e

Ph.D. THESIS

Genetic Evolution and equivalence of some complex
systems: -

Fractals, Cellular Automata and Lindenmayer Systems

AUTHOR
Abdel latif Abu Dalhoum S
{iE
Supervisors D R I A
\ % BBLOTECA s
AN\
ANCALA
Dr. Manuel Alfonseca
Dr. Alfonso Ortega .
VA " Departamento de Ingénierz’a Informdtica
\ \>So Escuela Politécnica Superior
: /\ Universidad Auténoma de Madrid
o y o
N -
L. February 2004
Ng \‘

R.§612 o - | - S Tests

Dissertation .gubmittéd in partial fulfillment of the requirements for the degree of Ph.D. in
' " Computer Science

¢laalll

wlall aggen llell @alslly a95 @l
oy o T

Dedication

To the memory of my mother

-
.
. .
.
~
.
.
. .
.
.
s
. %
»
"
.
.

Acknowledgments

First of all, I would like to thank my two supervisors Dr. Alfonso Ortega and Dr.Manuel
Alfonseca, without whom I would have never obtained this dissertation; I am really
wordless to thank them. . -

Also I would also like to thank the AECI (Agencia Espafiola de Cooperacién
Intemacmnal) for their scholarship for my first four years, and to thank the GHIA group
in our department for their scholarship for the last two years.

Alsol would like to thank all my friends Pablo, Leila, Pedro, German, Abraham, Manuel,
Jose, Fran, Diana, Alejandro, Pablo, Miguel, Rosa, Alvaro, Ruth, Maria, Estrella,
Boumedian, Ibrahiem, Hussien, Basher...etc, and specially Enrique how helped me while

writing the thesis correcting my grammatical errors, for the fantastic years I spent with
them thank you all.

Finally, ‘and not less importantly, I would like thank all the members of my family: -
Farida, Lotfy, J amal, Mohammad, A li, Raed, Iman, Rashed and Mohammad for their
engorgements.

And I am especially grateful to my wife Hiba and to my daughter Shafieka, the light of
my life, for whom I live, and without them there is no meaning for my life.

€

Table of confents:

Acknowledgments........... Ltereererseeieee et et e e e e e s e e s e e st e sa et eate e e R e eRe s besaeese e e asenertasesesateren i
List 0f tables....cccereiseerrecreenenssesseserseresreessneseossessesses teastereeseeseesresnaeassssesstasaeeneenesssesnans - vii
List of figures............... eeseeeseesensesteet e tee st e ettt toreetesreesansesRaestsseeresnesrsssasssseinnsunsresessanas ix
Introduction 1
Motivation and plan of the thesis : 3
Motivation......cevueueceurerucncnenes e e sr s bbb s 3
Objectives of this thesis......c.ccccorvereennen OO 7
Plan of the thesis.......cccccvrecereverscenseccsnnneceans erereireaesesie it aese s s nesesatens e besesaesaseatans 8
Basic Concepts... ‘ ; 11
Chapter 1 Evolutionary AIGOTIthIms........ccccveererneinenicsifnniisenecseecsressisserssessesessessens 13
1.1. OVEIVIEW.....ccummeceencennee esenssesrasestapuseRasseRaaes R RO R RS em R R Rsas RS st cnee s e resenih 13
1.2. Genetic AIGOTItNINS.......ovveiruicrurecsriniiiniirieceeresenenninennes reeeneenenas eerenene 13
1.2.1. Individuals and Initial POPUIAtiOn.......cceuereeemsesorsenersessesesnsersssessesnaens 14
1.2.2. Fitness Function (Evaluation).............. eeeeteteeeneesas st e seatenrassesaasanste 14
1.2.3. Generating a New population: genetic Operators..........c..oeevververeeneee 14
1.3. Genetic programming (GP)........ rerestestestetestestassestesassessnnseionereestestestesnrsnsstens 16
1.4. Evolutionary Strategies (ES) and Evolutionary Programmmg (EP)...cccvee. 16
1.5. Variants of the classical GA/GP scheme..........cccceivevrereevensscrcerervensvnsnsonens 10
1.6. Grammatical evolution (GE)..........cccoeeureennncee. eeeetrte et te s antetrnnans N
1.6.1. Genotype-Phenotype Mapping......c.c.ovreersseceesesessrssnseesesssesesonsd L. 17
Chapter 2 Fractals.t....ccccccvvcrrineninnccrcrniieneiieiensiesnissesstesssessessessssssessseesees eeeceas 25
2.1, OVEIVIEW...eeeueeecerrerrennersseesescassasensissassassasssseseensassesssessssstasseessasssssasessosasssnsns 25
2.2. Categorizing Fractals........cueveevivrrieinenrsiiniisnineenncsnnnennnes reeessbeneaneberees 26
- 2.2.1. Initiator-Iterator Fractals.........c.ccveererereruseereminniissssisescannnsesesssacsens .26
~ 2.2.2. Random Fractals........cccoeueerercuenrucnns irevereesereseseeteaareatesenstesestsnananraranest 28
2.2 3. Other ways of defining fractals: affine transforma’aon fractals and
iterated fUNCLiON SYStEMIS.....ccccerirertireecrecemsmresesticnnessesessessnseracensd 29
2.2.4. Tterative Dynamical System Fractals..........ceceerriverrenrereresereeeseesensens 30
2.3. How can we estimate the dimension of fractals.........cccoceceervunnnes crereeeenriesaenns 30
2.3.1. Hausdorff dimension...........eveesressermsnereesessssssseesseseseons rerseesesessaaens 31
2.3.2. Richardson-Mandelbrot d1mens1on EStMALION. c.eeveveverenenenrrnensuenennes 31
2.3.3. Box Counting.......cevevurnnerisnsirsesnssnsenenns eemrereste st saesresa st tessen e nesanaes 32
2.4, MUlti-fractalS.......ccccevrrerreerenrensieneniorisiennerssesscssisseesessnssessestessessessessessessosses © 33
2.5. Application Of Fractals.....cccceeveerierrerseeeersensseessesessnesasionssesesssasseasansaessosees . 33
Chapter 3 Lindenmayer Systems (L—Systems) reereresreeaetsaetssasnn s beasiesaenesresasatsens 35

3 . OVBIVIEW .. ieiireeeieiteeeieesseeeesesaesesiossesssssssesasssssesesssessassssssessssssssssssassessessssens 35

3.2.1. OL SYSEIMS....urrurruirresessucsserunsensecniesssssessessessesessessessesssssesassasssasanssssssns
3.2.2. <K,J> I SYSLEMS..ccvereecrererreeriencrssninensessestosansascessensssesnssessessesneseenes

3.2.3. Systems with tables.........

...

3.2.4. Systems With €X{ENSI0NS.......cveererererrerrerensensesrernessessesserersssssersesasseeses

3.2.5. Other combinations.........

e a0sriersreeteeesstssresssreeserccsctttarsessntecsccassoesssecsas

3.2.6. Other L-System eXtensions........cccerverrerreesersresseeseessessersnsssessessseessassess
3.3, L-SyStem DESIZh.vecrceurrerenerrecreressesessessssessesessoserssesessessessssessesessessssenseseanes

3.3.1. Ad-hoc solution............

TP

3.3.2. Genetic L-System programming..........cceceeeeereeeesscesarscssesssesscsssessosses

Chapter 4 Fractals and L-Systems....
4.1. OVeIVIEW....ucevureerrncnrisrenneennns
4.2. Turtle Graphics Method.........
4.3. Vector Graphics Method........

...

D T T Y Ty Oy P P X T YT

...

..

4.4. Equivalence between the Turtle and Vector graphical representations of

L -SYSLEIMS. c.cviirereiriieiiecesienttineeesietiasssssstssasenssessssssesssssseessessesssesssesssasennes

4.5. Computing the dimension of initial-iterated fractals.........c.cccocesurrrevensunnensn
Chapter 5 Cellular automata.........cccveviviererrecrcninnnneccnstinsnientsetnsesseeesssssseessssssessossens

5.1. OVEIVIEW....uuvvverrereirirneeresnans

...

5.2. Description and types of Cellular automata...........couervreerercsiserienseesracaenene
5.2.1. LatICe. . ueiirrireeiee T cteeirercieeeatesseesseesssessnessnessaessaessenessssssssosaesssasssasse
5.2.2. Neighborhood......cccvverirreiieiicrinennersennneneeessansessseesssessessssessesnsassssssses
5.2.3. Local Transition FUnCtiON........cceeverreereeecvireesneesessenssesseessessenssessesses
5.2.4. Classic Cellular AUtOmata........eceereerrerrecrenreesesssersesssereesarsesssassacseees

5.2.5. Cellular automata variant

5.3. Cellular automata and the edge of Chaos........ccccererreerrenreerercrercensneniensenseenns

5.4. Cellular Automata Programiming..........ccereerereeersaesesessessesesseessenessessesaseoscases ‘

5.4.1. Task classification ProblemM........cceueeeevirrerireerccsesseensesscrsecsnenns yoresanenn
5.4.2. GAs: How they Work With CA.....ccciivveervciiniiincciesnnrrsneerecsseesseenensens

5.4.3. Signals....cccccoveeereeecrnecrenee

8000 e 000 0t0e0000000000000c iesrrVPreEtiicetrerrtetttssecetenisits

Chapter 6 L-Systems and Cellular AUtOMALa.ocereurerusriserserstasissesesinsisnssensescessuanes

6.1. OVEIVIEW...ooieeeeeerneneeeeerenesane

..

6.2. L-Systems and Cellular automata........c.ccceerersierreerensnsensencnesessensanecnsssens

6.3. One-dimensional binary cellular automaton with three inputs that generates

the Sierpinski Gasketl......ouecvererureeeeentnecsnrecerstnennnensesesussecnssens

6.4. IL-System equivalent to bi-dimensional CA that simulate ecosystem

6.5. IL-System equivalent to three- d1mens1onal CA that generates and

PIOPAGALES PUISES....cevrrreiierirerinienintsensihrssasestsesseseseaesnsssssssesssnesisesessssessans

Chapter 7 Grammatical Evolution to Design Fractal Curves with a Given

Dimension......ccoveeeveeernnnns

6.6. Equivalence between L-Systems and Cellular automata........coerveresernererenne

Genetic Evolution & Equivalence between some Complex Systems

..

T 0. OVEIVIEW.cocevereiiiiiieereieireseseessesessosssssssssssssssssssssssssssssessssssssssssssssssessossessssssns

7.2. The design of L-Systems that represent curves’ with a given fractal

dIMENSION. .ccceerrveeereerersrnenvenes

..

...

iv

37
39
40
40
40
41
41
42
42
45
45
45
46

47
48
51
51
51
52
52
54
55
58
58
59
59
60
61
63
63
63

64
65
67
68
7

73
73

74
75

7.4. The genetic algorithm.......cccceveireercrnreerenrueirtnicinnerernneesseeseeeetesseesseesaens
7.5. Parallels to biological evolution.
7.6. Evolving the turtle angle
TT. RESUIS. .. eevieiiirintrreeeseesieinneneessessesseseessessesnesesssessessessesesssesessesssiaesassesnes
7.8, BRAMPIES..cvieuieeerireeerrenieecsnetisteorestesreseeesesstestenesapesesseessssssessaniossessassesees
Chapter 8 Evolving the game of life with a genetic algonthm
B.1. OVEIVIEW ... coveuirrirereenerensissistsscssssesneeasessssssssstsssnsanensasesessessessssosessessasssssssans
8.2. Concise representation of life-related cellular automata
8.3. A genetic algorithm that evolves into the game of Life
8.4. Experiments and reSUMS........cevcvirevevrerncrinninisineneeneessenssestsnsscsnssesessencases
- Chapter 9 Cellular automata equlvalent to PDOL systems
0. 1. OVEIVIEW .evvrrererrereererivreeessssneessssasessssssenssssssssersaresssssnsoinsssasssssssnsessssansosersasase
9.2. One-dimensional cellular automata
9.2.1. Informal AeSCIIPHON.ceueecerrueerreusserereraereseresassesancscsscsesessssesasaseesss
9.2.2. Formal definitions......ccouivreirisenvennisstininesinensesnessssssesssesessnssnesssenns .
9.3. One-dimensional cellular automata n-equivalent to PDOL systems
9.3.1. Informal description :
9.3.2. Formal deSCIiption.......cocecereererierennenisnirnssisuesisncncrnssessesussesuossssenssssens
9.3.2.a, THEOTEM....ucumrimrrrirerrriniriririitsrenesereseiananes e
9.3.2.0. PIOOL.....ouieecereeeceeeneneceenesansteesacnnsneneessssesenesssnenesssssensasens
9.3.2.C. EXAMPIE......cverrirniiirrrcieennnceniesstiiesernessessasseseionsecesessnssnasans
Chapter 10 Cellular Automata eqmvalent to DOL Systems
10,1, OVEIVIEW..cuverirenreernseessressensinesneseseesessesssnesssnssssanenssssessosessonnssasinssssssosesss
10.2. One dimensional Cellular automata equlvalent to DOL Systems
10.2.1. Informal deSCIiption.coceveererereerrermsrcsiserussennsscssesnisessiessessessssssesne
10.2.2. Formal deSCIiption.....cocereecrrrerssesnsresensuernsscsssosuesssesesessesesessesssssenens
10.2.2.1. THEOIEM...cuveruerrireerieierennennneresseionenssesseseenseseesessesssssesssssnenees
10.2.2.2. Proof......cccoevevvevureunne Lereedesnesaeniterseastssnesnsasens eraeseeseessesenans
10.3. BXAIIPIES...cucvvereeeerererenerssnsseserssesesssesssesessasesisnsassessssssasssssssasssnsasserssssses
Chapter 11 Cellular automata equlvalent to DIL systems
11,1, OVEIVIEW..cuuiieeeirreerieccnesssssresssecssusnsnrsesrsesssassessessssansssasesssessssassossassssssasssd
11.2. One dimensional Cellular Automata equivalent to DIL Systems
11.2.1. Informal description
11.2.2. Formal description
11.2.2.1. TREOTEIM......eeeeereerreereeeseesnrecreeessisssaessensnessesssssssaessassssanananne
11.2.2.2. Proof......ccpoeucvueenes Viessesersrserasbesetususeessstesssressssessatcnasesasssssssses
11.3. Examples.......ccceuerreererecenenee dereeesseresstete e et atesaesseststeassneresaassasaesesantes
Conclusions and Future Work \
CONCIUSIONS.....crverirriesrinennerenmssisuesessesisresssessesesstsssssstencsnsasssessssesserissessssossessosasnsnssns
Open INES OF WOTK....covruerrirrrrirenircernccensensesnesssnnnssesesneseessesessesessessssessosssssnsssossssseses

...

..

.................................

.............................

“eecssestvesssrssassccctsesess

..

..

seesssssccss

T T P S P PR

.......................................

...............

...

..............
Ty L T T P TP PR T Y

90 006000000000000000s00000000000000000000srnrPsscsestscsssrsessssssecesrassoe

References and Bibliography

78

79
81
82
&7

99

99

99

100
101
105
105
105

106 -

106
107
107
111
111
112
115
117~
117-
117
117 .
122
122
122
126
131
131
131
131
135
135
136
141

149

151
153
155

1 Table list

S 2-1
3-1
5-1
6-1
7-1
7-2

7-3
7-4
7-5
7-6
7-7
8-1

8-2
10-1
11-1

The length 0f VOn-KOCH CUIVE. .v...vvvvveeeeeeeeerreeeeaieiieeeeeeeeessesseesenneens 27

Derivation steps that generate the Fibonacci sequenceoeevvieennnes 39
Wolfram representation of elementary CA’Socveveviviiiiinininenniniiiinn 55
Cellular automata transition function 90coceiiiiiiiiiiiiiiiiinnininininn 64
Results of experiments to get optimal values of genetlc operatlon rates 79
Number of generations to reach the target in a set of tests of our

Grammatical Evolution approach.ccecevviiiiiiiiiiiinirneerennneenerrnennn 82
Different fractal curves sharing the same dimension, evolved by our method. 83
A few fractal curves evolved by our methodc.cevvveneenennnn. e 84
A ser of tests where the turtle angle was evolved too e 87
Genetic algoritm execution for fractal dimension 1.58 with angle 60 87
Genetic algoritm execution for fractal dimension 1.58.........cccovvvviiinnnnnn. 92

Number of generations to-reach the goal, fro different settings in the 102
mutation rates and the initial conditions

P R R LR R TR R T TY

Convergence speed as a function of grid 8126ccccvvevriviiiiiieiininneinennn
Transition function of the cellular automaton equivalent to aDOL system 124 .
Transition function of the cellular automaton equivalent to a DIL system 138

Vil

P A,

viii

List of Figures : : f
1-1 Pseudo-code of a standard genetic algorithm ereerrrerareaereeanee 14
2-1 - . The first five steps of Cantor set constructionc.ceveviviieniininininn 26
2-2 VON KOCK’S CUIVE .. eeeeeeie e eeteeee e e e e e e e e e e e eeeseeneateeeee 27
2-3 The iterator 0f PEano CUIVEc.eieieiaiiniiieereiiiiesinnereeaennennaenanens . 287
2-4 Example of Brownian-motion fractal, from [Int].oeevvnienivunrinnennnnn 29
2-5 Tllustrates an example of a bacteria aggregation fractal [Int].ccouennn 29
3-1. Development process of an artificial tree using a spec1al type of L-systems
called stochiastic L-systems (from [Pru94])cc.ccoocieiiiis 35
3-2 A model of a date palm tree s1mulated by an L—system variant (from
[PIUOST). ettt et r e e e e e e 36
3-3 - Found in [Pru95], illustrates the development of a plant 36
3-4 Plant growth simulation using Genetic Programmmg and L-systems, from
TS PP PP PR PP PPNt . 43
5-1 Von Neumann neighborhood in a bi-dimensional grid with a central)
POSIEIONL «ettiniininin et tteie et ittt eteeieareeaaraenenserenensnnnrnnensncnens 53
5-2 Von Neumann’s nelghborhood m a tn-dlmensmnal grid with a central
POSIEION. «eueinerenentinereeeitennrnnearanssasenseneronssssonsonsonsonaonnsessonrsns 53
5-3 ¢ Moore’ snelghborhood......................' reenernernennsd eeeneens 54
5-4 De Bruijn representation of rule 54 (from [Del98]).oovveiiiiiiiinns 55
5-5 a) One initial configuration for Conway’s Life. b) The second generatlon 57
6-1 The first 24 generations of the CA90 from 0...010...0 «.......ovvieneiinniiiin. 65
6-2 Three dimensional cellular automaton gridccevveueurevneeneeeneenenn 67
7-1 Parallels between our Grammatical Evolution approach and biological
EVOIULION. +.vuvniniiriniiieen i ettt e iereerenetetsaeenenenaasaannees 81
7-2 Four different fractal curves evolved for a target dimension of 1.255 83
7-3 A fractal curve with the same dimension as von Koch’s snowflake 84 .
7-4 A fractal curve with approximate dimension 1.5 eeeeeeeseearnans 85
7-5 Afractal curve with approximate dimension 1.9l PORUR
7-6 A fractal curve with approximate dimension 1.7cccccvuvvneen.n.. eenees 83
7-7 A fractal curve with approximate dimension 1.8c.ccoveviiiiiieninann 86
7-8 A fractal curve with approximate dimension 1.7c.ccoeviiniiiinnn.. 86
7-9 A fractal curve with approximate dimension 1.6 eevennrenrnanaas ... 86
7-10 The Initiator ODJECE - i.cnenerneiniiieiiiiiiii et ire e eseen e 88
7-11 The iterator of Sierpinski R SRTPPerRee 38
7-12 Sierpinski fractal after 9 iterationscceevevuiiiriiiiioniiiniinrisee e 88
7-13 © The iterator objectcoerineeinnnnnnnn. Veresasnrens eetrirararerasaeeanes 89
7-14 'The fractal after 6 {terationsceuvevieieeeeereeeeerieienennnnn viveeerenne 89
7-15 The Herator objectvvuvvvininieiiniiiiiiieiiecicinreeaenn, PR 89
ix

7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27

7-28,

7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40

9-1
9-2
9-3

10-1
10-2
10-3
10-4
10-5
11-1
11-2
11-3

11-4

11-5

The fractal after 6 ITETAtIONS +ouuuenneeisrene i ieeneeaeeeeneeeneennseanesannesnes 90

The Herator OBJECTL .. ouvueiueeiniiinititiieiiereeaereieaeataeanenenseeenananenans 90

The fractal after 4 Herationsvveveiiiiiiriiiieeeeiiieeirienreenrrenneennees 90

The Herator ODJECLveeieiriieirirtiiiiireeie e eiereeeerenenenencensnenans 91

The fractal after 5 iterations f e teeeeraneteeieneraraieseaaarnnarenas 91

The Ierator ODJECL ...uiuiiuiiiniiiriiieiiiiiiiireeii e eecneeeneeenenanans 91

The fractal after 9 iterations e etteeeeerteatetetetenetaeaneenaeneenaeaarans 92

The Iterator ObJECEvuiuiiiiiiiiiiiiiiiiiir e e eaneneans 92

The fractal after 5 terations ...c.oeveveiiiiiiiirieiirierreeieiieeiseeeneeenns 93

The fractal IEETatOr . vuveerrierereiieiitiireieeirereertereeieeinserernresensensennens 93

The fractal after 6 iterationscocevvieeviiiieinennnnnnnns ererrerereereranenes 93

The fractal ITerator ..ovvetiiiie it i i i eren it eieeerseaeesenaennens 94

The fractal after 6 IHErationSc.vveveniiiiiieriiieriieiereeireieensennens 94

The fractal I1Eral0T vvvvnrieeeiiieiiieiiiiiririieteeeeareeneenenneneaseneanens 94

The fractal after 6 HLEratioNSv.vieiiiriiiiiieieireiiieieiierrenneerennenneans 95

The fractal IEeIatOr o uvvueiiiieiei it i eitetireneeaneenrrenneeersenensnnees 95

The fractal after 4 Iterationscvuvvriivriiriiiieeereeeneeeaneernrenseeensons 95

TSR v 001 21 B 1S 1 1 2 N 96

The fractal after 3 Iferations «....vieueiiieiieiiieiieereeenerereeenaenneaansennens 96

PN TR elor] B1ES 1o SN 96

The fractal after 4 HErationsc.ceevvriiiiiriiieiieirerereeiieieireenennenns 97

The fractal IteIat0r «ouvvieeeeeiiitiie it iiiiiiiererreteneesentenersenreneseenseanns 97

The fractal after 3 Iterationsoeveiieiiiriiiieiiiiiiirieieeaens e 97

The fractal Iterator ...uvieeeeiieiviiieiiiirieer e eeirereteereeetenenerensasenns - 98

The fractal after 4 Herations ..ocvviviviiiiiiiiiiieiiiiciir e e r e erenaes 98

Number of differences of best evolved automaton and Conways game o

11 £ PPN 102
Definition of Cellular automata eqmvalent to PDOL systemscc...eu.... 108
Initial generation of the cellular automatoncceceeveveniiinininenenennn.. 109

Cellular Automaton — DOL system comparison: the first 12 generations of
the automaton simulate the first two derivations ofthe L system. T he

automaton subsequent states are shown in the left side.cccc.ee. 110
Initial generation of the cellular automaton.occevvviiiiiiiiiienninnnne. 118 :
Cellular Automaton — DOL system compariSOn :......oeeeererreenenesneananenn 119
; 129
130
130
The initial configuration of the cellular automatoncocveveneinennnn. 131
At the first step in the derivation, signal < is transmitted to the left 132
Ending the first derivation in the cellular automaton equivalent to the DIL
) 152 5 R 133
The cellular automaton mechanisms to generate the second word derived
DY the DIL-SYSIeIM «.uuuiiiiiiiiiiirieriiiiieeteaetenenentneaeenenansosaeensans 134

The cellular automaton joins the contextdof the deleted cells and keeps it
unchanged until the end of the derivation, when a espe01a1 signal (¢’«) is
sent to the left, putting the correct context in its place, identical to the new 135

11-6

11-7

ETIVEA WOTA. ..o ettt ettt et eee e eaeeaeanensarasancnrneasanrnsaseenns

Derivation of AB from BBABB in the cellular automaton described in
example | DOt Nttt e tereen et tttraeenenaeaeaaenraennas

Derivation of A from BBB in the cellular automaton described in example

X

143

Motivation and plan of the thesis

Motivation

Theoretical Computer Science is a basic discipline of Computer Science,
because most of the advances in this field are supported on solid results from that
discipline. It started with concurrent developments in formal logics, digital electronics
and linguistics, which gave rise to the Theory of Formal Languages and Automata a
main subject of study for. every computer scientist.

In the last years, perhaps due both to the rise in the computing power of
computers and to the nearness of the physical limits in the miniaturization of electronic
components, there has been a resurgence of interest about formal computational models,
which could be an alternative to the classic archltecture proposed by John von
Neumann.

Many of these models are inspired by the way in which nature solves efficiently
very complex problems. Natural systems are thus formalized and their properties
studied. Most of them are computationally complete, therefore they are considered new
programming paradlgms We can mention, for example, cellular automata, and the use
of parallel-derivation grammars, which were designed during the sixties, respectively by
John von Neumann and Aristid Lindenmayer, as a discrete altemative to traditional
simulation techniques, based on continuous functions and differential equations. Other
examples are quantum programiming, or computations inspired by DNA cellules, and
their membranes and different constitutive parts.

This situation shows, therefore, a wide range of abstract architectures, which are
as powerful as conventional computers and, sometimes, even more efficient. Most of
them improve the execution time (performance) needed to solve NP-complete problems,
providing non-exponential ‘solutions. In this thes1s we shall use cellular automata and
Lindenmayer systems.

With all these new tools, a new basic problem appears: how to program these
architectures, or, in -other words, how to design particular instances of these
architectures that. can solve some specific problem. To imagine the difficulty of the
answer, it is enough to remember that this question, focusing on traditional computers,
has required the development of its own branch of engineering: Software Engineering.

The hardest difficulty to program these architectures is the fact that they are, in
~general, specialized to solve some very particular types of problems or, at least,

problems that are encoded in a specific way. For instance, in the case of DNA-

computing, it is possible to find a string of symbols complementary to a given input
string, with a performance independent of the length of the input string. .Cellular
automata have been applied to simulate several physical processes, which have in

3

-~

common the possibility of dividing the space in a regular way. Finally, Lindenmayer
systems (or p arallel-derivation grammars) ¢ an simulate processes that s imultaneously
change in a different way at different locations.

Nevertheless, in most of the cases, there are no tools -to program ‘these
architectures, as there are with general-purpose computers. We might say that we are as
far from our goal as the programmers of the ENIAC computers were from CASE tools.
We do not have compilers, not even assemblers, and sometimes it is hard to imagine

which is equivalent to machine code.

On the other hand, genetic algorithms are inspired by the mechanism of
reproduction and natural selection (reproduction of the fittest individual of the
population), with differentiation (recombination of the parents’ genetic information and
the possibility of mutations). It has been proven that these algorithms provide an

- efficient way for stochastic search of near-optimal (good enough) solutions for many

kinds of problems. The only condition to use genetic algorithms is to represent the
possible solutions in a proper way. This requisite is not really a restriction, because any
computer-based solution of a problem requires the problem to be codified.

Automatic p rogramming (writing p rograms that write programs) is one of the
objectives of Computer Science, of special interest for this thesis. Automatic
programming can be considered as the search for a program that performs the required
task, among the set of all the possible programs. Therefore, it is possible to use genetic
algorithms to solve this problem. This approach is called genetic programming.
Candidate programs are individuals which have to compete for reproduction and to
remain in the next.generation of candidate- solutions. Genetic programming can
sometimes produce automatically programs w1th better performance than hand-made
programs.

~ Grammatical evolution is one of the most recent variations of genetic
programming, that generalizes this process in a way independent of the programming
langnage. Throughout this’ thesis, we shall use both classical genetic algorithms and
grammatical evolutlon

Let us take a superficial look at the main concepts that will be considered during
the development of this thesis. In the next part, the state of the art about all those
concepts will be described in depth, as needed by the remainder of the thesis.

Fractals

N \

‘ There is not a general agreement in the definition of fractal. This term is used to .
refer to phenomena that share some mathematical characteristics:

ps

e They behave as objects with a different dimension as the one that would
apparently correspond to them. For instance, Peano defined a curve able to cover
completely a surface; so, this curve (one-dlmensmnal) behaves as a plane (two-
dimensional). ‘Classic definition of dimension is related to the degrees of

4

freedom of the studied object. Dots, curves, surfaces and volumes have,
respectively, dimensions 0, 1, 2 and 3. This anomaly motivates the definition of
fractal dimension, which allows assigning a fractional number to the dimension
of an object. Consequently, a curve that behaves as a surface has a dimension
close to 2; an object defined as a surface, but with a dimension of 2.8, will
behave and share more properties with volumes than with surfaces. Several
algorithms to calculate the fractal dimension have been proposed (e.g.
Hausdorff-Besicovitch), though all of them provide the same value except for
slight differences.

e In a fractal object, it is usually possible to find copies of itself, regardless of the
scale used.

Formally, there are three main ways to represent fractal sets or phenomena:

e The limit between the convergence and divergence domains for some recursive
complex-variable functions (as in Julia and Mandelbrot sets).

o The figure obtained as the limit (after an infinite number of iterations) of a base
graphic (the initiator) using always the same transformation (the iterator).

¢ Random or Brownian movements. -
Fractal geometry, therefore, completes some deficiencies of classic geometry.
But its interest is not only theoretical; -fractals have shown their expressive power for

modelmg many complex phenomena in the real world: meteorology, c ardiac rhythm,
economic fluctuations, etc. .

Cellular Automata

Some biological systems create new individuals as copies of themselves (this

property is called self-reproduction). Cellular automata, which try to model this’

characteristic, are mathematical abstractions of physical systems in which time, space
and the variables that describe the states of the system are discrete. A cellular automaton
has three main components: a finite automaton, a regular and not necessarily finite grid
(which can be considered as a generalization of a matrix), and a rule for determining the
neighborhood (the set of cells considered neighbors of a given cell in the grid). Each
-cell in the grid contains a copy of the finite automaton.

The global behavior of a cellular automaton can be described locally, because
each finite automaton in the grid has as inputs the states of its neighbors. Even though
finite automata are very simple devices, they can behave globally as very complex
dynamic systems. Therefore, cellular automata have theoretical and practical interest:
they have been used in simulation (traffic, geographic growth of cities, etc.), and some
of them have the same theoretical computational capacity as universal computers, to the
point that they have been considered apt for designing parallel computers.

Lindenmayer systems

Lindenmayer systems (or L-systems in brief) were defined to describe multi- -
-cellular orgamsms whose shape and size changes with time, and whose different parts
change in a different way. These systems are known as developmental systems. L-
systems are: parallel-derivation grammars,.i.e. their production rules are applied
simultaneously. They have been used successfully to simulate various biological
processes, such as plant growth, leaf development, seashell pigmentation, etc. They are
also useful to represent other phenomena with complex behavior, such as some fractal
objects, especially those of the initiator-iterator type, although an extension called
parametric L-systems has been defined that is capable of representing the families of
Mandelbrot and Julia fractals, and the like.

Genetic algorithms

, Genetlc algorithms perform stochastic searches inspired by the mechanisms of
natural selection, identified by Charles Darwin, which, basically, are the survival of the
fittest, the introduction of changes in the individuals by means of mutations, and sexual
reproduction of the best adapted, to transmit part of their genetic legacy to their
progeny. A genetic algorithm uses the following components:

e A representation of the possible solutions to the problem to be optimized by
means o f genetic algorithms. E ach c andidate s olution i s usually encoded as a
string of symbols called chromosome or genotype. So the search space is a set of
chromosomes or genotypes.

e A method for generating an initial population.

e A function that evaluates the nearness of a candidate solution to the target of the
search. This function is usually called the fitness function.

e A set of genetic operators that combine the chromosomes of a generation to
produce the next one. The two basic operators are recombination and mutation.
The first one combines two'chromosomes, splitting each one at one or several
random positions, and mixing the parts together, producing two new
chromosomes. Mutation, on the other hand, changes randomly the value of some

- positions in the chromosome.

At each generation, the fittest chromosomes are chosen. Genetic operators are
applied to them to produce a new generation. This process is iterated until the fitness
converges to a certain value. Some parameters of the algorithms are the size of the
initial population, the way in which the random selections are made, the mutation rate
(number of the individuals that mutate), the number of mutations, the size of the.
reproducing population, the total number of generations, etc.

]

Grammatical evolution

Grammatical evolution is a technique based on genetic algorithms, originally
applied to automatic programming, that uses the grammar of the programming language
to propose a new general m echanism to translate from genotypes to phenotypesina
deterministic way that minimizes syntactic mistakes. If the grammar of a different
programming language is used, no further changes are necessary to automatically
generate programs in the new language.

Grammatical evolution has shown to be as adequate as traditional genetlc
programming techniques and, for some benchmarks, even to 1mprove the performance.

Objectives of this thesis

The objective of this thesis 1s double:

e To study the design of Lindenmayer systems and cellular automata to solve a

given problem. We shall consider the application of genetic algorithms and
grammatical evolution to handle this question.

e To complete the study of the equivalences between L-systems and cellular
automata that the tutors of this thesis have previously worked on.

Application_ of genetic algorlthms to des1gn cellular automata
that solve complete problems . :

£

The history of the evolution of cellular automata using génetic algorithms begins
with Nermal Packard and his team. They.wanted to obtain binary one-dimensional
cellular automata, to solve a classic classification problem, where the automaton should
. converge to a word w1th only ones if the initial Word has more ones than zeros, and vice
versa.

In this thesis, we use a genétic algorithm (among other techniqués) to solve the
problem of designing a cellular automata that solves a particular problem: Conway s
game of life. . .

Application of grammatical evolution to design Lindenmayer

systems that solve concrete problems.

As previously mentioned, -grammatical evolution proposes a variant to genetic
programming, which can be used when we have a grammar that the candidate solutions
must conform to. It seems natural to use grammatical evolution, rather than classical
genetic techniques, when the candidate solutions are Lmdenmayer systems (a kind of -
grammars).

-

-

The supervisors of this thesis have previously developed an algorithm to
compute the fractal dimension of some initiator-iterator fractals, represented by means
of Lindenmayer systems. The algorithm obtains the dimension d1rectly from the
grammar.

4
In this thesis, the indicated algorithm will be used in the fitness function, to find,
by means of grammatical evolution, L-systems that represent initiafor-iterator fractals
with a certain dimension. This problem can have practical interest, given that some
industries are using elements with fractal geometry, because they improve the results
obtained with traditional approaches We can mention, in particular, the development of
fractal antennas. .

Study of the equivalences between L-systenis and cellular
automata *

Apart from the differences between these two models, which will be shown in
the first part of the thesis, L-systems and cellular automata share many properties, and it
seems interesting to compare them. Their structural ‘similarities have been underscored
by applying both models to genetic programming in different works. The supervisors of
this thesis have tackled previously the design of L-systems equivalent to given cellular
automata. One of the objectives of the thesis is to finish this study in the reverse
direction, by designing cellular automata equivalent to given L-systems.

In this thesis, c ellular automata are c onsidered equivalent to L-system ifthey
generate the same language. The study begins with the simplest L-systems, PDOL. As
explained in further chapters, PDOL stands for propagative (i.e. the symbols cannot be
eliminated in the process of derivation), deterministic (i.e. each symbol can only be
transformed in one way), and context-free (i.e., the transformation process is
independent of the context) L-Systems. Next, rules that make it possible to delete
symbols are added to build cellular automata equivalent to DOL systems (which are not
necessarily propagative). Finally, context-dependent production rules are, introduced, so
as to design CA’s equivalent to DIL systems (determmlstw Lindenmayer systems with
mteractlons)

Plan of the thesis

This thesis consists of five parts.

The first part (the one you are readmg) describes the motivation and shows the
plan of the thesis.

The second part introduces the basic concepts used in the thesis, and is divided
into six chapters .(“Evolutionary Algorithms”, “Fractals”, “Lindenmayer Systems”,
“Fractals and L indenmayer Systems”, “ Cellular 4 utomata g and “Cellular Automata
and Lindenmayer Systems”). - o

The third part describes the original results of the thesis, and divides into five
chapters (“Design of Fractal Curves with a given dimension by means of Grammatical
Evolution”, “Evolving the Game of Life”, “Cellular Automata Equivalent to PDOL

Systems”, “Cellular Automata Equivalent to DOL Systems” and “Cellular Automata
Equivalent to DIL Systems”).

The fourth part explains the conclusions and open lines of work.

The last part contains references. .

10 -

‘Basic Concepts

Chapter 1

Evolutionary Algorifhms
1.1. Overview

Evolutionary Algorithms (EA) are stochastic searching algorithms whose search
methods are based on natural evolution, Darwinian theories of fighting for survival,
genetic inheritance, natural selection and reproduction of best individuals [Gol89]. They
provide robust search in complex space, and are computationally simple but powerful
for finding optimal solutions in general search spaces. EA consider simultaneously
several potential solutions that are treated as individuals to form a population. The
individuals interact w1th each other and create new individuals to form a new
generation.

The history of EA goes back to the mlddle of the 1960’s, when three main

branches o f E A were d efined: G enetic A Igorithms (GA) by Holland [Hol67][Hol74],

Evolutionary Programming (EP) by Fogel [Fog66], and Evolutionary Strategies (ES),
by Beine, Rechenberg and Schwefel [Rec65][Rec7 3].

GA'’s have been applied successfully to solve a large number of problems in
" diverse disciplines.- Several examples in optimization, automatic programming,
~ economy, biology and ecology are described in [Mit96].

The following paragraphs briefly mtroduce GP, ES and EP. The reader can find
a more detailed description in the rgferences chapter. ~

GA and a recent variant of GP named Grammatical Evolution (GE) are used in
depth in this thesis. .

1.2. Genetic Algoriihms \

Figure 1-1 shows a possible scheme of a GA with the following main three
steps: :

e Generating an initial population.
¢ - Re-ordering the population according to a fitness function.

- o Generating a new population, by replacing the offspnng of the better individuals for
the worse.

Each step will be described in subsequent sections.

13-

1. - Generate an initial population
12. Compute the fitness of every individual
3. Sort the population from higher to lower ﬁtness

4, If the highest fitness md1v1dua1’s fitness is hlgher than the target fitness, stop
‘ and return this individual. .

5. From the sorted population created in step 3, remove the individuals with least
fitness and take the individuals with most fitness. Pair them. Each pair generates
another pair, a copy of their parents, modified according to genetic operations.

" The new individuals are added to the remaining population and their fitness is
computed. ’

6 Go to step 3.)

Figltre 1-1: Pseudo-code of a standard genetic algorithm

1.2.1. Individuals and Initial Population

Genetic algorithms work simultaneously on a population of possible solutions,
" usually represented by means of vectors or strings of symbols. These strings are treated -
as the population’s genotypes. Genetic operators only handle the genotypes, because

they are easier to manipulate than the candidate solutions themselves. .

For example if the algorithm is looking for an automatically written C program
that performs a given task, genetic operators are easier to apply -on each program s
genotype rather than on the actual C functions.

\ The 1mt1a1 population is usually generated at random, but it is worth noticing
that the actual populatlon used has an important influence on the convergence of the
GA. ‘

1.2.2. Fitness Function (Eyaluation)

‘This function gives the highest values to the fittest individuals; therefore it
evaluates how much. each individual is close to the optimal solution. It has been proved
[Go189] that GA maximizes fitness functions. -

1.2.3. Generating a New population: genetic operators

After ordering the population according to the fitness values of its individuals, a new
population is generated. Genetic operators (crossover, mutation, elision, duplication...)
are applied to the offspring of the best individuals, which then replace the worst
individuals. There are other several possible approaches to select the better individuals
[G0189] but they are not used in this thesis.

-

14

Crossover

There are several different approaches to implement crossover. In this thesm it
will be done as described below:

Eachp aﬁ ofparents generates two new individuals by swapping segments of
themselves. A single position inside both parents is randomly selected; each child has a

different section of each parent’s genome: the first half of the first parent and the second

half of the second parent for one of them, and the first half of the second parent and-the
second half of the first parent, in that order. This approach is called one-point crossover.

. For example, let us take two parents in the t-th generation (X' and X%)
X t=<a, ... , >
and |
X =<by, ..., bp>.
ALet, us assumeé crossover point is i, where 1< i<n. The offspring would then be
- X' =<ay,...,;, bisteeosbn >
Xt = <Btye b, Bityeensn >

for some i and j in the new population.

Mutation

‘Mutation changes the value of some randorhly chosen genes. It is known, from
biology and ecology, that mutation -introduces Vanablhty and diversity into the
populatlons

' Mutation can be applied to every bit in the genome with a (usually small)
, probablhty, or it may be apphed to a single bit with a much higher probability. This is
the approach we are using in this thesis.

For example, let X;'be a genotype with 9 binary genes in some generation t.
X '= <1,0,1,1,0,l,0,1,1>

Let 6 be a randomly selected position (between 1 and 9). After mutatlon X1
could become

<1,0,1,1,0,0,0,1,1 >

Other genetic operators

Two other genetic operators are also frequently used in GA’s:

15

aleuorec;\ .

@4[} \0

® Duplication: a segment, randomly chosen from one indivicfual, is added
at a given position of (possibly) another individual.

e Elision; one or more genes are déleted at random from the genome of an
individual.

These two operators make it poss1ble to mix, in the same population, genotypes
of different lengths.

1.3. Genetic programming (GP)

Koza [Koz89] introduced GP as a model for automatically generating LISP
programs to solve a given task.

Unlike genetic algorithms, GP does not represent the genotype as strings of -
symbols. Programs are represented.in GP by means of trees, to minimize the possibility
of generating syntactic mistakes. New versions of the genetic operators are defined
accordingly. Koza has successfully applied his approach to a wide range of problems.

» \ »
1.4. Evolutionary Strategies (ES) and Evolutionary
Programming (EP)

ES are used to evolve populations of fixed length real vectors. ES offer a
general-purpose search technique for any domain that can be modeled in this way. New
definitions of the genetic operators are needed. For example, mutations are conceived as
perturbations that satisfy several statistical condltlons, crossover can be implemented as
the average of the set of parents, etc.

EP is very similar to ES. One of the main differences is that EP does not use the
crossover operator.

1.5. Variants of the classical GA/GP écheme

Standards GA’s can be enriched by a number of mechamsms 1dent1ﬁed in
biology and ecology. For instance, coevolution is a phenomenon present in natural
evolution. Different species coexist and interact in the same habitat (such as herbivores
and carnivores). If a species improves develops an improved feature to survive, (for
example, if the prey population develops new techniques to escape from their predators
by running faster, better camouflage, etc.), the other species must improve itself (in our
example, the carnivores will have no alternative to develop better attacking strategies
such as stronger claws, better eye sight, etc. [Par97]).

Coevolving GA’s have been successfully -applied to various problems, such as:
constraint satisfaction problems [Par94b], evolving neural nets for classification

-

16

" [Par94a], process control [Par98], path planning [Par97a], and the evolution of cellular
automata (CA) for density classification[Par97b].

GA’s are also subject to a continual revision by the researchers. In the last years
[Gold02] a big amount of work is being made about the concept of competent GA’s.
This family of GA’s offers a general purpose black box GA tool, ready to use without
any modification, whatever the domain in which it will be applied. Deceptive problems
are a family of tasks particularly difficult to solve by GA’s. Competent GA’s must be
able to solve this kind of problems. Gene linkage (the relationship between gene loci
and their functionality) and parameter tuning are some of the problems that competent
GA’s must solve. Goldberg’s Messy GA’s [Gold02] is one of the most promising
approaches to competent GA’ ' ‘

1.6. Grammatical evolution (GE)

Grammatlcal evolutlon is a grammar based vanable—length binary string genome
system, originally apphed in the area of automatic programnung (as a variant of GP) to
generate programs or expressions in -arbitrary programmmg languages to solve
particular

problems[Neil03][Neil01] [Ne1199a] [Ne1199b] [Ne1199c] [Ray98a}[Ray98b][Ray? 8c] [Ray
98d]. :

GE reinforces the biological inspiration by, adopting a genotype—phenptype
distinction and introducing a genotype-phenotype mapping that is directed by the
grammar of a given programming language. The grammar is a plug-in component of the
system that determines the syntax and the language of the output code. So, it is possible
to evolve programs in an arbitrary language simply by plugging-in the corresponding
grammar. As a result of this approach, the genotype representation and the genotype—
phenotype mapping become standardized, and the . evolutionary engme remains
independent of the target programming language

1.6.1. Genotype-Phenotype mapping

GE genotype-phenotype ‘mapping is inspired in the biological process that
produces phenotypic effects in the final individual (traits such as hair color, for
example) starting from its genetic material, encoded in the organism’s DNA. These
molecules are first translated into mRNA (messenger RNA), which directs the
generation" of proteins corresponding to the sequences of the bases, which code for
amino-acids. Proteins are fundamental components in this process, because they have
funct10na1 meaning for the organism at the phenotype level.

InaGE sys_tem, the genotype representation (strings of bits read as strings of
integers) has the role of the genetic material (DNA/RNA), the grammar of the target
programming language acts as the rules to obtain the amino-acids from the base
sequences in the genetic material, the programs obtained by means of GE are equivalent
to proteins, and the result of their execution is similar to their phenotyp1c effect in the
blologlcal model. -

17

In typical GE applications, the genotype is used to map the axiom of the
grammar onto a word of its language by iterating the following steps:

» 1. Read the next 8 bits and compute the corresponding “codon” integer value.

2. Select the next non-terminal symbol (the lefimost non-terminal symbol) in
the current sentential form (derivated. from the axiom).

3. Select a production rule to be applied, by means of the following

computation: the rule number is the remainder of the division of the codon

- integer value by the number of different production rules for the current non-
terminal. 0 is always the first rule number for every non-terminal.

-4, Apply the selected rule to the *coxrresponding non-terminal symbol, to get a
new derived sentential form.

The process iterates until one of the following conditions holds:

1. A complete program is generafed; that is, the derivation process produces a
sentence in the language of the grammar (a word made exclusively of
terminal symbols).

2. The end of the genome is reached.

GE may apply a wrapping mechanism to reuse the genetic material if the latter

condition holds, in which case the algorithm will stop when a predefined threshold on

the number of wrappings is reached. The wrappmg mechamsm is inspired by the gene-
overlappmg phenomenon present in many organisms.

Examplg
~ Let us use the follovving context free grammar:
{Ng, Tr, Sg, Pr}.
Where |
e Nris the set of non terminal symbols:

Nr= {<expr> <op>,<pre-op>,<func>,<header>,<body>,<declarations>, <code>,
<return>}.

e Trgisthe set of terminal symbOIS'

Tr={sin,+,-,*,x,1.0,(,), float, symb {, },,, =}
SR—<expr> is the axiom.

e Py is the set of production r;11es.

Pr={ <expr>_::=<expr><op><éxpr> | (<expr><op><expr>)
|<pre-op><expr> | <pre-op>(<expr>) | <var>,

18

A

<op>:=+|-|*|/{,

<pre-op>::=sin, '

<var>::=1.0 | X|,

<func>::=<header>,

<header>::=float symb (float x) {<body>},
<body>::=<declaration><code><return>,
<declarations>::=float a; , '
<code>::= a=<exp>;,

<return>::= return(a);

}

Notice that:

e The language generated by this grammar is a subset of C functions with a float
result and a float parameter. All of them have the same structure: :

float symb (float x)
{
a= <expr>;
return(a);
}

- o Thatis, genotypes only differ in the expression assigned to the variable a.

Therefore, the grammarA can be reduced to the following subset of the production

rules, where w e h ave numbered i ndependently the rules that share the s ame 1eft-side

. symbol:

{ <expr>:=<expr><op><expr>)
| (<expr><op><expr>) Q) .
| <pre-op>(<expr>) 2)
| <var> .3,
<var>¢:=x ‘ ©)
0 -),
<pre-op>:=sin 0),
<op>i= + © (0
| - V M
|/ @
| * | G)
}

Let us map the following genotype:

[220

240

220 | 203 | 101 | 53 | 202 éO3 102 | 55| 220 | 202 | 243 | 130 | 37 | 202 | 203.| 140 | 39 | 202

203

102

steps:

-

The genotype-phenotype mapping starts with the first codon and follows these

19

220 [240 | 220 [203 | 101 | 53 | 202 | 203 [102 | 55 | 220 | 202 | 243 | 130 | 37 | 202 | 203 | 140 | 39 | 202 | 203 | 102
As explained before, we start on the axiom. The initial sentential form is thus
<expr>
We rﬁﬁst find the leftmost non-terminal symbol, in this case the only one,
<expr>.
o <expr> is the left hand side of 4 rules, so the rule to be applied is number
220 mod 4 = 0 (that is, <expr> becomes <expr><op><expr>), and the next
codon will be considered. *
220 [240 [220 | 203 [101 | 53 | 202 [203 | 102 | 35 | 220 AP AN EA AT IR AL LT
The second senteﬁtial form is:
© <expr><op><expr> i
o The highlighted <expr> is the next non-terminal symbol to be considered. So
the rule number 240 mod 4 = 0 is applied again and the next codon is read.
220 | 240 | 220 203 [101 | 53 [202 [203 | 102 [55 [220 [202 [243 | 130 | 37 | 202 | 203 | 140 | 39 [202 [263 %
The tthd sentential form is:
\ <expr>{op><expr><6p><expr> :
e As in the two previous steps, rllle (O)‘<expr>::=<expr><op><expr> is used
again to replace the highlightqd <expr> .
220 | 240 | 220 | 203 | 101 | 53 \zoz 2037 103 | 55 [220 [203 | 385 | 130 | 37 302 | 305 [0 3 | 202 | 205 | 102
The fourth sentential form is:
<expr><op><expr$<op><expr><op;<expr>
« At this point, rule <expr>::=<var> ié ‘used(, because 203 mod 4 = 3. ’
220 | 240 | 220 | 203 | 101 | 53 | 202 | 203 | 102 | 55 | 220 | 202 | 243 | 130 | 37] 202 | 203 | 140 | 39 | 202 | 203 | 102
The ﬁﬁh sentential form is: :

<var><op><exXpr><op><expr><op><expr>

20

-

H
o <var>is the leftmost non-terminal symbol. <var> is at the left hand side of
two rules, and 101 mod 2 =1. Rule number 1 (<var>::=1.0) will be applied.

220 {240 | 220 } 203 | 101 | S3 | 202 | 203 | 102 { 55 | 220 | 202 243 130 | 37 | 202 | 203 | 140 | 39 | 202 { 203 | 102

The sixth sentential form is:
1.0<op><expr><op><expr><op><expr>

e <op> is now the leftmost non-terminal symbol. <op> is thev left hand side of
four rules, and 53 mod 4 = 1. Rule number 1 (<op>::=-) is applied.

220.] 240 | 220 | 203 | 101 | 53 { 202 | 203 102V 55220] 202 [243 | 130 [37] 202 | 203 | 140 | 39 [202 { 203 | 102 |

The seventh sentential form is:
1.0- %exprxop><expr><op><expr>

® 202 mod 4 =2, thus <expr> is replaced by <pre-op>(<expr>).

220 | 240 | 220 | 203 | 101 | 53 { 202 { 203 § 102 | 55 | 220 | 202 | 243 | 130 | 37 | 202 | 203 | 140 | 39 | 202 | 203 | 102

1.0- qrre-op>(<expr>)<op><expr><op><cxpr>

e <pre-op> is associated to only one nght hand side (sin), so th1s denva’uon
does not consume any codon.

220 | 240 | 220 | 203 | 101 | 53 | 202 | 203 | 102 | 55 | 220 | 202 | 243 | 130 | 37 | 202 | 203 140 39 202 | 203 | 102

1.0-sin(<expr>)<op><expr><op><éxpr> ’

® <expr>isnow replaced by the right hand s1de of rule with number 3 (<var>),
because 203 mod 4=3,

220 | 240 [.220 | 203 | 101 | 53 | 202 | 203 | 102 | §5 § 220 | 202 | 243 | 130 | 37 1202 | 203 | 140 § 39 | 202 | 203 | 102

1.0-sin(<var>)<op><expr><op><expr>

e <var> will be replaced by its rule (0), “<var>::=x”, because 102 mod‘.2'= 0.

220 240 | 220 | 203 | 101 | 53 | 202 | 203 | 102 | 55 | 220 | 202 { 243 | 130 | 37 | 202 | 203 | 140 | 39 [202 | 203 102

»

21

1.0-sin(x) <op><expr><op><expr>

e <op> will be replaced by its fourth right hand side (*) because 55 mod 4 = 3.

220 | 240 | 220 | 203 | 101 | 53 | 202 | 203 | 102 | 55| 220 | 202 | 243 | 130 | 37 { 202 | 203 | 140 | 39]| 202 | 203 | 102
1.0-sin(x)* <expr><op><expr>
e This time, rule number 0 (<expr>::=<expr><op><expr>) is applied to
<expr>, because 220 mod 4=0
220 | 240 | 220 | 203 | 101 | 53 | 202 | 203 | 102 | 55 | 220 | 202 | 243 | 130 | 37 | 202 | 203 | 140 | 39 | 202 | 203 | 102
1.0-sin(x)* <expr><op><expr><op><expr>
o <expr>is now replaced by its rule number 2 (<expr>: -<pre-op>(<expr>)),
because 202 mod 4 =2
220 | 240 | 220 | 203 | 101 | 53 | 202 | 203 | 102 | 55 | 220 | 202 | 243 | 130 |,37 | 202 | 203 | 140 | 39 | 202 | 203 | 102
1 .O-sin(x)* <pre-op>(<expr>)<op><expr><op><expr>
o As prev1ously explamed <pre-op> will always be replaced by sin w1thout
consuming any codon.
220 [240 | 220 | 203 | 101 | 53 | 202 | 203 | 102 | 55 | 220 | 202 | 243 | 130 | 37 | 202 | 203 | 140 | 39 | 202 | 203 | 102
1.0-sin(x)*sin(<expr>)<op><expr><op><expr>
e Now 243 is consumied to replace <epxr> by <var>, because 243 mod 4 =3
220 [240 | 220 | 203 | 101 | 53 | 202 | 203 | 102 | 55 | 220 | 202 | 243 | 130 | 37 | 202 | 203 | 140 | 39 | 202 | 203 | 102

and get the sequence of expressions that follows:

1.0-sin(x)*sin(<var>)<op><expr><op><expr>

e 130 mod 2 = 0, so <var> is replaced by X, which corresponds to applymg
® rule number 0.

The interested patient reader can easily follow the algorithm in the same way

«

1-sin(x)*sin(x)<op><expr><op><expr> 37mod4=1 -

-

22

1-sin(x)*sin(x)-<expr><op><expr> . " 202mod4=2
_ 1-sin(x)*sin(x)-<pre-op>(<expr>)<op><expr>

1-sin(x)*sin(x)-sin(<expr>)<op><expr> 203 mod 4 =3
1-sin(x)*sin(x)-sin(<var>)<op><expr> 140mod2=0
1-sin(x)*sin(x)-sin(x)<op><expr> ' 39mod 4=3

1-sin(x)*sin(x)-sin(x)*<expr> - 202mod4=2
1-sin(x)*sin(x)-sin(x)*<pre-op>(<expr>) :
1-sin(x)*sin(x)-sin(x)*sin(<expr>) 203 mod 4 =3
1-sin(x)*sin(x)-sin(x)*sin(<var>) : 102mod2=0

1-sip(x)*sin(x)-sin(x)*sin(x)

Once a correct phenotype is prodﬁced (a correct sentence in the language of the
grammar), the mapping finishes. : .

Applications

The authors of GE have applied their approach to automatically program
solutions for a wide range of problem and domains:

e Symbolic régression and integration
¢ The Santa F. é ant trail
e Caching algorithms

They have also tested the performance of GE as compared with other classical
GP approaches [Neil03].

N

- 23

24

Chapter 2

Fractals

2.1. Ovemew

Euclides (430-360 BCE) is cons1dered the father of Classical Geometry, Wthh
studies ordinary and (in some way) “régular” shapes (points, lines, surfaces and
volumes, such as ellipses, circles, polygons, polyhedrons, etc.). One of the main
. concepts in Geometry is dimension, which is associated to the number o f degrees of

freedom for each object, that is, the number of parameters needed to define each point*

in the object. So, points have 0 dimension, lines 1, surfaces 2, volumes 3, and so on.

These. dimensions were the only way to describe shapes for many centuries;
objects too complex (most of the real objects: clouds, mountains, coastlines, etc., plus a
few well known monstrous mathematical objects as, for instance, a curve defined by
Peano able to fill a surface) remain out of the scope of Classical Geometry.

The history of fractals began with mathematicians’ attempts to study such
strange objects. Problems apparently trivial did not have a clear answer in Classical
Geometry. For example: the lengths of coastlines or of the borders between countries
depend on thie method used to compute them. The underlying difficulty is the fact that

these curves (if coastlines and borders can be considered curves) have so much

complex1ty, that it is always possible to find more detail, and hence a greater length,
while zooming in. Classical dimensions have no meaning in these cases, so Mandelbrot

[Man75] suggested using real positive values, rather than natural numbers, to express
the dimension of such objects. Mandelbrot also considered a wide diversity of strange

phenomena and coined the term fractal to describe them, because they share a few (not
necessarily all) curious properties, such as self-similarity (the same shapes are found at
different levels with different scales all over the set), underivability at every point,
infinite length covered in a finite space, difficulties to calculate their dimension, etc.
In the next sections, different types of fractals will be introduced, although only one of
them (initiator-iterator fractals) is considered in depth in the present thesis.

This chapter ends with an overview of several apphcatlons of fractals and a
) brlef definition of multl-ﬁactals

25

2.2. Categorizing Fractals

" Most fractals have been represented by means of the following methods:

2.2.1. Initiator-Iterator Fractals

This kind of fractals is d efined by m eans o ftwo shapes, the initiator and the .
iterator., The fractal is defined as the limit curve after an infinite number of
transformations from the initiator. Transformations are obtained by applying the iterator
to each segment of the initiator in the curve at the previous stage. Many famous
monstrous curves can be constructed by means of this method, such as Cantor set, von
Koch snowflake, Peano’s curve, and Sierpinski’s gasket.

Cantor set

The initiator is a single segment. The iterator will erase a segment of length 1/3
from the central part of each segment in the previous step. After applying the process an
infinite number of times, the number of segments increases to infinite and the length of
the segments-decreases to 0. Figure 2-1 illustrates the first 4 steps in this process.

-,

Figure 2-1: The first four bsteps in Cantor set construction -

The reader may infer from the definition that the set contains an infinite number
of segments, but the length of the complete set is 0, because each segment has length 0
and an infinite sum of 0’s equals 0. It is obvious that Cantor set is a very strange one.

26

Yon Koch snowflake

In this case, the iterator replaces the middle part of the
initiator shape by the remaining two sides of an equilateral triangle.

Figure 2-2 illustrates the first five steps to build Von Koch
snowflake. Two odd properties of this curve are that it has no
tangent at any point (when the length of each segment goes to 0,
every point is a vertex of some equilateral triangle), and that it
represents a walk of infinite length comprised in a finite space. To
explain this last property, let us study the length of segments at step
N, and the total length. They are respectively equal to (1/3") and the
total length is equal to (4/3)". Table 2-1 ([Fla98]) illustrates the
relation between the lengths of the segments and the total curve

length.

/\
3

Figure 2-2: Von Koch’s curve

Step | Number of segments| Length of a segment | Total length
0 |1 1 1

1 |4 0.33333 1.333333

2 |16 Jo11111. 1.7777778
3 |64 0.037037037 2.37037

4 | 256 0.0123457 3.16049

5 1024 0.00411523 421399

6 | 409 0.00137174 5.61866
7 | 16384 0.000457247 7.49154 .
8 |65536 0.000152416 9.98872

9 |262144 5.08053x10° 13.3183
100 | 1.60694x10%° 1.94033x10™ 3.11798x10"

Table 2-1The length of Von Koch curve.

27

§

~
Peano’s curve

-In 1890, Giuseppe Peano defined a curve that can be represented by means of an
iterator that divides the segment into thirds and replaces the central part of the segment
with 7 segments of length 1/3, forming two squares around the removed middle third
part. Peano’s curve is continuous, that is, it is drawn without lifting the pen of the paper.
Figure 5.3 shows its iterator.

Figure 2-3: The iterator of Peano’s curve

Peano’s curve completely fills up the unit square that contains its initiator, and

" has also, like von Koch’s snowflake an infinite total length

2.2.2. Random Fractals

. Self-similarity may be régular or random. In the preceding exalhples, fhe X
generated fractals are very regular. This kind of regularity is not frequent in natural
shapes that rather exhibit, to Some extent, a random self-similarity.

This is the case of a plethora of phenomena from bacteria colonies to clusters of
galaxies. An example of a random fractal, called a Brownian-motion, fractal was used to
describe the motion of a particle in a gas or a liquid. It is defined as a random walk in

" the Cartesian plane in the following way: starting at some initial point, just move to any

other point in the Cartesian plane with equal probability. An example can be seen in
figure 2-4. It shows clearly its scale-independent self-similarity.

-

]

28

Figure 2-5 shows other similar phenomenon: bacteria aggregation.

Figure 2-4: Example of a Brownian-motion fractal, from [Int].

; *&é‘%%"“
B

Figure; 2-5: Illustrates an example of a bacteria aggregation fractal [Int].

.

2.2.3. Other ways of deﬁning fractals: afi;ineytransformation
fractals and iterated function systems

Affine transformation fractals can be constructed by iterating a fixed original
pattern with different scaling factors. The coples of the pattern must remain in the same
position with respect to the other generated copies, at each iteration.

Several algorithms can be used to generate fractals in this way. One of them is

MRCM (Multiple Reduction Copy Machine), where a regular self-similar recursive .

function is used. The combination of geometric transformations (translation, rotation,
scale factors) applied in MRCM is the same through all the process. The result of the
algorithm is obtained when the number of iterations goes to infinite.

29

Iterated Function Systems (IFS) is a method similar to MRCM. Instead of
iterating the complete initial shape, only a subset of points chosen at random is handled.

2.2.4. Iterative Dynamical System Fractals.

Some Fractals appear as the boundary between convergence and divergence of
certain recursive mathematical functions in the complex domain. The most ‘famous
fractals of this kind are Mandelbrot and Julia sets.

Mandelbrot set is the boundary between the convergence and divergence
domains of the recursive complex function: ’

Zer=fzn) =z, +c,
where c=c,+c, i is taken from a ball in the complex plane and z;=0.

Julia set is the boundary between the convergence and divergence domains of
the recursive complex function: \ \

Zn+l=f(zn)=zn2+c

where c=c,+cy i is a fixed complex point and zp is taken from a ball in the complex
plane. [Man77].

2.3. How can we estimate the dimension of fractals .

The concept of dimension is very old and seems easy and evident. We live in a
space with three dimensions: length, width, and depth. Some of the objects in our
environment are approximately b1—d1mens10na1 a sheet of paper, a picture. Others have
a single prevalent dimension: a distant road, a pencil line drawn on paper. What we call
dimension may sometimes be defined as the number of directions in which movement is
allowed.

Things appear very clear and elegant: dimensions are consecutive integers: 0 (a
point), 1 (a line), 2 (a surface), 3 (a volume), with no doubtful cases. Some do exist,
however, as Mandelbrot proved in his famous book on fractals [Man77] Depending on
the size of the observer a ball of thread can be considered as .

« A point (zero dimensions) if the observer is very large (a mountain, a planet) or
very far away.

e A sphere (three dimensions) if the observer is comparable to the size of the ball
(a human being) and is located near the ball.

o A twisted line (one dimension) if the observer is smaller than the ball (an ant)
and very near it. -

30

o A twisted cylinder (three dimensions) if the’ observer is much smaller than the
ball (a bacterium).

e A set of isolated points (zero d1mens1ons) if the observer is even smaller and can
see the atoms.

o A set of spheres (three dimensions), if the observer's size is comparable to that
of the atoms.

e And so forth.
Therefore, it seems necessary to revisit the definition of dimension. In the

following sections several approaches to estimate fractal dimension are bneﬂy
described.

- 2.3.1. Hausdorff dimension

In 1919, Hausdqrff proposed a new definition of dimension, applicable to such

doubtful cases, to distinguish them from normal surfacés and lines. With his definition,
strange curves in the plane may have a fractional dimension between 1 and 2. For -

instance, Peano's curve, which covers a complete square, has a Hausdorff dimension of
2, while Von Koch snowflake has a Hausdorff dimension of about 1.261.

The Hausdorff dimension of a-curve is considered very difficult to compute and
is not practical for calculation, because of its abstract characteristics.

Benoit Mandelbrot, who coined the term Jfractal in 1975, gave the first deﬁmtlon
of a fractal based of the Hausdorff dimension, as mentioned before:

Definition: A fractalis a set for which the Hausdo;ﬁ' dimension strzcz‘ly exceeds
the topological dimension.

2.3.2. Richardson-Mandelbrdf dimension estimation

Richardson found a linear relation between the logarithm of the measured length
and the logarithm of the unit used for measuring it, and considered the slope of this line
as a good indicator of the curve. Mandelbrot associated that slope to. the concept -of
fractal dimension.

This method computeé the fractal dimension of a curve as a quotient of two
‘measurements taken while “walking” the fractal line in a number of discrete steps. We

take as a unit the distance between the beginning and the end-of the fractal line to be -

walked. The first measurement is P;; the length of the step used, or pitch length, which
must be constant during the whole walk. The second is the number of steps needed to

reach the end of the walk by following the fractal curve, N (p)).

 We call Dyithe number for which the following relation holds:

31

.

N (Py) ~P; ™"
If we take logarithms on both sides of this equation, we obtain
log [N(P1)]= -Dp1 log(P1)

The fractal dimension is the limit of ‘Dp; when P] goes to zero:

o i 0]
1°g(P1)

2:3.3. Box Counting
This method computes the fractal dimension of a curve as a quotient of two
measurements taken while covering the fractal curve with a set of boxes. N(d) denotes
the number of boxes with size of length d which are necessary to cover the curve,
considered as a set of points in the two-dimensional plane. Box dlmensmn is defined as
the exponent Dy in the equation

N(d)~d P

rd

If we take logarithms on both sides of the equation, we obtain

log[N(d)]= -Dylog(d)

The fractal di£11ension is defined as the limit of Dy when d goes to zero

_ (~log[N(@)

D b= hmd—)o []
Jog(d)

" There are many variations to this algorithm. Some of them assign a weight to

each box, depending on the number of points it contains. Instead of computing the

number of boxes, another variation estimates the information entropy for the set of

- boxes, where the number of points is considered to be the information.

Alternative ways of calculating Box dimension, change the shape and the nature
of the set of boxes. Square-shaped boxes are usually used to define a grid on the image;
other approaches place the boxes at any position and onentatlon Families of concentric
circular boxes with increasing radlus are also used

“With this definition, Mandelbrot assoc1ated a fractal dimension to stiange
objects such as Cantor set, Koch snowflake and Peano’s curve: Cantor set has a fractal -
dimension equal to log(2)/log(3) =0.63093, which seems intuitively correct, because it
is a set of isolated points that we cannot consider either as a curve or a point. Von Koch
snowflake has a Richardson-Mandelbrot dimension of log(4)/log(3)=1.26186, which

32

means that its behavior is more complex than that of a curve, but doesn’t reach to fill a
two-dimensional surface. Itis also clear that the total length o fvon Koch’s curve is
‘infinite. Peano’s curve has a Richardson-Mandelbrot dimension equal to 2, which seems
intuitively correct, because, when the number of iterations goes to infinite, it completely
fills the bi-dimensional region that 1ncludes its initiator.

2.4. Multi-fractals

In natural phenomena with a fractal structure, it usually happens that there is not
a uniform fractal dimension applicable all over the set. This means that different parts of
the fractal will have different dimensions (different degrees of complexity). Therefore,
while the global fractal dimension represents the global complexity of the whole object,
different parts of the object may have different dimensions.

Multi-fractal structures are found in various contexts, where they are usually
represented by multiplicative cascades of random processes.

2.5. Application of Fractals

This section briefly introduces some of the areas where fractals have been used,
such as Physics, Chemistry, Astronomy, Geology, image compression, Psychology,
Economics, medical imaging, et cetera.

Many natural phenomena are better described using fractional dimensions.
Fractals are thus used as descriptive models for the growth of plants, particle
aggregation, river cartography, realistic images, and similar phenomena. Fractal
dimension characterizes most of the propertles of these models.

In image processing, fractals are considered useful approaches to analyze and
quantify the complexity of images. The fractal diménsion of an image is a parameter
that makes it possible to study the roughness or the smoothness of digitized images. For
example, for 2-D images, the fractal dimension should lie between 2 and 3. A fractal
dimension closer to 2 represents smooth images. A 3-D representation of a 2-D
digitized image is possible by associating to the third dimension the intensity of each
pixel in the 2-D image [Dat02]. *

Fractals have also been used for medical imaging, to analyze X-ray medical
images, or to check the quality of ultrasonic C-scan images of glass-epoxy and carbon-
epoxy composite laminates containing flaws. Fractal dimension has been used to
¢haracterize mammographic patterns [Li97], trabecular bones [Maj99], etcetera.

The physical characteristics of some bodies are related to the fractal dimension
of their surfaces [Mel01]: the growth pattern of bacteria has a fractal dimension of 1.7.
. Another example is geological patterns: the fractal dimension of clouds is 1.30-1.33; 1.7
for snowflakes; 1.05-1.25 for coastlines in South Afrlca or Britain; 1.28-1.90 for woody
plants and trees; et cetera. [Tay()?.] -

33

In medicine, fractal dimensions have been found for various bio-molecules, such
as DNA and proteins. For instance, the fractal dimension of Lysozyme (egg-white) is
1.614, for hemoglobin it is 1.583, for myoglobin 1.728 [Ian96]. The fractal dimension
of the perimeter of surface cell sections has been used to.distinguish healthy cells and
cancerous cells [Bau99]. In analytical chemistry, the fractal dimension is used as a tool
to characterize chemical patterns and problems of sample homogeneity [Dan02]. A
given fractal dimension makes it possible to simulate a variety of systems: fluid

extraction or c ontaminant m itigation t echniques [Mel01], the h ybrid orbital model o f

proteins [Tor01], or the growth of conflict rate in aircraft flays [Mon01].

Antennae are electromagnetic devices designed to radiate or capture signals.
Some of their characteristics are gain, bandwidth, return loss and resonant frequencies.
In the last years, fractal geometry has provided a new approach to traditional antenna

_ design methods [Vin01]. Several classical fractals of the initiator-iterator kind (von

Koch Snowflake, Sierpinski's gasket, for example) have been proposed as antenna
prototypes. Certain properties of fractal antennae are related to their fractal dimension:
an increase in the fractal dimension may be translated into higher gain, low return loss
and a shifting down of the resonant frequencies. :

Multi-fractals have been applied to different areas, such as signal processing

[Rel02], earthquake distribution analysis [Har01] and network data traffic modeling
[Rie99] [Rib01] [Abr02] [Sar01].

34

Chapter 3
Lindenmayer Systems (L-Systems)
*3.1. Overview

Lindenmayer systems (L-systems) were originally created by Aristid
Lindenmayer [Lin68] to study formal languages. They were then used as formal discrete
models of plant development and other biological development systems of different
multi-cellular organisms. Lindenmayer defined a new type of grammar (a parallel
derivation grammar), which differs .from the normal Chomsky grammars (sequential
-derivation grammars) because the rules are apphed simultaneously, rather than one at a -
time. .

-An L-system consists of an alphabet (a set of symbols), an initial string called
the axiom and rewriting rules called production rules. The production rules are apphed
recursively; in the first iteration they are applied to the axiom.

 L-systems have many interest properties such as their simplicity, variety,
modularity, and universality [Goe91]. They have been successfully applied to the
simulation of biologic processes such as plant growth, leaf development, pigmentation
of snail shells, and several others [Pru90]1[Pru94][Pru98]. Recently, many investigations
of artificial life are trying to use L-system to simulate and generate realistic images that
model plants, simulate branching and flowering patterns, or study the influence of the
environment (light, nutrients and mechanical obstacles) on a developing plant, as we
can see in figures 3-1 to 3-3. Discreet mathematical models and symbols based on
formal languages and abstract machines have proved to be a useful tool for such
applications. .

Figure 3-1:Development process of an artificial tree using a special type of L-systems
called stochastic L-systems (from [Pru94]).

35

Figure 3-3: Found in [Pru95], illustrates the development of a plant

 Lindenmayer systems are also appropriate to represent fractal objects, including
not only iterated geometrical transformations (as Cantor dust, the Sierpinsky gasket or
the Von Koch snow flake), but also fractal sets found in the complex plane, as
Mandelbrot or Julia sets [Ort02]. Lindenmayer systems can also represent the evolution
of discrete mathematical models such as Von Neumann auto-reproductive cellular
automata, and McCulloch and Pitts neuronal models.

36

3.2. Classes of L-Systems . .’

Lindenmayer derivation grammars, also called L systems, can be classified in
different ways. In the next sections, some of these classes will be defined, specially
those that will be used later in this thesis.

-3.2.1. OL Systems

OL systems are context-free L-systems; that is, each symbol is replaced by the
same right hand side of the rule wherever it.is found. The transformation of a symbol
does not depend on the symbols close to it. As there is no interaction between a symbol
and its neighbors in the derived strings, OL systems are also called L-systems without
interactions. »

DOL Systems

- DOL systems are OL systems Where two dlfferent rules may not have the same
left-hand side symbol. These systems are also called deterrmms’ac L-system without
interactions. : -

A DOL system is a three-fold with an alphabet (a finite non-empty set of
symbols), a set of production rules that determines the only way each symbol of the
alphabet can be changed in a derivation, and a starting word or axiom. A derivation of a

word in a DOL.system is the new word obtaiied when each symbol in the word is -

replaced by applying the allowed transformatlons
‘ Formal definition
A DOL system is the three-fold
" S=(2,P,0)
where:

PP Disa non-empty set of symbols the alphabet

PcIxy Van:Ellan,,a —aeP))
, is-the set of production
_tules.

=0,.. RS 0 -
@ =P Pt € , is the axiom and |a7 | is the length of the word o (the
number of its symbols). ‘ - l

The following expression -

37

-

X=sY

means that word y is derived from word x by means of the production rules of system '
S. When it is clear which system is used, the following expression indicates the same
fact: :

X =y

The set of words that can be derived from the axiom ié called the language of a
DOL system.

- Example 1
Let S be the following DOL system
S={Z={A,B},P={A::=B, B::=AB}, A}
We can get the following derivations from the axiom:
Stage 0: A
Stage 1: B
Stage 2: AB
Stage 3: BAB
Stage 4: ABBAB
Stage 5: BABABBAB

Stage 6: ABBABBABABBAB :
Stage 7: BABABBABABBABBABABBAB

X we count the length of each string, we obtain the Fibonacci sequence of
numbers:

1123581321345589

Consider the DOL system G={3_, h, ®}. We define h" as the number of times the
production rules have been applied to the axiom w, as follows: ‘

h(h(h.. h(®))...))
The growing function of G (denoted fg(n)) is defined as follows:
fo: NON, fo@m)->h"(w)|
where the growing sequence of the G system is:
(B (@)} ,n N
Exémplé 2

Let Gribonacei ={ {@;b}, {a::=b,b::=ab},a}. Table 3-1 shows the first five derivation
" steps, and the first five elements in the growing sequence.

38

n h'%o) [h" ()]

0 a 1
1 b 1
2 ab 2
3. |bab 3
4 abbab 5
5 bababbab - 8

Table 3-1: Derivation steps that generate the Fibonacci sequence

" POL and PDOL Systems

If no rule in a OL-system has the empty word (A) in its right hand side, the

system is called a propagative L-system or POL.

‘ An L-system can be at the same time deterministic and propagative. These
systems are called PDOL.

3.2.2. <k,J>IL Systems

In the same way that Chomsky context-free grammars can be extended to
context-sensitive grammars, 0L-systems can be éxtended to L-systems with interaction,
or IL Systems, i.e., the lefi-hand side of the rules can contain strings instead of single
symbols. These strings indicate the symbol that will be transformed and the context in
which the rule can be applied. The size of the context must be the same in every rule.

. This may be problematic if a symbol is too-close to the beginning or the end of the
string. In these cases, to solve this problem, a new symbol will be used to fill the
context. Such a symbol can only appear at the begmmng or the end of the stnng

These systems are called Lindenmayer system with <k,I> interactions, where k
is the size of the left-hand side context, and I is the size of the right-hand side context k

+ and1l cannot be negative values

lFormallzy
A <k 1> L system is a four-fold (E,P, g,0) where:
Y isthe 'alphabet.
® | the axiom.
P the set of production rules.

g X is the symbol added to the context outside the word boundaries,

39

such that
1.If wjawz =04 € P then if .
°* W= W gw for‘ some W,w € (ﬁ:u{g})", ﬂle;n w, e{g}
o w,= W,gw, forsome W, e (X Ulg),then W, e{g}’

2. Forevery waw, == w, € (ZU{g)* x (ZuU{g})’ such that w,, w, satisfy the two
. conditions in point 1, there exists w, e P '

3.2.3. Systems with tables

To simulate some kind of processes, it may be necessary to consider more than
one set of production rules, to be applied in different circumstances. These systems are
L-systems with tables or TL systems. ‘ ‘

Formally
A TOL system is a triple fold (Z, #,0)
Where
Y and o are defined as previously.
#The set of the tables of the system, a finite non-empty set.
“Each element P in g, called a table, is a; finite non empty subset of E>§E* such ﬂiat

- VaeX (Elocez'l a::=oeP).

3.2.4. Systems with extensions

" To simulate some biological systems, it is convenient to specify a subset of the
alphabet in the L-system, so that the language generated by the L-system only contains
the words that are made of symbols in that subset. In this case, we say that the system
has extensions. An EOL system is a system without interactions and with extensions. An
EIL system is a system with interactions and with extensions. An ETOL systemis a
system without interactions, with tables and with extensions.

. ‘ 3.2.5. Other combinations

The previous definitions describe the most common families of L-systems. It is
possible to have other combinations of these properties, for example, DIL systems,
PDIL systems, DTL systems, etc. -

40

3.2.6. Other L-System extensions
o Bi-dimensional IL- systems

In bi-dimensional IL systems, the words are matrices of characters, rather than
linear strings. The context is determined by a function ¢ that generates the horizontal
and vertical displacements of the context symbols with respect to the current symbol.

Formally

A bi-dimensional <k, 0> IL system is defined as the five—fold <%,P,g,0,c> ’ ‘
. where |
2, P, g, o were \deﬁned préviously. ’

¢ [LKJAN—>{-1,0,1}.

e Probabilistic L- Systems

A probabilistic L system differs from other L-systems because each production
rule has an associated probability (R, p(R)), where R is the derivation rule and p(R) its
probability of being applied. The sum of the probabilities associated to all the rules
applicable to a symbol must be 1.

e Parametric L-Systems

Real parameters or arguments can be associated to the symbols of the alphabet.
- For c'*,xample, while in standard L-systems, the production rules have the form

. A::=BCD

in parametric L-Systems it is possible to associate an a:fgument to each symbol, plus the
conditions that argument must satisfy. For instance, if we have the following rule:

. A(®):>5 :=B(t+1)CD("* t-2) it will be applied only when t>5.

3.3. L-System Design

The first step while d esigning an L-system for si mulation (e.g. to construct a
biological model) consists of understanding the specifications of the modél and the way
in which the Lindenmayer system should work. Once this is understood, the task for
solving the concrete problem must be designed. There are two main methods to design
~ such L-systems: ad hoc manual solutions and genetic algorithms.

41

3.3.1. Ad-hoc solution

In many previous works, L-systems were designed by hand to solve specific
tasks, and then they were implemented to be run on a computer
[Pru94][Pru95][Pru98][Ort02]. We can describe the ad-hoc solution as the following
process:

¢ Reading thoroughly and understanding the way in which the
defined Lindenmayer systen works. '

o Listing the required input-output.
e Writing the process in'the form of an algorithm.,

‘o TImplementing ‘the system with the appropnate axiom and
' production rules. .

e Validating the system with different axioms and productions
to identify its limitations.

The manual synthesis of L-systems modeling the morphogenesis of a particular
biological species is a difficult task. For that reason, the use of evolutionary algorithms
facilitates the L-system design. An example of manual L-system design to simulate an
ecosystem, with appropriate definition of L-systems and their production rules, is
described at [Ort00], which simulates a biological system where many different species
exist and interact among them.

3.3.2. Genetic L-System programming

EAshavebeenusedto evolve solutions to problems in many different areas,
including L-system design problems. Previous work by other authors has applied
" genetic algorithms to L-systems. Many researches have designed L-systems that can

simulate different kinds of biological models by means of EAs. :

i’ «
First, a random population of L-systems is generated. Next, an EA is applieci for
a specific number of generations to achieve the pre-defined goal or the proposed model.
Ochoa [Och98] evolves DOL systems with a single rule that generate shapes similar to
plants. Jacob [Jac94][Jac96a][Jac96b] used genetic programming techniques to find the
proper axiom and the production rules that describe growth processes of plant structure,
to model the growth of a real plant (see figure 3-4). Other authors [Hor03][Tra96]
evolve parametric L systems (an extension of Lindenmayer grammars). In this thesis a
different approach will be used, grammatical evolution, which provides a better parallel'
to biological evolution.

42

44

¥

Chapter 4
Fractals and L-Systems

4.1. Overview

In previous chapters, different types of fractals were introduced. One of them is
the initiator-iterated fractal. As we know, an L-system starts with the axiom and applies
a set of production rules to generate derivations. Clearly we need a graphical
Jinterpretation o f the words d enved bythe L-system to obtain a visible fractal o bject
from them.

There exist two different kinds of graphical interpretations of L-systems; the
most common one is called turtle graphics. Another method is known as vector
graphical interpretation. In the following sections the two methods will be discussed.
Then a method for calculatmg the fractal d1mens1on of the generated fractal will be
discussed.

4.2. Turtl_e Graphics Method

Turtle graphics were introduced by Papert at 1980 [Pap80]. He devised it to
" make computers and algorithms easier to understand for kids. In 1984, Smith [Smi84]
used this method for the first time to give a graphical interpretation to L-system strmgs
His work encouraged other researchers to develop more applications related to various
‘dlsc1phnes

" A turtle graphic is considered as the trail left by an invisible turtle that follows
very precise but brief motions defined by its position and the direction of its movement.
The turtle changes it5 position by moving forward a specific distance m, and its

direction by rotating an angle o.. The turtle graphic interpretation can be applied at
different levels of complex1ty '

The turtle graphic 1nterpretat10n (T) used in this thesis is one of the sunplest'
versions, where the alphabet of the related L-system can be expressed as the union of
four d1s101nt subsets: ~

2=NuDuUMuU{),(,+-}

where

AeN Leaves the state of the turtle unchanged N is called the set of non-
" graphic symbols

45

Fe D Moves the turtle one step forvs)ard, in the direction of its current angle,
leaving a visible trail. D is called the set of draw symbols.

feM Moves the turtle one step forward, in the direction of its current angle,
with no visible trail. M is called the set of move symbols Using move symbols Cantor

set fractals are easy to generate.
P

(Pushes the turtle state in the stack.

) 'Pops and restores the turtle state from the stack.

+ Rotates the dhéction the turtle is pc;inting by a positive angle .
- " Rotates the dire;:ﬁon the turtle is pointing by a pegative angle o.
oo The unit rotation angle, restricted to 2kI1/n with k, n integers.

A given fractal can be gépresented (with an appropriate scale fact(;r) by means of
the four components- of an L-system, a turtle interpretation, an angle step and a distance

step.

4.3. Vector Graphics Method

In this family of graphical interpretations, each symbol in the alphabet of the L-
system is associated to a vector in a rectangular Cartesian system. A word derived by
the L-system can be graphically represented as a concatenation of the vectors associated
to the symbols.that make the word. As the turtle can leave (or not leave) a visible trail,
the vector graphics interpretation will assign a visibility coefficient to each symbol in
the L system alphabet. This makes it possible to represent non-connected curves. For
the visibility coefficient, we will assume that 0 means mv131ble and 1 means visible.

Branching fractals can be obtained with a vector graphical interpretation, since it
is possible to come back to the start point of the branching, by returning by the same
way in the opposite direction. This can be achieved if, for every vector associated to a
symbol, an opposlte vector is associated to some other symbol. :

Formally
V; X - {0,1} x ®?

Where {0,1} indicates the visibility or. the mv1s1b111ty of the vector, and ®*
indicates the Cartesian X-Y System

46

4.4 Equivalence between the Turtle and Vector graphical
representations of L-systems

To represent complex fractals, non-standard extensions of L-systems were
proposed by different authors. In a previous work by Alfonseca and Ortega [Alf97],
DOL systems were used to provide a wide range of fractals using the two graphical
interpretation methods mentioned above. In this approach, the DOL system is isolated
_from its graphical interpretation, i.c. the same L-system may generate completely
different fractal curves by changing the graphical interpretation.

We call the pair GL = (L, G) a Lindenmayer graphic, where L is a Lindenmayer
system, and G is a graphical interpretation (using either turtle graphics or vector
graphics). When the graphic mterpretatlon is of turtle type, we call GL a Lindenmayer
turtle graphic.

[A1f97] proved that both methods are equivalent, in the sense that a fractal that

can be represented by.an L system with one type of graphical interpretation, can also be °

" represented by a (different) L system and the other type of graphical interpretation in a

wide family of cases. This equivalence between the two methods has. important

advantages, as the turtle graphic interpretation is more flexible for actions such as area

filling and coloring, while vector graphics are usually faster. Thus, it may be useful to

be able to build a Lindenmayer turtle graphics from an equlvalent vector graphics or
vice versa. :

We call TGDOL the set of all DOL systems that représent fractals by means of
the turtle graphics interpretation (T o). '

We call VGDOL the set of all DOL systems that represent fractals by means of a
vector graphlcs interpretation.

. For the two methods fo be equivalent, a few restrictions must be taken into
account:

-1

First, the strings (rules)- of the DOL system under the turtle graphics
interpretation must be angle-invariant, which means that the direction of the turtle at the
"beginning and the end of the string should be the same. This restriction is not really
important; as it can always be fulfilled by adding a certain number of + or — symbols to
the end of the string. .

We call AITGDOL to thie set of all angle-invariant TGDOL—schemes, where all
the right-hand sides of the rules in TGDOL are angle invariant strings. -

In the same way, vector interpretation graphics must have some conditions and
modifications to achieve the equivalence.

- A VGDOL with a Vector Interpretation VI is called a rationally related DOL
system (RRVGDOL) if both the set of modules and the set of angles of all the vectors in.
VI are rationally related. This means that, for any finite rationally related scheme with a
'vector graphics 1nterpretat10n there exist two real numbersr and o such thatall the
modules of the vectors in VI are positive integer multiples of r, and all the angles of the

47 ' L

]

vectors in VI are positive integer multiples of o.. A VGDOL system must be ratlonally
related to be able to be transformed into an equivalent TGDOL.

Alfonseca and Ortega [Alf97] introduced two equivalence theorems between the
two families of graphical interpretations RRVGDOL and AITGDOL as follows:

Theorem 1

For every AITGDOL system which represents a fractal with the usual turtle
graphics interpretation and a=(2xkxz)/n there exists a fractal-equivalent RRVGDOL
System.

For every AITGDOL scheme which represents.a set of fractals with the usual
turtle graphics mterpretatlon and there exists a ﬁactal—equlvalent RRVGDOL scheme.

Theorem 2

For every RRVGDOL system which represents a fractal with a vector graphics
inte;pretatibn, there exists a fractal-equivalent AITGDOL system.

For every RRVGDOL scheme which represents a set of fractals with a vector
graphics interpretation, there exists a ﬁactal-equzvalent AITGDOL scheme. .

For the proof and some examples, refer to [AIf97]. In this thesm only turtle
graphics are used to generate fractals.

4.5. Computing the dimension of initial-iterated fractals

In chapter 2, different m ethods for c alculating the d imension o f fractals w ere
mentioned. In this section, the fractal dimension computed by Alfonseca and Ortega
[Alf01a][Alf00a] is introduced. Similarly to typical ways for calculating the fractal
dimension, it is obtained as the ratio between how much the curve grows in length and
how much it advances, but it differs because the calculation of the dimension is done by
operating directly on the L-system that répresents the fractal curve, without performing
any graphical representation. Obviously, computing the fractal dimension through
operations on strings is an easier method than the computation of a limit.

* Each word in the derivation represents a step of the recursive generation of the
fractal curve. The production rules embody the allowed transformation between
configurations. Therefore, the growth of the words is related to the corresponding
growth o fthe curve. The graphic interpretation of the L-system makes it p ossible to
assign bi-dimensional co-ordinates to the letters in each word. Once these co-ordinates
have been computed, it is straightforward to obtain the distance between the different
points. These distances may be used as a measure of how much the curve grows in
length. This method for computing the dimension of the fractal curve w111 be.used in
chapter 7. .

48 -

The algorithm in [A1f01a][Alf00a] applies to a set of fractal curves which can be
represented by an L system containing a single draw symbol and no move or non-
graphic symbols. The production set, therefore, consists of a single rule, apart from the-
trivial rules for symbols +, -, (and). In fact, the algorithm may be applied to other more
complicated L-systems, but we won’t need them in this thesis.

Informally, the algorithm takes advantage of the fact that the right side of the
only applicable rule provides-a symbolic description of the fractal generator, which can
thus be completely described by a single string. The algorithm computes two numbers:
the length N of the visible walk that follows the fractal generator (equal in principle to
the number of draw symbols in the generator string, but see below), and the distance d
in a straight line from the start to the end point of the walk, measured in turtle step units
(this number can also be deduced from the string). The fractal dimension would then be:

_ log(¥)
Tog(d)

The example gix}en below illustrates the use of the algorith;n.

* The PDOL scheme

F 1= F+F--F+F
= ‘
with axiom F--F—-F and a turtle graphic mterpretaﬁon where {F} i is a draw symbol and
the step angle is 60 degrees, represents von Koch snowflake curve.

The string to be considered is the right hand side of the rule:
F+F—-F+F

This string describes the fractal generator. The number of steps along the walk
(N) is the number of draw symbols in the string, 4 in this case. The distance d between
the extreme points of the generator, computable from the string by applying to it the
turtle interpretation, is 3. Therefore, the dimension is: ‘

_ log® ' 2618595071429...
log(3)

in accord with the results obtained by other methods, specified b}; [Man77].
The algorithm presents the following problems: ’

e The distance d in the denominator may be zero. Computed by the previous
formula, D becomes zero. These cases may be excluded, as they do not gwe rise |
to fractal curves, but to the same ﬁgure indefinitely repeated

e Thedistance d in the d enominator may be one. Computed by the formula, D
becomes infinite. These cases are also excluded, because in every step of
derivation the curve expands and is not limited to a finite space. Therefore it is
not a fractal in the strict sense.

.49

e The length N of the visible walk may not be equal to the number of draw
symbols in the generator string. This may happen in two ways:

o The turtle graphic associated to the string passes more than once along a
set of points with a non-zero measure. The algorithm takes this case into
account, by computing a non-integer N.

Jhe turtle’ graphic associated to a derivation of the string passes more than once
along a set of points with a non-zero measure. The algorithm also computes this case by
taking a certain number o f d erivations until the quotient ¢ onverges For p erformance
reasons, this approach won’t be used in this thesis.

For the algorithm itself and further examples, refer to [AlfOla]/[AlfOOa].

50

Chapter 5
Cellular automata

51 Overview

Cellular automata (CA)- were originally introduced by Von Neumann in 1966
[Neu66] as a formal model of self-reproducing biological systems.

Cellular automata are a mathematical abstraction method, where the space, time
and states that describe the staté of the system are all considered discrete. A cellular
" automaton [Bur70][Kar95][Wol86] has three main components: a finite automaton, a
regular lattice (grid) not necessarily finite, each of whose cells contains a copy of the
finite automaton, and @ neighborhood rule that defines the set of nelghbor cells to every
position in the grid.’

The global behavior of a cellular automaton may be described locally, because
* each finite automaton in the grid takes as input the states of its neighbors. However,

cellular automata with simple local behavior may glve rise to complex dynamlc systems
[We191] :

The set of partlcular states of all the automata in the grid of a CA at a given time
is called a configuration. The grids can be seen as matrices of states with a given
dimension. The most used grids are one-dimensional and bi-dimensional.

Cellular automata have been successfully used in the practical domain, in many
different ways as simulation tools for a wide variety of disciplines: physical modeling
and simulation [Man90], biology [Erm93], fluid dynamics [Mar86], pattern recognition
[Bor91], to study the logical organization behind self-reproduction [Lan84]; traffic
simulation [Nag94] [Sch93], and urban development simulation [Mes99][War99]; and
in the theoretical domain, where they have been used as parallel computer abstract
architectures [Ima98] [Lin90] [Mor92] [Tof77]. In [Nor89][Cul90] cellular automata
were connected with formal languages. They have also been used as a standard method

_to study other decentralized spatially extended systems . CA’s have also been used as an
alternative method to solve differential equations [Tof77], and to simulate several
physical systems where differential equations are useless or difficult to apply [Tof77]

5.2. Description and types of Cellular automata
There are many different types of cellular automata that differ on their

components. These components are the states of the cell, the geometrical form of the
lattice, the neighborhood of a cell, and the local transition function. In the following, we

51

will give a standard formal definition of classic cellular automata, indicating later some
of their more or less usual variants. '

5.2.1. Lattice

In cellular automata, sets of finite automata are distributed over a regular’

- topological structure, usually associated w1th a matrix, with no limitation on its

dimension (possibly mﬁmte even).
Definition

Given a set E,

" given z sets of indices not necessarily finite (subsets of increasing contiguous integer

numbers starting at 0) {{,}/7 , LS Z Vi. .

an n-dimensional lattice over E is any function
R: onllx.-‘..xln.‘l —E,
Rgo,...,in-1) = Ro,....n-1 OF R0, 2.,in-1
Y (is- « -sin-1) €loxT1%... XI5

Both notations will be used. (
Examples |

e R, over R represents all the infinite vectors of real numbers.

e Ry over {0,1} represents an infinite Boolean two-dimensional lattice (grid).

. R33,3 Over Z represents a tridimensional lattlce (grid) of i mteger numbers
with a 3x3x3 dimension.

Theoretically, cellular automata may be considered to include an infinite lattice,
but in practice the lattice is always finite. Simulating infinite lattices can be done by
means of the periodic boundary condition, with a circular nelghborhood that is, for both
rows and columns, the first and the last ones are neighbors.

5.2.2. Neighborhood

The transition function defines the next state of the cell depending on its current
state and the states of its neighbors (which act as the input to the finite automaton in
the cell). There are different ways to define the nelghborhood The most common
nelghborhoods are the following:

52 -

Von Neumann’s neighborhood

e In a bi-dimensional grid, Von Neumann’s neighborhood, takes into account the
cell and its four nearest neighbors according to the Euclidean distance (see
figure 5-1). '

Vn =(5, ‘((0,0),(0,1),(1,Q),(O,-l),(-l,O)) Wwhere 5 is the number of neighbors
((0,0), (0,1), (1,0); (0, -1), (-1,0)) is the offset vector

:

e - ®—.0
|
®

Figure 5-1: Von Neumann neighborhood in a bi-dimensional grid with a central position.

}

e In a tri-dimensional grid, Von Néum_ann’s neighborhood considers the cell
under study and its six nearest neighbors according to the Euclidean distance
(see figure 5-2). ‘ :

VN = (7> ((09090)’(0’ 1 30):(1:()’0.):(0" 1 :O)>('1:O’O)’(O>O=1):(O>O:'1)))

e

pis=d

Figure 5-2: Von Neumann’s neighborhood in a tri-dimensional grid with a central position.

e Von Neumann’s neighborhood can be generalized for an n-dimensional lattice
in the expected way.

33

Moore’s Neighborhood

" Moore’s neighborhood considers the current cell under study and its eight
nearest neighbors according to the Euclidean distance.

Formally, in a bi-dimensional lattice, Moore’s neighborhood would be the
followmg, also shown in figure 5-3:

‘ V= (9, (0, 0) ¢-1,1), (0,1), (1,1), (1,0), (1 -1), (0, -1), (-1, -1), (-1,0)))

o o | @

‘t ’ 'r.
@ ® &

Figure 5-3: Moore’s neighborhood

5.2.3. Local Transition Function

A local transition function defines the next state of each finite automaton, given
its current input (the set of the states of its neighbors) and its own state.

F:0%0% > Q is the transition function that assigns. a next state to each °
" automaton in the grid, depending on its current state and the states of its £ neighbors.

This function may be described by means of two different representations forms:
Wolfram representation and De Bruijn graphs.

- Wolfram Representation

‘Wolfram [W6183] introduced a convenient numbering scheme for elementary
CA’s. First, all possible neighborhood configurations are written as bmary numbers and
listed in decreasing order.

In the.simplest CA the set of possible states is {0,1} and the lattice is one-
dimensional. The neighborhood considered consists of the three nearest neighbors
(right, left, and the current cell state). The number of possible nelghborhood
configurations is 2° = 8, and the number of possible transition functlons is 28 =256.

54

Neighborhood Transition Transition Transition ... Transition oo Transition

Configuration function 0 function 1 function2 function 54 fm;c;lim
000 . 0 1 0 . 0 ... 1
001 0 0 1 . 1 1
010 0 0 0 1 1
011 0 0 0 0 1
100 0 0 0 1 1
101 0 0 0 1 1
110 0 0 0 0 1
111 0 0 0 0 1

Table 5.1: Wolfram representation of elementary CA’s.

De Bruijn Graphs

For one-dimensional lattices, De Bruijn graphs represent the CA in the
following way, which will be clearer with an example: “Transition function 54 is
represented as in figure 5-4. The names of the nodes represent the state of the current .
cell in the lattice and their neighbors in two different ways. There is an arrow from each
node whose name represents the state of the left neighbor and the current cell, to the
node whose name is made of the states of the current cell and its right neighbor, labeled
with the value of the transition function for that neighborhood configuration. So, for
instance, f{110)=0. Therefore, there is an arrow from node 11 to node 10, with label “0”.

Figure 5-4: De Bruijn representation of rule 54 (from [Del98]).

S.2.4. Classic Cellular Automata

A Classic cellular automaton consists essentially of the following elements:

"o A finite set of input symbols.
- 55

o A finite set of states.

o A lattice, of any dimension, where each cell contains a deterministic finite
automaton.

e A deterministic transition function, defining the next state of the automaton
given its current input and state. This function is sometimes described by
means of a fransition table.

¢ An initial state of the automaton, a distinguished member of the set of states.

o A finite set of objective states.

¢ The current state.

Dqﬁnition
Given R, the n—dimensional grid of the automata.
Given Q, the set of all possible states of the (;ells in R.
We call configuration of R and Q in time ¢, and write it C(R, O, #) or simply C(t))‘
if there is no ambiguity respect to the considered grid and the set of states, an injunctive

function C dependmg of time, which a351gns at every instant in time one state to every
automaton in the grid. "

c(R,Q,t) :R>Q0
A d-dimensional deterministic cellular automaton is the six-fold
(6.G0, Q.. 1.T)
~ where |
G isa d-dimensional grid of automata.
\Q is the finite and non-empty set of possible states of the a;ztomata in the grid.

G, is the initial configuration, a mapping G, :G — Q that assigns an initial
state to each automaton in the grid.

¥ =(k,N) is a one-dimensional neighborhood.

f:0x0% > Q is the transition function that computes the next state of each
automaton in the grid, depending on its current state and the states of its £ neighbors.

T is a finite and non-empty set of final states of the automaton in the grid.

56

A v§ell-known deterministic cellular automata known as the game of life is
discussed in the next section.

The game of life

Introduced. by John Conway [Con], the game of Life is a very simple cellular
- automaton that gives rise to extremely complicated behavior, and has been proved to be
computationally complete, being able (in principle) to perform any computation which
may be done by digital computers Turing Machines or neural networks

The rcellular automaton associated to the game of Life is defined thus:
e The grid is rectangular and potentially infinite.

o The set of neighbors to a point in the grid consists of the point itself plus the eight
adjacent points in the eight . main duectrons in the compass (Moore s
neighborhood).)

e Each finite automaton has two states: empty (also called dead; represented by a
zero or a space character) and full (also called alive, represented by a one or a star
symbol *). The set of states is thus represented by the two Boolean numbers
{0,1}, or the two characters PR

e The transition function is defined by the following simple rules:

o If the automaton associated to a cell is in the empty state, it goes into the
full state if and only if the number of its neighbors in the full state i$
exactly three.

o If the automaton associated o a cell is in the full state, it goes into the
-empty state if and only if the number of 1ts nelghbors in the full state is
less,than two or more than three. :

o Inany other case, the automaton remams in ‘the. same state.
Each time step is called a "generation". The set of a11 the cells alive at a given

time step is called the "population”. In figure 5-5 we see 2 successive generations of the
game of life. : ‘ ’ .

.o . ..
;- 3 B i) -
L e - ' : - .- -
- TN N .
- . .- - - - -
“» A . e o : n. . - -
- a C - - W - - -~
: - - - o e T -
K _J : - »

Figure,5-5: a) One initial configuration for Conway’s Life. b) The second generation.

-

.

57

5.2.5. Cellular automata variants

There are many different types of cellular automata, depending on the
differences of their components. These components are the states of the cell, the
geometrical form of the lattice, the neighborhood of a cell, and the local transition
function [Sar00]. In the next section several types of cellular automata will be explained

o Cell states

In the classical model, all the cells have the same set of attributes, but it is
possible to extend the model to allow each cell to have a different set of states.

- o Topology of the lattice
-
Cellular automata can differ in the dimension of their grid and the shape of their

cells. The most common grids are one-d1mens1ona1 and bi-dimensional. In the classical
model all the cells have the same shape.

o Neighborhood

The transition function defines the next state of the-cell depending on it current
state and its neighborhood. There are different ways to define the neighborhood as
mentioned previously. i

o Transition function
b4

In the classical model, the transition function is the same for all cells. Cellular
automata that use different functions for different cells are called inhomogeneous
cellular automata. Types of cellular automata that use different transition functions have .
been studied in connection to VLSI applications [Ser90] [Cha97] [Sar98].

Non-deterministic and stochastic cellular automata use respectively non-
deterministic and probabilistic transition functions. “’

5. 3 Cellular automata and the edge of chaos

Wolfram [Wol94] studied the one dimensional bmary CA, and noticed that they
reveal the full behavior spectrum of dynamical systems. He proposed a qualitative
classification of all CA’s in four groups:

Class I: is related to limit points (homogeneous state) in the phése space.

58

Class II: is related to limit cycle (periodic structure).

Class III: is related to chaotic behaviors, unpredictable space-time behaviors.
Class IV: is related to complex behaviors, sometimes long-lived.

Some Class IV CA’s a.re, assumed to support universal computation.

This classification was initially proposed for one-dimensional cellular automata,
and was later extended by Packard [Pac88] to include bi-dimensional cellular automata.

Langton [Lan90] studied the félaﬁonship between the average dynamical
behaviors of cellular automata. He hypothesized that there is a virtual value that forces

..the CA to change its behavior from one class to another. He called this value lambda

(A). The lambda of a given CA rule is the fraction of non-quiescent output states in the
rule table, where the quiescent state is arbitrarily chosen as one of the possible k states.
For binary-state CA’s, the quiescent state is usually 0 and therefore lambda equals the
fraction of output-1 bits in the rule table.

i,angton assumed that CA’s capable of universal computation would have a
critical A value corresponding to a phase transition between ordered and chaotic
behavior [Mit94]. He used various statistics methods to classify CA average behavior at

- each A value.

54. Cellular Automata Programming

Programming cellular automata to solve a speciﬁd predefined task is considered

very difficult, because it is very hard to design or modify the local cellular automata -

dynamics, in order to perform the pre-specified global task. The best known problems

tackled in CA programming are the task classification problem, generating random
numbers, and synchronization. However, many researchers attempt to solve these
problems with different techniques, to obtain a higher performance. This problem is still’

open.

Another problem under study concerning CA’s is related to signal

transformation: how the information in the cellular automata can be interpreted as _

signals that propagated across the lattice, as we will see in following sections.

5.4.1. Task classification problem

The task problem mostly tackled in one-dimensional grids consists in foreseeing
ifthe CA, after a predefined number of iterations, will relax to a configuration of all 0’s
or all 1's, depending on the initial configuration. If the initial configuration has a
majority of 1°s, the CA should relax to all 1’s or to all 0’s. As previously mentioned, the
CA is governed by local interaction rules, which means that there is no information

59

given to the antomata about its global behavior when the neighborhood conﬁguration} is
very small, compared to the size of the grid.

This problem is considered a complex computation problem that CA should
solve, where the local transition function is encoded as a program that should execute
the input (encoded as the initial configuration) and, after a number of generations, give
rise to the output, in the form of another spatial configuration [Hor99].

5.4.2. GAs: How they work with CA

_Genetic algorithms and evolutionary computation have been used with CA’s
since 1988, when Packard [Pac88] attempted to evolve the transition function rules of
one-dimensional cellular automata to find a better performance of the Gacs-
Kurdyumov-Levin rule [Kur78]. A GKL CA.is a one-dimensional lattice with two
states (0,1) and a (<1,0,1) neighborhood, whose the lattice size is 149. He analyzed the
frequency of the CA transition function in the population as a function of the Langton
parameter A. In the final generation of his GA experiments, two different peaks were
observed in the frequency distribution around critical values of A. Considering that
Langton associated the critical value of A as a parameter-of the phase transition from
periodic to chaotic boundaries, and claimed that at this value the complex behavior
occurs [Hor99], Packard hypothesized that:

1. CA’s that are able to perform complex computation are found near the critical
value of lambda.

2. When CA rules are evolved to perform a complex computation, evolu’uon will
tend to select rules with lambda values close to the critical values

Mitchell and her colleagues [Mit93] conclude that there is no evidence for a
generic relationship between A and the computational ability of a CA. They repeated
Packard’s experiment but did not.get the same results as,those Packard obtained. The
difference between their experiment results and the results obtained by Packard is
probably due to additional mechanisms in the CA’s used in the original experiment, that
were not reported by Packard.

Later, other researches’ [M1t93][1\/[1t94a][M1t94b] have tried to-use genetic
algorithms with different parameters, or other evolutionary algorithms, to obtain better
performance than the handmade CA’s designed by Gacs, Kurdymov and Levin.
However, it was assumed that it is impossible to obtain 100% performance. ’

Capcarrere [CapO1] assumed that two conditions are necessary to correctly
classify a CA. First the density of the initial configuration must be preserved overtime
and, secondly, the density of the rule table must be one-half. This means that the
proportion of ones and zeros of the rules should be equal.

Other works [Sip96a][Sip96b] have used GA to evolve non-uniform CA’s to
solve different topics of CA programming, such as the density classification problem,
random number generation, ordering, or rectangle filling, where some of this tasks
where done on bi-dimensional CA. -

60

Paredis [Par97] used Co-evolutionary Genetic Algorithms (CGA), where two
non-interbreeding populations are co-evolved (CA function rules and initial
configurations), which interact as predator and prey. Co-evolutionary Genetic
Algorithms produce better performance than the handmade CA’s designed by Gacs,
Kurdymov-and Levin. .

Synchronization

_ The idea of programming CA’s to perform synchronization tasks has to do with
finding cellular automata that can recover the initial configuration, after N iterations, to
obtain periodic patterns around configurations of all 0’s or all 1’s. There are different
types of synchronization for example, instead of a vertical periodic pattern, we can be

_ interested in a honzontal periodic pattern synchromzatlon For more details, see
[Hor99]

1

5.4.3. Signals

Signal is a concept associated to data transmitted through the grids of CA. To
model massively parallel ¢ omputationin CA, it seems that signals could be of great
interest, they are not only a natural tool to collect and dispatch the information through
CA’s grids but more deeply, this notion appears to be a strength Wayto encode and
combme information.

In [Maz99][Ter:91] signals in one-dimensional CA are exhaustively studied.
The kind of signals possible in this type of CA could be described by means of
geometric diagrams w here successive generations of CA are shown as curves on the
diagrams.

In [Terr91] the conditions that a diagram must hold to ensure that there exist
a cellular automaton that can draw its signals are established; so, signasl could be
considered a tool for designing and programming one-dimensional CA.

Other works [Terr99] had been performed to study s1gnals in CA with
dnnens1on greater than one.

61

Chapter 6
L-Systems and Cellular Automata.

6;1. Overview

‘Different facets of the relationship between L Systems and Cellular Automata

have been explored: [Koz93] underlines the structural similarities between both -

formalisms by applying genetic programming to them, Stauffer and Sipper
[Sta98a][Sta98b][Sip97] build -cellular automata -equivalent to the turtle graphic
interpretation of some self-replicating L systems.

This cllapter summarizes the werk of the directors of this thesis [Alf00b]

concerning the p0351b111ty of generatmg L—Systems eqmvalent to given cellular
automata.

6.2. L-Systems and Cellular automata

There are several similarities between L—systems and cellular automata:

. 'Boih of them have data that can be considered their initial ~s;tates: K
o The axiom is the first striing for an L-system. |
o The initial conﬁguration ofa CA is its beginning state.
. They also have some mechanism to drive how'the system élimges:
o The set of production rules for an L—system
e The transmon function of its ﬁmte automata for a cellular automaton.

e Both architectures exhibit intrinsic parallelism: production rules and transition
function are applied simultaneously to every symbol and single automaton.

None of the prevmus works menhoned have really faced the eqmvalence .

between CA and L-systems.
In [AIfOOb] an algorithm to design L-systems equivalent to given cellular

automata is proposed. They show three preliminary examples to fully understand the
method.

63

AN

6.3. One-dimensional binary cellular automaton with three
inputs that generates the Sierph;ski‘gasket

In the cellular automaton of this example, the new state of each automaton is a
function of its own state and that of its immediate neighbors, left and right.

These Cellular automata can be defined as follows:

"Three bits are used to represent the state of the three neighbors of each
aufomaton. ’

e ' There will be 8 possible configurations 2°=8.
e Itis clear that there will be 2% possible state E:hange rules. °

e The transition function of the automaton can be encoded in decimal notation
with a number from 0 to 255, which represent the eight new state bits
corresponding to the eight input configurations.

For example, the function that correspond to the decimal number 90 Wlth binary
notation 01011010 will have the following output

State of previous State of current State of following New state of this

automaton Automaton Automaton automaton

COoOCORR, R~
Ot O QO k= O
Or—‘Or‘—H—‘OHO

Table 6-1: Cellular automata transition function 90.

It is easy to construct a (1,1) DIL system whose words correspond to the
consecutive generations of this automaton.

The alphabet is defined as Vgo={0,1}.
The set of production rules P can be directly obtained from the table
Py ={111::=0, 110::=1, 101::=0, 100::=1, 011::=1, 010::=0, 001::=1, 000::=0}.

The axiom is the binary string that represents the initial configuration of the
cellular automaton. There is one single automaton with initial state 1, and all the others
were initialized - with state 0. State 1-is represented by the * symbol. The axiom for this

- example is 0tgg=0...010...0. The following figure shows the first 24 generatlons of the

cellular automata.

The L-system for this exémple is S90= (Voo,Pog)

64

*
* %
* %
N
* *
% Xk £
* * * *
* ok ok ok %k kK ¥
* *
* x * x
* * * *
* ok ok ox * k% ¥
* * * *
* % * * % * %
* * * * * * * *
® % %k % %k % ok % % % %k k. ok ok k%
* *
* % * X
* * * *
* % x % * k% ¥
* * * *
* % * % * *® * %
* * * * ® * * *
® % ok ok k% ok K ’ ok ok kK k% ¥

Figure 6-1:The first 24 genérations of the CAg from 0...010...0

6.4. IL-System equivalent to bi-dimensional CA that s1mulate
ecosystem model

In [AIfO0b] a CA that simulates an ecosilstem is described: it has a rectangular
grid and their states represent a combination of individuals (predators and preys). There
are two possible states for every predator (e and b) and one state for the preys (x). Each

cell can have 4 individuals of every kind as maximum. The state of each cell changes in.
two alternative steps:

1. In the first step, the neighborhood of each cell i$ just itself. Predatlon and
reproduction happens according to the following rules: .

a) A predator in the q state dies if there is no prey in the same cell.

b) A predator in the a state goes into the b state 1f there are at least two prey
individuals in the same cell and there is room for a predator in the state b
in the cell. In this case one of the prey individuals dies (is eaten).

c) A pfedator in the b state goes into the a state if there is no prey in the -
same cell.

d) A predator in the b state becomes two predators in the a state
(reproduces) if there are at least two prey individuals in the same cell and
there is room for the two predators in the a state in the cell. In this case
one prey dies (is eaten).

e) The prey reproduces if there are at least two-and at most three 1nd1v1duals

in the same cell. . - //{31:1;4 =
\ | : Q%%&c(,nlqu O/‘O l

J"“ .

oy

- 65

2. In the second step, movement of predators and preys takes place. The rules for
movement use the Von Neumann neighborhood. The goal is to simulate some
kind of non-deterministic movement for each individual. Each individual
changes its direction by choosing at random one of the four possible direction
states (north, south, east and west)

It ‘is possible to devise a bi-dimensional L-system whose denved words
correspond to the generations o f this automaton. F or instance, alp!'x® (that means 1
predator of type a, 1 predator of type b and 3 preys) is transformed into a®b' x* applying
the previous rules for predation and reproduction; so the following rule must belong to

" the set of rules of the bi dimensional L system:

S113 ::=S212

The total number of symbols equals the number of variations with the number of
repetitions of five elements (0,1, 2 3,4) taken 3 at a time that is 5°=125.

The equivalent L-system is ({Si}.>, P,,) . The axiom («,) is the matrix of the

initial states of all the automata in the grid, translated by means of the following
function, which converts a state of the finite automaton into a symbol of the L system:

f (a#ab#bx#x) Syt

Concerning the movement of the md1v1dua1s each of them has associated one of
the followmg special symbols {«,T,—,4}. It is not allowed that two individuals of the
same type have the same direction. If each sub index is represented as binary numbers
with four digits, each digit could be associated with a direction to indicate that there is
an individual of its type that will move to the corresponding direction. For example the
L-system state So111,1111,0010 could indicate the directions of three individuals with type
a, for example, T, - and {; four individuals with type b, pointing to the four pos31b1e
directions, and one prey, pomtmg to dlrectlon —.

The rules of the final L system wh1ch mcludes information about direction, will
have the following form: .

. Sot11,1111,0010 becomes Sot11,1111,0010,3.4,1

And the alphabet will be:
z={ Sna,nb,nx,w,eb,ex | e; is the number of ones in n; V i€ {a,b,x}}

For more details, see [Alf00b].

66

6.5. IL -System equivalent to three-dimensional CA that
generates and propagates pulses

The cellular automaton has the following three-dimensional grid:

Figure 6-2: Three dimensional cellular automaton grid

,, The neighborhood of each cell includes the cell itself and the six nearest
neighbors, the six ‘cells that.surround it at distance 1. The set of states is {0,1}. To
calculate,the next state of the automata the following rules are applied:

e Horizontal neighbor to the right are not take into account.

o If the four vertical neighbors are at state 0, the state of the considered automaton
changes no matter the value of the neighbor to the left.

e If the four neighbors in the vertical plane have state 1, the next state of the
current-automaton depends on the state of its neighbor to the left and the state of
the current automaton. The state changes when both values are not the same.

o Otherwise the automaton remains imchanged.

Agéih, it is possible to devise a three dimensional IL-system whose derived

words correspond to consecutive generations of the automaton. The alphabet of this
system is £={0,1}. The set of production rules can be defined as the follows:

P={ 0000xy0::=1 Vx,yeZ;
0000xyl::=0 Vx,yeZ;
1111x00::=0 ¥VxeZX ;
1111x01::=0 VxeZ;
1111x10::=1 VxeZX;
1111x11:=1VxeX;
otherwise xyzuvws::=s VX,y,z,0,V,w,z,s€X }.

Where the symbols of each left hand side represent the state of, respectively, the
up, down, front, back, right and left neighbors and the current automata.

67

The axiom o is the three dimensional binary array obtained from the initial state
figure (1 dark, 0 otherwise). The equivalent L system is {Z,P,a}.

It could be concluded that [Alf00b]:
e The dimension of the studied grids is not a limitation for the approach.

o The bottleneck of the approach is the fonﬁalization of the transition function of the
CA. The following technique is recommended: /

oFirst, identify the independent and radically different behavior of the automata.
o Second, design a set of production rules that shows every behavior.

oNext, put“ them as an L-system with tables, and decide where and when each
table should be used.

e One or more sets of production rules could be joined together in an L-system with
tables. Building each set of production rules is possible because every automaton
considers a finite number of nearest points in the grid as their neighborhood and
every automaton has a finite set of possible states. ,

In subsequeﬁt work - [Alf00b], the directors of this thesis show a general
equivalence theorem between probabilistic CA and L-systems. The prev1ous examples
are pamcular cases of this general result. -

Theorem: Given a probabilistic n-dimensional cellular automata A={G, G, N,
M, Q}, There is an equivalent probabilistic n—d1mens1ona1 IL system that is step-
equivalent to the cellular automata.

Where the step-equivalence relationship is defined as-follows: let A be a
probabilistic cellular automaton; let S be a probabilistic IL-system; A and S are step
equivalent if and only if for every possible configuration of the automaton A it is
possible to find a string in the language generated by S such that the probability of
being in the configuration and the probability of deriving the word from the axiom are
the same. :

More details could be found in [Alf03].

6.6 Equivalence between L-Systems and Cellular automata.

There exists some attempt to study the reverse equivalence, that is, the design of
CA that can simulate L-systems. This chapter outlines them: first the concept of signal
is introduced, and then some results in this direction are briefly described.

Signal is the name given to- the presence of information that moves across the
grid of a cellular automaton. Several authors have exhaustively studied signals in one-
dimensional cellular automata and have proposed [Terr91] [Maz99] methods to design
CA by means of the graphical definition of signals. The same authors [Terr99] have
started the study of signals in bi-dimensional CA.

68

Signals have also been identified by Wolfram [Wol94] as a condition that a
. cellular automaton must satisfy to exhibit complex behavior. So it seems clear that
signals could constitute a useful tool in the design and programming of CA.

Signals are one of the properties that make Conway’s game of life

. computationally complete. -

In [Terr91] [Terr99] s ome kind o f e quivalence between L-systems and CAis
studied. The authors propose a method to design a one-dimensional interactive CA that
generates a signal with a frequency that equals the grow function of any DOL system.
Their method really designs graphical diagrams that contain some signals that can be
generated by a one-dimensional cellular automaton.

As it will be detailed described in the corresponding chapters, the result of this
thesis greatly differs from the approach mentioned above.

69

70

“Genetic Evolution &

| ‘Eqﬂu_iva.lencve between
some Complex Systems

.
»
\
.
x
»
%
.
.

Chapter 7
Grammatical Evolution to Design Fractal Curves with a

Given Dimension

7.1. Overview

There are two techniques for generating fractal curves: determmlstlc techmques
and non-deterministic.

- Fractal curves of a given dimension can be obtained by means of deterministic
. techniques, by applying certain tools that use some measure of the regularity of
continuous real functions with a single real variable. Holder exponent is one of these

tools [Gui98]. In [Da098] three different methods are described to build a function that

interpolates a set of points with a presciibed local regularity, measured by Holder

exponent. Holder exponent is calculated by means of Schauder basis [Jaf95], using. -

Weierstrass type functions and by a generalization of Iterated Function Systems (IFS).

In this chapter we propose a new method that applies a non-deterministic

technique to work on a formal representation of the target system, rather than the real

curve. This approach seems more flexible and general, because formal models as
Lindenmayer grammars are powerful enough to simulate a wide range of different
complex systems. We expect our technique to be also applicable to other domains that
can be described in a similar way.

This “chapter extends Grammatical Evolution (described in chapter 3) to

Lindenmayer systems, to.solve the problem of obtaining arbitrary fractal curves with a .

given dimension. Other evolutionary algorithms, rather than Grammatical Evolution,
have been applied by other authors to L systems. Ochoa [Och98] evolves DOL systems
with a single rule that generate shapes similar to plants. Other authors
- [Hor03][Jac94][Tra96] make parametric L systems evolve (an extension of
Lindenmayer grammars described in chapter 3), where they are faced with the important
problem that parametric systems are not closed under the action of genetic algorithms.
Grammatical Evolution would solve this problem easily, because it ensures that the
generated grammars are syntactically correct. We are not tackling this problem here and
leave it as future work, for in the case described in this chapter we are using DOL
systems (which are not parametric). In this particular case, simple genetic algorithms
would have been sufficient. However, we have grounds to prefer the Grammatical
Evolution approach, as explained in the conclusions, in the final part of this thesis.

73

~ 7.2. The desxgn of L-Systems that represent curves with a given

fractal dimension

Designing fractal curves with a given dimension is relatively easy for certain
values of the desired dimension, but very difficult for others. The following L-system
rules represent (with a turtle graphic interpretation based on an angle step of 60 degrees)
the iterators for three different fractal curves with the same dimension: 1.2618595... (log
4 / log 3). The first one, as shown above in chapter 4, corresponds to von Xoch’s
snowflake curve. All four, and a few more, could have been obtained by hand, by a
simple geometrical study of the curve iterator.

F ::=F+F--F+F
F ::=F+F-
F ::=+F-FF-F+

F.= F+F-F-F+

On the other hand, designing a fractal curve with a dimension of 1.255 would be
much more complicated. The ﬁrst step would consist of obtaining two integer numbers,
a and b, such that

D=1255=loga/logh

This step could be relaxed to asking for two integers a,b such that the giveﬂ
dimension would be approximated w1th1n some degree of accuracy (for instance, with
an error less than 0.001).

The second step would be to design a geometrical iterator such that it would take ,
a steps to advance a distance equal to b.

Although there is no solution for every positive real number D, there is always a
solution for positive rational numbers v .

D=p/q with p ,q positiye integers

In this case, we would like to find two numbers a and b such that

log(a) Py gt op
logd) ¢ '

¥

For any integer x>1, a=x ? and b x? isan analytlcal solution for the previous
equation.

74

Example:
D=1.6=p/q=16/10=8/5. In this case,a=x" b=x’
For x=2, a=2°b=2°

log(2°%) 8log(2)
. log(2%) 510g(2)
Usmg the previous equatlon to generate a graphlcal shape is complicated,

because we would need to design a fractal that walks 2 —256 steps to advance only
2°=32 steps with a specific angle.

We solve this problem automatically by means of Grammatical Evolution. Our .

geneticalgorithm acts on genotypes made o f v ectors o f integers and makes use of a
fixed grammar to translate the genotypes into an intermediate level, which can be
interpreted as a rule for an L system which, together with a turtle graphic interpretation,
generates the final phenotype: a fractal curve with the desired dimension, or an
approximation of the same.

7.3. The developmental algorithm Ny !

. The initial population consists of 64 vectors of 8 integers in the interval [0,10].
The genetic algorithm later generates vectors of different lengths. Each number
represents a rule from an L-system. Other intervals (such as [0,255]) can be used, so as
to include genetic code degeneracy, i.e. when different integers in the previous interval
(different genes) represent the same L-system rule, as we will see later. This has been
tested and it also works, although no significant improvement in performance has been
detected. .

In our first experlment the genotype of one individual in the population (a
~ vector of n integers) is translated by making use of the following DOL grammar:

0: F ::= F

1: F ::= FF

75

9: F ::= -
10: F ::= €
where ¢ is the empty striﬁg

The translatlon from the strings of codons (the vector of integers) is performed ‘
according to the following developmental algorithm: '

1. The axiom (first word) of the DOL grammar is assumed to be F.

2. As many elements from the remainder of the genotype are taken (and removed)
from the left of the genotype as the number of F’s in the current word. If there
remain too few elements in the genotype, the required number is completed
circularly.

3. The current word derives a new word in the following way: each F in the word is
replaced by the right hand side of the rule with the same number as the
. . corresponding integer obtained in the preceding step. If genetic code degeneracy
is used, the rule applied is that one whose number is the remainder of the
corresponding integer modulo 11.

4. If the genotype became empty in step 2, the algorithm stops and the last derived
word is the output.

If the derived word has no F’s, the whole word is replaced by the axiom.
5. Go to step 2.

In any derivation, the following implicit rules are also applied:

Let us look at an example. Let us suppose that we are translating the following
7-element vector: :

10 6 76 02 7
We start from the axiom:
F

It contains one F, Therefore, at step 2 we extract one element from the left of the
genotype (10). The remainder of the genotype becomes ¢

6 76 027

In step 3, by applying rule 10, the axiom derives € (the empty. string). The
~ derived word has no F, thus in step 5 we replace it by the axiom:

] - : 76

.F

This is the second word in the derivation. We go back to step 2. The current
word contains one F. Therefore, we take one element (6) from the remainder of the ’
genotype, which becomes

76 0277
In step 3 we now apply rule 6 to the only F, deriving:
‘ | F+F

. ‘This is the third word in the derivation. We go back to step 2. The current word
contains two F’s. Therefore, we take two elements (7 6) from the remainder of the
genotype which becomes : .

027

 Wenow apply rule 7 to the first F and rule 6 to the second F in F+F deriving:

F- F+F+F

_This is the fourth word in the derivation. We go back to step 2. The current word .
contains four F’s. Therefore, we should take four elements from the remainder of the
genotype, but we only have three. We completé the required number circularly and take
(0,2,7,0). The genotype vector is now empty. We now apply rule 0 to the first F, rule 2
to the second, rule 7 to the third and rule 0 to the fourth F in F-F+F+F, deriving:

 F-PHEF+F {
“This is the last word in the derivation, the result of the algorithm,
We can now simplify the. output by erasing unnecessary +-'pair's, if any (there
are none in this case). We may also add or delete + or - signs at the beginning or the end
of the word, so that the turtle ends its movement in the same direction it started (this is a

requirement for some of the theorems we are applying). In this case, we get F-F++F-
F+F-. The rules of the DOL system generated by the developmental algorithm are:

F ::= F-P++F-F+F-
T = o+

Using an interval larger. than the number of rules (e.g. [0-255] with the eleven .
rules seen before), tests the use of degeneracy. In this case, rule 7 (for instance)
corresponds to 23 different genes: -

7, 18, 29, 40, 51, 62, 73, 84, 95, 106 117 128, 139, 150, 161, 172, 183, 194, 205, 216
227, 238, 249

The chosen rule is the gene number modulo the number of productzon rules in
_the L-system. -

77

. The typical genetic operators (mutation and cross-over) will affect the new
individuals in the population. Depending on the interval used, their behavior will be
slightly different. For instance, with the [0-10] interval, when the mutation is applied to
gene 7. the probability to chose the same gene for the next generation is 1/11. On the
other hand, if we work in the [0-255] interval, rule-number 7 can be applied with
different genes, and the probability of obtaining an equivalent gene after a mutation
decreases to 23/256

7.4. The genetic algorithm

" We cannow apply the algorithm d escribed in c hapter 6 to compute, from F -
F++F-F+F-, the dimension of the fractal curve obtained from the DOL system by means
of a turtle graphic interpretation with a given angle step. This dimension can be
compared to the target dimension, providing a fitness rule for the genetic algorithm.

The scheme for the genetic algorithm is as follows:

1. Generate a random population of 64 vectors of 8 integers in the [0,10] or the
[0,255] interval.

2. Translate every individual genotype into a word in the alphabet {F+-} usmg the
developmental algorithm described above

3. Compute the dimension of the fractal curves represented by the corresponding
DOL system

4. Compute the fitness of every genotype as 1/|target - dimension]. -
5. Order the 64 genotypes from higher to_ lower fitness.

6. If the fitness of the genotype with the hlghest fitness is higher than the target
fitness, stop and return this genotype

.

7. From the ordered list of 64 genotypes obtained in step 5, remove the 16
genotypes with 1east fitness (leaving 4 8) and take the 16 genotypes w ith m ost
fitness. Pair these 16 genotypes randomly to make 8 pairs. Each pair generates
another pair, a copy of their parents, modified according to four genetic
operations. The new 16 genotypes are added to the remaining population of 48 to
make again-64, and their fitness is computed as in steps 2 to 4.

8. Go to step S.
The four genetic operations mentioned in the algorithm are:
e Recombination (applied to 100% generated genotypes). Given a pair of

genotypes, (X1, X2 ... Xn) and (y1, y2 ... Ym), @ random integer is generated in the
interval [0, min(n,m)]. Let it be i. The resulting recombined genotypes are: (xi,

X2 oo Xicl, Yi> Yitl - Ym) a0d (Y1, Y2 o ¥i-15 Xip Xi#1 «o. Xn)-

78 -

e Mutation (applied to nl % generated genotypes if both parents are equal, to n2
% if they are different). It consists of replacing a single random element of the
vector by a random integer in the same interval.

e Fusion (applied to n3 % generated genotypes). The genotype is replaced by a
catenation of itself with a piece randomly broken from either itself or its
brother’s genotype. (In some tests, the whole genotype was used, rather than a
piece of it).

¢ Elision (applied to 5% generated genotypes) One integer in the vector (in a
random position) is eliminated.

The last two operations allow longer or shorter genotypes to be obtained from
the original '8 element vectors. The optimal values of nl1 (100), n2 (100) and n3 (25)
have been obtained by means of a set of 22 tests that combine different angles and target
dimensions. Table 7.1 shows that these parameters are important, for different
combinations of values give rise to very different computing times. -

Average generations Average CPU time

20 20 5 6668 ‘ 1838
50 .20 S . 2979 1888
30 - 50 5 3794 3211
80 10 5 2625 1590
80 80 5 3917 1430
100 100 5 2216. 1007
100 -|. 100 1 10172 : 4776
100 . 100 10 1027 615
100 100 25 146 176
100 100 50 - | 7 163 497
100 100 |° 90 49. _ 497

Table 7-1: Results of experiments to get optimal values of genetic operation rates.

The algorithm has three input parameters: the target dimension, the -target
minimum fitness, and the angle step for the turtle graphics interpretation. "

7.5. Parallels to biological evolution .

This procedure is similar to biological evolution in many respects. There are
three different levels (see figure 7.1):

1. The genotype (nucleic acids), here represented by vectors of integers. Each
integer can be considered comparable either to a gen, or to a codon (a triplet of
nucleotids, the basic unit for the translation of a gen into a protein).

2. The intermediate level (proteins), here represented by words on the {F,+,-}
alphabet. The translation from the genotype to the intermediate level is
performed using a fixed grammar (the equivalent of the fixed genetic code).

79 -

3. The final phenotype (organisms), here répresented by the fractal curves, which
are obtained from the L systems built from the intermediate level words by
means of a turtle graphic interpretation.

- The use of the interval [0,255] for the first level introduces a form of code
degeneracy, similar to that in the biological genetic code, where the same aminoacid

may be represented by more than one codon. In our case (as explained before) the same

rule in the grammar may be represented by 22 or 23 different integers. This is a degree
of code degeracy much larger than the biological one, where the maximum number of
codons that represent the same aminoacid is four. Intermediate degrees could be
experimented easily, but we chose not to do it, seeing that degeneracy doesn’t seem to
affect performance in this case.

80

INTEGER STRING | | LWR |

| F-F4++F-F+F-

Fixed Grammar
Translation Algorithm

. Genetic Code
DNA] Ribosome

LEVEL 1 LEVEL2) LEVEL3

Figure 7-1: Parallels between our Grammatical Evolution approach and biological evolution.

7.6. Evolﬁng the turtle angl;:

In a second experiment, we take the angle step for the turtle graphics
interpretation out from the input parameters and evolve it at the same time. To do that,
the genotype of each individual in the population contains one more element (it is-a
vector of n+1 integers). The first element (or its remainder modulo 11) is interpreted as
an index to a vector that defines the angle to be used in the graphic interpretation of the
phenotype. Eleven possible angles have been used: 120, 90, 72, 60, 45, 40, 36, 30, 24,
20 and 18 degrees (which have been chosen among the first submultiples of 360). The
developmental algorithm is applied only. to the last n elements of the genotype. The -
- genetic algorithm applies to all the n+1 elements of the genotype. In this way, the angle
itself evolves, and fractal curves with unexpected angles may be obtained.

81

7.7. Results

The algorithm described above reaches its targets with surprising speed.
Sometimes (for the simplest dimensions, those that can be done by hand) the target is
reached in the first generation: a set of 64 random eight-element genotypes has a big
probability of including the codification of one of those phenotypes). For other, less
standard dimensions, the number of generations to reach a given approximation.to the
target is usually larger, sometimes quite large. Table 7-2 shows a few of the results we
have obtained.

Dimension Angle Nr.of tests Number of generations to reach target

1 45 10 37 to 9068
11 60 4 119 to 72122
12 45 8 188 to 11173
12 60 10 21 10 750
13 45 9 50 to 18627
13 60 4 | 14643 10 66274
125 60 2 1198 t0 3713

1255 60 15 1t0 2422

1.2618595... 60 4 . |1to2

14 | 45 10 79 to 781
14 60 10 33 to 1912
15 45 11 52t0 11138
15 60 8 12 t0 700
16 45 5 275 to 3944
1.6 60 1 116913
17 45 2 585 to 1456
17 60 8 1810 1221
1.8 45 2 855 t0 2378
18 60 13 69 to 3659
1.9 72 1 5467

1.95 90 1 956
2 45 5 1
2 90 5 1

Table 7-2: Number of generations to reach the target in a set of tests of our Grammatical Evolution
approach.

Since the algorithms use random numbers, different random seeds give different
results. We have thus obtained sets of fractal curves, sometimes quite different in
appearance, that share the same fractal dimension. Table 7-3 shows some results for a
target dimension of 1.255 and an angle of 60 degrees. In all of them, the minimum
fitness was set to 1000 (which corresponds to an error in the target dimension below
0.001). The dimension of all the results came to be 1.2549. This fractal dimension has
been computed without considering possible overlappings of the curves with
themselves. A definition of dimension that would take this into account could also be
considered [Alf00a], [Alf01a], at the cost of longer computation times, and perhaps

-

82

‘more generations. Figure 7-2 displays the. fractal curves, approximated by the fourth
derivation of the corresponding L systems.

Number of Size of L System word
generations genotype developed

Axiom

4 - 16 -F+FF+FF- F--F--F
44 7 . F-F+HF-F+F- | FHF+HF
72 -8 - FF--F+FF+ F--E--F
255 : 8 FF-FF++F- F++F++F

Table 7-3: Different fractal curves sharing the same dimension, evolved by our method.

83

Table 7-4 shows a few interesting fractals evolved by means of our algorithms.
The first one has the same dimension as von Koch’s snowflake, but with an angle of 36
degrees rather than 60. Figures 7-3 to 7-9 display the fractal curves, approximated by
the third derivation of the corresponding L systems.

Number

Dimen- of Size of L System word . Shown in
sion Angle genera- geno- developed Axiom figure
. type
tions
1.26178... | 36 27 35 +F+F---F-F+F-F+F+ F-F-F-F-F-F-F- | 103
- F-F-F
1.5018 45 2000 17 ++F-F--F+F+F F---F++F---F- 104
-] +FF---F-F++ F—F
1.8998 40 1460 41 ++F-FF-F-F---F-F---F-- | F+F+F+F+F+F+ | 105
\ F-F++ F+F+F
1.8008 45 2378 30 F-F-F-FF-F-F--F-F--F-F-" | F---F+F---F- 10.6
-F F—F
-FF-F-F+F+FF-
1.7005 60 18 22 ++FF+F+FFF+F+F+FFF | F-F-F-F-F-F - 10.7
+FFF+F+F-F+F----
1.6006 45 275 30 +F-F--F--F+FF--F+F-F- | F++F+HFHF 10.8
” FF+FF-F--F

‘ Table 7-4: A few fractal curves evolved by our method.

Figure 7-3: A fractal curve with the same dimension as von Koch’s snowflake.

84

Figure 7-6: A fractal curve with approximate dimension 1.7

~

85

b

Figure 7-9: A fractal curve with approximate dimension 1.6.

86

Table 7-5 shows finally some of the results obtained with our second
experiment, where the turtle angle itself was subject to evolution by means of the
genetic algorithm. ‘

‘ Number of

Target Actual Size of Angle

dimension dimension generations genotype evolved
1.5 1.5 5 8 90
1.5 1.5 8 14 45
1.5 1.4999 64 19 90
1.5 1.4999 176 21 90
1.5 1.5 . 50 . 9 90
1.5 1.5009 940 124 36
1.5 1.5008 1337 86 36
1.5 1.5 68 9 - 90
1.9 1.8992 1069 55 - 72
1.9 . 1.8993 1306 42 24
1.9 1.8998 1460 41 40

Table 7-5: A set of tests where the turfle angle was evolved too.

K 7.8. Examples

In this section we will show two different examples. The first one demonstrates
how the proposed algorithm evolves an L-system with a given angle and dimension.
The second example repeats the example when the angle must be evolved too.

Example 1:

In table 7-6, we can see the evolution of the algorithm when its target is finding
a curve with a dimension equal to 1.58496 (the same as Sierpinski’s gasket), and the
angle to be used is 60 degrees.

Generation no Fractal dimension L-system grammar

1 1.424828748 +F-+F+F+F

2 1.424828748 -F+F--F++F-

3 1.424828748 -F+F--F++F-

4 1.424828748 -F+F--F++F-

5 1.424828748 -F+F--F++F-

6 1.424828748 -F+F--F++F-

7 1.4924572 ~+-+FF-FF-+++FF+FF-F
8 1.654174951 +F+F--F++F+F

9 1.584962501- +F-++F+F

Table 7-6: Execution of the genetic algoritm for fractal dimension 1.58496 and

ansele 60 desrees. -

87

-

Figure 7-10 shows the axiom for the L-system.

Figure 7-10: The initiator object

The iterator for Siérpinski fractal is shown in figure 7-11.

Figure 7-11: Sierpinski’s iterator

Figure 7-12 shows the curve obtained from the preceding initiator and iterator,] ‘
after 9 iterations of the process. - L,

Figure 7-12: Sierpinski fractal after 9 iterations

The iterator for the first L-system found by the algorithm, which has the rule
F.:=+F-+F+F+F, is graphically represented in the figure 7-13.

-

88

Figure 7-13: The first iterator approximation.

Figure 7-14 shows the corresponding cur§e after 6 iterations.

Figure 7-14: The ﬁrst fractal apéroximati'on after 6
! iterations ’

From generation 2 to generation 6, a second L-system is the best approximation
(F::=-F+F--F++F-). Figure 7-15 shows the iterator.

Figure 7-15: The second iterator

After 6 iterations, the curve obtained is shown in figure 7-16.

. 89

Figure 7-16: The second fractal after 6 iterations .

Figure 7-17 shows the iterator of the best individual after 7 generatio‘ns. It has
the derivation rule F::=-+-+FF-FF-+++FF+FF-F, that corresponds to the following

- iterator:

%

Figure 7-17: The third iterator

Figure 7-18 shows the third approximation after 4 iterations.

Figure 7-18: The third fractal after 4 iterations

In generation number 8, the best L-system has the derivation rule F::=+F+F--

| F++F+F, which represents the iterator in figure 7-19.

90

Figure 7-19: The fourth iterator

Figure 7-20 shows the fourth approximation after the fifth iteration.

Figure 7-20: The fpurth fractal after 5 iterations

In generation number 9, the best production rule is F::=+F-++F+F, which is a
solution to the problem (its fractal has dimension is 1.584962501). Figure 7-21 shows
the iterator. - » .o o

Figlire 7-21: The final iterator

Which, after been applied 9 times to the hlitiatof, produces the curve in figure 7-
22. .

91

Figure 7-22: The final fractal after 9 iterations

Example 2

In this example, the algorithni also evolves the angle of the graphic

interpretation. The target dimension is again 1.584962501. The result of the evolution

process is shown by table 7-7. .

Generationn® dimension Angle L-system

1 1.424828748 120 F-FF+-F+
2.4 _11.464973521. 90 F+FFF+F--
5...11 1.654174951 120 -FF+F+-F-F+
12...57 1.556302501 ~ | 90 F+FF+FF-F- e
58...66 1.562756238 © | 90 F+FF+F+-F+F+F+FF+F-F+FF+F--F+
67...100 1.606876736 90 F+F+F+FF+F+F+F+-F+FF+F++F+F
: --F+FFFF---F~--mm--
101...138 1.593692641 90 F++FF~+-+-FFFF++-F--F+FF+FF+FF---
139...145 1.59327954 . 90 -F+F+FF+-+--FF-++FF---FF+F+--F+F-
- | F+ X B
146 - 1.584962501 | 90 -F+F+FF+-+--FF++FF-—+-FF+F--F+F-
F+

Table 7-7: Genetic algoritm execution for fractal dimension 1.584962501

-~ The fouowing ngures snow we sieps 01 W€ Process, M Loe same way as in
example 1. - .
e * Figure 7-23: the best iterator after 1 generation, angle 120.

Figure 7-23: The first iterator approximation

92

e Figure 7-24: curve produced after 5 iterations.

Figure 7-24: The first fractal after 5 iterations

o Figure 7-25: Best iterator from generations 2 to 4, angle 90.

Figure 7-25: The second fractal iterator

. Figure 7-26: The curve produced after 6 iterations.

Figure 7-26: The second fractal after 6 iterations

93

e Figure 7-27: Best iterator from generations 5 to 11, angle 120 degreés.

Figure 7-27: The third fractal iterator

e Figure 7-28: The curve produced after 6 iterations.

Figure 7-28: The third fractal after 6 iterations

i

. Figufe 7-29: The best iterator from generations 12 to 57, angle 90.

AN

Figure 7-29: The fourth fractal iterator

94

Figure 7-30: The curve produced after 6 iterations.

Figure 7-30: The fourth fractal after 6 iterations

e Figure 7-31: Best iterator from generations 58 to 66, angle 90.

Figure 7-31: The fifth fractal iterator 7

e Figure 7-32: The curve pro.duced after 4 iterations.

3

2 &
4 frsg .
Ly

" Figure 7-32: The fifth fractal after 4 iterations

- 95

o Figure 7-33: The best iterator from generations 67 to 100, angle 90.

Figure 7-33: The sixth fractal itergtor

e Figure 7-34: The curve produced after 3 iterations.

Figure 7-34: The sixth fractal after 3 iterations

Figure 7-35: The best iterator from generations 101 to 138, angle 90 degrees.

I4

Figure 7-35: The seventh fractal iterator

96

e Figure 7-3 6: The curve produced after 4 iterations.

' Figure 7-36: The seventh fractal after 4 iterations

o - Figure 7-37: The best iterator from generations 139)t0' 145, angle 90.

- -

Figlfre 7-37: The eighth fractal iterator

e Figure 7-38: The curve produced aﬁer 3 iteratioﬁs. E

Figure 7-38: The eighth fractal after 3 iterations

97

e Figure 7-39: In generation 146 we obtain the curve with the target
dimension (1.584962501) and angle equal to 90 degrees.

Figure 7-39: The final fractal iterato;

e Figure 7-40: The final curve produced after 3 iterations.

Figure 7-40: The final fractal after 4 iterations

98

Chapter 8
Evolving the game of life with a genetic algorithm
8.1. Overview

In chapter 5 we saw how cellular automata are evolved by means of genetic
algorithms to perform a predefined specific task. In this chapter we propose a genetic
algorithm that evolves two-dimensional cellular automata in a fast way, following a
direct path from an arbitrary cellular automaton to Conway's game of Life.

A genetic algorithm may be used to evolve the transition rules of a cellular aufomaton.
The algorithm we propose reaches the perfect target in about 25000 generations
Different grid sizes have been tested, but in most of the experiments the grrd size of the
automata has been restricted to a given finite size (an 8x8 matrix).

The genetic algorithm uses the two standard genetic operators: crossover and
mutation.. A large mutation rate has been found appropriate to speed—up the process,
specially when both progenitors are identical. Random density in the initial states
happens to be worse than pure randomness in this case. The algorithm performance is
relatively independent of the grid size.

. We begin, in Section 8.2, by defirting the cellular automata that will be evolved,
called life-related cellular automata. Section 8.3 describes the genetic algorithm, and
Section 8.4 introduces the experiments performed by our genetic algorithm and the
results obtained.

8.2. Concise representation of life-related cellular automata
The cellular automata which will be evolved, called life-related cellular

automata, is defined as the set of cellular automata that comply with the following
rules:

e The grid is rectangular.
e The set of neighbors to a point in the gﬁd consists of the point itself plus the
eight adjacent points in the elght main directions m the compass (Moore's

neighborhood).

e Each finite automaton has two states, represented by the Boolean numbers(

{0,13.

e The fransition function of the finite automaton associated to every point is
deterministic.

99

Life-related cellular automata differ in the transition functions of their finite
automata. Since ‘the range of the transition functions is made of the input to the -
automata (the elght states of their neighbors in a given order) and their own state, each
possible value in the range can be represented by a nine-bit Boolean vector or,
alternatively, by a number in the [0,511] interval. Each member in the set of life-related
cellular automata may thus be represented by its associated transition function, which
can be expressed as a Boolean vector with 512 elements, giving the next state of the
automaton for each of the possible 512 range values. This means that the number of
possible different transition functions is 2°'%, or approximately 10'>, an unimaginably
large number. '

8.3. A genetic algorithm that evolves into the game of Life

We have used a genetic algorithm to obtain Conway's game of Life by evolution
from a random E)opulation of life-related cellular automata, taken arbitrarily from the
full set of 10"* members. The grid has been restricted to an 8x8 square matrix.
Evolution is fast, and reaches perfect target in a few tens of thousand “steps or
generations.

”

The algorithm can be described as follows:

Create 60 random life-related cellular automata, where every random life-
related cellular automaton consists of 64 binary automatons.

—2

&1

Choose random initial conditions for the 64 automata in the 8x8 grid Two
different initial.condition families have been compared: uniform random and
random density.

Compute the result of executing a step in Conway's gamé of Life with the
chosen initial conditions, using any standard implementation. We used an
APL2 program that executes the game of life on the finite rectangular grid.
This results in an 8x8 Boolean matrix.

(981

Compute the result of executing a step in each of the 60 life-related cellular
automata with the chosen initial conditions. All the results are also 8x8
Boolean matrices.

e

5 Compare each of the results in step 4 with the result of step 3 and assigna
fitness value to each of the 60 life-related cellular automata. The fitness value
an integer in the [0,64] interval) is the number of coincidences between the
elements of the two 8x8 Boolean matrices.

Order the 60 life-related cellular automata in the order of their fitness values.

(e Y]

The ten antomata with top fitness values are paired two-by-two and reproduce,
each pair generating two new automata, which replace the ten automata with
bottom fitness values. The reproduction algorithm uses the two standard tools
in genetic algorithms: mutation and cross-over at a random point (genetic
recombination of the two 512 Boolean vectors that represent the transition
function of the two parent automata). Different mutation rates have been tested.

100

~

I3

oot

Compute statistics from the 60 current automata.

Nl

' Go to step 2., .

_ Initially, the average fitness values of the 60 automata compute around 32,
which is the number of coincidences expected from two 8x8 random Boolean matrices.
As evolution proceeds, the average fitness values increase towards 64, although the
actual values in a given step depend on the random initial conditions used in that step.

- As mutations and cross-over generate new automata, more and more of them get

increasingly larger fitness values.

We implemented the whole process in the APL2 language, wWhich is very concise
and appropriate for this application: each step in the above description of the algorithm
can be implemented by a single instruction. Additional auxiliary functions are used to
implement the standard game of Life (10 lines o f code [A1f99]), the random d ensity
generator of initial conditions (4 lines), the execution of a life-related cellular automaton
(8 lines), and the reproduction of a pair of automata (less than 20 lines).

8.4. Experiments and results

We have tested both random density and pure random values selected from the
{0,1} set for the initial condition matrices, to detect possible differences between both
families. In classical experiments with one-dimensional cellular automata, random
density has been found to be significantly better. ‘

- We have also experimented with different mutation rates. In standard genetic
algorithms, the mutation rate is usually quite low, around-0.5 percent per bit. However,
higher mutation rates are used when both parents have the same genotype, because in

that case cross-over does not have any effect.

In our case, we have used higher mutation rates applicable to a'certain number

of bits in each genotype. Different rates have been tested, and it is also better to use a
higher rate when both parents are identical than otherwise.

Figure 8-1 displays the number of differences between the best cellular
automaton and the target (the game of Life) as a function of the number of generations.
It may be seen that convergence follows a Poisson curve, being quite fast at the
beginning, and slowing towards the end. .

101

300 —
250
200

150

50

[e P 1
0 5000 10000 15000 20000 25000 . 30000

Figure 8-1: Number of differences of best evolved automaton and Conways-game of life.

\ As can be seen, the difference between the evolved life-related cellular automata

and the target Conway game of life is, at the beginning, higher than 200. When the
number of generations approach 25000, the difference falls to zero, meaning that the
best cellular automata has been found equal to thé game of life.

Mutation rate Initial conditions

Equal parents _Differe}lt pa;rents Uniform " Random
; * random density .
10%2 T 1%1 55150 >120000]
20%5 1%1 27677 >44000 .
20%5 5%2 25826 - >33000
20%S5 ~ 10%3 30242 108727
20%5 20%S5 34648 72438

Table 8-1: Number of generations to reach the goal, for different settings in the mutation rates and the
initial conditions.

102

Table 8-1 summarizes the results obtained for different configurations. An
unexpected result is the fact that.a uniform random distribution of ones and zeros in the
initial condition matrices gives better results than a random density distribution, which
is usually assumed to work better in these situ‘ations.

It is also interesting to notice that large mutation rates are advantageous in this
experiment. The x% oy code means that x percerit of the children suffer y simultaneous
random mutations in their genotypes. When both parents are different, the optimal
mutation rate seems to be around S percent.

At the beginning of the process, many different automata coexist and the
increase in the mutation rate for different parents produces the highest effect. Later,
when many automata in the population have converged to the same genotype, the effect
of the increase in the second column of the table is less notorious.

We have done some tests varying the size of the gn'd When an n*n matrix is
- used, the execution time of the algorithm per generation increases in proportlon to the
size of the grid, but the number of generations needed to reach a given. goal (an
automaton whose function differs 10 percent from the game of Life) decreases, which to
some extent compensates the i mcrease Table 8—2 shows the results obtained.

Notice that the optimal size for faster convergence happens when a 10x10 grid is
used.

Nr. of - .
eration . l'otal time (secs)
generations

Grid size secs/s

(47
(e
s
('.‘4

. - 0.39 C 11800 4602

8x8 . - 0.60° 4300 2580
_10x10 - . 038 2700 - 2376
16x16 -1.87 1. 1500 1 - 2805

Table 8-2: Convergence speed asa ﬁmctlon of gnd size..

As we see in table 8-1, the genetic algorithm reaches successful convergence in -
about 25000 generations, starting from an initial set of 60 cellular automata, chosen
randomly from a set of 2°12, The total execution tlme has been found to be relatively
independent of the size of the grid, with the opt1ma1 size around 10x10.

, “The total number of automata generated in a run of the genetlc algonthm with

25000 steps is about 250000 (ten new automata are generated in each step), much
smaller than the size o f the set o f life-related c ellular automata. T his means that the
algorithm takes a very direct search path towards the target.

-

1103

104

Chapter 9

Cellular automata equivalent-to PDOL systems

9.1. Overview

In this chapter we study the opposite direction to the one described in chapter 6.
We present a method to build a one-dimensional cellular automaton associated to a:

given PDOL system. As we saw in chapter 3 (section 3.2.1), a PDOL system is a DOL
system where no symbol may be transformed into the empty word. Our cellular
automata produce the same words and in the same order as the glven PDOL systems for
a finite number of derivations. :

Other authors have previously tackled this problem. As already said in Chapter
6, [Terr91] show that there exist interactive one-dimensional cellular automata able to
~ generate signals with frequencies equal to the growth functions of PDOL systems. These
cellular automata are designed by means of sets of signals able to solve the problem.

. In a similar way, we design one-dimensional cellular automata equivalent to
given PDOL systems but our approach differs from [Terr91] in several main features:

e Our cellular automata are not interactive; no input is needed épart fiom the

initial configuration.

e We are not interested in the growth functions, but in the generation of the same
languages, that is, our cellular automata generate the same words and in the
same order as the PDOL systems..

e The description of the behavior of our cellular automata in terms of signals is
- also possible; we are mostly mterested in the explicit definition of the whole
cellular automata.

_There is no constraint to the PDOL system considered, so the method is general
algorithm and can be used as a proof for an equivalence theorem.

[

- 9,2. One-dimensional cellular automata

In this section we define the one-dimensional cellular automata that will become
the result of the equivalence algorithm.

105

92.1. Informal description

A one-dimensional cellular automaton is a chain of automata in a straight line.

The neighborhood relationship in one-dimensional automata defines a set of
predecessors and successors. One of the better-studied neighborhoods for one-
dimensional automata consists of the automaton itself and its two nearest neighbors.

" where

9.2.2. Formal definitions |
Given ak’set E, a one-dimensional grid 0;1 E is a function
G:Z~»E
And Gli] or G,is the element of E at the i position in the grid.
R, on Eis the set of one-dimensional infmite grids on E.
A one-dimensional neighborhood ¥ is a pair

(N)

e keN is the number of neighbors of every automaton in the grid.

e N

e Z* is a vector of k integer offsets. Given the index of a position in the grid,

each offset points to a different neighbor of the automaton in this position.

 The predecessor / successor neighborhood is formalized as ¥, -= G.(- 1,0,1)).

where
e G
e 0
'S Gé
o« V

)

= (k, N) is a one-dimensional neighborhood.

A one-dimensional deterministic cellular automaton is the six-fold

(G:GOIV;Q,f::T) .

is a one-dimensional grid of automata.

is the finite and non-empty set of possible states of the automaton in the grid.

s the initial configuration. It is a mappiné

Gy:G>Q

that assigns an initial state to each automaton in the grid.

106

e f:0xQ* - Q is the transition function that assigns the next state of each
automaton in the grid depending on its actual state and the states of its £ neighbors.

e Tis the discrete time.

9.3. One-dimensional cellular automata n-equivalent to PDOL
systems

9.3.1. Informal descrfptiOn

In this section the design of a cellular automaton equivalent to a given PDOL
system is tackled. A cellular automaton is said to be n-equivalent to an L system if it is
possible to find the n first words in the language generated by the L system in a finite
number of successive configurations-of the cellular automaton. That is, there must be a
way to link:

e The axiom of the'L system: and the initial configuration of the cellular
automaton.

‘e - Each subsequent word in thé language of the L system and a configuration of the

cellular automaton, provided that the order of the derivation is preserved. That

*1s, the configuration corresponding to the first derived word must be obtained
before the configuration c?nesponding to the second derived word, and so forth.

Figure 9-1 shows the way in which the words derived by the L-system are linked

to the configurations generated by the one-dimensional cellular automata, by means of a -

link mechanism .,

-

107

t4 . ComG= C«(o)
o y
i |
@, ¢,
T
IO
v
4 ‘ 4
&, .‘.-——,-n\ w ic(?}

Figure 9-1: Definition of Cellular automata equivalent to PDOL systems

For clarity, the way in which thé cellular automaton simulates the PDOL system

is explained with an example:

Let us look at the following PDOL system S
' S—{ 2={A,B},P={A.:: —BB B::=4B}, A}

In order to build the equivalent one-dimensional cellular automaton the

following decisions have been taken: -

There will be a cell in the linear grid of the cellular automaton to contain each
symbol of the words derived by the L system.

The states of the automaton must prov1de a mechanism to insert new symbols in a
glven position and to move the old ones to their final place, because the words
increase their length as they are derived by the L system. So, the states of the
automaton must take into account not only the symbol that will finally contain the
cell, but also the substrings that will be displaced across the cell.

As a consequence of the previous point, the beginning and the end of the word must
be marked. The symbols > and < are, respectively, the left and right marker.

If a generation orily contains a set of contiguous cells embraced by the left and right
markers and every cell that has not a marker has an empty displacing substring, then

-

108

the generation contains a word derived by the L system. The symbol ¢ (blank)
represents an empty displacing substring.

Figure 9-2 show the initial generation of the cellular automaton. The symbol
contained in each cell appears over the displacing substring.. This configuration

represents the axiom (A) because there is only one cell that has not a marker and it has
an empty dlsplacmg substring.

i?‘igure 9-2: Initial generation of the cellular automaton

The behavior of the cellular automaton can be summarized as follows:
o First, the right marker is transmitted to the left until it reaches the left marker. When

this. condition is reached, the cellular automaton is ready to begin- the production
process. ’

e Second, the production rules are applied in the opposite direction. At the same time,
the symbols of the new word are dlsplaced until they find their final position.

e " At this moment, the new word has been denved and the automaton is ready for a
new denvatlon

109 -

> A < < < <
> 0 < < < <
> A < < < <
> < < < Q< <
1
> A OF o < < <
. >BB < < < <
< < < Q<
) >B < < <
< < <)
< < <

B < < <
> < < fI< <
B B < < <

: < < < < < -

B “0p < < <
' >ABR < | < < 1<
A B Of < <

0 BAB < < ’ <
A B < < <
0 0 >ABR < <
, A A < <
Q 0, ,>B <
A A <
) 0 <

Figure 9-3: Cellular Automaton — DOL system comparison: the first 12 generations of the automaton

simulate the first two derivations of the L system. The automaton subsequent states are shown in the left
, side

vVivvi]yv

\

\%

vvigvy

vvivy vy
AR EEEEEEEEEMEEEEEENERRENNEER
llllllllll;llllIlllll‘lllll

vV Vv

110

The following conditions describe the different phases of the automaton:

e The propagation of the right marker is shown in every cell that contains a symbol
distinct from the markers (<,>) and a displacing substring equal to “<”.

e After the application of a production rule, the new symbols must reach their final
position. Cells that contain the symbol < (the right marker) and a displacing
substring that begins with the left marker (>) show this situation.

e The production rules are applied in cells that contain a non-marker symbol and a
displacing substring that begins with the left marker (>). Numbers (1) and (2) label,
respectively, the cells in which the production rules A::=BB and B::=AB are

_applied. Number (3) is associated to the simultaneous application of the production
 rule B::=AB and the movement of some symbol towards its final posmon ’

xg To identify a cell that contains a symbol that is in its final pos1t10n, an empty
displacing substring (¢) is used.

Time is supposed to increase downwards. As it can be observed, when symbols
are displaced they propagate the left marker (>). In a displacing substring, the first,
‘symbol after the left marker will be finally placed in the cell containing the substring.
So the next state of this cell represents a symbol that has found its final position.
The next state of each cell depends only on its left and right neighbors.

This method is generalized and formalized in the following section.

9.3.2. Formal description °

9.3.2.a. Theorem

Given a PDOL system

S=(z.P0)

where all the components have been previously defined, and being L(S,n) the set of the
first n words generated by S, starting at and including o, there exists a one-dimensional
cellular automaton whose s equence o f states contains L(S,n) in the same order. This
- automaton is n-equivalent to S.

111

9.3.2.b Proof

Our proof is constructive. In the following paragraphs a one-dimensional
cellular automaton (A) that generates the same language that a given PDOL system (S)
is built. . .

To make the proof clearer, the following notation will be used:
e 7, =1{>}. Z, isthealphabet of the left marker.
e I, ={<}. Z, isthe alphabet of the right marker.

em

e Z,=2VZ UZ, . I, takes its name from alpilabet S extended with the

markers.
e X, =2VUEF UZ U{0} Z takes its name from alphabet Ee,,, extended with the
blank space.
k -
¢ X, .= UEL

i=1

[] Ek =Oz‘
i=1

The cellular automaton we want to build is one-dimensional. So, its grid (G) is a
vector of finite and deterministic automata G e R, on the set of deterministic automaton
induced by the cellular automaton being defined.

The predecessor / successor neighborhood (V5= B 1,0,1))) is used.

As it was suggested by the informal descnptlon each automaton must be able to
contain the following information:

e A symbol from the alphabet of the PDOL system plus the end ma;ker.s.
o A displacing string of the same kind of symbols.w |

Thus, each possible state of the cellular automaton will be a pair formally
defined as follows -

QcZ X 2o i

Where -

o k<maxpcs{|p(A)[}x|h*(w)|,where max represents the maximum.

112

e Pairs (>,>) and (<,<) are used respectively as left and right markers that fill the
- portion of the grid that remains unused.

e Pairs (A,<),,4 € X are used to propagate the right marker.

e Pairs (A,0) ,,4 € X are used when the symbol A reaches its final position.

e Pairs B,>a) ,,BeZu{0}AraeX, areused to nlove the displacing substrings.

The cellular automaton initially shows the axiom of the DOL system. 0 will be
considered always the index value corresponding to the first symbol of the words. So
G, is defined as follows: ‘

(2,0 i i=
“ >>) if "i<0
Gl)=<9. i izl
The set of final states is empty:
T=0

The transition function was informally descnbed in the previous paragraphs and
is formally defined by cases as follows:

o VA,UGZ’A‘V’L,R,SEZ‘e na,feZ AbeZtyeZ,

L f(@AEARAE)

This case maintains the left\ﬁller)unchange\d.,
2 fE@>DEIRA=)

» This case maintains the right filler unchanged.
3 f@AEIRI=EY

This case progagate th_a right marker to the begiﬂning of the grid.
4 f (L3S RBY=E)

The two pgevious cases propagate the right marker.
5. f(@>US.U4S),RB)=(4>50) ,, A= p(A)e P

This case applies the derivationrule 4:= p(A) to the symbol A, while
simultaneously moving the displacing string from its left (). -

113

6. f(L>).(4)RE)=(4>p@) ,,4:= p(4)e P

This case applies the derivation rule 4 := p(4)to the symbol A.

7. FL2U(SRB)=(<>9)

This case moves the displacing string from the left (5).

8. f((L.0)(S>Uy),R,B))=(U,0) where y may be the empty string (1)

This case stops symbo!l U in its final position.

9. f ((L,(X),(A,O),(R,B))=(A,<>) Wheré B¢< i
This case keeps symbol A in its final positioh.

The behavior of the cellular automaton can be divided in the following
phases:) o ’

1. Propagation of the right marker:

e The initial configuration contains automata that have only three kinds of
states: (>,>), (S, 9) and (<,<).

e The first and third states are main:cained respectively by means of the
first and second cases in function f . The only case of f that can be applied

to the states of the kind (S, ¢) is the third, that initiates the propagation of the
right marker. Further steps -of the propagation are done by the fourth case.
This case records that the right marker has already passed this position.

2. The production rules are applied and the resulting symbols look for their
final position: ‘

o When both markers meet at the beginning of the word, the propagation
of the right marker finishes. When this condition holds, there is a rule that can
be applied. This is accomplished by the sixth case of f . So the application of
the rules begins where the propagation of the right marker finishes, and .
_ proceeds along the word from left to right. X

e Whenever a rule is applied, a substring is placed in a cell that will finally
hold a single symbol: only the first symbol of the substring will be left in the
cell. The remainder substring must move to the right until every symbol
reaches its final position. Sometimes, these substrings can be displaced at the
same time a production rule is applied in the next cell. The fifth case is used
in this situation. The seventh case is used when only the displacement is
possible.- Whenever a symbol reaches its final position, it is* stopped (by

114 -

‘means of the eighth case) and kept there (by means of the ninth case) until the
next derivation.)

"~ 3. The éonfiguraﬁon associated to the next word is generated:
e After several steps, the cellular automaton generates the configuration
associated with the next word derived by the PDOL system. As previously

explained, this configuration has the following characteristics: .

e It contains a set of contiguous cells embraced by the left and right
" markers. ” ”

o Eachcell in this set has an empty displacing substring.

932.¢ Example

In this section, the method described in the previous proof is applied to the
PDOL system described above:)

S={ £={4,B},P={4::=BB, B::=4B}, 4}

The celluiar automaton (C) equivalent to the PDOL system S is defined as

follows:h
c =A(Gc = "REMGO(_-’V[J/.?’QC’fC’TC = (D)
where : -
. Tl?e i}ﬁﬁal configuration is

4,0) ¥ /i‘=0
C> ¥ i<o
Gol)= | (< ¥ i1
o~ The set of states is

0c = {(>>), (9, (4,0), (B0), (4,9), (B,9), (<>0), (4,>0), (B,>0)},, e %, Where
k<2\K"(4)|

e The transition function is defined as follows:

115

VAUeZ={4B} A
VLRSeZ, =Zu{><0}A
a,peZ AbeZt,yeX,

L fe(@aCAURAC>)

2. f [((L>> FJ):(<’<)’(Raﬂ))-=(<:<)’

w

fe (@ONENR=G:9
4 fo (@aEARB)=E
5. fu (LAUSLA,RB)=(A>SBB).
fe (@AUBBARE)~A>04B)
6. /o (LALARMAEB)
fe (@©)BARB)=B>AB)
7. e @AUCARBIAED)
8. Je ((L,oc)‘,(S,>Uy),(R,[3))=(U, 0) where y could be the empty string (A)

9. fo (o nO)LRBN=(1.0) where fix<

Using this transition function, we can follow the algorithm that generates a one-
dimensional cellular automata eqmvalent to the PDOL system. Figure 9-3 above shows
how this function is applied.

In the next chapter, this algorithm is extended to DOL systems.

116

Chapter 10 R :
Cellular Autqmatu equivalent to DOL Systems
 10.1. Overview

In this chapter we extend to DOL systems the equlvalence algorithm of a one-
dimensional cellular automaton equivalent to a given PDOL system. The difference is:
-that in a DOL system some symbols may be transformed into the empty string, by rules .
whose right hand part is the empty word. In this case, the cellular antomata must
provide a techmque to solve the problem of propagating the symbols to the left. A
cellular automaton is considered equivalent-to an L-system if both generate the same
~ words in the same order. Qur cellular automata produce the same words and in. the
same order as the given DOL system for a finite number of derivations. .As in the
previous chapter, there is no constraint to the DOL system considered, so the method is
a general algorithm and can be used as aproof for an equrvalence theorem

10.2. One dlmensmnal Cellular automata equlvalent to DOL
Systems. *

 10.2.1 Tnformal description

, Agam the way in wh1ch the cellular automaton s1mu1ates a DOL system is
explamed by means of'an example

S={Z={A, B ,C},P={A:;=BC, B: —-AC C —k}, ACCCB}

. I order to- build the A equlvalent one-d1mens1onal cellular automaton, new

features are added to the procedure used for PDOL systems ‘The total set of restnctlons .

is: ’
There will be cells in the linear grid of the c ellular automaton to contain the

symbols of the words derived by the L sysfem (one per cell)

The states of the automaton must prov1de some mechamsm for the following
situations:

Inserting new symbols in a given‘pesition, and then moving some to the right,
because the words can increase their length as they are derived by the L system.

Deleting symbols that are derived to A (the empty word) and therefore moving
‘other symbols to the left, because the words can decrease their length if the number of
symbols deleted is greater than the extra symbols generated by symbqls that don’t
derive A. We will use different signals to supply these mechanisms.

" Asa consequence of the previous points, the beginning and the end of the word
must be marked. The symbols >-and < are, respectively, the left and the right marker.

If a generation only contains a set of contiguous cells embraced by the left and
the right markers, and every cell without a marker contains symbol ¢, then the current
generation of the cellular automaton contains a word derived by the L system.

As the length of the derived strings can increase, we must consider that the grid
has no right end, so there are always as many right markers as needed.

Figure 10-1 shows the initial generation-of the cellular automaton. The symbol
contained in each cell appears over the displacing sub-string. This configuration
represents the axiom (ACCCB). In every cell, the upper symbol represents the state of
the cell, while the lower symbols show the string to be displaced at a given point and
the signals used in the process.

> A C C C < <
> fo 0 0 o < <

Figure 10-1: Initial generation of the cellular automaton.

- The behavior of the cellular automaton is ‘summarized in figure 10-2, which
shows twenty-one steps in the evolution of the automaton that simulate the first
derivation of the DOL system. Each row in the figure corresponds to a different step for
the cellular automaton. Time increases downwards. The first row shows the initial
generation of the cellular automaton, which represents the axiom (ACCCB) of the DOL

system. . .

118

1 2 3 4 "5 6 7
Yo JA® JCo» J Co §Co J Buwy § {53
) o go- o 0 0 {
Yo fA® J Co | Co | Cen | Bey | (&3
) 0 o Jo o S K
Yo JA® | Co | Cen [Ces | Bes | (s
) 0 Y Y (((
1>e [A® | Cen | Ces | Ces || Beo | (o3
) o Y (¢ < (
Yo | A Cas | Ces | Ces || Bes {53)
> 0 G K¢ (((
Yo [A Ces) § Ces | Ces | Bao | (&3
) (G K (((
Yo (a)A(u) Ca9 | Ces | Ces Beo | (63
1) BC B¢ <« (- (¢
Yo [Ban ["Ces "Con | Ces Beo || (e
) Y JLONE (((¢ -
Yo | Be J CanfCe» Beo) § (63
A A RN Rl S5 KO K
Y6 B Can 8(3(4‘2‘.‘ . Cuoy
e el e fo

==

10 A KER
o < " . .
i Yo J§ Be. | Can J Cus [Bey.-§ Ban Jf (63
) | B 0 <.<—- (e < (.

119

Yoo §B® J Can] Cuo
) Y 0 (e
Y6 Be | Can || Cus || Beo
) Y 0 (e (e
Yo |B® JCan | Cun]| Beo | (o
) 0 0 (e (> (
Yo. I Be JCav'Cen Ben] (e
) 0 0 (- ¢ 1<
)(s) Be | Coy |'Cos

. 0 0 <«

(s> B ® C (69) B(37> (54) (53) (53)
YAC

Figure 10-2: Cellular Automaton — DOL system comparison. (c) An erasing rule is applied. The sub-string
not yet processed is not displaced to the left, because the sub-string being displaced to the right
compensates that displacement. (B) Symbol C must disappear, because the sub-string being displaced to the
right is empty and the applied rule (C::=)) does not append new symbols. (y) At this moment, a signal (<)
is sent until it reaches the right markers. When the signal goes across a cell, its symbol is displaced to the
left. The displacement to the left of the whole sub-string ends when the signal comes back after rebounding
against the right end of the word. (8) Cells that wait for the return of signal < are marked with the symbol
{c. (€) The signal < rebounds against the right end of the word, the cells that receive the returning signal
" are marked with the symbol {,,. (1) When the returning signal encounters a cell w1th an empty sub-string,
the displacement to the left finishes and a new rule can be applied.

120

This behavior can be summarized as follows:
. The right marker is transmitted to the left until it reaches the left marker.

o The production rules of the DOL system are applied in the opposite direction. At
the same time, the extra symbols and the sub-string not yet processed are displaced until
they find their final position.

. As previously mentioned, the displacing sub-string may become empty at a
given cell. In this case, a signal is sent to the right and every symbol traversed is
displaced one position to the left. When the s1gna1 reaches the right marker it rebounds
until arriving at the original cell, and then derivations continue.

e After a word has been denved (rows 1 and 21 in figure 10-2) the automaton is
ready for a new derivation.

Notice the following situations:

. “The right marker propagates to the left when its left neighbor contams a symbol
distinct from the markers (>, <) and an empty displacing sub-string.

. After the application of a production rule, the new symbols must be moved to
their final position. This is indicated by the fact that the displacing sub-string begins
with the left marker (>).

. The production rules of the DOL system are applied in cells that contain a non-
marker symbol and a displacing sub-string beginning with the left marker (>). (a) and
(b) label the cells in which production rules A: :=BC and B::=AC are applied.

. When a sub-string is displaced, the first symhol after the left marker becomes
- the state of the cell containing the sub-string, because it has found its final position. The
. left marker and the remalmng symbols are propagated. :

o If the tule apphed has the empty word (A) as_its right hand s1de it is possible
that the sub-string that has not yet been processed (the cells -between the current
position and the right marker) must be displaced to the left. In this case the signal is
transmitted to the right until it rebounds against the right marker. The cell sends the
signal when the lower c omponent o fthe state o fits 1eft neighbor belongs to the set

{>s,,s€2}.

o Cells that have just transmitted the signal <~ are marked with the'displacing

sub-string <.. They copy their next symbols from their right neighbor. A d1scont1nuous
arrow remarks this circumstance.

. When the signal < reaches the right marker ((<,<)) it moves to the left until it
finds a cell with an empty displacing sub-string (0). Meanwhile, the symbol <, is used
to unmark the cells that were waiting for the return of the signal.

. An empty displacing sub-string (0) indicates a cell that contains a symbol that is
already in its final position.

-

121 .

When symbols are displaced, they propagate the left marker (>). In a displacing
sub-string, the first symbol after the left marker will be finally placed in the cell
containing the sub-string. So the next state of this cell represents a symbol that has
found its final position. The next state of each cell depends only on its left and right
neighbors. ’ o

This method is generalized and formalizéd in the following sections.

10.2.2. Formal description
10.2.2.1. Theorem
Given A DOL system S=(Z, P, ») where all the components have been previously
defined, and being L(S,n) the set of the first » words generated by S, starting at and

including , there exists a one dimensional cellular automaton whose states contain
L(S,n) in the same order. This automaton is n-equivalent to S.

10.2.2.2. Proof)

Our proof is constructive. In the following paragraphs, a one-dimensional
cellular automaton (A) that generates the same language that a given DOL system (S) is
built. ‘

To make the proof clearer, the following notation will be used:

o .zm1=“{>}',

is the alphabet of the left marker.
o Z,, = {<}

is the alphabet of the right marker.
. z, = {<>}

ié the alpilabet of both markers.
° zm; ={<c, <5, <}

are the signal symbols used for shortening the s’;:ring due to the A rules.
. Zem =2US, UL,
is the*alphabet % extended w1th the markers and the signals.

. z,=2UZ, Uz, Ui} : .

122

A k . ’ : *
- Ee)k =Uz,e . \ » E
i=1 . .

.k
. = =J=’

The cellular automaton we want to build is one-dimensional. As indicated in the
informal description, its grid (G) is, at least on the nght an mﬁmte vector of
deterministic finite automata. .

The predecessor / successor neighborliood Vos=(3,(-1,0,1))) is used.

As suggested by the informal descnptlon each automaton must be able to
contain the following mformatlon .

« A symbol from the alphabet of the DOL system plus the end markers.

e A displacing string of the same kmd of symbols plus the signals needed to
adjust the length of the next denved word. ..

.o Thus, each poss1ble state of the celiular.automaton Wlll be a pair fonnally
deﬁned as follows : .

ocz, x5, €0 {})}uz Uz, ufo}

where

* k<maxAeZ{|p(A)[}x|hn(w)], where maX represents the maximum.

e (>>) and («, <) are used respectlvely as left and nght markers that ﬁll the
- portion of the grid that remams unused,

o (AS),AeX areusedto propagate the \nght xilarker. .
. (A, 0),,AeX are used when the symbol A‘reaches its final position.
.. (B,>‘0L),,BXGZU{<‘},/\OLVGEI(are use‘d‘to move the displacing sub-strings.
° (C;\D),,C egu{>}Ade2kADest are usedv to shorten the deﬁved string.
The cellular automaton shows initially the axiom of the DOL system. 0 will be

considered always the index value correspbndmg to the first symbol of the words So
Gy is defined as follows . :

N | (@) i
Gl)=< &> i <o
' <9 I idal
The set of final states is empty: T =Z

123

The transition function for all the possible cases is formally defined by table 10-1:

1 |16 = 2)) =9 —
S >) < >)
3 (6> > <<5) |G
4 |G) (5,4) (>)VseX
5 (G>) >) (5,9) G>)Vsex
6 | (> > (5,9 (>>)VseZ
7 |G c>) ¢>a) | (>)Vsel, VaeE*llal_k
8 | (>>) (5,0) (5,9 5N vsses
9 |0 (5,9) (s",9) (9 ys s 7ex
10 | (>,>) (5,0) ,>a) | (0ysges ,VoeZH|o<k
11 | (,0 (s,9) 6"<5) | Oyse sex
12 | (>,>) (5,0) (s',<.) (5,0) Vs,s’eX
13 | (5,90) (5,0) (s",¢) (5.9 vs 557z
14 1 (>>) (5,0) ', (5.0 ys s ex
15 | (+,0) (5,9) (<>a) (5,0 Vs,s’ e VaeZHoj<k
16 | (>,>) (5,9 (<>a) (5,9) vrg eX,VaeZ+|ol<k
17 | (s,9) (5,9) "< | &Ovssex
18 | (>>) (5,9) (s',<) (5,0) Vs,s’eX
19 | (559 (5,0) <9 9 vysser
20 [(5,9) .9 (5, 9vssex
21 | (5,0) (5,0 ") (:9vssex
22 [> (5,0) < (5:9) ysex
23 | (5,9 (s,<) <9 | () Vs,s'eX
24 | (s,0) (5,9 (s",<) (5:9vs,e 57 ex
25 [(559 |69 "9 | &Yvseses
26 | (5,9 (59 (9" | :Yysges
27 | (>>) (5,9 ', ((s,> pls)) VseZ|p(s)#h, Vs’eX
28 | (>>) 59 |9 (5> p(s)) yses|p(s)#h
29 [(s',>s8"a) | (5,9 (s, f) (5,> ap(5)) s eZ|p(s)#A,
/\ Vs’,s”,8’”’ eZ],VoeXHal<k
30 | (5>5") | (59 (", | () ysesip(s)=h, V5’8787 €S
31 | (5',<)) (5, (<< 1 (59 Vs, s’ €X
32 [(s,¢) (5,9 (s",<) () v, . 87 3
33 (5,9 (5)vs, s e)

(s’ ¢)

124

34 | (> | >s'a) | (579 (5.0 vs ¢, 57e3, VoeX*|oj<k
35 | (>>) (5,>5'a) | ($9) (5,0) Vs, s’eX, VoceZ*”dISk
36 | (50 | (s>s'a) | (579 50y, 5,57, 57 ex, VoeZ*|laj<k
37 | (5",9) (s,>s5'@) | (59 (559 vs, &, 57 €3, YaezHol<k
38 | (59 (<>s'a) | (S,9) .9 vs, e, VoeXZ*||lal<k
39 | (5,9) (s,¢) (s",<) ("<)y 58,57 e%
40 |'(sh<) |9 | 679 6" <)y, ¢, 57 e 3
(<) |60 |G | G<veses
42 | (>>) (5,¢%) <9 <Uyge v
B (<) |G | 6) <y, ¢, 57 e
144 | (5,90) 1 (s,<) (s”,(——} (s,<.) Vs, 8,8 e 3
45 | (5',<.) (5,<.) ",<)) | (<5) Vs, s, s” €3
46 | (s",0) | G,<) (s",<.) (S’<<-)‘v’s, .
147 (S".<<-) (5,<) (".<) | (<) Vs, s',8° €
48 | (s59) <) | 6<) | <U)yg ¢ g7 e
49 | (s',9) (s,<.) (<<5) (5,<5) Vs, s’ e X
50 | (s',<.) (s,<0) | (5<5) (5,<5) Vs, 8’ € 3
51 (<) | (s<)) |9 (SIJVseXx :
52 | (.0) (,<5) | 6" () ¥se 3| p(s)=A, V', 57 € =
53 | (5',%). =< << (<, <) Vse Z, Vx#)o ,, aeZ+
|54 [&>5'a) | (S <9 (S>A)ys ge 3,V aest
55 | (>,>) (5,9 =9 (5:¢) Vse 2| p(s)=h
56 | (>>) <<5) |9 (<9
57 1659 | 6,<)) |59 (5> P(s) v | p(e)h, Vs'e =
58 | (s<)) | (5<5) <9 (5,<) Vs, s’e 2 B
59 | (&>5'2) | (59 <9 (<>a) Vs, s’e 2,V aeX+
60 | (s',9) (s,0) ">a) | 5.0vys 997 5, Voest

Table 10-1: Transition function of the cellular automaton equivalent to a DOL system.

125

s

The rows in the transition finction are explained below:
e (ases 1 and 53 maintain the right marker unchanged.
e .Cases 2 to 7 maintain the left marker unchanged.

e Cases 8 to 18 maintain symbols at tﬁeﬁ final positions.

"o Cases 19 to 22 the derivation signal is receipt by symbols at their final position

o (Cases 23 to 26 maintain ﬁncﬂmged symbols that are waiting for derivation
o Cases 271029 apply a derivation rule

e (ases 30 to 33,3910 52 and 55 to 58 handle the deletion signals.

o Cases 34 to 38 place symbols at their final positions. |

e Cases 54 and 59 move the displacing substring to the right.

This function defines the following mechanism to elimiﬁate‘symbols: the signal
< is placed to the bottom of the cell, and propagated to the right. Then the symbol in

the right neighbour is copied to the cell that contains the signal, and signal (<.) is

assigned to the bottom of the cell. This process is repeated until the end of the grid is

" reached, which is marked by (<, <). At this stage, the other signal (<.,), which indicates

that the propagation is finished, is placed at the bottom of each left cell until the cell
containing A is reached again. At that point, the derivation process can be continued.

10.3. Examples

Eiample 1 |

The example shown in section 1.3.1 can.be formalized thus;
'S={Z={A,B},P={A::=BC, B::=AC, C::=A}, ACCCB}

" The cellular automaton © eqlijvalent‘ to this DOL system S is defined as

follows:
C={Ge, Goc, Vyis, Qe ofe, T~}
where
o T];e initial configuration is “ o
» ,>) | if . i<0
G,(D) =1 (4,0),(C,0),(C,0),(C,0),(B,0) if 0<i slaxiomal

<) if i>|axiomd|

126

can.be

. . (>, >)’ (<’ <)’ (A’ 6)’ (C’ 0)’ (B3 0)’ (A, <)’ (B3 <)’ (C’<)’ I
e The set of states is Q.=1 (4,> @),(B,> @),(C,> a)(C,<),(C,<_),(B,<._),
(A<) (S5<U)(G,<00(B<,)(4:<5)

. The transition function is defined in table 10-1, and the first derivation in the §
system corresponds to the cellular automaton evolution as shown in figure 10-2,

Not all the cases in the transition function are used in figure 10-2. The following
examples show other possible cases the algorithm may have to face, and how they are
solved. *

Example 2
Let us consider a DOL systems defined thus:.
{¥={4,B,C},P={4::=4,B::=1,C::=1},ACCCCCCB}

The cellular automaton (C) equivalent to this DOL system S is defined as
follows: C A

C“—‘{Gc, GOc: Vp/s: Qc, ¢ :Tc=@}
where all the components were defined previously.

Figure 10-3 shows how the cellular au’éomaton simulates its corresponding DOL
system.

Exampie 3 ,
 {5={4,B,C}, P={4:i=BCA,B::=B,C::=B} A}

The cellular automaton (C) equivalent to this DOL system S is defined as
follows:

C={Gc: Goc, Vp/s , O, c:Tc=@}
where all the componen;cs were defined previously.

Figure 10-4 shows how the cellular alitomaton simulates the first derivation of °
_ its corresponding DOL-~system.

127

Example 4
(2={C}, P={C::=A}, C)

, The cellular automaton (C) equivalent to this DOL system S is deﬁnéd as
follows: w

C={Gc: Goe, Vp/s , Qc J‘é ;Tc=@}
where all the components were defined previously.

Figure 10-5 shows how the cellular automaton simulates the derivation of A by
its corresponding DOL-system.

128

| 2 3 4 5 6 7 8
) A fc Jc fjc jc I8 |«
) . K o R0 0 0 (
HHHHEHE B
) .
) ({ (G TEEN K¢ (
I ol ol
) i KON K¢ ({ S K
1 5 ol
) B B BC M(< { ((
Y- fc-|c C C B { (

Figure 10-3

129

y Jc Jc fc jc I8 ¢ B¢ ¢
g > <<— ((— ((— (e— <_) (()

“1 2. 3 4 | :
I
! 2 K ({
1 S F
) S K ((
T
S Bl KON T K
< IS (
i o N
i o B EN
| o f>a |«
1 c Ja ‘
) L R K

Figure 10-4

2

3

1 7.‘ | 3 4

AN
0 ({

HEEE

) { ((
AN

) « [(
A

) N R (

NN

S K K |

Figure 10-5

2.

'3

4

130 .

Chapter 11

Cellular automata equivalent'to DIL systems

11.1. bverView

In the two previous chapters 9 and 10, we have presented an equivalence
theorem between cellular automata and PDOL and DOL systems. In this chapter, we are
tackling the equivalence between cellular automata and another type of L-system, called

DIL systems. DIL systems are deterministic context sensitive systems, where the set of

_production rules determines the only way in which each symbol in the alphabet can be
- changed into a word, whenever it appears between certain substrings located at its right
and at its left. Therefore, the neighborhood of the equivalent cellular automata must be
modified, to take into account the context of the DIL system in that part of the process
when the production rules should be applied. I the next sections we will propose an

algorithm fo solve this problem, and a number of examples w111 be introduced to better .

understand the algorithm.

11.2. One dimensional Cellular Automata equivalent to DIL Systems

11.2.1. Informal description

In the previous chapters, we have shown that, for every DOL system S, there

exists a one-dimensional cellular automaton A4 that generates its first n derivations. .

Each cell in the A4 cellular automaton’s grid is associated to a symbol o fthe words
derived by system Sq. Symbols < and > mark the word’s ends and several signals are
used to insert new symbols (if needed) in a given position after applying a derivation
rule (<, >), and to reduce the size of the words (if needed) when A rules are used (¢,
>, <.). Each state of A4 has two components: one for the current cell’s symbol and
another for signals and substrings that should be dlsplaced during the derivation
process.

A new component has been added to the cellular automaton states to handle the
context: initially, cells containing symbols have an empty displacing substring (0) and a

context information equal to themselves, while the filler (g) is used as context for cells -

~ containing the markers, as illustrated in figure 11-1.

g A A A g’
> A A A <
> 0 0 ¢ <

Figure 11-1:The initial configuration of the cellular automaton
’ 131 \ ’

The automaton simulates sequentially (from left to right) the parallel derivation
process, and the context must be maintained during the whole derivation to correctly
apply context sensitive rules. Thus, some mechanism must be supplied to keep the
context information correct while the symbols are displaced to the left when A rules are
applied, and to set the appropriate context information after having finished the whole

denvatlon The following new symbol (©0”) and signal (¢°.) will be used.

The behavior of the cellular automaton equlvalent to a DIL system is
summarized by means of an example

The (1,1)DIL system is defined thus:
S={Z={AB.},
P={AAA: :=AA,AAB::——;BA,BAA::=BA,BAB::=AB,gAA: :=B,gAB::=A,AAg::?B,
| BAg:=A, xBy::=A Vx,y €2}, AAA}

Figures 11-2 and 11-3, illustrate several steps 'in the evolution of the automaton
that simulates the first derivation of the DIL system. Each row in the figure corresponds
to a different step for the cellular automaton. Time increases downwards. As it was
mentioned before, every marker cell has the filler-(g) as context information; cells
associated to symbols have an empty displacing substring (¢) and the symbol itself as
context mformatlon The behavior can be summarized as follows

. Slgnal < is propagated from right to left until it reaches the ﬁrst symbol in
the axiom. At that point, the symbol is replaced by the lefi-hand side of the
appropriate production rule, depending on its context (gAA::=B). See figure

"11-2. The rule context of the applied rule can be obtained from the top.of the

cell and its neighbors.
g A A A g
> A A A’ <
> 0 < <
:"Dg..-- am é-(-lz"' " '.A" . Y g
angm A A .
> < '
g A
> A
> >B

Figure 11-2: At the first step‘ink the derivation, signal < is transmitted to the left.

e The first symbol in the displacing substring is allocated in its final position.
A new symbol (0°) is introduced to indicate that the leftmost symbol has
already been derived in this step (maintaining the old contents of the cell, A,

132

at the top of the state). At the same time the first cell state becomes (A,B,
0”), the next cell applies its own rule (AAA::=AA), whose right hand-side is
added to the remainder of the displacing substring (A in this case).’ The

process is repeated until the right marker is reached, after the rule AAg::=B
has been applied. ‘

Signal 0’« is sent to the left to make each cell write its correct context and

replace symbol ¢’ by 0, to finish the derivation. Figure 11-3 shows these
steps. " K

g :.- .A' -------- A "‘ '-':.-."": g g
> B™pAT A < T <
> O >AA < < <
g A ::'A:.-.. -._-A'(S}'u: :::é.:: .
> B K--.. .n--A'"' <‘ <
> o o - >AB < <
g A A A g g i
> B A A < <
> 07 0’ ov >B <
g A A A g g
> B A A B <
> O & o o’ <
g A< A("': A("‘: B¢ g
> B A~ A - B <
> o 3 O b O’ <
s B A A .| B 2
> B A A B <
> 9,) O 0 <

. . Figurell-3: Ending the first derivation in the cellular automaton equivalent to the DIL system.

>

This configuration is associated with h(w), that is, the first word derived from
S’s axiom. A new derivation begins now, in the same way described above.
Rule. xBy—>)\ means that the symbol B must be erased from the string
wherever it is. When this rule is applied, all the symbols to its right must be

~ displaced one position to the left, because the displacing substring of B’s left

neighbor has no symbol. Signal < is sent to the right end while displacing’

- each symbol. Each cell traversed by the-signal is marked with the symbol <.

Context. information must be handled carefully, because it must be kept
unchanged until the whole derivation finishes. If context information is simply
displaced to the left on the cell that contains the deleted B, the context will
become “gAABg” rather than “gBAABg,” which is the correct one. To avoid
this mistake, the context of B’s left neighbor is “added” to B’s context as
shown in the example.

133

e When signal < reaches the right end it rebounds (turned into <.,) until
reaching the cell that originally contained the deleted symbol, while it changes
the <. symbols to the marker < (see figure 11-4).

g B A A B G
> B A A B <
>))) < <
g A B g
> A B <
> < < <
g oA B g
> PA "B ~< -
> S L o<
. g A B g ,
> A B <
> <~ < <
g BA. | A B: | &5 | e
> A A¥ B <> <
> <. <. <. < <
e |. BA A B 0 g
> A A B <. <
> <. <. <, _< <
g g g
. > < <
> < <

Figure 11-4: The cellular automaton mechanlsms to generate the second word derived by the DIL-
system. -

Notice that the context (gBAABg) has been correctly kept during the deletion of
symbol B, hence the rule BAA—>BA can now be correctly applied. Notice also that,
when a cell has a string as its context information, the symbol itself (the current content
associated to the cell) is located at the last (rightmost) position of the context. The
derivation process continues (AAB—BA) as explained before, until the rule xBy—)?» is
applied again at the right end of the preceding derived word. In this case no symbol
must be displaced to the left, because there are symbols enough to compensate B’s
deletion (see figure 11-5). ‘ .

134

g BA A B g g
> A A B < <
> >BA < < < <
2 E_?:"" T ::‘- -'.'"":: g g
> "uan ----A‘ B < <
> 0 >ABA < < <
g BA :.-.'.K..-- -"B(-M‘::: :..-.’- g
> B A-..-.T..,“B < <
> 0 o >BA < <
g BA A B g g
> B A B < <
> o o o >A <
g BA A . B g g
> B A B A <
> O 0 o o’ <
g BA A B A g
> B A B A <’
> o 0 O O <
{
g B - A B A g
> B A B - A <
> 0 O 0 0 <

Figure 11-5: The cellular automaton joins the contexts of the deleted dells and keeps it unchanged until
the end of the derivation, when a especial signal (¢°._) is sent.to the left, putting the correct context in
its place, identical to the new derived word.

in the first row 'in figure. 11-5, we.note that the cellular automaton continues
geénerating the next word derived by the DIL-system. The intermediate stage is obtained

when all the cells. have the symbol (0°) at the lowest level of the rows in the figure, -

surrounded by (g,>,>) and (g,<,<). At this point, signal ¢’ is sent to thelsft, to update
the context information, and the word h*(®) is obtained. After that, the cellular
automaton is ready for a new derivation, and so on.-

11.2.2.: Formal description

11.2.2.1. Theorem

. Given a DIL system S=(Z,P,®), where all the components have been previously
defined, and being L(S,n) the set of the first n words generated by S, starting at and
including o, there exists a one dimensional cellular automaton whose states contain
L(S,n) in the same order. This automaton is n-equivalent to S.

135

11.2.2.2. Proof

As previously, we build a constructive proof. In the next paragraphs, a one
dimensional automaton (A) that simulates the same language generated by the DIL

system is built. Notice the following notation:

. z, =}

is the alphabet of the left marker.

¢ 3,={3

is the alphabet of the righ£ marker.

. T = {<>}

is the alphabet of both markers.

¢ 3, ={<e<¢}
are the signal symbols used for shorténing thé string due to the A rules.

e - %,=3IU3,US,

i

is the alphabet % extended with the markers and the signals.

s b

me

is the signal that is used to set the right context after a derivation is completed .

. Ze=2u2mu2msu{0,0'}

. N =kzi
ek . e

i=l

k
° 2, =Uz‘

i=l

The cellular automaton we want to build is one-dimensional. As indicatedsin the
informal description, its grid (G) is, at least at 1ts right, an infinite vector of finite and
deterministic automata.

The predecessor / successor nelghborhood

Vs=(@AR+ 1, (1, -(L-1), 0,1, 2, o R R)) is used.

136

2

!

As 1nd1cated in the mformal descnptlon each automaton must be able to contain
' the following information:

e A symbol from the alphabet of the DIL system plus the end markers. .

e A displacing string of the same kind of symbols plus the signals needed to
adjust the length of the next derived Word .

e A symbol or string containing the context, which must be kept the same
during the whole derivation process.

Thus, each p0551b1e state of the cellular automaton w111 bea three-fold formally
deﬁned as follows :

Qcs, x(zx (=, u{ﬂ}))uz UZ,, U u{o}u{o'}

where
) ksiax (| p(4) PR (@), where max represents the max1mum
o (g,>,>) and (g,<,<) are used respectlvely as left and nght markers that ﬁll the

portlon of the grid that remains unused. :

o (4,B,),,4 62 U {g}and BeX are used to propagate the right marker.

o (4,B,0"),AeX are used when symbol A 'reaches 1ts intermediate pos1t1_on.
o (4,B,9),,A€X are used When symbol A reaches 1ts final posmon

o (AB>a),,BeZu{<}Aaezk ,Aeu,_lz‘ are used to move the dlsplacmg
substrings. ’

e (ACD),Cexu {>}/\ae Ek/\Dezm, are used to shorten the derived: stnng

The cellular automaton shows initially the axiom of the DIL system. 0 W111 be
considered always the index value corresponding to the first symbol ina Word So Go is

. defined as follows:

‘ (@>> - ifio
Gosalll= 9§ (5,5,9) = Vie[l, |all,, ssofi]

g,<,<) © - Otherwisé

The set of final states is empty: T=&

The transition function for all the possible cases is formally defined in table 11-1

137

cli-1,0] i0] ci+10] | f.(Cli-1}clilcli+1)
1 |(g>>) @9 . ©<9 B9 ’
2 |(g>>). (g>>) <9 | (g>>)
3 | (e>>) (g>>) (g:<<.) | (&822)
4 |(g&>>) (g>>) (4,8,<) |(g>>) VABeX
5 | (g>>) (2,>,>) | (4,B,9) |(g>>) VABeX
6 |(g>>) (g>>) (4,B, |(g>>) VABeX
7 | (@@>>) (g>>) (4,B,>a) | (g>>) VdeUr T, VBeZ,VaezH|o<k
18 [(@>> (4,B,9) (C,D,9) | (4,B,0) VAB,CDex
9 | 4,B,0) | (C,D,9) (E,F,0") | (C,D,0") VA,C,EcUR,Y VB,D,JFeX
10 | (g,>,>) (4, B, (C,D,>a)| (4,B,0) VB,DeX VaeZ+H|oj<k
V4,C e UL T
11, | (4,B,9). (C,D,0") (E,F,<,) | (C,D,0') VBD,FeZ,V4,C,E e Ur, 3
12 | (&,>,>) (48,0 - | (C.D,<,) | (4,B,0) VBDeZ,V4,CeUL
13 | (4,B,0") (C,D,%") (E,F,<) | (C,D,0") VB,D,FeZ,V4,C,Ec Ut T
14 | (g:>>) (4,B,9") (C,D,«") | (4,B,0") VB,DeZ,V4,Ce XY
15 | (4,B,9") (C,D,0") (g,<.>a) | (C,D,¢") VB,DeZ VaesH|olk,
~ V4,C e UR,
16 | (g,>>) (4,B,9") (8,<.>a) | (4,B,0") VB eX,VaeZHal<k, V4 e UL E
17 | (4,B,9") (C,D,9") (E.,F,<.)| (C,D,9") VBDJFeX,VA4,C,EecUlT
18 | (g,>>) (4,B,9) (C,D,<.) | (4,B,0") ,VAB,C,DeX,V4,CeUR T
19 [(4,B,9 (C,D,0) (8<,9 (C,D;<) 'VA,B,C,DeZ
20 | (g>>) (4,B,9) (C,D,<) | (4B,<) VA,B,CDeX
21 | (4,B,0) -(C,D,0) (E,F,<) | (C,D,9 VA,B,C,D,E,FeX
22 | (g>>) (4,B,0) <9 (4,B,<) VA,BeZ
23 | (4,B,9) (C,D,<) &< 9 (C,D,<) VA,B,C,DeZ
24 | (4,B,0) (C,D,<) (E,F,< | (C,D,< VA,B,C,D,EFes
25 | (48,9 (C.D,9) (E,F,9 |(C,D,<) VBDJFeZX, V4,C,EcUr T
26 | (4,B8,9 (C,D,<) (8<<) | (C,D,<) VBDezZ, V4,Ce VR 3
27 | (g>>) (4,B,<) (C.D,<) | ((4,B,> p(B)) YA,BeZ|p(B)#A, VC,DeZ
28 | (g>>) (4,B,<) (<9 | (4,B,> p(B)) VBeZ|p(s)#h, V4 e U5
29 | (4,B,>Ca) | (D,E,<) (F.G,<) | (D,E,>ap(E)) VEeZ|p(E)=A,

V4 e UR, 3 VB,C,D,EF,GEY), VaeSH|ajck

138 |

30 | (4,B,>C) | (D,E,Q) (F,G,<)* | (D,E, <) VEeZ|p(s)=A, VB,C,E,Ge=
| VA,D,F e Uk &
31 | (4B,<,) |GD, <) (&<9 | (C,D,<) BDeZ, V4,Cer
32 | (4,B,¢) (C,D,<) (E,F,Q) | (C,D,«)VBDF €X, V4,C,Ec R
33 | (4,B,¢) (C,D,9) (&<9 | (C,D,<)VB,D eZ,V4,C e LR 5"
34 | (g,>,>) (4,B,>Ca) | (D,E,<) | (4,C,0")VB,C,D,EeS, VoeIZ o<k,
| VAe Ut s | “
35 | (g:>>) (4,B,>Ca) |(8<9) (4,C,0")VB,CeZ, VoeZH|al<k, V4 e UR, 2
36 | (4,89 | (C,D,>Ea) | (F,G,X) | (C,E,0")VBD,.EGeZ, VoeZ*|o/k,
' VA4,C,F e U}
37 | (4,B,0) (C,D,>Ea) | (g<,9 (C,E,0") VAB,C,DeZ, VaeZ*|aj<k,
L : | V4,Cce Ut T
38 | (4,B,9) @<>Ca) | (@9 (8:C.9) B Ces, Vaes*|uj<k, 74 R 5
39 | (4,B,9) (C,D,) (E,F,<) | (CE,F, <)vBDF ez, VACEe VLT
40 |(4,B,<) | (CDe) EF.9 | (BF.<)yppres, V4CEeULE
41 (4B<) |GDO) @S | (Cs<)ypp ey, VACEULY
42 | (4,B,9) (C,D,«) <9 | (Cg,<,<)) vBDes, V4Ce R
43 | (8>>) (4,B,<) (&< 9 (4g,<,<.) VBe 3, Vde UL T "
44 | (4,B,<.) . | (C D<) |(EF,¢<) |(C,D,<)VBDFe€Z,V4CEecUL T
145 | (4,B,9) (C.D,<.) -|(EF,«) | (E,F,«)VBDF eI VACEcULY
46 | (4,B,<.) |(C,D,<.) | (EF.,<,)|(C,D,<,)VB,DFeZ,V4,C,EecU’ Y
47 | (4,B,9) (C.D,<.) | (E,F,<.)|(C,D,<)VBDF €%, VA,C,Ee 5
43 (4,B,<.) |(CDx<.) |(EF,<)|(CD,<)VBDFeZ3, V4, C;E et %
49 | (4,B,9) (C,D,<.) | (EF.,<,)|(C,D,<,)VBDFeZV4C,EecU, T
50 .|. (4,B,9) (C.,D,<.) | (g<<,) | (C,D,<,)VBD eZ,V4,CeUr T
51 | (4,B,<.) |(C,D,<.) | (g<<,) |(C,D,<,)VBDeZV4CeUr T
52 | (4,B,<) | (g,<<)) (8<9 | (@< I9VBeZ,VAe U T
53 | (4,B,0) C.D,<,) |EFQ (C,D,<)VDe = | p(D)=A, V BD,EF € 2,
_ VA4,C,E.e UL T
54 | (4,5",x) (&<.9 (8<9 (85,9 VAeUl 3 Vx#a ,, aelt,
55 | (4,B>Ca) | (<9 &9 | (g,<>a)VB,Ce 5, VaetHV4e UL T
56 | (g>>) (4,B,<) &9 | (4,B,«) VBeZ|pB)=A,V4e UL

139

57

(8>>) (g,<,<,) &< (@S9

58 | (4,B,0") (C,D,<)) |E@<9 (C,D,> p(D)) VD | p(D)#A, VB,De Z,
VA4,Ce Ut T

59 | 4,B,<.) | (D<) |@&9 (C,D,<)VB,De %, V4,C e UX &F

60 | (4,<>Ba) | (859 <9 | (g,<>a)VBeZ,Vaelt, VAdeu _lz*

61 [(4,B,0) (C,D,0) (E,F,0) | (C,D,0)VAB,CD,EFez

62 |(g>>) (4,B,0'.) | (C,D,9) | (B,B0)VB,CDeZ, Vde U T

63 | (4,B,0") (C,D,0") (Cg,<<,) | (C,D,0")VB,De Z,V4,C e UL 5

64| (4,B,9") (Cg,<<s) | B |[(g<, <9 VBeZ,V4,CeUr T

65 | (4,B,9") (C,D,9) (8<9 (C,D,0'_)VB,De ,V4,C e UL, ¥

66 | (4,B,0'_) | (C.D,0) (8<9 (C,D,0)VB,De =,V4,C e UR 57

67 |(g>>) (4,B,0'.) |(&S<) (B,B,0) VBe Z,V4 e Ut 3

68 | (4,B,0) (C,D,0.) |@<) | (D,D,9),VBDeX, V4,Ce UL T

69 | (4,B,9") (C,D,0.) | (E.E) " | (D,D,9),VBD,Ee ,V4,Ce UL ¥

70 | (g>>) (4,B,<) (C,D,<) | (4,B,<)VC,De 3, VBe X | p(B)=A,
Vde UL Y

71 1 (g>>) (4,B,<) (C,D,<) | (4C,D,<_),VYBDe I, V4,Ce u"_1 5

172 | (g>>) (4,B,<.) " | (C.D,€) | (4,B,<_),VBDe 3, V4,C e R T
73 | (g>>) (4,B,<.) (C,D,<.) | (4,B,<_),VB,De 2, V4,Ce UL T
174 | (g>>) (4,B,<.) (C,D,<,) | (4,B,<,),VB,De %, V4,Ce UL Z
75 | (4,B,0Y) (C,D,<,) (E,F,<) | (C,D,>p(D)),¥D | p(D)#A, VB,D,Fe Z,
‘ VA4,C,E e UR T
76. | (g>,>) (4,B,<.) (C,D,<) | (4,B,<) VBDeZ|p®B)=A, V4,C e UL
77 | (g>,>) (4,B,<.) (C,D,<) | (4,B,> p(B)),VB]| p(B);ex VB,De Z,
o | YACeWRE

78 | (g>>) (4,B,<) (C,D,<) | (4C,D,<_),VBDe I, V4,C e Ut ¥

| (4B<.) |(Cg<<,) [EBSD |[(8<9,VBeZ, V4,CeVf T

80 | (g>>) (4,B,<_) (Cg,<<,) | (4,B,<,),VBe Z, V4,Ce VRS

81 | (g>>) (4,B,<.) &9 (4,B,<) VBe Z|p®B)=\, V4e UL T

82 | (g>>) (4,B,<_) &< (4,B,> p(B)) VB | p(B);&?L VBe 3,
V4 e UL T -

83 |(g>>) (g>>) (4,B,<_) | (g>>),VBe Z,V4 e UX, 3

84| (g>>) (g>>) (4,B,<.,) | (g>>) ,VBe Z,V4 e UR

8 | (4,B,<.) |(CD,<,) |(&F, |(CD,<),VBDFeZV4C,EecUl "

8 | (4,B,<,) |(C,D,9) (B,F,<) | (C,D,<),VB,D,Fe ZVA4,C,E e UL ¥

140

87 | (4,B,<.) | (C,D,<.) (E,F,<) | (C,D,<),VB,D,Fe ZVA4,C,E e U} 3
88 | (4B,>Ca) | (D,E,9 (8.9 | (D,E,>ap(E)) VEeZ|p(E)=A,
, V4 e UR, 5 VB,C,D,Eey, VoeS+|ol<k
89 | (4,B,>C) | (D,E,<Q (8<,9 (D, E, <) VEeZ|p(E)=A, VB,C,EeZ
VA4,D e UR T’
90 |(g>>) (4,B,9") (C,D,0) | (4,B,0"),VB,De ZV4,C et T
91 |(g>,>) (4,B,9") (C,D,0) | (4,B,0'_),VB,De ZV4,Ce UL T
92 |(g>>) (g>>) (4,B,9) |(g>>),,VBe Z,V4eUR ¥
93 | (g>>) (8,>>) | (4,B,0) | (g>>),VBe £,V4 e UL, T

Tablel1-1: Transition function of the cellular automaton equivalent to a DIL system.

11.3. Examples

- The algorithm must take into aeccount other cases, besides those previously
shown, as we can see in the following examples, where different rows in the transition
table are used.

Example 1
The DIL system is defined as the f6110wing:

. S={Z£ {A:B:} >

P={AAA::‘=AA,AAB::=BA,BAA::=BA,BAB::?AB,gAA::=B,gAB::=A, g::=B,

BAg:=A,xBy:=\A Vx)y eX}, BBABB}.
' The cellular automaton equivalent to the DIL syste;n (S) is defined as follows:
| CS,n'—'(GS,n,GOS,ﬂ,\’]S,m Qs 5.0 Tsn,) |
where '
. Gsn
is an infinite one-dimensional grid of automata
o Qsn={ \(cc;ntext, symbol, displacement)
where ‘
contexte {g} U {oylaeX ye (g} A loi< maxie o, .. (hi@)),
dispiacemente {<,<¥—,<<_,<_>,0,0’,0<_’.}:u{>0L|oceE*A|oc|5maerz{|p(A2|}x
maX;eo,...n {h'(@)[} }
141

symboleSuU{<,>}}

~® Gog;n is the initial configuration, which is defined as follows:
(8>,>) ifi<0

GOS,n[I]= (S, S, 0) Vle[la I(DI]” S=CD[i]
(& << otherwise

o Vsi=(3,(-1,0,1)) .

e The set of states is

(g8,>,>),(g,<,9,(4,4,9),(B,B,9),(4, 4,0"),(B,B,9'),(4,B,0"), "
(BB4,4,0"),(4,4,<),(B,B,<),(BBA4, 4,>),(B, B,> &),(B, B, <), (4, 4,¢),
(BB, B,<-)(BB,B,<.),(B,B,<.),(4,4,<.),(g,<,<.),(BB4, 4,<_),(8,<,<,,),
(J?,B,< (4, 4,<.,),(Bg,<,<,),(B,B,0'),(BB4,4,0')

Qc-

o £50:Qsn%Qsa 1 >Qgy is the transition function informally described in the
previous section. .

The first derivation in this example is shown in ﬁgufe 11-6.

Example 2

S={=={A,B,},
P={AAA::=AA;AAB::=BA,BAA::=BA;BAB::=AB,gAA::=B,gAB::=A,

AAg:=B,BAg:=A, xBy:=\ Vxy X}, BBB}

In this example we can see that, after several steps, the first symbol B is deleted

. and its right context information is accumulated. The deletion continues for all B’s until -
finally the empty word is obtained. The cellular -automaton equivalent to this DIL

system (S) is shown in figure11-7.

142

10

11

1 2 3 4 5 6 7

g B B ‘§ A B B g
)6 Be | B AEY B B (19) (59
) 0 0 O B0 0 {
g B ‘ A B g
) ®) B ® 1 A (61) B 23) (€0))
s i B o N e
g B | B § A B B g
) s) - B ® B ©1) A(Zl) B (24) : B(26) .((54)
) 0 0 A ('
g B B f A | | B J2&
)& I Bs | Bev] Aco] BeS] Beo (4

-) O 0 { (- ¢ B¢

g B B . A B’ B g -
) BB A Y ,

. >(83) By Awwy A(40) B §32)‘, fB @6) '(4

e [ss]A [B [B I» 5.

)EE Bl Aud] Bwy Bo0) B3l (69

g " BB A B B I Q¢
Yl gyl Aue] Bayf BEH) By (649
) ; ((— e A <— (

143

12
g BB A B | B g g
EEERC
) (e (e (e ((
g BB A B B g g
REEERRR
) { - (> { { {

15

g BB | A B [B. g g

) e (> { - K (

g BB | A B B g g
Y89 Bas | A5 Bes] Beo (9 § 9
N N (X ((
g BB A B § B g g
Y& I ey | A Bes || Beo | (69 f (69
) T e (¢ (((

16

17

18

19

g BBA B B B . 4 g
)6 § Aps | Ben || Bunf Bed G § 69
g BBA B § B B g g
YE) N Az | Bes) | Bug || Bun | (9 § (69
> <<— <<- (<« < (’ (

g BBA B B Bg g g
Y& Az | Bew | Bsn | (e | 69 (69
) <(— — ((— ' ((

g BBA B B g g g
Yl A3 | Buo | Beo] (6of 9 | (69
) <<— <‘— (—) (((

20

21

22

144

1 = BB f A B §B Bg g
)6 § gzl Ausn | Bun) | BUY § (o) (69
) < o (<— (< (<« 4 (-> (‘

g BBA | A B B g g 1
Ye) § Ay | A¢o] Bep | Beo | 6o f (69
) (. § < ({ (

23 (54

~~
T
Hc\

24

T2

~

3
w'¢

25

~ 2 QR
oy
=

26

28

1]

29

ol ~

30

~
(-] ~

31

(59
(

R~

g
B@9) {59
0 {

32

~ X
G

Figure 11-6: Derivation of AB from BBABB in the cellular automaton described in example 1

145

g4

P X

1@ Fl~w w
]
=

&
&
3

B
{

oa
A‘Qm A~ 1
£

~W =
¢gw

NN
I
=
¥ =
l
o>
u

146

12

1 2 3 4 5 6 7
g BBB | B g g g g
YR e Ben] (enf (69 (69 R (59
) (c (((

g BBB | Bz g g fe Q%

Y Begl (O (o (69 | (9] (69

) { (-

g |J BBB g g g s ¢

Yol penl (6of (so] (o] (G (69

) ¢ : (¢

g BBB g g g § & g

Yo i Bl (o] (o] (9] (6o f (69

) a { (§ ¢ { {

g |BBBg.f g g g g g
YO R (en]l (o) (o] (o] (o (6
) 4 IV IR R | ~-

g g g g § g g ' |
Yo R (OF (o)l (eof () (o] (69
) (SN NG I

Figure 11-7: Derivation of A from BBB in the cellular automaton described in example 2

. 13
14
“15
16

17

147

148

%

Conclusions & Future
| Work =

Conclusions

One of the main problems in modem Theoretical Computer Science, as
explained in the introduction (Motivation and plan of the thesis), is the design and
programming using new programming -paradigms and complex systems, such as
- Lindenmayer Systems and Cellular Automata (CA). The use of genetic techniques is not
a new approach to solve this task. Our research group is interested in developing tools
which are independent of the domain considered, thus making easier the des1gn of L-
systems and CA that exhibit a given behavior.

Several previous works have applied Genetic Algorithms (GA) to the design of
L-systems in particular domains. One of the objectives of this thesis is the
generalization of these works. We show that it is possible to consider the automatic

design of L-systems by genetic techniques as a particular case of genetic programming, -

and for the first time have applied to L-systems a general-purpose genetic programmmg

tool (Grammatical Evolution, GE) that allows evolutionary automatic programming in -

an arbitrary language.

~As previously explained, GE adds, to standard GA, a grammar directed
genotype-phenotype mapping. In this. way, the genotype representation and the search
engine are independent components of the system. This thesis describes an application
that could have been solved by means of standard GA; however, even in this simple

case, the genotype-phenotype mapping of GE does not add a significant overhead to the
performance of classic GA.

Our group has highlighted the usefulness of inferring interesting properties of a
real system from the study of the formal model that simulates it. In [Alf01a] [Alf00a] an
algorithm was proposed to estimate the fractal dimension of a family of initiator-iterator
fractals, from the study of the DOL-systems that represent them. Following this work,
this thesis shows that it is possible to solve non-trivial tasks with both theoretical and
practical interest (for example, the design of a curve with a given fractal dimension that

could be used in the fractal antenna industry) by means of genetic programming

techniques applied through the use of grammars. To achieve this objective, a
modification of GE was needed, because the original description of GE uses Chomsky
grammars instead of Lindenmayer grammars. The fitness of the population in evolution
is measured by means of the algorithm mentioned above that estimates the fractal
dimension of the curves without the need of drawing them.

The use of GA on binary CA’s has been described in detail. Most of these works

‘are, in general, interested in solving a given particular problem (e.g. classification tasks,

synchronization problems, etc...). This thesis suggests that GA can be considered a

_general tool for programming and studying CA’s. In our case, Conway’s game of life (a

bi-dimensiondl computationally complete binary C A) has been obtained by means of

standard GA. We are interested on further studying and analyzing the behavior of bi-
dimensional CA’s, and this result is a first step.

151

Our group is also interested in the formal properties of Lmdenmayer Systems
and Cellular Automata. The directors of this thesis have previously proven that there are
Lindenmayer Systems able to simulate any given CA. This thesis is a long step to prove
the reverse result: that there are CA’s able to generate the same language as any L-
System of the following families:

e PDOL
¢ DOL
e DIL

The length of the strings generated by a PDOL system increases with the number
of derivations. They cannot become shorter, because PDOL systems do not allow A rules
(erasing rules). Therefore, the number of symbols may grow exponentially. It is not

trivial to decide if it is possible to simulate this derivation process with a finite set of

states, because the number of derived words is potentially infinite, all of which belong
to the language generated by the PDOL system. Any CA. that tries to simulate a PDOL
system must provide a mechanism to displace symbols from left to right with a finite set
of different states. Such CA’s must have a number of different states (big enough, but
finite) to represent all possible “dlsplacmg substrings”. This thesis shows how the
problem can be solved by defining, for all n, the “n-equivalence™ relatlonshlp a given
cellular automaton is n-equivalent to a given PDOL system if and only if it is able to
generate (in the same order) the ﬁrst n words generated by the PDOL system.

Once the equlvalence between CA’s and PDOL systems is proven, we
considered allowing erasing rules (and so proved the equivalence between CA’s and
DOL systems), and finally took in consideration context-sensitive L-grammars (and sof
proved the equlvalence between CA’s and DIL systems)

152

Open lines of work

Our first experiment with GE and L-systems could be useful in an industrial
environment. There are several companies that currently manufacture so called “fractal
antennas”. They are really finite approximations to some well-known initiator-iterator

fractals (e.g. von Koch snowflake, Sierpinski gasket or Peano’s curve) which are only a

few among many others automatlcally generated by our algorithm. Our fitness function
is based on the fractal dimension, estimated from the DOL systems that represent the
fractals. It seems possible to design a different fitness function based on the
electromagnetic parameters of these curves wher they are used as antennas:

We hope that GE will offer its real benefits with syntactically more complex L-
systems, because it reduces the possibility of generating wrong phenotypes, when there
exists a context free grammar that describes them. This approach should also be applied
to the design and programming of other formal ¢ omputational models, such as DNA
inspired computing devices, and other bio-inspired formal systems.

Different authors have exhaustively studied the behavior of one-dimensional
binary CA’s. Sometimes it is possible to characterize and predict it by calculating a
single numerical parameter (such as Langton’s A parameter). Our group plans to use GA
as a tool to study similar properties and parameters in more' complicated CA’s (bi-
dimensional, for instance). It should be possible to design genetic searches to find CA’s
with complex behavior and simultaneously estlmate several candidate parameters to
check their validity for task under study. -

Besides the families of L-systems considered in this thesis, whose equfvalence

to CA’s has been proved, there are additional classical families (L systems with tables

and extensions) for which those equivalences must still be proved. We plan to face in
the future the design of CA’s that simulate L-systems with tables and extensions, as
well as other non-classic families of L grammars.

153

.
.
N
N
.
.
N
« . .
« M .
. 1
“ . *
”
. .
14
. .
. «
. w
.
~
- -

. ‘ 154

References
‘Bibliography

DAL
s@%ﬂfv/o"c

REFERENCE & BIBLIOGRAPHY:

tAbrO2] Patrice Abry, Richard Baraniuk, Patrick Flandrin, Rudolf Riedi, Darryl Veitch
2002.“The Multiscale Nature of Network Traffic: Discovery, Analysis, and Modelling”
IEEE Signal Processing Magazine vol 19, no 3, pp 28-46.

[Abd03a] Abu Dalhoum. A, Ortega Alfonso, Alfonseca M.,2003.

“Cellular Automata equivalent to PDOL Systems™

International Arab Conference on Information Technology -

(ACIT 2003), 20-23 Dic. 2003, Alexandna Eglpto Pub: Proceedmgs pp 819-825.

[Abd03b] Abu Da]houm A Ortega Alfonso, Alfonseca M, 2003
“Cellular automata equivalent to DOL systems.”WSEAS Transactlons on Computers, °
Vol. 4:2, p- 1159-1167,0ct. 2003. :

[A1f97] Alfonseca. M, Ortega, A., 1997 T
“A study of the representation of fractal curves by L systems and their equwalences
IBM Jr. of Res. and Dev Vol. 41 :6, p.727-736, Nov.

[AIf99] Alfonseca, M.1999 : ’
"Programmmg Cellular Automata in APL2", APL Quote Quad (ACM SIGAPL), Vol.
30:1, p. 27-30, Sep. 1999 :

[Alf00a] Alfonseca. M and ‘Ortega. A.2000
“Using APL2 to Compute the Dimension of a Fractal Represented as a Grammar”, APL
Quote Quad, 30, No. 4, 13-23 .

[A1f00b] M. AlfonsecaM Ortega.A,2000 -
“ Representation of some cellular automata by means of equlvalent L system”s,
. Complexity Internatlonal ISSN: 1320- 0682 Volume 7, p.1- 16 Feb. 2000

[AlfOla] Alfonseca, M ; Ortega , A, 2001
“Determination of ﬁ'actal dimensions from equlvalent L systems
IBM Jr. of Res. and Dev:, Vol. 45:6, p. 797-805, Nov.

FAIf01b]Alfonseca.M, Dalhoum.-A.Abu,Ortega. A, 2001

“ Evolving the game -of life with a genetic algorithm”, Proceedings of the 3rd Middle
East Symposium on Simulation and Modellmg (MESM’2001), SCS Publications,
p-165-169, ISBN: 1- 56555-230-X

[A1f03]A1fonseca M.; Ortega, A.; Suérez, A ,2003

“ Cellular automata and probablhstlc L systems: An example in Ecology, en Grammars
and Automata for String Processing: from Mathematics and ‘Computer Science to
Biology”, and Back, ed. C. Martin-Vide & V. Mitrana, Taylor and Frantis Publishers.
pp- 111- 120 Marzo 2003. ISBN: 0415298857 ‘

157

L}

[Bar88] Bransley, M., 1988.

“Fractals every where”. Academic press, San Diego.
[Bau99]Bauer.W and Mackenzie. C.D., 1999

“Cancer Detection via determination of fractal cell dimension,”
Workshop on computational and theoretical biology .

[Boe91] Boerlijst M. and Hogeweg P.1991

Self-structuring and selection: Spiral waves as a substrate for prebiotic evolution. In
C. G. Langon, C. Taylor, J. D. FarmeS5r, and S. Rasmussen, editors, Artifial Life II,
pages 255-276, Addusib. Weskey.

[Bur70] Burks.A.W,1970 ‘ .
“Essays on Cellular Automata”.(Univ. of lllinois Press, Urbana, IL, 1970).

[Cap01] Capcarrere,M.S, Sipper.M, 2001
“Necessary conditions for density classification by Cellular automata’
Physical Review E, Vol. 64, No 3, Septembre 2001. pp1-4. .

[Cha97] Chaudhuri, P.E et al. 1997
“ Additive cellular automata theory and applications Vol.1 IEEE press advances and in
circuits and systems series. IEEE press, Pisactaway, NJ.

[Con] Conway,J.H., Berlekamp,E.R., Guy,RK.,

Winning ways for the mathematical plays. New York: Academic Press, Vol 2,Cap.25

[Cul90]Culik ILK, Hurd .L.P, Yu. S, 1990.
“Computation theoretic aspects of cellular automata”. Physica D,45: 396-403 1990.

[Dan02]Danzer.K;van Staden J.F and’ Bums D.T,2002
“Concepts and Applications of the Term ‘Dimensionality”.in Analytlcal Chemistry”,
Pure Applied Chemistry, 74 No. 8, 1479-1487.

[Da098] Daoudi. K, Vehel. J.Levy and Meyer.Y.,1998.
“Construction of continuous functions with prescribed local regularity”, Journal of
Constructive Approximation, 14, No. 3 349-385 (1998). :

[Del98] Delorme, M.,1998. .
“An Introduction to Cellular Aufomata”, Research Report, No. 98-37. Ecole Normale

Superieure de Lyon.

[Erm93]Ermentrout. G.B, Edelstein-Keshtein.L. 1993.
“Cellular automata approaches to biological modeling”. Journal of théoretical Biology,

160:97-133.
[F1a98] Flake,K., 1998.
“The computational beauty of Nature.Computer exploration of fractals, chaos,complex

syst@ms , and adaptation”. The M.L.T Press

[Goe91] Goel, N. S. , Rozanel, I, 1991.
” Some non-b1olog1ca1 apphcatlons of L-systems” Int. J. General systems, Vol 18.

158

[Gol89] Goldberg.D, 1989

“Genetic Algorithms in Search, Optimization, and Machine Learning”. Addlson-
Wesley Readmg, MA.

* [Gol89] Goldberg.D, 2002 ‘
“The Design of innovation”, Kluwer Academic Publishers.

[Gui98] Guiheneuf. B, Jaffard.S and Vehel. J.Levy, 1998.
“Two Results Concerning Chirps and 2-microlocal Exponents Prescription”, Applied
and Computational Harmonic Analysis, 5, 487-492 (1998).

[Har01] Harte,D.S, 2001 N ‘
“Multifractals:theory and app11cat10ns” Chapman and Hall/ CRC Boca Raton.

[Hol67] Holland J H, 1967 .
“Nonlinear environment permitting efficient adaptation”.
Academlc Press New-York,N. Y

[Hol75] Holland.J.H, 1975,

“Adaption of Natural and Artl cial Systems” University of Michigan Press, Ann
Arbor, Mlchlgan

[Hor03] Homby.G.S, 2003. . . ;
“Generative Representations for Evolutionary Design Automation”. A dissertation
presented .to the Faculty of the Graduate School of Arts and Sc1ences, Brandeis
-University Department of Computer Science (advisor: Jordan B. Pollack), in partial
fulfillment of the requirements for the Ph.D. degree .

[Hor99] Hordijk, W,.1999 i
" “Dynamics, Emergent Computation, and Evolution in Cellular automata” PhD thesis
" New Mexico Um'versity, Albuquerque, New Mexico. : :

[Tan96] Iannaccone.P.M and Khokha M, 1996

eds., “Fractal Geometry in Blologlcal Systems: An Anelytlcal Approach” CRC Press
Boca Ratan, Fla. .

[Ima98] Imai.K, and Morita. K. K,1998
“A computation-universal two-dimensional 8-state tnangular reversible cellular

automaton”, Proc. of the Second colloquium on Universal Machines and Computations,
Vol II 90-99

[Int] http://calsses.yale.edu/fractals/randomfrac/

" [Jac94] Jacob.C, 1994
"Genetic L-System Programming." PPSN III Parallel Problem Solving from Nature, ~

International Conference on Evolutipnary Computation, Springer-Verlag, Berlin,
Lecture Notes in Computer Science 866, 334 — 343 .

[Jac96a].Jacob.C, 1996. o -
“Bvolving evolution programs:genetic programming and L-systems”.

159

http://calsses.yale.edu/fractals/randomfrac/

Proc First Annual Conference on Genetic Pro; grammmg, Stanford, USA (1996), MIT
Press, pp. 107-1 15.

_ [Jac96b] Jacob, C,1996. A)

Evolution Programs Evolved in: H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P.
. Schwefel (Eds.), Proc. PPSN-IV, Parallel Problem Solving from Nature IV, Lecture
Notes in Computer Science 1141, Berlin, GERMANY , Springer, 1996, pp. 42-51.

[Jaf95] Jaffard.S.1995
“Functions with Prescribed Holder Exponent”, . Applied and Computational Harmonic
Analysis, 2, No. 4, 400-401 (1995).

[Kar95] KanJ 1995
‘ ““Cellular Automata. An Introduction, in: G. Paun, ed., Artlﬁc1a1 Life: Grammatical
. Models” (Black Sea Univ. Press, Bucharest, 1995).

[K0z89] Koza,J. R., 1989.

Hierarchical genetic algorithms operating on populations of computer programs.

In proceedings of 11 International Joint Conference on Artificial Intelligence,San Mateo
, CAMorgan Kaufmann.

[K0z92] KozaJR, 1992
“Genetic Programming: On the Programming of Computers by Means of Natural
Selection”. MIT Press, Cambridge, Massachusetts.

[Kru78] Krudyumov. G. P. G,L Levin. 1978 .
“One dimensional uniform arrays that wash out finite islands” probl. Peredachi Inform

[Law66] Lawrence J.Fogel, Alvin J.Owens, and Michael J: Walsh.1966.
Artificial intelligence through Simulated Evolution. John-Wiley,New-York.

[Lan84] Langton G. G. 1984
Self-reproduction in cellular automata. Physica D, 10:135

[Lan90] Langton G.G,1990
“Computation at the edge of chaos : Phase transitions and emergent computation
Physica D, vol.4 ,pp.12-37.

[Lin68] Lindenmayer.'A, 1968
Mathematical Models for Cellular Interactions in Development (two parts), J. Theor.
Biol. 18, 280-315.

[Lin90] Lindgren .K and Nordahl. M,1990 ,
Universal computation in simple one dimensional cellular automata, Complex Systems,
4,299-318.. ‘

[Li97] Li Haui, Ray Liu K. J., Shih-Chung B. Lo,1997

“Fractal modeling and Segmentation for the Enhancement of Microcalcifications in
Digital Mammograms “IEEE Trans. Medical Imaging, 16(6):785—798. -

160

[Maj99] Majumdar S.,Lin .J,,Link. T., Millard. J., Augat P.1999.
- “Fractal analysis of radiographs: Assessment of trabecular bone structure and prediction
of elastic modulus and strength”. Med.Phys. 26(7).

' [Man77] Mandelbrot.B.B,1977.
“The Fractal Geometry of Nature”, W.H.Freeman and Company, New York

[Man90]Manneville. P, Boccara. N, Vichniac.Y, and Bidaux. ,1990.
“Cellular automata and modeling of complex physical systems”. Springer- Verlag,1990.
Volume 46 of Springer-Verlag proceedings in Physics.

[Mar86]Margolus. N, Toffoli.T, Vichniac. G.1986.
“Cellular automata supercomputers for fluid ~dynamics modeling”. Physics Rewiew
Letters, 56 (16):1694-1696, 1986.

[Maz99] Mazoyer. J; Terrier V., 1999.
Signals in one-dimensional cellular automata Theoreucal Compuer Science 217
(1999) 53-80

[Mel01] Mela,.K ;Louie.J.N;2001
“Correlation length and Fractal dimension interpretation from seismic data using
variograms and power spectra,” Geophysics, 66, No. 5, 1372-1378. '

[Mes99] Messina.J.P, Walsh.S.J, Valdivia.G, Taff. G,1999
The application of cellular automata modeling for enhanced landcover class1ﬁcat10n in
the Ecuadorian Amazon, IV Internatlonal Conference on GeoComputation (1999).

[Mit93] Mitchell. M, Harber. P. T Crutchfield. J. P, 1993
“Revisiting the edge of chaos: Evolving cellular automata to perform computations”
complex systems, pp.89-130 ,no. 7

[Mit94a] Mitchell. M, Crutchfiel. J. P, Harber. P. T. 1994 : d
Evolving Cellular automata to perform computations: Mechamsms and 1mped1ments.
Phys1caD 75:361-391, 1994.

[Mit94] Mitchel. M, Harber .P.T, Crutchfield. J.P, 1994

“ Dynamics , Computation ,and the edge of chaos : A re-examination “ In G.Cown
,D.Pines and D.Melzner,(eds), Integrative: Themes ,Santa Fe Institute Studies in the
study of complexity ,Proceedings Volume 19.Reading ,MA: Addison-Wesley.

[Mit96] Mitchell, M., 1996
-An introduction to genetic algorithms, MIT press.

[Mon01] Mondoloni.S and Liang.D, 2001 ' i
“Airspace Fractal dimension and apphca’uons » 37 USA/Europe ATM R& D Seminar .)

[Mor92] Morita. K,1992.
Computation-universality of one-dimensional one-way revesible cellular automata,
Inform. Process. Lett., 42 (1992) 325-329.

-

161

[Nag94] Nagel.K and Scheicher,.A ,1994.
Microscopic traffic modeling on parallel high performance computers, Parallel

Computing, 20,125: 146

[Neu66] Neumann. J .von, 1966

" Theory of self-reproducing automata, edited and completed by A. W. Burks (Umver31ty

of Illinois Press, Urbana, IL).

[Neil03] O’Neill M. and Ryan C., 2003 “Grammatical Evolution. Evolutionary
Automatic Programming in an Arbitrary Language” Kluwer Academic Publishers. 2003

[NeﬂOl] ONeill M and Ryan,C.2001
"Grammatical Evolution". IEEE Transactions on Evolutionary Computation. 5, Np.4,
349-358 (2001).

[Neil99a] O'Neill,M and Ryan. C .1999.

"Evolving Multi-line Compilable C Programs". In Proceedings of the Second European
Workshop on Genetic, Berlin, Germany: Springer-Verlag, Lecture Notes in Computer
Science 1598, 83-92 (1999).

[Neil99b] O'Neill, M and Ryan, C. 1999

"Under the Hood of Grammatical Evolution". In GECCO '99: Proceedings of the
Genetic and Evolutionary Computation Conference 1999, W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds. San Mateo, CA:

"Morgan Kaufmann, 2, 1143-1148 (1999). -

 [Neil99c] O'Neill M and Ryan C. 1999

"Genetic code degeneracy: implications for grammatical evolution and beyond".In
ECAL'99: Proceedings of the Fifth European Conference on Artificial Life, Lausanne,
Switzerland, 149-153 (1999).

[Nor89] Nordahl. M.G,1989.
Formal languages and finite cellular automata.Complex systems 3:63-78,1989

[Och98] Ochoa G, 1998.
"On Genetic Algorithms and Lmdenmayer Systems."” Proc. PPSN IV, Amsterdam
Springer-Verlag, Lecture Notes in Computer Science 1498, 335-343.

[Ort03a] A. Ortega, A.A. Dalhoum, M. Alfonseca, 2003

~ “Cellular Automata equivalent to DIL Systems”

5th Middle East Symposium on Simulation and Modelling(MESM 2003) Eurosim, 5-7
Ene. 2004, Sharjah, Emiratos Arabes Unidos.Pub: Proceedings, ISBN: 90-77381-06-6,
pp.120-124.

[Ort02a] A.Ortega.A,Cruz..M.de 1a,Alfonseca. M, 2002

“ Parametric 2-dimensional L Systems and recursive fractal images: Mandelbrot set,
Julia sets and biomorphs”, Computers and Graphics (Elsevier, SCI JCR 0.438), vol. 26,
p-143-149.

162

[Ort03b] A. Ortega, A.A. Dalhoum, M. Alfonseca, 2003
~ “Using grammatical evolution to design curves with a given fractal dimension”

Proceedings of the 5th International Conference on Enterpnse Information Systems
(ICEIS 2003), p. 395-398:, ISBN: 972- 98816 1-8.

[Ort03c] Ortega.A, Dalhoum.A A, Alfonseca.M,2003
“ Grammatical evolution to design fractal curves with a given dimension”n, IBM Jr. of
Res. and Dev. (SCI JCR 2.560), Vol. 47:4, p. 483-493 July. 2003. ‘

" [Otr] Ortega A,2000. | _
Equivalencias entre algunos sistemas complejos: Fractales, Autématas Celulares y
Sistemas de Lindenmayer. Universidad Auténoma de Madrid,Ph.D Thesis.

[Ort02b] Ortega. A, de la Cruz. M, Alfonseca M. 2002. :
“Parametric 2-dimensional L' Systems and recursive fractal images: Mandelbrot set,
* Julia sets and biomorphs”; Computers and Graphrcs (Elsevier), 26 No. 1, 143-149.

[Pac88] Packard et al ,1988

“ Adaptation Toward The Edge Of Chaos Dynamic patterns in complex sifstems “world scientific
,Singapore , pp- 293-301 : - . . :

[Pap80] Papert, S. 1980. '
Mindstorms: children, computers, and powerful ideas. New York: Basic Books.

' [Par94a] Paredis.,J., 19944,
Steps towards Coevolutionary Classification Neural Networks, Proceedmgs Artificial
LifeIV,R. Brooks P. Maes (eds), MIT Press / Bradford Books

[Par94b] Paredis,]. 1994b R ' e :
Coevolutionary Constraint Satisfaction, Proceedmgs of the Third Conference on Parallel
Problem Solving from Nature (PPSN 94), Lecture Notes in Computer Science, vol. 866,
- Davidor, Y., Schwefel, H-P Manner R. (eds.), Spnnger Verlag

[Par97a] Paredis.J; Westra TR, 1997.

Coevolutionary Computation for Path Plannmg, Proceedings 5th European Congress on
Intelligent Techniques and Soft Computlng (EUFIT 97) H.-J. Zrmmermann (ed.),
Verlag Mainz, Aachen . ,

3

[Par97b] Paredis. J ,1997 . L)
'« Co-evolving cellular automata : Be.a ware of the red quee ” in Proc, 7th Int. Conf
- Genetic Algonthms T Back ,Ed . San Mateo ,CA :Morgan Kaufmann , PP.393 - 400. .

+{Par98] Paredis,J. 1998. :

- Coevolutionary Process Control., Proceedmgs of the Intematlonal Conference on X
Artificial Neural Networks and Genetic Algonthms (ICANN GA97), G. D Smith (ed.),
Spnnger V1enna 1997. :

[Pru98]Prus1nk1ewrcz P L1ndennayer A I—Ianan J. 1998

Developniaental models of herbaceous plants for computer imagery purposes. Computer
Graphics.22(4). .

-

163

[Pru94]Prusinkiewics.P,James. M Mech R. 1994.
_Synthetic Topiary.Computer graphics, ACM SIGGRAPH,Annual conference
series.(Orland.Florida). pp.351-358

[Pru95]Prusinkiewics.P,. Hammal. M, Mech . R..Hanan. Jim 1995.
The artificial life of plants, ACM SIGGRAPH,95, notes ,. pages 1-1-1-38 ACM press

[Prud0 -] Prusinkiewics.P, Lindenmayer.A, 1990.
The algorithmic beauty of plants. Springer-Verlag, New York, ‘With J. S. Hanan, F.D.
Frachhia,D.R.Fowler,M.J.M de Boer, and L.Mercer. .

[Ray98a] Ryan C., Collins.J.J, and O'Neill M.1998

"Grammatical Evolutlon Evolving Programs for an Arbitrary Language". In
EuroGP'98: Proceedings of the First European Workshop on Genetic Programming.
Berlin, Germany: Sprmger—Verlag, Lecture Notes in Computer Science 1391, 83-95
(1998).

k[Ray98b]Ryan C., O'Neill M. "Grammaﬁcal Evc;lution: A Steady State Approach". In
Proceedings Joint Conference on Information Sciences, Research Triangle Park, NC,
419-423 (1998). .

[Ray98c] Ryan C., O'Neill M. "Grammatical Evolution: A Steady State Approach". In
Genetic Programming: Proceedings of the 3rd Annual Conference, J. R. Koza, W.
Banzhaf, L. Chellapilla, K. Deb, M. Dorigo, D. B.Fogel, M. H. Garzon, D. E. Goldberg,
H. Iba and R. L. Riolo, Ed.s Cambridge, MA, 180-185 (1998).

[Ray98d] Ryan.C, O'Neill M, and Collins. J.J.1998

"Grammatical Evolution: Solving Trigonometric Identities." In Mendel'98: Proceedings
of the 4™ International Conference on Genetic Algorithms, Optimization Problems,
Fuzzy Logic, N eural N etworks, and Rough Sets. Bmo, Czech R epublic: Tech. Univ.
Brno, 111-119. '

[Rec73] Rechenberg. T.1973.
Evolutionsstrategien: Optimierung Technischer Systeme nach Pnnmplen der
Biologischen Evolution. Fromman—Holzboog,Verlag Stuttgart.

[Rec65] Rechenberg.1,1965.
Cybermnetic solution path of an experimental problem. Royal Aircraft Estabhshment
Library Transslation. 1122, - .

[Rel02] Reljin .I.S; Reljin Branimir D, 2002

“Fractal geometry and mutilfractal in analyzing and processing medical data and
images”Archive of Oncology;10(4):283-93.Institute of Oncolo gy Sremska Kamemca,
Yugoslavia.

[Rib01] Ribeiro.V.J; Riedi .R.H and Baraniuk.R.G,2001.
Wavelets and Multifractals for network traffic modeling and inference
Proceedings ICASSP Salt Lake City, Utah.

[Rie99]Riedi.R.H;Crouse.M.S, Ribeiro.V.J, and Baraniuk .R.G,1999.

Amultifractal Wavelet Model with Application to Network Traffic. -
IEEE Special Issue on Information Theory, 45,992-1018.

164

[Sar98]Sarker.P, Burua. R 1998
“ The set of reversible 90/150 cellular automata is regular” Discrete Appl. Math vol.84. pp.199-213

[Sar00]Sarkar .P, March 2000
“A Brief history of cellular automata” ACM Computing Surveys , pp 80-107 , Vol 32,No.1.

[Sar01]Sarvotham.S,;Riedi.R.H, and Baraniuk.R.G ,2001.

Network Traffic Analysis and Modeling at the Connection Level.

Proceedings IEEE/ACM SIGCOMM Internet Measurement Workshop 2001,
San Francisco, CA.

[Sch93]Schadschnelder and Schreckenberg M, 1993.
. Cellular automaton models and traffic flow, J. Phys. A Math. Gen. 26 (1993)
L679-683.

[Ser9Q]Serra. M et al . 1990
“The analysis of one dimensional cellular automata and their ahasmg properties “
IEEE Trans CAD/ICAS vol.9 pp.767-778.

[Sip96a] Sipper.M, Ruppin. E 1996 -
“Co-evolving architectures for cellular machines” Physica D,1996.

. [Sip96b] Sipper .M 1996
“Co- evolution non-umform cellular automata to perform computations”.
Phys1ca D,92:193-208,

[Smi84] Smith .A 1984 Plants fractals and formal languages Computer Graphics 18
(July) 1-10.

[Tay02] R.P. Taylor, B. Spehar, C.W.G Clifford and B.R Newell,2002 :
~ “The Complexity of Pollack’s Dripped Fractals” Proceedings of the International
Conference of Complex Systems .

. [Terr99] Terrier V., 1999.
Two-dimensional cellular automata recognizer. Theoretical Compuer Science 218
(1999) 325-346.

[Terr91] Terrier V., 1991. :
Demdablhte en arithmetiques faibles. Temps reel sur automates cellulalres PhD. Thesis

[Tof77] Toffoli. T,1977 :
Computation and construction universality of revers1ble cellular automata, J. Comput.
Syst. Sci., 15 :213-231.

[Tor01] F.Torrens.2001.
“Fractals Hybnd orbitals in Protein Models,” Complexzty Internatzonal 8.

[Tra96]Traxler. G, Gervautz. M 1996

"Using Genetic Algorithms to Improve the Visual Quality of Fractal Plants generated
with CSG-PL Systems." Proceedings of The Fourth International Conferénce in Central
Europe on ‘Computer Graphics and Visualization'96 Ed. N.Magnenat-Thalmann

165

V.Skala, University of West Bohemia, Plzen, Czech Republic.

* [Vin01] Vinoy.K.J;Jose:K.A;Varadan.V X and Varadan,V.V, 2001 =
“Hilbert Curve Fractal Antenna: a Small Resonant Antenma for VHF/UHF
Applications,” Microwave and Optical Technology Letters, 29 No.4, 215-219 .

1)
[War99] Ward.D.P, 1999 . , N
An optimized cellular automata approach for sustainable urban development in rapidly
urbanizing regions, IV International Conference on GeoComputation . '

[Wei91] Weisbuch. G,1991. Complex systems dynamics. A lecture notes volume in the
" Santa Fe Institute studies in the sciences of complexity (Addison-Wesley, Reading,
Mass. 0

\ [Wo194] Wolfram. S, 1994.Cellular Automata and complexity.Addison-Wesley,1994.

O .

O .

TOO -,

Reunido el tribunal que suscribe en el dia
de la fecha, acordd calificar la presente Tesis

doctoral con SORRESALIENTE Cum LAUDE (POR UNAW] -
Madrid, 26-4-200y MlDfirj))

file:///jiCToQ-

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	TABLE LIST
	LIST OF FIGURES
	INTRODUCTION
	Motivation and plan of the thesis
	Objectives of this thesis
	Plan of the thesis

	BASIC CONCEPTS
	CHAPTER 1: EVOLUTIONARY ALGORITHMS
	1.1 Overview
	1.2 Genetic algorithms
	1.3 Genetic programming
	1.4 Evolutionary strategies and evolutionary programming
	1.5 Variants of the classical GA/GP scheme
	1.6 Grammatical evolution

	CHAPTER 2: FRACTALS
	2.1 Overview
	2.2 Categorizing fractals
	2.3 How can we estimate the dimension of fractals
	2.4 Multi-fractals
	2.5 Application of fractals

	CHAPTER 3: LINDENMAYER SYSTEMS
	3.1 Overview
	3.2 Classes of L-Systems
	3.3 L-System Design

	CHAPTER 4: FRACTALS AND L-SYSTEMS
	4.1 Overview
	4.2 Turtle graphics method
	4.3 Vector graphics method
	4.4 Equivalence between the turtle and vector graphical representations of L-systems
	4.5 Computing the dimension of initial-iterated fractals

	CHAPTER 5: CELLULAR AUTOMATA
	5.1 Overview
	5.2 Description and types of cellular automata
	5.3 Cellular automata and the edge of chaos
	5.4 Cellular automata programming

	CHAPTER 6: L-SYSTEMS AND CELLULAR AUTOMATA
	6.1 Overview
	6.2 L-Systems and Cellular automata
	6.3 One-dimensional binary cellular automaton with three inputs that generates the Sierpinski gasket
	6.4 IL-System equivalent to bi-dimensional CA that simulate ecosystem model
	6.5 IL-System equivalent to three-dimensional CA that generates and propagates pulses
	6.6 Equivalence between L-Systems and Cellular automata

	CHAPTER 7: GRAMMATICAL EVOLUTION TO DESIGN FRACTAL CURVES WITH A GIVEN DIMENSION
	7.1 Overview
	7.2 The design of L-Systems that represent curves with a given fractal dimension
	7.3 The developmental algorithm
	7.4 The genetic algorithm
	7.5 Parallels to biological evolution
	7.6 Evolving the turtle angle
	7.7 Results
	7.8 Examples

	CHAPTER 8: EVOLVING THE GAME OF LIFE WITH A GENETIC ALGORITHM
	8.1 Overview
	8.2 Concise representation of life-related cellular automata
	8.3 A genetic algorithm that evolves into the game of Life
	8.4 Experiments and results

	CHAPTER 9: CELLULAR AUTOMATA EQUIVALENT TO PDOL SYSTEMS
	9.1 Overview
	9.2 One-dimensional cellular automata
	9.3 One-dimensional cellular automata n-equivalent to PDOL systems

	CHAPTER 10: CELLULAR AUTOMATA EQUIVALENT TO DOL SYSTEMS
	10.1 Overview
	10.2 One dimensional Cellular automata equivalent to DOL Systems
	10.3 Examples

	CHAPTER 11: CELLULAR AUTOMATA EQUIVALENT TO DIL SYSTEMS
	11.1 Overview
	11.2 One dimensional cellular automata equivalent to DIL systems
	11.3 Examples

	CONCLUSIONS & FUTURE WORK
	Conclusions
	Open lines of work

	REFERENCES & BIBLIOGRAPHY

