

Universidad Autónoma de Madrid
Departamento de Ingeniería Informática

Estimación Estadística de Consumo en FPGAs

TESIS DOCTORAL

Autor: Elías Todorovich

Director: Eduardo Boemo Scalvinoni

Escuela Politécnica Superior

Julio de 2006

 I

Resumen
Varios motivos impulsan a la industria y a las universidades a estudiar el consumo

de energía de los circuitos digitales actuales: movilidad de los equipos electrónicos,

coste de los accesorios de refrigeración y encapsulados, impacto medioambiental,

coste de la energía, tasa de fallos, y restricciones a la densidad de integración VLSI.

Diseñar circuitos VLSI para bajo consumo requiere de una metodología en cada

etapa del proceso de desarrollo. Los principales componentes de tal metodología son

estimación y optimización de consumo. A pesar de las muchas técnicas para

estimación de consumo publicadas recientemente en la literatura especializada, el

problema todavía no está resuelto completamente, ni siquiera al nivel de puertas

lógicas. Debido a la complejidad computacional que requiere la estimación de

consumo, no puede obtenerse precisión y velocidad al mismo tiempo. Este problema

se observa en la estimación de consumo medio para nodos individuales; y para el

consumo promedio total en los circuitos secuenciales grandes.

Esta tesis tiene como objetivo estimar el consumo de potencia media a nivel de

nodos individuales en FPGAs. Para ello, se desarrolló una plataforma de estimación

de consumo con herramientas y estructuras de datos comunes y reusables dentro de

una familia de aplicaciones EDA de diseño para bajo consumo. El software

desarrollado se integra con las herramientas de Xilinx. Adicionalmente, se ha

incorporado el simulador Modelsim dentro del bucle que implementa la técnica

propuesta. Igualmente, al haberse usado formatos estándares para el intercambio de

datos, es posible integrar la herramienta desarrollada en esta tesis en ambientes de

diseño para FPGA de otros fabricantes, y lo mismo para otros simuladores que

soporten formatos estándares.

Para validar los resultados, se realizaron más de 1500 simulaciones y experimentos

sobre dispositivos Virtex, Virtex-E y Virtex-II cubriendo 10 años de evolución de la

tecnología de dispositivos lógicos programables. Las medidas físicas obtenidas

permitieron orientar la investigación y a la vez facilitar la evaluación, calibración y

depuración del software. El resultado es una herramienta precisa de estimación

desarrollada sobre una plataforma general para el diseño de circuitos de bajo

consumo.

Abstract
There are several reasons that strongly lead the industry and the researchers to

study the power consumption of the current digital circuits: mobile electronic devices,

refrigeration accessories and packaging costs, environmental impact, energy cost,

reliability, and restrictions to the VLSI integration density.

Designing VLSI for low power requires a design methodology at every level of the

design process. The main components of such a methodology are estimation and

optimization. Despite the several techniques recently proposed for power estimation,

the problem is not completely solved yet, even at the gate level. Due to the computing

complexity of power estimation, accuracy and speed can not be met together. This

problem is observed for individual gate average power, and for total average power

estimation in large sequential circuits.

The goal in this thesis is the average power estimation at the individual nodes level

on FPGAs. In order to do it, a power estimation framework was developed. This

general framework has common tools and data structures that can be reused within a

family of EDA tools for low power design. At this time this software is integrated with

that provided by Xilinx, and its operation has been evaluated with the Modelsim

simulator. However, due to the use of standard formats, an easy integration is

expected in other design environments for FPGA, and the same feature for simulators

that support standard formats.

More than 1500 simulation runs and experiments were performed with Virtex, Virtex-

E and Virtex-II devices on available development boards covering 10 years of PLD

evolution. These physical measurements allowed the evaluation, tuning and debugging

of the developed software. As a result an accurate tool was developed over the

mentioned power estimation framework.

 III

Agradecimientos
A Eduardo Boemo, director y amigo, fundamentalmente por haberme dado una

oportunidad; por hacer posible este trabajo no sólo en el plano académico, sino

también en otros aspectos más mundanos pero vitales en la supervivencia del

doctorando, y por tantísimas actitudes como invitarnos los domingos a su casa

estando recién llegados a España: gracias. Maite: muchas gracias.

Esta tesis tampoco sería posible sin la confianza de Javier Garrido y Francisco

Gómez Arribas, la solidaridad más allá del compañerismo de Sergio López Buedo, la

amistad de los compañeros del laboratorio: Gustavo Sutter, Iván González, Juan

González Gómez, Guillermo González, Estanislao Aguayo, Alberto Regadío, Alberto

Martín-Ortega Rico, y muchos otros becarios y profesores, que durante estos años

pusieron la mejor predisposición para el desarrollo de los trabajos en un ambiente de

camaradería. Gracias también a Martín Gilabert por su trabajo y entusiasmo en las

primeras experiencias vinculadas con esta tesis. Mi reconocimiento especial es para el

Prof. Javier Martínez.

Sin Juana Calle no sólo me hubiera sido mucho más difícil cumplir con todo el

formalismo que se requiere en un doctorado, sino que no habría mantenido el ritmo

académico que hace que estos estudios tengan un final a su debido tiempo. Muchas

gracias Juana por tus e-mails y por toda tu ayuda, y tu responsabilidad y seriedad

dentro del afecto que pones en tu trabajo. Gracias también a Pablo y a todo el

personal de la EPS. Espero ser capaz de mostrarles a todos mi gratitud.

También debo agradecer a las siguientes instituciones argentinas y españolas por

su apoyo en esta investigación, por orden de aparición en el desarrollo de las tareas:

 Facultad de Ciencias Exactas de la Universidad Nacional del Centro de la

Provincia de Buenos Aires

 CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) de la

República Argentina

 Ministerio de Ciencia y Tecnología de España

 Escuela Politécnica Superior de la Universidad Autónoma de Madrid

 Escuela Politécnica Superior de Gandía, de la Universidad Politécnica de

Valencia

En lo que concierne a la revisión del texto en inglés, le agradezco especialmente a

Walter Routley, y también a Gery Bioul, Hernán Techeiro y naturalmente a Eduardo

por su trabajo y paciencia.

Es bueno hacer memoria y este balance al final de un trabajo tan largo. Le doy las

gracias de todo corazón a mi familia, amigos y a Dios.

 V

Table of Contents

1 INTRODUCTION 1

1.1 AVERAGE POWER CONSUMPTION 2
1.1.1 PORTABLE ELECTRONIC PRODUCTS 2
1.1.2 ENVIRONMENTAL IMPACT 3
1.2 MAXIMUM POWER CONSUMPTION 4
1.3 POWER CONSUMPTION IN FPGAS 6
1.4 RESEARCH OBJECTIVES 7
1.5 THESIS ORGANIZATION 8
REFERENCES 9

2 VLSI POWER CONSUMPTION 11

2.1 ANALYSIS OF POWER CONSUMPTION 12
2.1.1 THERMODYNAMICS OF COMPUTATION 12
2.1.2 SOURCES OF POWER DISSIPATION 14
2.2 POWER CONSUMPTION IN FPGAS 18
2.2.1 PROGRAMMABLE ROUTING 19
2.2.2 PHYSICAL CAPACITANCE 20
2.2.3 SWITCHING ACTIVITY 21
2.3 SWITCHING ACTIVITY COMPUTATION 22
2.3.1 DEPENDENCE ON THE INPUT PATTERNS 22
2.3.2 DELAY MODEL 25
2.3.3 LOGIC FUNCTION 27
2.3.4 CIRCUIT STRUCTURE 28
2.3.5 TECHNOLOGY-DEPENDANT FACTORS 29
2.4 CONCLUSIONS 29
REFERENCES 30

3 POWER ESTIMATION TECHNIQUES 33

3.1 POWER ESTIMATION HISTORY –OR SIMULATIVE APPROACHES 35
3.1.1 SPICE-LIKE CIRCUIT SIMULATION 35
3.2 STATISTICAL APPROACHES 37
3.2.1 MONTE CARLO SIMULATION 37
3.2.2 TOTAL POWER (MCPOWER) 38
3.2.3 POWER OF INDIVIDUAL GATES (MED) 40
3.2.4 IMPROVEMENTS IN STATISTICAL METHODS 41
3.3 PROBABILISTIC APPROACHES 42
3.3.1 SOME IMPORTANT DEFINITIONS 43
3.3.2 PROBABILISTIC POWER ESTIMATION TECHNIQUES 44
3.4 SEQUENTIAL CIRCUITS 48
3.4.1 STATISTICAL APPROACHES 48
3.5 POWER ESTIMATION METHODS APPLIED ON FPGAS 58
3.5.1 RELATED WORKS AT THE UAM 60
3.6 CONCLUSIONS 61
REFERENCES 61

4 A-DYP: A TOOL FOR AVERAGE POWER ESTIMATION IN FPGAS 65

4.1 A-DYP MAIN STRUCTURE 67
4.2 THE PREPARATION PHASE 68
4.2.1 USER INTERFACE 70
4.2.2 POWER ESTIMATION SET-UP PHASE 73
4.3 ACTIVITY ESTIMATION SUB-SYSTEM 74
4.3.1 INPUT PATTERNS FOR THE PATTERN GENERATOR 77
4.3.2 THE POWER ESTIMATION PLATFORM 78
4.4 POWER COMPUTATION SUB-SYSTEM 78
4.5 THE POWER DATABASE 82
4.6 CONCLUSIONS 84
REFERENCES 85

5 ACTIVITY ESTIMATION SUB-SYSTEM 87

 VII

5.1 THE PATTERN GENERATOR 88
5.2 SIMULATING THE INPUT PATTERNS AND SAVING THE SIMULATION RESULTS 91
5.3 ANALYZING THE GENERATED ACTIVITY 93
5.3.1 THE SET-UP PERIOD 93
5.3.2 COUNTING THE EFFECTIVE TRANSITION NUMBER 94
5.4 UPDATING NODE STATISTICS 95
5.5 CHECKING THE STOPPING CRITERIA 97
5.6 CONCLUSIONS 97
REFERENCES 97

6 POWER COMPUTATION SUB-SYSTEM 99

6.1 PARSING THE VHDL SIMULATION MODEL 100
6.1.1 WHY PARSING THE VHDL MODEL? 101
6.1.2 OBTAINING THE IDENTIFIERS 103
6.1.3 OPTIMIZATION 105
6.2 PARSING THE XILINX DESIGN XDL FILE 105
6.2.1 ANALYZING AN FPGA SLICE DEFINITION 106
6.2.2 ANALYZING A NET DEFINITION 109
6.3 GENERATING THE XML SETTINGS FILE 111
6.3.1 USING A PACKAGE TO GENERATE XML 112
6.4 EXTRACTING THE CAPACITANCES 113
6.4.1 PARSING THE XILINX CAPACITANCE REPORT FILE (PWA) 114
6.5 CALCULATING THE POWER CONSUMPTION AND WRITING A REPORT 115
6.6 GENERATING THE POWER MAPS 116
6.7 CONCLUSIONS 116
REFERENCES 117

7 TEST CASES AND ANALYSIS 119

7.1. TEST CIRCUITS 119
7.1.1 QUADRATURE DIRECT DIGITAL FREQUENCY SYNTHESIZERS (QDDFS) 119
7.1.2 DISTRIBUTED-ARITHMETIC FIR FILTER (FIRDA) 122

7.1.3 FAST FOURIER TRANSFORM (FFT) 123
7.1.4 ARITHMETIC CIRCUITS 123
7.2 ANALYSIS OF THE RESULTS 124
7.2.1 TECHNIQUE CHARACTERIZATION 124
7.2.2 SOFTWARE EVALUATION 125
7.2.3 GRAPHICAL REPRESENTATION OF THE RESULTS 126
7.3 POWER MEASUREMENT 126
REFERENCES 129

8 EXPERIMENTAL RESULTS 131

8.1 A-DYP PRELIMINARY EVALUATION 132
8.1.1 TOTAL DYNAMIC POWER ESTIMATION 133
8.1.2 IMPACT OF THE INPUT PATTERNS DEFINITION 134
8.1.3 TOOL’S EVALUATION 135
8.1.4 POWER MAPS 136
8.2 A FIRST COMPLETE TEST CASE: FIRDA FILTERS 139
8.2.1 TOTAL DYNAMIC POWER ESTIMATION 139
8.2.2 ESTIMATING POWER FOR INDIVIDUAL NODES 140
8.2.3 ACCURACY VS. EXECUTION TIME TRADEOFF 147
8.2.4 TOOL’S EVALUATION 152
8.2.5 POWER MAPS 154
8.2.6 ENERGY ANALYSIS OR ENERGY OF THE COMPUTATION 158
8.3 IMPACT OF THE INPUT PATTERNS DEFINITION 160
8.3.1 TOTAL DYNAMIC POWER ESTIMATION 162
8.3.2 DYNAMIC POWER ESTIMATION FOR INDIVIDUAL NODES 166
8.3.3 INPUT PATTERNS FROM REAL SCENARIOS 168
8.4 ADDITIONAL EXPERIMENTS ON VIRTEX-II 171
8.4.1 IMPACT OF THE INPUT PATTER DEFINITION ON TOTAL POWER 172
8.4.2 DYNAMIC POWER ESTIMATION FOR INDIVIDUAL NODES 173
8.4.3 ACCURACY VS. EXECUTION TIME TRADEOFF 175
8.4.4 TOOL’S EVALUATION 178
8.4.5 POWER MAPS 179

 IX

8.5 CONCLUSIONS 181
REFERENCES 182

9 CONCLUSIONS AND FUTURE WORKS 183

9.1 MAIN CONTRIBUTIONS OF THIS THESIS 183
9.1.1 THE POWER PLATFORM FRAMEWORK AND A-DYP 184
9.1.2 SHORT-PULSE FILTERING AS A CALIBRATION RESOURCE 185
9.1.3 A-B NODES CLASSIFICATION 186
9.1.4 ENERGY OF THE COMPUTATION 186
9.2 REVERSE ENGINEERING 186
9.3 PUBLICATIONS 187
9.4 FUTURE TASKS 189
9.4.1 HIGH-LEVEL POWER ESTIMATION 191
9.5 HOW TO ESTIMATE POWER CONSUMPTION 192
9.6 HOW TO BUILD A POWER ESTIMATOR 193
REFERENCES 193

COMPLETE REFERENCES LIST 195

TCL/TK SCRIPT FOR THE A-DYP POWER ESTIMATION TOOL 201

INPUT PATTERNS FILE (.DO) 213

THE CONFIGURATION .INI FILE 215

POWER REPORT FILE 219

Acronyms
API Application Program Interface

ASIC Application Specific IC

ATP Area Time Power

CAD Computer Aided Design

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor

DSP Digital Signal Processing

DUT Design Under Test

EDA Electronic Design Automation

FF Flip-Flop

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

IC Integrated Circuit

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers

IEEE 1076 IEEE VHDL standard

IEEE 1364 IEEE Verilog HDL standard

iid Independent and identically distributed

IOB Input/Output Block

ITRS International Technology Roadmap for Semiconductors

LUT Look-Up Table

LSB Less Significant Bit

NC Set Near Closed Set

 XI

MSB Most Significant Bit

MPU Microprocessor Unit

OVI Open Verilog International

PAR Place and Route

PCB Printed Circuit Board

PPR Partitioning, Place and Route

P&R Place and Route

RTL Register Transfer Level

QAM Quadrature Amplitude Modulation

QDDFS Quadrature Direct Digital Frequency Synthesizer

QPSK Quadrature Phase Shift Keying

SDF Standard Delay Format

TWG Technical Working Group

UUT Unit Under Test

VITAL VHDL Initiative Towards ASIC Libraries

VHDL VHSIC (Very High-Speed IC) HDL

VI VHDL International

Chapter 1.

“If performance per watt is to remain constant over the next few years, power costs

could easily overtake hardware costs, possibly by a large margin.” and “…one could

envision bizarre business models in which the power company will provide you with

free hardware if you sign a long-term power contract.” Luiz André Barroso, a

principal engineer at Google [Bar05]

1 Introduction

Revising the history of the technology [Rab96], power consumption is a recurring

problem in an area like digital circuit design where complexity grows according to

Moore’s law. When CMOS technology was introduced, it was believed that the power

consumption problem was solved for digital circuits. In this technology, the static power

consumption is very low and the electric current only flows in the circuit when some

computing is done. In that time, the major concerns of the VLSI designers were area

and performance, and power consumption was mostly of secondary importance.

Nevertheless, the number of transistors per unit of area, and the number of transistors

in a single die have reached a limit where the power consumption is a problem. Now

power is as important as area and speed. But several other factors have contributed to

this trend as is briefly discussed below. This is particularly true for FPGAs, where the

power consumption noticeably rises due to the increase in the clock frequency, chip

area (capacitance), and the ability to be programmed.

Perhaps the primary driving factor that made power consumption as important as

area and speed has been the remarkable success and growth of portable electronic

products. In these applications, average power consumption is a critical design

Statistical Power Estimation on FPGAs

 2

concern. In addition, maximum power consumption is also a constraint in the

contemporary electronic industry.

In this Chapter, a motivation for low power design is presented together with the

research objectives of this thesis,

1.1 Average Power Consumption

1.1.1 Portable Electronic Products

MP3 players, pagers, mobile phones, portable CD players, notebooks, etc., demand

high-speed computation and complex functionality with low power consumption. In

these applications average power consumption is a critical design concern.

Example 1.1: A portable multimedia terminal, when implemented using off-the-shelf

components not optimized for low-power operation, consumes about 40 W. For 10

hours of operation between recharges, with a Lithium-Ion battery with 100 Wh/kg of

energy density1, it will require 4 kg of batteries. Energy density and weight is displayed

at Table 1.1 for several battery technologies, including the Lithium-Polymer-Potential

technology not yet available in the market.

Technology
Energy Density

[Wh/kg]

Weight

[Kg]

Nickel-Metal-Hydride 80 5.00

Lithium-Ion 100 4.00

Lithium-Polymer-Potential 400 1.00

Table 1.1: Battery Sizing

Example 1.2: A more realistic example can be outlined looking at an actual portable

computer running a multimedia application. It consumes 24.8 Watts [Kol01]. In the

scenario as in example 1.1 (10 hours of operation between recharges, lithium-ion

1 Energy density is the amount of energy stored per unit of weight expressed in watt-hour per kilogram.

Introduction Average Power Consumption

 3

battery) this computer will require 2.48 kilograms of battery. Battery sizing for other

technologies is shown in Table 1.2.

Technology
Energy Density

Wh/kg

Weight

Kg

Nickel-Metal-Hydride 80 3.10

Lithium-Ion 100 2.48

Lithium-Polymer-Potential 400 0.62

Table 1.2: Battery Sizing

From the examples, we can see that without low-power design techniques portable

devices will suffer usability problems.

1.1.2 Environmental Impact

For consumer electronics power savings means significant money saving. It could

also be viewed as a long term objective for low power design. The smaller the power

dissipation of electronic systems, the lower the heat pumped into the rooms, the lower

the electricity consumed and hence the lower the impact on global environment, and

less the office noise (e.g., due to elimination of a fan from the desktop), and less the

office heat removal requirements [Ped97].

The United States Environmental Protection Agency (EPA) publishes Energy Star

guidelines that suggest ways to reduce power consumption and to save money by

eliminating unnecessary energy use. Office equipment, led by computers, is the fastest

growing electrical load in the business world. In fact, office equipment accounts for 7-

20% of all commercial sector electricity usage [Kaw01] [Lai01].

Some works studied the electric energy used by computing equipment ([Ang01]

[Kaw00] [Hay01]). [Kaw01] and [Lai01] report that total power use by office and

network equipment in the U.S. is about 2% of total electricity use. They also say that

power management currently saves 23 % of the energy consumption; and complete

saturation with proper power management and night shut down will save 38 %. On a

monthly or annual basis, owners could save millions of dollars in electricity costs and

the pollution associated with electricity use can be reduced.

Statistical Power Estimation on FPGAs

 4

1.2 Maximum Power Consumption
Table 1.3 shows maximum power consumption trends for MPUs and high

performance ASICs according to the ITRS forecast [ITRS05]. These trends are

presented in three categories:

1) high-performance desktop applications, for which a heat sink on the package is

permitted;

2) cost-performance, where economical power management solutions of the highest

performance are most important; and

3) portable battery operations (now designated as the “Harsh” application category

by the Assembly and Packaging TWG).

Total power consumption continues to increase, despite the use of a lower supply

voltage. The increased power consumption is driven by higher chip operating

frequencies; the higher interconnect overall capacitance and resistance, the increasing

gate leakage of exponentially growing, and scaled on-chip transistors.

Fig. 1.1 shows maximum power predictions for high-performance and cost

performance MPUs and high performance ASICs according to different ITRS updates

since 2001. Note that, for high-performance MPU, power consumption significantly

exceeds the high-performance single-chip package power limits, even with allowed

power densities in excess of 250 W/cm2 [ITRS05]. Thus, power will be limited more by

system level cooling and test constraints than packaging. This fact is considered from

the 2003 forecast.

[Gun01] reports that power consumption of processors produced by Intel almost

doubles every 4 years2. The cost associated with packaging and cooling of such

devices could reach relatively high values.

2 In this moment, there is a controversy about the maximum power dissipation reported by the industry. An independent
analyst, [Smi01], reports 72 W of maximum power consumption for the 1.4 GHz Athlon; and 87-88 W for the 1.8 GHz
Pentium 4. The same article refer to an interesting concept: the programs used by the vendors to run that tests are
safeguarded as restricted information in order to prevent the development of thermal viruses.

Introduction Maximum Power Consumption

 5

 2007 2010 2012 2014 2016 2018 2020

High-performance with heatsink (W) 189 198 198 198 189 198 198

Cost-performance (W) 104 119 125 137 151 151 157

Battery (W) – (low cost/hand Held) 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Table 1.3: Allowable maximum power for the next years

Since core power consumption must be dissipated through the packaging,

increasingly expensive packaging, cooling strategies and protection mechanisms are

required as chip power consumption increases. Consequently, there is a clear financial

advantage to reducing the power consumed in high performance systems (See Fig.

1.2).

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

120

140

160

180

200

220

240

260

280

300

320

High-Performance

Po
w

er
 [W

]

Year

ITRS Predictions
 2001
 2002
 2003
 2004
 2005

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

60

80

100

120

140

160

180

Po
w

er
 [W

]

Year

ITRS Predictions
 2001
 2002
 2003
 2004
 2005

Cost-Performance

Fig. 1.1: Trends in maximum power consumption according to ITRS

Statistical Power Estimation on FPGAs

 6

Fig 1.2 shows that, as power increases, the relationship between the dissipated

power and the cooling solution cost that should be adopted is non-linear.

Fig. 1.2: Cost Associated with Packaging and Cooling Systems. Reproduced from [Gun01]

Reliability is another technological issue. The systems must be designed to ensure

that the chip does not exceed the maximum specified operation temperature, even

when it is dissipating the maximum power. High power systems often run hot and high

temperature trends to increase occurrences of silicon failure mechanisms [Lal97]. For

example it has been shown that the switching activity is a valuable parameter to

estimate the available working time before failure [Iye86].

Another crucial driving factor is that excessive power consumption is becoming the

limiting scale factor in integrating more transistors on a single chip or on a multiple-chip

module.

Power supply rail design is a specific topic directly related to the maximum

dissipated power.

1.3 Power Consumption in FPGAs
Although the background, techniques, research literature, theory, and motivations

presented in this thesis are mostly aimed at CMOS circuits, the implemented software

is integrated with the Xilinx design flow and experiments are performed on SRAM-

Introduction Research Objectives

 7

based FPGAs of the same vendor. The ability of these programmable logical devices

for prototyping, digital electronics teaching and training, adaptation to modern systems

with evolving specifications, economical viability for specific markets like industrial

automation, control, aerospace, or high-end medical imaging, and the availability of

state-of-the-art digital technology for end users all around the world, have spread

FPGAs quickly since their commercial launch in 1985 [Wil99]. Furthermore, FPGAs are

low cost devices in these contexts and vendors offer friendly development software,

tutorials, teaching resources, and tools that enable accessing the technology in a few

weeks with a reasonable level of expertise after a relatively short training period.

Beyond these applications, FPGAs are also competing with ASICs and DSPs in the

digital consumer market.

The specific nature of FPGAs leads to particular design techniques and the EDA

tools for them also require specific considerations from their conception (i.e. analysis)

to their implementation. The abundant routing resources and programmability

significantly affect the device’s power consumption. Furthermore, state-of-the-art VLSI

technologies are applied to current FPGA production, e.g. 90 nm to Virtex-4 [XDS06]

and Altera Stratix-II [Alt05]. This leads to unprecedented integration levels and

transistor counts on a single chip which converts FPGA to high-performance ICs with

the power consumption problems reported by ITRS [ITRS05]. In this way, it is

interesting to evaluate techniques proposed to ASICs and adapt or develop new ones

according to FPGA technologies.

1.4 Research Objectives
In this work, FPGAs are more than a technological framework in order to verify

theoretical research; they are the core of this study. The main goal in this thesis is the

average power estimation at the individual nodes level on FPGAs. In order to do it, a

power estimation framework is developed. This general framework has common tools

and data structures that can be reused within a family of EDA tools for low power

design.

The instance of this framework presented in the following chapters is a gate-level

statistics-based power estimation tool for both the total and individual nodes power.

This tool must produce accurate estimation values, i.e. with less than 10% of error in

Statistical Power Estimation on FPGAs

 8

the total power in relation to physical measurements over real devices, in a reasonable

run time when the required accuracy is moderate, e.g. with 90% confidence that error

is less than 10%.

1.5 Thesis Organization
This thesis is organized in nine chapters. This chapter has presented a motivation

for and introduction to the low-power design problems that will be presented in the next

chapters.

Chapter 2 analyzes CMOS and FPGA power consumption and presents the

problems that must be overcome in order to estimate power or energy dissipation in

these technologies. There is also an interesting summary about thermodynamics of

computation in this chapter.

Chapter 3 describes the state-of-the-art in gate-level power estimation with focus on

the statistical techniques. These first three chapters make up the introductory part of

the thesis.

The lack of modern power estimation tools for FPGAs within commercial design

flows, leads us to propose a power estimation framework in Chapter 4 that can support

the statistical tool whose activity estimation and power computation parts are detailed

in Chapters 5 and 6 respectively.

Chapter 7 presents test circuits used in the power estimation experiments and tool

evaluation. This chapter also describes the measurement methodology necessary to

generate values against which the estimations are compared. In this way the

developed tool can be calibrated and debugged. The development boards and devices

employed in the measurements are also briefly presented.

Chapter 8 shows the experimental results in a chronological order where the

circuits, devices and tests are joined together in order to evaluate the development and

produce a robust EDA tool.

Finally, Chapter 9 presents the main conclusions and topics for future research in

the power-aware EDA tools and low-power design areas.

Introduction References

 9

References
[Alt05] Altera Corp., “Stratix-II Device Handbook, 2005”, available at

http://www.altera.com

[Ang01] J. Angel, “Emerging Technology: Energy Consumption and the New Economy”,
Network Magazine, January 5, 2001.

[Bar05] Luiz André Barroso, “The Price of performance”, ACM Queue, pp. 49-53,
September 2005.

[Gun01] S.H. Gunther, F. Binns, D.M. Carmean and J.C. Hall, “Managing the Impact of
Increasing Microprocessor Power Consumption”, Intel Technology Journal Q1,
2001.

[Hay01] Brian Hayes, “The Computer and the Dynamo”, American Scientist, Vol 89, No
5, September-October, 2001. pp. 390-394.

[ITRS05] International Technology Roadmap for Semiconductors, 2005 Edition, available
at http://public.itrs.net

[Iye86] R. Iye, D. Rossetti and M. Hsueh, “Measurement and Modelling of computer
reliability as affected by system activity”, ACM Trans. On Computer Systems,
4(3):214-237, Aug. 1986.

[Kaw00] K. Kawamoto, J.G. Koomey, B. Nordman, R.E. Brown, M.A. Piette and A.K.
Meier, “Electricity Used by Office Equipment and Network Equipment in the
U.S.”, Proceedings of the 2000 ACEEE Summer Study on Energy Efficiency in
Buildings. Asilomar, CA. August 2000.

[Kaw01] K. Kawamoto, J.G. Koomey, B. Nordman, R.E. Brown, M.A. Piette, M. Ting and
A.K. Meier, “Electricity Used by Office Equipment and Network Equipment in
the U.S.: Detailed Report and Appendices”, Lawrence Berkeley National
Laboratory Internal Report LBNL-45917, University of California. February
2001.

[Kol01] J. Koliski, R. Chary, A. Henroid and B. Press, “Building the Power-Efficient PC”,
Intel Press, 2001.

[Lai01] John A. Laitner, Jonathan Koomey, Ernst Worrell, Etan Gumerman. “Re-
estimating the Annual Energy Outlook 2000 Forecast Using Updated
Assumptions about the Information Economy”. Presented at the American
Economic Association Conference. New Orleans, LA. January 7 2001. (Also
LBNL-46418).

[Lal97] Pradeep Lall, “Influence of Temperature on Microelectronics and System
Reliability”, CRC Press, 1997

[Ped97] M. Pedram, Design technologies for Low Power VLSI, In Encyclopaedia of
Computer Science and Technology, Vo. 36, Marcel Dekker, Inc., 1997, pp. 73-
96.

[Rab96] Rabaey, Jan M. “Digital integrated circuits: a design perspective”. Upper Saddle
River: Prentice-Hall International, 1996.

[Smi01] Van Smith, “Pentium 4 Thermal Throttling”, available at
http://www.vanshardware.com.

[Will99] Craig Willert, “The Evolution of Programmable Logic Design Technology”, XCell
Journal, Issue 32, 2nd quarter 1999, pp. 5-8.

Statistical Power Estimation on FPGAs

 10

[XDS06] Xilinx Inc. “Virtex-4 Data Sheet: DC and Switching Characteristics”, 2006,
available at http://www.xilinx.com

 11

Chapter 2.

“When we come to design the Ultimate Computers of the far future, which might

have “transistors” that are atom-sized, we will want to know how the fundamental

physical laws will limit us. When you get down to that sort of scale, you really have

to ask about the energies involved in computation, and the answer is that there is

no reason why you shouldn’t operate below kT”. From “Lectures on Computation”

by Richard P. Feynman [Fey96].

2 VLSI Power Consumption

This Chapter explains the sources of power dissipation for the CMOS technology.

CMOS is (and will remain) the industry workhorse up to and beyond the year 2020

according to ITRS predictions [ITRS2005]. From 2020 it is anticipated new nanoscale

devices representing alternatives to CMOS. These new devices will be introduced

utilizing different and new ways of processing and storing information. Most of the

proposed devices rely on new materials and properties not well studied yet.

The details about the power consumption in FPGAs are particularly specified.

Finally, how the activity must be calculated has been carefully studied.

As power optimization is not the topic in this thesis, it is treated briefly in this

chapter. A parallel work at our laboratory that presents optimization techniques

applicable to SRAM-based FPGAs is [Sut05].

Statistical Power Estimation on FPGAs

 12

2.1 Analysis of Power Consumption
It has been shown that designing VLSI for low power requires a design methodology

at every level of the design hierarchy. The main components of such a methodology

are estimation and optimization [Lan94], the classical analysis and synthesis pair.

In order to estimate and optimize the power consumption of a digital circuit it is

necessary to know how energy is dissipated. The way each factor interacts with the

others will also clarify the effects these elements have on every VLSI design stage.

This analysis will determine which elements can be overlooked within a specific design

environment. Indeed, designing digital circuits with FPGAs requires specific

assumptions, as it will be pointed out later on, after a brief discussion on power

dissipation sources in CMOS circuits.

2.1.1 Thermodynamics of Computation

Beyond the technological frenzy in the electronic industry nowadays, it is important

to stop a moment in order to study the fundamental laws about the power consumption

and thermodynamics of computation. In Feynman’s book “Lectures on Computation”,

Chapter 5 [Fey96], two essential questions are studied. The first one is: “How much

energy must be used in carrying out a computation?” This thesis explores how much

energy will be used in carrying out a computation within a particular technological

context: SRAM-based FPGAs, its goal is the estimation of this amount of energy in

advance. Nevertheless, the second question is more fundamental: “What is the

minimum energy required to carry out a computation?” In this section this second

question is considered. Although they are much more efficient than earlier computers,

the existing ones dissipate enormous amounts of energy, 108kT, compared with the

theoretical lower bound kT (T is the temperature and k is the Boltzman’s constant). The

main reason for this waste is the use of macroscopic components with relatively huge

inertia which require macroscopic amounts of energy to switch quickly. On the other

hand, a microscopic device such as DNA replication has relatively high energy

efficiency: 20-100kT per operation.

In [Fey96] a physical definition of the information content of a message is studied. In

general when we develop an algorithm, we do not think about this but

VLSI Power Consumption Analysis of Power Consumption

 13

No computing can be done without the participation of the physical world.

Rolf Landauer, in his classic 1961 paper pioneered applying thermodynamics to

computation [Lan61]. In that paper, it is claimed that any logically irreversible

computation, such as the erasure of a bit, must be accompanied by a corresponding

entropy increase; and any logically reversible computation can be executed by a

thermodynamically reversible device. This is also known as the basic principle of the

thermodynamics of information processing or Landauer’s principle. His work and other

contributions are summarized in [Fey96], where the first conclusion is that the amount

of information in a message is proportional to the free energy required to reset the tape

to zero. In this way, some energy is necessary to reset a tape with “surprise” bits, but it

is interesting to realize that a reset tape also contains energy. Bennet [Ben82]

designed a machine that uses such tapes with information as fuel. The tape after that is

randomized, full of information and again, some work must be done to reset it. For a

detailed study of all these topics, please see the references mentioned in this section.

Also interesting is the work in [Ben03], where Landauer’s principle is revised and the

historic arguments against it are refuted.

The second conclusion in [Fey96] is that ideally, it is possible to operate a computer

without any loss of energy. This computation should be done in a reversible computer

infinitesimally slowly. The only entropy loss comes in the resetting process for the next

operation and does not depend on the complexity of the computation but on the

number of output bits N:

2lnNkT (Eq. 2.1)

2lnkT is about 3 x 10-21J at room temperature. Unfortunately, the price we must pay

for this is that we will never know when the computation is finished.

There is not a minimum amount of energy required to carry out a computation, but

there is a limit when the computation is done at a certain speed. In this way, the third

point studied in [Fey96] is the amount of free energy required to carry out a

computation in a finite time. If we have a reversible computer that goes forward at a

rate r –it is r times more likely to make a forward computation than a backwards one-

then the minimum energy that must be expended per computational step is

Statistical Power Estimation on FPGAs

 14

rkTEs lnmin, = (Eq. 2.2)

The smaller is r, the lower the energy. With some mathematical development, time

can be the variable:

takenactuallysteppertime
steppertakentimekTstepperlossenergy

___min___ = (Eq. 2.3)

Again, if the computation is infinitesimally slow, there is no loss of energy.

2.1.2 Sources of Power Dissipation

Beyond the thermodynamic arguments in the previous sections, it is clear that an

efficient technology for digital circuit materialization from the power consumption point

of view must dissipate the lowest energy possible when some computation is actually

performed, and no energy in any other case. This occurs in CMOS circuits (with slight

differences with the ideal case) and other modern technologies. Older technologies,

such as vacuum tubes and relays dissipate relatively huge amounts of energy –even

compared with the CMOS technology, that dissipates relatively enormous amounts of

energy compared with the thermodynamic lower bounds- doing some computation or

not. Power dissipation in CMOS circuits is caused by three main sources [Ped97]:

1. Leakage current which is primarily determined by the technology used in its

construction, and consists of:

• Reverse bias current in the parasitic diodes formed between source

and drain diffusions and the bulk region in a MOS transistor.

• Sub-threshold currents that arise from the inversion charges that

exists at the gate voltages below the threshold voltage.

 This is also known as static power consumption. In older technologies, with

minimum feature size of 0.15 μm or larger, adequate design decisions at the

physical level may reduce this first source of power dissipation to very low

values. However, recent work like [Kao02] suggest that it may represent over

40% of total power at the 70 nm technology. It is also true that, leakage

power is proportional to the number of transistors in the off state and FPGAs

requires more transistors to implement a logic function than ASICs.

VLSI Power Consumption Analysis of Power Consumption

 15

 Nevertheless, all these forecasts about power consumption can be

interpreted more as a problem statement than a possible future prediction.

For example, using triple-oxide technology [Kle05], the overall static power in

Virtex-4 devices with 90 nm process is reduced compared to Virtex-II Pro

devices with 130 nm process.

2. Short-circuit current which is due to the DC path between the supply rails

during output transitions,

3. Switching current: it is dissipated when capacitive loads are charged and

discharged during logic changes.

Ideally, a CMOS circuit dissipates no static power since in the steady state there is

no direct path from Vdd to ground. Nevertheless, the MOS transistor is not a perfect

switch and there will always be parasitic currents. Until now the static current had little

effect on the overall power consumption. However, [Li03] found FPGA architectures

(with more than 4 inputs in the LUTs) where leakage power emerges as a mayor

source of power dissipation in devices using the projected 0.10 um technology.

The short-circuit power consumption, for example in an inverter gate, depends on

the gain of the inverter, the supply voltage, the device threshold, the input rise/fall time

and the operating frequency. The maximum short-circuit current flows when there is no

load; this current decreases with the load.

From Xilinx and Altera datasheets, short-circuit power is 10% of dynamic power. If,

however, design for high performance is taken to the extreme where gates with large

fanout are used to drive relatively small loads, then there will be an excessive penalty

in terms of short-circuit power consumption.

The dominant source of power dissipation is the switching power dissipation and is

given, for a circuit node, by:

clkddi fswEVCP ⋅⋅⋅⋅=)(5.0 2
 (Eq. 2.4)

Where:

C is the physical capacitance seen by the gate under consideration,

Vdd is the supply voltage,

Statistical Power Estimation on FPGAs

 16

E(sw) (referred as the switching activity) is the average number of transitions in the

circuit per 1/fclk time, and

fclk is the clock frequency.

Vdd

In Out

C

1

2

Fig. 2.1. Dynamic power consumption in a CMOS inverter

For a 0 → Vdd transition, switch 1 is closed (Fig. 2.1), an energy E0→1 = C * Vdd
2 is

drawn from the power supply Vdd, and the energy EC = ½ C * Vdd
2 is saved in the

capacitance C. The other ½ C * Vdd
2 is dissipated in transistor 1.

For a Vdd → 0 transition, switch 2 is closed, no energy is drawn from Vdd, but the

energy previously stored in C is dissipated [Guy98] in transistor 2.

2.1.2.1 Extending the Dynamic Power Formula

Firstly, in [Li03] a simple model is proposed in order to consider the short-circuit

power within Eq. 2.2. This component also depends on the switching activity. It can be

assumed that the ratio between short-circuits and switching power, Rsc is a constant. In

this way, an effective capacitance is defined as follows:

)1(ˆ
scRCC += (Eq. 2.5)

Ĉ is the total equivalent capacitance connected to the output of the gate under

consideration. In this way, the short-circuit component can be integrated together with

the charging and discharging of the node capacitances. These two power components

are referred to as dynamic power dissipation.

VLSI Power Consumption Analysis of Power Consumption

 17

Another point to consider is that Eq. 2.2 is obtained for a CMOS inverter, but the

same results can be dragged for other logic gates and MOSFET based circuits. The

only difference between the inverter and other CMOS gates, in order to calculate the

load capacitance, is the number of transistors in each complementary part (Fig. 2.2).

P-Block

N-Block

Vdd

In Out

C

Fig. 2.2: Dynamic power consumption in a generic CMOS gate

For the whole circuit, the power can be calculated adding up all the contributions:

i
i

iclkdd swECfVP)(ˆ
2
1 2 ∑= (Eq. 2.6)

It should be noted that in some work in this area, the 0.5 factor does not appear in

the formula. In these cases the switching activity is replaced by the effective frequency.

The effective number of signal cycles doubles the number of signal transitions.

The last point studied in this section, related to Eq. 2.3, is that it only considers full

swings between Vdd and GND. Short glitches have partial swings and are considered

by iswE)(ˆ , the effective switching activity.

i
i

iclkdd swECfVP)(ˆˆ
2
1 2 ∑= (Eq. 2.7)

Details of iswE)(ˆ and iĈ estimation are explained in Chapter 5.

Statistical Power Estimation on FPGAs

 18

2.2 Power Consumption in FPGAs
The previous section exposes the three variables, and degrees of freedom, inherent

in the low-power design space: voltage, physical capacitance, and data activity.

Because of the quadratic relationship to the power, voltage reduction offers the most

effective means to minimize power consumption. Furthermore, this power reduction

has a global effect, experienced not only in one gate or circuit node, but throughout the

sub-circuit or device supplied with the same voltage. However, programmable logic

devices are studied in this work. Once a specific commercially available device is

selected, the nominal power supply voltages are given in the data sheets and only

capacitance and switching activity need to be estimated (and optimized).

FPGAs consume much more power than ASICs because they have a large number

of transistors per logic function in order to program the device. Nevertheless,

programmability is the essence of this technology and this overhead must be assumed.

In this section the different electronic components of a SRAM-based FPGA are

analyzed in order to determine whether or not Eq. 2.4 can be applied to all the nodes in

any design.

Most of the models used to explain the power consumption behavior of SRAM-

based FPGAs are based on the equations derived from the analysis of the CMOS

inverter. As it was said before, an efficient technology would dissipate the lowest

energy when some computing is actually performed, while no energy is dissipated in

any other case. SRAM-based FPGAs, like the ones used in this work as technological

framework, have pure CMOS circuits but also pass-transistor structures, SRAM,

buffers, input and output circuits [Gar00].

As it is presented in [Rab96b] (See chapter 3 by C. Svensson and D. Liu), the

combinational CMOS static logic is the selected technology for low power. Though, for

timing control in synchronous circuits, simple, non-precharged, dynamic flip-flops, or

static gate based flip-flops appear to be the best suited techniques. It is important to

note that, in the case of flip-flops, there is a component of the dynamic power

consumption that does not depend on the input activity and thus behaves like static

power consumption. This is the power consumed by transistors clocked at their gates.

The power consumption for a non-precharged TSPC flip-flop is:

VLSI Power Consumption Power Consumption in FPGAs

 19

2)8)2/(448(ddoioid fVCCCCP αα +++= (Eq. 2.8)

The first two terms do not depend on the input activity. Ci and Co are respectively

the input and output capacitances at the transistors and α is the data activity.

Another problem found in logic circuits and in particular in FPGAs, comes from the

high capacitance nodes where drivers are used to decrease the delay and the short-

circuit power consumption due to long rise and fall times in the following stages. As

shown in [Rab96b], using a tapered inverter chain, and minimizing the delay, the driver

causes an excess power consumption of 80% over the load.

2.2.1 Programmable Routing

[Bet99] describes two important circuits in the design of FPGA routing switches:

pass transistors and tri-state buffers. Routing switches are either pass transistors or

pairs of tri-state buffers (one in each direction), and allow routing wire segments to be

joined to form longer connections (Fig 2.3). Multiplexers allow routing wires to be

connected to the input pins of logic blocks, while demultiplexers (a set of pass

transistors) allow routing wires to be driven by output pins of logic blocks (Fig. 2.4).

tri-state buffer
wire segment

pass transistor

SRAM cell

Fig. 2.3: Routing Switch

input pin

Track buffer

output pin

Logic block

Fig. 2.4: Logic Block Routing

Statistical Power Estimation on FPGAs

 20

Pass transistors connecting different wire segments can be modeled by equivalent

resistances and capacitances. In this way, it is possible to lump together the

capacitances of wire segments and pass transistors in a net or node. In other words,

these transistors are considered part of the wire. Buffers can be treated as logic cells

and the wires, including pass transistors, are driven by these buffers. For example, Fig.

2.5 shows a net composed by several wire segments and pass transistors from buffer

A to buffer B.

buffer A buffer Bwire segment

pass transistor

Fig. 2.5: Net or node model

2.2.2 Physical Capacitance

Interconnection plays a prominent role in determining the total chip area, delay and

power, and hence, must be accounted for as early as possible during the design

process. In the particular case of FPGAs, the long routing tracks, with significant

capacitance, consumes relatively a lot of power for every transition. For example,

[Poo02] [Poo05] found for theoretical models that 57% of the total energy consumption

is due to connections between the logic clusters.

Power dissipation is linearly dependent on the physical capacitances driven by

individual gates. So, once a design is mapped, placed and routed in a specific

technology, capacitance calculation could be easily done using information from the

target library. Unfortunately, this is not the case for commercial FPGAs: often,

manufacturers do not provide the information about internal nodes capacitance or at

least they do not give it directly. This makes mandatory the development of a solution

in this thesis for the capacitance retrieval problem and it is presented in Chapter 6.

VLSI Power Consumption Power Consumption in FPGAs

 21

2.2.3 Switching Activity

In addition to voltage and physical capacitance, switching activity is the third factor

that determines the dynamic power consumption. A chip may contain a high amount of

physical capacitance, but if there is no switching in the circuit, then no dynamic power

will be consumed. In a combinational circuit, if two consecutive and identical vectors

are presented at the circuit inputs, no power is dissipated. The data activity determines

how often this switching occurs. There are two components to the switching activity:

1. fclk which determines the average periodicity of data arrivals, and

2. E(sw) which determines how many transitions each data arrival will

generate.

Fclk and E(sw) are strongly related. Fclk can not be unlimitedly increased. The

corresponding signal must have enough time, 1/fclk, to reach the steady state before the

arrival of the new input vector.

For circuits that do not experience glitching, E(sw) can be interpreted as the

probability that a power consuming transition will occur during a single data period.

Even for these circuits, calculation of E(sw) is difficult as it depends not only on the

switching activities of the circuit inputs and the logic function computed by the circuit,

but also on the spatial and temporal correlations among the circuit inputs.

For certain design styles, glitching can be an important source of signal activity.

Glitching refers to spurious and unwanted transitions that occur before a node settles

down to its final steady-state value. Glitching often arises when paths with unbalanced

propagation delays converge at the same point in a circuit. Since glitching can cause a

node to make several unnecessary power consuming transitions, it should be avoided

whenever possible [Boe95].

The data activity E(sw) can be combined with the physical capacitance C to obtain

switched capacitance, Csw = C.E(sw), which describes the average capacitance

charged during each data period 1/fclk. It is a useful magnitude for comparing

implementations running at different clock frequencies and with different voltages.

Statistical Power Estimation on FPGAs

 22

2.3 Switching Activity Computation
The computing of switching activity in a logic circuit is difficult because it depends on

a number of parameters. Some of these parameters are technology-dependent factors

and will be treated below. The input pattern dependence, the delay model at each

design stage, the circuit logic function and, for some techniques, the circuit structure,

are not technology-dependent factors. The impact of these factors on the circuit node

activity will be illustrated in the following sections.

2.3.1 Dependence on the Input Patterns

N Input I Input J Output Tr

1 0-0 0-0 0-0 N

2 0-0 0-1 0-0 N

3 0-0 1-0 0-0 N

4 0-0 1-1 0-0 N

5 0-1 0-0 0-0 N

6 0-1 0-1 0-1 Y

7 0-1 1-0 0-0 N

8 0-1 1-1 0-1 Y

9 1-0 0-0 0-0 N

10 1-0 0-1 0-0 N

11 1-0 1-0 1-0 Y

12 1-0 1-1 1-0 Y

13 1-1 0-0 0-0 N

14 1-1 0-1 0-1 Y

15 1-1 1-0 1-0 Y

16 1-1 1-1 1-1 N

Table 2.1: Activity for an AND gate with independent inputs

VLSI Power Consumption Switching Activity Computation

 23

For example, consider a two-input AND gate g with independent inputs I and J

whose signal probabilities are ½, then Eg (sw) = 3/8. This holds because in 6 out of 16

possible input transitions, the output of the two-input AND gate makes a transition as is

shown in Table 2.1.

Now suppose that it is known that only patterns 00 and 11 can be applied to the

gate inputs and that both patterns are equally probable, then Eg (sw)=1/2 (Table 2.2).

N Input I Input J Output Tr

1 0-0 0-0 0-0 N

2 0-1 0-1 0-1 Y

3 1-0 1-0 1-0 Y

4 0-0 1-1 0-0 N

Table 2.2: Activity for an AND gate with spatial dependence among the inputs

Alternatively, if one assumes that it is known that every 0 applied to input I is

immediately followed by a 1, while every 1 applied to input J is immediately followed by

a 0, then Eg (sw) = 4/9 (Table 2.3).

N Input I Input J Output Tr

1 0-1 0-0 0-0 N

2 0-1 0-1 0-1 Y

3 0-1 1-0 0-0 N

4 1-0 0-0 0-0 N

5 1-0 0-1 0-0 N

6 1-0 1-0 1-0 Y

7 1-1 0-0 0-0 N

8 1-1 0-1 0-1 Y

9 1-1 1-0 1-0 Y

Table 2.3: Activity for an AND gate with temporal dependence among the inputs

Statistical Power Estimation on FPGAs

 24

Finally, if one assumes that it is known that I changes whenever J changes its value,

then Eg (sw) = ¼ (see Table 2.4).

N Input I Input J Output Tr

1 0-0 0-0 0-0 N

2 0-0 1-1 0-0 N

3 0-1 0-1 0-1 Y

4 0-1 1-0 0-0 N

5 1-0 0-1 0-0 N

6 1-0 1-0 1-0 Y

7 1-1 0-0 0-0 N

8 1-1 1-1 1-1 N

Table 2.4: Activity for an AND gate with spatial-temporal dependence among the inputs

The first case is an example of spatial correlations between gate inputs; the second

case illustrates temporal correlations; while the third case describes an instance of

spatial-temporal correlations.

In general there are first order and higher order temporal correlations. In the first

case the next value of a signal depends on its current value. In the second case it also

depends on the n previous values.

There are also special names for some types of correlations for internal signals.

Spatial, temporal and spatial-temporal correlations at state lines, induced by a finite

state machine, are known as sequential correlations. Even if primary inputs are

uncorrelated, the state lines can be strongly correlated. Another interesting case of

spatial correlation in internal signals is due to reconvergent fanout known as structural

correlations. Reconvergent nodes are explained below in this Chapter. A very

interesting study of the effects of correlations on power estimation methods is

presented in [Sch96a].

With the previous examples, it is clear that the straightforward approach of

estimating power just by using a simulator and applying a big but arbitrary set of input

VLSI Power Consumption Switching Activity Computation

 25

patterns may give erroneous results due to this pattern-dependence problem.

Experiments that quantify this fact are presented in this thesis.

It is clearly unfeasible to estimate the power consumption by exhaustive simulation

of the circuit. Even for a combinational circuit with n inputs, it is not enough to apply the

2n combinations because the activity depends on the node state after the last applied

vector. In the restrictive case of uniform distribution, the number of combinations is 22n.

Some techniques have been proposed to overcome this difficulty by using probabilities

that describe the set of possible logic values at the circuit inputs. Some mechanisms to

calculate these probabilities for gates inside the circuit have also been proposed.

Alternatively, exhaustive simulation may be replaced by Monte-Carlo simulation with

well-defined stopping criterion for specified relative or absolute error in power estimates

and a given confidence level [Naj98]. A survey of activity estimation techniques will be

presented in Chapter 3.

2.3.2 Delay Model

Any power estimation techniques must account for steady-state transitions (which

consume power and are necessary to perform a computational task). Based on the

used delay model also the glitches could be considered (which dissipate power without

doing any useful computation). Sometimes, the first component of power consumption

is referred to as the functional activity while the latter is referred to as the spurious

activity. It is shown in Chapter 5 that the average number of transitions per clock cycle

in a combinational multiplier reaches high values in some nodes. The spurious power

dissipation may be more significant in FPGAs than in ASICs because of the relative

importance of the nets [Sha02].

Current power estimation techniques often handle both zero-delay (non-glitch) and

real delay models. In the first model, it is assumed that all changes at the circuit inputs

propagate through the internal gates of the circuits instantaneously. The latter model

assigns a finite delay to each gate in the circuit and can thus account for the hazards in

the circuit. A real delay model, post P&R, increases the computational requirements of

the power estimation techniques while improving the accuracy of the estimates. On the

other hand, support for the zero-delay models is useful for power estimation in early

stages of the design process. Furthermore, between these two simulation models,

Statistical Power Estimation on FPGAs

 26

there are others coming from different points in the design flow (post synthesis,

technology mapping, and place). The closer the simulation model is to the post P&R

version, the more accurate could be the estimation.

The computing of spurious activity requires careful logic and circuit level

characterization of the gates in a library as well as detailed knowledge of the circuit

structure. This means that different results will be obtained if the estimation is done

using a model generated before the technology mapping, when no technological data

may be taken into account and no timing information is available; or after the

technology mapping, when timing information is available just for the logic but not for

the nets; or after the place and route, when a complete timing information is available.

VHDL users know how to write abstract, technology independent descriptions, but

now it is necessary to simulate the actual hardware. How can such a simulation be

done? The answer is VITAL (IEEE 1076.4 standard) [VIT01]. The VITAL (VHDL

Initiative Towards ASIC Libraries) is a modeling specification that defines a

methodology which promotes the development of highly accurate, efficient simulation

models for ASIC components in VHDL.

2.3.2.1 The IEEE VITAL Standard

The way to describe “physical” hardware in VHDL is to write VHDL models of those

components. This is supported in VHDL through the use of instantiation. Historically,

gate-level simulation using VHDL has been notoriously slow. This led to the creation of

the 1076.4 working group to provide a mechanism to allow fast gate-level simulation

using VHDL. Their effort became known as the VITAL standard. VITAL is not an issue

for VHDL designers, but an EDA vendor/ASIC supplier issue. A simulator is VITAL

compliant if it implements the VITAL package in its kernel.

The FPGA vendor’s library elements need to be implemented entirely in VITAL

primitives. They also provide tools that generate these VHDL models from post map,

P&R, etc. proprietary files. Also note that, with the VHDL model, a SDF (Standard

Delay Format) file [SDF01] is generated. The SDF file contains timing data and the

VITAL compliant simulator, having implemented an SDF reader, directly imports it into

the simulator. The naming conventions and types of VITAL generics provide the

placeholders to load timing data via back-annotation.

VLSI Power Consumption Switching Activity Computation

 27

Although an SDF file specifies delays as min:typ:max values, only one of these

values will be used for back-annotation. The selection of the specific delay values (min,

typ or max) could be done by the back-annotation program under a user controlled

option.

2.3.3 Logic Function

In the first place, switching activity at the output of a logic gate depends on the

Boolean function of the gate itself. For example, under the assumption that the input

signals are uncorrelated, switching activity at the output of a two-input NAND or NOR

gate is 3/8 and at the output of a two-input XOR gate is ½ (see Table 2.5).

N Input I Input J Output NAND NOR XOR

1 0-0 0-0 0-0 N N N

2 0-0 0-1 0-0 N Y Y

3 0-0 1-0 0-0 N Y Y

4 0-0 1-1 0-0 N N N

5 0-1 0-0 0-0 N Y Y

6 0-1 0-1 0-1 Y Y N

7 0-1 1-0 0-0 N N N

8 0-1 1-1 0-1 Y N Y

9 1-0 0-0 0-0 N Y Y

10 1-0 0-1 0-0 N N N

11 1-0 1-0 1-0 Y Y N

12 1-0 1-1 1-0 Y N Y

13 1-1 0-0 0-0 N N N

14 1-1 0-1 0-1 Y N Y

15 1-1 1-0 1-0 Y N Y

16 1-1 1-1 1-1 N N N

Table 2.5: Activity for different logic gates

Statistical Power Estimation on FPGAs

 28

Indeed, switching activity at the output of a K-input NAND or NOR gate approaches

½K-1 for large K whereas that for a K-input XOR gate remains at ½. The proposition for

a K-input NAND gate can be demonstrated as follows.

As mentioned, the number of input vector combinations, when activity is studied at a

gate or circuit output, is 22K, being K the number of primary inputs. In order to analyze a

K-input NAND gate, all the combinations can be arranged in groups. In each group the

first K-input vector is kept fixed, and for the second k-input vector has 2K combinations.

In all but one group there is just one case where a 1 to 0 transition is generated, when

the second vector is formed by all 1’s. The exceptional group is the one with the fixed

vector with all 1’s, where the possible transition is from 0 to 1. This happens in all the

cases in the group except when the second vector is also the one formed by all 1’s,

keeping the gate output at logic 0.

Then, there are 2K–1 groups with one transition, and one group with 2K–1

transitions. The transition probability for the NAND gate where the inputs are

independent is:

K

K

K

KK

KNANDP 2

1

2 2
22

2
)12()12()(−
=

−+−
=

+

 (Eq. 2.9)

If K is big enough the second constant term can be neglected, then:

1
121

2

1

2
122

2
2)(−

+−−+
+

===≅ K
KKK

K

K

KNANDP
 (Eq. 2.10)

The demonstration for the K-input NOR gate can be developed in the same way.

2.3.4 Circuit Structure

If probabilistic techniques are used to estimate the switching activity, probabilities

are calculated and propagated from primary inputs to the inner nodes and finally, to the

circuit outputs. But dependencies among the inputs complicate probability calculations.

Although primary inputs were supposed uncorrelated other dependencies originated on

the circuit structure remain: the reconvergent nodes, circuit nodes that receive inputs

from two paths connected to some gate output (Fig. 2.6). If a network consists of

simple gates and has no reconvergent fan out nodes, then the exact switching activities

can be computed during a single post-order traversal of the network [Ped94]. For

VLSI Power Consumption Conclusions

 29

networks with reconvergent nodes, the problem is much more challenging, as internal

signals may become strongly correlated and exact consideration of these correlations

cannot be performed with reasonable computational effort or memory usage. Current

power estimation techniques either ignore these correlations or approximate them,

thereby improving the accuracy at the expense of longer run times. Exact methods

(i.e., symbolic simulation) have also been proposed, but are impractical due to

excessive time and memory requirements.

Fig. 2.6: Example of a reconvergent node

2.3.5 Technology-dependant Factors

In actual networks, statistical perturbations of circuit parameters may change the

propagation delays and produce changes in the number of transitions because of the

appearance or disappearance of glitches. For that reason it is useful to determine the

change in the signal transition count as a function of these statistical fluctuations.

Variation of gate delay parameters may change the number of glitches occurring

during a transition as well as their duration. In this way, the spurious component of

power dissipation is sensitive to IC parameter fluctuations [Ben94].

2.4 Conclusions
The need for lower power systems is crucial in electronic applications from portable

devices to high-end computers. Nevertheless, designing for low power adds another

dimension to the already complex VLSI design problem: the design has to be optimized

for power as well as for performance and area.

Optimizing these three axes necessitates a new generation of EDA tools at all

design phases. These power aware tools and methodologies include power estimation

tools. Behavioral synthesis, logic synthesis and layout optimization tools require

Statistical Power Estimation on FPGAs

 30

accurate and efficient estimation of the power consumption of alternative

implementations.

There are several sources of power consumption in CMOS circuits (Fig. 2.7) but the

dynamic power is the main component. In order to estimate the dynamic power

consumption, both activity and capacitance must be gauged. Activity is hard to

estimate because its dependence on the input patterns (known as the pattern-

dependence problem). Nevertheless, the capacitance recovery is a specific design

problem for commercial FPGAs because of the lack of these data or any direct

information about how to calculate the capacitance at each circuit node.

Fig. 2.7. Sources of power consumption in CMOS circuits and FPGAs

References
[Ben03] Charles H. Bennett, “Notes on Landauer’s Principle, Reversible Computation

and Maxwell’s Demon”, Studies in History and Philosophy of Modern Physics,
v. 34, pp. 501-510, 2003.

[Ben82] C.H. Bennett, “The Thermodynamics of Computation – a Review” Internat. J.
Theoret. Phys. 21, pp. 905-940 (1982).

[Ben94] L. Benini, M. Favalli, and B. Ricco, “Analysis of hazard contribution to power
dissipation in CMOS IC’s”. In Proceedings of the 1994 International Workshop
on Low Power Design, pp 27-32, April 1994.

[Bet99] Vaughn Betz and Jonathan Rose, “Circuit Design, Transistor Sizing and Wire
Layout of FPGA Interconnect”, IEEE Custom Integrated Circuits Conference,
1999.

[Boe95] Boemo, E., Gonzalez de Rivera, G., Lopez-Buedo, S., Meneses, J., “Some
Notes on Power Management on FPGAs”, LNCS, No. 975, Springer-Verlag,
Berlin (1995) 149-157.

[Fey96] Richard P. Feynman, “Feynman Lectures on Computation”, Ed. A.J.G. Hey and

VLSI Power Consumption References

 31

R.W. Allen. Addison-Wesley, 1996.

[Gar00] Andrés David García García, “Etude sur l’Estimation et l’Optimisation de la
consommation de puissance”, PhD Thesis, l’Ecole Nationale Supérieure des
Télécommunications, Paris, 2000.

[Guy98] Alain Guyot and Sélim Abou-Samra, “Low Power CMOS Digital Design”, In
proc. Of International Conference on Microelectronics 1998 (ICM’98), Monastir,
Tunisia, December 1998.

[ITRS04] ITRS Technology Working Group, “Overall Roadmap Technology
Characteristics (ORTC)”, from the International Technology Roadmap for
Semiconductors (ITRS). 2004 Upgrade. Available at http://public.itrs.net

[Kao02] James Kao, Siva Narendra, Anantha Chandrakasan, “Subthreshold leakage
modeling and reduction techniques”, In proc. of the 2002 IEEE/ACM
international conference on Computer-Aided Design, pp. 141-148, 2002

[Kle05] M. Klein, “The Virtex-4 Power Play”, Xcell Journal, Spring 05

[Lan61] R. Landauer, “Irreversibility and Heat Generation in the Computing Process”,
IBM Journal of Research and Development, Vol 5, N 3, pp. 261-269, 1961.

[Lan94] P. Landman, Low-Power Architectural Design Methodologies, Ph. D. Thesis,
Electronic Research Laboratory, University of California, Berkeley, August
1994.

[Li03] Fei Li, Deming Chen, Lei He, Jason Cong: “Architecture evaluation for power-
efficient FPGAs”, Proc. Of Int. Symp on Field Programmable Gate Arrays,
2003, pp. 175–184

[Naj98] F. N. Najm and M. G. Xakellis, “Statistical estimation of the switching activity in
VLSI circuits”, VLSI Design, vol. 7, no. 3, pp. 243-254, 1998.

[Ped94] M. Pedram, "Power estimation and optimization at the logic level," Int'l Journal
of High Speed Electronics and Systems, Vol. 5, No. 2 (1994), pp. 179-202.

[Ped97] M. Pedram, “Design technologies for Low Power VLSI”, In Encyclopaedia of
Computer Science and Technology, Vo. 36, Marcel Dekker, Inc., 1997, pp. 73-
96.

[Poo02] Kara K.W. Poon, Andy Yan, Steven J.E. Wilton, “A Flexible Power Model for
FPGAs”, LNCS, Volume 2438, Jan 2002, pp. 312-321.

[Poo05] Kara K.W. Poon, Steven J.E. Wilton, and A. Yan, “A Detailed Power Model for
Field-Programmable Gate Arrays,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 10, issue 2, pp. 279-302, April 2005.

[Rab96b] Jan M. Rabaey and Massoud Pedram. “Low power design methodologies”.
Boston, Kluwer Academic, 1996.

[Sch96a] P. Schneider and S. Krishnamoorthy. “Effects of correlations on accuracy of
power analysis - an experimental study”, International Symposium on Low
Power Electronics and Design, Monterey, California, United States, 1996, pp.
113-116.

[SDF01] IEEE Std 1497-1999, IEEE Standard for Standard Delay Format (SDF) for the
Electronic Design Process. The Institute of Electrical and Electronics
Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA, 2001.

[Sha02] L. Shang, A. S. Kaviani, K. Bathala, “Dynamic Power Consumption in Virtex-II
FPGA Family”, FPGA 2002 Monterey, California, USA, February 24-26, 2002,

Statistical Power Estimation on FPGAs

 32

pp. 157-164.

[Sut05] Gustavo Sutter, “Aportes a la Reducción de Consumo en FPFAs”, Ph. D.
Thesis, Departamento de Ingeniería Informática, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, April 2005.

[VIT01] IEEE Std 1076.4-2000, IEEE Standard for VITAL ASIC (Application Specific
Integrated Circuit) Modelling Specification. The Institute of Electrical and
Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA,
2001.

Chapter 3.

“If it (the author refers to questionable estimations about power consumption of

computer equipment in the USA) were correct , we are approaching a notable

inflection point in human affairs, where we expend as much effort in moving

information as we do in moving matter.” From “The Computer and the Dynamo” by

Brian Hayes [Hay01]

3 Power Estimation Techniques

The problem of design for low power cannot be achieved without accurate power

prediction and optimization tools. Power dissipation must be estimated as soon as

possible and during all the design process –in particular within an optimization loop- to

meet the power budget without having to go through a costly redesign effort. When

designing the corresponding PCB, the power consumed by the devices needs to be

estimated as accurately as possible to design the power supplies, voltage regulators,

heat sink and cooling system. Since FPGAs provide short design cycles and a fast

time-to-market, the PCB is usually designed at the same time as the logic for the

FPGAs. It means power estimation should de done as soon as possible for FPGA.

Several techniques for VLSI power estimation that deal with the pattern-dependence

problem were proposed some years ago [Gho92] [Naj94]. Nevertheless, the problem is

not completely solved yet, even at the gate level. Due to the computational complexity

of power estimation, high accuracy and short run-time cannot be met together. This

problem is observed for average power estimation in individual gate power estimation;

and for total average power consumption in large sequential circuits [Koz01].

Statistical Power Estimation on FPGAs

 34

There are some issues to be considered together with accuracy, in order to evaluate

the techniques in practice:

• As with all the design restrictions, the power budget must be considered in

all the design stages, especially in the earlier ones. In this way, it must be

provided with the design specifications. In other words, there should be

estimation tools from the beginning of the design stages. If a power

consumption problem is detected later, all the known drawbacks found in

engineering could happen when deviations from the specification are

discovered later.

• If the technique is not useful for the large circuits found in today and future

practice, it is not effective because these circuits are generally the ones that

have the highest power consumption.

• The switching activity is the most difficult factor to obtain in the power

consumption equation. The strong dependency on input patterns could be a

problem considering the lack of this information within the design process,

especially in the first stages.

In this Chapter, various techniques for power estimation at the circuit, and logic level

are reviewed. These techniques are classified according to the approach they are

based on: probability or statistics. The design level and the type of circuits they could

be applied to (combinational, sequential) are clearly mentioned when necessary. In

addition, the first section groups together earlier techniques that produce power values

but do not consider the pattern-dependence problem and could not be applied to

current (with more than a few hundred gates) designs.

In the FPGA world, the techniques that operate over logic-level descriptions are very

useful because these descriptions can be easily obtained from the RTL ones through

synthesis. Other approaches try the power estimation problem starting from high-level

descriptions [Buy05] in order to use them within power-aware EDA tools. However, this

work is mainly focused on techniques based on logic-level descriptions due to two

reasons. Techniques based on high-level descriptions also present high levels of error

because these techniques will never have the necessary technological details to obtain

precision and; as mentioned above, techniques developed for logic-level descriptions

Power Estimation Techniques Power Estimation History –or Simulative
Approaches

 35

can be used starting from synthesizable RTL descriptions that could be considered a

high-enough level of abstraction. In Chapter 4, the implementation of a statistical-based

approach at the logic-level is presented, and its details are given in Chapters 5 and 6.

3.1 Power Estimation History –or Simulative
Approaches

3.1.1 SPICE-like Circuit Simulation

The simplest techniques for power estimation are based on circuit simulation, where

the circuit is evaluated with a representative set of input vectors. They are accurate and

capable of handling various technologies, different circuit design styles, single and

multi-phase clocking methodologies, tri-state drives, etc. However, this technique

experiences two serious problems. The model size for large, cell-based designs leads

to efficiency problems: memory and execution time became strong constraints for its

applicability. However, the most important problem is the size of the stimulus vector set

necessary to calculate accurately the activity. As was mentioned in Chapter 2, the

number of possible combinations at primary inputs is 22n. Still running this huge

simulation, the real distribution of the stimuli and its correlations should be considered.

This is known as the pattern-dependence problem.

The first problem, the efficiency, can be tackled simplifying the model as is shown

below. On the other hand, to solve the pattern-dependence problem two approaches

have been developed. The first approach is statistical and the second is based on

probabilities.

In the next sub-sections, several simulation-based techniques are presented sorted

in an increasing order of efficiency (but decreasing order of accuracy).

3.1.1.1 Timing Simulators

The efficiency can be improved based on simplified table-driven device models,

circuit partitioning and single-step nonlinear iteration but with some inaccuracy in

modeling leakage effects. PowerMill of Epic Design Technology [Den94] is a transistor-

level power simulator and analyzer, which applies an event-driven timing simulation

algorithm to increase the speed by two to three orders of magnitude over SPICE.

Statistical Power Estimation on FPGAs

 36

3.1.1.2 Switch Simulators

The transistor model can be further simplified to a simple resistive switch using a

discrete data representation (0, 1, X, for example). Switch-level simulation techniques

are in general much faster than circuit-level simulation techniques, but are not as

accurate. Examples of switch-level simulators are IRSIM or the IRSIM-CAP simulator

[Lan94], which is a modification of IRSIM.

3.1.1.3 Gate Level Simulators

These simulation programs rely on the accuracy of the macromodels built for the

gates in the ASIC library as well as gate-level timing analysis. The accuracy depends

heavily on the quality of the macromodels, the glitch filtering scheme used and the

accuracy of physical capacitances provided at the gate level. The speed is 3-4 orders

of magnitude faster than SPICE.

In [Büh00], using these simulators, a gate level switching activity estimation is

presented based on bit-parallel simulation first published in [Sch95]. The first

optimization is made executing several bitwise operations in parallel within the same

processor instruction. This algorithm also offers some improvements in memory

management and data structures.

3.1.1.4 Hierarchical Simulation

The idea is to use a hierarchy of power simulators (for example, at architectural,

gate-level and circuit-level) to achieve a reasonable accuracy and efficiency tradeoff.

For example, see the Entice-Aspen tool [Geo94]. This power analysis system consists

of two components: Aspen, which computes the circuit activity information, and Entice

which computes the power characterization data. A stimulus file must be supplied to

Entice where power and timing delay vectors are specified. The set of power vectors

discretizes all possible events in which power can be dissipated by the cell. With the

relevant parameters set according to the user’s specifications, a SPICE circuit

simulation is invoked to accurately obtain the power dissipation of each vector. During

logic simulation, Aspen monitors the transition count of each cell and computes the

total power consumption as the sum of the power dissipation for all cells in the power

vector path.

Power Estimation Techniques Statistical Approaches

 37

3.2 Statistical Approaches

3.2.1 Monte Carlo Simulation

Although the techniques shown in this section make use of standard simulators, the

difference to the previous simulative approaches is that in this case the techniques are

based on statistics. The first statistical technique for power estimation is a Monte Carlo

simulation that minimizes the pattern dependence problem.

The first paper in this direction, for total average power estimation over

combinational circuits, is [Bur93]. Other work extended its scope in order to estimate

the average power for individual gates ([Xak94] [Naj98]).

The technique proposed in [Bur93] is based on the assumption that

the power consumed by the circuit over a long enough period T has a normal distribution.

It is made up of applying randomly generated input patterns at the circuit primary

inputs and monitoring the power dissipation per time interval T using a standard

simulator. The required number of power samples is expected to be a small fraction of

the total number of possible vector combinations. It is calculated in function of a

tolerated relative error at a given confidence level which enables the user to tune the

accuracy of the measurement. This accuracy requires a given computational effort.

The first point to be noted is that existing simulators can be used in the inner loop of

the Monte-Carlo program. It makes the technique easier to implement than the

probabilistic ones as is shown below, which require the development of specialized

simulators. In addition, the convergence time for this approach could be fast enough to

compete with the probabilistic techniques whose main advantage is its speed. This is

due to the dimension independence property of Monte Carlo techniques: the number of

samples required to make an estimate is independent of the problem size ([Bur93]). In

any case, despite the sample size, big designs require more time because a longer

simulation time is required to evaluate each single input vector. Another factor that

contributes to the speed is the distribution of the overall circuit power: that is generally

very nearly Gaussian and very narrow around its mean. Naturally, it will be shown that

the lower the required accuracy, the faster the power estimation.

Statistical Power Estimation on FPGAs

 38

A weakness of the technique presented in [Bur93] is that when the power

consumption values on individual nodes are required, the convergence is very slow. In

addition, the method does not handle spatial correlations at the circuit inputs. Finally,

this statistical technique is directly applicable only to combinational circuits.

The power consumption for individual nodes is solved in [Xak94] [Naj98]. The

original approach is extended for sequential circuits in [Sax02], but other statistical

techniques are also developed for sequential designs ([Koz01]). The limitation of the

spatial correlations at the circuit inputs is not so severe compared with the probabilistic

approach, where they are hard to manage even at the internal nodes. For total power,

[Sch96a] reports 10-25% of additional error for several circuits when spatial

correlations at internal signals are ignored.

3.2.2 Total Power (McPower)

Code 3.1 shows the main loop of the statistical estimation as it was presented in the

first version ([Bur93]). Two stages compose each iteration, and both are critical in order

to guarantee the correctness of the measurement.

1 Repeat
2 // guarantees that typical power is measured
3 Setup;
4 // ensures the correctness of the stopping criterion
5 Sample;
6 // average power is measured
7 Until (Stop (mean_pow, stdev_pow));

Code 3.1: Basic Monte Carlo power estimation algorithm

The setup phase serves to guarantee that power values observed at the end of

successive intervals are samples of independent random variables as required by the

method. The power is not measured in the setup phase. At the end of this phase, the

circuit is as if it were operating in a random point of time. The exact application of this

phase depends on whether the circuit is purely combinational, or being combinational,

if it has registered inputs.

The power values observed during the sample phase are noted down and used to

decide when to stop. The duration of this phase is specified by the user, allowing a

number of transitions per sampling interval on each input. For every input signal xi, a

Power Estimation Techniques Statistical Approaches

 39

random number generator sets its value with probability P(xi). Once xi has switched,

another random number generator decides the duration of the new state following the

distributions)(1 tFxi and)(0 tFxi , for the high and low values respectively. The probability

P(xi) and distributions)(1 tFxi and)(0 tFxi are supplied by the user, but it can be

simplified asking the user just the average time the input is high and low: 1
xiμ and 0

xiμ .

For combinational circuits with registered inputs, the duration of this phase would be a

discrete multiple of the clock period.

If the power consumed by a circuit over a period T has a distribution that is very

close to normal and the successive input patterns are independently generated, then

the following stopping criterion can be derived. It can be shown that the number, N, of

measurements (sample size) is:

2
2/
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

ε
α

p
stN

 (Ec. 3.1)

Where p is the measured power average of the random sample over a period T, s is

the standard deviation of the power random sample, (1-α)*100% is the confidence that

relative error, ε, in the measurement is less than a specified value. Tα/2 is obtained from

the t-distribution with (N–1) degrees of freedom.

Nevertheless, the major disadvantage of this approach is that it is very slow to

provide the power consumed by individual gates or small groups of gates. These

estimations are useful to diagnose high consumption problems, find the circuit parts

that consume more energy, and reliability estimation. Another important use of this

information is to optimize a design for low power at the technology mapping, placement

or routing stages. It would take a bigger sample to estimate (with the same accuracy)

the power of individual gates, because some gates may switch very infrequently, and

as p decreases in Eq. 3.1, N increases. This problem is known as the slow

convergence problem.

Statistical Power Estimation on FPGAs

 40

3.2.3 Power of Individual Gates (MED)

This statistical technique is a direct extension of McPower. It provides both the total

and individual-gate power estimates [Naj98], with the same benefits shown above.

Preliminary results of this extension were presented in [Xak94].

In order to solve the slow convergence problem for individual gates it is proposed a

new stopping criterion. At each iteration, the number of transitions at every node, ni, is

written down and its average n and standard deviation s are calculated. Ni/T is an

estimation of the transition density, D(xi), at node i.

According to the Central Limit Theorem, the average n = ∑ ni/N has a distribution

which is close to normal for large N. For N > 30, that typically is the minimum number

to satisfy near-normality, ε1 is a sample upper bound of the percentage error,

1
2/ εη α ≤≤

−
Nn
sz

n
n

so,

2

1

2/
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

ε
α

n
sz

N
 (Ec. 3.2)

This may also be expressed as the percent deviation from the population mean η:

ε
ε

ε
η
ηεη

=
−

≤
−

⇒≤
−

1

1
1 1

n
n

n

 (Ec. 3.3)

Where ε is the user specified error tolerance. Thus Ec. 3.2 provides a stopping

criterion to yield the user specified accuracy (Ec. 3.3), with confidence (1 - α) x 100%.

However, the slow convergence problem has not been solved yet. In order to

overcome it, a threshold for the average transition count, nmin, is defined. This limits the

maximum iteration number tolerated by the algorithm. The following modified stopping

criterion is proposed for nodes with n < nmin:

2

min

2/
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

ε
α

n
sz

N
 (Ec 3.4)

Power Estimation Techniques Statistical Approaches

 41

It is shown in [Naj98] that nmin.ε becomes an absolute error bound characterizing the

accuracy for low-density nodes. With confidence (1 - α) x 100%:

εη α
min

2/ n
N

szn ≤≤−

In short, the circuit nodes have been divided in two sets. For the regular nodes,

where n > nmin, Ec. 3.2 is used as stopping criterion. For low-density nodes, where n <

nmin, it is used Ec. 3.4. In both cases, the stopping criterion is tested after N > 30.

Low-density nodes have the least effect on circuit power. Therefore, the above

strategy reduces the execution time, with little or no penalty. All the results presented in

[Naj98] are also verified in this thesis for circuits implemented on FPGA.

Another point clarified in this second version of the technique is the use of two

operation modes, synchronous and asynchronous mode. In the synchronous mode the

inputs are generated as if they were part of a synchronous circuit with its inputs coming

from registers.

In this way, the specific setup and sample routines are selected according to the

operation mode. In the synchronous mode the input pulse widths are multiples of the

clock period, Tc and a clock cycle is enough for setup. Instead of this, in the

asynchronous mode the time between transitions and setup are as explained in

[Bur93].

3.2.4 Improvements in Statistical Methods

The problem with the classical statistical estimation method is the execution time.

Current big designs could require unacceptable run times when the user specifies

medium or high accuracy requirements. In this thesis an improvement for the classical

Monte Carlo power estimation method for individual nodes is presented. Equally, some

tasks that presented results in this subject are briefly commented in this section

The first approach to solve this slow convergence problem was presented in

[Xak94]. As is explained in the previous section, the nodes with less activity than a

threshold ηmin are considered low-activity nodes. For these nodes, an absolute error

bound ηmin.ε is obtained. Even with this improvement, high execution times are

observed while the accuracy is exceeded for regular nodes. In [Kwa98], circuit nodes

Statistical Power Estimation on FPGAs

 42

are partitioned in M groups according to their contribution to the total power dissipation,

gradually decreasing the error to the high power groups. This error-to-group

assignment is computed using a quadratic programming formulation. In [Din00] the

authors present efficient sampling techniques for estimating the total power

consumption of large hierarchical circuits.

3.3 Probabilistic Approaches
The other strategy to deal with the pattern dependence problem is probabilistic. In

the statistics-based strategies the circuit under test is simulated with a number of

patterns and after that, the resulting waveforms are processed as shown in Fig. 3.1.

On the other hand, if an appropriate probability characterization for circuit inputs is

provided, the circuit can be simulated just once. In this way, some processing must be

done somehow before the simulation run to compute the required probability values at

the inputs. Thus, a single run of a probability analysis tool replaces a number of

conventional circuit simulation runs. The issues to be defined for each specific

technique in the following paragraphs are:

• what probability measures are required,

• how they must be obtained, and

• what type of analysis or simulation must be done.

Fig. 3.1: Probabilistic (bottom) vs. Statistic approach (top)

As the results of the analysis still depend on the supplied probabilities –because the

user must specify the typical behavior at the circuit inputs- it is said that techniques

Power Estimation Techniques Probabilistic Approaches

 43

based on probabilistic approaches are weakly pattern dependent, like the statistical

ones.

3.3.1 Some Important Definitions

In this sub-section, the main probability definitions used in these power estimation

techniques are briefly presented.

3.3.1.1 Definition 3.1: Signal Probability

The signal probability at a node x, Ps(x), is defined as the average fraction of clock

cycles in which the steady state value of x is a logic high.

It’s important to observe that this measure is not affected by the circuit internal

delays because steady state values are taken into account.

3.3.1.2 Definition 3.2: Transition Probability

The transition probability at a node x, Pt(x), is defined as the average fraction of

clock cycles in which the steady state value of x is different from its initial value.

As for signal probability, transition probability is not affected by the circuit internal

delays. If these measurements are used to estimate power consumption in internal

circuit nodes, toggle power (and spurious activity) is immediately excluded. But if it is

used at circuit primary inputs, generally registered, there is no possibility of glitches,

thus there is no lack of precision. In this way, signal probability and transition

probability are good candidates to specify signal characteristics at circuit inputs.

Assuming a zero delay model, power consumption can be computed as:

∑
=

=
n

i
itidd

C
av xPCV

T
P

1

2)(
2
1

 (Eq. 3.5)

Eq.3.5 gives a lower bound for Pav, compared with the general definition (Eq. 2.6)

since Eq. 3.5 assumes at most one transition within a clock cycle.

The transition density, takes into account gate delays. It was introduced after the

above definitions in [Naj91] and [Naj93]. The model for logic signals x(t) do not take

Statistical Power Estimation on FPGAs

 44

into account waveform details as the rise/fall times, over/under-shoots, etc. being just a

function of the time that takes the values 0 or 1.

3.3.1.3 Definition 3.3: Transition Density

If a logical signal x(t) makes nx(T) transitions in a time interval T, then the transition

density of x(t) is defined as:

T
TnxD x

T

)(lim)(
→∞

=
 (Eq. 3.6)

The transition density takes into account gate delays, so average power dissipation

can be accurately computed as:

∑
=

=
n

i
iiddav xDCVP

1

2)(
2
1

 (Eq. 3.7)

Instead of using D(x), expressed in transitions per time unit, it is useful in

synchronous circuits, to employ the transition number per clock cycle.

3.3.1.4 Definition 4: Equilibrium Probability

If x(t) is a logic signal, then its equilibrium probability is defined as:

∫
+

−∞→
≅

2/

2/
)(1lim)(

T

TT
dttx

T
xP

 (Eq. 3.8)

Equilibrium probability is the signal probability version taking into account gate

delays. If a zero-delay model is assumed, P(x) = Ps(x).

3.3.2 Probabilistic Power Estimation Techniques

The first paper found applying probabilistic techniques for VLSI power estimation is

[Cir87] where zero-delay model and spatial and temporal independence is assumed.

Required probability measurement at circuit inputs: Signal probabilities, Ps(xi).

Analysis algorithm: Signal probabilities are propagated from primary inputs using

basic probability theory.

Example: Let y = AND (x1, x2)

Power Estimation Techniques Probabilistic Approaches

 45

Given x1, x2 spatially independent; both signals with probability Ps(x1) and Ps(x2):

)().()(21 xPxPyP sss =

3.3.2.1 Probabilistic Simulation

In [Naj90], the reliability was studied more than the power, where the shape of the

current waveform and not only its average current is important. The values at each time

of the expected current waveform are calculated as the weighted average of all

possible current values.

Restrictions: Spatial independence at primary inputs is assumed but temporal

independence is not.

Required probability measures at circuit inputs: Probability waveforms. They are

sequences of values indicating repeatedly the probability that the signal is high for a

time interval and the probability that it makes a transition from low to high at the end of

the interval. The transition times separating these intervals are deterministic. Fig. 3.2 is

an example where the probability waveform is computed from four probable logical

waveforms of a signal.

Fig. 3.2: Probability waveform computed from four logical waveforms

The drawback is the way to obtain the probability waveform. There are two

(impractical) options: direct writing of the real number sequence, and obtaining it from a

representative set of logical input waveforms. At least what should be the waveform

length is not a trivial decision at any of the digital circuit design steps. Therefore, any

Statistical Power Estimation on FPGAs

 46

extension of [Naj90] should give a method to obtain a statistical-proved representative

waveform.

Analysis algorithm: It is said that the simulator is probabilistic since it operates on

probability waveforms but the simulation algorithm itself is deterministic. The spatial

independence on internal nodes is managed through supergates, built on a partition of

the circuit. But it is observed that it is computationally expensive to manage large

supergates.

Probability waveforms are propagated from primary inputs computing the

corresponding probability waveforms at all nodes. The propagation algorithm is similar

to event driven logic simulation with a delay model. Indeed, the technique enables

specifying logical waveforms at circuit inputs, so logical and probability waveforms can

coexist in this algorithm. When an event occurs at a gate input, the gate generates an

output event scheduled after a determined time delay.

The reported results are within 20% for peak currents and 10% for average current,

which can be used to estimate average power according to:

avddav IVP .=
 (Eq. 3.9)

3.3.2.2 Transition Density Propagation

As in the technique explained above, in [Naj93] the activity is studied as causing

stress failures. In addition to average power estimation, this technique can be used to

estimate the average power and ground currents, the susceptibility to electromigration

failures, and the extent of hot-electron degradation.

Restrictions: Spatial independence at primary inputs is assumed.

Required probability measurements at circuit inputs: For each input, equilibrium

probability and transition density must be specified.

Obtained measurements: Immediate.

Analysis algorithm: as a digital circuit maps the logic signals from the primary inputs

to every internal node, also the statistics of every internal node are determined by

those at primary inputs. In fact, this technique gives an algorithm to compute the

Power Estimation Techniques Probabilistic Approaches

 47

transition density and equilibrium probability at every node from those given at primary

inputs.

The circuit is considered as an interconnection of logic modules, each representing

a combinational logic function with certain delay characteristics. The propagation of the

transition density and equilibrium probability is done module by module and is called

density simulation. [Naj93] shows that propagation can be reduced to the propagation

problem in a zero-delay logic module. It is also important to understand how the

partition of the circuit under test in logic modules affects the accuracy. Exact

measurements can be obtained for a partition without reconvergent fanouts.

Nevertheless, they were reported as poor as 32% error for the lowest level partitioning

on an ISCAS-85 benchmark circuit.

Before explaining the density propagation problem, it is important to review the

Boolean Difference definition (⊕ denotes the exclusive-or operation):

01 ==
⊕=

xx
yy

x
y
∂
∂

 (Eq. 3.10),

Being x an input and y an output of the considered logic module, observe that only if

δy/δx is 1, then a transition at x will cause a transition at y. Then, in [Naj93] it is

demonstrated how the density can be calculated at a logic module output given the

transition densities at the n (spatially independent) primary inputs:

)()(
1

i

n

i i

xD
x
yPyD ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂
∂

 (Ec. 3.11)

Intuitively, each input signal contributes to the total density by the average rate of

transmitted transitions times the transition density of such input signal. If the transitions

are transmitted from an input xi to y 50% of the times and the transition density of xi is 2

x 106 transitions per second, then the contribution of xi to the transition density of y is

106 transitions per second.

There are other techniques to evaluate P(δy/δx) probabilities for use in Eq. 3.10, but

in [Naj93], Binary Decision Diagrams (BDDs) were used. With this, the average power

consumption can be calculated using Ec.3.7.

Statistical Power Estimation on FPGAs

 48

If logic modules are chosen so that all reconvergent nodes are inside them, the

calculated transition density is exact. But the main drawback of this technique appears

when the size of the modules with this property becomes bigger and bigger. In such

cases the speed-accuracy trade-off acquires importance. The partition into logic

modules affects the calculation of D(y).

3.4 Sequential Circuits
The methods described in section 3 have been developed for combinational logic

circuits. Accurate average switching activity estimation for finite state machines (FSMs)

is considerably more difficult for two reasons:

1. The probability of the circuit being in each of its possible states has to be

calculated, maybe indirectly;

2. The present state line inputs of the FSM are strongly correlated

• Temporally correlated due to the machine behavior, as represented

in its state transition graph and,

• Spatially correlated because of the given state encoding.

As for combinational circuits there are probabilistic and a statistical techniques.

Nevertheless, in this work just the contributions among the statistical techniques are

studied in the next section.

3.4.1 Statistical Approaches

The first work in this section estimates the power for the flip-flops and the

combinational block of a sequential circuit separately extending the technique

presented in [Naj98]. The rest of the presented papers assume that the FSM is

embedded in the circuit and estimate the power of the circuit as a whole.

3.4.1.1 Power Consumption of the Sequential Circuit Combinational

Part

In [Sax02] (the idea was firstly presented in [Naj95]) it is assumed that the studied

sequential circuits have the synchronous design style. The power consumption for a

combinational block of a sequential circuit could be estimated but no technique can be

Power Estimation Techniques Sequential Circuits

 49

applied if there is no information about the input patterns at all primary inputs including

the inputs coming from state register outputs. Specifically, this information is not given

for the state lines in a sequential circuit. Therefore, it is important to differentiate the

two main stages in this technique for power estimation:

1. The necessary statistics acquisitions at the state register outputs.

2. With these statistics, any technique for combinational circuits can be applied

over the combinational part of the sequential circuit.

In [Sax02] a statistical technique is proposed for the first stage and just this part of

the estimation technique will be explained. The sequential circuit is simulated under a

zero delay model because only steady state values are important to characterize the

activities at the state lines. It means that fast, functional simulations over a RTL or

higher-level circuit descriptions should be used. In addition, while computing these

statistics, the power consumption must be estimated just for the registers.

The applied technique is based on two assumptions:

1. The sequential circuit implements a non-decomposable FSM.(i.e. all the

states in the FSM are reachable from all the others in a finite number of clock

cycles), and

2. The state of the FSM at cycle k becomes independent of its initial state as

k → ∞. This means that the FSM must be aperiodic.

The required statistics for the later power estimation stage on the state lines, xi(t),

are the signal probability, P(x), and transition density, D(x). But it can be demonstrated

that

D(x) = P(tx) where

⎩
⎨
⎧ −≠

=
otherwise

kxkx
ktx ,0

)1()(,1
)(

 (Eq. 3.12)

So, it is sufficient to describe an algorithm to estimate P(xi) and the same can be

used to estimate P(txi) = D(xi).

The goal is to estimate P(x) for all state lines. The probability of an event A is

denoted by P{A}. It immediately gives

Statistical Power Estimation on FPGAs

 50

{ } { })(1)()0(1)(limlim 0 ii
k

i
k

xPkxPXXkxP =====
∞→∞→ (Eq. 3.13)

It means that the probability that the machine is in state xi after a long time is

independent of the state X0, at which it was initialized. Therefore, the solution requires

solving two sub-problems:

1. Estimating the left side of Eq.3.13 for some k and then

2. Obtaining an adequate k that guarantees convergence.

To solve the first problem the technique consists of running N simulations. Each run

j, generates a waveform for each state line xi

)()(kx j
i with k = 0, 1, 2, ...

An estimate for the signal probability at every time k is obtained by

∑
=

=
N

j

j
i

N
i kx

N
kp

1

)()()(1)(

From the law of large numbers

)()(lim 0
)(XxPkp ik

N
ik

=
∞→

Using a technique for the estimation of proportions, the required number of

simulation runs N can be obtained with a given error and confidence level. If the

confidence level is (1-α)x100% that:

ε<−)()(0
)(XxPkp ik

N
i (Eq. 3.14)

Then N >)N,N,max(N 2
3

2
2

2
1

where

ε
α

2
2/

1
z

N =
, ε

εεε
αα

2

3)1.0(1.02 2
2/

2
2/
++++

=
zz

N
, ε

α

2
63 2/

3
z

N
+

=
 (Eq. 3.15)

zα/2 is such that the probability the standard normal random variable is greater than

α/2.

Power Estimation Techniques Sequential Circuits

 51

To solve 2) two sets of N simulations are run in parallel starting at different initial

states X0 and X1. As P(xi|X0) and P(xi|X1) must converge to P(xi), both their difference

and average are monitored. When P(xi|X0) and P(xi|X1) are within ±ε for L consecutive

cycles, the node convergence is declared.

To accelerate the convergence the waveforms are filtered before checking their

difference and average. A 100 points FIR filter with a cutoff frequency of 0.02 Hz is

used. When all nodes converge, the simulation is terminated and the last average for

each node is reported as its signal probability.

For the primary input vector generation two considerations must be observed:

1. Periodic sequences must be avoided, and

2. The different N sequences for the N runs must be independently generated.

3.4.1.2 Sequential Circuits with Multimodal Distributions in Power

Consumption

In the statistical techniques the simulation must start at a given initial state of the

sequential circuit, but bias in the convergence should be checked. As reported for

combinational circuits, multimodal distributions in power consumption can be found in

sequential circuits. [Cho96] explains it by the Near-Closed (NC) sets. Intuitively, a NC

set is a set of states that is unlike to get out or get into the set.

In this paper, two methods are proposed to estimate power consumption for

sequential circuits with, possibly, NC sets:

1. If the STG modeling the sequential circuit is given, a STG based statistical

method is used.

2. If it is not the case, the circuit is simulated during a warm up stage before

any data sampling.

In this paper, it is shown how the method proposed in [Naj98] gives biased results

when there are NC sets.

When the STG is given, and the NC sets (Gi) are identified, the average normalized

activity (transition probability) at node y can be estimated, using the conditional

activities for each set:

Statistical Power Estimation on FPGAs

 52

∑ ×=
i ii GPGyaya)()()(

 (Eq. 3.16)

Taking into account this equation, a modified Monte Carlo technique can be applied.

In the modified Monte Carlo method, the initial states are generated according to the

probabilities of NC sets. Now the problem is how to compute the state probabilities. A

general solution is presented in [Cho96].

In the second case, the STG is not available for the sequential circuit under study.

As it could be the common case for a general power estimation tool, it is studied here

in detail. Conservatively, let us assume that there are two NC sets G1 and G2:

)()()()()(2211 GPGyaGPGyaya ×+×=

In this case we do not have the probabilities but it can be shown that)(i
k

upwarm GP − is

very close to P(Gi) as k is big enough.

∑ ∑
∈ ∈

− =
ES GS

k
i

k
upwarm

i ij

jiP
E

GP),(1)(
 (Eq. 3.17)

where E and |E| are the state space and its cardinality, and),(jiPk . Intuitively, if

the Markov chain starts from a state uniformly selected, at the kth clock cycle, the

probability of arriving at any state in Gi is)(i
k

upwarm GP − .

It can also be shown that, if transition matrix P is aperiodic and irreducible, for all i, j:

0)(),(lim >=
∞→

jjiP k

k
π

 (Eq. 3.18)

π(j), the steady state probability of state j is independent of i. From (Eq. 3.14) and

(Eq. 3.15))(i
k

upwarm GP − converges to P(Gi) as k approaches to infinity:

() ∑ ∑ ∑∑ ∑
∈ ∈ ∈∈ ∈

∞→−∞→
====

ES GS ES
ii

ES GS

k

ki
k

upwarmk
i ij ii ij

GPGP
E

j
E

jiP
E

GP)()(1)(1),(lim1)(lim π

If P is also diagonalizable, its eigenvalues: Eλλλλ ≥≥≥≥= ...1 321 , and there

are two NC sets G1 and G2,

Power Estimation Techniques Sequential Circuits

 53

∑
∈

=
1

1),(
GS j

pjlP for Sl ∈ G1

∑
∈

=
2

2),(
GS j

pjlP for S2 ∈ G2

where p1 and p2 such that 0 ≤ p1, p2 ≈ 1. It can always be found

∑ ∑
∈ ∈

×=
il ijGS GS

ii pGjlP),(
 for i = 1, 2 (Eq. 3.19)

Experimentally it has been found that λ2 ≈ p1 + p2 -1 and

k
ii

k
upwarm EGPGP 2)()(λ≤−− (Eq. 3.20)

If the allowed error is specified, the minimum k can be calculated. K is the warm-up

period. Starting from a random initial state, and after the warm-up period, a new initial

state is generated conforming to the probabilities of NC sets.

As it was assumed no information on STG, λ2 and |E| are specified conservatively.

|E| is assumed to be 2n+m considering temporally correlated primary inputs. N is the

number of primary inputs and m is the number of state bits.3 Λ2 must be specified by

the user, under but close to one.

With this, k may be computed given the tolerated error, e, n, m, and λ2. For

example, in [Cho96] some experiments are run with:

λ2 = 0.999

P(Gi)=0.1 ; e=1%

n=3 ; m=3 ; 2n+m =64

Then k999.0201.01.0 6 ×≤× ; 11061
64
001.0log 999.0 ≅=k

This is a rather small test circuit but with values for a long run. The next example

can be considered with operational values.

3 The STG must be a Markov chain: If primary inputs were time independent this condition holds and 2n could be used for
|E|, but as it can not be the case the Extended ETG is a Markov chain and it can have until 2n+m states.

Statistical Power Estimation on FPGAs

 54

λ 2 = 0.9

P(Gi)=0.1 ; e=5%

n=17 ; m=74 ; 2n+m =64

Then k9.0205.01.0 91 ×≤× ; 649
272,4759E

005.0log 9.0 ≅
+

=k

This warm-up period requires a simulation time for each sample blindly assuming

NC sets. In this way, this technique is considered conservative and this could lead to

computational inefficiency. [Yua96] proposes a solution for this problem that is

explained below.

3.4.1.3 A Technique to Generate a Random Sample in Sequential

Circuits

Statistical estimation techniques require samples of independent and identically

distributed (iid) data. However, sequential circuits present strong correlations among

state lines. As it was said in section 3.4.1.1, a mayor drawback in [Sax02] trying to

solve this problem is that spatial and high order temporal correlations among state

signals are not considered. This could yield to poor accuracy as reported in [Sch96a].

[Cho96] works with the conservative assumption that the FSM has two NC sets. In

the case that an actual circuit under test does not have NC sets, this assumption leads

to a warm-up period longer than necessary.

In [Yua96], the problem with the correlations in sequential circuits is overcome using

a randomness test to determine an independence interval over which the circuit should

be simulated between two power sampling cycles. The independence interval is

incremented until the hypothesis that the sequence is composed of iid’s is statistically

accepted with a user-defined significance level. After this a power random sample can

be obtained. A distribution-independent stopping criterion is then used to analyze the

power data until the desired accuracy is achieved.

More formally, the circuit under test dissipate P1, P2, …, Pn power values in n

consecutive clock cycles. The sequence can be viewed as a random process { Pj }.

Since mean estimation require random samples and the consecutive values are

correlated, P1, P2, …, Pn cannot be directly used.

Power Estimation Techniques Sequential Circuits

 55

The task here is extracting an iid sequence from this original time series. If we

assume that { Pj } is Φ-mixing4 and stationary with finite variance, there exists an

interval of m clock cycles, such as Pk, Pk+m, Pk+2m … which are independent. If we find

such independent interval m, a random sample can be constructed by recording the

power dissipation once every m clock cycles.

[Yua96] propose the use of a randomness test, the ordinary run test, belonging to

the category of a non-parametric hypothesis test, to examine the statistical

independence of the data in the power sequence and then to choose a proper

independence interval; which is used to generate a random sample.

The ordinary run test works on an ordered sequence of two-symbol data. In these

sequences, a run is defined as a succession of one or more identical symbols limited

by the other symbol. The hypothesis is that the sequence is randomly generated. If it is

true, the number of runs has a normal distribution.

Let an ordered sequence contain m and n symbols of each type. The total number

of elements is N=m+n. Let U be the number of runs in the sequence. If the hypothesis

is true, U has an asymptotic normal distribution.

The z statistic is:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+>

−
−

−−−

+<

−
−

−−+
−

=
NmnUif

NN
Nmnmn

NmnU

NmnUif

NN
Nmnmn

NmnU

z
/21

)1(
)2(2
/215.0

/21

)1(
)2(2
/215.0

2

2

 (Eq. 3.21)

A small z in absolute value statistically indicates that the hypothesis H is true.

H: The sequence is random.

A: The sequence is not random.

 (Eq. 3.22)

4 Φ-mixing refers to the property that the future behavior of { Pj } becomes more and more independent of its past as the
distance in time increases.

Statistical Power Estimation on FPGAs

 56

Let a value c > 0 such that H is accepted if

|z|< c (Eq. 3.23)

The user specifies a value α, called the significance level, and c is calculated by:

⎟
⎠
⎞

⎜
⎝
⎛ −= −

2
11 αNc

 (Eq. 3.24)

In short, to evaluate the sequence randomness, count m, n, and U and calculate the

value of z with Eq. 3.18. Finally, accept or reject H using Eq. 3.20.

In the specific power estimation problem, in order to obtain a two-symbol sequence,

in [Yua96] the median of the power sequence is calculated. With this, a symbol A is

assigned to the values smaller than the median, and B, to the others.

To obtain the independence interval, [Yua96] proposes to evaluate try-values from

cero, and collect the sequence using these values until the hypothesis is accepted.

Once an independence interval is statistically obtained, the random sample sequence

is efficiently obtained.

The random sample sequence acquisition is optimized running a zero delay

simulation during the independence interval while a real delay model is used to sample

the power. To measure the sample convergence, in [Yua96] a non-parametric criterion

is employed [Yua98].

3.4.1.4 Block Sampling in large Sequential Circuits

[Koz01] observed that several techniques for average power estimation use signal

probability and transition density as inputs. However, for large sequential circuits, with

several operation modes, it is possible to define two input sets with the same signal

probabilities and transition densities at every input, obtaining different power

consumption figures. To show it, several sequential circuits were tested with two such

input sets. The first vector set have spatial and temporal correlations, in the other

vector set input signals are generated randomly, with the same signal probabilities and

transition densities as in the first set. The reported average error in respect to the first

vector set was about 30% but there was a circuit with an error of 120%.

Power Estimation Techniques Sequential Circuits

 57

The authors claim that an accurate method for power estimation in sequential

circuits must simulate the circuit for realistic and typical vector sets, referred to as

power vector sets. Nevertheless, in practice it is almost impossible to obtain a short

enough power vector that considers the typical operation of the circuit with all its

operation modes.

The proposed solution is based on a block sampling approach. Randomly selected

blocks are simulated from a potentially huge power vector set. For each block, a lower

bound and an upper bound are obtained for the power consumption. The average of

these two values estimates the power dissipation taking into account all possible initial

states, but in an original way, as is explained below. Using a Monte Carlo mean

estimation technique, both bounds can be obtained with a specified error and

confidence level.

This approach requires the solution of some sub problems. To perform a well

defined estimation, a well defined initial state should be specified. However, some

initial states, and input vectors could lead to unfeasible operations in the FSM. To solve

this problem, the state bits are all set to X state (the unknown state, in this context) at

the beginning of the block simulation. During the three valued simulation the upper and

lower bounds are computed assuming at every transition from X to a 0 or 1, the 0 and 1

values for X to compute the upper and lower bounds. For example if the output of a

gate makes an X->1 transition, assuming ‘0’ for the unknown state, a power consuming

transition would happen, participating to the upper bound. If ‘1’ were assumed for the

unknown state (1->1) no power would be consumed, participating to the lower bound.

In that way the true power consumption for the simulated block is guaranteed to be

between the upper and lower bounds, and the initial state is well-defined.

The second sub problem is the choice of the block size. It can affect the tightness of

the bounds. As it becomes larger, more X’s will become defined, but from some block

sizes and larger ones, there will be little reduction in the number of X’s. In [Koz01] the

block size was set empirically to 500 cycles.

Finally, within a Monte Carlo mean estimation technique, the number of samples to

estimate the average upper bound may be different from that required for the average

lower bound, so the sampling is continued until the stopping criterion have been met for

both means.

Statistical Power Estimation on FPGAs

 58

The stopping criterion is:

2

1

2/
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

εμ
α

N

NszN

where :

Zα/2 is defined so that the area under the standard normal distribution is equal to

α/2.

μN is the sample mean

SN is the sample standard deviation.

ε1 is a small positive number, such that if ε is the user specified tolerated error in

the estimation,
1

1

1 ε
εε
−

= .

3.5 Power Estimation Methods Applied on FPGAs
In the FPGA arena, the first approaches to power estimation, was a set of equations

where the inputs are the number of logic blocks, I/O blocks, etc. In addition, a rough

value for the activity must be specified. For example, Xilinx presents such equations in

[Faw97], [Xil97h], [Tan99], [Xil00]. Just to mention one case, [Xil97h] presents a simple

method to calculate the power dissipation in the XC4000 family. Power was estimated

based on the number of logic cells and the percentage of them toggling every clock

cycle. Later, these operations were automated in spreadsheets and tools in the web

[XilPow]. The estimation, although more sophisticated, is based on similar data and

equations as in [Xil97h] and with the same drawback: low accuracy. Altera has a

similar approach and set of tools [Alt04]. This approach, although inaccurate, is useful

for early power estimates.

[Gar99] presents a power consumption model for FPGA based on incremental

measurements. Starting from a simple design, one of the internal resources is

increased keeping the rest as it is. The difference in the current consumption is

annotated to measure the power consumed by the selected element. With the power

values for every resource (flip-flop, LUT, interconnect lines, etc.), and the number of

occurrences of each type in the design, total and individual power can be computed.

Power Estimation Techniques Power Estimation Methods Applied on FPGAs

 59

Nevertheless, the user must provide the activity and the pattern-dependence problem

is not considered.

[Osm98] employs the Xilinx’s 4000 family as technological framework. This paper

presents an activity estimation technique. It is based on the propagation of probabilistic

parameters (signal probability and activity) from primary inputs to all the internal circuit

nodes.

[Shan02] analyzes the dynamic power consumption of the Virtex-II family and

reports where the power is consumed in these devices. Furthermore, it reports static

and short-circuit power values for these devices. The main goal of that work is to detect

in which part of FPGA the power is consumed in order to help actual designers to

optimize power, and develop future power-efficient FPGAs. This information is also

useful to engineer accurate EDA tools for low power design. Although the reported

results are valuable, it should be noted that the authors use non-public information for

the capacitances used in power computation: capacitances are obtained using Spice

simulations from detailed schematics of the FPGA circuits. The sources of dynamic

power were separated in logic, clock and the different routing resources. The steps to

estimate the power consumption have been mentioned, but they have not been

integrated within an EDA tool.

[Poo02] applied the probabilistic approach and evaluated different FPGA

architectures for power efficiency. However, this implementation did not consider glitch

power, or spatial and temporal signal correlations. Physical measurements were not

provided because theoretical FPGA models were analyzed. [Li03] also analyzed FPGA

architectures but glitch power and signal correlations were considered and important

conclusions were reached. It is significant to note that the goal in [Poo02] and [Li03] is

different to the one in this thesis. Here, it is important to measure the power dissipated

in actual devices with real designs in order to develop a robust and accurate power

estimation platform, while present and future FPGA architectures are studied.

Finally, in the Xilinx Integrated Software Environment (ISE), a power estimation tool,

called XPower [XilUser], [Xil01] is provided since 5.1i version. It is a software tool that

calculates the power consumption based on the physical implementation on a specific

device and a timing simulation file. With a proper vector set used in the simulation, it

can provide acceptable estimations of power usage. It is important to emphasize the

Statistical Power Estimation on FPGAs

 60

word “proper”. The user can provide arbitrary input vector sets. Therefore, the tool

cannot guarantee that simulated activity really converges with the average values.

Input vector generation is a user responsibility. The user should provide these input

vectors by a specialized software tool but this program does not exist yet. In practice,

XPower ignores the effect of data statistics on power consumption.

[And04] presents novel techniques for early activity and capacitance prediction on

FPGAs. Activity estimation is based on zero-delay simulation models and a prediction

function for glitches. On the other hand, the capacitance estimation is based on both

technology-independent parameters and the specific interconnect architecture of the

current FPGA where the design is implemented. These techniques are useful within

optimization loops of power-aware synthesis, placement and routing tools, and early-

power estimation.

Even considering all this work, it is clear that power estimation is not up to date in

today’s commercial or academic FPGA environments. This thesis contributes to the

previous research lines by the development of a new FPGA-oriented power estimation

platform, where the accuracy is statistically guaranteed and main modules can be

selected for specific applications.

3.5.1 Related Works at the UAM5

Low Power Design has two fundamental pillars: estimation and optimization. [Sut05]

presents a methodology for power optimization at the topological, architectural, and

algorithmic levels for FPGAs. The application of pipeline, block disabling, and other

general purpose techniques are characterized for several FPGA families. In addition, a

number of techniques are studied in order to reduce the power consumption in finite

state machines and arithmetic circuits.

Power consumption produces temperature increases in the die and the entire chip.

[Lop03] proposes the use of ring oscillators in the FPGA at positions that can be

selected by the user. The technique permits the verification and detection of hot spots

in the FPGA device.

5 Universidad Autónoma de Madrid, School of Engineering

Power Estimation Techniques References

 61

3.6 Conclusions
Even at the gate level, the problem of power estimation is not completely solved yet.

Due to its computational complexity, accuracy and speed cannot both be met. This

problem is observed for average power estimation, working with individual gates; and

for total average power consumption, in large sequential circuits [Koz01].

Although both probabilistic and statistical techniques are studied in this work, the

later ones are selected for the platform developed in this thesis and experiments due to

the tunable accuracy properties they present, easier implementation, and general

application, particularly in the FPGA environments.

Even considering all the work developed for FPGAs, commercial and academic

tools for FPGA environments are not up to date for estimating power consumption. This

thesis contributes to the previous work by developing a new FPGA-oriented power

estimation platform, where the accuracy is statistically guaranteed. The main modules

in this platform could be selected for specific applications. Also, the software pieces

can be easily updated and improved making the platform flexible enough for today’s

fast changing FPGA technologies.

References
[Alt04] Altera Corp. “Power Calculator User Guide”, March 2004, available at

http://www.altera.com/support/devices/estimator/pow-powerplay.html

[And04] Anderson, J.H.; Najm, F.N., “Power estimation techniques for FPGAs”, IEEE
Trans. on VLSI Systems, Volume 12, Issue 10, pp. 1015-1027, Oct. 2004

[Büh00] M. Bühler, M. Papesch and U.G. Baitinger, “Accurate and Approximate
Methods for Speeding up Signal Activity Estimation on Gate Level”, PATMOS
2000, pp. 179-188.

[Bur93] R. Burch, F. N. Najm, P. Yang, and T. Trick. “A Monte Carlo approach for
power estimation” IEEE Transactions on VLSI Systems, 1(1):63–71, March
1993.

[Buy05] K.M. Büyükşahin and F.N. Najm, “Early Power Estimation for VLSI Circuits”,
IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, 1(7):1076–1088, July 2005.

[Cho96] T. Chou y K. Roy, “Accurate Power Estimation of CMOS Sequential Circuits”,
IEEE Trans. On VLSI Systems, Vol.4, nº3, pp.369-380. September 1996.

[Cir87] M. A. Cirit, “Estimating Dynamic Power Consumption of CMOS Circuits”, Proc.
ICCAD, pp. 534-537, November 1987.

[Den94] C. Deng. “Power analysis for CMOS/BiCMOS circuits. “ In Proceedings of the

Statistical Power Estimation on FPGAs

 62

1994 International Workshop on Low Power Design, pages 3–8, April 1994.

[Din00] Ding, C-S., C-T. Hsieh and M. Pedram, “Improving efficiency of the Monte Carlo
power estimation”, IEEE Trans. on VLSI Systems, Vol. 8, No. 5, (2000) pp. 584-
593.

[Faw97] Fawcett, B.: FPGAs, Power and Packages. XCELL (1997)

[Gar00] Andrés David García García, “Etude sur l’estimation et l’optimisation de la
consommation de puissance des circuits logiques programmables du type
FPGA”, Ph. D. Thesis, Ecole Nationale Supérieure des Télécommunications,
paris, 2000.

[Geo94] B. George et al, “Power Analysis for Semi-Custom Design”, IEEE 1994 Custom
Integrated Circuits Conf., pp.249-252, New York: IEEE Press 1994.

[Gho92] Abhijit Ghosh, Srinivas Devadas, Kurt Keutzer, Jacob White, “Estimation of
Average Switching Activity in Combinational and Sequential Circuits”, In Procs.
of the 29th ACM/IEEE Conference on Design Automation, pp. 253-259, 1992

[Hay01] Brian Hayes, “The Computer and the Dynamo”, American Scientist, Vol 89, No
5, September-October, 2001. pp. 390-394.

[Koz01] J. Kozhaya and F. N. Najm, “Power estimation for large sequential circuits”,
IEEE Transactions on VLSI, vol. 9, no. 2, pp. 400-407, April 2001.

[Kwa98] B. Kwak, and E.S. Park, “An Optimization-Based Error Calculation for Statistical
Power Estimation of CMOS Logic Circuits,” in Procs. of the Design Automation
Conference, San Francisco, California, USA, pp. 690-693, 1998.

[Lan94] P. Landman, Low-Power Architectural Design Methodologies, Ph. D. Thesis,
Electronic Research Laboratory, University of California, Berkeley, August
1994.

[Li03] Fei Li, Deming Chen, Lei He, Jason Cong: “Architecture evaluation for power-
efficient FPGAs”, Proc. Of Int. Symp on Field Programmable Gate Arrays,
2003, pp. 175–184.

[Lop03] Sergio López Buedo, “Técnicas de Verificación Térmica para Arquitecturas
Dinámicamente Reconfigurables”, Ph. D. Thesis, Departamento de Ingeniería
Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid,
Julio 2003.

[Naj90] F. Najm, R. Burch, P. Yang, and I. Hajj, “Probabilistic simulation for reliability
Analysis of CMOS VLSI circuits,” IEEE Transactions on Computer-Aided
Design, vol. 9, no. 4, pp. 439-450, April 1990 (Errata in July 1990).

[Naj91] F. Najm, “Transition density, a stochastic measure of activity in digital circuits,”
28th ACM/IEEE Design Automation Conference, San Francisco, CA, pp. 644-
649, June 17-21, 1991.

[Naj93] F. Najm, “Transition density: a new measure of activity in digital circuits,” IEEE
Transactions on Computer-Aided Design, vol. 12, no. 2, pp. 310-323, February
1993.

[Naj94] F. Najm, "A survey of power estimation techniques in VLSI circuits," IEEE
Transactions on VLSI Systems, vol. 2, no. 4, pp. 446-455, Dec. 1994.

[Naj95] F. N. Najm, S. Goel, and I. N. Hajj, "Power estimation in sequential circuits"
ACM/IEEE Design Automation Conference, pp. 635-640, 1995.

[Naj98] F. N. Najm and M. G. Xakellis, “Statistical estimation of the switching activity in

Power Estimation Techniques References

 63

VLSI circuits”, VLSI Design, vol. 7, no. 3, pp. 243-254, 1998.

[Osm98] Timothy A. Osmulski, Implementation and Evaluation of a Power Prediction
Model for a Field Programmable Gate Array, Master's Thesis, Department of
Computer Science, Texas Tech University, Lubbock, TX, May 1998.

[Poo02] Kara K.W. Poon, Andy Yan, Steven J.E. Wilton, “A Flexible Power Model for
FPGAs”, LNCS, Volume 2438, Jan 2002, pp. 312-321.

[Sax02] V. Saxena, F. N. Najm, and I. N. Hajj, "Estimation of state line statistics in
sequential circuits," ACM Transactions on the Design Automation of Electronic
Systems, Vol. 7, No. 3, pp. 455-473, July 2002.

[Sch95] P.H. Schneider, “PAPSAS: A Fast Switching Activity Simulator”, PATMOS’95,
1995, pp. 351-360.

[Sch96a] P. Schneider and S. Krishnamoorthy. “Effects of correlations on accuracy of
power analysis - an experimental study”, International Symposium on Low
Power Electronics and Design, Monterey, California, United States, 1996, pp.
113-116.

[Sha02] L. Shang, A. S. Kaviani, K. Bathala, “Dynamic Power Consumption in Virtex-II
FPGA Family”, FPGA 2002 Monterey, California, USA, February 24-26, 2002,
pp. 157-164.

[Sut05] Gustavo Sutter, “Aportes a la Reducción de Consumo en FPFAs”, Ph. D.
Thesis, Departamento de Ingeniería Informática, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, April 2005.

[Tan99] Tan, J: Virtex Power Estimator User Guide. XAPP 152 (1999)

[Xac94] M. Xakellis and F. Najm, “Statistical Estimation of the Switching Activity in
Digital Circuits”, 31st ACM/IEEE Design Automation Conference, San Diego,
CA, pp. 728-733, 1994.

[Xil00] Xilinx Inc.: XC4000XL Power Calculation. XCELL, Nº27 (2000) pp 29

[Xil01] Xilinx Inc.: XPower Tutorial: FPGA Design, XPower (v1.1). (2001) Available at
http://www.xilinx.com.

[Xil97h] Xilinx Press, “A Simple Method of Estimating Power in XC4000XL/EX/E
FPGAs“, Application Brief, XBRF 014 June 30, 1997.

[XilPow] Xilinx Inc. “Power Central”, available at
http://www.xilinx.com/products/design_resources/power_central/

[XilUser] Xilinx Inc.: “ISE 7 User Guide”. Available at http://www.xilinx.com

[Yua97] L. Yuan, C. Teng, S. Kang, “ Statistical estimation of average power dissipation
in CMOS VLSI circuits using nonparametric techniques”, Procs. of the 1996
international symposium on Low power electronics and design, Monterey,
California, United States, pp. 73 – 78, August 1996.

[Yua98] L. Yuan, C. Teng, S. Kang, “Statistical estimation of average power dissipation
using nonparametric techniques”, IEEE Trans. on VLSI Systems, Vol 6, No 1,
pp. 65-73, Mar 1998.

Statistical Power Estimation on FPGAs

 64

Chapter 4.

“It was Ross Freeman, really, who had the radical notion that transistors are free”.

By Xilinx Staff, “Celebrating 20 Years of innovation”, XCell Journal, Spring 2004.

4 A-DyP: A Tool for Average

Power Estimation in FPGAs

In this Chapter, the main structure and characteristics of the power estimation

platform for FPGA environments are presented together with a power estimation tool:

A-DyP (Average Dynamic Power estimator). This tool is able to estimate average

power for both the whole design and individual nodes. A-DyP is statistical-based,

allowing the user to specify the tolerated error at a given confidence level.

Several techniques have been developed to estimate the power consumption of

digital circuits (See Chapter 3). The present work tries to contribute to the previous

research lines by the development of a new FPGA-oriented power platform and A-DyP

that is implemented over this platform. The power platform includes:

• A data structure known as the Common Power Database.

• An abstraction layer to access the Power Database independently of the

database engine currently used.

• Use of accepted standards formats in order to make straightforward the

integration with current EDA software. These files are used for information

interchange between the commercial applications and the different programs

Statistical Power Estimation on FPGAs

 66

in this power estimation system. The platform provides parsers for these

formats.

• Parsers for the standard VCD format and VHDL.

• Tcl/Tk automation in order to integrate the common and the specific

programs within a power estimation tool.

• A common approach to manage configuration data and an API to access this

information from several programs in a power estimation system.

• An input generator program that is able to produce stimulus for both a

simulator and a pattern generator that typically can be found together with a

logic analyzer.

• Parsers for Xilinx proprietary formats useful for power estimation in that

environment.

• Software components to read the Common Power Database; and write

common power reports, write files compatible with scientific graphing tools to

produce power, capacitance, activity maps, etc.

• Integration within available design flows.

 A-DyP is developed on the power estimation platform. It can execute all the

estimation process automatically, from the generation of input vectors (according to the

user specifications), to the correlation of the physical node positions with their

individual power consumptions. The last task allows the designers to create power

maps that can help to detect hot spots in the die. The current version of the tool can be

integrated into the latest Xilinx ISE suite and it has been tested with the Modelsim

simulator.

A-DyP has two main sub-systems: the first one is responsible for the average

activity estimation of the individual nodes in the DUT, while the second one calculates

the power multiplying the estimated activities by the corresponding node capacitances.

This Chapter presents an overview of the estimation tool implementation and the use of

the power platform. The development details of the different tasks composing each

subsystem are treated in depth in the next chapters.

A-DyP: A Tool for Average Power Estimation in FPGAs A-DyP Main Structure

 67

4.1 A-DyP Main Structure
A-DyP is composed by several pieces of software and some of its programs interact

with third-party tools. The main external application that forms part of the A-DyP core is

the simulator. Nevertheless, synthesis and compilation tools are necessary in order to

generate a design layout (from the layout, a VHDL model is obtained for the power

estimation). Finally, a scientific graphing tool helps to draw power, capacitance and

activity maps.

Fig. 4.1 shows the main structure of the proposed tool. It is composed of two main

sub-systems that share a data repository: The Power Database. The Activity

Estimation Sub-system estimates the average activity and standard deviation for all the

individual nodes in the DUT. The estimated values are stored in the Power Database.

On the other hand, the Power Computation sub-system multiplies these estimated

activities by the corresponding node capacitances according to Eq. 2.7. The way the

FPGA vendors provide node capacitances and other physical information is complex

enough to implement this functionality in this separate piece of software.

The user interface is not strictly part or the Activity Estimation Sub-system as

suggested in the Fig.4.1. It is the user friendly way provided by the power estimation

toolkit to write the parameters (ini) file. Likewise, the ini file is a plain text file.

Before starting the activity estimation, compile and elaborate the VHDL model for

the simulator is needed to be able to start the simulation. This is called the Set-Up

phase and is the first task of the Activity Simulation Sub-system. The Set-up phase is

detailed below.

It is important to note that the power estimation is part of a design flow and the

simulation model is obtained after the design was synthesized and implemented for a

particular FPGA device. In the context of the estimation process, the part of the design

flow necessary to generate the simulation model and the other input files is considered

the Preparation Phase.

Statistical Power Estimation on FPGAs

 68

Fig. 4.1: Average dynamic power estimation tool (A-DyP). Main structure

In the next sections all the work is presented to give the reader a global view of the

platform, the development of the tool, and underlying methodology. The preparation,

the tool itself, and the post processing steps are explained. The user interface, the set-

up phase, the Activity and Power Computation sub-systems, and the Power Database

that compose A-DyP are also briefly set out.

4.2 The Preparation Phase
The goal here is to obtain a model of the DUT for which the power can be estimated.

Before running the proposed power estimation tool, the DUT needs to be

synthesized and compiled. The synthesis can be done with any tool compatible with

the Xilinx ISE design flow and the compilation must be done with the Xilinx ISE [Xil].

A-DyP: A Tool for Average Power Estimation in FPGAs The Preparation Phase

 69

The power estimation tool could operate with designs specified in any HDL

supported by the simulator, or mixed designs, and at any level in the development

process. However, in order to consider the impact of the technology mapping, and the

PAR, both a design description and an accurate delay model should be provided.

ISE produces a layout file after the PAR in a proprietary format (NCD). This file is

translated with the netgen command to a VHDL simulation model and the

corresponding SDF delay model (Standard Delay Format) [SDF01]. This command is

included in the Xilinx ISE distribution. It can be executed from the ISE graphical

interface, the command line, or automatically from the power estimation tool when it

detects these files do not exist in the working directory. For example, the following line

can be found in the set-up script:

netgen –ofmt vhdl –sim –w –aka –pcf design.pcf

design_name

where

design_name is the NCD design file

–ofmt vhdl specify vhdl or verilog output format for simulation.

–sim generate a netlist compatible with a simulation tool.

–w overwrites the output file

–aka write “Also-Know-As” names as comments. This is a very important option in

this work and its use will be explained in detail in Chapter 6.

–pcf design.pcf is an input constraint file.

The VHDL simulation model obtained uses a structural style where VITAL cells are

instantiated [VIT01]. VHDL VITAL timing data is annotated from the SDF file using the

simulator’s built-in SDF annotator. VHDL SDF annotation works on VITAL cells only.

The IEEE 1076.4 VITAL ASIC Modelling Specification describes how cells must be

written to support SDF annotation, but Xilinx, as other FPGA and ASIC vendors,

naturally has already written the VITAL cells and provide tools that create compatible

SDF files (netgen).

Statistical Power Estimation on FPGAs

 70

Note that in some cases the VITAL library could not have been compiled and be

ready to use, but it can be built with the source files and tools provided by Xilinx. For

specific information about how to do it, you can refer to the vendor documentation

[XilSav] (Chapter 6: “Simulating Your Design”).

4.2.1 User Interface

The proposed power estimation tool can be executed in several ways:

1. From the simulator prompt

2. From the operating system command line

3. From the web interface

4. From a remote application using the power estimation web service

Whatever the execution method, three files are needed:

1. The Xilinx design file (NCD)

2. The Xilinx physical constraints file (PCF) (optional)

3. The tool parameters file (INI)

The first two files are generated in the preparation phase. Nevertheless, a user-

friendly wizard (Fig. 4.2) is provided in order to help write correct INI files. This wizard

is called the User Interface in this documentation.

Using the wizard, the user must first specify the necessary input files for the power

estimation process (Fig 4.3). Next, the wizard parses the VHDL simulation model and

offers the user the list of found entities. The user selects the top-level entity, and

specifies the activity characteristics for every input port (Fig 4.4). In short, the possible

input ports types are:

1. Periodic

2. Constant Value

3. Random

A-DyP: A Tool for Average Power Estimation in FPGAs The Preparation Phase

 71

Fig 4.2: Power Estimation Wizard. Presentation step

Fig 4.3: Power Estimation Wizard. Input file specification step

Statistical Power Estimation on FPGAs

 72

In the last step, the statistical parameters needed to run the selected power

estimation technique must be specified:

• Tolerated error

• Confidence level

• Minimal activity mean, that divides the nodes in regular and low density ones

In addition, other advanced parameters can be selected although default values are

provided for all the input boxes:

• Minimal glitch length

• Startup cycles

• Which information is stored in the Power Database

Once the user specifies all the parameters necessary for the power estimation tool,

the wizard generates a correct-by-construction INI file. An example INI file can be

found in Appendix C.

Fig 4.4: Power Estimation Wizard. Input port characterization step

A-DyP: A Tool for Average Power Estimation in FPGAs The Preparation Phase

 73

In the current version, the following INI file sections are read in various power

estimation programs:

• FILES
• CIRCUIT FEATURES
• CIRCUIT CONFIGURATION
• STAT PARAMETERS
• OPTIMIZATION
• CLOCK
• PORTS

Fig 4.5: Power Estimation Wizard. Parameter specification step

4.2.2 Power Estimation Set-Up Phase

Besides de INI file, the power estimation wizard also generates other two files

needed in the setup phase: first_ini_msim.do and ini_msim.do. These files

must exist when the estimation Tcl/Tk script is interpreted and like the INI file, they are

saved as plain text. Code 4.1 is a first_ini_msim example.

Statistical Power Estimation on FPGAs

 74

1 #
5 # FIRST_INI_MSIM.DO
6 #
7 # Activity Estimation using Statistics with Modelsim
8 #
9 # Changes the current directory.
10 cd D:/Users/PE
11 # Convert NCD to XDL (ncd2xdl)
12 catch "exec xdl -ncd2xdl topQDDFS_CORDIC.ncd

topQDDFS_CORDIC.xdl" MESG
13 # Creates a new design library.
14 vlib work
15 vmap work work
16 #
17 # Compiles the VHDL file into the work library
18 vcom topQDDFS_CORDIC_timesim.vhd
19 # -sdftyp Annotates VITAL in the specified SDF file typical

timing.
20 # -t Specifies the simulation time resolution.
21 # -noglitch Disables VITAL glitch generation.
22 vsim -sdftyp topQDDFS_CORDIC_timesim.sdf

work.topQDDFS_CORDIC -t 1ps -noglitch

Code 4.1: Simulator macro file that sets-up the power estimation tool

These first_ini_msim.do and ini_msim.do are macro files for the

simulator that compile (line 15) the VHDL model and start the simulation (line 19). In

addition, a XDL file is generated with the xdl command (line 16). This file is

necessary in the power computation sub system (see Chapter 6).

The difference between first_ini_msim.do and ini_msim.do is that the

second is interpreted in the case estimation process is suspended for any reason or

when the same design is studied with other parameters. In this case, the simulation

must be started without compiling the design because it has been done before.

22.1 Activity Estimation Sub-system
The main purpose of the Activity Estimation Sub-system is the activity estimation of

the individual nodes in the DUT. Also in this section, the generation of input vector files

for the pattern generator will be introduced. The pattern generator equipment enables

the physical measurement of the device current consumption with the same stimulus

as in the simulation.

A-DyP: A Tool for Average Power Estimation in FPGAs Activity Estimation Sub-system

 75

The activity estimator interacts with a commercial simulator in its inner loop and calls

several programs to generate circuit stimuli and evaluate the simulator results until the

stopping criterion is reached for every node as is shown in Fig 4.6. In fact, this Sub-

system can be seen as a wrapper for the simulator program.

Fig. 4.6: Activity Estimation Sub-system

Each box in Fig. 4.6 represents a program with a specific purpose. All these

programs are integrated or glued within a Tcl/Tk script in order to implement the

statistical estimation technique. A simplified version of the Tcl procedure implementing

this technique is Code 4.2. The complete Tcl/Tk script used in this work is printed in

Appendix A.

Statistical Power Estimation on FPGAs

 76

1 ##
2 #
3 # Estimate Average Transition Number for all Nodes
4 #
5 proc activityEstim {} {
6 upvar 1 blkNr blkNr
7 set END_SIM false
8 global sampleNum
9
10 while { $END_SIM == false } {
11
12 puts "Generating..."
13 exec generator.exe -pg tla -d [pwd]
14
15 puts "Simulating..."
16 do simulate.do
17
18 puts "Saving..."
19 saveVec
20
21 puts "Analizing transitions.vcd..."
22 catch "exec Transitions.exe -d [pwd] transitions[expr

$blkNr - 1].vcd" sampleNum
23 puts "$sampleNum clock cycles analized..."
24
25 puts "Updating..."
26 exec Update.exe -d [pwd]
27
28 catch { exec Cuter.exe -d [pwd]} END_SIM
29 }
30
31 quit -sim
32 puts "END OF ACTIVITY ESTIMATION!"
33
34 }

Code 4.2: Tcl procedure implementing the statistical estimation technique

The loop between lines 10 and 29 repeats the core tasks of the activity estimation

until the stopping criterion is reached.

Each iteration starts with the generation of a new block of input vectors.

Generator.exe, at line 13, writes a macro file (simulate.do) with the vectors in

an appropriate format for the simulator according to the user definitions. This program

also produces the same vectors for the specified pattern generator equipment. The

second output enables physical power measurements to further verification and tuning

of the tool (section 4.3.1).

A-DyP: A Tool for Average Power Estimation in FPGAs Activity Estimation Sub-system

 77

As the model was compiled and the simulation was initiated with the Set Up phase,

the .do file can be interpreted by the simulator using the do command directly as

shown at line 16. A complete .do file with a stimuli block is reproduced in Appendix B.

Once the current input pattern block is simulated, it is necessary to save the

corresponding simulation results. It is done by the Tcl procedure call at line 19 (Code

5.2 or Appendix A). The activity results are stored using the VCD standard format

[VCD01]. This format is widely accepted in the industry and in several commercial and

open source simulators and EDA tools.

At line 22, with transitions.exe, the VCD simulation results are parsed. The

signal transitions are counted within each clock cycle for all the circuit nodes, and the

pulse durations are calculated in order to decide if it is long enough or it should be

filtered. This program returns the current number of clock cycles analyzed in order to

give the user some feedback about the estimation progress.

At line 26, update.exe computes the average and standard deviation for all the

nodes in the circuit. This is done using the new data extracted from the last VCD

results file. With these new results, the program updates the Power Database

Finally, the current iteration ends with Cuter.exe, which tests if all the nodes in

the DUT have reached the stopping criteria defined in Eq. 3.2 and 3.4.

Implementation details of these programs and scripts are explained in Chapter 5.

4.3.1 Input Patterns for the Pattern Generator

It is useful to measure physically the power consumption of as many designs as

possible in order to develop an accurate power estimation tool. Furthermore, it is

necessary to tune, adjust and correct the tool for future devices and designs. In this

way, the same input patterns generated for the software tool are generated for a

pattern generator equipment. In the current development, a Tektronix logic analyzer

and pattern generator are used. So, in this implementation, just files for Tektronix

equipment can be generated.

Statistical Power Estimation on FPGAs

 78

4.3.2 The Power Estimation Platform

Several pieces of the Activity Estimation Sub-system can be re-used in other power

estimation tools. The simulator is naturally part of any power estimation tool based on

the statistical approach. It is an external development and in this way is considered the

first component of the Power Estimation Platform. Nevertheless, the simulator must

satisfy the VCD, VITAL and SDF standard formats.

In Fig. 4.6, the re-usable components are represented by light gray boxes. Some

components are not used “as is” but as the base development for a new one with

extended behavior. This is the case in the Power Database, where there are common

data structures and information that are independent of the specific application, but the

data necessary for the current technique can not be present.

4.4 Power Computation Sub-System
At the end, the estimated activity for all the DUT nodes is multiplied by the

corresponding node capacitances. Unfortunately, those capacitances are not provided

directly by the FPGA vendor. So, they are obtained with the Power Computation Sub-

system. The basic operation of this sub-system is depicted in Fig. 4.7.

Clearly, the Power Computation Sub-system depends on the vendor tools and the

proprietary formats they use, but for the current IDE with its special features, all the

development can be reused in other power estimation tools. For example, a maximum

power estimation tool can use all these programs as they are. It is just possible that the

order in which they are used is different.

The representation of the layout, the way capacitances are retrieved, etc. are examples

of the dependency on the vendor software and proprietary formats. The tool that Xilinx

provides for the power computation, XPower, is essential in this particular estimation

flow. Why is it called power computation and not a power estimation tool? The reason

is that users can provide XPower with an arbitrary input vector set, and in this way, the

pattern dependence problem is not treated at all. This problem is described in Chapter

3. XPower calculates the power with the activity provided by the user and capacitance

values stored in proprietary databases.

A-DyP: A Tool for Average Power Estimation in FPGAs Power Computation Sub-System

 79

NCD
Physical Design

XDL
Xilinx Design Language

XDL

XDL Parser

XML Activity
Report

XML

XPower

Tcl

Cap. Report

PWA Parser

Cap, Activ,
and Pwr Map

dat

Power Database
(Data Repository)

Net Positions

Activity

Capacitance

P, C, A, Position

pwr

VHDL Simulation
Model

VHDL Parser

Xilinx Names

Power
Computation

Report
Based on a Power
Platform piece

Power Platform
piece

Fig. 4.7: Power Computation Sub-System

The main goal of the Power Computation Sub-system is to obtain capacitance

through XPower reports. This can be done providing XPower with the activities

estimated according to statistical considerations. With this information, XPower reports

the capacitances. Finally, parsing this report the capacitances can be stored in the

Power Database. Retrieving the capacitances, A-DyP can compute the power for every

node, and the whole circuit. Also, now the power can be grouped in logic, nets and

clock or other classifications depending on the additional information obtained from

other sources about the nodes.

In the Power Computation sub system, a problem related to the different ways the

same objects are identified within the vendor tools, must be solved. The first time the

problem appeared was while trying to generate the activities for XPower with a so-

Statistical Power Estimation on FPGAs

 80

called setting file. This is an XML file where the activities are specified for individual

nodes. Code 4.3 shows a fragment of a settings file for XPower.

<Power_Net name=”CORDIC/DATAPATH_Z/result_32(2)”>
 <Power_Activity freq=”159.009009Mhz” src=”Simulation”

duty=”0.000%” />
 </Power_Net>
 <Power_Net name=”CORDIC/ DATAPATH_Z/result_32(3)”>
 <Power_Activity freq=”170.945946Mhz” src=”Simulation”

duty=”0.000%” />
 </Power_Net>

Code 4.3: XPower setting file fragment

It should be easy to generate the XML file from the Power Database, but that is not

the case because the identifiers stored in the Power Database, and obtained from VCD

files, are different. The names for the XML file are built according to different alphabets,

hierarchical separators and rules. This problem leads to a heavy processing as shown

in the upper part of Fig 4.7. It is called in this work Multiple Identifiers’ Problem.

The following examples can help to see the problem. They were extracted from test

cases, where their VCD, XDL and XML names are shown in the first, second and third

places respectively.

Example 4.1:

lfirda_gen0_lfir_prt1_gen0_bqrom_bqrom_6_rom_gen1_1_rom_outrom_0

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.6.ROM/GEN1.1.ROM/GEN0.3.ROM

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.6.ROM/GEN1.1.ROM/outrom_0

Example 4.2:

lfirda_gen0_lfir_prt1_gen0_bqrom_bqrom_4_rom_gen3_3_gen31_gen31_0_add_outxor2_4

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.4.ROM/GEN3.3.GEN31.GEN31.0.ADD/GEN0.2.lXOR2

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.4.ROM/GEN3.3.GEN31.GEN31.0.ADD/outxor2_4

Example 4.3:

lfirda_gen0_lfir_prt1_gen0_bqrom_bqrom_1_rom_inoutphases_64_cymuxg

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.1.ROM/GEN3.0.GEN31.GEN31.6.ADD/GEN0.1.MUXCY.lMUXCY

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.1.ROM/GEN3.0.GEN31.GEN31.6.ADD/GEN0.1.MUXCY.lMUXCY/O

A-DyP: A Tool for Average Power Estimation in FPGAs Power Computation Sub-System

 81

To solve the multiple identifiers problem and generate the XML file, the VHDL

simulation model and the XDL design files are parsed. During this process, an

identifiers dictionary is built in the Power Database.

The Activity Estimation Sub-system deals with VHDL, SDF and VCD files, all using

the first set of identifiers. The second set is what must be generated for XPower.

Chapter 6 explains the details of the Power Computation Sub-system and its solution to

the described problem.

1 #
2 # Capacitance Estimation
3 #
4 proc capacitanceEstim {} {
5
6 puts “Starting POWER Computation…”
7 puts “”
8
9 # VHDL Parsing
10 puts naestate “Analizing vhdl file…”
11 exec parserVHD.exe –d [pwd]
12
13 # XDL Parsing
14 puts naestate “Analizing phisical info. (xdl file)”
15 exec xdlParser.exe –d [pwd]
16
17 # XML Activity Report
18 puts naestate “Gen. Activity Rep. in XML format…”
19 exec XMLRep.exe –d [pwd]
20
21 # Connection with XPower
22 puts naestate “Gen. Power Report with XPower…”
23 do Connect2Xpower.do
24
25 # PWA Parsing
26 puts naestate “ Analizing Capacitance Report…”
27 exec PWAparser.exe –d [pwd]
28
29 # Calculates Power and write a Report
30 puts “Writing Power Report…”
31 exec report.exe –d [pwd] –v
32
33 # Maps
34 puts “Activity, Cap., and Power Maps…”
35 exec activityMap.exe –d [pwd] –r 1
36 exec capacitanceMap.exe –d [pwd] –r 1
37 exec powerMap.exe –d [pwd] –r 1
38 }

Code 4.4: Tcl procedure that implements the Power Computation Sub-system

Statistical Power Estimation on FPGAs

 82

The same way as in the Activity Estimation Sub-system, all the Power Computation

processing is integrated within a Tcl/Tk script. A simplified version of the Tcl procedure

implementing this technique is Code 4.4. The complete Tcl/Tk script for power

estimation is reproduced in Appendix A.

At lines 11 and 15, the VHDL and XDL parser are executed. From the XDL file, as

depicted in Fig. 4.7, important information is extracted: the node positions in the layout.

With this information, power maps can be drawn where the resolution could be

selected by the user.

Once identifiers for the XML file are obtained, it is generated (see line 19).

At line 24, other script file (.do) is interpreted and from it, XPower is run as a

command line application. Chapter 6 explains the details related to this script.

Within the step described above, a capacitance report is generated. At line 27, a

parser for this report generated by XPower is executed. The analyzed PWA file has

capacitance information for every internal node in the DUT.

At line 32, report.exe calculates the power for the individual nodes and writes a

report with detailed information. In addition, it obtains the power consumption of the

different FPGA resources.

Lines 35 to 37, are examples of the different information that can be related to the

physical position of the nodes in order to draw maps. In this case a resolution 1 is

specified which means that the specific magnitude for the nodes in the same CLB are

added. The files with the information relating the FPGA positions and the specific

magnitude can be imported using any scientific graphing tool.

4.5 The Power Database
In Fig. 4.8, light gray boxes represent tables that can be used in any power

estimation tool. In other words, they belong to the Power Platform. Node contains

information independent of the current run for a specific circuit node. For example, the

activity depends on the current run but the node capacitance does not.

FPGAResource contains slices, pads, and embedded cores with its position in the

A-DyP: A Tool for Average Power Estimation in FPGAs The Power Database

 83

die. These resources are part of a Circuit, the circuit is implemented in an

FPGADevice, and this device belongs to an FPGAFamily.

The main fields in theses tables are:

FPGAFamily

Name, Vdd_core, Vdd_pads

FPGADevice

Name, Size_X, Size_Y, Min_Glitch

Circuit

 Name, VCD_Nodes, Latency

FPGAResource

Name, Type, Pos_X, Pos_Y

Node

 Name_VCD, Name_AKA, Capacitance, Low_level_res_type

The application specific tables are Signal, containing information related with

a node for a particular run (EstimParams), and Sample with the number of

transitions in a node and clock cycle.

The main fields in theses tables are:

EstimParams

 Error, Confidence, Min_Act

ImputPort

Name, Port_Type

ImputLine

 Position, Params

Signal

 Activity_Avg, Activity_StdDev, Saples_at_Conv

Statistical Power Estimation on FPGAs

 84

Sample

 Clk_cycle, trn_num

Fig. 4.8: Power Database

An abstraction layer is convenient to access the Power Database independently of

the database engine currently used. In this way, the database engine can be changed

with a bounded impact in the system implementation.

4.6 Conclusions
The architecture of the system is carefully designed and a Power Estimation

Platform is developed. This feature and the use of standard formats enable the current

development to be re-used in other power estimation and optimization tools.

A very important difficulty found in this work is introduced in this chapter: the Multiple

Identifiers’ Problem. It comes from the lack of integration with third-party tools as a

vendor goal, at least in the power estimation area. In spite of the effort to solve this

A-DyP: A Tool for Average Power Estimation in FPGAs References

 85

problem, there are cases without a solution. For example, for some FPGA families and

software versions, there are nodes where the Multiple Identifiers’ Problem persists.

Furthermore, a new flavour of this problem is introduced with each new version,

making it even more difficult to solve. Nevertheless, it is reasonable to believe that in

the near future, the vendor will clearly specify formats for data interchange and

integration with third party developers in the power estimation area.

References
[SDF01] IEEE Std 1497-1999, IEEE Standard for Standard Delay Format (SDF) for the

Electronic Design Process. The Institute of Electrical and Electronics
Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA, 2001.

[VCD01] IEEE Std 1364-2001 (Revision of IEEE Std 1364-1995), IEEE Standard Verilog
Hardware Description Language. The Institute of Electrical and Electronics
Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA, 2001.

[VIT01] IEEE Std 1076.4-2000, IEEE Standard for VITAL ASIC (Application Specific
Integrated Circuit) Modelling Specification. The Institute of Electrical and
Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA,
2001.

[Xil] Xilinx Inc. at http://www.xilinx.com

[XilSaV] Xilinx Inc., “Synthesis and Verification Design Guide”, available at
http://www.xilinx.com

Statistical Power Estimation on FPGAs

 86

Chapter 5.

“Computers may be thought of as engines for transforming free energy into waste

heat and mathematical work”, Charles H. Bennett [Ben82]

5 Activity Estimation Sub-system

This chapter describes the development details of the Activity Estimation Sub-

system. This is one of the two sub-systems in the A-DyP estimation tool. It is

responsible for the estimation of the individual nodes average activity and standard

deviation in the DUT.

As the preparation phase, user interface, and set-up phase for A-DyP were

described in Chapter 4, here just the activity estimation core (see Fig. 4.6) is explained

in detail. The Activity Estimation Sub-system interacts with a commercial simulator in

its inner loop and calls several programs and scripts. This sub-system can be seen as

a wrapper for the simulator program.

All the programs and scripts composing the Activity Estimation Sub-system are

integrated within the Tcl/Tk script shown in Code 4.1 (The complete Tcl/Tk script used

in this work can be found in Appendix A) and they are:

1. The pattern generator program

2. The script that runs the patterns in the simulator

3. The script that saves the simulator results

4. The program that analyzes the simulation results

Statistical Power Estimation on FPGAs

 88

5. The program that updates the average and standard deviation for all the

nodes in the DUT

6. The program that checks if the stopping criteria for all the nodes in the DUT

was reached

5.1 The Pattern Generator
The goal of this program is generating a macro file for the simulator with stimuli

produced according to the user specifications. In Appendix B there is an example of

this macro file. generator.exe is a console application with more than 750 lines of

source code. These applications typically don't require user interaction. As with all the

programs in this work, generator.exe is coded in Object Pascal, which is the

language in the Delphi IDE. The Pattern generator, like the other programs in this

system, read parameters from an INI file. The parameters obtained this way are called

indirect parameters.

generator.exe also accept command line parameters:

generator -pg tla -d dir

-d dir specifies the working directory

-pg enables the specification of target pattern generation equipment. In the current

version this parameter just accepts the tla value for a Tektronix pattern generator.

From the INI file, this program reads the PORT section to obtain the complete input

port characterization of the DUT:

1. Number of ports

2. Input port names and types (clock, connected to a constant or random value)

3. Input port parameters according to its type

Also, the program reads the statistical parameters. These data belong to the Power

Database. It is accessed through the abstraction layer and is currently implemented by

a simple INI file.

Activity Estimation Sub-system The Pattern Generator

 89

The produced stimuli can be random, vector or bit constants, or periodic digital

values. The same vectors generated for the simulator are formatted to the pattern

generator in order to verify the power estimation system.

It should be noted that all the designs given as input to this tool are synchronous

circuits. So the input stimuli are generated in synchrony with the system clock. As

pointed in [Xak94] the input pulse widths are discrete multiples of the clock period. In

that paper it is shown that the probability that a low (high) signal will transition high

(low) on the clock edge is:

0

)01(
μ

CT
P = (Eq. 5.1.)

1

)10(
μ

CT
P = (Eq. 5.2.)

Where TC is the clock period and µ0 and µ1 are the mean low and high pulse widths.

Both probabilities are computed in the User Interface program and are retrieved here

from the INI file. The main algorithm in this program uses these probabilities to

generate the input patterns for every clock cycle and a simplified version is shown in

Code 5.1.

1 if InputsArray[iPort].ranValues[j-1][i] = '1' then
2 begin
3 if random <= InputsArray[iPort].detail[i].param2 then
4 InputsArray[iPort].ranValues[j][i] := '0'
5 else InputsArray[iPort].ranValues[j][i] := '1';
6 end
7 else begin // '0'
8 if random <= InputsArray[iPort].detail[i].param1 then
9 InputsArray[iPort].ranValues[j][i] := '1'
10 else InputsArray[iPort].ranValues[j][i] := '0';
11 end;

Code 5.1: Program fragment for the random vectors generation

In InputsArray, all the information about the input ports is stored. ranValues

stores a random input stimuli block where the first index points to a whole vector and

the second one accesses to a specific bit position. At line 1, the last bit value, randomly

generated, is tested. In the case it is ‘1’, it is decided if the next value will change to

logic ‘0’ or will stay at ‘1’. The probability of transition from high to low is stored in

Statistical Power Estimation on FPGAs

 90

InputsArray[iPort].detail[i].param2. In the lines from 7 to 11 the case

where the current bit is logic ‘0’ is considered.

Another point in this program is the computation of the number of vectors to

stimulate the circuit in a single estimation cycle. Eq. 3.1 and 3.4 determine the sample

size needed in the statistical technique to converge. Nevertheless, when long enough

input sets are applied, the amount of activity in a relatively big design could produce

huge files. For example, a simulation of the FIRDA(8) test circuit (see section 7.1.2),

with 9495 nodes, generates a 7.9MB vcd file applying 70 input vectors. In order to

reduce it to tractable file sizes, samples are bounded and the activity estimation is

computed in an iterative fashion. A reasonable maximum number of vectors is

determined empirically to be generated in a single iteration with the function

GetMaxRun (Code 5.2). This function basically depends on the circuit size,

NodesCount.

10

100

1000

10000
0 10000
20000
30000
40000
50000
60000
70000
80000
90000

Circuit Size [nodes]

M
ax

. s
am

pl
e

Si
ze

Fig. 5.1: Maximum sample size computation

K_SAMPLE/NodesCount is depicted in Fig 5.1 where the current value of

K_SAMPLE, the sample size tuning constant, is one million. SAMPLE_BLK_SIZE and

MAX_SAMPLE_SIZE are the minimum and maximum sample sizes and their current

values are 16 and 250 respectively. It can be observed that for small designs, as many

Activity Estimation Sub-system Simulating the Input Patterns and Saving the
Simulation Results

 91

as MAX_SAMPLE_SIZE vectors can be generated in one iteration, and as few as

SAMPLE_BLK_SIZE for a big circuit.

1 function GetMaxRun: Integer;
2 begin
3 NodesCount := getNodesCount;
4 result := MIN(MAX_SAMPLE_SIZE, MAX(SAMPLE_BLK_SIZE,

Trunc(K_SAMPLE /NodesCount)));
5 end;

Code 5.2: Function for the sample size bounds determination

The actual vector number must be less than the computed upper bound and not

greater than the calculated according Eq. 3.1 and 3.4. Sample sizes (Eq. 3.1 and 3.4)

are computed with the Code 5.3 for every node in the circuit.

1 if(media < umbral)then
2 N := sqr((ZalfaDiv2*desvio)/(umbral*errorUser))
3 else N:= sqr((ZalfaDiv2*desvio)/(media*errorMuestra));

Code 5.3: Function for the sample size bounds determination

5.2 Simulating the Input Patterns and Saving the
Simulation Results

As the input vectors are produced using the macro language of the simulator, they

can be directly interpreted (See Code 4.2, line 16), the simulated time advances, and a

(huge) number of transitions are produced for the DUT.

In order to further analyze this activity, it is necessary to save the simulation results.

It is done by the Tcl procedure shown in Code 5.4. The activity results are stored in the

standard VCD format which is an IEEE standard [VCD01]. This standard defines the

Verilog Hardware Description Language (HDL). However, the VCD file format is also

specified in this standard. A VCD file is an ASCII file containing header information,

variable definitions, and value changes in these VCD variables. ModelSim, the selected

simulator in the current implementation, provides simulator command equivalents for

VCD system tasks and extends VCD support to VHDL designs. So, the ModelSim

commands can be used on either VHDL or Verilog designs.

Statistical Power Estimation on FPGAs

 92

In [Mod03], ModelSim VCD commands and VCD tasks, creating a VCD file, and

example VCD outputs, can be studied.

1 ###
2 #
3 # Save a VCD file for further analysis
4 #
5 proc saveVec {} {
6 upvar 2 blkNr blkNr
7
8 # Flushes VCD file buffer to the last VCD file
9 vcd flush transitions$blkNr.vcd
10
11 # Turns off VCD dumping
12 vcd off transitions$blkNr.vcd
13 vcd flush transitions$blkNr.vcd
14
15 # Increments the number of simulation blocks
16 incr blkNr
17
18 # Adds all VHDL signals to the next VCD file
19 vcd add -file transitions$blkNr.vcd *
20 }

Code 5.4: Tcl procedure that saves simulation VCD results

blkNr just enables generating different .vcd file names. vcd off turns off VCD

dumping over the specified file. vcd flush flushes the VCD file buffer to the last

VCD file. It is not possible to close these files in the usual way during a simulation, so

different files are generated. vcd add adds all VHDL signals to the next VCD file

preparing it for the next estimation iteration.

As the estimation process moves forward, some nodes converge and it could be

important to exclude them from the VCD file. It could significantly reduce the VCD file

size and the corresponding file parsing time. Nevertheless, there is not an effective way

to do it. The missing option could be –nodes and the following command

vcd add -file transitions$blkNr.vcd *

could be replaced with

vcd add -file transitions$blkNr.vcd –nodes node_list.txt

where the node_list.txt file contains the list of the nodes that have not yet

reached the stopping criteria.

Activity Estimation Sub-system Analyzing the Generated Activity

 93

5.3 Analyzing the Generated Activity
The goal of this program is the analysis of VCD files generated by the simulator. It

should count the effective number of transitions for every node in each clock cycle. It is

also a console application. transitions.exe has more than 800 lines of source

code and the most important fragments are explained in this section.

transitions.exe accept command line parameters:

transitions -d dir vcd_file_name

-d dir specifies the working directory

vcd_file_name is the current VCD file that will be analyzed in this iteration of

the estimation process.

From the INI file, this program reads several indirect parameters where the most

important are related to the clock, the duration of the minimum glitch pulse and the

circuit latency. For example, in a pipelined circuit the program should wait a number of

cycles before collecting samples of the circuit activity. The discarded activity is, in fact,

generated outside the normal operation of the DUT.

The parser for the VCD files (like the other parsers in A-DyP) is based on the

techniques proposed in [Aho86].

5.3.1 The Set-up Period

In order to consider the set up period, Code 5.5 is executed (It is a simplified

version). interpDecl (line 1) is a Boolean variable that, when it is true, the

variable definitions part in the VCD file is parsed using the analizeDeclVCD

procedure.

firstCycles (line 3) is another Boolean variable that avoids considering the

activity in the first simulated clock cycle because the nodes are not initialized

(unknown logic state). Other cycles are ignored by user request according to

the INI file parameter SetupCycles (line 4). This feature, as mentioned above, is

useful for pipelined circuits. Although in the current implementation, this data is

retrieved from the INI file, it is obtained using an abstraction layer,

Statistical Power Estimation on FPGAs

 94

PowerEstimationManager, in order to make it easy to implement any change.

For example, this information could be stored using any database engine.

From line 8 to 15 it is assumed that the VCD declarations were parsed in a previous

estimation cycle. When the number of set up cycles is bigger than the number of the

simulated ones in the actual iteration, nothing must be considered in the statistical

sample for the current estimation sample.

countTrnVCD, at line 17, is the procedure that parses the value changes section

in the VCD file.

1 if interpDecl then
2 begin
3 firstCycles := true;
4 SetupCycles :=

PowerEstimationManager.GetLatency;
5
6 analizeDeclVCD;
7 end // interpDecl is true
8 else begin
9 SetupCycles :=

PowerEstimationManager.GetRemainingSetUpCycles;
10 if SetupCycles = 0 then
11 firstCycles := false
12 else firstCycles := true;
13
14 salteaDeclVCD;
15 end;
16
17 countTrnVCD;

Code 5.5: Program fragment that consider the set up period

5.3.2 Counting the Effective Transition Number

In [Lan94], rather than counting a short glitch as a full rail-to-rail transition, it is

modeled as a swing from ground to Vdd/2 and back to ground. Here another approach

is used to take this effect into account.

Code 5.6 is a simplified version of the algorithm that counts the effective number of

transitions for each node and clock cycle.

Activity Estimation Sub-system Updating Node Statistics

 95

1 if (tsim - Nodes[id-1].lastTr) > minGlitch then
2 begin
3 Nodes[id-1].trn := Nodes[id-1].trn + 1;
4 Nodes[id-1].lastTr := tsim;
5 end
6 else begin
7 if Nodes[id-1].trn > 0 then
8 Nodes[id-1].trn := Nodes[id-1].trn - 1;
9 NodesLine[id-1].lastTr := 0;
10 end;

Code 5.6: Program fragment that counts effective transitions

Nodes is a data structure in the main memory. It stores, for every node, the number

of transitions in the current clock cycle and the simulated time of the last transition. At

line 1, the pulse duration is checked. If it is long enough, the transition is considered as

an effective one (lines 3 to 4). In the case the glitch was too short, the pulse is ignored

and also the transition that initiated it is taken away (lines 7 to 9).

It should be noted that this data structure in memory (Nodes) leads to an important

optimization. Dealing directly with the Power Database could require an unfeasible

execution time. In the current implementation, just at the end of a clock cycle, the

Power Database is accessed to store the analysis results.

5.4 Updating Node Statistics
The goal of this simple program is to update the statistics for all the nodes according

to the new samples collected in the current iteration of the activity estimation process.

Also it is decided if the stopping criterion is reached for every node. update.exe has

just 77 lines of source code and a simplified version of the main procedure is explained

in this section (Code 5.7).

Besides the indirect parameter read from the INI file, update.exe accepts

command line parameters:

update -d dir

-d dir specifies the working directory

Statistical Power Estimation on FPGAs

 96

1 procedure UpdateCut;
2 var
3 media, desvio, N: Real;
4 begin
5 if (muestra >= minSamples) then
6 with NodeT do begin
7 Open;
8 while (not eof) do // Visit every node
9 begin
10 if not (FieldByName('Cut_Cond').asBoolean) then
11 begin // no converged
12 media := FieldByName('average').asFloat;
13 desvio :=
14 sqrt((FieldByName('SumatCuad').asInteger
15 /muestra)-sqr(media));
16 if(media < umbral)then
17 N:= sqr((ZalfaDiv2*desvio)/
18 (umbral*errorUser))
19 else
20 N:= sqr((ZalfaDiv2*desvio)/
21 (media*errorMuestra));
22 if(N < muestra) then
23 Begin // has converged
24 Edit;
25 FieldByName('Cut_Cond').asBoolean := True;
26 FieldByName('SampleAtConv').AsInteger :=
27 muestra;
28 Post;
29 end;
30 end; //del if
31 Next;
32 end; //del while
33 Close;
34 end; // del with
35 end;

Code 5.7: Program fragment that updates node statistics

At line 5 it is checked that the effective number of clock cycles is at least a minimum

number, currently 30. This is required by the statistical technique. Just when it is true,

the stopping criterion can be evaluated. At lines 12 and 13 the mean and standard

deviation are calculated. Lines from 16 to 21 compute the sample size for the current

node depending on it is a regular or a low density one. Line 22 decides the node

convergence and, in this case the node information is edited in the Power Database to

reflect this fact. When a node converges, the sample size at the present time is stored

for further analysis.

Activity Estimation Sub-system References

 97

5.5 Checking the Stopping Criteria
Cuter.exe is the simpler program in the power estimation system with just 37

lines of source code. Its goal is to determine if all the nodes are marked as reaching

the stopping criteria or not. In the first case it outputs “true”. In any other case the

output is “false”. This output is captured in the activity estimation Tcl procedure to

decide if other estimation iteration is necessary or not.

cuter.exe accept command line parameters:

cuter -d dir

-d dir specifies the working directory

5.6 Conclusions
In this Chapter, the Activity Estimation Sub-system is explained in detail, completing

the general description in the previous Chapter. It can be recognized that some

software pieces could be used in other power estimation tools, for example, a

maximum power estimation tool. Being independent programs, they can be

coordinated with a Tcl script in another order or with another algorithm. In this way

these programs form the Power Platform framework.

References
[Aho86] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques,

and Tools, Addison-Wesley, 1986.

[Ben82] C.H. Bennett, “The Thermodynamics of Computation – a Review” Internat. J.
Theoret. Phys. 21, pp. 905-940 (1982).

[Lan94] P. Landman, Low-Power Architectural Design Methodologies, Ph. D. Thesis,
Electronic Research Laboratory, University of California, Berkeley, August
1994.

[Mod03] Model Technology, ModelSim SE User’s Manual, 2003.

[VCD01] IEEE Std 1364-2001 (Revision of IEEE Std 1364-1995), IEEE Standard Verilog
Hardware Description Language. The Institute of Electrical and Electronics
Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA, 2001.

Statistical Power Estimation on FPGAs

 98

Chapter 6.

“While power consumption is an urgent challenge, its leakage or static component

will become a major industry crisis in the long term, threatening the survival of

CMOS technology itself, just as bipolar technology was threatened and eventually

disposed of decades ago. Leakage power varies exponentially with key process

parameters such as gate length, oxide thickness, and threshold voltage; this

presents severe challenges in light of both scaling and variability. Off currents in

low-power devices increase by a factor of 10 per technology cycle. Therefore

design technology must be the key contributor to maintain constant static power.”

[ITRS05] (pp.17)

6 Power Computation Sub-system

This chapter describes the development details of the Power Computation Sub-

system. This is the second of the two sub-systems in the A-DyP power estimation tool.

It is responsible for calculating the average power of the whole circuit and individual

nodes in the DUT.

In order to obtain a power or energy estimation, the activity for all the DUT nodes

must be multiplied by the corresponding node capacitances (Eq. 2.7). Unfortunately,

those capacitances are not provided by some FPGA vendors, or not in a direct way in

the best case. Currently, they are not thinking on the connectivity with third party tools

at this point. Therefore, capacitances are obtained with the Power Computation Sub-

system as shown in Fig. 4.7. In this way, the Power Computation Sub-system depends

on the specific vendor flow, and could not be ported to other FPGA design flow but

must be re-implemented. However, capacitances are not the only data collected here.

Statistical Power Estimation on FPGAs

 100

Node positions and other relevant information is obtained and stored in the Power

Database. On the other hand, this development could be used in other power

estimation tools of the same vendor, for example, for peak power estimation.

Now it is appropriate to mention that Xilinx provides a power computation tool:

XPower. In this thesis, it is called a power computation tool because users can apply

the activity generated from an arbitrary input vector set as its input, and in this way the

pattern dependence problem is not treated at all. That problem is described and

analyzed in Chapter 3. XPower calculates the power with the activity provided by the

user and capacitance values stored in proprietary databases.

The main goal of the Power Computation Sub-system is to retrieve node

capacitances considering the particular way the specific FPGA vendor could provide

them and compute the individual and total power.

A possible method to retrieve capacitance values is by XPower. The activities

obtained with the Activity Estimation Sub-system, and stored in the Power Database,

are given to XPower by a so-called settings file. This is an XML file where the activities

can be specified for individual nodes. It should be easy to generate the XML file from

the Power Database, but that is not the case because the identifiers used by the

activity estimation sub-system and the simulator, and the different files related with the

power estimation process are built according to different alphabets and lexical rules.

This problem leads to heavy processing as shown in the upper part of Fig 4.7 and is

called in this work the Multiple Identifiers’ Problem.

To solve the multiple identifiers problem and finally obtain the capacitances for the

individual nodes, the VHDL simulation model and the proprietary XDL design file are

parsed. During this process, an identifiers dictionary is built in the Power Database.

6.1 Parsing the VHDL Simulation Model
The goal of this program is the analysis of VHDL models generated by the netgen

Xilinx tool from a post PAR layout. The result of this analysis is a dictionary of

identifiers, stored in the Power Database, which solves the multiple identifiers problem.

It is also, as all the programs in this work, a console application. parserVHD.exe

Power Computation Sub-system Parsing the VHDL Simulation Model

 101

has more than 600 lines of source code and the most important fragments are

explained in this section.

parserVHD.exe accept command line parameters:

parserVHD.exe -d dir

-d dir specifies the working directory

6.1.1 Why Parsing the VHDL Model?

From the first studies done to solve the multiple identifiers problem, the VHDL model

was identified as a vehicle to relate the names in the different parts of the system. For

example, Code 6.1 shows a slice’s flip-flop instantiation. The VHDL label at line 1 can

be used to find the identifier generated in other formats in the Xilinx design flow. The

relationship can be understood observing this label and the output port of the

instantiated component. The name of the signal connected to the output port is linked

to the Xilinx’s identifier through the label as shown in Code 6.2, line 6. Replacing the

“.”, “/”, etc with “_” we have a complete match. Unfortunately, it was found that the rule

explained in this paragraph has a number of exceptions.

1 QDDFSC_CORDICR_PIPELINE_PIPELINE_10_DPTH0_DPTH0_DPATHX_GEN0_
GEN0_1_REGC_REGC_REG : X_FF

2 generic map(
3 INIT => '0'
4)
5 port map (
6 I =>

QDDFSC_CORDICR_PIPELINE_PIPELINE_10_DPTH0_DPTH0_DPATHX_outxo
rcy,

7 CE => ce_s,
8 CLK => c_s,
9 SET => GND,
10 RST => QDDFSC_CORDICR_x_datapath_11_0_FFY_RST,
11 O => QDDFSC_CORDICR_x_datapath_11(1)
12);

Code 6.1: Example instantiation of a Slice flip-flop in VHDL

Statistical Power Estimation on FPGAs

 102

1 inst "QDDFSC/CORDICR/x_datapath_11(0)" "SLICE" , placed
R17C39 CLB_R17C39.S1 , module "hset" "hset"
"QDDFSC/CORDICR/x_datapath_11(0)" ,

2 cfg
"XORF:QDDFSC/CORDICR/PIPELINE.PIPELINE.10.DPTH0_DPTH0.DPATHX
/GEN0.GEN0.0.lXORCY:

3
4 ...
5 FFX:QDDFSC/CORDICR/PIPELINE.PIPELINE.10.DPTH0_DPTH0.DPATHX/G

EN0.GEN0.0.REGC_REGC.REG:#FF
6 FFY:QDDFSC/CORDICR/PIPELINE.PIPELINE.10.DPTH0_DPTH0.DPATHX/G

EN0.GEN0.1.REGC_REGC.REG:#FF
7 ...
8 "
9 ;

Code 6.2: Example of a Slice definition in XDL

Nevertheless, a mature solution was obtained generating the VHDL model with a

specific option that adds, as comments, the node names as known in other programs

of the Xilinx design flow. This option is –aka: “Write Also-Know-As names as

comments”. This is the only explanation found in the documentation [Xil05]. Code 6.3

shows the same component as Code 6.1 but with the –aka comment at line 1.

1 QDDFSC_CORDICR_PIPELINE_PIPELINE_10_DPTH0_DPTH0_DPATHX_GEN0_
GEN0_1_REGC_REGC_REG : X_FF --
AKA:QDDFSC/CORDICR/PIPELINE.PIPELINE.10.DPTH0_DPTH0.DPATHX/G
EN0.GEN0.1.REGC_REGC.REG

2 generic map(
3 INIT => '0'
4)
5 port map (
6 I =>

QDDFSC_CORDICR_PIPELINE_PIPELINE_10_DPTH0_DPTH0_DPATHX_outxo
rcy,

7 CE => ce_s,
8 CLK => c_s,
9 SET => GND,
10 RST => QDDFSC_CORDICR_x_datapath_11_0_FFY_RST,
11 O => QDDFSC_CORDICR_x_datapath_11(1)
12);

Code 6.3: Example instantiation of a Slice flip-flop in VHDL with the –aka option

Power Computation Sub-system Parsing the VHDL Simulation Model

 103

6.1.2 Obtaining the Identifiers

The VHDL model generated from the post PAR layout is based on the instantiation

of components representing the physical resources within the Slices: LUTs, XOR

gates, FFs, etc. All this VHDL code must be parsed in order to obtain the required

identifiers.

Code 6.4 is a simplified version of the procedure that parses each component

instantiation within the architecture of the VHDL model.

1 procedure componentInstantiation;
2 var
3 componentIdentifier: String;
4 portIdentifier: String;
5 netIdentifier: String;
6 AKAIdentifier: String;
7 Index: String;
8 begin
9 parea(PAL); // Label
10 parea (Ord(':'));
11 componentIdentifier := valcompl.s;
12 parea(PAL); // Component Identifier
13 AKAIdentifier := '';
14
15 // Correlate simulator and XPower Names
16 parea(AKA);
17 parea (Ord(':'));
18 AKAIdentifier := valcompl.s;
19 parea (PAL);
20 if preanalisis = Ord('(') then
21 begin
22 parea (Ord('('));
23 Index := valcompl.s;
24 parea(PAL); // Port Identifier
25 //Id with parenthesis
26 AKAIdentifier := AKAIdentifier + '(' + Index + ')';
27 parea (Ord(')'));
28 end;
29
30 // There could be a postfix after the parenthesis
31 if preanalisis = PAL then
32 begin
33 AKAIdentifier := AKAIdentifier + valcompl.s;
34 parea (PAL);
35 end;
36
37 // Generic Map
38 ...
39
40 // Port Map
41 if preanalisis = PRT then

Statistical Power Estimation on FPGAs

 104

42 begin
43 parea (PRT);
44 parea (MAP);
45 parea (Ord('('));
46
47 // Lista de inicializaciones
48 while preanalisis <> Ord(')') do
49 begin
50 portIdentifier := valcompl.s;
51
52 parea(PAL); // Port Identifier
53 parea(ASC);
54 netIdentifier := valcompl.s;
55 parea(PAL); // Net Identifier
56 if preanalisis = Ord('(') then
57 begin
58 parea (Ord('('));
59 Index := valcompl.s;
60 parea(PAL); // Port Identifier
61 //para poder hacer la comparación con vdc que pone

paréntesis:
62 netIdentifier := netIdentifier + '[' + Index + ']';
63 parea (Ord(')'));
64 end;
65 if (portIdentifier = 'O') or (portIdentifier = 'Q')

then
66 addVHDLName (AKAIdentifier, netIdentifier,

componentIdentifier, true)
67 if preanalisis <> Ord(')')then
68 parea (Ord(','));
69 end;
70
71 parea (Ord(')'));
72 parea (Ord(';'));
73 end
74 end;

Code 6.4: Procedure that parses VHDL instantiations

The type of component instantiated is obtained at line 11 and is also stored in the

Power Database. Afterwards, the power consumption could be grouped by FPGA

resources (flip-flops, OR gates, LUTs, etc.). From line 16 to 35, the “aka” name is

obtained. These names are written within comments, so the lexical analyzer was

modified to avoid ignoring them. In this way, comments with the AKA token are

considered special comments.

From line 41, the port map section of the current instantiation is analyzed, but just

the output port is explored to relate with the “aka” name as explained above. At line 66,

Power Computation Sub-system Parsing the Xilinx Design XDL file

 105

the addVHDLName procedure is called to store the relevant collected information in

the Power Database, but through the abstraction layer in order to write a code

independent of a specific database engine.

6.1.3 Optimization

For some users it could be useful to study different scenarios changing the primary

input activity rates. It could also be useful to estimate the power consumption with

several accuracies in different stages of the design process. The VHDL model of a

large design could be a several-MB file and analyzing it is a heavy time consuming

task. As the information extracted from the VHDL model is independent from input

pattern characteristics and the selected accuracy, it should not be analyzed more that

once for a design. The program described in this section takes it into account and

detects if it was previously executed with the current design, saving a significant

execution time in subsequent power estimations.

6.2 Parsing the Xilinx Design XDL file
The XDL files are text files that can contain all the information necessary to generate

the binary configuration of an FPGA device. In fact, XDL files are generated from circuit

layouts in proprietary binary format (NCD).

The file described in this section obtains the position of the nets in a post PAR

design. Also it finishes the uncompleted names dictionary started with the VHDL parser

explained above.

Although the code is structured as a parser, the grammar is undocumented and was

discovered studying test cases and some comments found in the XDL files.

The results of the analysis are stored in the Power Database. As all the programs in

this work, the XDL parser is a console application. xdlParser.exe has more than

850 lines of source code and the most important fragments are explained in this

section.

xdlParser.exe accept command line parameters:

xdlParser.exe -d dir

Statistical Power Estimation on FPGAs

 106

-d dir specifies the working directory

The XDL file contains two parts: The first one with slice definitions and the second

one with net specifications. The treatment of these specific file parts are explained in

the following sub-sections.

6.2.1 Analyzing an FPGA Slice Definition

The syntax rule for an FPGA slice definition (instances, in the XDL vocabulary) is:

instance <name> <sitedef>, placed <tile> <site>, cfg

<string>;

or:

instance <name> <sitedef>, unplaced, cfg <string>;

As in this work just full PAR designs have been studied, the first is the only used

form. Code 6.5 is a simplified version of the procedure that parses these Slice

definitions:

1 procedure DInstance;
2 var
3 row, column, sliceNum: Integer;
4 p, q: Integer;
5 sliceName: string;
6 IOB: Boolean;
7 CLB: Boolean;
8 begin
9 CLB := false;
10 row := -1;
11 column := -1;
12 sliceNum := -1;
13
14 parea (INS);
15
16 parea(Ord('"'));
17 sliceName := valcompl.s;
18 parea(PAL);
19 parea(Ord('"'));
20
21 parea(Ord('"'));
22 parea(PAL);
23 parea(Ord('"'));
24
25 parea(Ord(','));
26
27 parea(PLC);

Power Computation Sub-system Parsing the Xilinx Design XDL file

 107

28 parea(PAL);
29
30 if Pos('CLB', valcompl.s) > 0 then // It’s a CLB
31 begin
32 CLB := true;
33 p := pos ('R', valcompl.s);
34 valcompl.s[1] := ' ';
35 q := pos ('C', valcompl.s);
36 // Row in the FPGA where the CLB (Slice) is placed
37 row := StrToInt(Copy (valcompl.s, p+1, q-p-1));
38 p := pos ('.', valcompl.s);
39 // Column in the FPGA where the CLB(Slice) is placed
40 column := StrToInt(Copy (valcompl.s, q+1, p-q-1));
41 q := Length (valcompl.s);
42 // Specific Slice within the CLB
43 sliceNum := StrToInt(Copy (valcompl.s, p+2, q-p-1));
44
45 addSliceInSlicesT(SliceName, row, column, sliceNum);
46 end
47 else ...
48
49 parea(PAL); parea(Ord(','));
50
51 while preanalisis <> CFG do
52 parea(preanalisis);
53 parea(CFG);
54
55 parea(Ord('"'));
56
57 if CLB then DConfCLB (row, column, sliceNum)
58
59 else ...
60
61 parea(Ord('"'));
62 parea(Ord(';'));
63 end;

Code 6.5: Procedure that parses Slice definitions in an XDL file

Once a slice definition is found, from line 30 to 46, the slice position (<site>) is

obtained. At line 45, the slice position is stored in the Power Database. It will be utilized

later to build power maps, as explained below.

The slice configuration is complex enough to write a separated procedure as shown

at line 47. Code 6.6 is a complete example of a Slice definition. Fig. 6.1 shows the

same slice but as shown in the Xilinx FPGA Editor.

Statistical Power Estimation on FPGAs

 108

1 inst "round4/mult4/Mult/ADD/suma2_reg(14)" "SLICE" , placed
R17C35 CLB_R17C35.S0 ,

2 cfg "XORF:round4/mult4/Mult/ADD/un4_suma2_s_14:
3 XORG:round4/mult4/Mult/ADD/un4_suma2_s_15:
4 CYMUXF:round4/mult4/Mult/ADD/un4_suma2_cry_14:
5 CYMUXG:round4/mult4/Mult/ADD/un4_suma2_cry_15:

CYSELF::F
6 CYSELG::G CKINV::1 COUTUSED::0 YUSED::#OFF XUSED::#OFF
7 XBUSED::#OFF F5USED::#OFF YBMUX::#OFF CYINIT::CIN

DYMUX::1
8 DXMUX::1 CY0F::F1 CY0G::G1
9

F:round4/mult4/Mult/ADD/un4_suma2_axb_14:#LUT:D=(A1@A3)
10

G:round4/mult4/Mult/ADD/un4_suma2_axb_15:#LUT:D=(A1@A4)
11 RAMCONFIG::#OFF REVUSED::#OFF BYMUX::#OFF BXMUX::#OFF
12 CEMUX::#OFF SRMUX::#OFF GYMUX::GXOR FXMUX::FXOR
13 SYNC_ATTR::ASYNC SRFFMUX::#OFF INITY::LOW
14 FFX:round4/mult4/Mult/ADD/suma2_reg[14]:#FF
15 FFY:round4/mult4/Mult/ADD/suma2_reg[15]:#FF INITX::LOW
16

_PINMAP:24:0,1,2,3,4,5,6,8,7,9,10,11,12,15,14,13,16,17,18,19
,20,21,22,23"

17 ;

Code 6.6: Example of a Slice definition

Fig. 6.1: Example of a Slice as shown in the Xilinx FPGA Editor

Power Computation Sub-system Parsing the Xilinx Design XDL file

 109

When the FPGA slice definition of Code 6.6 is analyzed, it should be detected all the

internal nets: LUT outputs (Lines 9 and 10), XOR outputs (Lines 2 and 3), multiplexers

(Lines 4 and 5), flip-flops (Lines 14 and 15), etc. Code 6.7 analyzes Slice

configurations.

1 procedure DConfCLB (row, column, sliceNum: Integer);
2 var
3 p, q: Integer;
4 fieldXName: string;
5 begin
6 while preanalisis <> Ord('"') do
7 begin
8 if isSliceRes (valcompl.s) then
9 begin
10 // Resource type separator
11 p:= Pos(':',valcompl.s);
12 fieldXName:= Copy (valcompl.s, p + 1 ,
13 Length(valcompl.s)- p);
14 // Id separator
15 q:= Pos(':', fieldXName);
16 fieldXName:= Copy (fieldXName, 1, q - 1); // Id

extraction
17 if fieldXName <> ':' then
18 if AKAFound then
19 updatePos(fieldXName, row, column, sliceNum)
20 else updateXName(fieldXName, row, column,

sliceNum);
21 end;
22
23 parea(preanalisis);
24 end;
25 end;

Code 6.7: Procedure that parses Slice configurations in an XDL file

Once a new name is obtained (line 16), its position is stored in the Power Database

(from line 18 to 20). This is done until the end of the configuration is detected.

At the end of the analysis, the positions of the internal nodes are in the Power

Database for future uses like drawing power maps. These maps are explained below in

this chapter. Note that the Power Database is accessed through an abstraction layer as

explained in Chapter 4.

6.2.2 Analyzing a Net Definition

The syntax for a Net definition is:

Statistical Power Estimation on FPGAs

 110

net <name> <type>,

 outpin <inst_name> <inst_pin>,

 ...

 inpin <inst_name> <inst_pin>,

 ...

 pip <tile> <wire0> <dir> <wire1> , # [<rt>]

 ...

;

The net location, from the power consumption point of view, is determined by the

position of the output pin that drives the net. This output pin is situated in the

<inst_name> slice. Slice names and their positions have been previously stored when

the slice definitions were parsed. With Code 6.8, these nets are parsed:

1 procedure DNet;
2 var
3 netName, sliceName: string;
4 begin
5 parea (NET);
6
7 sliceName := '';
8
9 parea(Ord('"'));
10 netName := valcompl.s;
11 parea(PAL);
12 parea(Ord('"'));
13
14 if preanalisis = PAL then
15 parea (PAL);
16 parea(Ord(','));
17
18 // Skip the config
19 if preanalisis = CFG then
20 begin
21 parea(CFG);
22 parea(Ord('"'));
23 while preanalisis <> Ord('"') do
24 parea(preanalisis);
25 parea(Ord('"'));
26 parea(Ord(','));
27 end;
28
29 // Look for the net driver
30 while (preanalisis <> OPN) and (preanalisis <> Ord(';'))

do
31 parea(preanalisis);

Power Computation Sub-system Generating the XML Settings File

 111

32
33 if preanalisis = OPN then
34 begin // This is the net driver
35 parea(OPN);
36 parea(Ord('"'));
37 // The Slice where the driver is positioned
38 sliceName := valcompl.s;
39 parea(PAL);
40 parea(Ord('"'));
41 parea(PAL);
42 parea(Ord(','));
43 end;
44
45 // Update the net position
46 addNet (netName, SliceName);
47
48 // Skip all other text within the net definition
49 while preanalisis <> Ord(';') do
50 parea(preanalisis);
51 parea(Ord(';'));
52 end;

Code 6.8: Procedure that parses net definitions in an XDL file

At line 10 the net name is obtained. At line 38 the Slice where the driver is

positioned is retrieved from the definition. Finally, at line 46 the net position is updated

in the Power Database through an abstraction layer. Now, all the net positions have

been determined.

6.3 Generating the XML Settings File
The Xilinx’s power computation tool, XPower, can store and retrieve the activity of

the individual nodes (and other user settings) in XML format. However, XML files can

be edited and also generated from scratch with a third party tool. In this way, XPower

could be used for report generation.

The program described in this section generates an XML settings file for XPower in

order to compare and debug the A-DyP results. Although the generation is relatively

fast, it could be skipped when the estimation time budget is critical.

As all the programs in this work, the XML generator is a console application.

XMLRep.exe has approximately 500 lines of source code and the most important

fragments are explained in this section.

Statistical Power Estimation on FPGAs

 112

XMLRep.exe accept command line parameters:

XMLRep.exe -d dir

-d dir specifies the working directory

6.3.1 Using a Package to Generate XML

To make the XML generation easier, a public package was used: XDOM. The

'Extended Document Object Model' Package for Delphi and Kylix contains several

functions, classes, and components which support the processing of XML documents.

It allows representing an XML document by Delphi objects which reproduce the

structure and content of the XML document in an object tree [XDOM].

An XML setting file is composed by a head and a body. The head contains

information related to the whole circuit (ambient temperature, voltage, etc.), and the

report body contains specific information of individual nodes. Code 6.9 shows an

example for one circuit node.

1 <Power_Net name="clk">
2 <Power_Activity freq="20.000000Mhz" />
3 </Power_Net>

Code 6.9: Example of a net description in a XPower XML setting file

Code 6.10 is a simplified version of the procedure that shows how such information

is retrieved from the Power Database in order to generate the XML report body.

1 procedure CreateXMLPowerBody (var powerNets: TdomNode);
2 var
3 lname: String;
4 media, desvio, netAct: Real;
5 muestra : Integer;
6 CkFrec : Real; // Clock frequency
7 net, act: TDOMElement;
8 begin
9 // Computes the clock frequency
10 ...
11
12 // SQL query to retrieve node information
13 ...
14
15 // XML body generation
16 while not eof do
17 begin

Power Computation Sub-system Extracting the Capacitances

 113

18 lname := FieldByName('X_Name').asString;
19 netAct := FieldByName('average').asFloat;
20 netAct := netAct * CkFrec/2;
21
22 net := Doc.createElement('Power_Net');
23 powerNets.appendChild(net);
24 net.setAttribute('name', lname);
25 act := Doc.createElement('Power_Activity');
26 net.appendChild(act);
27 act.setAttribute('freq', formatFloat('0.00000',

netAct)+'MHz');
28 powerNets.appendChild(Doc.createTextNode(indent));
29
30 Next;
31 end;
32 end;

Code 6.10: Procedure that generates the net descriptions in a XPower XML setting file

The activity stored in the Power Database is used to generate the body of the XML

file. Although all the internal nodes are included in the XML report body, some are

ignored by XPower because they are output-only fields or other reasons. From line 22

to 28, the XDOM package is used to produce the description of an individual node

activity.

6.4 Extracting the Capacitances
XPower can be used to produce a capacitance report file (PWA) for all the nodes in

the DUT. With the generated XML settings file, XPower can be invoked by command

line:

xpwr design[.ncd] [constraint[.pcf]] [options]

Where design is the name of the physical design file, constraint specifies

the name of a physical constraints file. options is one or more of the XPower

options (see the XPower documentation [Xil05]).

In this work XPower is executed with the following parameters:

-l limit

-x test_xpwr.xml

-o test.pwr

Statistical Power Estimation on FPGAs

 114

-t script.tcl

-l limit imposes a limit in the number of lines on the verbose report. An integer

value must be specified as an argument.

-x test_xpwr.xml instructs XPower to use the generated XML settings file as

explained in section 6.3.

-o test.pwr changes the name of the report file.

-t script.tcl enables the use of a Tcl commands file. Currently, this option is

not present in the Xilinx documentation. In this work just one command is of the main

interest, annotateDesign, which generates a detailed capacitance report, in fF

(femtofarads), for all the internal nodes in the input physical design file. Unfortunately,

this command is not found in the documentation at all.

6.4.1 Parsing the Xilinx Capacitance Report File (PWA)

The file generated with the annotateDesign command by XPower, is analyzed

to extract the node capacitances and store them in the Power Database. As with all the

programs in this work, the PWA parser is a console application. PWAparser.exe

has more than 450 lines of source code and the most important fragments are

explained in this section.

PWAparser.exe accepts command line parameters:

PWAparser.exe -d dir

-d dir specifies the working directory

Code 6.11 is a simplified version of the procedure that extracts and stores individual

capacitances.

1 procedure PWAline;
2 var
3 c: integer;
4 signal: string;
5 begin
6 signal := valcompl.s; // node name
7 parea(PAL);
8
9 parea (Ord(','));
10

Power Computation Sub-system Calculating the Power Consumption and Writing a Report

 115

11 c := StrToInt(valcompl.s); // capacitance
12 parea(PAL);
13
14 parea (Ord(','));
15
16 parea(PAL); // activity
17
18 SaveCapacitance (signal, c);
19 end;

Code 6.11: Procedure that extracts node capacitances from a PWA file

At line 6, the node name is obtained, and at line 11, its capacitance in fF. Node

activity is also reported but this is ignored because it has been already stored in the

Power Database.

6.5 Calculating the Power Consumption and Writing a
Report

With the activities and capacitances of each node in the DUT, now, the individual

power consumptions can be computed. Also, using the information collected by parsing

the XDL and PWA files, the power consumption can be grouped by general circuit type:

logic, signals, clocks and I/Os. Furthermore, there is enough information to differentiate

the power of the different logic resources within the slices. It means that can be

produced a report that also shows the power consumed by the LUTs, XORs, MUXs,

etc. within the slices in the physical design.

report.exe is the command line program that produces the power consumption

reports. An example report is shown in Appendix D.

report.exe has approximately 550 lines of source code and accepts the

following parameters:

report.exe -d dir -v

-d dir specifies the working directory

-v if present, indicates that the report will contain the power estimation for all the

individual nodes, in other cases this information is excluded.

Statistical Power Estimation on FPGAs

 116

6.6 Generating the Power Maps
With the information collected during the estimation process, several maps can be

drawn. On one hand, node positions are obtained parsing the XDL file. On the other

hand activity, capacitance and individual power consumption are also available in the

Power Database. Relating positions and node property values, the maps can be drawn

with a user specified resolution.

activityMap.exe, capacitanceMap.exe and powerMap.exe are

command line programs that produce the information for the activity, capacitance and

average power consumption maps respectively. Several example maps are shown for

the test cases in Chapter 8.

Each one of these programs has approximately 130 lines of source code and

accepts the following parameters:

{activityMap.exe, capacitanceMap.exe, powerMap.exe} -d

dir –r resolution

-d dir specifies the working directory

-r resolution defines the grain for the map drawing. A resolution res means

that the property values of the nodes in res x res CLBs are added together.

The information is written to a text file where each line is in the form:

column row property_value

Thus, this information can be used to plot 2D and 3D figures using scientific

graphing software.

6.7 Conclusions
In this Chapter, the Power Computation Sub-system is explained in detail,

completing the Chapter 4 general description. Although this system has been

developed taking into account proprietary formats, it can be recognized that some

software pieces could be used in other power estimation tools for the same vendor.

Being independent console applications, they can be coordinated within another Tcl

script. In this way these programs belong to the Power Platform.

Power Computation Sub-system References

 117

The Multiple Identifiers’ Problem comes from the lack of integration with the vendor

software in the power estimation area. This problem is not completely solved in this

work because new modifications are introduced with each new version, making it very

difficult to find a definitive solution. Nevertheless, it is reasonable to believe that in the

near future, FPGA vendors will specify formats for data interchange and integration

with third-party developers in the power estimation area.

References
[ITRS05] International Technology Roadmap for Semiconductors, 2005 Edition, available

at http://public.itrs.net

[Xil05] Xilinx Inc., “Development System Reference Guide”, 2005.

[XDOM] Dieter Köhler, ”Extended Document Object Model“, available at
http://www.philo.de/xml/dom/

Statistical Power Estimation on FPGAs

 118

Chapter 7.

 “How much energy must be used in carrying out a computation? This doesn’t

sound all that academic. After all, a feature of most modern machines is that their

energy consumption when they run very fast is quite considerable.” Richard P.

Feynman in Lectures on Computation[Fey96].

7 Test Cases and Analysis

In this Chapter, a number of test circuits are briefly explained. These circuits are

implemented in several FPGA devices. The possible tests to study the power

estimation problem over these circuits, and to evaluate the power estimation tool are

also enumerated. Using these circuits and running the test described below, a set of

experiments and its results are presented in Chapter 8.

As it is necessary to physically measure the average core power for the test circuits,

the experimental setups are also briefly described in this Chapter.

7.1. Test Circuits
Table 7.1 and 7.2 show the circuits studied in this work and their resource utilization

in the specific devices where they were implemented. In the subsections each circuit is

explained in some detail.

7.1.1 Quadrature Direct Digital Frequency Synthesizers
(QDDFS)

Statistical Power Estimation on FPGAs

 120

Circuit Code Description Device

1 QDDFS-
CORDIC(RTL)

Quadrature Direct Digital Frequency
Synthesizer based on CORDIC. Portable RTL
HDL.

XCV300E-8-PQ240

2 QDDFS-
CORDIC(RTL-
A)

Quadrature Direct Digital Frequency
Synthesizer based on CORDIC. Portable RTL
HDL with area restriction.

XCV300E-8-PQ240

3 FIRDA(1) Distributed Arithmetic FIR Filter. Completely
serial (Digit 1)

XCV400E-8-PQ240

4 FIRDA(2) Distributed Arithmetic FIR Filter. 2-bit serial
(Digit 2)

XCV400E-8-PQ240

5 FIRDA(3) Distributed Arithmetic FIR Filter. 3-bit serial
(Digit 3)

XCV400E-8-PQ240

6 FIRDA(4) Distributed Arithmetic FIR Filter. 4-bit serial
(Digit 4)

XCV400E-8-PQ240

7 FIRDA(8) Distributed Arithmetic FIR Filter. Completely
combinational (Digit 8)

XCV400E-8-PQ240

8 FFT_A Fast Fourier Transform, version A XCV800-HQ240-4

9 FFT_B Fast Fourier Transform, version B XCV800-HQ240-4

10 FFT_C Fast Fourier Transform, version C XCV800-HQ240-4

11 FFT_D Fast Fourier Transform, version D XCV800-HQ240-4

12 MULT32-C Unsigned Combinational 32-bit Multiplier XCV50PQ240-4

13 ADDER32-C Unsigned Combinational 32-bit Adder XCV50PQ240-4

14 MULT16-P Unsigned Pipelined 16-bit Multiplier XCV50PQ240-4

15 DIV16-P Unsigned Pipelined 16-bit Divider XCV50PQ240-4

16 10MULT16-C Ten Unsigned Combinational 16-bit Multiplier XC2V3000FG676-6

Table 7.1: Studied Circuits

Two implementations of (COordinate Rotation Digital Computer) CORDIC-based

QDDFS circuits are described in this sub section. Measurements for these

implementations have been done over a Virtex-E FPGA (XCV300E-8PQ240 device)

[XDS02]. The QDDFS circuits have been driven by a 100 MHz clock. Nevertheless, at

the outputs, digital sine and cosine waveforms are generated with the specified period.

Test Cases and Analysis 7.1. Test Circuits

 121

Power has been measured for several output frequencies (fout): 1, 10, 20 and 30 MHz.

These fout are computed according to:

M
clk

out
ffcw

f
2
⋅

=
 (Eq. 7.1)

Circuit # Slices Slice FF #Nodes Min. Period
(ns)

1 484 (15%) 773 (12%) 5411 8.591

2 484 (15%) 773 (12%) 5407 9.220

3 159 (3%) 307 (3%) 1486 5.781

4 303 (6%) 597 (6%) 2774 7.305

5 456 (9%) 897 (9%) 4092 6.276

6 595 (12%) 1177 (12%) 5245 6.484

7 1163 (24%) 2305 (24%) 9495 5.903

8 3424 (36%) 6364 (33%) 32622 12.803

9 3384 (35%) 6364 (33%) 32760 11.767

10 3424 (36%) 6364 (33%) 32242 11.731

11 3424 (36%) 6364 (33%) 32708 10.457

12 640 (83%) 193 (12%) 6627 40.377

13 49 (6%) 97 (6%) 656 11.354

14 172 (22%) 341 (22%) 2194 9.638

15 425 (55%) 831 (54%) 3257 9.899

16 1654 (11%) 586 (2%) 27471 14.928

Table 7.2: Resource utilization of the Test Circuits

Where fcw (frequency control word) is a circuit primary input that determines the

output frequency; fclk is the clock frequency; and M is the internal accumulator width (18

for these test cases). Table 7.3 shows the fcw values used in the experiments.

Statistical Power Estimation on FPGAs

 122

 Fout [MHz] Fcw (decimal) fcw (hexadecimal)

1 2621 A3D

10 26214 6666

20 52429 CCCD

30 78643 13333

Table 7.3: QDDFS output frequencies

CORDIC based QDDFS is implemented with a portable HDL. The second circuit is

implemented with this portable implementation but with an area restriction. For a

detailed description of these circuits and their implementation in FPGA, see [Car03].

From the point of view of the power estimation these circuits are useful to test the

results accuracy. However the Monte-Carlo technique cannot be tested due to the fixed

inputs and the periodic outputs. Simulating one whole QDDFS cycle is enough for

average power estimation.

7.1.2 Distributed-Arithmetic FIR Filter (FIRDA)

These are different implementations of a FIR filter. For all these circuits distributed

arithmetic [May01] and the relative placement technique [XST03] are applied. The

filters use 64 6-bit coefficients, 8-bit input and output words, 12.5 MHz fixed sampling

frequencies, and a 2/3 cut-off frequency. Measurements for these implementations

have been done over a Virtex-E FPGA (XCV400E-8PQ240 device) [XDS02].

Implementation Internal Digit Clk Frequency [MHz]

FIRDA(1) 1 100

FIRDA(2) 2 50

FIRDA(3) 3 33.3

FIRDA(4) 4 25

FIRDA(8) 8 12.5

Table 7.4: Clock frequencies for FIRDA implementations

Test Cases and Analysis 7.1. Test Circuits

 123

The difference among these implementations is the internal digit size from bit serial

to completely combinational. As the sampling frequency is fixed, the clock must be

adjusted to compute each sample before the next is available. Table 7.4 summarizes

this specific information.

For a detailed description of these circuits and their implementation in FPGA, see

[Ang03].

7.1.3 Fast Fourier Transform (FFT)

FFT_A, B, C and D are 64-point pipelined FFT implementations that fulfill the

Hiperlan/2 and IEEE 802.11a-g standards. This implementation uses the Radix-4

algorithm. In order to fulfill the mentioned standards the design is pipelined and

R4MDC (Radix-4 Multi-path Delay Commutator) is the selected architecture due to its

area, speed and power figure. Measurements for these implementations have been

done over a Virtex FPGA (XCV800HQ240-4 device) [XDS01]. The core is carefully

designed and optimized for Virtex and Virtex-E devices by means of the relative

placement technique [XST03]. There are small differences among versions A-D. Each

one try an optimization in the implementation of one component in the FFT core.

In [San03] a detailed description of these circuits and their implementation in FPGA

can be found.

7.1.4 Arithmetic Circuits

Four fundamental arithmetic circuits have been implemented to test A-DyP: A

combinational 32-bit multiplier, a combinational 32-bit adder, a pipelined 16-bit

multiplier and a pipelined 16-bit divider. All these circuits operate with unsigned

integers. The 32-bit adder and multiplier were specified using a simple behavioral

VHDL description. For the pipelined multiplier and divider, the corresponding cores

were generated with Core Generator [XCG03]. Measurements for these

implementations have been done over a Virtex XCV50PQ240-4 device [XDS01].

Another arithmetic circuit has been implemented over a Virtex-II XC2V3000FG676-6

device [XDS15]. It is made up of ten 16-bit combinational multipliers with registered

input and outputs.

Statistical Power Estimation on FPGAs

 124

7.2 Analysis of the Results
The test circuits described in the previous section are utilized in the experiments.

They are measured, and simulated with several input pattern sets. These sets are

characterized in such a way that several spatial and temporal correlations are defined.

Furthermore, there are several parameters that users must specify for each A-DyP run.

In this way, a tool characterization for these parameters is necessary.

The main goal in this work, from a practical point of view, is to obtain an accurate

estimation for total and individual node power. Thus, in this section several tests are

described in order to characterize the statistical technique and evaluate the power

estimation tool as a software piece.

7.2.1 Technique Characterization

7.2.1.1 Testing the Total Power Estimation

The goal here is testing the tool accuracy. To reach it, it is necessary to measure

physically the power consumption in order to compare them with the total average

dynamic power estimations. This enables the tool calibration.

The input vectors are the same for both the estimations and the physical

measurements. As explained in Chapter 5, generate.exe produces vectors in an

adequate format for the simulator, and also translates these stimuli for the pattern

generator. A-DyP results can also be compared with XPower [Xde03] Results. The

activity generated for the same input vectors is written as an XML settings file as

described in Chapter 6.

7.2.1.2 Testing the Power Estimation for Individual Nodes

It is not possible a physical power measurement for the individual nodes within the

chip. Nevertheless, long run simulations are executed in order to have values to

compare with the average power estimations for the nodes. Of course, the total power

in these experiments is as accurate as possible compared with physical

measurements.

Test Cases and Analysis Analysis of the Results

 125

The correctness of the implementation is tested specifying different values for the

tolerated error for the individual nodes. Several simulations are run with a threshold for

the minimal mean of 0.35, and tolerated errors varying from 30% to 3%.

7.2.1.3 Importance of the User Defined Accuracy

In this test, the accuracy improvement is analyzed against the execution time

necessary to complete the simulations. This is also known as the accuracy vs. run-time

tradeoff. The run time is represented by the number of samples necessary to obtain the

required accuracy. This approach gives a value independent of the platform: computer,

operating system, etc.

Accuracy is given by the confidence level and error pair but the minimal activity

mean, that divides the normal from the low activity nodes, must also be studied.

7.2.1.4 Importance of the User Defined Minimal Mean Threshold

This is another test to study the accuracy vs. execution time tradeoff. In this case,

the tolerated error and confidence are fixed and the minimal mean vary from 0.05 to 1

transitions per clock cycle. The percentage of regular and low activity nodes is studied

and interesting conclusions can be obtained.

7.2.1.5 Importance of the Input Pattern Definitions

To test the importance of the input pattern descriptions, several specifications are

defined for the primary inputs and for each circuit, varying from statistically independent

inputs to other figures including connecting some inputs to a counter or even fixed

values. This introduces test cases where primary inputs have spatial or temporal

dependencies.

7.2.2 Software Evaluation

Beyond the correctness and accuracy, the execution time is essential in a practical

artifact like this power estimation EDA tool.

Although the total execution time is studied, the run time of every sub program and

script in the system is also analyzed. This is very important in order to focus the

Statistical Power Estimation on FPGAs

 126

optimization effort over the specific part of the system with the highest computational

complexity and execution time.

7.2.3 Graphical Representation of the Results

Activity, capacitance, and power consumption maps are drawn for the circuits

running in typical operating conditions. This enables the hot spots in the die to be

discovered and which parts of the design should be optimized from the power

consumption point of view. These figures also induce the study of correspondence

between power consumption and temperature [Lop03].

7.3 Power Measurement

Fig. 7.1: Xilinx HW-AFX-PQ240-100 development board

As it was presented above, it is necessary to measure the test circuit’s average

power under the user specified conditions in order to calibrate, debug, and even

develop an accurate power estimation tool. Several development boards were used for

that purpose. The first one, employed in the preliminary experiments was developed by

Test Cases and Analysis Power Measurement

 127

Lopez-Buedo [Lop97] and those results were [Tod00], [Tod01] and [Sut01] but they are

not presented in this work.

An important feature of a development board for average power measurement is to

have special connectors for the logic analyzer and pattern generator. Other special

characteristic of these boards is that power supply jacks are separated for the FPGA

core, FPGA I/O, and general circuitry.

In the experiments with Virtex and Virtex-E devices a Xilinx HW-AFX-PQ240-100

development board as the one shown in Fig. 7.1 [APX99] was used. The socket in this

board accepts 2.5V Virtex and Virtex-E devices in PQ240 and HQ240 packages.

Another development board with similar characteristics for power measurement was

used for Virtex-II devices. This is the Xilinx Virtex II FG676 development board as the

one shown in Fig. 7.2 [APX03]. The socket in this board accepts 1.5V Virtex-II devices

in FG676 packages.

Fig. 7.2: Xilinx Virtex II FG676 development board

The most important characteristics of the devices used in this work are listed in

Table 7.5.

Statistical Power Estimation on FPGAs

 128

A Tektronix Pattern Generator TLA7PG2 [Tek02] produces the stimuli as described

in Chapter 5. Circuit outputs are also verified by means of a Tektronix Logic Analyzer

TLA07A [Tek01]. An ammeter is used to measure average core currents maintaining

the core voltage, Vccint, at the nominal values as shown in Fig. 7.3.

Family Device Size (CLB) Slices Distributed RAM BlockRAM

Virtex XCV50PQ240-4 16x24 768 24,576 bits 32,768 bits

Virtex XCV800HQ240-4 56x84 9408 301,056 bits 114,688 bits

Virtex-E XCV300EPQ240-8 32x48 3072 98,304 bits 131,072 bits

Virtex-E XCV400EPQ240-8 40x60 4800 153,600 bits 163,840 bits

Virtex-II XC2V3000FG676-6 64x56 14336 448 Kb 1728 Kb

Table 7.5: FPGAs members used in the experiments

Power Supply

Development Board

Logic Analizer
+ Pattern Generator

Vccint Vccio

FPGA

V A

Patterns

Outputs

Fig. 7.3: Experimental setup

It is important to note that just the core current and voltage are measured. In this

way I/O –or off-chip- power is excluded from the study. Core power can be divided into

three components: dynamic, static, and synchronization power. The static, and static

plus synchronization power measurements enables the division of these three

components by subtraction. To measure the static power, the FPGA is configured with

the DUT but neither stimuli nor clock are applied. Static plus synchronization power is

Test Cases and Analysis References

 129

measured similarly but this time the clock signal is applied at the specified frequency.

In [Sut05] a detailed description of all the experimental setups described in this section

can be found.

References
[Ang03] Angarita F.E., Canet M.J., Valls J., �ardéi F: Implementación de un Core-IP

“Filtro FIR Basado en Aritmética Distribuida”, III Jornadas de Computación
Reconfigurable y sus Aplicaciones – JCRA 2003. Madrid, 2003.

[APX03] Xilinx Inc. “Virtex II Prototype Platforms User Guide”, UG015 (v1.1) Jan 2003,
available at http://www.xilinx.com

[APX99] Xilinx Inc. “Xilinx Prototype Platforms User Guide for Virtex and Virtex-E Series
FPGAs”, Data Sheet DS020 (v1.1) Dec 1999, available at http://www.xilinx.com

[Car03] F. Cardéis, J. Valls, “Area-Optimized Implementation of Quadrature Direct
Digital Frequency Synthesizers on LUT-based FPGAs”, IEEE Trans. On
Circuits and Systems II, vol. 50, no. 3, march 2003.

[Fey96] Richard P. Feynman, “Feynman Lectures on Computation”, Ed. A.J.G. Hey and
R.W. Allen. Addison-Wesley, 1996.

[Lop03] Sergio López Buedo, “Técnicas de Verificación Térmica para Arquitecturas
Dinámicamente Reconfigurables”, Ph. D. Thesis, Departamento de Ingeniería
Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid,
Julio 2003.

[Lop97] S. López-Buedo, “Técnicas de Diseño de Alta Velocidad y Bajo Consumo”
Memoria del Proyecto de Fin de Carrera, ETSI Telecomunicación, Universidad
Politécnica de Madrid, Septiembre 1997.

[May01] Uwe Meyer-Baese, “Digital signal processing with field programmable gate
arrays”, Springer, 2001.

[San03] T. Sansaloni, A. Pérez-Pascual, J. Valls, “Area-efficient FPGA-based FFT
processor”, Electronic Letters, Vol.39, N.41, September 2003

[Sut01] G. Sutter, E. Todorovich, S. López-Buedo y E. Boemo “Propiedad Conmutativa
y Diseño de Bajo Consumo: Algunos Ejemplos en FPGAs”, VII WorkShop de
IBERCHIP, Montevideo, Uruguay, 21-23 de Marzo, 2001.

[Sut05] Gustavo Sutter, “Aportes a la Reducción de Consumo en FPGAs”, Ph. D.
Thesis, Departamento de Ingeniería Informática, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, April 2005.

[Tek01] Tektronix Inc., ”TLA 704 Logic Analyzer User Guide” available at
http://www.tektronix.com

[Tek02] Tektronix Inc. “TLA7PG2 Pattern Generator Module” available at
http://www.tektronix.com

[Tod00] E. Todorovich, G. Sutter, N. Acosta and E. Boemo, “End-user low-power
alternatives at topological and physical levels. Some examples on FPGAs”, XV
Conference on Design of Circuits and Integrated Systems (DCIS2000), Le
Corum, Montpellier, France, November 21-24, 2000.

[Tod01] E. Todorovich, G. Sutter, N. Acosta, S. López-Buedo y E. Boemo “Relación

Statistical Power Estimation on FPGAs

 130

entre Velocidad y Consumo en FPGAs”, VII Workshop IBERCHIP, Montevideo,
Uruguay, 21-23 de Marzo, 2001.

[XCG03] Xilinx Inc. “CORE Generator Guide”, an Xilinx ISE 6 Software Manual, 2003,
available at http://www.xilinx.com

[Xde03] Xilinx Inc. “Development System Reference Guide”, an Xilinx ISE 6 Software
Manual, 2003, available at http://www.xilinx.com

[XDS01] Xilinx Inc. “Virtex Data Sheets: Virtex 2.5 V FPGAs”, 2001, available at
http://www.xilinx.com

[XDS02] Xilinx Inc. “Virtex-E Data Sheets: Virtex-E 1.8 V FPGAs”, 2002, available at
http://www.xilinx.com

[XDS05] Xilinx Inc. “Virtex-II Platform FPGAs: Complete Data Sheet”, 2005, available at
http://www.xilinx.com

[XST03] Xilinx Inc. “XST User Guide”, an Xilinx ISE 6 Software Manual, 2003, available
at http://www.xilinx.com

Chapter 8.

“Every experiment proves something. If it doesn't prove what you wanted it to

prove, it proves something else” Anonimous

8 Experimental Results

In the previous Chapter, a number of test circuits were briefly explained. These

circuits are implemented in several FPGA devices. Also in Chapter 7, the possible tests

to be executed in order to gauge these circuits and evaluate the estimation tool were

enumerated. These elements (devices, designs, and tests), generate an important

number of combinations and the results could be presented in several ways. In this

chapter the experimental results are presented as they were obtained. Therefore,

preceding results induce more ideas and experiments, and at the end a complete

evaluation of the development gives a comprehensive picture to the reader.

First, QDDFS-CORDIC circuits are exercised. In these designs, there is a primary

input that determines the period of the digitally synthesized sinusoidal waveform. With

these circuits, the first evaluations of the current development are run in order to test

accuracy, run time, software correctness, etc. The statistical approach is not evaluated

with these designs because the inputs are precisely fixed.

Next, FIRDA filters evaluate the main characteristics of the implemented statistics-

based power estimation technique. With these results, besides the accuracy, efficiency

will be studied and a significant optimization is proposed. This saving in execution time

is done without any loss of accuracy.

Statistical Power Estimation on FPGAs

 132

In the third place, the impact of the input pattern definitions is verified. Several

synthetic pattern definitions are applied to arithmetical circuits. On the other hand, real

world patterns are used over FFT implementations.

Finally, some of the experiments mentioned in the above paragraphs are repeated

over circuits implemented on Virtex-II devices.

As the power is linear with the operating frequency, it is better to express the

measurements by means of a normalized, frequency-independent unit. For this reason,

in this work the measurements for synchronous circuits will be expressed in power per

unit of frequency. With the current technology, and for a wide range of applications,

mW/MHz is the preferred unit of energy. It could also be useful to consider the

mW/MHz per node: two circuits with similar measured mW/MHz may have a different

number of nodes, suggesting that the smaller one may have hot spots. Note that

mW/MHz is a unit of energy equivalent to nJ. The energy consumption is the main

function to optimize in low power design.

For all the test cases just the dynamic power is considered and the static, I/O and

clocking power have been subtracted. In all these experiments post PAR VHDL models

with routed delays are used in the simulations.

8.1 A-DyP Preliminary Evaluation
Over QDDFS-CORDIC circuits, a special set of test cases is executed. These

circuits are implemented using a Virtex-E XCV300E-8PQ240 device. The statistical

method is not tested but other programs within A-DyP are because all the primary

inputs are fixed during the simulation. At the outputs, digital sine and cosine waveforms

are generated within a specified period. With these tests, the computed power value

can be compared with physical measurements. In this way, the estimations accuracy

and the software tool correctness are studied. Almost all the A-DyP software

participates in this computation. Also, the viability to draw power maps from the

collected data is verified. Another point to note with these QDDFS-CORDIC circuits is

that the clock power is considered within the estimations.

Experimental Results A-DyP Preliminary Evaluation

 133

8.1.1 Total Dynamic Power Estimation

Table 8.1 shows the results for two QDDFS-CORDIC implementations. For each

implementation four output frequencies (Fout) are synthesized. The measured total

energy is compared with two estimations. In the first one, all the activity reported by the

simulator is considered (Tg=0). In the second one, short glitches are filtered in order to

avoid the overestimation observed in the first case. Tg represents the glitch pulse width

where the time is so short that transitions are not rail to rail but smaller. In several

papers like [And04], partial glitches are filtered. They define a partial glitch on a net as

a pulse with duration shorter than the driver’s delay.

It is important to note that there is another reason which leads to these inaccuracies.

As pointed out in [Bae02]: “Logic simulators are neither precise nor reliable at

measuring switching activity. It is due to the fact they are not accurate at simulating

glitch propagation”. In any case, without these short pulses, less power than that

calculated with Eq. 2.7 is dissipated. Note that, filtering these short pulses, the error is

less than 10% for all the cases. However, when no glitches are filtered, the error can

reach more than 80%, always in excess.

Tg = 0 Opt. Tg
Fout Measured

Estimated Error (%) Estimated Error (%)

1 4,608 6,651 55,2 4,388 -4,8

10 6,174 9,717 65,5 6,031 -2,3

20 7,002 10,772 61,0 6,660 -4,9 Q
D

D
FS

-
C

O
R

D
IC

(R
TL

)

30 7,362 11,059 57,0 6,750 -8,3

1 4,356 7,020 71,9 4,424 1,6

10 5,868 10,313 86,7 6,427 9,5

20 6,534 11,375 81.3 6,919 5,9 Q
D

D
FS

-
C

O
R

D
IC

(R
TL

-A
re

a)

30 6,876 12,140 76,6 6,982 1,5

Table 8.1: Total Power Estimation for QDDFS-CORDIC Designs

The power values in Table 8.1 are shown in mW/MHz as in all the test cases in this

work. Nevertheless, it is important to note that the clock frequency was 100 MHz for all

Statistical Power Estimation on FPGAs

 134

the measurements and estimations in these QDDFS-CORDIC cases. The optimum

value for the min. glitch duration, Tg, calculated for this device, is 650 ps.

8.1.2 Impact of the Input Patterns Definition

This set of test cases is particular from the point of view of the input patterns

characterization. The input value for the FCW input port (frequency control word) must

be calculated to obtain the specified output frequency, but it is fixed for the complete

simulation and measurement process.

As the clock frequency is always 100 MHz, about the same power consumption

could be expected for all the output frequencies. The number of operations per unit of

time is the same (the number of points in Fig. 8.1). However note that, for the selected

cases, the higher the output frequency the higher the power consumption. This is

because, for the highest frequencies, there are fewer points per output cycle, and the

discrete steps must be larger, generating more activity in the output MSBs. A difference

about the double in the power consumption is observed in Table 8.1, and these cases

are not the extreme ones considering the output frequency range of this QDDFS-

CORDIC.

-1,5

-1

-0,5

0

0,5

1

1,5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Fig. 8.1: Different output frequencies with the same clock period in QDDFS-CORDIC circuits

In despite of this circuit does not test the statistical technique, it is clear that the

input characteristics will impact over the power figure.

Experimental Results A-DyP Preliminary Evaluation

 135

8.1.3 Tool’s Evaluation

In these special test cases, the transition analysis process is the most time

consuming task as shown in Table 8.2 and Fig. 8.2. Nevertheless, it will be shown that

this remains true for all the test cases. In this way, it is clear that an effort must be

made to improve its efficiency.

 Task Exec. Time [sec]

Input vector generation 0

Simulation 18

Saving 0

Transition analysis 101

Statistics computation 0 A
ct

iv
ity

 E
st

im
at

io
n

Stopping criteria evaluation 0

VHDL parsing 0

XDL parsing 0

XML generation 65

XPower execution 4

PWA parsing 0 Po
w

er
 C

om
pu

ta
tio

n

Report writing 1

Table 8.2: A-DyP execution Time. QDDFS-CORDIC, 30 MHz, RTL

Task Exec. Time [sec]

Total Execution 203

Initialization 4

Activity Estimation 119

Power Computation 77

Tcl/Tk script 3

Table 8.3: A-DyP total execution Time. QDDFS-CORDIC, 30 MHz, RTL

Statistical Power Estimation on FPGAs

 136

In order to have an idea about the absolute A-DyP execution times, Table 8.3

summarizes them by sub-system. The total execution time in the example is around 3

minutes.

9%
0%

51%

0%0%0%0%

33%

2%

1%
0%

4% 0%

Input vector generation
Simulation
Saving
Transition analisys
Statistics computation
Stoping criteria evaluation
VHDL parsing
XDL parsing
XML generation
XPower execution
PWA parsing
Report writing
Power Maps

Fig. 8.2: A-DyP Execution Time for QDDFS-CORDIC

8.1.4 Power Maps

Fig. 8.3: Power Map. Resolution 1 CLB for QDDFS-CORDIC

Experimental Results A-DyP Preliminary Evaluation

 137

As a first illustration, just one case is shown for the QDDFS-CORDIC RTL and Area-

Restricted designs. It can be noted that neither the highest capacitance zones (Fig. 8.5

and 8.8) nor the highest activity points (Fig. 8.4 and 8.7) in the circuit have necessarily

the highest power consumption (Fig. 8.3 and 8.6).

Fig. 8.4: Activity Map. Resolution 1 CLB for QDDFS-CORDIC

Fig. 8.5: Capacitance Map. Resolution 1 CLB for QDDFS-CORDIC

Statistical Power Estimation on FPGAs

 138

Fig 8.6: Power Map. Resolution 1 CLB for QDDFS-CORDIC, Area-Restricted

Figs. 8.6, 8.7 and 8.8 show the power, activity and capacitance maps for a QDDFS-

CORDIC design with restricted area, whereas Figs. 8.3, 8.4 and 8.5 show the same

maps but in this case, the design was synthesized without any area restriction.

Fig. 8.7: Activity Map. Resolution 1 CLB for QDDFS-CORDIC, Area-Restricted

Experimental Results A First Complete Test Case: FIRDA Filters

 139

Fig. 8.8: Capacitance Map. Resolution 1 CLB for QDDFS-CORDIC, Area-Restricted

8.2 A First Complete Test Case: FIRDA Filters
For this set of test cases a complete tool evaluation was performed. The

experiments were performed over different implementations of a FIR filter using

distributed arithmetic [May01]. They use 64 6-bit coefficients, 8-bit input and output

words, 12.5 MHz fixed sampling frequency, and a 2/3 cut-off frequency. The difference

among these implementations is the internal digit size, from the serial version to the

combinational one.

8.2.1 Total Dynamic Power Estimation

Both estimated and measured power values are shown in Table 8.4. Note that the

clock frequency must be adjusted given the fixed sampling frequency of 12.5 MHz. For

example, in the digit-4 case, the clock frequency must be 25 MHz because two 4-bit

digits are processed for each sample.

The min. glitch duration, Tg, calculated as the optimum value for this device is 140

ps. Note that, filtering these short pulses, the error is less than 9% for all the cases.

However, when no glitches are filtered, the error can reach more than 20%, always in

excess.

Statistical Power Estimation on FPGAs

 140

Tg = 0 Opt. Tg
Digit Measured

Estimated Error (%) Estimated Error (%)

8 5.328 6.460 21.3 5.804 8.9

4 3.737 3.992 6.8 3.559 -4.8

3 2.625 2.902 10,6 2,626 0.0

2 1.804 1.942 7.7 1.736 -3.7

1 0.821 0.908 10.6 0.817 -0.4

Table 8.4: Total Power Estimation (mW/MHz) for FIRDA Designs

8.2.2 Estimating Power for Individual Nodes

The goal of this test is to evaluate if the results fit the user specified accuracy. The

power consumption of the individual nodes must be bounded by a tolerated error within

a specified level of confidence. The combinational FIRDA implementation is studied in

these experiments.

Fig 8.9 shows relative error distributions for different levels of accuracy. This

accuracy is specified in the upper right corner of each histogram. For example, 96/4

means 96% confidence and 4% error. With the statistical approach, the requirement is

that the relative error for regular nodes must be bounded to ε with (1-α) x 100%

confidence. Therefore, if the number of regular nodes is big enough, it is also expected

that less than α x 100% of the regular nodes, have more than ε x 100% error. This is

achieved in all the cases shown in Fig. 8.9.

As the power consumption for the individual nodes cannot be physically measured,

the comparisons were made against the results obtained from a long simulation run

(98% of confidence with less than 2% error). In this set of test cases the threshold for

the activity mean, that divides regular and low activity nodes, is 0.25.

The statistical method is applied for the activity, but as the expectation is a linear

operation, then (See Eq. 2.6):

)(5.0)(2
iddi AEVCPE ⋅⋅⋅= (Eq. 8.1)

Experimental Results A First Complete Test Case: FIRDA Filters

 141

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,0

0,1

0,2

0,3

0,4

0,5

0,6 96/4

N
od

es
 %

Error %

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,0

0,1

0,2

0,3

0,4

0,5
95/5

N
od

es
 %

Error %

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,0

0,1

0,2

0,3

0,4

92/8

N
od

es
 %

Error %

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40 90/10

N
od

es
 %

Error %

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35 85/15

N
od

es
 %

Error %
-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4

0,00

0,05

0,10

0,15

0,20

0,25

0,30
80/20

N
od

es
 %

Eror %

FIRDA_8
Device: xcv400e, pck pq240, speed -8

Fig. 8.9: Individual node power: relative error distributions for FIRDA_8

It is supposed that capacitance and supply voltage are constants. In this way, the

relative error is the same for both the activity and power consumption for the individual

nodes, except when the capacitance is zero. If we call the mean power, μP, and the

mean activity, μA,

Statistical Power Estimation on FPGAs

 142

refAi

AirefAi

refAidd

AirefAidd

refPi

PirefPi
ri VC

VC
e

,

,

,
2

,
2

,

,

5.0
)(5.0

μ
μμ

μ
μμ

μ
μμ −

=
⋅⋅

−⋅⋅
=

−
=

 (Eq. 8.2)

However, when the capacitance reported by the vendor is zero, the power is zero

whatever the activity value. Thus, a concentration of zeros in the distributions is

observed.

Nevertheless, it is important to note in these experiments that beyond achieving the

required accuracy, it is exceeded. This is due to the highest activity nodes, which

converge earlier in the estimation process, and are over-analyzed. How can it be

observed -and measured- that this accuracy is exceeded? Not less, but much less than

α x 100% of the regular nodes, have more than ε x 100% error. To quantify it, it is

interesting to study some “effective” accuracy value, a value that reflects the obtained

accuracy with the statistical estimation tool, in opposition to the required accuracy.

8.2.2.1 The Effective Accuracy Notion

Accuracy is determined by the tolerated error and the confidence level. It is possible

to specify a small error but with low confidence or a higher error with a high confidence

level. However, in practice these scenarios are not the most significant ones. Usually,

high accuracy is specified selecting a small error value with a high confidence level;

and a low accuracy, selecting a high tolerated error with a low confidence level. That

suggests that accuracy could be normalized tying together the error and the accuracy

in just one value. For example the confidence-error pairs could be 99/1, 98/2, 97/3…

100-ε%/ε%. Given a power estimation run, it can be defined εc values so that the

number of nodes with a relative error higher than εc is less than εc x 100% of the normal

nodes.

How does this εc work? To clarify the idea, Table 8.5 shows a hypothetical example:

a circuit with 100 normal nodes with the relative errors in power consumption shown in

ascending order. These values are obtained from a run where the tolerated error is

15% with 85% of confidence.

Experimental Results A First Complete Test Case: FIRDA Filters

 143

-0,201 -0,077 -0,049 -0,022 0,009

-0,162 -0,075 -0,048 -0,021 0,011

-0,145 -0,074 -0,046 -0,019 0,013

-0,134 -0,072 -0,045 -0,018 0,016

-0,124 -0,070 -0,044 -0,016 0,019

-0,118 -0,068 -0,042 -0,015 0,020

-0,111 -0,067 -0,041 -0,014 0,023

-0,108 -0,066 -0,040 -0,012 0,025

-0,105 -0,065 -0,038 -0,011 0,027

-0,103 -0,064 -0,036 -0,009 0,029

-0,101 -0,062 -0,035 -0,008 0,031

-0,097 -0,060 -0,034 -0,006 0,035

-0,095 -0,059 -0,032 -0,004 0,039

-0,092 -0,057 -0,030 -0,003 0,043

-0,090 -0,056 -0,030 -0,001 0,048

-0,088 -0,054 -0,028 0,000 0,055

-0,086 -0,054 -0,027 0,001 0,061

-0,084 -0,053 -0,026 0,003 0,074

-0,082 -0,051 -0,025 0,006 0,103

-0,079 -0,050 -0,023 0,007 0,171

Table 8.5: Power values of a hypothetical run over a 100-nodes circuit

From Table 8.5, several εc values can be analyzed. In the first row of Table 8.6,

there are 3% nodes with more than 15% error. In this case, it is clear that the required

accuracy is exceeded. The accuracy would be satisfied even if 15% of the nodes have

more than 15% error.

Statistical Power Estimation on FPGAs

 144

εc Nodes %Nodes

0.15 3 0.03

0.14 4 0.04

0.13 5 0.05

0.12 6 0.06

0.11 8 0.08

0.10 13 0.13

0.09 17 0.17

Table 8.6: Accuracy analysis of a 100-nodes circuit (required 15% error, 85% confidence)

It can also be observed that 8% of the nodes have more than 11% error. In this run,

if 11% error and 89% confidence were specified, they would also be satisfied.

Nevertheless, 13% of the nodes have more than 10% error. This means that a 10%

error and 90% confidence is not reached. From this particular example, the effective

accuracy notion can be perceived. The maximum accuracy that could be reached is

11% error with 89% confidence (in fact it is higher considering decimal fractions).

0,00 0,04 0,08 0,12 0,16 0,20
0,00

0,04

0,08

0,12

0,16

0,20

 E
rro

r (
E

fe
ct

iv
e)

Error (Required)

FIRDA_8
Device: xcv400e, pck pq240, speed -8

Min. Act. 0.25

Fig. 8.10: Effective accuracy for FIRDA_8

More formally, the effective accuracy εef is defined by the maximum εc that can be

obtained from the estimation results. It means that the tightest accuracy this run could

fit is with a confidence (1- εef) x 100% that relative error is less than εef.

Experimental Results A First Complete Test Case: FIRDA Filters

 145

Fig. 8.10 shows the results of this study for the combinational FIRDA

implementation. The effective accuracy is around 1.8 times better than the user defined

accuracy for this set of test cases. This value is computed according to Eq. :

 (Eq. 8.3)

where ei and eeff,i are the specified and the corresponding effective error respectively

for the i-th of p estimation runs (p=18 in Fig. 8.10).

The observation described in this section gives the opportunity for an optimization: a

smaller sample can satisfy the user specified error and confidence and it can be done

without any loss of accuracy.

8.2.2.2 A-B Nodes Classification6

Besides the effective accuracy notion, the nodes do not converge linearly. For

example, for the combinational FIRDA version (with 90% accuracy, error is less than

10%, and minimum activity 0.25) it is observed that 98% of the nodes, representing

99% of the power, have met the stopping criteria halfway through the estimation

process. This behavior is observed in Fig. 8.11.

From an “economical” point of view, this last 1-2% of the nodes costs a fortune in

execution time terms. Normally these extremely expensive 1-2% nodes could be

accepted earlier in the estimation process with low accuracy loss. In this way, normal

nodes can be classified in two groups: normal and with high cost.

According to this second observation, being ε the tolerated error and (1-ε) x 100%

the level of confidence, we can consider the estimation process finished when more

than (1-ε) x 100% of the normal nodes have converged. But in order to adjust the

optimization strength, a new parameter is defined, so that when more than 1-

6 The name comes from a technique applied in inventory control -and other areas in Operations Research- where the articles
are classified in three groups, A, B, and C according to the total annual expenditure for each item. It helps a company
identify the importantt items (5%-20% of type A, accounting for 55%-65 of sales). Then it is possible to concentrate effort
on applying inventory control policies for these type A items, producing substancial savings. The ABC classification,
sometimes referred to as the 80/20 rule and as Pareto analysis, was devised at General Electric during the 1950s.

,
1 ,

p
e
ep

i ieff

i∑
=

Statistical Power Estimation on FPGAs

 146

ε*OptStrength% of the nodes have converged, the estimation process is considered

finished. For example, with a specification that error is 10% with 90% of confidence,

and 1000 normal nodes, if the optimization strength is 1.0, then the estimation is

considered complete when more than 900 nodes have met the stopping criterion. If the

parameter is set to 0.5, then the estimation is considered complete when more than

950 nodes have converged.

0 20 40 60 80 100
0

20

40

60

80

100

90/10

%
 C

on
ve

rg
en

ce

% Estimation Process

 Nodes
 Power

Device: xcv400e, pck pq240, speed -8

FIRDA_8
Min. Act. 0.25

Fig. 8.11: Convergence for FIRDA_8

The condition to stop the estimation is then,

Ste
N

N

normal

no ⋅≤
 (Eq. 8.4)

Where Nnormal is the normal nodes count, Nno, is the number of normal nodes that

have not converged, ε is the user specified error and St is the specified optimization

strength.

Fig. 8.12 shows how, as the optimization strength is higher; the effective error

approaches the specified one (10%) making every simulated clock cycle in the taken

sample useful and efficient. Furthermore, a dramatic saving in execution time is

observed. The savings are expressed in relative terms where 1.0 corresponds to the

case without optimization strength. For example, Fig. 8.11 shows that when St = 1.0,

the sample size is less than 40% of the one without optimization.

Experimental Results A First Complete Test Case: FIRDA Filters

 147

Fig. 8.13 shows relative error distributions for different user specified optimization

strengths. In the experiments in this subsection it is specified with 90% confidence that

error is less than 10%, and the minimum activity threshold is 0.25. Although the

effective accuracy is a random variable, it is clear that it approaches to the one

specified by the user as the optimization strength increases. The goal here is to

connect the effective accuracy concept with the proposed nodes classification. It is

verified that with this optimization technique the effective accuracy comes close to the

specified one.

0,0 0,2 0,4 0,6 0,8 1,0 1,2
0,04

0,05

0,06

0,07

0,08

0,09

0,10 Error (Required) = 10%

 Eff.Err
 Exec.Time

Optimization Strength

 E
rr

or
 (E

fe
ct

iv
e)

Device: xcv400e, pck pq240, speed -8 FIRDA_8 90/10

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

E
xec. Tim

e %

Fig. 8.12: Execution time and effective accuracy in function of the optimization strength for the

FIRDA_8 test circuit

8.2.3 Accuracy vs. Execution Time Tradeoff

In is interesting to study how the execution time depends on the required accuracy.

Besides the tolerated error and confidence, the accuracy is in principle also a function

of the activity threshold that divides the nodes into normal and the low activity ones.

The tunable accuracy-execution time properties are studied in this section. Fig. 8.14 on

page 149 shows that for both normal and low activity nodes, as error decreases and

the confidence level increases, the number of samples increases monotonically. For all

the experiments in this set, the input signals were specified as time independent, with

probability 0.5 and 0.5 transitions per clock cycle. The min. activity threshold is 0.25.

Statistical Power Estimation on FPGAs

 148

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

Opt=1.00

N
od

es
 %

Error %
-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35 Opt=0.75

N
od

es
 %

Error %

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35
Opt=0.50

N
od

es
 %

Error %
-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35
Opt=0.25
N

od
es

 %

Error %

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35 Opt=0.10

N
od

es
 %

Error %
-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

Opt=0

N
od

es
 %

Error %

Device: xcv400e, pck pq240, speed -8
FIRDA_8

90/10
Min. Act. 0.25

Fig. 8.13: Individual node power: relative error distributions for FIRDA_8

Experimental Results A First Complete Test Case: FIRDA Filters

 149

95-5 91-9 87-13 83-17

1000

10000

100000

Min. Act. 0.25

S
am

pl
es

Accuracy

 Low
 Normal

Device: xcv400e, pck pq240, speed -8
FIRDA_8

Fig. 8.14: Accuracy vs execution time tradeoff for FIRDA_8

0,0 0,5 1,0 1,5 2,0

1000

10000

95/5

S
am

pl
es

Min. Activity

Device: xcv400e, pck pq240, speed -8
FIRDA_8

Fig. 8.15 Accuracy vs. execution time tradeoff for FIRDA_8

On the other hand, Fig. 8.15 shows the results of different runs with 95% confidence

and 5% error, varying the min. activity threshold. As expected, the required number of

samples increases monotonically as the minimum mean decreases.

Even with this strong functional relationship between the activity threshold and the

execution time, a low impact on the total power estimation error is observed in this test

Statistical Power Estimation on FPGAs

 150

case where the activity threshold changes. In fact, the correlation between this

parameter of accuracy and the total power relative error is very low, as shown in Fig.

8.16.

0,0 0,2 0,4 0,6 0,8
0,070

0,075

0,080

0,085

0,090

0,095

0,100

0,105

0,110

R
el

. E
rr

or
 in

 P
T

Min. Activity

Device: xcv400e, pck pq240, speed -8

FIRDA_8

95/5

Fig. 8.16: Min. Activity threshold vs. total relative error in total power for FIRDA_8

A more meaningful picture representing the accuracy vs. execution time tradeoff is

Fig. 8.17, where all the involved variables are present and the behavior of the

estimation system is characterized. The x-axis represents the accuracy, where a xi

values correspond to an xi% error with 100-xi% confidence. This experiment confirms

the robustness of the technique, allowing a tunable accuracy.

4 8 12 16 20
100

1000

10000

100000

Sa
m

pl
es

Error%

Min. Mean
 0.05
 0.15
 0.25
 0.40
 0.50

Device: xcv400e, pck pq240, speed -8
FIRDA_8

Fig. 8.17: Characterization of the accuracy/execution-time tradeoff for FIRDA_8

Experimental Results A First Complete Test Case: FIRDA Filters

 151

4 8 12 16 20
100

1000

10000

100000

Sa
m

pl
es

Error%

Min. Mean
 0.05
 0.15
 0.25
 0.40
 0.50
 0.05opt
 0.15opt
 0.25opt
 0.40opt
 0.50opt

Device: xcv400e, pck pq240, speed -8
FIRDA_8

Fig. 8.18: Characterization of the accuracy/execution-time tradeoff for FIRDA_8. Optimization

strength 0.75

Nevertheless, all the previous cases in this section were run with an optimization

strength value equal to zero. Fig. 8.18 shows the same characterization for

optimization strength 0.75 and the comparison with the non optimized case. The

dashed lines represent the cases without optimization.

In order to give more information about the results in Fig. 8.18, Table 8.7 shows the

execution time savings with respect to the non optimized case.

 Min. Act.

Error 0,05 0,15 0,25 0,4 0,5

5 0,76 0,45 0,53 0,35 0,30

8 0,81 0,55 0,57 0,40 0,30

10 0,82 0,55 0,58 0,45 0,32

15 0,85 0,69 0,62 0,56 0,40

20 0,84 0,65 0,49 0,47 0,47

Table 8.7: Execution time savings for FIRDA_8. Optimization strength 0.75

Statistical Power Estimation on FPGAs

 152

It is observed that the best savings are obtained in the most favorable cases, where

the required accuracy and execution times are high.

8.2.4 Tool’s Evaluation

As shown in section 8.1.3, beyond the results in relative terms, it is also interesting to

consider the absolute execution times. Table 8.8 and Fig. 8.19 show the results for the

combinational FIRDA with the optimization strength set to 0.75. The error is 5%, 95%

confidence, and min. mean is 0.25.

 Task Exec. Time [secs]

Input vector generation 13

Simulation 742

Saving 24

Transition análisis 2669

Statistics computation 16 A
ct

iv
ity

 E
st

im
at

io
n

Stopping criteria evaluation 17

VHDL parking 1

XDL parking 1

XML generation 107

XPower execution 12

PWA parking 0

Report writing 3

Po
w

er
 C

om
pu

ta
tio

n

Maps generation 10

Table 8.8: A-DyP execution Time for FIRDA_8

In order to have an idea about the absolute A-DyP execution times, Table 8.9

summarizes them by sub-system. This run, where the accuracy is relatively high

requires 1 hour (Pentium 1.6 GHz, main memory 512 MB). In Table 8.10 the same

design is tested with a lower accuracy requirement: 15% error with 85% confidence.

Now the total execution time is about 6 minutes. Total time includes all the necessary

procedures to run the test. For example, it includes the elaboration done by the

Experimental Results A First Complete Test Case: FIRDA Filters

 153

simulator for the VHDL design. Nevertheless, this time does not include the compilation

time, which is necessary just once for the first run of each design.

20,5%

0,7%

73,8%

3,0%

0,3% 0,1% 0,3%
0,4%0,5%

0,4% Input vector generation
Simulation
Saving
Transition analisys
Statistics computation
Stoping criteria evaluation
VHDL parsing
XDL parsing
XML generation
XPower execution
PWA parsing
Report writing
Power Maps

Fig. 8.19: A-DyP Execution Time for FIRDA_8

Task Exec. Time [sec]

Total Execution 3678

Initialization 49

Activity Estimation 3481

Power Computation 134

Tcl/Tk script 14

Table 8.9: A-DyP total execution time. FIRDA_8, high accuracy

Task Exec. Time [sec]

Total Execution 387

Initialization 51

Activity Estimation 191

Power Computation 141

Tcl/Tk script 4

Table 8.10: A-DyP total execution time. FIRDA_8, low accuracy

Statistical Power Estimation on FPGAs

 154

8.2.5 Power Maps

In this sub-section some power, capacitance and activity maps are shown. Fig. 8.20

and 8.21 show two power maps for the FIRDA_8 circuit with different resolutions. For

the first one, the power consumption is added within a 1x1 CLB square. The second

figure lumps together the power consumption within the 4x4 CLBs. Although it seems

less accurate, the second alternative could give a better idea about the internal

temperature in the die.

Fig. 8.20: Power Map. Resolution 1 CLB

Fig. 8.21: Power Map. Resolution 4 CLBs

Experimental Results A First Complete Test Case: FIRDA Filters

 155

Fig. 8.22 and 8.23 show a capacitance and an activity map for the FIRDA_8 circuit

respectively.

Fig. 8.22: Capacitance Map. Resolution 1 CLB

Fig. 8.23: Activity Map. Resolution 1 CLB

In Section 8.2.3 it is shown that correlation between the activity threshold and the

total power relative error is very low. The total power is a macroscopic magnitude but it

is also useful to study what happens at a higher resolution level, for example at the

CLBs scale, in the programmable-element world.

Statistical Power Estimation on FPGAs

 156

Fig. 8.24 shows a map with the differences between 2 simulation runs with activity

thresholds 0.18 and 0.8. Those are the estimations with the highest difference in total

power for the activity threshold studied range. In this figure, the differences are around

10 μW, being the CLB power consumption in the 0-370 μW range. Consequently, these

differences could be considered weak noise. Nevertheless, if the relative differences

are computed, the results show high values. Relative differences are computed

according to Eq. 8.5.

yxm

yxMyxm
yxmMrel P

PP
P

,,

,,,,
,,,

−
= (Eq. 8.5)

Where PS,x,y is the power consumed at CLB in column x, row y, and simulation

run S. Average, standard deviation and maximum values for these differences are

shown in Table 8.11 for square groups of n x n CLBs.

Resolution Mean Std. Deviation Maximum

1x1 3,3% 7,5% 88,4%

2x2 2,9% 6,4% 82,2%

4x4 1,8% 1,4% 6,4%

Table 8.11: Relative differences between two simulation runs with different minimum activity
thresholds

Fig. 8.24: Map that shows the difference between 2 estimations with activity thresholds 0.18 and

0.8. Resolution 1x1 CLB

Experimental Results A First Complete Test Case: FIRDA Filters

 157

Now, it is clear that the activity threshold is an accuracy parameter for individual

node estimations and, in general, low resolution power estimations with the

implemented technique.

Fig. 8.25 shows some projections from de 3D representation keeping specific rows

constant.

20 25 30 35 40 45
-0,010

-0,008

-0,006

-0,004

-0,002

0,000

0,002

0,004

P
ow

er
 (m

W
)

Column

Res: 1CLB; Row=16
FIRDA Dig 8 - 12.5 MHz

Device: xcv400e, pck pq240, speed -8

20 25 30 35 40 45
-0,010

-0,008

-0,006

-0,004

-0,002

0,000

0,002

0,004

Po
w

er
 (m

W
)

Column

Res: 1CLB; Row=36
FIRDA Dig 8 - 12.5 MHz

Device: xcv400e, pck pq240, speed -8

20 25 30 35 40 45
-0,010

-0,008

-0,006

-0,004

-0,002

0,000

0,002

0,004

Po
w

er
 (m

W
)

Column

Res: 1CLB; Row=26

FIRDA Dig 8 - 12.5 MHz

Device: xcv400e, pck pq240, speed -8

Fig. 8.25: 2D projections from the 3D map of Fig. 8.23

Statistical Power Estimation on FPGAs

 158

8.2.6 Energy Analysis or Energy of the Computation

All the FIRDA circuits are evaluated in this section, from the combinational version

to the serial one, including digit sizes of 8, 4, 3, 2 and 1. The circuit behavior from the

user point of view is the same for all the cases; the I/O data rate is also equal. Just the

clock frequency must be adjusted to serve the incoming data taking into consideration

the current digit size. The combinational version requires the slowest clock frequency

but needs the highest area. The serial (digit-1) version needs the smallest area at the

highest clock frequency. The question is now, which is the architecture with the lowest

power figure?

Fig. 8.26: Power Maps for the FIRDA circuits

Revisiting Eq. 2.7:

i
i

iclkdd swECfVP)(ˆˆ
2
1 2 ∑= ,

Experimental Results A First Complete Test Case: FIRDA Filters

 159

As the digit size decreases, fclk must be increased and the total power will augment

in the same way. At the same time, the area decreases and this means that

capacitance is reduced. What will the prevailing effect be on power consumption? Will

the power increase or decrease in serialized versions? The power maps for the

different implementations are shown in Fig. 8.26. As the area increases, a lower power

per unit of area is observed. Conversely, for the digit-1 case the area is minimal but the

energy consumption is concentrated in this region of the die.

It is clear that the computation done over the data is the same, and at the same rate.

Could it be thought of as some energy associated with a computation? In this case, the

energy per operation should be the same for all the FIRDA architectures.

In [Fey96], a study about the energy and thermodynamics of computing is

presented. In that work it is concluded that, for practical cases –practical in opposition

to idealized machines that operates infinitesimally slow, for example-, there is an

amount of energy proportional to the computational work. Therefore, this test case is

an opportunity to verify these ideas (see Section 2.3.1).

0 2 4 6 8

20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

 Clk
 Dyn
 Total
 Area

Internal Digit Size

P
ow

er
 (m

W
)

0

200

400

600

800

1000

1200

A
rea (S

lices)

Fig. 8.27: Power and area for the different FIRDA versions

Depending on the application constraints, the best version of the filter can be

selected according to its power consumption or area occupation. Fig. 8.26 shows that

when the area increases, the total power consumption decreases. If the design is

restricted by area, the serial version should be used, being 8 times smaller than the

Statistical Power Estimation on FPGAs

 160

parallel one. However, when the power budget is reduced, the parallel implementation

is the preferred one, with half as much again as the serial version.

It is interesting to analyze the synchronization and logic power separately. Fig. 8.27

shows that the logic power varies slightly. It is higher in serial versions due to the

additional control logic. In this way the idea of energy associated with a computation

have an empirical counterpart. It is important to note that for this proposition to be true,

the spurious activity must be reduced. This is the case in these circuits due to the use

of pipelines.

If both power and area need to be optimized together, the serial version is the best

choice, as shown in Fig. 8.28. In fact, the synchronization power for the serial version is

a little more than 3 times higher than the parallel circuit: As in pipelining, additional

power is required to manage the data. Consequently, total power, including

synchronization and dynamic power for the serial version, is almost double that of the

parallel implementation.

0 1 2 3 4 5 6 7 8 9
0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

A
*P

 (N
or

m
al

iz
ed

)

Internal Digit size

Fig. 8.28: Power*Area for the different FIRDA versions

8.3 Impact of the Input Patterns Definition
In this section some test circuits are evaluated with different input pattern definitions

as shown in Table 8.12.

Experimental Results Impact of the Input Patterns Definition

 161

Test case number 1 can be considered as the standard one where the designer

does not have information about the scenario where the circuit will be used, or he

wants to obtain a first approach to the circuit power consumption values.

In cases 2 and 3 the activity is not the same for the different bits within the operands

at the primary inputs but it is increased from one end to the other all along the

operands. In the same way, cases 4 and 5 are close to the cases where the circuit

inputs are 2’s complement numbers and the sign bits switches less than the rest.

Case number 6 is a high activity and power consumption one. It can serve to know a

power consumption value near to the maximum. On the other hand, case 7 is a low

power one. A high signal probability means that almost all the time the signals are ‘1’

and that the activity must be low.

Finally, cases 8 and 9 exercise the circuit within two particular situations were some

circuit inputs are connected to a counter’s output.

Test Case Description

1 All inputs are independent random patterns

2 The activity for the MSB is set to 0.05 and is increased linearly to 0.95 for
the LSB.

3 The activity for the MSB is set to 0.95 and is decreased linearly to 0.05 for
the LSB.

4 The activity is set to 0.05 for the 4 MSBs and 0.5 for the rest.

5 The activity is set to 0.05 for the 8 MSBs and 0.5 for the rest.

6 The activity is set to 0.95 for all the bits.

7 The signal probability is set to 0.95 for all the bits.

8 The 4 LSBs are connected to a counter and the rest are independent
random bits.

9 The 4 MSBs are connected to a counter and the rest are independent
random bits.

Table 8.12: User Defined input Patterns

Statistical Power Estimation on FPGAs

 162

8.3.1 Total Dynamic Power Estimation

In this sub section the total measured and estimated power are reported for every

input pattern definition specified in Table 8.12. The studied circuits are SUM32,

MUL32, DIV16P and MUL16P and the results are presented in Tables 8.13 to 8.16

respectively. All of them are implemented in a Virtex XCV50PQ240-4 device.

Tg = 0 Opt. Tg
Case Measured

Estimated Error (%) Estimated Error (%)

1 1.352 1.40 3.5 1.36 0.6

2 1.258 1.42 12.9 1.35 7.2

3 1.273 1.39 9.6 1.36 6.8

4 1.217 1.26 3.2 1.21 -0.3

5 1.086 1.11 1.8 1.07 -1.6

6 1.800 2.61 45.2 2.47 37.3

7 0.159 0.15 -8.0 0.15 -6.5

8 1.319 1.38 4.5 1.31 -0.4

9 1.332 1.38 3.8 1.34 0.4

Table 8.13: Total Power Estimation for the SUM32 Design

In Table 8.14, for the combinational 32-bit multiplier, the estimation was not possible

without any glitch filtering because the extremely high activity reported by the simulator

produces overflows in the program that parses the VCD files. These estimations are

made filtering glitches shorter than 50 ps. Even in this case, the error can reach more

than 500%! always in excess. Filtering these short pulses, the error is less than 10%

for all the cases except one with a 29% error.

Experimental Results Impact of the Input Patterns Definition

 163

Tg = 50 Opt. Tg
Case Measured

Estimated Error (%) Estimated Error (%)

1 18.859 92.261 389.2 17.256 -8.5

2 16.297 90.952 458.1 17.153 5.3

3 17.309 93.352 439.3 16.47 -4.8

4 16.634 89.223 436.4 16.483 -0.9

5 16.172 79.483 391.5 15.528 -4.0

6 22.616 120.561 433.1 22.756 0.6

7 4.898 31.709 547.5 6.3165 29.0

8 18.934 93.594 394.3 18.29 -3.4

9 19.034 92.692 387.0 18.141 -4.7

Table 8.14: Total Power Estimation for the MUL32 Design

Tg = 0 Opt. Tg
Case Measured

Estimated Error (%) Estimated Error (%)

1 4.710 7.25 53.9 4.60 -2.4

2 3.941 6.39 62.0 4.01 1.7

3 4.501 7.05 56.5 4.38 -2.6

4 3.672 5.86 59.7 3.76 2.3

5 4.238 6.95 63.9 4.30 1.5

6 4.978 11.53 131.7 6.13 23.2

7 1.366 2.13 56.0 1.51 10.7

8 4.703 7.17 52.4 4.57 -2.7

9 4.330 6.82 57.5 4.25 -2.5

Table 8.15: Total Power Estimation for the DIV16P Design

Statistical Power Estimation on FPGAs

 164

Tg = 0 Opt. Tg
Case Measured

Estimated Error (%) Estimated Error (%)

1 3,392 5,194 53,1 3,264 -3,8

2 2,939 4,813 63,8 2,938 -0,1

3 3,210 4,873 51,8 3,107 -3,2

4 2,763 4,349 57,4 2,769 0,2

5 2,814 4,462 58,5 3,155 12,1

6 3,966 7,764 95,8 4,216 6,3

7 0,732 1,247 70,3 0,917 25,2

8 3,359 5,126 52,6 3,222 -4,1

9 3,295 5,157 56,5 3,175 -3,6

Table 8.16: Total Power Estimation for the MUL16P Design

0 5 10 15 20 25
0

20

40

60

80

100

120

140

Es
tim

at
ed

 [m
W

/M
H

z]

Measured [mW/MHz]

 Est0
 EstOpt

Fig. 8.29: Total Power Estimations in a Virtex 50 Device.

Experimental Results Impact of the Input Patterns Definition

 165

Fig. 8.29 graphically resumes the data shown in Tables 8.13 to 8.16. The black

squares represent the estimations before an adequate glitch filtering while the red dots

correspond to the values after a short pulse filtering with a value obtained for the

device, in this case XCV50PQ240-4. As in all the experiments, it is noticeable or even

absurd the overestimation in the number of transitions that a standard simulator report

for a post PAR circuit. The line represents the situation without error.

The differences in total power consumption for every circuit and input pattern

definition are shown in Fig. 8.30. Figs. 8.30.a, b, c and d show the result for SUM32,

MUL32, DIV16P and MUL16P respectively.

1 2 3 4 5 6 7 8 9
0,0

0,5

1,0

1,5

2,0

2,5

En
er

gy
 [m

W
/M

H
z]

Input Set

 Measured
 Estimated

SUM32

(a)

1 2 3 4 5 6 7 8 9
0

5

10

15

20 MUL32
E

ne
rg

y
[m

W
/M

H
z]

Input Set

 Measured
 Estimated

(b)

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

DIV16

En
er

gy
 [m

W
/M

H
z]

Input Set

 Measured
 Estimated

(c)

1 2 3 4 5 6 7 8 9
0

1

2

3

4

MUL16

En
er

gy
 [m

W
/M

H
z]

Input Set

 Measured
 Estimated

(d)

Fig. 8.30: Total Power for the different Input Patterns (See Table 8.11).

Statistical Power Estimation on FPGAs

 166

The main conclusion from Fig. 8.29 is that a user can define different input sets and

obtain any power figure between zero and at least the value obtained for the input

definition number 6. In other words, it is essential to specify an input set that is as real

as possible in order to obtain meaningful results.

8.3.2 Dynamic Power Estimation for Individual Nodes

The power consumption for individual nodes is also completely different for each

defined input pattern. Each set can produce hot spots or hot areas in different places in

the FPGA and with different amplitudes. Fig. 8.31 shows a power map for the input

pattern definition number 1 with the MUL16P design layout in the background. Cases

2-9 are shown in Fig. 8.32 for the same design. For all the figures the same colors

represent the same power values as is shown in Fig. 8.31. Furthermore, the red color

represents 2.5 mW or more.

Fig. 8.31 Power Map for MUL16. Resolution 1 CLBs

In Fig. 8.32.a and 8.32.b it is clear that the inputs LSB (down) and MSB (up) are the

most active respectively and gradually the power consumption decreases towards the

MSB and LSB respectively.

Fig 8.32.e clearly represents the most power consumption case with almost all the

design area in red. On the other hand, Fig. 8.32.f is the less active case where the 1 x

1 most active CLB squares consume about 0.7 mW.

Experimental Results Impact of the Input Patterns Definition

 167

5 10 15 20
16

14

12

10

8

6

4

2

Column

R
ow

16 bit

(a)

5 10 15 20
16

14

12

10

8

6

4

2

Column

R
ow

(b)

5 10 15 20
16

14

12

10

8

6

4

2

Column

R
ow

16 bit

(c)

5 10 15 20
16

14

12

10

8

6

4

2

Column

R
ow

16 bit

(d)

5 10 15 20
16

14

12

10

8

6

4

2

Column

R
ow

16-bit

(e)

5 10 15 20
16

14

12

10

8

6

4

2

Column

R
ow

16 bit

(f)

Statistical Power Estimation on FPGAs

 168

5 10 15 20
16

14

12

10

8

6

4

2

Column

R
ow

16 bit

(g)

5 10 15 20
16

14

12

10

8

6

4

2

Column

R
ow

16 bit

(h)

Fig. 8.32: Power Map. Resolution 1 CLBs

From these figures it can be observed that, given a power or activity map, it could be

inferred which input patterns are applied to the primary inputs. Conversely, applying

specific input pattern sets, it could be possible to generate specific power and activity

maps, both static and dynamic. A consecutive sequence of maps could be considered

or called a power movie. These movies naturally have several interesting physical

properties like temperature and electromagnetic emission. It could also be possible to

discover which inputs or programs are applied to a circuit watching these power

movies.

8.3.3 Input Patterns from Real Scenarios

FFT_A, B, C and D are 64-point pipelined FFT implementations that fulfill the

Hiperlan/2 and IEEE 802.11a-g standards. The target device for these designs is a

Virtex XCV800HQ240-4. The tolerated error for the estimations is specified as 20%

with 80% confidence. The activity threshold is 0.25 and the optimization strength is

0.75. Input data are modulated QAM and QPSK. The results are shown in Table 8.17.

Experimental Results Impact of the Input Patterns Definition

 169

Tg = 0 Opt. Tg
Circuit Measured

Estimated Error (%) Estimated Error (%)

FFT_A 27.75 33.44 +21 27.41 -1

FFT_B 27.75 32.54 +17 26.25 -5

FFT_C 27.63 32.79 +19 26.71 -3 Q
A

M

FFT_D 24.88 33.67 +35 27.70 +11

FFT_A 28.00 33.35 +19 27.56 -2

FFT_B 27.13 32.49 +20 26.12 -4

FFT_C 27.75 32.72 +18 26.59 -4 Q
PS

K

FFT_D 24.88 33.59 +35 27.65 +11

Table 8.17: Total Power estimations for the FFT circuits

In Table 8.17, filtering the short pulses, the error is less than 11% for all the cases.

However, when no glitches are filtered, the error can reach 35%, always in excess.

The results in Table 8.17 show a very small difference between these modulations

at the average total power level. Fig. 8.33.a and 8.33.b show the power maps for these

input data modulated QAM and QPSK respectively with a seemingly small difference

for the average power consumption at the CLB level.

Nevertheless, ultimate conclusions must be derived studying the power

consumption at the CLB level computing the individual relative differences according to

Eq. 8.5.

Average, standard deviation and maximum values for these differences are shown

in Table 8.18 for square areas of n x n CLBs.

Statistical Power Estimation on FPGAs

 170

(a)

(b)

Fig. 8.33: Power Map. Resolution 1 CLBs

Experimental Results Additional Experiments on Virtex-II

 171

Resolution Mean [%] Std. Deviation [%] Maximum [%]

1x1 10.9 13.2 197.3

2x2 7.9 8.7 60.0

4x4 5.4 6.8 37.3

Table 8.18: Relative differences between two simulation runs with different minimum activity
thresholds

Table 8.18 shows that there is an important difference between the input patterns for

individual node and, in general, low resolution power estimation in the implemented

technique. This effect is attenuated as the resolutions decrease and, at the end, it is

very low for total power. Fig. 8.34 shows the absolute values of the relative differences

at the 1x1 CLB resolution.

Fig. 8.34: Relative power differences between QAM and QPSK modulations at 1x1 CLB

resolution

8.4 Additional Experiments on Virtex-II
Up to now, all the experiments were performed on Virtex and Virtex-E devices.

However, it is interesting to check if the tool and methodology is applicable to another

Xilinx family such as Virtex-II. The new experiments are performed on a design with ten

Statistical Power Estimation on FPGAs

 172

16-bit combinational multipliers with registered inputs and outputs. For this test case a

complete tool evaluation was run.

8.4.1 Impact of the Input Pattern Definition on Total Power

Both estimated and measured power values, in mW/MHz, are shown in Table 8.19.

The design is evaluated with the different input pattern defined in Table 8.12.

The min. glitch duration, Tg, calculated as the optimum value for this device and test

case is 900 ps. Note that, filtering these short pulses, the error is less than 6% for all

the cases except one with 18.8%. On the other hand filtering glitches shorter than 50

ps, the error can reach more than 350%, always in excess. As in the combinational 32-

bit multiplier, it was not possible the estimation without any glitch filtering because the

extremely high activity reported by the simulator produces overflows in the program

that parses the VCD files.

Tg = 50 Opt. Tg
Case Measured

Estimated Error (%) Estimated Error (%)

1 10.97 43.92 300.7 11.13 1.6

2 10.14 42,30 317.3 10.14 0.0

3 9.81 39.90 306.7 10.14 3.3

4 9.31 36.57 292.7 9.17 -1.5

5 11.56 41.22 256.5 10.92 -5.6

6 15.01 62.09 313.6 14.83 -1.2

7 3.25 14.77 354.2 3.86 18.8

8 10.96 45.26 312.8 10.95 -0.1

9 10.81 43.88 305.9 10.80 -0.1

Table 8.19: Total Power Estimation for the 10MULT16-C Design

The differences in total power consumption for every input pattern definition are

shown in Fig. 8.35.

Experimental Results Additional Experiments on Virtex-II

 173

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

10MUL16_C

E
ne

rg
y

[m
W

/M
H

z]

Input Set

 Measured
 Estimated

Fig. 8.35: Total Power for the different Input Patterns (See Table 8.11) for 10MULT16-C.

In the same way as shown in Fig. 8.30, Fig. 8.35 indicates that an as real as

possible input set specification is essential in order to obtain meaningful results.

8.4.2 Dynamic Power Estimation for Individual Nodes

In this section it is shown if the results, at individual node level, fit the user specified

accuracy as in section 8.2.2. Fig 8.36 shows relative error distributions for different

levels of accuracy. This accuracy is specified in the upper right hand corner of each

histogram and it is achieved in all the cases shown in this figure.

As the power consumption for the individual nodes can not be physically measured,

the comparisons were made against the results obtained from a long simulation run

with a sample size of 65158 clock cycles with the following parameters: 95% of

confidence that error is less than 5%, the threshold for the min. activity is 0.05, and the

optimization strength equal to zero. In this set of test cases the threshold for the activity

mean, that divides regular and low activity nodes, is 0.25, the optimization strength is

0.50, and the input patterns are generated independently.

Statistical Power Estimation on FPGAs

 174

-0,15 -0,10 -0,05 0,00 0,05 0,10 0,15 0,20 0,25
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

N
od

es
 %

Rel. Error Power

10MUL16_C
Device: xc2v3000, pck fg676, speed -6

95/5
Min. Act. 0.25

Opt=50

-0,15 -0,10 -0,05 0,00 0,05 0,10 0,15 0,20 0,25
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

92/8

N
od

es
 %

Rel. Error Power

Fig. 8.36: Individual node power: relative error distributions for 10MUL16_C

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

N
od

es
 %

Rel. Error Activity

10MUL16_C
Device: xc2v3000, pck fg676, speed -6

95/5
Min. Act. 0.25

Opt=50

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

92/8

N
od

es
 %

Rel. Error Activity

-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4
0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

90/10

N
od

es
 %

Rel. Error Activity
-0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

85/15

N
od

es
 %

Rel. Error Activity

Fig. 8.37: Individual node activity: relative error distributions for 10MUL16_C

As there are a number of nodes where the reported capacitance is zero, a

noticeable high column in Fig. 36 is observed. In this case, it is more interesting to see

Experimental Results Additional Experiments on Virtex-II

 175

what happens to the activities. With the same parameters, Fig. 8.37 shows activity

relative error distributions for different levels of accuracy.

8.4.3 Accuracy vs. Execution Time Tradeoff

As in section 8.2.3, how the execution time depends on the required accuracy is

studied. Fig. 8.38 shows a graphical representation of the accuracy vs. execution time

tradeoff where all the variables are present and the estimation system is characterized.

The x-axis represents the accuracy, where a xi values correspond to an xi% error with

100-xi% confidence. This experiment also confirms the robustness of the technique,

allowing a tunable accuracy. Dashed lines represent the cases without optimization

and the solid lines correspond to simulation runs with optimization strength 0.5.

4 8 12 16 20
100

1000

10000

100000

S
am

pl
e

S
iz

e

Error %

Min. Mean
 0.05
 0.15
 0.25
 0.40
 0.50
 0.05opt
 0.15opt
 0.25opt
 0.40opt
 0.50opt

Device: XC2V3000, pck FG676, speed -6
10MULT16_C

Opt. 1.0

Fig. 8.38: Accuracy/execution-time tradeoff for 10MULT16_C

In order to give more information about the results in Fig. 8.38, Table 8.20 shows

the execution time savings with respect to the non optimized case.

As pointed out previously, this optimization without any loss of accuracy is possible

because the effective accuracy is higher than the specified one and the nodes do not

converge linearly. Fig. 8.39 shows how 98% of the nodes representing 99% of the

power met the stopping criterion halfway through the simulation run. The estimation

Statistical Power Estimation on FPGAs

 176

time and the nodes percent are presented in relative terms to make easier further

comparisons.

 Min. Act.

Error 0,05 0,15 0,25 0,4 0,5

5 0,84 0,56 0,31 0,46 0,27

8 0,88 0,58 0,43 0,47 0,32

10 0,87 0,52 0,50 0,45 0,37

15 0,88 0,60 0,51 0,58 0,48

20 0,88 0,61 0,55 0,46 0,30

Table 8.20: Execution time savings for 10MULT_C. Optimization strength 0.50

0 20 40 60 80 100
0

20

40

60

80

100

%
 C

on
ve

rg
en

ce

% Estimation Process

 Nodes
 Power

Device: XC2V3000, pck FG676, speed -6
10MULT16_C 95/5

Min. Act. 0.15

Fig. 8.39: Convergence time for 10MULT16_C

Table 8.21 is similar to Table 8.20 but the optimization strength is 1.00.

To complete the results shown in Fig. 8.38, Fig. 8.40 adds a third axis to show the

behavior of the optimization strength parameter.

Experimental Results Additional Experiments on Virtex-II

 177

 Min. Act.

Error 0,05 0,15 0,25 0,4 0,5

5 0,89 0,59 0,48 0,50 0,38

8 0,89 0,61 0,52 0,52 0,40

10 0,89 0,59 0,58 0,54 0,49

15 0,91 0,68 0,59 0,58 0,48

20 0,92 0,70 0,68 0,46 0,30

Table 8.21: Execution time savings for 10MULT_C. Optimization strength 1.00

0
5

10
15

20 100
80

60
40

20
0

100

1000

10000

100000
Device: XC2V3000, pck FG676, speed -6

Min. Act. 0.05
10MULT16_C

Sa
m

pl
e

Si
ze

Opimization StrengthError%

0
5

10
15

20 100
80

60
40

20
0

100

1000

10000

100000
S

am
pl

e
S

iz
e

Optimization StrengthError%

Min. Act. 0.15

0
5

10
15

20 100
80

60
40

20
0

100

1000

10000

100000
Min. Act. 0.25

S
am

pl
e

S
iz

e

Optimization StrenghtError%

0
5

10
15

20 100
80

60
40

20
0

100

1000

10000

100000
Min. Act. 0.40

S
am

pl
e

S
iz

e

Opimization StrengthError%

Fig. 8.40: Accuracy/execution time tradeoff for 10MUL16_C for different optimization strength
values

Statistical Power Estimation on FPGAs

 178

8.4.4 Tool’s Evaluation

Table 8.23 and Fig. 8.41 show the run times estimating the power consumption for

the 10MULT16_C test circuits with optimization strength 1.00. The error is 10%, 90%

confidence, and the threshold for the low activity nodes is 0.25 transitions per clock

cycle. Table 8.22 summarizes the execution times by sub-system

Transition
analisys

42%

Simulation
33%

Saving
14%

Others
4%

Power Maps
2%Tcl/Tk script

5%

Fig. 8.41: A-DyP relative execution times for 10MULT16_C

Task Exec. Time [min]

Total Execution 42

Initialization 0

Activity Estimation 38

Power Computation 2

Tcl/Tk script 2

Table 8.22: A-DyP total execution time for 10MULT16_C

Experimental Results Additional Experiments on Virtex-II

 179

 Task Exec. Time [secs]

Input vector generation 8

Simulation 817

Saving 347

Transition analysis 1063

Statistics computation 13 A
ct

iv
ity

 E
st

im
at

io
n

Stopping criteria evaluation 12

VHDL parsing 11

XDL parsing 1

XML generation 0

XPower execution 16

PWA parsing 1

Report writing 25

Po
w

er
 C

om
pu

ta
tio

n

Maps generation 40

Table 8.23: A-DyP absolute execution time for 10MULT16_C

8.4.5 Power Maps

Each input pattern definition can produce hot spots or hot areas in different places in

the FPGA and with different amplitudes. Fig. 8.42.a, b and c show power maps for the

input pattern definition number 1, 6, and 7 respectively (See Table 8.12) for the

10MUL16_C design. The layout is in the Fig.8.42.a’s background. For all the figures

the same colors represent the same power values. Furthermore, red represents 3.6

mW or more. The parameters for the simulation runs were 85% confidence that error is

less than 15%, Tg is 900 ps, the threshold for the low activity nodes is 0.25 transitions

per clock cycle, and the optimization strength is 0.50.

Statistical Power Estimation on FPGAs

 180

(a)

(b)

(c)

Fig. 8.42: Power Maps for 10MUL16_C. Resolution 4x4 Slices

Experimental Results Conclusions

 181

Fig 8.42.b clearly represents the highest power consumption case with most hot

spots. On the other hand, Fig. 8.42.c is the less active case where the 4 x 4 most

active slices square squares consume about 1.5 mW. As in Fig. 8.32, it can be

observed that given a power or activity map, it could be inferred which input patterns

are applied to the primary inputs. Conversely, applying specific input pattern sets, it

could be possible to generate specific power and activity maps.

8.5 Conclusions
A number of experiments were performed on three Xilinx families (Virtex, Virtex-E

and Virtex-II) in order to show that the proposed statistical technique works with these

technologies. The FPGAs have the same basic structure, i.e. the programmable block

array and the network to interconnect them. However they correspond to different VLSI

technological generations.

Several sources of error were detected in the power estimations within the current

Sw/Hw framework: pulses shorter than the physically possible ones, simulator

inaccuracies to propagate glitches, lack of information about the error in the reported

capacitances, and probably others. As the observed error is always in excess, a glitch

filtering policy was proposed as a calibration resource that leads to accurate results.

An improvement to the classical Monte Carlo power estimation method for individual

nodes has been presented. Although the method is implemented and evaluated within

the particular Xilinx ISE design flow and devices, there are no restrictions to apply the

technique within other FPGA design environments or even general CMOS design

flows. The problem with the classical statistical estimation method is the execution

time. Current big designs could require unacceptable run times when the user specifies

medium to high accuracy requirements. The proposed A-B technique takes up shorter

execution times enabling its practical use within existing design flows. Moreover, the

proposed technique is simple and very easy to implement. It has been shown that the

optimization is done without loss of accuracy at the individual nodes level. This is

because it makes use of the extra accuracy generated running the classical approach

that is effectively higher than the one specified by the user. To quantify and measure

this extra precision, a definition of effective accuracy was proposed.

Statistical Power Estimation on FPGAs

 182

The experiments confirm the robustness of the technique, allowing a tunable

accuracy. According to the precision required at each moment in the design process,

appropriate values can be set for both the minimum mean activity and the error-

confidence pair. The execution time of the tool monotonically increases with the

required precision. It has also been verified that the actual relative error for individual

nodes is bounded by the one specified by the user.

An as real as possible input set specification was verified as being essential in order

to obtain meaningful results. Although it is a known issue in the power estimation world,

here it was confirmed over the FPGA technology with for the QDDFS-CORDIC case,

where the inputs are fixed during each specific evaluation.

Finally, an experiment was performed to verify the energy of computation principles

resumed in section 2.3.1. The different implementations of the FIRDA circuit are an

appropriate test case because they perform the same computation. It is observed that

total power is higher for the serial version. However, this is due to the increase in clock

power. Dynamic power excluding the clock is almost the same for all the

implementations, from the combinational case to the serial one.

References
[And04] Anderson, J.H.; Najm, F.N., “Power estimation techniques for FPGAs”, IEEE

Trans. on VLSI Systems, Volume 12, Issue 10, pp. 1015-1027, Oct. 2004

[May01] Uwe Meyer-Baese, “Digital signal processing with field programmable gate
arrays”, Springer, 2001.

[Bae02] C. Baena, J. Juan-Chico, M.J. Bellido, P. Ruiz, C.J. Jimenez, and M. Valencia
Barrero, “Measurement of the Switching Activity of CMOS Digital Circuits At the
Gate Level”, Lecture Notes in Computer Science. Vol. 2451. 2002, pp. 353-362.

[Fey96] Richard P. Feynman, “Feynman Lectures on Computation”, Perseus Books,
1996.

Chapter 9.

 “Lo último que uno sabe es por donde empezar” from Pensées (1660) by Blaise

Pascal (1623-1662)

9 Conclusions and Future Works

In this chapter the main conclusions and contributions of this thesis are summed up.

Also the publications generated from this work and the ideas that can be developed in

the future are listed below. Finally, some recommendations about how to build a power

estimation system and how to estimate power along the design process are proposed.

Power estimation within a real scenario was found to be a very challenging task. As

the developed software is included within FPGA design flows, reverse engineering is

the only tool available to solve some practical problems. This is due to the lack of

support to third-party integration in the commercial FPGA world, particularly to the

issues related to power estimation.

9.1 Main Contributions of this Thesis
A lot of techniques for power estimation have been published but almost all do not

go beyond simulation. On the other hand there are a relatively small number of papers

about power estimation techniques specifically developed, adapted or tested on

FPGAs. In this way, the main contribution of this thesis is the development of a power

estimation methodology for FPGA and a power estimation tool which was calibrated

against physical measurements.

A platform for power estimation on FPGA was developed. Over this platform a

statistical power estimation tool was built. A number of measurements were performed

Statistical Power Estimation on FPGAs

 184

over three Xilinx families (Virtex, Virtex-E and Virtex-II) in order to show that the

statistical technique works with these technologies covering more than 10 years of PLD

evolution. There are also experiments on the Xilinx 4000 family but as the capacitances

were not provided for them; those results are not presented in this thesis. All these

FPGAs have the same basic structure, i.e. the programmable block array and the

network to interconnect them. However they correspond to different VLSI technology

generations and there are additional resources within the programmable blocks in the

newer families. The conclusions presented in this chapter are based on thousands of

hours of experimentation on the circuits and development boards described in Chapter

7.

9.1.1 The Power Platform Framework and A-DyP

The current version of A-DyP, the statistical power estimation tool, is not an end in

itself, but a foundation upon which other power-aware tools can be built. It is hoped this

tool is the first iteration necessary for the development of a more general power

estimation framework called Power Platform in this thesis. For this reason, the

programs, data structures, formats and software technologies were designed or

selected according to this goal. On the other hand, all the programs and scripts in A-

DyP access data in the Power Database and the configuration files which include

application and project parameters. The appropriate way to work with this information is

through a software layer independent of the database engine and file formats.

A power estimation tool must be integrated within a design flow. In this way,

standard formats must be selected to enable interoperability though different software

vendors and versions.

Upon the Power Platform, a statistical-based power estimation tool for FPGA

devices has been developed with the following features:

• A Tcl/Tk script implements the high-level instructions of the estimation

algorithm and integrates the programs that deal with specific functionality

within the system. One such script enables the reuse of the programs and is

a fundamental piece in the Power Platform framework.

• Any standard simulator that deals with VCD activity files can be used in the

inner loop of the Monte-Carlo program making the technique easy to

Conclusions and Future Works Main Contributions of this Thesis

 185

implement. In order to manage post PAR designs the simulator must also

support VITAL and SDF files.

• If the accuracy selected is not too high, the execution time is reasonable,

even for current big designs.

• A simple input specification can be defined.

• Temporal, and spatial (at the internal nodes level) correlations are

considered.

• The most accurate model available can be used, i.e. glitches can be taken

into account. All the presented experiments are performed over post PAR

designs, but there is no restriction to apply A-DyP to post synthesis, map, or

post place designs.

The experiments confirm the robustness of the technique, allowing a tunable

accuracy. According to the precision required at each moment in the design process,

appropriate values can be set for both the minimum mean activity threshold and the

error-confidence pair. The execution time of the tool monotonically grows with the

required precision. It has also been verified that the actual relative error for individual

nodes is bounded by the one specified by the user.

Finally, the importance of properly defined input pattern characteristics is pointed

out. The use of this tool with a default or arbitrary input pattern can result in an activity

figure with unpredictable error. It was verified that it is essential to specify an as real as

possible input set in order to obtain meaningful results. Although it is a known issue in

the power estimation world, here it was confirmed with the FPGA technology even for

the QDDFS-CORDIC case, where the inputs are fixed during each specific evaluation.

9.1.2 Short-pulse Filtering as a Calibration Resource

There are several sources of error in the power estimations within the current

Sw/Hw environment: the simulator reports pulses shorter than the physically possible

ones and have inaccuracies propagating glitches; there is a lack of information about

the error in the reported capacitances; and probably others. As the observed error is

always in excess, a glitch filtering policy is proposed to calibrate the tool. It is shown

that this strategy led to accurate results.

Statistical Power Estimation on FPGAs

 186

Although it is a solution within the current environment, these sources of error

should be eliminated improving the simulators with better models.

9.1.3 A-B Nodes Classification

A new improvement for the classical Monte Carlo power estimation method for

individual nodes has been presented. Although the method is implemented and

evaluated within the particular Xilinx ISE design flow and devices, there are no

restrictions to apply the technique within other FPGA design environments or even

general CMOS design flows.

The problem with the classical statistical estimation method is the execution time.

Current big designs could require unacceptable run times when the user specifies

medium to high accuracies. The proposed A-B technique has reasonable execution

times enabling its practical use within existing design flows. Moreover, the proposed

technique is simple and very easy to implement.

It has been shown that the optimization is done without loss of accuracy at the

individual nodes level. This is because the A-B method makes use of the extra

accuracy generated running the classical approach that is effectively higher than that

specified by the user. To quantify and measure this extra precision, a definition of

effective accuracy is proposed.

9.1.4 Energy of the Computation

An experiment was performed to measure the energy of computing according to the

thermodynamic principles resumed in section 2.3.1. The different implementations of

the FIRDA circuit are an appropriate test case because they perform the same

computing. It is observed that total power is higher for the serial version. However, this

is due to the increase in clock power. Dynamic power excluding the clock is almost the

same for all the implementations, from the combinational to the serial case.

9.2 Reverse Engineering
As mentioned in section 9.3.1, the lack of integration of current Xilinx tools with third-

party programs in the power estimation area leads to reverse engineering tasks. These

tasks were particularly time consuming in this thesis and the hardest one was that

Conclusions and Future Works Publications

 187

related to capacitances retrieval. In section 4.4 it is explained that the different names

found in the different programs of the design flow to identify the same circuit nodes

prevent knowing to which node correspond some values in the capacitances report.

Even parsing the VHDL simulation model, where the also-known-as option writes within

comments the alternative names, the problem is not completely solved due to

inconsistencies and remaining bugs. On the other hand, there is no documented

procedure to retrieve the capacitances with the appropriate precision in fF since ISE 6.

Other reverse engineering tasks are explained in Chapter 6. E.g. complete

documentation in order to parse XDL files is not found.

9.3 Publications
The most important papers related to the topics covered in this thesis are, in

chronological order:

• E. Todorovich and E. Boemo, “A-B Nodes Classification for Power

Estimation”, 16th International Conference on Field Programmable Logic and

Applications (FPL 2006), Madrid, Spain, August 28-30, 2006.

• E. Todorovich, F. Angarita, E. Boemo, “Statistical Power Estimation for

Fpga’s”, 15th International Conference on Field Programmable Logic and

Applications (FPL 2005), pp. 515-518, ISBN: 0-7803-9362-7, August 24-26,

Tampere, Finland.

• E. Todorovich, E. Boemo, F. Cardells, J. Valls, “Power Analysis and

Estimation Tool integrated with XPower”, Twelfth ACM International

Symposium on Field-Programmable Gate Arrays, FPGA 2004, Monterey,

California, USA, February 22-24, 2004. ISBN 1-58113-829-6.

• E. Todorovich, M. Gilabert, G. Sutter, S. Lopez-Buedo, and E. Boemo, “A

Tool for Activity Estimation in FPGAs”, Lecture Notes in Computer Science,

Vol. 2438, pp. 340-349. Springer-Verlag, Berlin Heidelberg 2002.

• G. Sutter, E. Todorovich, S. Lopez-Buedo, E. Boemo, “Low-Power FSMs in

FPGA: Encoding Alternatives”, Lecture Notes in Computer Science, Vol.

2451, pp. 363-370. Springer-Verlag, Berlin Heidelberg 2002.

Statistical Power Estimation on FPGAs

 188

• G. Sutter, E. Todorovich, S. Lopez-Buedo, and E. Boemo, "FSM

Decomposition for Low Power in FPGA", Lecture Notes in Computer

Science, Vol. 2438, pp. 350-359. Springer-Verlag, Berlin Heidelberg 2002.

Other partial results were also published in the following conferences about FPGA

technology and power consumption:

• F. Angarita, J. Marin-Roig, E. Todorovich, E. Boemo, “Relación área-

potencia en la implementación con aritmética distribuida de un Filtro FIR en

FPGA”, JCRA 2005, pp. 59-63, ISBN: 84-9732-439-0, Granada, 13-16

Septiembre 2005.

• Todorovich E., A. Holderbeke, N. Acosta, E. Boemo, “Estimación de

Consumo de Potencia en FPGA a través de un Servicio Web”, Jornadas de

Computación Reconfigurable y Aplicaciones, JCRA 2004, Barcelona,

España, 13-15 de Septiembre de 2004.

• Sutter G., Todorovich E. and E. Boemo, “Design of Power Aware FPGA-

based Systems”, Jornadas de Computación Reconfigurable y Aplicaciones,

JCRA 2004, Barcelona, España, 13-15 de Septiembre de 2004.

• Todorovich E., “Tcl/Tk para Herramientas EDA”, JCRA 2003, Madrid,

España, 10-12 de octubre de 2003. Pág 529-538.

• Todorovich E., Sutter G., Boemo E., “Estimación de Actividad para FPGA

Basada en una Técnica Estadística”, JCRA 2003, Madrid, España, 10-12 de

octubre de 2003. Pág 217-224.

• Sutter G., López-Buedo S., Todorovich E., Boemo E., “Logic Depth, Power,

and Pipeline Granularity: Some Examples on FPGAs.”, JCRA 2003, Madrid,

España, 10-12 de octubre de 2003. Pág 201-208

• E. Todorovich y N. Acosta, "Estimación de Capacidad en FPGAs

Comerciales", VIII Congreso Argentino de Ciencias de la Computación,

CACIC 2002, Universidad de Buenos Aires, 15 al 18 de octubre de 2002.

• G. Sutter, E. Todorovich y E. Boemo, “Metodología para la reducción de

consumo en circuitos integrados reprogramables”, III Workshop de

Conclusions and Future Works Future Tasks

 189

Investigadores en Ciencias de la Computación, San Luis, Argentina, 22-24

de Mayo 2001, pp. 14-17.

• E. Todorovich, G. Sutter, N. Acosta, S. López-Buedo y E. Boemo "Relación

entre Velocidad y Consumo en FPGAs", VII WorkShop de IBERCHIP,

Montevideo, Uruguay, 21-23 de Marzo, 2001.

• G. Sutter, E. Todorovich, S. López-Buedo y E. Boemo "Propiedad

Conmutativa y Diseño de Bajo Consumo: Algunos Ejemplos en FPGAs", VII

WorkShop de IBERCHIP, Montevideo, Uruguay, 21-23 de Marzo, 2001.

• E. Todorovich, G. Sutter, N. Acosta and E. Boemo, “End-user low-power

alternatives at topological and physical levels. Some examples on FPGAs”,

XV Conference on Design of Circuits and Integrated Systems (DCIS2000),

Le Corum, Montpellier, France, November 21-24, 2000.

• E. Boemo, S. López-Buedo, E. Todorovich and N. Acosta, “Profundidad de

Lógica y Determinismo de las Herramientas de Emplazamiento y Rutado.

Algunos Experimentos en FPGAs”, VI Workshop IBERCHIP, Sao Paulo,

Brasil, 16-18 de marzo del 2000, pp. 280-285.

• N. Acosta, E. Todorovich, C. Collado y K. Larsen, “Multiplicadores paralelos:

estado del arte y análisis de su materialización en FPGA”, VI Workshop

IBERCHIP, Sao Paulo, Brasil, 16-18 de marzo del 2000, pp 158-168.

• E. Boemo, S. López-Buedo, N. Acosta and E. Todorovich, “Local vs. global

interconnections in pipelined arrays: an example of interaction between

architecture and technology”, DCIS’99, in Palma de Mallorca (Baleares),

Spain, November 16-19, 1999, pp. 158-168.

9.4 Future Tasks
Once the power estimation problems, together with the techniques proposed in the

specialized literature at the different levels of abstraction are carefully studied; and the

current software and hardware technologies in the area are exercised by means of the

practice and experimentation for a long time, then it is possible to think about a number

of related future tasks:

Statistical Power Estimation on FPGAs

 190

Testing A-DyP on other Xilinx FPGA technologies. At the present time these

technologies are, at least, Virtex-II pro, Virtex-4, and Spartan-2 and 3. Each technology

and software version has their own features that must be considered in order to gauge

power. Several programs within the Power Computation Sub-system should be

extended, the whole system should be revised and the Power Platform framework

could be improved with every newly analyzed FPGA family.

Porting A-DyP to Altera FPGAs. This is another interesting and challenging task.

The Activity Estimation Sub-system can be mostly reused but the Power Computation

Sub-system must be rewritten. It is a good opportunity to improve the Power Platform

framework.

Other statistics-based power estimation methods. There are several techniques

based on statistics developed for specific power estimation problems that can be

studied and implemented. These problems include total power estimation for big

sequential circuits, advanced sampling techniques for hierarchical designs, etc.

Peak or maximum power estimation. This is more than a single problem but a

family of problems related with different definitions of maximum power in CMOS

circuits: e.g. the peak single-cycle power is the maximum total power consumed during

one clock cycle; the peak n-cycle power is the maximum average power of a

contiguous sequence of n clock cycles; the peak sustainable power is the maximum

average power that can be sustained indefinitely. These tasks could reuse and improve

the Power Platform framework.

Static Power optimization. Due to technology scaling, static power is an

increasingly (40% of total power at the 70 nm technology node) dominant component in

current ICs. In this way, static power optimization is an interesting subject for research

in FPGAs [And06].

Early capacitance estimation. It is interesting to estimate the design capacitances

before the place and route process [And06]. Before layout, capacitances depend on

parameters like the node fanout. In general, the relationship can be mathematically

stated by an n-degree polynomial function. The coefficients of this function calibrate the

function for different FPGA families or devices. These values can be obtained by an

evolutionary algorithm.

Conclusions and Future Works Future Tasks

 191

EDA tools for Low Power Design. Beyond power estimation, a complete power

aware design flow includes synthesis, technology mapping, placement, and routing

tools for low power design. A clear opportunity exists for research on all these EDA

tools.

Temperature Estimation. It could be useful to develop a tool that exploits the

relationship between power dissipation and temperature in order to extend the Power

Platform framework to support temperature estimation for FPGAs.

9.4.1 High-level Power Estimation

The macromodelling approach is considered the solution for the RTL power

estimation problem [Bru05]. Nevertheless, there are several interesting situations and

related problems not considered yet, that can be studied, i.e.:

Hard core power estimation. This thesis analyzes the dynamic power consumption

in the programmable fabric of FPGAs, i.e. the configurable logic blocks and routing

resources that connects them. This is the most important part in Low Power Design

because of its power inefficiency. On the other hand, hard cores in FPGAs are

expected to perform as well as their equivalent in ASIC. Nevertheless, designers are

interested in total power. Consequently, the hard-core power consumption on the

FPGA must also be considered.

High-level power estimation based on neural networks. Gate-level power

estimation techniques are both useful and accurate. However, the required run time

can prevent calling them within optimization loops. Therefore, a power aware design

flow needs complementary high-level and very fast power estimation tools. Given the

number of slices, minimum period, and other parameters it could be interesting to use

neural networks to estimate total average power. However, as the power consumption

also depends on the activity, this additional input could be obtained from a very fast run

with a low accuracy specification and a zero delay simulation model.

IP power characterization. Over the last few years, functional macro verification

has emerged as an essential skill in the hardware engineer’s education and practice. IP

power and activity characterization can be included within these standard practices.

The power can be reported for several well defined scenarios when a specific

technology and implementation tools are selected. Even when the core is available for

Statistical Power Estimation on FPGAs

 192

a number of current and future technologic targets, the activity characteristics should

be specified with the core documentation. Furthermore, assertions about average and

maximum activity should be specified in the future hardware verification plans.

Power Estimation for embedded processors. Nowadays a number of embedded

soft and hard cores for microprocessors are available for designers. This increases the

research interest in areas such as low power microprocessor soft cores, low power

buses, high-level power estimation for this type of circuits, power-aware compilers and

operating systems, and in general new techniques to reduce the computational

complexity, i.e. activity of the implementations.

Impact of RTL synthesis. As pointed out in [Bru05], the RTL power estimation of

the fine-grain primitives is difficult due to the impact of the synthesis. In this way it is

interesting to measure the noise in power consumption of these primitives applying

different synthesis tools and options.

9.5 How to Estimate Power Consumption
Power consumption can be estimated at any point in the design cycle. You can use

spreadsheets provided by the FPGA vendors to estimate the power consumption if you

have not begun your design, or if your design is not complete. To use these

spreadsheets, you need to enter device resources, operating frequency, toggle rates

etc. As you do not have an existing design, then you will need to estimate the number

of device resources your design could use, the specified operating frequency, and a

safe average toggle rate (i.e. a high enough value).

After your have the first versions of your design, you can use A-DyP to estimate the

power consumption. In this case, very short runs with low accuracy, high activity

threshold, and high optimization strength are recommended. At this point in the design

cycle it is interesting to know the power consumption range. You can identify hot spots

and which parts of the design consumes the most power leading the optimization

efforts.

When you have stable and verified versions within the specified power budget, you

can run highly accurate simulations with as real as possible input patterns in order to

Conclusions and Future Works References

 193

obtain precise power values, say within 10% error in relation to potential physical

measurements of the circuit on the PCB.

9.6 How to Build a Power Estimator
One of the most important decisions software (and currently, hardware) designers

must face is whether they will integrate their contributions with open source tools or

within commercial IDEs. Power estimation is a typical, but not the only case where this

decision has fundamental and practical consequences.

In this thesis the second option is the selected one. This enables us to work with

real devices. I.e. measure their current consumption with an ammeter and compare

these physical amounts with software estimations. Experiments with actual devices

give a fundamental advantage over approaches working with theoretical models that

are compared with other models supposedly more accurate.

However, working with proprietary software has also significant drawbacks. This is

particularly hard when the integration with third-party tools is not considered or

foreseen in the design of that proprietary software. In this case the lack of information

and support could force the application of challenging reverse engineering techniques.

To avoid this time consuming task, FPGA vendors could provide open, even more,

standard interfaces to retrieve and provide the necessary information accurately in the

different parts of the design flow.

A general objective when writing a power-aware tool is software quality. In order to

reuse all or parts of the developed software, eventually port it, and interoperate with

other tools in an EDA design flow, standard formats must be used as far as possible.

Another goal is to produce reusable software components. In this way, a power

platform has been proposed with a basic middleware that connects the database with

the application programs. Several programs can be used as-is or adapted for other

power estimation tools e.g. the VCD parser. There are other tools for which the reuse is

limited within the Xilinx scope e.g. the XDL parser.

References
[And04] Anderson, J.H.; Najm, F.N., “Power estimation techniques for FPGAs”, IEEE

Statistical Power Estimation on FPGAs

 194

Trans. on VLSI Systems, Volume 12, Issue 10, pp. 1015-1027, Oct. 2004

[And06] Anderson, J.H.; Najm, F.N., “Active Leakage Power Optimization for FPGAs”,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 25, No. 3, March 2006.

[Bru05] M. Bruno, A. Macii, and M. Poncino, “RTL power estimation in a HDL-based
design flow”, IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005.

Complete References List

Each chapter has their own list of references; however, it is useful to show the

complete list in order to make easier further bibliography searches.

[Aho86] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley, 1986.

[Alt04] Altera Corp. “Power Calculator User Guide”, March 2004, available at
http://www.altera.com/support/devices/estimator/pow-powerplay.html

[Alt05] Altera Corp., “Stratix-II Device Handbook, 2005”, available at
http://www.altera.com

[And04] Anderson, J.H.; Najm, F.N., “Power estimation techniques for FPGAs”, IEEE
Trans. on VLSI Systems, Volume 12, Issue 10, pp. 1015-1027, Oct. 2004

[And06] Anderson, J.H.; Najm, F.N., “Active Leakage Power Optimization for FPGAs”,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 25, No. 3, March 2006.

[Ang01] J. Angel, “Emerging Technology: Energy Consumption and the New Economy”,
Network Magazine, January 5, 2001.

[Ang03] Angarita F.E., Canet M.J., Valls J., _ardéi F: Implementación de un Core-IP
“Filtro FIR Basado en Aritmética Distribuida”, III Jornadas de Computación
Reconfigurable y sus Aplicaciones – JCRA 2003. Madrid, 2003.

[APX03] Xilinx Inc. “Virtex II Prototype Platforms User Guide”, UG015 (v1.1) Jan 2003,
available at http://www.xilinx.com

[APX99] Xilinx Inc. “Xilinx Prototype Platforms User Guide for Virtex and Virtex-E Series
FPGAs”, Data Sheet DS020 (v1.1) Dec 1999, available at http://www.xilinx.com

[Bae02] C. Baena, J. Juan-Chico, M.J. Bellido, P. Ruiz, C.J. Jimenez, and M. Valencia
Barrero, “Measurement of the Switching Activity of CMOS Digital Circuits At the
Gate Level”, Lecture Notes in Computer Science. Vol. 2451. 2002, pp. 353-362.

[Bar05] Luiz André Barroso, “The Price of performance”, ACM Queue, pp. 49-53,
September 2005.

[Ben03] Charles H. Bennett, “Notes on Landauer’s Principle, Reversible Computation
and Maxwell’s Demon”, Studies in History and Philosophy of Modern Physics,
v. 34, pp. 501-510, 2003.

[Ben82] C.H. Bennett, “The Thermodynamics of Computation – a Review” Internat. J.
Theoret. Phys. 21, pp. 905-940 (1982).

[Ben94] L. Benini, M. Favalli, and B. Ricco, “Analysis of hazard contribution to power
dissipation in CMOS IC’s”. In Proceedings of the 1994 International Workshop

Statistical Power Estimation on FPGAs

 196

on Low Power Design, pp 27-32, April 1994.

[Bet99] Vaughn Betz and Jonathan Rose, “Circuit Design, Transistor Sizing and Wire
Layout of FPGA Interconnect”, IEEE Custom Integrated Circuits Conference,
1999.

[Boe95] Boemo, E., Gonzalez de Rivera, G., Lopez-Buedo, S., Meneses, J., “Some
Notes on Power Management on FPGAs”, LNCS, No. 975, Springer-Verlag,
Berlin (1995) 149-157.

[Bru05] M. Bruno, A. Macii, and M. Poncino, “RTL power estimation in a HDL-based
design flow”, IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 6, November 2005.

[Büh00] M. Bühler, M. Papesch and U.G. Baitinger, “Accurate and Approximate
Methods for Speeding up Signal Activity Estimation on Gate Level”, PATMOS
2000, pp. 179-188.

[Bur93] R. Burch, F. N. Najm, P. Yang, and T. Trick. “A Monte Carlo approach for
power estimation” IEEE Transactions on VLSI Systems, 1(1):63–71, March
1993.

[Buy05] K.M. Büyükşahin and F.N. Najm, “Early Power Estimation for VLSI Circuits”,
IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, 1(7):1076–1088, July 2005.

[Car03] F. Cardéis, J. Valls, “Area-Optimized Implementation of Quadrature Direct
Digital Frequency Synthesizers on LUT-based FPGAs”, IEEE Trans. On
Circuits and Systems II, vol. 50, no. 3, march 2003.

[Cho96] T. Chou y K. Roy, “Accurate Power Estimation of CMOS Sequential Circuits”,
IEEE Trans. On VLSI Systems, Vol.4, nº3, pp.369-380. September 1996.

[Cir87] M. A. Cirit, “Estimating Dynamic Power Consumption of CMOS Circuits”, Proc.
ICCAD, pp. 534-537, November 1987.

[Den94] C. Deng. “Power analysis for CMOS/BiCMOS circuits. “ In Proceedings of the
1994 International Workshop on Low Power Design, pages 3–8, April 1994.

[Din00] Ding, C-S., C-T. Hsieh and M. Pedram, “Improving efficiency of the Monte Carlo
power estimation”, IEEE Trans. on VLSI Systems, Vol. 8, No. 5, (2000) pp. 584-
593.

[Faw97] Fawcett, B.: FPGAs, Power and Packages. XCELL (1997)

[Fey96] Richard P. Feynman, “Feynman Lectures on Computation”, Ed. A.J.G. Hey and
R.W. Allen. Addison-Wesley, 1996.

[Gar00] Andrés David García García, “Etude sur l’estimation et l’optimisation de la
consommation de puissance des circuits logiques programmables du type
FPGA”, Ph. D. Thesis, Ecole Nationale Supérieure des Télécommunications,
paris, 2000.

[Geo94] B. George et al, “Power Analysis for Semi-Custom Design”, IEEE 1994 Custom
Integrated Circuits Conf., pp.249-252, New York: IEEE Press 1994.

[Gho92] Abhijit Ghosh, Srinivas Devadas, Kurt Keutzer, Jacob White, “Estimation of
Average Switching Activity in Combinational and Sequential Circuits”, In Procs.
of the 29th ACM/IEEE Conference on Design Automation, pp. 253-259, 1992

[Gun01] S.H. Gunther, F. Binns, D.M. Carmean and J.C. Hall, “Managing the Impact of
Increasing Microprocessor Power Consumption”, Intel Technology Journal Q1,
2001.

Complete References List References

 197

[Guy98] Alain Guyot and Sélim Abou-Samra, “Low Power CMOS Digital Design”, In
proc. Of International Conference on Microelectronics 1998 (ICM’98), Monastir,
Tunisia, December 1998.

[Hay01] Brian Hayes, “The Computer and the Dynamo”, American Scientist, Vol 89, No
5, September-October, 2001. pp. 390-394.

[ITRS04] ITRS Technology Working Group, “Overall Roadmap Technology
Characteristics (ORTC)”, from the International Technology Roadmap for
Semiconductors (ITRS). 2004 Upgrade. Available at http://public.itrs.net

[ITRS05] International Technology Roadmap for Semiconductors, 2005 Edition, available
at http://public.itrs.net

[Iye86] R. Iye, D. Rossetti and M. Hsueh, “Measurement and Modelling of computer
reliability as affected by system activity”, ACM Trans. On Computer Systems,
4(3):214-237, Aug. 1986.

[Kao02] James Kao, Siva Narendra, Anantha Chandrakasan, “Subthreshold leakage
modeling and reduction techniques”, In proc. of the 2002 IEEE/ACM
international conference on Computer-Aided Design, pp. 141-148, 2002

[Kaw00] K. Kawamoto, J.G. Koomey, B. Nordman, R.E. Brown, M.A. Piette and A.K.
Meier, “Electricity Used by Office Equipment and Network Equipment in the
U.S.”, Proceedings of the 2000 ACEEE Summer Study on Energy Efficiency in
Buildings. Asilomar, CA. August 2000.

[Kaw01] K. Kawamoto, J.G. Koomey, B. Nordman, R.E. Brown, M.A. Piette, M. Ting and
A.K. Meier, “Electricity Used by Office Equipment and Network Equipment in
the U.S.: Detailed Report and Appendices”, Lawrence Berkeley National
Laboratory Internal Report LBNL-45917, University of California. February
2001.

[Kle05] M. Klein, “The Virtex-4 Power Play”, Xcell Journal, Spring 05

[Kol01] J. Koliski, R. Chary, A. Henroid and B. Press, “Building the Power-Efficient PC”,
Intel Press, 2001.

[Koz01] J. Kozhaya and F. N. Najm, “Power estimation for large sequential circuits”,
IEEE Transactions on VLSI, vol. 9, no. 2, pp. 400-407, April 2001.

[Kwa98] B. Kwak, and E.S. Park, “An Optimization-Based Error Calculation for Statistical
Power Estimation of CMOS Logic Circuits,” in Procs. of the Design Automation
Conference, San Francisco, California, USA, pp. 690-693, 1998.

[Lai01] John A. Laitner, Jonathan Koomey, Ernst Worrell, Etan Gumerman. “Re-
estimating the Annual Energy Outlook 2000 Forecast Using Updated
Assumptions about the Information Economy”. Presented at the American
Economic Association Conference. New Orleans, LA. January 7 2001. (Also
LBNL-46418).

[Lal97] Pradeep Lall, “Influence of Temperature on Microelectronics and System
Reliability”, CRC Press, 1997

[Lan61] R. Landauer, “Irreversibility and Heat Generation in the Computing Process”,
IBM Journal of Research and Development, Vol 5, N 3, pp. 261-269, 1961.

[Lan94] P. Landman, Low-Power Architectural Design Methodologies, Ph. D. Thesis,
Electronic Research Laboratory, University of California, Berkeley, August
1994.

Statistical Power Estimation on FPGAs

 198

[Li03] Fei Li, Deming Chen, Lei He, Jason Cong: “Architecture evaluation for power-
efficient FPGAs”, Proc. Of Int. Symp on Field Programmable Gate Arrays,
2003, pp. 175–184

[Lop03] Sergio López Buedo, “Técnicas de Verificación Térmica para Arquitecturas
Dinámicamente Reconfigurables”, Ph. D. Thesis, Departamento de Ingeniería
Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid,
Julio 2003.

[Lop97] S. López-Buedo, “Técnicas de Diseño de Alta Velocidad y Bajo Consumo”
Memoria del Proyecto de Fin de Carrera, ETSI Telecomunicación, Universidad
Politécnica de Madrid, Septiembre 1997.

[May01] Uwe Meyer-Baese, “Digital signal processing with field programmable gate
arrays”, Springer, 2001.

[Mod03] Model Technology, ModelSim SE User’s Manual, 2003.

[Naj90] F. Najm, R. Burch, P. Yang, and I. Hajj, “Probabilistic simulation for reliability
Analysis of CMOS VLSI circuits,” IEEE Transactions on Computer-Aided
Design, vol. 9, no. 4, pp. 439-450, April 1990 (Errata in July 1990).

[Naj91] F. Najm, “Transition density, a stochastic measure of activity in digital circuits,”
28th ACM/IEEE Design Automation Conference, San Francisco, CA, pp. 644-
649, June 17-21, 1991.

[Naj93] F. Najm, “Transition density: a new measure of activity in digital circuits,” IEEE
Transactions on Computer-Aided Design, vol. 12, no. 2, pp. 310-323, February
1993.

[Naj94] F. Najm, "A survey of power estimation techniques in VLSI circuits," IEEE
Transactions on VLSI Systems, vol. 2, no. 4, pp. 446-455, Dec. 1994.

[Naj95] F. N. Najm, S. Goel, and I. N. Hajj, "Power estimation in sequential circuits"
ACM/IEEE Design Automation Conference, pp. 635-640, 1995.

[Naj98] F. N. Najm and M. G. Xakellis, “Statistical estimation of the switching activity in
VLSI circuits”, VLSI Design, vol. 7, no. 3, pp. 243-254, 1998.

[Osm98] Timothy A. Osmulski, Implementation and Evaluation of a Power Prediction
Model for a Field Programmable Gate Array, Master's Thesis, Department of
Computer Science, Texas Tech University, Lubbock, TX, May 1998.

[Ped94] M. Pedram, "Power estimation and optimization at the logic level," Int'l Journal
of High Speed Electronics and Systems, Vol. 5, No. 2 (1994), pp. 179-202.

[Ped97] M. Pedram, “Design technologies for Low Power VLSI”, In Encyclopaedia of
Computer Science and Technology, Vo. 36, Marcel Dekker, Inc., 1997, pp. 73-
96.

[Poo02] Kara K.W. Poon, Andy Yan, Steven J.E. Wilton, “A Flexible Power Model for
FPGAs”, LNCS, Volume 2438, Jan 2002, pp. 312-321.

[Poo05] Kara K.W. Poon, Steven J.E. Wilton, and A. Yan, “A Detailed Power Model for
Field-Programmable Gate Arrays,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 10, issue 2, pp. 279-302, April 2005.

[Rab96] Rabaey, Jan M. “Digital integrated circuits: a design perspective”. Upper Saddle
River: Prentice-Hall International, 1996.

[Rab96b] Jan M. Rabaey and Massoud Pedram. “Low power design methodologies”.
Boston, Kluwer Academic, 1996.

Complete References List References

 199

[San03] T. Sansaloni, A. Pérez-Pascual, J. Valls, “Area-efficient FPGA-based FFT
processor”, Electronic Letters, Vol.39, N.41, September 2003

[Sax02] V. Saxena, F. N. Najm, and I. N. Hajj, "Estimation of state line statistics in
sequential circuits," ACM Transactions on the Design Automation of Electronic
Systems, Vol. 7, No. 3, pp. 455-473, July 2002.

[Sch95] P.H. Schneider, “PAPSAS: A Fast Switching Activity Simulator”, PATMOS’95,
1995, pp. 351-360.

[Sch96a] P. Schneider and S. Krishnamoorthy. “Effects of correlations on accuracy of
power analysis - an experimental study”, International Symposium on Low
Power Electronics and Design, Monterey, California, United States, 1996, pp.
113-116.

[SDF01] IEEE Std 1497-1999, IEEE Standard for Standard Delay Format (SDF) for the
Electronic Design Process. The Institute of Electrical and Electronics
Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA, 2001.

[Sha02] L. Shang, A. S. Kaviani, K. Bathala, “Dynamic Power Consumption in Virtex-II
FPGA Family”, FPGA 2002 Monterey, California, USA, February 24-26, 2002,
pp. 157-164.

[Smi01] Van Smith, “Pentium 4 Thermal Throttling”, available at
http://www.vanshardware.com.

[Sut01] G. Sutter, E. Todorovich, S. López-Buedo y E. Boemo “Propiedad Conmutativa
y Diseño de Bajo Consumo: Algunos Ejemplos en FPGAs”, VII WorkShop de
IBERCHIP, Montevideo, Uruguay, 21-23 de Marzo, 2001.

[Sut05] Gustavo Sutter, “Aportes a la Reducción de Consumo en FPFAs”, Ph. D.
Thesis, Departamento de Ingeniería Informática, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, April 2005.

[Tan99] Tan, J: Virtex Power Estimator User Guide. XAPP 152 (1999)

[Tek01] Tektronix Inc., ”TLA 704 Logic Analizar User Guide” available at
http://www.tektronix.com

[Tek02] Tektronix Inc. “TLA7PG2 Pattern Generator Module” available at
http://www.tektronix.com

[Tod00] E. Todorovich, G. Sutter, N. Acosta and E. Boemo, “End-user low-power
alternatives at topological and physical levels. Some examples on FPGAs”, XV
Conference on Design of Circuits and Integrated Systems (DCIS2000), Le
Corum, Montpellier, France, November 21-24, 2000.

[Tod01] E. Todorovich, G. Sutter, N. Acosta, S. López-Buedo y E. Boemo “Relación
entre Velocidad y Consumo en FPGAs”, VII Workshop IBERCHIP, Montevideo,
Uruguay, 21-23 de Marzo, 2001.

[VCD01] IEEE Std 1364-2001 (Revision of IEEE Std 1364-1995), IEEE Standard Verilog
Hardware Description Language. The Institute of Electrical and Electronics
Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA, 2001.

[VIT01] IEEE Std 1076.4-2000, IEEE Standard for VITAL ASIC (Application Specific
Integrated Circuit) Modeling Specification. The Institute of Electrical and
Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA,
2001.

[Will99] Craig Willert, “The Evolution of Programmable Logic Design Technology”, XCell

Statistical Power Estimation on FPGAs

 200

Journal, Issue 32, 2nd quarter 1999, pp. 5-8.

[Xac94] M. Xakellis and F. Najm, “Statistical Estimation of the Switching Activity in
Digital Circuits”, 31st ACM/IEEE Design Automation Conference, San Diego,
CA, pp. 728-733, 1994.

[XCG03] Xilinx Inc. “CORE Generator Guide”, an Xilinx ISE 6 Software Manual, 2003,
available at http://www.xilinx.com

[Xde03] Xilinx Inc. “Development System Reference Guide”, an Xilinx ISE 6 Software
Manual, 2003, available at http://www.xilinx.com

[XDOM] Dieter Köhler, ”Extended Document Object Model“, available at
http://www.philo.de/xml/dom/

[XDS01] Xilinx Inc. “Virtex Data Sheets: Virtex 2.5 V FPGAs”, 2001, available at
http://www.xilinx.com

[XDS02] Xilinx Inc. “Virtex-E Data Sheets: Virtex-E 1.8 V FPGAs”, 2002, available at
http://www.xilinx.com

[XDS05] Xilinx Inc. “Virtex-II Platform FPGAs: Complete Data Sheet”, 2005, available at
http://www.xilinx.com

[XDS06] Xilinx Inc. “Virtex-4 Data Sheet: DC and Switching Characteristics”, 2006,
available at http://www.xilinx.com

[Xil] Xilinx Inc. at http://www.xilinx.com

[Xil00] Xilinx Inc.: XC4000XL Power Calculation. XCELL, Nº27 (2000) pp 29

[Xil01] Xilinx Inc.: XPower Tutorial: FPGA Design, XPower (v1.1). (2001) Available at
http://www.xilinx.com.

[Xil05] Xilinx Inc., “Development System Reference Guide”, 2005.

[Xil97h] Xilinx Press, “A Simple Method of Estimating Power in XC4000XL/EX/E
FPGAs“, Application Brief, XBRF 014 June 30, 1997.

[XilPow] Xilinx Inc. “Power Central”, available at
http://www.xilinx.com/products/design_resources/power_central/

[XilSaV] Xilinx Inc., “Synthesis and Verification Design Guide”, available at
http://www.xilinx.com

[XilUser] Xilinx Inc.: “ISE 7 User Guide”. Available at http://www.xilinx.com

[XST03] Xilinx Inc. “XST User Guide”, an Xilinx ISE 6 Software Manual, 2003, available
at http://www.xilinx.com

[Yua97] L. Yuan, C. Teng, S. Kang, “ Statistical estimation of average power dissipation
in CMOS VLSI circuits using nonparametric techniques”, Procs. of the 1996
international symposium on Low power electronics and design, Monterey,
California, United States, pp. 73 – 78, August 1996.

[Yua98] L. Yuan, C. Teng, S. Kang, “Statistical estimation of average power dissipation
using nonparametric techniques”, IEEE Trans. on VLSI Systems, Vol 6, No 1,
pp. 65-73, Mar 1998.

Appendix A

Tcl/Tk script for the A-DyP Power

Estimation Tool

Code A.1 is the Tcl/Tk script used in this work to integrate the several programs

needed for the A-DyP Power Estimation Tool. The estimation process is triggered

when the powerEstim procedure is called (without arguments) within the Modelsim

command line. It was tested with Modelsin 5.7g SE.

1 ##
2 #
3 #
4 # ESTIMATE.TCL
5 #
6 # Activity Estimation using Statistics with Modelsim
7 #
8 # Elías TODOROVICH
9 # etodorov@uam.es
10 #
11 # Script TCL/TK
12 #
13 ##

14
15
16 # Global Scope Variables
17 # Related with text specified indirectly in Tk labels
18
19 set naestate Start
20 set sampleNum 0
21
22
23 ##################################
24 #
25 # Main Procedure: Power Estimation
26 #

Statistical Power Estimation on FPGAs

 202

27 proc powerEstim {} {
28
29 set actEstimFinished true
30 set suspendActEstim false
31
32 # Statistics on Execution Time
33
34 set ts [clock seconds]
35 set te 0
36 set tact 0
37 set tcap 0
38 set tini 0
39
40 # Sample Block Number
41
42 set blkNr 0
43 set fName transitions$blkNr.vcd
44 set existe [file exists $fName]
45 while { $existe == 1 } {
46 incr blkNr
47 set fName transitions$blkNr.vcd
48 set existe [file exists $fName]
49 }
50 puts ""
51 puts "Proccesing Block Sample number $blkNr..."
52 puts ""
53
54 # Power Estimation
55
56 if { [iniPowerEstim $blkNr] } {
57 puts ""
58 puts "Starting ACTIVITY Estimation..."
59 puts ""
60
61 # If you are not using SE comment the next line
62 # Not all Modelsim simulators support Tk
63 drawFeedbackDialog
64
65 activityEstim
66
67 capacitanceEstim
68
69 set te [clock seconds]
70
71 if { $actEstimFinished=="true" } {
72 writeTotalExecTimeStat
73 saveResults
74 }
75
76 } else {
77 puts ""
78 puts "Error: File user.ini not found."
79 puts ""
80 }
81 }

Tcl/Tk script for the A-DyP Power Estimation Tool

 203

82
83
84 ##################################
85 #
86 # Initialize Power Estimation
87 # i: Current Bloch Number
88 #
89 proc iniPowerEstim { i } {
90
91 upvar 1 ts ts
92 upvar 1 tini tini
93
94 set existTables [file exists "SamplesTb.db"]
95 if { $existTables } {
96 set genera " ------------ Continuing...--------------"
97 set tauxini [clock seconds]
98 do ini_msim.do
99 set tauxend [clock seconds]
100 set tini [expr $tauxend - $tauxini]
101 } else {
102 # Show the user interface to set the parameters
103 exec User.exe
104
105 set file [open transitions.log { RDWR CREAT TRUNC }]
106 set genera " ------------ File transitions.log ------"
107 close $file
108 set tauxini [clock seconds]
109 do first_ini_msim.do
110 set tauxend [clock seconds]
111 set tini [expr $tauxend - $tauxini]
112 }
113
114 # Adds all VHDL signals to a VCD file
115 vcd add -file transitions$i.vcd *
116
117
118 set existINIFile [file exists "User.ini"]
119 if { $existINIFile } {
120 set file [open transitions.log { RDWR APPEND }]
121 puts $file $genera
122 puts $file " --"
123 set fecha [clock format $ts -format " %d %b %Y

%H:%M:%S"]
124 puts -nonewline $file " Generated at: "
125 puts $file $fecha
126 puts $file ""
127 close $file
128 }
129 return $existINIFile
130 }
131
132
133 ##############################
134 #
135 # Tk: Build the top level widget

Statistical Power Estimation on FPGAs

 204

136 #
137 proc drawFeedbackDialog {} {
138
139 upvar 1 ts ts
140 upvar 1 te te
141 upvar 1 actEstimFinished actEstimFinished
142 upvar 1 suspendActEstim suspendActEstim
143 global sampleNum
144 global naestate
145 set maxWidth 35
146
147 # (If exists) Destroy the feedback window
148
149 catch {destroy .main}
150
151 # Creates the Estimation Process Drawback Window
152
153 toplevel .main
154 wm deiconify .
155 wm title .main "State of the Estimation Proccess"
156
157 #
158 # Create a frame for the information labels
159 #
160
161 frame .main.top -bd 10 -bg black
162 pack .main.top -side top -fill x
163
164 # Create the start date and time label
165
166 set fechaStart [clock format $ts -format "%d %b %Y

%H:%M:%S"]
167 append init "Start at: " $fechaStart
168 label .main.top.start -text $init -bg black -fg white
169 pack .main.top.start
170
171 # Create the status label
172
173 set naestate "Initializing..."
174 label .main.top.status -textvariable naestate -bg black -

fg white -width $maxWidth -anchor center -font {bold 12}
175 pack .main.top.status
176
177 # Create feedback information labels
178
179 label .main.top.samplestitle -text "Samples Processed: "

-bg black -fg white -font {bold 12}
180 label .main.top.samples -textvariable sampleNum -bg black

-fg white -font {bold 14}
181 pack .main.top.samplestitle
182 pack .main.top.samples
183
184 #
185 # Create a frame for buttons
186 #

Tcl/Tk script for the A-DyP Power Estimation Tool

 205

187
188 frame .main.bottom -bd 10 -bg black
189 pack .main.bottom -side bottom -fill both -expand true
190
191 button .main.bottom.cerrar -text CLOSE -command { destroy

.main }
192 pack .main.bottom.cerrar -side right -padx 2m -pady 2m
193
194 button .main.bottom.cancelar -text SUSPEND -command { \
195 set suspendActEstim true
196 set actEstimFinished false
197 set naestate "WAIT..."
198 update
199 }
200 pack .main.bottom.cancelar -side right -padx 2m -pady

2m
201 }
202
203
204 ##
205 #
206 # Estimate Average Transition Number for all Nodes
207 #
208 proc activityEstim {} {
209 upvar 1 blkNr blkNr
210 upvar 1 te te
211 set END_SIM false
212 upvar 1 suspendActEstim suspendActEstim
213 global sampleNum
214 global naestate
215
216 # Statistics on execution time
217 set tgen 0
218 set tsim 0
219 set tsav 0
220 set ttrn 0
221 set tupd 0
222 set tcut 0
223 upvar 1 tact tact
224
225 while { $END_SIM == "false" } {
226
227 set naestate "Generating..."
228 puts $naestate
229 update
230 set tauxini [clock seconds]
231 exec generator.exe -pg tla -d [pwd]
232 set tauxend [clock seconds]
233 set tgen [expr $tgen + $tauxend - $tauxini]
234
235 set naestate "Simulating..."
236 puts $naestate
237 update
238 set tauxini [clock seconds]
239 do simulate.do

Statistical Power Estimation on FPGAs

 206

240 set tauxend [clock seconds]
241 set tsim [expr $tsim + $tauxend - $tauxini]
242
243 set naestate "Saving..."
244 puts $naestate
245 update
246 set tauxini [clock seconds]
247 saveVec
248 set tauxend [clock seconds]
249 set tsav [expr $tsav + $tauxend - $tauxini]
250
251 set naestate "Processing..."
252 update
253 puts "Analizing transitions[expr $blkNr - 1].vcd..."
254 set tauxini [clock seconds]
255 catch "exec Transitions.exe -d [pwd] transitions.vcd"

sampleNum
256 set tauxend [clock seconds]
257 set ttrn [expr $ttrn + $tauxend - $tauxini]
258 puts "$sampleNum clock cycles analized..."
259
260 set naestate "Updating..."
261 puts $naestate
262 puts ""
263 update
264 set tauxini [clock seconds]
265 exec Update.exe -d [pwd]
266 set tauxend [clock seconds]
267 set tupd [expr $tupd + $tauxend - $tauxini]
268
269 set tauxini [clock seconds]
270 catch { exec Cuter.exe -d [pwd]} END_SIM
271 set tauxend [clock seconds]
272 set tcut [expr $tcut + $tauxend - $tauxini]
273 }
274
275 set tact [expr $tgen + $tsim + $tsav + $ttrn + $tupd +

$tcut]
276
277 quit -sim
278 set naestate "END OF ACTIVITY ESTIMATION!"
279 puts ""
280 puts $naestate
281 puts ""
282 puts "See transitions.log for details in pwd."
283 puts ""
284 update
285
286 # Tk Command
287 # Destroy the suspend button
288
289 destroy .main.bottom.cancelar
290
291 # transitions.log: le agrega estadisticas de tiempo
292 # de ejecucion y la hora de finalizacion

Tcl/Tk script for the A-DyP Power Estimation Tool

 207

293 set file [open transitions.log {RDWR APPEND}]
294
295 puts $file "Activity Estim. Time Statistics (seconds)"
296 puts $file [append z1 "Input vector generation\t" $tgen]
297 puts $file [append z2 "Simulation\t" $tsim]
298 puts $file [append z3 "Saving\t" $tsav]
299 puts $file [append z4 "Transition analisys\t" $ttrn]
300 puts $file [append z5 "Statistics computation\t" $tupd]
301 puts $file [append z6 "Stoping criteria evaluation\t"

$tcut]
302 puts $file ""
303
304 close $file
305 }
306
307
308 ##
309 #
310 # Capacitance Estimation
311 #
312 proc capacitanceEstim {} {
313 upvar 1 te te
314 upvar 1 ts ts
315
316 global naestate
317
318 # This procedure colects Statistics on execution time
319 # tvhd txdl txml txpw tpwr tmap
320 upvar 1 tcap tcap
321
322 puts ""
323 puts "Starting POWER Estimation..."
324 puts ""
325
326 # VHDL Parsing
327 set naestate "Analizing vhdl file..."
328 puts $naestate
329 update
330 set tauxini [clock seconds]
331 exec parserVHD.exe -d [pwd]
332 set tauxend [clock seconds]
333 set tvhd [expr $tauxend - $tauxini]
334
335 # XDL Parsing
336 set naestate "Analizing phisical info from xdl file..."
337 puts $naestate
338 update
339 set tauxini [clock seconds]
340 exec xdlParser.exe -d [pwd]
341 set tauxend [clock seconds]
342 set txdl [expr $tauxend - $tauxini]
343
344 # XML Activity Report
345 set naestate "Generating Activity Rep. in XML format..."
346 puts $naestate

Statistical Power Estimation on FPGAs

 208

347 update
348 set tauxini [clock seconds]
349 #exec XMLRep.exe -d [pwd]
350 set tauxend [clock seconds]
351 set txml [expr $tauxend - $tauxini]
352
353 # Connection with XPower
354 set naestate "Generating Power Rep. with XPower..."
355 puts $naestate
356 update
357 set tauxini [clock seconds]
358 do Connect2XPower.do
359 set tauxend [clock seconds]
360 set txpw [expr $tauxend - $tauxini]
361
362 # XPower Report Parsing: Not neccesary now
363 #set naestate "Analizing Power Rep (pwr: text format)..."
364 #puts $naestate
365 #update
366 #set tauxini [clock seconds]
367 #exec pwr.exe -d [pwd]
368 #set tauxend [clock seconds]
369 #set tpwr [expr $tauxend - $tauxini]
370
371 # PWA Parsing
372 set naestate "Analizing Capacitance Report..."
373 puts $naestate
374 update
375 set tauxini [clock seconds]
376 exec PWAparser.exe -d [pwd]
377 set tauxend [clock seconds]
378 set tpwa [expr $tauxend - $tauxini]
379
380 # Calculates Power and write a Report
381 set naestate "Writing Power Report..."
382 puts $naestate
383 update
384 set tauxini [clock seconds]
385 exec report.exe -d [pwd] -v
386 set tauxend [clock seconds]
387 set trep [expr $tauxend - $tauxini]
388
389 # Power Mapping
390 set naestate "Maping to Physical Positions..."
391 puts $naestate
392 update
393 set tauxini [clock seconds]
394 exec powerMap.exe -d [pwd] -r 1
395 exec powerMap.exe -d [pwd] -r 2
396 exec powerMap.exe -d [pwd] -r 4
397
398 exec activityMap.exe -d [pwd] -r 1
399 exec activityMap.exe -d [pwd] -r 2
400 exec activityMap.exe -d [pwd] -r 4
401

Tcl/Tk script for the A-DyP Power Estimation Tool

 209

402 exec capacitanceMap.exe -d [pwd] -r 1
403 exec capacitanceMap.exe -d [pwd] -r 2
404 exec capacitanceMap.exe -d [pwd] -r 4
405 set tauxend [clock seconds]
406 set tmap [expr $tauxend - $tauxini]
407
408 set tcap [expr $tvhd + $txdl + $txml + $txpw + $tpwa +

$tmap + $trep]
409
410 set naestate "END OF POWER ESTIMATION!"
411 puts ""
412 puts $naestate
413 puts ""
414 puts ""
415 update
416
417 # Write Execution Time Statistics on the Log File
418 # File: transitions.log
419
420 set file [open transitions.log {RDWR APPEND}]
421
422 puts $file ""
423 puts $file "Capacitance Estimation Time Statistics

(seconds)"
424 puts $file [append z1 "VHDL parsing\t" $tvhd]
425 puts $file [append z2 "XDL parsing\t" $txdl]
426 puts $file [append z3 "XML generation\t" $txml]
427 puts $file [append z4 "XPower execution\t" $txpw]
428 puts $file [append z5 "PWA parsing\t" $tpwa]
429 puts $file [append z6 "Report writing\t" $trep]
430 puts $file [append z7 "Power Maps\t" $tmap]
431 puts $file ""
432
433 close $file
434
435 # Ring the terminal bell
436 bell
437 }
438
439
440 ###
441 #
442 # Save a VCD file for further analysis
443 #
444 proc saveVec {} {
445 upvar 2 blkNr blkNr
446
447 # Flushes the contents of the VCD file buffer to the last

VCD file
448 vcd flush transitions$blkNr.vcd
449
450 # Turns off VCD dumping to the last file and records all

VCD variable values as x
451 vcd off transitions$blkNr.vcd
452 vcd flush transitions$blkNr.vcd

Statistical Power Estimation on FPGAs

 210

453
454 # Es importante para abrir el archivo VCD que esta siendo

usado por el simulador:
455 # hasta que termina la simulación.
456 file copy -force transitions$blkNr.vcd transitions.vcd
457
458 # Increments the number of simulation blocks
459 incr blkNr
460
461 # Adds all VHDL signals to the next VCD file
462 vcd add -file transitions$blkNr.vcd *
463 }
464
465
466 ##
467 #
468 # Finalization Tasks for Power Estimation
469 #
470 proc saveResults {} {
471
472 # Use different names for back-up files
473 set x 1
474 set nom "estim"
475 append bkDir $nom $x
476
477 while { [file isdirectory $bkDir] } {
478 set bkDir $nom
479 incr x
480 append bkDir $x
481 }
482
483 set bkDir [append nom $x]
484 file mkdir $bkDir
485
486 foreach f [glob -nocomplain TekPatGen*.txt] {
487 file copy $f $bkDir/$f
488 file delete $f
489 }
490 foreach f [glob -nocomplain NodesTb.*] {
491 file copy $f $bkDir/$f
492 file delete $f
493 }
494 foreach f [glob -nocomplain SamplesTb.*] {
495 file copy $f $bkDir/$f
496 file delete $f
497 }
498 if { [file exists "User.ini"] } {
499 file copy "User.ini" $bkDir/User.ini
500 }
501 foreach f [glob -nocomplain *.vcd] {file delete $f}
502 if { [file exists "transitions.log"] } {
503 file copy "transitions.log" $bkDir/transitions.log
504 file delete "transitions.log"
505 }
506 if { [file exists "test_xpwr.xml"] } {

Tcl/Tk script for the A-DyP Power Estimation Tool

 211

507 file copy "test_xpwr.xml" $bkDir/test_xpwr.xml
508 file delete test_xpwr.xml
509 }
510 if { [file exists "test.pwr"] } {
511 file copy "test.pwr" $bkDir/test.pwr
512 file delete test.pwr
513 }
514 if { [file exists "report.txt"] } {
515 file copy "report.txt" $bkDir/report.txt
516 file delete report.txt
517 }
518 foreach f [glob -nocomplain *.dat] {
519 file copy $f $bkDir/$f
520 file delete $f
521 }
522 foreach f [glob -nocomplain CapMapTb.*] {
523 file delete $f
524 }
525 foreach f [glob -nocomplain ActMapTb.*] {
526 file delete $f
527 }
528 foreach f [glob -nocomplain PowerMapTb.*] {
529 file delete $f
530 }
531 # foreach f [glob -nocomplain SlicesTb.*] {
532 # file delete $f
533 # }
534 }
535
536
537 ##
538 #
539 # Write on Log file Total Execution Time Statistics
540 #
541 proc writeTotalExecTimeStat {} {
542 upvar 1 te te
543 upvar 1 ts ts
544 upvar 1 tact tact
545 upvar 1 tcap tcap
546 upvar 1 tini tini
547 global naestate
548
549 set difHora -1
550
551 # Total Execution TIME
552 set TotalExecTime [expr $te - $ts]
553
554 #
555 # Tk Commands
556 # Create the end date and time label
557 #
558
559 set fechaEnd [clock format $te -format "%d %b %Y

%H:%M:%S"]
560 append endinit "End at: " $fechaEnd

Statistical Power Estimation on FPGAs

 212

561 #label .main.top.end -text $endinit -bg black -fg white
562 #pack .main.top.end
563
564 # Elapsed Time
565 set elapsedTime [expr $te - $ts]
566 set naestate "END - TIME: "
567 set min [clock format $elapsedTime -format "%M:%S"]
568 set hora [clock format $elapsedTime -format "%H"]
569 set hora [expr $hora+$difHora]
570 #if { $hora > 23 } {
571 # set hora [expr $hora-24]
572 #}
573 append et "Elapsed Time: " $hora
574 append et ":" $min
575 set naestate $et
576 update
577
578 # Tcl/Tk Script Execution Time
579 set tclExecTime [expr $TotalExecTime - $tact - $tcap -

$tini]
580
581 # Write on Log File
582 set file [open transitions.log {RDWR APPEND}]
583
584 puts $file ""
585 puts $file "Power Estimation Execution Time Statistics

(seconds)"
586 puts $file [append z1 "Total Execution\t" $TotalExecTime]
587 puts $file [append z2 "Initialization\t" $tini]
588 puts $file [append z3 "Activity Estimation\t" $tact]
589 puts $file [append z4 "Capacitance Estimation\t" $tcap]
590 puts $file [append z5 "Tcl/Tk script\t" $tclExecTime]
591 puts $file ""
592
593 #puts $file $fechaEnd
594 close $file
595
596 }

Code A.1: Power Estimation main Tcl/Tk script

Appendix B

Input Patterns File (.do)

Code B.1 shows the complete contents of an input pattern .do file. This example

corresponds to a simulation run for the FIRDA_8 test circuit. These do files are

generated by the generate.exe program according to the user specifications. See

Chapter 4 for more details about the generate.exe program. These scripts are run

with Modelsin 5.7g SE.

1 #
2 # SIMULATE.DO
3 #
4 # Activity Estimation using Statistics with Modelsim
5 #
6 # Elías TODOROVICH
7 # etodorov@uam.es
8 #
9 #
10 #
11 force R 0
12 force C 1 8ns , 0 48 ns -repeat 80 ns
13 force ND 1
14 force I0 00000000 0 ns , 01101111 80 ns , 01001001 160 ns ,

01100110 240 ns , 00111101 320 ns , 10001111 400 ns ,
10011000 480 ns , 00101011 560 ns , 11001011 640 ns ,
01010011 720 ns , 01111101 800 ns , 10100101 880 ns ,
00011100 960 ns , 11110100 1040 ns , 11011101 1120 ns ,
10101011 1200 ns , 01111000 1280 ns

15 run 1360 ns
16 force I0 11011100 80 ns , 00110101 160 ns , 10101010 240

ns , 01001001 320 ns , 11010100 400 ns , 11000011 480 ns ,
00000110 560 ns , 10100101 640 ns , 11100000 720 ns ,
10000000 800 ns , 11011100 880 ns , 01101101 960 ns ,
01010001 1040 ns , 11011011 1120 ns , 01110001 1200 ns ,
10011101 1280 ns

17 run 1280 ns
18 force I0 01101001 80 ns , 00111000 160 ns , 10110100 240

ns , 01101111 320 ns , 01111111 400 ns , 01000000 480 ns ,
00111010 560 ns , 01101100 640 ns , 11111101 720 ns ,

Statistical Power Estimation on FPGAs

 214

00011011 800 ns , 00010101 880 ns , 00110100 960 ns ,
10101001 1040 ns , 10011111 1120 ns , 11010110 1200 ns ,
10100000 1280 ns

19 run 1280 ns
20 force I0 11000001 80 ns , 11110001 160 ns , 10100011 240

ns , 10010000 320 ns , 11010101 400 ns , 10011101 480 ns ,
01111000 560 ns , 01011111 640 ns , 11010001 720 ns ,
11100101 800 ns , 10011100 880 ns , 00010100 960 ns ,
11101110 1040 ns , 00001000 1120 ns , 00101000 1200 ns ,
01100100 1280 ns

21 run 1280 ns
22 force I0 00011100 80 ns , 00110100 160 ns , 11000000 240

ns , 10110110 320 ns , 00100000 400 ns , 00000101 480 ns ,
10101010 560 ns , 00001111 640 ns , 00110001 720 ns ,
00101011 800 ns , 01110001 880 ns , 11000101 960 ns ,
11111001 1040 ns , 00011101 1120 ns , 01110010 1200 ns ,
00100111 1280 ns

23 run 1280 ns
24 force I0 11010100 80 ns , 11110101 160 ns , 01100101 240

ns , 11101000 320 ns , 00001111 400 ns , 00011110 480 ns ,
00000011 560 ns , 10010110 640 ns , 01101000 720 ns ,
11011010 800 ns , 10111101 880 ns , 01001010 960 ns ,
01100100 1040 ns , 11010011 1120 ns , 00101100 1200 ns ,
11101000 1280 ns

25 run 1280 ns
26 force I0 10011101 80 ns , 10001010 160 ns , 10011000 240

ns , 00101110 320 ns , 10000010 400 ns , 00110001 480 ns ,
01010000 560 ns , 10001011 640 ns , 01111010 720 ns ,
00010000 800 ns , 01010010 880 ns , 10010111 960 ns ,
00100011 1040 ns , 10011110 1120 ns , 00101011 1200 ns ,
11110001 1280 ns

27 run 1280 ns

Code B.1: Input Pattern simulate.do example file

Appendix C

The Configuration .ini File

Code C.1 shows the complete contents of an A-DyP configuration .ini file. These .ini

files are text files but they can be generated by the User Interface (see Figs. 4.2-5)

according to the user specifications. See Chapter 4 for more details about this

program. This example corresponds to a simulation run for the 10MULT16_C circuit.

In section FILES, from lines 1 to 5, the names of the required files in A-DyP are

specified. They must be in the working directory. In section CIRCUIT FEATURES,

from lines 7 to 11, the nodes number is annotated. Also, the name of the top level

entity, the device name, and device family are specified. From lines 13 to 16, in the

CIRCUIT CONFIGURATION section, parameters related with circuit characteristics

are detailed. Next, in the STAT PARAMETERS section, from lines 18 to 21, the

required parameters for the statistical technique are selected. In the OPTIMIZATION

section, from lines 23 to 27, parameters related with A-DyP performance are specified.

Finally, in the CLOCK, PORTS, and PORTx sections, the input pattern characteristics

for every input port in the DUT including the clock are detailed.

1 [FILES]
2 Ncd=mult_rep.ncd
3 Vhdl=mult_rep_timesim.vhd
4 Sdf=mult_rep_timesim.sdf
5 Pcf=mult_rep.pcf
6
7 [CIRCUIT FEATURES]
8 VHDL Nodes=27471
9 Top Entity=mult_rep
10 Device=xc2v3000fg676-6
11 Device Family=VIRTEX_II
12
13 [CIRCUIT CONFIGURATION]
14 Min Glitch=900

Statistical Power Estimation on FPGAs

 216

15 Latency=2
16 SetupCyclesR=0
17
18 [STAT PARAMS]
19 Confidence=95,00
20 Error=5
21 Bound=0,05
22
23 [OPTIMIZATION]
24 OptStrength=100
25 Save Samples=NOSAVE
26 All Samples=MIN
27 VCDStart=27484
28
29 [CLOCK]
30 Name=CLK
31 Period=20
32 Period Scale=ns
33 Setup Time=8
34
35 [PORTS]
36 Port1=CLK C 20 ns
37 Port2=B R 16
38 Port3=A R 16
39 Count=3
40
41 [PORT2]
42 Pos0=R 0,5 0,5
43 Pos1=R 0,5 0,5
44 Pos2=R 0,5 0,5
45 Pos3=R 0,5 0,5
46 Pos4=R 0,5 0,5
47 Pos5=R 0,5 0,5
48 Pos6=R 0,5 0,5
49 Pos7=R 0,5 0,5
50 Pos8=R 0,5 0,5
51 Pos9=R 0,5 0,5
52 Pos10=R 0,5 0,5
53 Pos11=R 0,5 0,5
54 Pos12=R 0,5 0,5
55 Pos13=R 0,5 0,5
56 Pos14=R 0,5 0,5
57 Pos15=R 0,5 0,5
58 Last Value=1101000110001110
59
60 [PORT3]
61 Pos0=R 0,5 0,5
62 Pos1=R 0,5 0,5
63 Pos2=R 0,5 0,5
64 Pos3=R 0,5 0,5
65 Pos4=R 0,5 0,5
66 Pos5=R 0,5 0,5
67 Pos6=R 0,5 0,5
68 Pos7=R 0,5 0,5
69 Pos8=R 0,5 0,5

The Configuration .ini File

 217

70 Pos9=R 0,5 0,5
71 Pos10=R 0,5 0,5
72 Pos11=R 0,5 0,5
73 Pos12=R 0,5 0,5
74 Pos13=R 0,5 0,5
75 Pos14=R 0,5 0,5
76 Pos15=R 0,5 0,5
77 Last Value=1111000100101110

Code C.1: A-DyP typical configuration .ini file

Statistical Power Estimation on FPGAs

 218

Appendix D

Power Report File

Code D.1 shows the contents of an A-DyP power report file. This example

corresponds to a simulation run for the 10MULT16_C circuit with the parameter

specified in Code C.1.

1 ---
2 |
3 | TOTAL AND INDIVIDUAL NODES POWER ESTIMATION V1.0
4 | Universidad Autonoma de Madrid
5 | - e-mail: etodorov@uam.es
6 | - REPORT -
7 | - This file was generated on 17/02/2006 15:20:44
8 |
9 ---
10
11
12 --
13 | Summary |
14 --
15 - Statisticals Parameters:
16 Confidence : 95,00 %
17 Error : 5 %
18 Minimal Mean : 0,05 transitions per clock cycle
19
20 - Taken Samples: 6973
21 - Low Density Nodes: 5,99 %
22 - Regular Density Nodes: 94,01 %
23
24 - Total Transition Count per Clock Period: 12846,8
25 - Nodes Count : 27471
26 - Transition average density per Node : 0,468
27
28 --
29 |
30 | Power Summary |
31 --
32
33 - Total Estimations:

Statistical Power Estimation on FPGAs

 220

34 - Avg. Power [mW]: 881,51
35 - Capacitance [pF]: 25910
36 - Switched Cap. [fF per clock]: 289,36
37
38 - Estimations for the Logic Resources:
39
40 --
41
42 | FPGA REs. | Power [mW] | Capacitance [pF] | Switched

Cap [fF per Clock] |
43 --
44 0,00 0 0,00
45 X_AND2 87,78 3991 39,01
46 X_BUF_PP 163,97 7595 72,88
47 X_BUFGMUX 32,63 290 14,50
48 X_FF 137,11 5050 60,94
49 X_INV 0,00 0 0,00
50 X_LUT4 87,25 2782 38,78
51 X_MUX2 82,32 4665 36,59
52 X_ONE 0,00 0 0,00
53 X_ROC 0,00 0 0,00
54 X_TOC 0,00 0 0,00
55 X_TRI_PP 290,45 1536 26,67
56 X_XOR2 0,00 0 0,00
57 X_ZERO 0,00 0 0,00
58
59 - Estimations for the General PFGA Resources:
60 --
61 | FPGA REs. | Power [mW] | Capacitance [pF] | Switched

Cap [fF per Clock] |
62 --
63
64 Signals 180,43 14908 80,19
65 Clocks 32,63 290 14,50
66 I/O 290,45 1536 26,67
67 Logic 378,00 9175 168,00
68
69 -The 50 Highest Power Consumption INTERNAL* Nodes are:
70 --
71 | Nodename | Avg. Activity | FPGA REs. | Avg. Power |
72 --
73
74 mult_i0_p[3] 0,4902 X_FF 0,7636
75 mult_i0_p[0] 0,3559 X_FF 0,7007
76 b_7_ibuf 0,4913 X_BUF_PP 0,6242
77 b_15_ibuf 0,4839 X_BUF_PP 0,6139
78 b_6_ibuf 0,4799 X_BUF_PP 0,6092
79 mult_i4_a_int[15] 0,4932 X_FF 0,5584
80 mult_i4_a_int[6] 0,4879 X_FF 0,5524
81 mult_i4_a_int[5] 0,4811 X_FF 0,5381
82 b_14_ibuf 0,4816 X_BUF_PP 0,5296
83 b_10_ibuf 0,4859 X_BUF_PP 0,5252
84 mult_i1_a_int[8] 0,4961 X_FF 0,5196
85 b_13_ibuf 0,4961 X_BUF_PP 0,5193
86 a_8_ibuf 0,4972 X_BUF_PP 0,5145

Power Report File

 221

87 mult_i2_a_int[7] 0,4810 X_FF 0,5134
88 mult_i9_a_int[13] 0,4919 X_FF 0,5119
89 b_9_ibuf 0,4856 X_BUF_PP 0,5078
90 mult_i0_a_int[1] 0,5028 X_FF 0,4917
91 b_4_ibuf 0,4831 X_BUF_PP 0,4911
92 a_4_ibuf 0,5012 X_BUF_PP 0,491
93 mult_i2_a_int[15] 0,4932 X_FF 0,488
94 mult_i9_a_int[15] 0,4932 X_FF 0,4869
95 mult_i1_a_int[4] 0,4998 X_FF 0,4867
96 b_3_ibuf 0,4885 X_BUF_PP 0,4848
97 a_10_ibuf 0,4876 X_BUF_PP 0,4817
98
99 ...
100
101 --
102
103 * Clk buffers and I/O Blocks are not included.
104
105 -Complete List of nodes in alphabetical order:
106 --
107 |
108 | Nodename | Avg. Activity | FPGA REs. | Avg. Power |
109 --
110
111 a[0] 0,4863 0
112 a[10] 0,4864 0
113 a[11] 0,4813 0
114 a[12] 0,4886 0
115 a[13] 0,4915 0
116 a[14] 0,4816 0
117 a[15] 0,4952 0
118 a[1] 0,5028 0
119 a[2] 0,4912 0
120 a[3] 0,4896 0
121
122 ...
123

Code D.1: A-DyP typical power report file

Statistical Power Estimation on FPGAs

 222

	Resumen
	Abstract
	Agradecimientos
	Table of Contents
	Acronyms
	Chapter 1. INTRODUCTION
	1.1 Average Power Consumption
	1.2 Maximum Power Consumption
	1.3 Power Consumption in FPGAs
	1.4 Research Objectives
	1.5 Thesis Organization
	References

	Chapter 2. VLSI Power Consumption
	2.1 Analysis of Power Consumption
	2.2 Power Consumption in FPGAs
	2.3 Switching Activity Computation
	2.4 Conclusions
	References

	Chapter 3. Power Estimation Techniques
	3.1 Power Estimation History –or Simulative Approaches
	3.2 Statistical Approaches
	3.3 Probabilistic Approaches
	3.4 Sequential Circuits
	3.5 Power Estimation Methods Applied on FPGAs
	3.6 Conclusions
	References

	Chapter 4. A-DyP: A Tool for Average
Power Estimation in FPGAs
	4.1 A-DyP Main Structure
	4.2 The Preparation Phase
	4.3 Activity Estimation Sub-system
	4.4 Power Computation Sub-System
	4.5 The Power Database
	4.6 Conclusions
	References

	Chapter 5. Activity Estimation Sub-system
	5.1 The Pattern Generator
	5.2 Simulating the Input Patterns and Saving the Simulation Results
	5.3 Analyzing the Generated Activity
	5.4 Updating Node Statistics
	5.5 Checking the Stopping Criteria
	5.6 Conclusions
	References

	Chapter 6. Power Computation Sub-system
	6.1 Parsing the VHDL Simulation Model
	6.2 Parsing the Xilinx Design XDL file
	6.3 Generating the XML Settings File
	6.4 Extracting the Capacitances
	6.5 Calculating the Power Consumption and Writing a Report
	6.6 Generating the Power Maps
	6.7 Conclusions
	References

	Chapter 7.Test Cases and Analysis
	7.1. Test Circuits
	7.2 Analysis of the Results
	7.3 Power Measurement
	References

	Chapter 8.Experimental Results
	8.1 A-DyP Preliminary Evaluation
	8.2 A First Complete Test Case: FIRDA Filters
	8.3 Impact of the Input Patterns Definition
	8.4 Additional Experiments on Virtex-II
	8.5 Conclusions
	References

	Chapter 9.Conclusions and Future Works
	9.1 Main Contributions of this Thesis
	9.2 Reverse Engineering
	9.3 Publications
	9.4 Future Tasks
	9.5 How to Estimate Power Consumption
	9.6 How to Build a Power Estimator
	References

	Complete References List
	Appendix A
	Appendix B
	Appendix C
	Appendix D

