's. There are different 
types of synchronization; for example, instead of a vertical periodic pattern, we can be 
interested in a horizontal periodic pattern synchronization. For more details, see 
[Hor99]. ' ' ' 

5.4.3. Signals 

Signal is a concept associated to data transmitted through the grids of CA. To 
model m assively parallel c omputation i n C A, i t s eems that s ignals c ould b e o f great 
interest, they are not only a natural tool to collect and dispatch the information through 
CA's grids but more deeply, this notion appears to be a strength way to encode and 
combine information. 

In [Maz99][Terr91] signals in one-dimensional CA are exhaustively studied. 
The kind of signals possible in .this type of CA could be described by means'of 
geometric d iagrams w here s uccessi ve g enerations o f C A a re s ho wn a s c urves o n t he 
diagrams. 

In [Terr91] the conditions that a diagram must hold to ensure that there exist 
a cellular automaton that can draw its signals are established; so, signasl could be 
considered a tool for designing and programming one-dimensional CA. 

Other works [Terr99] had been performed to study signals in CA with 
dimension greater than one. \ 
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Chapter 6 

L-Systems and Cellular Automata. 

6.1. Overview 

Different facets of the relationship between L Systems and Cellular Automata 
have been explored. [Koz93] underhnes the structural similarities between both 
formalisms by applying genetic programming to them, Stauffer and Sipper 
[Sta98a][Sta98b][Sip97] build cellular automata equivalent to the turtle graphic 
interpretation of some self-replicating L systems. 

This chapter summarizes the work of the directors of this thesis [AlfOOb] 
concerning the possibility of generating L-Systems equivalent to given cellular 
automata. ' , 

6.2. L-Systems and Cellular automata 

There- are several similarities between L-systéms and cellular automata: 

• Both of them have data that can be considered their initial states: 

o The axiom is the first string for an L-system. 

o The initial configuration of a CA is its beginning state. 

• They also have some mechanism to drive how the system changes: 

o The set of production rules for an L-system 

o The transition function of its finite automata for a cellular automaton. 

• Both architectures exhibit intrinsic parallelism: production rules and transition 
function are applied simultaneously to every symbol and single automaton. 

None of the previous works mentioned have really faced the equivalence . 
between CA and L-systems. 

In [AlfOOb] an algorithm to design L-systems equivalent to given cellular 
automata is proposed. They show three preliminary examples to fully understand the 
method. 
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6.3. One-dimensional binary cellular automaton with three 
inputs that generates the Sierpinski gasket 

In the cellular automaton of this example, the new state of each automaton is a 
function of its own state and that of its immediate neighbors, left and right. 

These Cellular automata can be defined as follows: 

'Three bits are used to represent the state of the three neighbors of each 
automaton. , 

• There wi l l be 8 possible configurations 23=8. 

• It is clear that there wi l l be 28 possible state change rules. * 

• The transition function of the automaton can be encoded in decimal notation 
with a number from 0 to 255, which represent the eight new state bits 
corresponding to the eight input configurations. 

For example, the function that correspond to the decimal number 90 with binary 
notation 01011010 wi l l have the following output 

State of previous 
automaton 

State of current 
Automaton 

State of following 
Automaton 

New state of this 
automaton 

1 
1 
1 
1 
0 
0 
0 
0 

1 
1 
0 
0 . 
1 
1 
0 
0 

1 
0 
1 
0 
1 
0 
1 
0 

0 
1 
0 
1 
1 . 
0 
1 
0 

Table 6-1: Cellular automata transition function 90. 

It is easy to construct a (1,1) DIL system whose words correspond to the 
consecutive generations of this automaton. 

The alphabet is defined as V9o={0,l}. 

The set of production rules P can be directly obtained from the table 

P9o={lll::=0,110::=1,101::=0,100::=1,011::=1,010::=0,001::=1, 000::=0}. 

The axiom is the binary string that represents the initial configuration of the 
cellular automaton. There is one single automaton with initial state 1, and all the others 
were initialized with state 0. State 1 is represented by the * symbol. The axiom for this 

• example is cc9o=0...010„.0. The following figure shows the first 24 generations of the 
cellular automata. 

The L-system for this example is Sgo= (Vgo.Pgo) N 
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Figure 6-l:The first 24 generations of the CA90 firom 0...010...0 

6.4. IL-System equivalent to bi-dimensipnal CA that simulate 
ecosystem model 

In [AlfOOb] a CA that simulates an ecosystem is described: it has a rectangular 
grid and their states represent a combination of individuals (predators and preys). There 
are two possible states for every predator (a and 6) and one state for the preys (pc). Each 
cell can have 4 individuals of every kind as maximum. The state of each cell changes in 
two alternative steps: 

1. In the first step, the neighborhood of each cell is just itself. Predation and 
reproduction happens according to the following rules; , 

a) A predator in the a state dies i f there is no prey in the same cell. 

b) A predator in the a state goes into the b state i f there are at least two prey 
individuals in the same cell and there is room for a predator in the state b 
in the cell. In this case one of the prey individuals dies (is eaten). 

. c) A predator in the b state goes into the a state i f there is no prey in the 
same cell. 

d) A predator in the b state becomes two predators in the a state 
(reproduces) i f there are at least two prey individuals in the same cell and 
there is room for the two predators in the a state in the cell. In this case 
one prey dies (is eaten). 

e) The prey reproduces i f there are at least two and at most three individuals 
in the same cell:. 
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2. In the second step, movement of predators and preys takes place. The rules for 
movement use the Von Neumann neighborhood. The goal is to simulate some 
kind of non-deterministic movement for each individual. Each individual 
changes its direction by choosing at random one of the four possible direction 
states (north, south, east and west) 

It "is possible to devise a bi-dimensional L-system whose derived words 
correspond to the generations o f this automaton. For instance, a1 b1 x3 (that means 1 
predator of type a, 1 predator of type b and 3 preys) is transformed into a2 b1 x2 applying 
the previous rules for predation and reproduction; so the following rule must belong to 
the set of rules of the bi dimensional L system: 

Sin ::=S2i2 

The total number of symbols equals the number of variations with the number of 
repetitions of five elements (0,1,2,3,4) taken 3 at a time that is 53=125. 

The equivalent L-system is , ( { & ' } ) " , P , ^ ) . The axiom (or,) is the matrix of the 
initial states of all the automata in the grid, translated by means of the following 
function, which converts a state of the finite automaton into a symbol of the L system: 

/(a#W) = 5#„ " 

Concerning the movement of the individuals, each of them has associated one of 
the following special symbols { « - . t , - » , ^ } . It is not allowed that two individuals of the 
same type have the same direction. I f each sub "index is represented as binary numbers 
with four digits, each digit could be associated with a direction to indicate that there is 
an individual of its type that w i l l move to the corresponding direction. For example the 
L-system state Son 1,1111,0010 could indicate the directions of three individuals with type 
a, for example, t , -> and X; four individuals with type b, pointing to the four possible 
directions, and one prey, pointing to direction -». 

The rules of the final L system, which includes information about direction, wi l l 
have the following form: 

, Soin.nn.ooio becomes Sonuin.0010,3,4,1 

And the alphabet wi l l be: 

E={ Sna.nb.nx.ea.eb.ex I e¡ is the number of ones in n¡ V ie {a,b,x} } 

For more details, see [AlfOOb]. • 
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6.5. I L -System equivalent to three-dimensional C A that 
generates and propagates pulses 

The cellular automaton has the following three-dimensional grid: 

LZL^LZTD-
¿—L^-L -J. 

/_• 7. 7_ 7_ / 
/ _¿ J J .7 
rTT-T 7 
nr^i^ri. 

'l^^í' ~ 
i-j—i- • 

w 
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... -. h 

/ _/ 7 > 
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Figure 6-2: Three dimensional cellular automaton grid 

The neighborhood of each cell includes the cell itself and the sir nearest 
neighbors, the six cells that surround it at distance 1. The set of states is {0,1}. To 
calculate..the next state of the automata the following rules are applied: 

• Horizontal neighbor to the right are not take into account. 

• I f the four vertical neighbors are at state 0, the state of the considered automaton 
changes no matter the value of the neighbor to the left. 

• I f the four neighbors in the vertical plane have state 1, the next state of the 
current automaton depends on the state of its neighbor to'the left and the state of 
the current automaton. The state changes when both values are not the same. 

• Otherwise the automaton remains unchanged. 

Again, it is possible to devise a three dimensional IL-system whose derived 
words correspond to consecutive generations of the automaton. The alphabet of this 
system is 2={0,1}. The set of production rules can be defined as the follows: 

P={ 0000xy0::=l Vx,yeS; 
0000xyl::=0Vx,yeE; -
l l l l x 0 0 : : = 0 V x e S ; . 
l l l l x01 : :=0VxeE; 
H l l x l O : : = l V x e Z ; 
H l l x l l : = l V x e S ; 
otherwise xyzuvws::=s Vx,y,z,u,v,w,z,seZ }. 

Where the symbols of each left hand side represent the state of, respectively, the 
up, down, front, back, right and left neighbors and the current automata. 
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The axiom a is the three dimensional binary array obtained from the initial state 
figure (1 dark, 0 otherwise). The equivalent L system is {2,P,cc}. 

It could be concluded that [AlfOOb]: 

• The dimension of the studied grids is not a limitation for the approach. 

• The bottleneck of the approach is the formalization of the transition function of the 
CA. The following technique is recommended: 

o First, identify the independent and radically different behavior of the automata. 

o Second, design a set of production rules that shows every behavior. 

o Next, put them as an L-system with tables, and decide where and when each 
table should be used: 

• One or more sets of production rules could be joined together in an L-system with 
tables. Building each set of production rules is possible because every automaton 
considers a finite number of nearest points in the grid as their neighborhood and 
every automaton has a finite set of possible states. 
* 
In subsequent work [AlfOOb], the directors of this thesis show a general 

equivalence theorem between probabilistic CA and L-systems. The previous examples 
are particular cases of this general result. 

Theorem: Given a probabilistic n-dimensional cellular automata A={G, Go, N , 
M , Q}, There is an equivalent probabilistic n-dimensional IL system that is step-
equivalent to the cellular automata. 

Where the step-equivalence relationship is defined as follows: let A be a 
probabilistic cellular autoniaton; let S be a probabilistic IL-system; A and S are step 
equivalent i f and only i f for every possible configuration of the automaton A it is 
possible to find a string in the language generated by S such that the probabiUty of 
being in the configuration and the probability of deriving the word from the axiom are 
the same. 

More details could be found in [A1Í03]. 

6.6 Equivalence between L-Systems and Cellular automata. 

There exists some attempt to study the reverse equivalence, that is, the design of 
CA that can simulate L-systems. This chapter outlines them: first the concept of signal 
is introduced, and then some results in this direction are briefly described. 

Signal is the name given to the presence of information that moves across the 
grid of a cellular automaton. Several authors have exhaustively studied signals in one-
dimensional cellular automata and have proposed [Terr91] [Maz99] methods to design 
CA by means of the graphical definition of signals. The same authors [Terr99] have 
started the study of signals in bi-dimensional CA. 
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Signals have also been identified by Wolfram [Wol94] as a condition that a 
cellular automaton must satisfy to exhibit complex behavior. So it seems clear that 
signals could constitute a useful tool in the design and programming of CA. 

Signals are one of the properties that make Conway's game of life 
computationally complete. 

In[Terr91] [Terr99] some kind o f equivalence between L-systemsand CAis 
studied. The authors propose a method to design a one-dimensional interactive CA that 
generates a signal with a frequency that equals the grow function of any DOL system. 
Their method really designs graphical diagrams that contain some signals that can be 
generated by a one-dimensional cellular automaton. 

As it wi l l be detailed described in the corresponding chapters, the result of this 
thesis greatly differs from the approach mentioned above. 
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Chapter 7 

Grammatical Evolution to Design Fractal Curves with a 

Given Dimension 

7.1. Overview 

» 
There are two techniques for generating fractal curves: deterministic techniques 

and non-deterministic. 

Fractal curves of a given dimension can be obtained by means of deterministic 
techniques, by applying certain tools that use some measure of the regularity of 
continuous real functions with a single real variable. Holder exponent is one of these 
tools [Gui98]. In [Dao98] three different methods are described to build a function that 
interpolates a set of points with a prescribed local regularity, measured by Holder 
exponent. Holder exponent is calculated by means of Schauder basis [Jaf95], using 
Weierstrass type functions and by a generalization oí Iterated Function Systems (IFS). 

In this chapter we propose a new method that applies a non-deterministic 
technique to work on a formal representation of the target system, rather than the real 
curve. This approach seems more flexible and general, because formal models as 
Lindenmayer grammars are powerful enough to simulate a wide range of different 
complex systems. We expect our technique to be also applicable to other domains that 
can be described in a similar way. 

This chapter extends Grammatical Evolution (described in chapter 3) to 
Lindenmayer systems, to solve the problem of obtaining arbitrary fractal curves with a 
given dimension. Other evolutionary algorithms, rather than Grammatical Evolution, 
have been applied by other authors to L systems. Ochoa [Och98] evolves DOL systems 
with a single rule that generate shapes similar to plants. Other authors 
[Hor03][Jac94][Tra96] make parametric L systems evolve (an extension of 
Lindenmayer grammars described in chapter 3), where they are faced with the important 
problem that parametric systems are not closed under the action of genetic algorithms. 
Grammatical Evolution would solve this problem easily, because it ensures that the 
generated grammars are syntactically correct. We are not tackling this problem here and 
leave it as future work, for in the case described in this chapter we are using DOL 
systems (which aré not parametric). I n this particular case, simple genetic algorithms 
would have been sufficient. However, we have grounds to prefer the Grammatical 
Evolution approach, as explained in the conclusions, in the final part of this thesis. ' 
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7.2. The design of L-Systems that represent curves with a given 

fractal dimension 

Designing fractal curves wi th a given dimension is relatively easy for certain 
values of the desired dimension, but very difficult for others. The following L-system 
rules represent (with a turtle graphic interpretation based on an angle step of 60 degrees) 
the iterators for three different fractal curves with the same dimension: 1.2618595... (log 
4 / log 3). The first one, as shown above in chapter 4, corresponds to von Koch's 
snowflake curve. A l l four, anda few more, could have been obtained by hand, by a 
simple geometrical study of the curve iterator. 

F::=F+F-F+F 

F::=F-HF-

F:~+F-FF-F+ 

F::=F+F-F-F+ • ' 

On the other hand, designing a fractal curve with a dimension of 1.255 would be 
much more complicated. The first step would consist of obtaining two integer numbers, 
a and b, such that 

D=1.255 = loga/logb 

This step could be relaxed to asking for two integers a,b such that the given 
dimension would be approximated within some degree of accuracy (for instance, with 
an error less than 0.001). 

The second step would be to design a geometrical iterator such that it would take « 
a steps to advance a distance equal to 6. 

Although there is no solution for every positive real number A there is always a 
solution for positive rational numbers " " ., . • -

D=p/q with p ,q positive integers 

In this case, we would like to find two numbers a and b such that 

log(&) q 

For any integer x > l , a=xp snd'b = x9 is an analytical solution for the previous 
equation. 
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Example: 

D=1.6=p/q=l6/10=8/5. In this case, a = x\b = x5 

For x=2, a = 2\b = 2s 

log(28)^81og(2) 
log(25) 51og(2) 

= 1,6 

Using the previous equation to generate a graphical shape is complicated, 
because we would need to design a fractal that walks 28=256 steps to advance only 
25=32 steps with a specific angle. 

We solve this problem automatically by means of Grammatical Evolution. Our 
genetic'algorithm acts on genotypes made o f vectors o f integers andmakes use o f a 
fixed grammar to translate the genotypes into an intermediate level, which can be 
interpreted as a rule for an L system which, together with a turtle graphic interpretation, 
generates the final phenotype: á fractal curve with the desired dimension, or an 
approximation of the same. 

7.3. The developmental algorithm * 

. The initial population consists o f 64 vectors of 8 integers in the interval [0,10]. 
The genetic algorithm later generates vectors of different lengths. Each number 
represents a rule from an L-system. Other intervals (such as [0,255]) can be used, so as 
to include genetic code degeneracy, i.e. when different integers in the previous interval 
(different genes) represent the same L-system rule, as we wi l l see later. This has been 
tested and it also works, although no significant improvement in performance has been 
detected. . . 

In our first experiment, the genotype of one individual in the population (a 
vector of n integers) is translated by making use of the following DOL grammar: 

0: F 

1 : F 

2 : F 

3 : F 

4 : F 

5: F 

6: F 

7 : F 

= F 

FF 

F+ 

F-

+F ' 

-F 

F+F 

F-F 
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8: F : : = + 

1 0 : F : : = S 

where s is the empty string. 

The translation from the strings of codons (the vector of integers) is performed 
according tó the following developmental algorithm: 

1. The axiom (first word) oftheDOL grammar is assumed to be F. 

2. As many elements from the remainder of the genotype are taken (and removed) 
from the left of the genotype as the number of F's in the current word. I f there 
remain too few elements in the genotype, the required number is completed 
circularly. 

3. The current word derives a new word in the following way: each F in the word is 
replaced by the right hand side of the rule with the same number as the 
corresponding integer obtained in the preceding step. I f genetic code degeneracy 
is used, the rule applied is that one whose number is the remainder of the 
corresponding integer modulo 11. 

4. I f the genotype became empty in step 2, the algorithm stops and the last derived 
word is the output. 

I f the derived word has no F's, the whole word is replaced by the axiom. 

5. Go to step 2. 

In, any derivation, the following implicit rules are also applied: 

+ ::=+ , 

Let us look at an example. Let us suppose that we are translating the following 
7-element vector: 

10 6 7 6 0 2 7 

We start from the axiom: " ' • 

F 

It contains one F, Therefore, at step 2 we extract one element from the left of the 
genotype (10). The remainder of the genotype becomes * 

6 7 6 0 2 7 

In step 3, by applying rule 10, the axiom derives s (the empty, string). The 
derived word has no F, thus in step 5 we replace it by the axiom: 

76 



.F 

This is the second word in the derivation. "We go.back to step 2. The current 
word contains one F. Therefore, we take one element (6) from the remainder of the 
genotype, which becomes 

7 6 0 2 "7 

In step 3 we now apply rule 6 to the only F, deriving: 

F+F 

'. This is the third word in the derivation. We go back to step 2. The current word 
contains two F's. Therefore, we take two elements (7,6) from the remainder of the 
genotype, which becomes 

0 2 7 

We now apply rule 7 to the first F and rule 6 to the second F in F+F, deriving: 

* . F-F+F+F 

This is the fourth word in the derivation. We go back to step 2. The current word 
contains four F's. Therefore, we should take four elements from the remainder of the 
genotype, but we only have three. We complete the required number circularly and take 
(0,2,7,0). The genotype vector is now empty. We now apply rule 0 to the first F, rule 2 
to the second, rule 7 to the third and rule 0 to the fourth F in F-F+F+F, deriving: 

F-F++F-F+F 

This is the last word in the derivation, the result of the algorithm. 

We can now simplify the- output by erasing unnecessary +- pairs, i f any (there 
are none in this case). We may also add or delete + or - signs at the beginning or the end 
of the word, so that the turtle ends its movement in the same direction it started (this is a 
requirement for some of the theorems we are applying). In this, case, we get F-F++F-
F+F-. The rules of the DOL system generated by the developmental algorithm are: 

F : : = F-F++F-F+F-

* + : : = + . . - .. * 

Using an interval larger than the number of rules (e.g. [0-255] with the eleven 
rules seen before), tests the use of degeneracy. In this case, rule 7 (for instance) 
corresponds to 23 different genes: -

7, 18, 29,40, 51, 62, 73, 84, 95, 106,117,128,139,150,161,172,183,194,205, 216, 
227,238,249 

The chosen rule is the gene number modulo the number of production piles in 
the L-system. 
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(The typical genetic operators (mutation and cross-over) w i l l affect the new 
individuals in the population. Depending on the interval used, their behavior wi l l be 
slightly different. For instance, with the [0-10] interval, when the mutation is applied to 
gene 7. the probability to chose the same gene for the next generation is 1/11. On the 
other hand, i f we work in the [0-255] interval, rule number 7 can be applied with 
different genes, and the probability of obtaining an equivalent gene after a mutation 
decreases to 23/256. 

7.4. The genetic algorithm 

We can now apply the algorithm described i n chapter 6 to compute, f roniF-
F++F-F+F-, the dimension of the fractal curve obtained from the DOL system by means 
of a turtle graphic interpretation with a given angle step. This dimension can be 
compared to the target dimension, providing a fitness rule for the genetic algorithm. 

The scheme for the genetic algorithm is as follows: 

1. Generate a random population of 64 vectors of 8 integers in the [0,10] or the 
[0,255] .interval. 

2. Translate every individual genotype into a word in the alphabet {F+-}, using the 
developmental algorithm described above. 

3. Compute the dimension of the fractal curves represented by the corresponding 
DOL system. 

4. Compute the fitness of every genotype as l/|target-dimension]. 

5. Order the 64 genotypes from higher to lower fitness. 

6. I f the fitness o f the genotype wi th the highest fitness i s higher than the target 
fitness, stop and return this genotype. 

7. From the ordered list of 64 genotypes obtained in step 5,, remove the 16 
genotypes wi th least fitness (leaving 48) and take the 16 genotypes wi th most 
fitness. Pair these 16 genotypes randomly to make 8 pairs. Each pair generates 
another pair, a copy of their parents, modified according to four genetic 
operations. The new 16 genotypes are added to the remaining population of 48 to 
make again 64, and their fitness is computed as in steps 2 to 4. 

8. Go to step 5. 

The four genetic operations mentioned in the algorithm are: 

• Recombination (applied to 100% generated genotypes). Given a pair of 
genotypes, (xi , X2 ... xn) and (yi, y2... ym), a random integer is generated in the 
interval [0, min(n,m)]. Let it be i. The resulting recombined genotypes are: (xi, 
x2 ... X M , y¡, y i + i . . . ym) and (y b y2 ... y M , x¡, x i + i . . . x„). • 
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• Mutation (applied to n l % generated genotypes i f both parents are equal, to n2 
% i f they are different). I t consists of replacing a single random element of the 
vector by a random integer in the same interval. 

• Fusion (applied to n3 % generated genotypes). The genotype is replaced by a 
catenation of itself with a piece randomly broken from either itself or its 
brother's genotype. (In some tests, the whole genotype was used, rather than a 
piece of it). 

• Elision (applied to 5% generated genotypes). One integer in the vector ( in a 
random position) is eliminated. 

The last two operations allow longer or shorter genotypes to be obtained from 
the original 8 element vectors. The optimal values of n l (100), n2 (100) and n3 (25) 
have been obtained by means of a set of 22 tests that combine different angles and target 
dimensions. Table 7.1 shows that these parameters are important, for different 
combinations of values give rise to very different computing times. 

Average generations Average CPU time 
20 

50 
50 
80 
80 
100 
100 
100 
100 
100 
100 

20 

. 20 

50 
10 
80 
100 
100 

. 100 

100 
100 
100 

5 

5 
5 
5 . 

5 
5 
1 
10 
25 
50 • 

90 

6668 

2979 

3794 

2625 

3917 

2216. 

10172 

1027 

146 
• ' 163 

49 

1838 " 

1888 

3211 

1590 

1430 

1007 

4776 

615 
176 
497 
497 

Table 7-1: Results of experiments to get optimal values of genetic operation rates. 

The algorithm has three input parameters: the target dimension, the-target 
minimum fitness, and the angle step for the turtle graphics interpretation. 

7.5. Parallels to biological evolution , 

This procedure is similar to biological evolution in many respects. There are 
three different levels (see figure 7.1): 

1. The genotype (nucleic acids), here represented by vectors of integers. Each 
integer can be considered comparable either to a gen, or to a codon (a triplet of 
nucleotids, the basic unit for the translation of a gen into a protein). 

2. The intermediate level (proteins), here represented by words on the {F,+,-} 
alphabet. The translation from the genotype to the intermediate level is 
performed using a fixed grammar (the equivalent of the fixed genetic code). 
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3. The final phenotype (organisms), here represented by the fractal curves, which 
are obtained from the L systems- built from the intermediate level words by 
means of a turtle graphic interpretation. 

The use of the interval [0,255] for the first level introduces a form of code 
degeneracy, similar to that in the biological genetic code, where the same aminoacid 
may be represented by more than one codon. In our case (as explained before) the same 
rule in the grammar may be represented by 22 or 23 different integers. This is a degree 
of code degeracy much larger than the biological one, where the maximum number of 
codons that represent the same aminoacid is four. Intermediate degrees could be 
experimented easily, but we chose not to do it, seeing that degeneracy doesn't seem to 
affect performance in this case. 
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INTEGER STRING LGRAMMAR FRACTAL 

GBEaBMBJjH F-F++F-F+F- h ^ 

Fixed Grammar 
Translation Algorithm Turtle 

Graphics 

DNA 

Genetic Code 
Ribosome ORGANISM 

L E V E L 1 L E V E L S 

Figure 7-1: Parallels between our Grammatical Evolution approach andbiological evolution. 

7.6. Evolving the turtle angle 

In a second experiment, we take the angle step for, the turtle graphics 
interpretation out from the input parameters and evolve it at the same time. To do that, 
the genotype of each individual in the population contains one more element (it is a 
vector of n+1 integers). The first element (or its remainder modulo 11) is interpreted as 
an index to a vector that defines the angle to be used in the graphic interpretation of the 
phenotype. Eleven possible angles have been used: 120, 90, 72, 60, 45, 40, 36, 30, 24, 
20 and 18 degrees (which have been chosen among the first submultiples of 360). The 
developmental algorithm is applied only, to the last n elements of the genotype. The 
genetic algorithm applies to all the n+1 elements of the genotype. In this way, the angle 
itself evolves, and fractal curves with unexpected angles may be obtained. 
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7.7. Results 

The algorithm described above reaches its targets with surprising speed. 
Sometimes (for the simplest dimensions, those that can be done by hand) the target is 
reached in the first generation: a set of 64 random eight-element genotypes has a big 
probability of including the codification of one of those phenotypes). For other, less 
standard dimensions, the number of generations to reach a given approximation,to the 
target is usually larger, sometimes quite large. Table 7-2 shows a few of the results we 
have obtained. 

Dimension Angle Nr.of tests Number of generations to reach target 
1.1 

1.1 
1.2 
1.2 
1.3 
1.3 
1.25 
1.255 

1.2618595... 
1.4 . 
1.4 
1.5 
1.5 
1.6 
1.6 
1.7 
1.7 
1.8 
1.8 
1.9 
1.95 

2 
2 

45 
60 
45 
60 
45 
60 
60 
60 
60 
45 
60 
45 
60 
45 
60 
45 
60 
45 
60 
72 
90 
45 
90 

10 
4 
8 
10 
9 
4 . 
2 
15 
4 , 
10 
10 
11 
8 
5 
1 
2 
8 
2 
13 
1 
1 
5 

•• 5 

37 to 9068 
119 to 72122 
188 to 11173 
21 to 750 
50 to 18627 
14643 to 66274 
1198 to 3713 - , . 
1 to 2422 
l t o 2 
79 to 781 
33 to 1912 
52 to 11138 
12 to 700 
275 to 3944 
116913 
585 to 1456 
18 to 1221 
855 to 2378 
69 to 3659 
5467 
956 
1 
1 

Table 7-2: Number of generations to reach the target in a set of tests of our Grammatical Evolution 
approach. 

Since the algorithms use random numbers, different random seeds give different 
results. We have thus obtained sets of fractal curves, sometimes quite different in 
appearance, that share the same fractal dimension. Table 7-3 shows some results for a 
target dimension of 1.255 and an angle of 60 degrees. In all of them, the minimum 
fitness was set to 1000 (which corresponds to an error in the target dimension below 
0.001). The dimension of all the results came to be 1.2549. This fractal dimension has 
been computed without considering possible overlappings of the curves with 
themselves. A definition of dimension that would take this into account could also be 
considered [AlfOOa], [AlfOla], at the cost of longer computation times, and perhaps 

"i 
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more generations. Figure 7-2 displays the fractal curves, approximated by the fourth 
derivation of the corresponding L systems. 

Number of 
aenerations 

Size of 
genotype 

L System word 
developed 

Axiom 

4 
44 
72 
255 

16 
7 
8 
8 

-F+FF+FF-
F-F-H-F-F+F-
FF--F+FF+ 
FF-FF++F-

F--F--F 
F++F++F 
F--F--F 
F++F++F 

Table 7-3: Different fractal curves sharing the same dimension, evolved by our method. 

Figuré 7.2: Four different fractal curves evolved for a target dimension ofM.255 
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Table 7-4 shows a few interesting fractals evolved by means of our algorithms. 
The first one has the same dimension as von Koch's snowflake, but with an angle of 36 
degrees rather than 60. Figures 7-3 to 7-9 display the fractal curves, approximated by 
the third derivation of the corresponding L systems. 

1.26178... 

1.5018 

1.8998 

1.8008 

1.7005 

1.6006 

36 

45 

40 

45 

60 

45 

27 

2000 

1460 

2378 

18 

275 

35 

17 

41 

30 

22' 

30 

+F+F—FrF+F-F+F+ 

-H-F-F--F+F+F 
+FF—F-F++ 
++F-FF-F-F—F-F—F-
F-F++ 
F-F-F-FF-F-F-F-F-F-F--
-F 
-FF-F-F+F+FF-
++FF+F+FFF+F+F+FFF 
-KFFF+F+F-F+F—-
+F-F--F--F+FF--F+F-F-
FF+FF-F-F 

F-F-F-F-F-F-F-
F-F-F 
F—F++F—F-
F—F 
F+F+F+F+F+F+ 
F+F+F 
F—F++F—F-
F—F 

F-F-F-F-F-F 

F++F++F++F 

10.3 

10.4 

10.5 

10.6 

10.7 

10.8 

Table 7-4: A few fractal curves evolved by our method. 

Figure 7-3: A fractal curve with the same dimension as von Koch's snowflake. 
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Figure 7-4: A fractal curve with approximate dimension 1.5. 

Figure 7-5: A fractal curve with approximate dimension 1.9. 

Figure 7-6: A fractal curve with approximate dimension 1.7 
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Figure 7-7: A fractal curve with approximate dimension 1.8. 

Figure 7-8: A fractal curve with approximate dimension 1.7. 

Figure 7-9: A fractal curve with approximate dimension 1.6. 
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Table 7-5 shows finally some of the results obtained with our second 
experiment, where the turtle angle itself was subject to evolution by means of the 
genetic algorithm. 

Target 
dimension 

Actual 
dimension 

Number of 
generations 

Size of 
genotype 

Angle 
evolved 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5-

1.9 
1.9 . 

1.9 

1.5 
1.5 
1.4999 

1.4999 
1.5 
1.5009 
1.5008 

1.5 
1.8992 ' 

1.8993 . 

1.8998 

5 
8 
64 
176 
50 . 

940 
1337 

68 
1069 

1306 

1460 

8 
14 
19 
21 
9 
124 
86 
9 • 

55 
42 
41 

90 
45 
90 
90 
90 
36 
36 
90 
72 
24 
40 

Table 7-5: A set of tests where the turtle angle was evolved too. 

7.8. Examples 

In this section we wil l show two different examples. The first one demonstrates 
how the proposed algorithm evolves an L-system with a given angle and dimension'. 
The second example repeats the example when the angle must be evolved too. 

Example 1: 

In table 7-6, we can see the evolution of the algorithm when its target is finding 
a curve with a dimension equal to 1.58496 (the same as Sierpinski's gasket), and the 
angle to be used is 60 degrees. 

Generation no Fractal dimension L-system «rammar 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1.424828748 
1.424828748 
1.424828748 

1.424828748 

1.424828748 

1.424828748 
1.4924572 

1.654174951 

1.584962501-

+F-+F+F+F . 
-F+F--F++F-
-F+F--F++F-

-F+F--F++F-

-F+F--F++F-

-F+F--F++F-
-+-+FF-FF--H-+FF+FF-F 

+F+F--F-H-F+F 

+F-++F+F 

Table 7-6: Execution of the genetic algoritm for fractal dimension 1.58496 and 
anple 60 decrees. - , . 
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Figure 7-10 shows the axiom for the L-system. 

Figure 7-10: The initiator object 

The iterator for Sierpinski fractal is shown in figure 7-11. 

A 
Figure 7-11:" Sierpinski's iterator 

Figure 7-12 shows the curve obtained from the preceding initiator and iterator, 
after 9 iterations of the process. • . , 

Figure 7-12: Sierpinski fractal after 9 iterations 

The iterator for the first L-system found by the algorithm, which has the rule 
F::=+F-+F+F+F, is graphically represented in the figure 7-13. 
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Figure 7-13: The first iterator approximation. 

Figure 7-14 shows the corresponding curve after 6 iterations. 

Figure 7-14: The first fractal approximation after 6 
iterations 

From generation 2 to generation 6, a second L-system is the best approximation 
(F::=-F+F—F++F-). Figure 7-15 shows the iterator. 

Figure 7-15: The second iterator 

After 6 iterations, the curve obtained is shown in figure 7-16. 
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Figure 7-16: The second fractal after 6 iterations 

Figure 7-17 shows the iterator of the best individual after 7 generations. It has 
the derivation rule F::=-+-+FF-FF-+++FF+FF-F, that corresponds to the following 
iterator: 

Figure 7-17: The third iterator 

Figure 7-18 shows the third approximation after 4 iterations. 

Figure 7-18: The third fractal after 4 iterations 

In generation number 8, the best L-system has the derivation rule F::=+F+F-
F++F+F, which represents the iterator in figure 7-19. 
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Figure 7-19: The fourth iterator 

Figure 7-20 shows the fourth approximation after the fifth iteration. 

Figure 7-20: The fourth fractal after 5 iterations 

In generation number 9, the best production rule is F::±=+F--H-F+F, which is a 
solution to the problem (its fractal has dimension is 1.584962501). Figure 7-21 shows 
the iterator. * 

Figure 7-21: The final iterator 

Which, after been applied 9 times to the initiator, produces the curve in figure 7-
22. 
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Figure 7-22: The final fractal after 9 iterations 

Example 2 

I n this example, the algorithm also evolves the angle o f the graphic 
interpretation. The target dimension is again 1.584962501. The result o f the evolution 
process is shown by table 7-7. 

Generation if" dimension An«le L-svstem 
1 
2...4 
5...11 
12...57 
58...66 

67...100 

101...138 
139... 145 

146 

1.424828748 
1.464973521. 
1.654174951 
1.556302501 
1.562756238 ' 

1.606876736 

1.593692641 
1.59327954 v 

1.584962501 

120 
90 
120 
90 
90 

90 

90 
90 

90 

F-FFJKF+ 
F+FFF+F--
-FF+F+-F-F+ 
F+FF+FF-F-
F+FF+F+-F+F+F+FF+F-F+FF+F-F+F 

F+F+F+FF+F+F+F+-F+FF+F++F+F 
--F+FFFF—F-
F++FF-+-+-FFFF++-F--F+FF+FF+FF— 
-F+F+FF+--K-FF-H-FF--FF+F+--F+F-
F+ 
-F+F+FF+-+--FF-H-FF--+-FF+F--F+F-
F+ 

Table 7-7: Genetic algoritm execution for fractal dimension 1.584962501 

The following iigures snow ine sieps o i uie process, m uie same way as i n 
example 1. • 

• Figure 7-23: the best iterator after 1 generation, angle 120. 

Figure 7-23: The first iterator approximation 
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• Figure 7-24: curve produced after 5 iterations. 

Figure 7-24: The first fractal after 5 iterations 

• Figure 7-25: Best iterator from generations 2 to 4, angle 

Figure 7-25: The second fractal iterator 

• Figure 7-26: The curve produced after 6 iterations. 

Figure 7-26: The second fractal after 6 iterations 

93 



• Figure 7-27: Best iterator from generations 5 to 11, angle 120 degrees. 

Figure 7-27: The third fractal iterator 

• Figure 7-28: The curve produced after 6 iterations. 

Figure 7-28: The third fractal after 6 iterations 

r 

• Figure 7-29: The best iterator from generations 12 to 57, angle 90. 

Figure 7-29: The fourth fractal iterator 
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Figure 7-30: The curve produced after 6 iterations. 

Figure 7-30: The fourth fractal after 6 iterations 

• Figure 7-31: Best iterator from generations 58 to 66, angle 90. 

Figure 7-31: The fifth fractal iterator 

Figure 7-32: The curve produced after 4 iterations. 

Figure 7-32: The fifth fractal after 4 iterations 
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• Figure 7-33: The best iterator from generations 67 to 100, angle 90. 

Figure 7-33: The sixth fractal iterator 

• Figure 7-34: The curve produced after 3 iterations. 

Figure 7-34: The sixth fractal after 3 iterations 

Figure 7-35: The best iterator from generations 101 to 138, angle 90 degrees. 

Figure 7-35: The seventh fractal iterator 
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• Figure 7-36: The curve produced after 4 iterations. 

Figure 7-36: .The seventh fractal after 4 iterations 

• Figure 7-37: The best iterator from generations 139 to 145, angle 90. 

Figure 7-37: The eighth fractal iterator 

• Figure 7-38: The curve produced after 3 iterations., 

Figure 7-38: The eighth fractal after 3 iterations 
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• Figure 7-39: In generation 146 we obtain the curve with the target 
dimension (1.584962501) and angle equal to 90 degrees. 

Figure 7-39: The final fractal iterator 

• Figure 7-40: The final curve produced after 3 iterations. 

Figure 7-40: The final fractal after 4 iterations 
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Chapter 8 

Evolving the game of life with a genetic algorithm 

8.1. Overview 

In chapter 5 we saw how cellular automata are evolved by means of genetic 
algorithms to perform a predefined specific task. In this chapter we propose a genetic 
algorithm that evolves two-dimensional cellular automata in a fast way, following a 
direct path from an arbitrary cellular automaton to Conway's game of Life. 

A genetic algorithm may be used to evolve the transition rules of a cellular automaton. 
The algorithm we propose reaches the perfect target "in about 25000 generations. 
Different grid sizes have been tested, but in most of the experiments the grid size of the 
automata has been restricted to a given finite size (an 8x8 matrix). 

The genetic algorithm uses the two standard genetic operators: crossover and 
mutation. A large mutation rate has been found, appropriate to speed-up the process, 
specially when both progenitors are identical. Random density in the initial states 
happens to be worse than pure randomness in this case. The algorithm performance is 
relatively independent of the grid size. 

, We begin, in Section 8.2, by defining the cellular automata that wi l l be evolved, 
called life-related cellular automata. Section 8.3 describes the genetic algorithm, and 
Section 8.4 introduces the experiments performed by our genetic algorithm and the 
results obtained. 

8.2. Concise representation of life-related cellular automata 

The cellular automata which wi l l be evolved, called life-related cellular 
automata, is defined as the set of cellular automata that comply with the following 
rules: 

• The grid is rectangular. • , 

• The set of neighbors to a point in the grid consists of the point itself plus the 
eight adjacent points in the eight main directions in the compass (Moore's 
neighborhood). 

• Each finite automaton has two states, represented by the Boolean numbers 
{0,1}. 

• The transition function of the finite automaton associated to every point is 
deterministic. 
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Life-related cellular automata differ in the transition functions of their finite 
automata. Since the range of the transition functions is made of the input to the 
automata (the eight states of their neighbors in a given order) and their own state, each 
possible value in the range* can be represented by a nine-bit Boolean vector or, 
alternatively, by a number in the [0,511] interval. Each member in the set of life-related 
cellular automata may thus be represented by its associated transition function, which 
can be expressed as a Boolean vector with 512 elements, giving the next state of the 
automaton for each of the possible 512 range values. This means that the number of 
possible different transition functions is 2512, or approximately 10154, an unimaginably 
large number. 

8.3. A genetic algorithm that evolves into the game of Life 

We have used a genetic algorithm to obtain Conway's game of Life by evolution 
from a random population of life-related cellular automata, taken arbitrarily from the 
full set of 1015 members. The grid has been restricted to an 8x8 square matrix. 
Evolution is fast, and reaches perfect target in a few tens of thousand * steps or 
generations. 

The algorithm can be described as follows: 

1 Create 60 random life-related cellular automata, where every random life-
related cellular automaton consists of 64 binary automatons. . 

2 Choose random initial conditions for the 64 automata in the 8x8 grid. Two 
different initial, condition families have been compared: uniform random and 
random density. 

3 Compute the result of executing a step in Conway's game of Life with the 
chosen initial conditions, using any standard implementation. We used an 
APL2 program that executes the game of life on the finite rectangular grid. 
This results in an 8x8 Boolean matrix. 

4 Compute the result of executing a step in each of the 60 life-related cellular 
automata with the chosen initial conditions. A l l the results are also 8x8 
Boolean matrices. 

5 Compare each of the results in step 4 with the result of step 3 and assign a 
fitness value to each of the 60 life-related cellular automata. The fitness value 
\an integer in the [0,64] interval) is the number of coincidences between the 
elements of the two 8x8 Boolean matrices. 

6 Order the 60 life-related cellular automata in the order of their fitness values. 

7 The ten automata with top fitness values are paired two-by-twp and reproduce, 
each pair generating two new automata, which replace the ten automata with 
bottom fitness values. The reproduction algorithm uses the two standard tools 
in genetic algorithms: mutation and cross-over at a random point (genetic 
recombination of the two 512 Boolean vectors that represent tíie transition 
function of the two parent automata). Different mutation rates have been tested. 
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8 Compute statistics from the 60 current automata. 

9 Go to step 2., 

Initially, the average fitness values of the 60 automata compute around 32, 
which is the number of coincidences expected from two 8x8 random Boolean matrices. 
As evolution proceeds, the average fitness values increase towards 64, although the 
actual values in a given step depend on the random initial conditions used in that step. 

• As mutations and cross-over generate new automata, more and more of them get 
increasingly larger fitness values. 

We implemented the whole process in the APL2 language, which is very concise 
and appropriate for this application: each step in the above description of the algorithm 
can be implemented by a single instruction. Additional auxiliary functions are used to , 
implement the standard game o f Life (10 lines o f code [ Alf99]), the random density 
generator of initial conditions (4 lines), the execution of a life-related cellular automaton 
(8 lines), and the reproduction of a pair of automata (less than 20 lines). 

8.4. Experiments and results 

We have tested both random density and pure random values selected from the 
{0,1} set for the initial condition matrices, to detect possible differences between both 
families. In classical experiments with one-dimensional cellular automata, random 
density has been found to be significantly better. 

We have also experimented with different mutation rates. In standard genetic 
algorithms, the mutation rate is usually quite low, around 0.5 percent per bit. However, 
higher mutation rates are used when both parents have the same genotype, because in 
that case cross-over does not have any effect. 

. In our case, we have used higher mutation rates applicable to a certain number 
of bits in each genotype. Different rates have been tested, and i t is also better to use a 
higher rate when both parents are identical than otherwise. 

Figure 8-1 displays the number of differences between the best cellular 
automaton and the target (the game of Life) as a function of the number of generations. 
It may be seen that convergence follows a Poisson curve, being quite fast at the 
beginning, and slowing towards the end., 
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Figure 8-1: Number of differences of best evolved automaton and Conways game of life. 

As can be seen, the difference between the evolved life-related cellular automata 
and the target Conway game of life is, at the beginning, higher than 200. When the 
number of generations approach 25000, the difference falls to zero, meaning that the 
best cellular automata has been found equal to the game of life. 

Mutation rate Initial conditions 

Equal parents 

10%2 

20%5 

20%5 

20%5 

20%5 

Different parents 

* 1%1 

1%1 

5%2 

10%3 

20%5 

Uniform 
- random 

55150 

27677 

25826 -

30242 . 

34648 

Random 
density 

>120000 • 

>44000, 

>33000 

108727 

72438 
Table 8-1: Number of generations to reach the goal, for different settings in the mutation rates and the 

initial conditions. 
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Table 8-1 summarizes the results obtained for different configurations. An 
unexpected result is the fact that a uniform random distribution of ones and zeros in the 
initial condition matrices gives better results than a random density distribution, which 
is usually assumed to work better in these situations. 

It is also interesting to notice that large'mutation rates are advantageous in this 
, experiment. The x%y code means that x percent of the children suffer y simultaneous 

random mutations in their genotypes. When both parents are different, the optimal 
mutation rate seems to be around 5 percent. 

At the beginning of the process, many different automata coexist and the 
increase in the mutation rate for different parents produces the highest effect. Later, 
when many automata in the population have converged to the same genotype, the effect 
of the increase in the second column of the table is less notorious. 

We have done some tests varying the size of the grid. When an n*n matrix is 
used, the execution time of the algorithm per generation increases in proportion to the 
size of the grid, but the number of generations needed to reach a given, goal (an 
automaton whose function differs 10 percent from the game of Life) decreases, which to 
some extent compensates the increase. Table 8-2 shows the results obtained. 

Notice that the optimal,size for faster convergence happens when a 10x10 grid is 
used. 

6x6 
8x8 
10x10 
16x16 

0.39 
0.60-
0.88 
1.87 

11800 
4300 
2700 
1500 

4602 
2580 

- 2376 
2805 

Table 8-2: Convergence speed as a function of grid size.. 

As we see in table 8-1, the genetic algorithm reaches successful convergence in 
about 25000 generations, starting from an initial set of 60" cellular automata, chosen 
randomly from a set of 2512. The total execution time has been found to be relatively 
independent of the size of the grid, with the optimal size around 10x10. 

The total number of automata generated in a run of the genetic algorithm with 
25000 steps is about 250000 (ten new automata are generated in each step), much 
smaller than the size o f the s et o f life-related cellular automata. This means that the 
algorithm takes a very direct search path towards the target. 
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Chapter 9 

Cellular automata equivalent to PDOL systems ; 

9.1. Overview 

m this chapter we study the opposite direction to the one described in chapter 6. 
We present a method to build a one-dimensional cellular automaton associated to a 
given PDOL system. As we saw in chapter 3 (section 3.2.1), a PDOL system is a DOL 
system where no symbol may be transformed into the empty word. Our cellular 
automata produce the same words and in the same order as the given PDOL systems for 
a finite number of derivations. 

Other authors have previously tackled this problem. As already said in Chapter 
6, [Terr91] show that there exist interactive one-dimensional cellular automata able to 
generate signals with frequencies equal to the growth functions of PDOL systems. These 
cellular automata are designed by means of sets of signals able to solve the problem. 

In a similar way, we design one-dimensional cellular automata equivalent to 
given PDOL systems but our approach differs from [Terr91] in several main features: 

• Our cellular automata are not interactive; no input is needed apart from the 
initial configuration. 

• We are not interested in the growth functions, but in the generation of the same 
languages, that is, our c ellular automata g enerate the same words and in the 
same order as the PDOL systems.-

• The description of the behavior of our cellular automata in terms of signals is 
also possible; we are mostly interested in the explicit definition of the whole 
cellular automata. 

„ There is no constraint to the PDOL system considered, so the method is a general 
algorithm and can be used as a proof for an equivalence theorem. 

9.2. One-dimensional cellular automata 

In this section we define the one-dimensional cellular automata that wi l l become 
the result of the equivalence algorithm. 
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9.2.1. Informal description 

A one-dimensional cellular automaton is a chain of automata in a straight line. 
The neighborhood relationship in one-dimensional automata defines a set o f 
predecessors and successors. One of the better-studied neighborhoods for one-
dimensional automata consists of the automaton itself and its two nearest neighbors. 

9.2.2. Formal definitions . 
v 

Given a set E, a one-dimensional grid on E is a function 

G.Z-r+E 

And G\i] or G¡ is the element of E at the ia position in the grid. 

i?w on E is the set of one-dimensional infinite grids on E. 

A one-dimensional neighborhood V is a pair 

(k,N) 

where 

• k e N is the number of neighbors of every automaton in the grid. 

• N e Zk is a vector of k integer offsets. Given the index of a position in the grid, 
each offset points to a different neighbor of the automaton in this position. 

• The predecessor / successor neighborhood is formalized as Vp/s•=(3, (-1,0,0)• 

A one-dimensional deterministic cellular automaton is the six-fold 

{G,G0,V,Q,f,T) 

where 

• G is a one-dimensional grid of automata. 

• Q is the finite and non-empty set of possible states of the automaton in the grid. 

• G0 is the initial configuration. It is a mapping 

G0:G-*Q 

) that assigns an initial state to each automaton in the grid. 

• V = (k, N) is a one-dimensional neighborhood. 
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• / '•Qy-Qk ->Q is the transition function that assigns the next state of each 
automaton in the grid depending on its actual state and the states of its k neighbors. 

• Tis the discrete time. 

9.3. One-dimensional cellular automata n-equivalent to PDOL 
systems 

9.3.1. Informal description 

In this section the design of a cellular automaton equivalent to a given PDOL 
system is tackled. A cellular automaton is said to be n-equivalent to an L system i f it is 
possible to find the n first words in the language generated by the L system in a finite 
number of successive configurations of the cellular automaton. That is, there must be a 
way to link: 

• The axiom of. the * L system and the initial configuration of the cellular 
automaton. 

• Each subsequent word in the language of the L system and a configuration of the 
cellular automaton, provided that the order of the derivation is preserved. That 

'is, the configuration corresponding to the first derived word must be obtained 
before the configuration corresponding to the second derived word, and so forth. 

Figure 9-1 shows the way in which the words derived by the L-system are linked 
to the configurations generated by the one-dimensional cellular automata, by means of a 
link mechanism \|/., 
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Figure 9-1: Definition of Cellular automata equivalent to PDOL systems 

For clarity, the way in which the cellular automaton simulates the PDOL system 
is explained with an example: 

Let us look at the following PDOL system S 

S={ Z={A,B},P={A::=BB, B::=AB}; A} 

In order to build the equivalent one-dimensional cellular automaton the 
following decisions have been taken: • 

• There wi l l be a cell in the linear grid of the cellular automaton to contain each 
symbol of the words derived by the L system. 

• The states of the automaton must provide a mechanism to insert new symbols in a 
given position and to move the old ones to their final place, because the words 
increase their length as they are derived by the L system. So, the states of the 
automaton must take into account not only the symbol that wi l l finally contain the 
cell, but also the substrings that wi l l be displaced across the cell. 

• As a consequence of the previous point, the beginning and the end of the word must 
be marked. The symbols > and < are, respectively, the left and right marker. 

• I f a generation only contains a set of contiguous cells embraced by the left and right 
markers and every cell that has not a marker has an empty displacing substring, then 
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the generation contains a word derived by the L system. The symbol 0 (blank) 
represents an empty displacing substring. 

Figure 9-2 show the initial generation of the cellular automaton. The symbol 
contained in each cell appears over the displacing substring. This configuration 
represents the axiom (A) because there is only one cell that has not a marker and it has 
an empty displacing substring. 

h h \, \i\ m 
Figure 9-2: Initial generation of the cellular automaton 

The behavior of the cellular automaton can be summarized as follows: 

• First, the right marker is transmitted to the left until it reaches the left marker. When 
this condition is readied, the cellular automaton is ready to begin the production 
process. 

• Second, the production rules are applied in the opposite direction. At the same time, 
the symbols of the new word are displaced until they find their final position. 

• At this moment, the new word has been derived and the automaton is ready for a 
new derivation. 
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Figure 9-3: Cellular Automaton - DOL system comparison: the first 12 generations of the automaton 
simulate the first two derivations of the L system. The automaton subsequent states are shown in the left 
side 
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The following conditions describe the different phases of the automaton: 

• The propagation of the right marker is shown in every cell that contains a symbol 
distinct from the markers (<,>) and a displacing substring equal to "<". 

• After the application of a production rule, the new symbols must reach their final 
position. Cells that contain the symbol < (the right marker) and a displacing 
substring that begins with the left marker (>) show this situation. 

• The production rules are applied in cells that contain a non-marker symbol and a 
displacing substring that begins with the left marker (>). Numbers (1) and (2) label, 
respectively, the cells in which the production rules A::=BB and B::=AB are 
applied. Number (3) is associated to the simultaneous application of the production 
rule B::=AB and the movement of some symbol towards its final position. 

• To identify a cell that contains a symbol that is in its final position, an empty 
displacing substring ( 0 ) is used. 

Time is supposed to increase downwards. As i t can be observed, when symbols 
are displaced they propagate the left marker (>). In a displacing substring, the first, 
symbol after the left marker wi l l be finally placed in the cell containing the substring. 
So the next state of this cell represents a symbol that has found its final position. 

The next state of each cell depends only on its left and right neighbors. 

This method is generalized and formalized in the following section. 

9.3.2. Formal description 

9.3.2.a. Theorem 

Given a PDOL system 

S = {s,P,a) 

where all the components have been previously defined, and being L(S,n) the set of the 
first n words generated by S, starting at and including ©, there exists a one-dimensional 
cellular automaton whose s equence o f states contains L(S,n) i n the same order. This 
automaton is n-equivalent to S. 
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9.3.2.b Proof 

Our proof is constructive. In the following paragraphs, a one-dimensional 
cellular automaton (A) that generates the same language that a given PDOL system (S) 
is built. 

To make the proof clearer, the following notation wi l l be used: 

• £„, = {>}- Zm¡ is the alphabet of the left marker, 

• Smr = { < } . 2>„r is the alphabet of the right marker. 

• Z„ =£wz 0 2 m . E„ takes its name, from alphabet 2 extended with the 
em m¡ mr e„ r 

markers. 

• 2 e = 2"u 2 u S u {0}. 2 e takes its name from alphabet 2e„, extended with the 

blank space. 

• £.,-Us' 

k 

• s*=U2'' 
1=1 

The cellular automaton we want to build is one-dimensional. So, its grid ((?) is a 
vector of finite and deterministic automata GeRm on the set of deterministic automaton 
induced by the cellular automaton being defined. 

The predecessor / successor neighborhood (Vp/s= (3,(-1,0,i))) is used. 

As it was suggested by the informal description, each automaton must be able to 
contain the following information: 

• A symbol from the alphabet of the PDOL system plus the end markers. 

• A displacing string of the same kind of symbols. 

Thus, each possible state of the cellular automaton wi l l be a pair formally 
defined as follows 

QcS.xS, ejc+l 

Where 

k<maxAez{|p(A)|}x|hk(<¡o)|,where m#x represents the maximum. 
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• Pairs (>,>) and (<,<) are used respectively as left and right markers that fill the 
portion of the grid that remains unused. 

• Pairs (A,<) ,, A e E are used to propagate the right marker. 

• Pairs (A,0) ,, A e S are used when the symbol A reaches its final position. 

• Pairs (B,>a) , , B e,S u {0} A a e I,k are used to move the displacing substrings. 

The cellular automaton initially shows the axiom of the DOL system. 0 wil l be 
considered always the index value corresponding to the first symbol of the words. So 
G0. is defined as follows: 

G0(i) = 

(o)j,0) if i = j 
(>,>y if i<o 
(<,<). if i>\a>\ 

The set of final states is empty: 

•r = o 
The transition function was informally described in the previous paragraphs and 

is formally defined by cases as follows: 

\/A,UzZAVL,R,SsEeAa,p<=EkA8eZ*,yz2k 

1. /(CL,^>(>>>),(tf,$)=(>,>) , . - • 

This case maintains the left filler unchanged. 

2. f ((L,>U),(<,<),(R,P)M<,<) 

• This case maintains the right filler unchanged. 

3. f((L,a),(S,0),(R,<))=(S,<) 

This case progagate the right marker to the beginning of the grid. 

4. f ((L,a),(S,<),(RM=(S,<) 

The two previous cases propagate the right marker. 

5. f((L,>US),(A,<),(R,]3))=(A,>Sp(A)) „A:^P(A)^P 

This case applies the derivation rule A ::= p{A) to the symbol A, while 
simultaneously moving the displacing string from its left (8). 
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6. f((L1>)1(A><),(R,j3))=(Á>p(A))„A:^p(A)^P 

This case applies the derivation rule A ::= p{A) to the symbol A. 

7. /((L,>U8),(<,<),(R,P))=(<,>5) 

This case moves the displacing string from the left (8). 

8. / ((L,a),(S,>Uy),(R,p))=(U,<>) where y may be the empty string (X) 

This case stops symbol U in its final position. 

9. /((L,<x),(A,<>),(R,P))=(A,0) where p*< . 

This case keeps symbol A in its final position. 

The behavior of the cellular automaton can be divided in the following 
phases: 

1. Propagation of the right marker: 

• The initial configuration contains automata that have only three kinds of 
states: (>,>), (S, 0) and (<,<). 

• The first and third states are maintained respectively by means of the 
first and second cases in function f. The only case of / that can be applied 
to the states of the kind (S, 0 is the third, that initiates the propagation of the 
right marker. Further steps of the propagation are done by the fourth case. 
This case records that the right marker has already passed this position. 

2. The production rules are applied and the resulting symbols look for their 
final position: 

• When both markers meet at the beginning of the word, the propagation 
of the right marker finishes. When this condition holds, there is a rule that can 
be applied. This is accomplished by the sixth case of / . So the application of 
the rules begins where the propagation of the right marker finishes, and 
proceeds along the word from left to right. 

• Whenever a rule is applied, a substring is placed in a cell that wi l l finally 
hold a single symbol: only the first symbol of the substring wi l l be left in the 
cell. The remainder substring must move to the right until every symbol 
reaches its final position. Sometimes, these substrings can be displaced at the 
same time a production rule is applied in the next cell. The .fifth case is used 
in this situation. The seventh case is used when only the displacement is 
possible. Whenever a symbol reaches its final position, it is* stopped (by 
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means of the eighth case) and kept there (by means of the ninth case) until the 
next derivation. 

3. The configuration associated to the next word is generated: 

• After several steps, the cellular automaton generates the configuration 
associated with the next word derived by the PDOL system. As previously 
explained, this configuration has the following characteristics: 

• It contains a set of contiguous cells embraced by the left and right 
markers. 

• Each1 cell in this set has an empty displacing substring. 

9.3.2.C Example . 

In this section, the method described in the previous proof is applied to the 
PDOL system described above: 

S={ ?>={A,B},P={A::=BB, B::=AB}, A} 

The cellular automaton (C) equivalent to the PDOL system S is defined as 

follows: 

C = (Gc=R.a,G0c,Vp,s,Qc,fc,Tc=^) 

where 

The initial configuration is 

G0r(i)= 

[(4,0) V t-o 
< (>,>) if i<0 

• The set of states is 

Qc = {(>, >), (<><), (A,0), (B,0), (A,<), (B,<), (<,xx), (A,xx), (S,xx)}„ a e Sk, where 
k<2\h"(A)\ 

• The transition function is defined as follows: 
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VA,UeZ = {A,B}A 

VL,R,S eSe = 27 u {>,<,<>} A 

a,peSkA8e2+,yeSk 

1. /c((¿,a),(>,>),(i?,/?))=(>,>) 

2. / c ((¿,>^,(<,<),(i?,/?)M<5<) 

3. / c ((L,a),(S,<>),(R,<))=(S,<) 

4. / c ((L,a),(S,<),(R,P))=(S,<) 

5. fc ((L,>U8),(A,<),(R,P))=(A,>5BB). 

/ c ((L,>U8),(B,<),(R,P))=(A,>8AB) 

6. fc ((L5>),(A,<),(R,P))=(A,>BB) 

•fc ((L,>),(B,^),(R,P))=(B,>AB) 

7. -fc ((L,>U8),(<,<),(R,P))=(<,>8) 

8. •& ((L,a),(S,>Uy),(R,p))=(U, 0) where y could be the empty string (X) 

9. fc ((L,a),(y,0),(R,P)H y,0) where p*< 

Using this transition function, we can follow the algorithm that generates a one-
dimensional cellular automata equivalent to the PDOL system. Figure 9-3 above shows 
how this function is applied. 

In the next chapter, this algorithm is extended to DOL systems. 
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Chapter 10 

Cellular Automata equivalent to DOL Systems 

10.1. Overview 

L i this chapter we extend to DOL systems the equivalence algorithm of a one-
dimensional cellular automaton equivalent to a given PDOL system. The difference is: 
that in a DOL system some symbols may be transformed into the empty string, by rules 
whose right hand part is the empty word. In,this case, the cellular automata must 
provide a technique to solve the problem of propagating the symbols to the left. A 
cellular automaton is considered equivalentto an L-system i f both generate the same 
words in the same order. Our cellular automata produce the same words and in- the 
same order as the given DOL system for a,finite number of derivations. As in the 
previous chapter, there is no constraint to the DOL system considered, so the method is 
a general algorithm and can be used as a proof for an equivalence theorem. 

10.2. One dimensional Cellular automata equivalent to DOL 
Systems. 

10.2.1 Informal description 

Again', the way in which the cellular automaton simulates a DOL system is 
explained by means'of an example: 

S = { S = { A 3 , C } , P = { A : ? = B C , B : : = A C , C : : = ^ } ; A C C C B } . 

In order to build the# equivalent one-dimensional cellular automaton, new 
features are added to the procedure used for PDOL systems. The total set of restrictions 
is: " , . "• 

There w i l l be cells in the linear grid of the c ellular automaton to contain the 
symbols of the words derived by the L system (one per .cell). 

The states of the automaton must provide some mechanism for the following 
situations: . " 

Inserting new symbols in a given' position, and then moving some to the right, 
because the words can increase their length as they are derived by the L system. 

Deleting symbols that are derived to X (the empty word) and therefore moving 
other symbols to the left, because the words can decrease their length i f the number of 
symbols deleted is greater than the extra symbols generated by symbgls that don't 
derive X. We wi l l use different signals to supply these mechanisms. 
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As a consequence of the previous points, the beginning and the end of the word 
must be marked. The symbols >-and < are, respectively, the left and the right marker. 

I f a generation only contains a set of contiguous cells embraced by the left and 
the right markers, and every cell without a marker contains symbol 0, then the current 
generation of the cellular automaton contains a word derived by the L system. 

As the length of the derived strings can increase, we must consider that the grid 
has no right end, so there are always as many right markers as needed. 

Figure 10-1 shows the initial generation-of the cellular automaton. The symbol 
contained in each cell appears over the displacing sub-string. This configuration 
represents the axiom (ACCCB). In every cell, the upper symbol represents the state of 
the cell, while the lower symbols show the string to be displaced at a given point and 
the signals used in the process. 

. innnnnnD - ID 
Figure 10-1: Initial generation of the cellular automaton. 

The behavior of the cellular automaton is summarized in figure 10-2, which 
shows twenty-one steps in the evolution of the automaton that simulate the first 
derivation of the DOL system. Each row in the figure corresponds to a different step for 
the cellular automaton. Time increases downwards. The first row shows the initial 
generation of the cellular automaton, which represents the axiom (ACCCB) of the DOL 
system. , . 
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Figure 10-2: Cellular Automaton - DOL system comparison, (a) An erasing rule is applied. The sub-string 
not yet processed is not displaced to the left, because the sub-string being displaced to the right 
compensates that displacement. (P) Symbol C must disappear, because the sub-string being displaced to the 
right is empty and the applied rule (C::=X) does not append new symbols, (y) At this moment, a signal (<-) 
is sent until it reaches the right markers. When the signal goes across a cell, its symbol is displaced to the 
left. The displacement to the left of the whole sub-string ends when the signal comes back after rebounding 
against the right end of the word. (8) Cells that wait for the return of signal <- are marked with the symbol 
(<_. (e) The signal <- rebounds against the right end of the word, the cells that receive the returning signal 
are marked with the symbol (_». (i) When the returning signal encounters a cell with an empty sub-string, 
the displacement to the left finishes and a new rule can be applied. 

120 



This behavior can be summarized as follows: 

• The right marker is transmitted to the left until it reaches the left marker. 

• The production rules of the DOL system are applied in the opposite direction. At 
the same time, the extra symbols and the sub-string not yet processed are displaced until 
they find their final position. 

• As previously mentioned, the displacing sub-string may become empty at a 
given cell. In this case, a signal is sent to the right and every symbol traversed is 
displaced one position to the left. When the signal reaches the right marker, it rebounds 
until arriving at the original cell, and then derivations continue. 

• After a word has been derived (rows 1 and 21 in figure 10-2) the automaton is 
ready for a new derivation. 

Notice the following situations: 

• The right marker propagates to the left when its left neighbor contains a symbol 
distinct from the markers (>, <) and an empty displacing sub-string. 

• After the application of a production rule, the new symbols must be moved to 
their final position. This is indicated by the fact that the displacing sub-string begins 
with the left marker (>). 

• The production rules of the DOL system are applied in cells that contain a non-
marker symbol and a displacing sub-string beginning with the left marker (>). (a) and 
(b) label the cells in which production rules A::=BC and B::=AC are applied. 

• When a sub-string is displaced, the first symbol after the left m'arker becomes 
the state of the cell containing the sub-string, because it has found its final position. The 
left marker and the remaining symbols are propagated. 

• I f the rule applied has the empty word (A) as, its right hand side, it is possible 
that the sub-string that has not yet been processed (the cells between the current 
position and the right marker) must be displaced to the left. In this case the signal is 
transmitted to the right until it rebounds against the right marker. The cell sends the 
signal when the lower component o f the state o f its left neighbor belongs to the set 
{>s„se£}. 

• Cells that have just transmitted the signal <- are marked with the displacing 
sub-string <<_• They copy their next symbols from their right neighbor. A discontinuous 
arrow remarks this circumstance. 

• When the signal <— reaches the right marker ( (<,<) ) it moves to the left until it 
finds a cell with an empty displacing sub-string (0). Meanwhile, the symbol <_>. is used 
to unmark the cells that were waiting for the return of the signal. 

• An empty displacing sub-string (0) indicates a cell that contains a symbol that is 
already in its final position. 
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When symbols are displaced, they propagate the left marker (>). h i a displacing 
sub-string, the first symbol after the left marker wi l l be finally placed in the cell 
containing the sub-string. So the next state of, this cell represents a symbol that has 
found its final position. The next state of each cell depends only on its left and right 
neighbors. 

This method is generalized and formalized in the following sections. 

10.2.2. Formal description 

10.2.2.1. Theorem 

Given A DOL system S=(Z,P, co) where all the components have been previously 
defined, and being L(S,n) the set of the first n words generated by S, starting at and 
including co, there exists a one dimensional cellular automaton whose states contain 
L(S,n) in the same order. This automaton is «-equivalent to S. 

10.2.2.2. Proof * 

Our proof is constructive. In the following paragraphs, a one-dimensional 
cellular automaton (A) that generates the same language that a given DOL system (S) is 
built. 

To make the proof clearer, the following notation wi l l be used: 

• ^ = { > } 

is the alphabet of the left marker. 

is the alphabet of the right marker. 

Em = {<,>} 

is the alphabet of both markers. 

are the signal symbols used for shortening the string due to the Á rules. 

• E(!m=EuSfflUSm 
em tn ms 

is the alphabet S extended with the markers and the signals. 

E e = S u 2 m u S m u{0} 
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'•'eje - " U ^ e 

^ = U S / 

k 

J 

k 

J 
i=l 

The cellular automaton we want to build is one-dimensional. As indicated in the 
informal description, its grid (G) is, at least on the right, an infinite vector of 
deterministic finite automata. 

The predecessor / successor neighborhood ( ^ = ( 3 , (-1,0,1)) ) is used. 

As suggested by the informal description, each automaton must be able.to 
contain me following information: 

• A symbol from the alphabet of the DOL system plus the end markers. 

• A displacing string of the same kind of symbols plus the signals needed to 
adjust the length of the next derived word. 

-• Thus, each possible state of the cellular.automaton wil l be a pair formally 
defined as follows 

Qt^ *K -fe 0{2}))uZm; u i . U{0} 

where 

k<maxAe£{|p(A)|}x|nn(G))|, where max represents the maximum. 

(>,>) and (<,<) are used respectively as left and right markers that f i l l the 
portion of the grid that remains unused. 

(A,<)„AeS are used to propagate the right marker., 

(A, 0)„ A e S are used when the symbol A reaches its' final position. 

(B,>á)„BeSu{<}.AaeEk are used to move'the displacing sub-strings. 

(C,D)„CeEu{>}Aae2kADe2ms are used to shorten the derived string. 

The cellular automaton shows initially the axiom of the DOL system. 0 wil l be 
considered always the index value corresponding to the first symbol of the words. So 
Go is defined as follows: -

Go(th 
(CDj,X) if i=j 
,(>,>) if i<0 
(<,<) if i>\co\ 

The set of final states is empty: T=0. 
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The transition function for all the possible cases is formally defined by table 10-1: 

s 1 
2 
3 

4 
5 
6 
7 
8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28-

29 

30 

31 

32 

33 

Él! 
(>,>) 
(>>>) 
(>,>) 

(>,>) 
(>,>) 
(>,>) 
(>,>) 
(>,>) 
(s',0) 

(>>>) 
(s',0) 

(>,>) 

(s',0) 

(>,>) 

(s',0) 

(>,>) 

(s',0) 

(>,>) 

(s',0) 

(>,>) 
<3r,0) 

(>,>) 

(*',0) 

(s',0) 

( • * ' , < ) • 

(s',<) 

(>,>) 

(>,>) 
(s',>s"a) 

(.s',>s") 

C*',<J 
(*",*-) 

(^,<-) 

ÜK 
(<,<) 
(>,>) 
(>,>) 

(>,>) 
(>,>) 
(>,>) 
(>,>) 

M) 
(s,0) 

M) 
foO) 
(¿0) 
fcO) 
(s,0) 

feO) 
(s,0) 

(s,0) 

(s,0) 
(s,0) 

(s,0) 
(s,0) 

(s,0) 

(*,<) 

(*,<) 

(*,<) 
(s,<) 

(s,<) 

(s,<) 

(s,<) 

(s,<) 

(s,<) 

(*,<) 

(*,<) 

^H (<,<) 
(<,<) 
(<><->) 
(*,<-) 
(*,<>) 

(*,<) 
0,>a) 
(s',0) 

( i ' ,0) 
(s',>a) 

(*",<*) 

(*',<->) 

(* • ,< - ) 

(*',«-) 
(<,>a) 

(<,>«) 

(*",<<-) 

(*',<<-) 

(<,<) 

(*',<) 

(*",<) 

(<,<) 

(<> <) 

( * " , < ) • 

(*",<) 

(<, <) 

(*',<) 

(<><) 

(sm,<) 

(sm,<) 

(<,<) 

(*",<) 

(<,<) 

(<,<) 
(>,>) 
(>,>) 
(>,>)Vse2 
(>,>)Vse2 
(>,>)Vse2 
(>,>)VssE,VasS*||a|<k 

^ ^ V s ^ ' s S 

^ V s ^ ' e S 

^ ' ° ) Vs,s's2,VaeE+||a|<k 

('y'<>)Vs,s'5s"s2 

^°)Vs,s'SE 
(•y'°)vs5s',s"eE 

(*>0)Vs,s'eZ 

^'°)Vs,s'eS,VaeS+||a|<k ^ 

^ '^VseE.VaeS+l la l^k 

(*><>) Vs,s'e2 

(*>0)Vs,s'eZ 

. ^ V s ^ ' e Z 

^ ' ^ V s ^ ' e E 

^ ' ^ V s ^ ' e E 

^ V s e S 

^ ' ^ V s ^ ' e S 

^ ' ^ V s ^ ' ^ ' e S 

^ ' ^ V s . s ' ^ ' e S 

^ ' ^ V s ^ ' e Z 

(.(*>> />(•*))VseS|p(s>&, Vs'sS " 

(*,>/<•*)) V s S 2 |p ( s )^ 

Cs,><z/>0O)Vs6i;|p(s>^, 
Vs',s",s'" e2|,Vae2+||a|<k 

(*>*"-) VseE|p(s)=X, Vs',s",s'"sE 

i^^Vs.s' eZ 

( f f '<")Vs,s' is" e2 

(5 i <~)Vs,s 'eS 
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34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

• 44 

45 

46 

47 

48 

49 

50 

51 

52 

53 
54 

55 

56 

57 

58 

59 

60 

( > • > ) 

(>,>) 
(*"',0) 

(*",<>) 
(s,0) 

(s',0) 

(s',<J 

(*',<U 
(>,>) 

(*'*<<-) 
(s',0) 

(*',<<-) 

(s',0) 

(*',<<-) 
(s',0) 

(s',0) 

(*',<<-) 

(*><<-) 
(s',0) 

(s',x). 
(¿s,>s'a) 

(>,>) 

(>,>) 
(s',0) 

(*',<<_) 
(<}>s'a) 

(s',0) 

(s,>s'a) 

(s,>s'a) 

(s,>s'a) 

(s,>s'a) 

(<,>s'a) 

(*<-) 

(s,+~) 

(*,'<-) 

(s,<~) 

(*,<<-) 

(s,<*-) 

(s,<+.) 

(s,<<-) 

(*,<<-) 

(s,<J 

(s,<J 

(*,<<-) 

(<,<->) 
(s,.<^) 

(<,<) 
(<, <) 

(s,<) 

(<,<->) 
(*,<->) 

(S,<-y) 

(<,<) 

(s,0) 

(s",<) 

(<><) 

(s",<) 

(<, <) • 

(<,<) 

(s",<) 

(s",<) 

(< ,<) , 

(<,<) . 

( i ' , < - ) 

(s",<-) 

(sn,<J 

(s",<+.) 

(•*",<<-) 

(s",<->) 

(<,<->) 

(<,<->) 

(<,<) 
(s",<) 

(<,<) 
(<,<) 

(<,<) 

(<,<) 

(<,<) 

(<> <) 

(<,<) 

(sm,>a) 

^ ' ' ° ) Vs, s', s"e2, VaeE*||a|<k 

(5 ' '0)Vs,s'eE,Vae£*||a|<k 

^ ' ' ^ V s , s\ s", s'"e2, VaeE*||a|<k 

( i ' ' ° ) Vs, s\ s"e2, Vae2*||a|<k 

(s'> °) Vs, s' e2, Vae£*||a|<k 

(^<*-)vs 5s ' , s" e S '• 

^ ' < ^ V s , s ' , s " € S 

^ ' ^ V s . s ' e Z 

(<'<->) Vse E 

(5 , <«-)vs,s ' ,s" e Z 
( i , < ^ V s ) s ' ) s " 6 E 

^ ' < - > ) V s , s ' , s " 6 E 

^ ' < <- ) Vs, s ' , s "eS 
( i ' < *- ) Vs ) s ' , s " eE 
( i ' < ^ V s , s ' , s " e Z 

^ V s , s ' e E 
( i , < J v s , s ' 6 S 
( < , < ) V s e 2 

('s'<") Vse 2 | p(s)=A,, V,s\ s" e 2 
(<, <) Vse Z, Vx*)a „ aeS+ 

( < > > a ) V s , s ' e Z , V a e S + 

(5»*~) Vse 2 | p(s)=X 
(<,<) 
(s, > p(s)) V g | p ( s ) ^ Vg , e 2 

^ V s . s ' e S 

( < ' > a ) V s , s ' e E , V a e E + 

^ ' ^ V s , s ' , s ' " e S , V a 6 S + 
Table 10-1: Transition function of the cellular automaton equivalent to a DOL system. 
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* 

The rows in the transition function are explained below: 

Cases 1 and 53 maintain the right marker unchanged. 

Gases 2 to 7 maintain the left marker unchanged. 

Cases 8 to 18 maintain symbols at their finalpositions. 

Cases 19 to 22 the derivation signal is receipt by symbols at their final position 

Cases 23 to 26 maintain unchanged symbols that are waiting for derivation 

Cases 27 to 29 apply a derivation rule 

Cases 30 to 33,39 to 52 and 55 to 58 handle the deletion signals. 

Cases 34 to 38 place symbols at their final positions. 

Cases 54 and 59 move the displacing substring to the right. 

This function defines the following mechanism to eliminate symbols: the signal 
<— is placed to the bottom of the cell, and propagated to the right. Then the symbol in 
the right neighbour is copied to the cell that contains the signal, and signal (<<_) is 
assigned to the bottom of the cell. This process is repeated until the end of the grid is 
reached, which is marked by (<, <). At this stage, the other signal (<_>), which indicates 
that the propagation is finished, is placed at the bottom of each left cell until the cell 
containing X is reached again. At that point, the derivation process can be continued. 

10.3. Examples 

Example 1 

The example shown in section 1.3.1 can.be formalized thus: 

S={2={A,B},P={A::=BC, B::=AC, C::=^>, ACCCB} 

The cellular automaton (C) equivalent- to this DOL system S is defined as 
follows: 

O{Gc,Goc,Vp/s,Qc,fc,Tc=0} , 

where 

• The initial configuration is 

G0(i) = 
(>,>) if i<0 

(A,0),(C,0),(C,0),(C,0),(5,0) if 0<i<\axioma\ 

(<,<) if i>\axioma\ 
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The set of states is Qc=< 
\(>,>U<,<UA,<>UCMBMA,<UB,<UC,<), 

(A,>aUB,>a),(C,>aXC,<-),(C,<+.UB,<+.), \ 
(A,<_U<,<MC<MB,<J,(A,<J 

• The transition function is defined in table 10-1, and the first derivation in the S 
system corresponds to the cellular automaton evolution as shown in figure 10-2. 

Not all the cases in the transition function are used in figure 10-2. The following 
examples show other possible cases the algorithm may have to face, and how they are 
solved. * 

Example 2 

Let us consider a DOL systems defined thus:, 

{1.={A,B, Q,P={A::=Á,B::=Á,C::=Á}4CCCCCCB} 

The cellular automaton (C) equivalent to this DOL system S is defined" as 
follows: 

C={GC, Goc, Vp/S, Qc,fc,Tc=0} 

where all the components were defined previously. 

Figure 10-3 shows how the cellular automaton simulates its corresponding DOL 
system. 

Example 3 

{I,={A,B, C], P={A::=BCA,B::=B,.C:: =B}J) 

The cellular automaton (C) equivalent to this DOL system S is defined as 
follows: 

C={GC, Goc, Vp/s, Qc,fc,Tc=0} 

where all the components were defined previously. 

. Figure 10-4 shows how the cellular automaton simulates the first derivation of 
its corresponding DOL-system. 
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Example 4 

{Z={C},P={C::=X},C} 

The cellular automaton (C) equivalent to this DOL system S is defined as 
follows: 

C={GC, Goc Vp/s, Qcfc,Tc=0} 

where al l the components were defined previously. 

Figure 10-5 shows how the cellular automaton simulates the derivation of X by 
its corresponding DOL-system. 
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Chapter 11 

Cellular automata equivalent to DIL systems 

11.1. Overview 

In the two previous chapters 9 and 10, we have presented an equivalence 
theorem between cellular automata and PDOL and DOL systems. In this chapter, we are 
tackling the equivalence between cellular automata and another type of L-system, called 
DIL systems. DIL systems are determimstic context sensitive systems, where the set o f 

, production rules detennines the only way in which each symbol in the alphabet can be 
changed into a word, whenever it appears between certain substrings located at its right 
and at its left. Therefore, the neighborhood of the equivalent cellular automata must be 
modified, to take into account the context of the DIL system in that part of the process 
when the production rules should be applied. In the next sections we wi l l propose an 
algorithm to solve this problem, and a number of examples wi l l be introduced to better 
understand the algorithm. ' 

11.2. One dimensional Cellular Automata equivalent to D I L Systems 

11.2.1. Informal description 

In the previous chapters, we have shown that, for every DOL system Sd, there 
exists a one-dimensional cellular automaton Ad that generates its first n derivations. 
Each cell i n the Ad cellular automaton's grid is associated to a symbol o f the words 
derived by system Sd- Symbols < and > mark the word's ends, and several signals are 
used to inserí new symbols ( i f needed) in a given position after applying a derivation 
rule (<, >), and to reduce the size of the words ( i f needed) when X rules are used (<-, 
><_, <<_). Each state of Ad has two components: one for the current cell's symbol and 
another for signals and substrings that should be displaced during the derivation 
process. 

A new component has been added to the cellular automaton states to handle the 
context: initially, cells containing symbols have an empty displacing substring (0) and a 
context information equal to themselves, while the filler (g) is used as context for cells 
containing the markers, as illustrated in figure 11-1. 

g 

> 

> 

A 

A 

0 

A 

A 

0 

A 

A 

0 

g 

< 

< 

Figure 11-1 :The initial configuration of the cellular automaton 
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The automaton simulates sequentially (from left to right) the parallel derivation 
process, and the context must be maintained during the whole derivation to correctly 
apply context sensitive rules. Thus, some mechanism must be supplied to keep the 
context information correct while the symbols are displaced to the left when X rules are 
applied, and to set the appropriate context information after having finished the whole 
derivation. The following new symbol (0') and signal (0 V ) wi l l be used. 

The behavior of the cellular automaton equivalent to a DEL system is 
summarized by means of an example. 

The (1,1)DIL system is defined thus: 

S={2={A,B,}, ' 

P={AAA::=AA,AAB::=BA,BAA::=BA,BAEi::=AB,gAA::=B,gAB::=A,AAg::=rB, 

BAg::=A, xBy::=A. Vx,y e Z } , AAA} 

Figures 11-2 and 11-3, illustrate several steps in the evolution of the automaton 
that simulates the first derivation of the DDL system. Each row in the figure corresponds 
to a different step for the cellular automaton. Time increases downwards. As it was 
mentioned before, every marker cell has the filler (g) as context information; cells 
associated to symbols have an empty displacing substring (0) and the* symbol itself as 
context information. The behavior can be summarized as follows: 

• Signal < is propagated from right to left until i t reaches the first symbol in 
the axiom. At that point, the symbol is replaced by the left-hand side of the 
appropriate production rule, depending on its context (gAA::=B). See figure 

'11-2. The rule context of the applied rule can be obtained from the top. of the 
cell and its neighbors. 
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A 
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>B 

A 

A« 
. A-

< 

A 
A , 
< 
A 
A 
< 

g 
< 

^^< 
g 
< 
< 

Figure 11-2: A t the first step in the derivation, signal < is transmitted to the left. 

• The first symbol in the displacing substring is allocated in its final position. 
A new symbol (0') is introduced to indicate that the leftmost symbol has 
already been derived in this step (maintaining the old contents of the cell, A, 
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at the top of the state). At the same time the first cell state becomes (A,B, 
0'), the next cell applies its own rule (AAA::=AA), whose right hand-side is 
added to the remainder of the displacing substring (A. in this case).' The 
process is repeated until the right marker is reached, after the rule AAg::=B 
has been applied. <-

• Signal 0'<- is sent to the left to make each cell write its correct context and 
replace symbol •<>' by 0, to finish the derivation. Figure 11-3 shows these 
steps. 
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Figurell-3: Ending the first derivation in the cellular automaton equivalent to the DIL system. 

• This configuration is associated with h(ffl), that is, the first word derived from 
S's axiom. A new derivation begins now, in the same way described above. 
Rule. xBy-»A. means that the symbol B must be erased from the string 
wherever it is. When this rule is applied, all the symbols to its right must be 
displaced one position to the left, because the displacing substring of B's left 
neighbor has no symbol. Signal <- is sent to the right end while displacing 
each symbol. Each cell traversed by the signal is marked with the symbol <^ . 
Context, information must be handled carefully, because it must be kept 
unchanged until the whole derivation finishes. I f context information is simply 
displaced to the left on the cell that contains the deleted B, the context wil l 
become "gAABg" rather than "gBAABg," which is the correct one. To avoid 
this mistake, the context of B's left neighbor is "added" to B's context as 
shown in the example. 
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• When signal <- reaches the right end it rebounds (turned into <_») until 
reaching the cell that originally contained the deleted symbol, while it changes 
the <<_ symbols to the marker < (see figure 11-4). 
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Figure 11-4: The cellular automaton mechanisms to generate the second word derived by the DIL-
system. " , * 

Notice that the context (gBAABg) has been correctly kept during the deletion of 
symbol B, hence the rule BAA-»BA can now be correctly applied. Notice also that, 
when a cell has a string as its context information, the symbol itself (the current content 
associated to the cell) is located at the last (rightmost) position of the context. The 
derivation process continues (AAB-»BA) as explained before, until the rule x B y - » i is 
applied again at the right end of the preceding derived word. In this case no symbol 
must be displaced to the left, because there are symbols enough to compensate B's 
deletion (see figure 11-5). 
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Figure 1Í-5: The cellular automaton joins the contexts of the deleted dells and keeps it unchanged until 
the end of the derivation, when a especial signal (<>'<_) is sent.to the left, putting the correct context in 
its place, identical to the new derived word. 

In the first row in figure. 11-5, we note that the cellular automaton continues 
generating the next word derived by the DIL-system. The intermediate stage is obtained 
when all the cells, have the symbol (0') at the lowest level of the rows in the figure, 
surrounded by (g,>,>) and (g,<,<). At this point, signal <>'<_ is sent to the left, to update 
the context information, and the word h2(co) is obtained. After that, the cellular 
automaton is ready for a new derivation, and so on. 

11.2.2. i Formal description 

11.2.2.1. Theorem 

Given a DIL system S=(S,P,co), where all the components have been previously 
defined, and being L(S,n) the set of the first n words generated by S, starting at and 
including co, there exists a one dimensional cellular automaton whose states contain 
L(S,n) in the same order. This automaton is n-equivalent to S. 
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11.2.2.2. Proof 

As previously, we build a constructive proof. In the next paragraphs, a one 
dimensional automaton (A) that simulates the same language generated by the DIL 
system is built. Notice the following notation: 

is the alphabet of the left marker. 

is the alphabet of the right marker. 

2ffl = {<,>} 

is the alphabet of both markers. 

2mj = { « _ , < * , < - } 

are the signal symbols used for shortening the string due to the X rules. 

is the alphabet 2 extended with the markers and the signals. 

smc={oV} 

is the signal that is used to set the right context after a derivation is completed. 

E e = 2 u S m u S f f l j u { 0 , 0 ' } 

^flK 
k 

y. 
e 

k 

2*=U? Li 

7 = 1 

The cellular automaton we want to build is one-dimensional. As indicated in the 
informal description, its grid (G) is, at least at its right, an infinite vector of finite and 
deterministic automata. 

The predecessor / successor neighborhood 

(yp/s=(L+R+l,(-l,-(L-l), ...,0,1,2, ...,R-1,R))) is used. 
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As indicated in the informal description, each automaton must be able to contain 
the following information: 

• A symbol from the alphabet of the DIL system plus the end markers.. 

• A displacing string of the same kind of symbols plus the signals needed to 
adjust the length of the next derived word. 

• A symbol or string containing the context, which must be kept the same 
during the whole derivation process. 

Thus, each possible state of the cellular automaton wi l l be a three-fold formally 
defined as follows 

g s ^ x(2m; . & VJU}))uE m j u 2 m c u 2 m u { 0 } u { 0 ' } 

where 

k^nax¿e£{\p(A)\}x\hn((o)\, where max represents, the maximum. 

, (g,>,>) and (g,<,<) are used respectively as left and right markers that fill the 
portion of the grid that remains unused. . - . ' . ' ' 

í • 

(A,B,<)„A éZ u {gjand BeL are used to propagate the right marker. 

(A,B, O'XAel, are used when symbol Areaches its intermediate position. 

(A,Bf 0)„A e2 are;used when symbol A reaches its final position. 

(A,B,>á),,Be£yj{<}AaeLk , ^ e u f = 1 H ' are used to move the displacing 
substrings. . - ' . " • " . 

(A,C,D)„ Ce2u{>}Aae2¿AZ)eEms are used to shorten the derived string. 

The cellular automaton shows initially the axiom o f the DIL system. 0 wi l l be 
considered always the index value corresponding to the first symbol in-a word. So Go is 
defined as follows: 

"(g,>,>) if i<0 
Gos,„[T|= -J (s,s,0) • V i e [ l , M ] „ s = a ) [ i ] 

(g> K> <) Otherwise 

The set of final states is empty: T=0 

The transition function for all the possible cases is formally defined in table 11-1 
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20 
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22 

23 

24 
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26 

27 

28 

29 

cff-1,0] 

(&>,>) 
(&>,>), 
(&>,>) 

.(&>>>) 
(&>,>) 
(g,>,>) 
(g,>>>) 

(g,>,>) 
(45 ,0 ' ) 

(g,>,>) 

(45 ,0 ' ) 

(g,>,>) 

(A,B,V) 

(£>>,>) 
(45 ,0 ' ) 

(g>>,>) 
(45 ,0 ' ) 

(g>>,>) 

(45 ,0 ) 

(&>»>) 
(45 ,0 ) 

(&>,>) 
(45 ,0 ) 
04,5,0) 

( 4 5 , <) 

( 4 5 , <) 

(g>>,>) 

(&>>>) 
( 4 5 , > C a ) 

c[z,0] 

( g , < , < ) • 

(g5>,>) 
(&>,>) 

(g>>,>) 
&>,>) 
(g>>,>) 
(g,>,>) 

( 4 5 , 0 ) 

(C,A0*) 
(45 ,0 ' ) 

( C A O ' ) 

( 4 5 , 0 ' ) . 

( C A O ' ) 

(^5 ,0 ' ) 

(CAO*) 

(45 ,0 ' ) 

( C A O ' ) , 

(45 ,0 ' ) 

(CA'O) 
(45 ,0 ) 

•(C,D,0) 

(45 ,0 ) 

( C A < ) 
( C A < ) 
( C A < ) 

( C A < ) 

( 4 5 , <) 

( 4 5 , < ) 

( A £ , < ) 

c[i+1,0] 

(g,<,<) 
(g,<,<) 
(£,<,<<-) 
( 4 5 , < - ) 
( 4 5 , 0 ) 
( 4 5 , < ) 
( 4 5 , > a ) 

( C A O ) 
(£,F,0') 

(C,D,>a) 

(E,F,<^) 

( C A < U 

OE,^,*-) 

( C A + - ) 

(g,<,>a) 

(g,<,>«) 

(£*• .<- ' ) 

( C , A < « J 

(g,<,<) 
( C A < ) 

(£ ,^ ,<) 

(g,<> <) 

(g,<><) 
(E,F,<) 
(E,F,<) 

(g,<,<) 

(C, A < ) 

(g><,<) 
(F,G,<) 

/.(clz-ilctict+i]) 
(&<,<) 
(&>,>) 
(g>,>) 
(g,>,>) VA,Be2 
(g,>,>) VA,BeE -
(g,>,>) VA,BeS 

(g,>,>) V A s uf=1 2'', VBeS,VasS*||a|<k 

( 4 5 , 0 ) VA,B,C,De2 

(C,AO') V4C, JEeuf= 1E / VB,D,FeE 
(45 ,0) VB,DeS,VaeS+||a|<k 

V 4 C e uf=1E
f 

(C, A 0') VB,D,FeE,VA,C,E e uf=1S'' 

(45,0*) VB,DeS,V4Ceuf= 1S' ' 

(C,AO') VB,D,FeS,VJ,C,£ e uf=1S'' 

(45 ,0 ' ) VB,DsE,V4C e uf=1S'" 

( C A O ' ) VB,neS,VaeS+||a|<k, 
V 4 C e u f = 1 2 f 

(45 ,0 ' ) VB e ^ V a e S + H a l ^ V ^ e U ^ E ' ' 

( C A O ' ) VB,AFe2,V4C, JBsuf= 1S / 

(45 ,0 ' ) ,VA,B,C,DeS, V 4 C e uf=,S''. 

( C A O VA,B,C,DeE 
( 4 5 , < ) , VA,B,C,DeE 

( C , A < ) VA,B,C,D,E,FeZ 

( 4 5 , < ) VA,Be2 

( C , A < ) VA,B,C,DeS 
( C A < ) VA,B,C,D,E,FeS 

( C A < ) VB,D,Fe2, VA,C,E e uf=12'' 

( C A < ) VB,DeS, V4Ceuf= 1Z'" 

( ( 4 5 , > p(B)) VA,BeS|p(B)*X, VC,DeS 

(45 ,> i? (5) ) VBeS|p(syX, V4eu?=1Z'' 

(JD,E,>ap(E)) VEsS|p(E)^, 

V^ e u?=12'",VB,C,D,E,F,Gel:|, Vas2+||a|<k 
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49* 

50 . 

51 
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53 

54 
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56 

(A,B,>Q 

(A,B,<->) 
(A,B,<-) 

(A,B,+-) 

(g,>,>) 

(g,>,>) 
(A,B,V) 

(A,B,V) 

(A,B,V) 

(A,B,V) 

(A,B,<^) 

(A,B,<^) 

(A,B,V) 

(.&>,>) 

(A,B,<+.) 

(A,B,V) 

(A,B,<^) 

(A,B,V) 

U,B,<<-) 
{A,B,V) 

. (A,B,0') 

(AB,<^) 

(45,0 
(A,B,V) 

(A,s',x) 

(A,B,>Ca) 

(&>>>) 

(D,E,<) 

( C , A < ) 

(C,A<) 

( C , A < ) 

(A,B,>Ca) 

(A,B,>Ca) 

(C,D,>Ea) 

(C,D,>Ea) 

ig,<,>Cá) 

(C,A<-) 

(C,A<-) 

(C,A<-) 

(C,A<-) 

(4*,*-) 

(C,A<<_) 
( C , A < J 
( C , A < J 

( C , A < - ) 

( C . A ^ ) -

(C,A<<_) 

( C . A O 
( C A O 
fe» <><-*) 
( C , A O 

(g,<,<) 

(&<,<) 
(4i?,<) 

0F,G",<); 

(g,<, <) 

(£ ,^ ,<) 

(g,<, <) 
(D,E,<) 

.(&<,<) 

(F;G,<)' 

(&<,<) 

(&s <) 
(E,F,<) 

{E,F,<) 

(S,<,<) 

(&<,<) 

(&<,<) 

(E;F,<r-) 

(E,F><-) 

(E,F,<J 

(E,F,<^) 

(E,F,<^) 

(E,F,<J 

&»<.<- ) 

(?»<.<4) 

(g,<5<) 

(E,F,<) 

(g,<,<) 

(&<» <) 

(g,S<) 

(A£,<-)VEeZ|p(s)=X, VB,C,E,Ge2 

V^A^euf^S ' ' ' 
( C , A < ) B,De2, V4Ceu?= 12' ' 

(C,A<~) VB,AF e2, V4,C,£ e uf=12'' 

(C, A < - ) VB5D e2,V^,C e uf=12'' 

(ii,C,0') VB,C,D,Ee2, Vae2*||oc|<k, 

V^6uf= 12' ' • 

(A,C,V)VB,Ce2, Vae2*||a|<k, V4 e u?=12'' 

(C,£,0') VB,D,E,Ge2, Vae2*||a|<k, 

V4C,Feuf = 1 2 ' ' 

(C,£,0') VA,B,C,DeZ, Vae2*||a|<k, 

VJ,Ceuf=1Z'' 

te.C.O') vB,CeE, Vae2*||a|<k, VA e U ^ E ' 
( C £ , F , < ^ ) V B j D F e E j V¿,C,£eu?=12'" 

(E,F,<J V B A F g ^ V 4 C , £ e ufMlS' 

(Qr,<,<_J ^ ^ e S j V¿,C é u?=12'" 

( Q r , < , < ) vBJDeS, W ' C 6 ^ 

( ^ ^ O v B g ^ V ^ e u ^ S ' y 

(C,A<<_)VB,AF e 2,MA,C,E e uf=12'' 

(E,F,<r-) VB,D,F e 2,V¿,C,£ e u*,E ' " 

(C,A<_>) VB„D,Fe %,VA,C,E e u?=12'' 

(C ,A<^)VB,D,F e 2, V¿,C,E e uf=12'' . 

( C , A < - ) V B , D , F e 2, V¿,C,£ e uf=12'' 

(C,A<_») VB,AF e X,VA,C,E e uf=12'' 

( C , A < _ ) V B , D e 2 , W , C e uf=12'' 

( C , A < ^ ) VB,D e 2 , W , C e uf=12'' 

(g ,< ,<0VB6S,Vi ieu* I S
f 

(C, A < ~ ) VDe 2 | p(D)=X, V B,D,E,F 6 2, 

V4C,£euf = 1 2 ' ' 

(g,<, <) V¿ e u?=12
f ,Vxs6)a „ ae2+, 

(#,<,> or) VB,Ce 2, V ae2+,\/A e uf=12'' 

(iá,5,<-) VBe 2 | p ( B ) = V V i e uf=12'" 
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Tablel l - l : Transition function of the cellular automaton equivalent to a D I L system. 

11.3. Examples 

The algorithm must take into account other cases, besides those previously 
shown, as we can see in the following examples, where different rows in the transition 
table are used. 

Example 1 

The DIL system is defined as the following: 

S={2={A,B,}, 
» 

P={AAA::=AA,AAB::=BA,BAA::=BA,BAB::=AB,gAA::=B,gAB::=A,g::=B, 

BAg::=A, xBy::=>. Vx;y e £ } , JBBABB}. 

The cellular automaton equivalent'to the DEL system (S) is defined as follows 

Cs,n-(Gs,Ti,Gos,n,Vs,n, Qs,n> fs,n> Ts,n,) 

where 

• GS )„ 

is an infinite one-dimensional grid of automata 

• Qs,n = {(context, symbol, displacement) 

where 

contexte{g}u{ay|aeE*,ye{g}*A |ay.|<maxi6{o)...^}{|h1((u)|}}, 

displacemente {<,<-,<<_5<^A^'^<-'.}^{>ot|aeS*A|a|<maxA62{|p(A)|}x 

maxi6{0)...)n}{h1(©)|}} ' 
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symbols 2 u {<,>}} 

• Gos,n is the initial configuration, which is defined as follows: 

Gos,n[I]= 

•- VS)„=(3,(:1,0,1)). 

• The set of states is 

(g,>,>) 
(s, s, 0) 
(g><,<) 

if i<0 
Vie[l,|(D|]„s=co[i] 

otherwise 

2c= 

\g,>,>Ug,<,<)M,A,<>UB,B,<>)^A,n{B,B,n{Á,B,n 
(BBA^O'U^A^^B^UBB^A^aUB^^aUB^^UAA,^-), 
(BB^i-XBB^^UB^^UA^^XÍg^^MBBAM^^Ág^,^), 
(.B,B,<_),(A,A,<->),(.Bg,<,<J,(B,B,O^UBBA,A,Q'<.) 

• fs,n:Qs,nxQs,n1+R+1->Qs,ii is the transition function informally described in the 
previous section. 

The first derivation in this example is shown in figure 11-6. 

Example 2 

S={E={A,B,}, 

P={AAA::=AA,AAB::=BA,BAA::=BA,BAB::=AB,gAA::=B,gAB::=A, 

AAg::=B, BAg::=A, xBy::=X Vx,y e £ } , BBB} 

In this example we can see that, after, several steps, the first symbol B is deleted 
and its' right context information is accumulated. The deletion continues for all B's until 
finally the empty word is obtained. The cellular automaton equivalent to this DEL 
system (S) is shown in figurel 1-7. 
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Figure 11-6: Derivation of AB from BBABB in the cellular automaton described in example 1 
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Figure 11-7: Derivation of X from BBB in the cellular automaton described in example 2 
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Conclusions 

One of the main problems in modern Theoretical Computer Science, as 
explained in the introduction {Motivation and plan of the thesis), is the design and 
programming using new programming paradigms and complex systems, such as 
Lindenmayer Systems and Cellular Automata (CA). The use of genetic techniques is not 
a new approach to solve this task. Our research group is interested in developing tools 
which are independent of the domain considered, thus making easier the design of L-
systems and CA that exhibit a given behavior. 

Several previous works have applied Genetic Algorithms (GA) to the design of 
L-systems in particular domains. One of the objectives of this thesis is the 
generalization of these works. We show that i t is possible to consider the automatic 
design of L-systems by genetic techniques as a particular case of genetic programming,* 
and for the first time have applied to L-systems a general-purpose genetic programming 
tool (Grammatical Evolution, GE) that allows evolutionary automatic programming in 
an arbitrary language. 

As previously explained, GE adds, to standard GA, a grammar directed 
genotype-phenotype mapping. In this-way, the genotype representation and the search 
engine are independent components of the system. This thesis describes an application 
that could have been solved by means of standard GA; however, even in this simple 
case, the genotype-phenotype mapping of GE does not add a significant overhead to the 
performance of classic GA. 

Our group has highlighted the usefulness of inferring interesting properties of a 
real system from the study of the formal model that simulates it. In [AliOla][Alf00a] an 
algorithm was proposed to estimate the fractal dimension of a family of initiator-iterator 
fractals, from the study of the DOL-systems that represent them. Following this work, 
this thesis shows that it is possible to solve non-trivial tasks with both theoretical and 
practical interest (for example, the design of a curve with a given fractal dimension that 
could be used in the fractal antenna industry) by means of genetic programming 
techniques applied through the use of grammars. To achieve this objective, a 
modification of GE was needed, because the original description of GE uses Chomsky 
grammars instead of Lindenmayer grammars. The fitness of the population in evolution 
is measured by means of the algorithm mentioned above that estimates the fractal 
dimension of the curves without the need of drawing them. 

The use of GA on binary CA's has been described in detail. Most of these works 
are, in general, interested in solving a given particular problem (e.g. classification tasks, 
synchronization problems, e t c . ) . This thesis suggests that GA can be considered a 
general tool for programming and studying CA's. hi our case, Conway's game of life (a 
bi-dimensional computationally complete binary C A) has been obtained by means of 
standard GA. We are interested on further studying and analyzing the behavior of bi-
dimensional CA's, and this result is a first step. 
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Our group is also interested in the formal properties of Lindenmayer Systems 
and Cellular Automata. The directors of this thesis have previously proven that there are 
Lindenmayer Systems able to simulate any given CA. This thesis is a long step to prove 
the reverse result: that there are C A's able to .generate the s ame 1 anguage as any L-
System of the following families: 

• PDOL 

• DOL 

• D I L 

The length of the strings generated by a PDOL system increases with the number 
of derivations. They cannot become shorter, because PDOL systems do not allow X rules 
(erasing rules). Therefore, the number of symbols may grow exponentially. Jt is not 
trivial to decide i f it is possible to simulate this derivation process with a finite set of 
states, because the number of derived words is potentially infinite, all of which belong 
to the language generated by the PDOL system. Any CA that tries to simulate a PDOL 
system must provide a mechanism to displace symbols from left to right with a finite set 
of different states. Such CA's must have a number of different states (big enough, but 
finite) to represent all possible "displacing substrings". This thesis shows how the 
problem can be solved by defining, for all n, the "n-equivalence" relationship: a given 
cellular automaton is n-equivalent to a given PDOL system i f and only i f it is able to 
generate (in the same order) the first n words generated by the PDOL system. 

Once the equivalence between CA's and PDOL systems is proven, we 
considered allowing erasing rules (and so proved the equivalence b etween CA's and 
DOL systems), and finally took in consideration context-sensitive L-grammars (and so 
proved the equivalence between CA's and DIL systems). 
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Open lines of work 
Our first experiment with GE and L-systems could be useful in an industrial 

environment. There are several companies that currently manufacture so called "fractal 
antennas". They are really finite approximations to some well-known initiator-iterator 
fractals (e.g. von Koch snowflake, Sierpinski gasket or Peano's curve) which are only a 
few among many others automatically generated by our algorithm. Our fitness function 
is based on the fractal dimension, estimated from the DOL systems that represent the 
fractals. It seems possible to design a different fitness function based on the 
electromagnetic parameters of these curves when they are used as antennas. 

We hope that GE wi l l offer its real benefits with syntactically more complex L-
systems, because it reduces the possibility of generating wrong phenotypes, when there 
exists a context free grammar that describes them. This approach should also be applied 
to the design and programming of other formal c omputational models, such as DNA 
inspired computing devices, and other bio-inspired formal systems. 

Different authors have exhaustively studied the behavior of one-dimensional 
binary CA's. Sometimes it is possible to characterize and predict it by calculating a 
single numerical parameter (such as Langton's X parameter). Our group plans to use GA 
as a tool to study similar properties and parameters in more* complicated CA's (bi-
dimensional, for instance). It should be possible to design genetic searches to find CA's 
with complex behavior and simultaneously estimate several candidate parameters to 
check their validity for tasksunder study. 

Besides the families of L-systems considered in this thesis, whose equivalence 
to CA's has been proved, there are additional classical families (L systems with tables 
and extensions) for which those equivalences must still be proved. We plan to face, in 
the future the. design o f CA's that simulate L-systems wi th tables and extensions, as 
well as other non-classic families of L grammars. 
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