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Resumen 
Varios motivos impulsan a la industria y a las universidades a estudiar el consumo 

de energía de los circuitos digitales actuales: movilidad de los equipos electrónicos, 

coste de los accesorios de refrigeración y encapsulados, impacto medioambiental, 

coste de la energía, tasa de fallos, y restricciones a la densidad de integración VLSI. 

Diseñar circuitos VLSI para bajo consumo requiere de una metodología en cada 

etapa del proceso de desarrollo. Los principales componentes de tal metodología son 

estimación y optimización de consumo. A pesar de las muchas técnicas para 

estimación de consumo publicadas recientemente en la literatura especializada, el 

problema todavía no está resuelto completamente, ni siquiera al nivel de puertas 

lógicas. Debido a la complejidad computacional que requiere la estimación de 

consumo, no puede obtenerse precisión y velocidad al mismo tiempo. Este problema 

se observa en la estimación de consumo medio para nodos individuales; y para el 

consumo promedio total en los circuitos secuenciales grandes. 

Esta tesis tiene como objetivo estimar el consumo de potencia media a nivel de 

nodos individuales en FPGAs. Para ello, se desarrolló una plataforma de estimación 

de consumo con herramientas y estructuras de datos comunes y reusables dentro de 

una familia de aplicaciones EDA de diseño para bajo consumo. El software 

desarrollado se integra con las herramientas de Xilinx. Adicionalmente, se ha 

incorporado el simulador Modelsim dentro del bucle que implementa la técnica 

propuesta. Igualmente, al haberse usado formatos estándares para el intercambio de 

datos, es posible integrar la herramienta desarrollada en esta tesis en ambientes de 

diseño para FPGA de otros fabricantes, y lo mismo para otros simuladores que 

soporten formatos estándares.  

Para validar los resultados, se realizaron más de 1500 simulaciones y experimentos 

sobre dispositivos Virtex, Virtex-E y Virtex-II cubriendo 10 años de evolución de la 

tecnología de dispositivos lógicos programables. Las medidas físicas obtenidas 

permitieron orientar la investigación y a la vez facilitar la evaluación, calibración y 

depuración del software. El resultado es una herramienta precisa de estimación 



 

desarrollada sobre una plataforma general para el diseño de circuitos de bajo 

consumo. 

Abstract 
There are several reasons that strongly lead the industry and the researchers to 

study the power consumption of the current digital circuits: mobile electronic devices, 

refrigeration accessories and packaging costs, environmental impact, energy cost, 

reliability, and restrictions to the VLSI integration density. 

Designing VLSI for low power requires a design methodology at every level of the 

design process. The main components of such a methodology are estimation and 

optimization. Despite the several techniques recently proposed for power estimation, 

the problem is not completely solved yet, even at the gate level. Due to the computing 

complexity of power estimation, accuracy and speed can not be met together. This 

problem is observed for individual gate average power, and for total average power 

estimation in large sequential circuits. 

The goal in this thesis is the average power estimation at the individual nodes level 

on FPGAs. In order to do it, a power estimation framework was developed. This 

general framework has common tools and data structures that can be reused within a 

family of EDA tools for low power design. At this time this software is integrated with 

that provided by Xilinx, and its operation has been evaluated with the Modelsim 

simulator. However, due to the use of standard formats, an easy integration is 

expected in other design environments for FPGA, and the same feature for simulators 

that support standard formats. 

More than 1500 simulation runs and experiments were performed with Virtex, Virtex-

E and Virtex-II devices on available development boards covering 10 years of PLD 

evolution. These physical measurements allowed the evaluation, tuning and debugging 

of the developed software. As a result an accurate tool was developed over the 

mentioned power estimation framework. 

 



 

 III

Agradecimientos 
A Eduardo Boemo, director y amigo, fundamentalmente por haberme dado una 

oportunidad; por hacer posible este trabajo no sólo en el plano académico, sino 

también en otros aspectos más mundanos pero vitales en la supervivencia del 

doctorando, y por tantísimas actitudes como invitarnos los domingos a su casa 

estando recién llegados a España: gracias. Maite: muchas gracias. 

Esta tesis tampoco sería posible sin la confianza de Javier Garrido y Francisco 

Gómez Arribas, la solidaridad más allá del compañerismo de Sergio López Buedo, la 

amistad de los compañeros del laboratorio: Gustavo Sutter, Iván González, Juan 

González Gómez, Guillermo González, Estanislao Aguayo, Alberto Regadío, Alberto 

Martín-Ortega Rico, y muchos otros becarios y profesores, que durante estos años 

pusieron la mejor predisposición para el desarrollo de los trabajos en un ambiente de 

camaradería. Gracias también a Martín Gilabert por su trabajo y entusiasmo en las 

primeras experiencias vinculadas con esta tesis. Mi reconocimiento especial es para el 

Prof. Javier Martínez. 

Sin Juana Calle no sólo me hubiera sido mucho más difícil cumplir con todo el 

formalismo que se requiere en un doctorado, sino que no habría mantenido el ritmo 

académico que hace que estos estudios tengan un final a su debido tiempo. Muchas 

gracias Juana por tus e-mails y por toda tu ayuda, y tu responsabilidad y seriedad 

dentro del afecto que pones en tu trabajo. Gracias también a Pablo y a todo el 

personal de la EPS. Espero ser capaz de mostrarles a todos mi gratitud. 

También debo agradecer a las siguientes instituciones argentinas y españolas por 

su apoyo en esta investigación, por orden de aparición en el desarrollo de las tareas: 

 Facultad de Ciencias Exactas de la Universidad Nacional del Centro de la 

Provincia de Buenos Aires 

 CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) de la 

República Argentina 

 Ministerio de Ciencia y Tecnología de España 

 Escuela Politécnica Superior de la Universidad Autónoma de Madrid 



 

 Escuela Politécnica Superior de Gandía, de la Universidad Politécnica de 

Valencia 

En lo que concierne a la revisión del texto en inglés, le agradezco especialmente a 

Walter Routley, y también a Gery Bioul, Hernán Techeiro y naturalmente a Eduardo 

por su trabajo y paciencia. 

Es bueno hacer memoria y este balance al final de un trabajo tan largo. Le doy las 

gracias de todo corazón a mi familia, amigos y a Dios. 



 

 V

Table of Contents 

1 INTRODUCTION 1 

1.1 AVERAGE POWER CONSUMPTION 2 
1.1.1 PORTABLE ELECTRONIC PRODUCTS 2 
1.1.2 ENVIRONMENTAL IMPACT 3 
1.2 MAXIMUM POWER CONSUMPTION 4 
1.3 POWER CONSUMPTION IN FPGAS 6 
1.4 RESEARCH OBJECTIVES 7 
1.5 THESIS ORGANIZATION 8 
REFERENCES 9 

2 VLSI POWER CONSUMPTION 11 

2.1 ANALYSIS OF POWER CONSUMPTION 12 
2.1.1 THERMODYNAMICS OF COMPUTATION 12 
2.1.2 SOURCES OF POWER DISSIPATION 14 
2.2 POWER CONSUMPTION IN FPGAS 18 
2.2.1 PROGRAMMABLE ROUTING 19 
2.2.2 PHYSICAL CAPACITANCE 20 
2.2.3 SWITCHING ACTIVITY 21 
2.3 SWITCHING ACTIVITY COMPUTATION 22 
2.3.1 DEPENDENCE ON THE INPUT PATTERNS 22 
2.3.2 DELAY MODEL 25 
2.3.3 LOGIC FUNCTION 27 
2.3.4 CIRCUIT STRUCTURE 28 
2.3.5 TECHNOLOGY-DEPENDANT FACTORS 29 
2.4 CONCLUSIONS 29 
REFERENCES 30 

3 POWER ESTIMATION TECHNIQUES 33 



 

3.1 POWER ESTIMATION HISTORY –OR SIMULATIVE APPROACHES 35 
3.1.1 SPICE-LIKE CIRCUIT SIMULATION 35 
3.2 STATISTICAL APPROACHES 37 
3.2.1 MONTE CARLO SIMULATION 37 
3.2.2 TOTAL POWER (MCPOWER) 38 
3.2.3 POWER OF INDIVIDUAL GATES (MED) 40 
3.2.4 IMPROVEMENTS IN STATISTICAL METHODS 41 
3.3 PROBABILISTIC APPROACHES 42 
3.3.1 SOME IMPORTANT DEFINITIONS 43 
3.3.2 PROBABILISTIC POWER ESTIMATION TECHNIQUES 44 
3.4 SEQUENTIAL CIRCUITS 48 
3.4.1 STATISTICAL APPROACHES 48 
3.5 POWER ESTIMATION METHODS APPLIED ON FPGAS 58 
3.5.1 RELATED WORKS AT THE UAM 60 
3.6 CONCLUSIONS 61 
REFERENCES 61 

4 A-DYP: A TOOL FOR AVERAGE POWER ESTIMATION IN FPGAS 65 

4.1 A-DYP MAIN STRUCTURE 67 
4.2 THE PREPARATION PHASE 68 
4.2.1 USER INTERFACE 70 
4.2.2 POWER ESTIMATION SET-UP PHASE 73 
4.3 ACTIVITY ESTIMATION SUB-SYSTEM 74 
4.3.1 INPUT PATTERNS FOR THE PATTERN GENERATOR 77 
4.3.2 THE POWER ESTIMATION PLATFORM 78 
4.4 POWER COMPUTATION SUB-SYSTEM 78 
4.5 THE POWER DATABASE 82 
4.6 CONCLUSIONS 84 
REFERENCES 85 

5 ACTIVITY ESTIMATION SUB-SYSTEM 87 



 

 VII

5.1 THE PATTERN GENERATOR 88 
5.2 SIMULATING THE INPUT PATTERNS AND SAVING THE SIMULATION RESULTS 91 
5.3 ANALYZING THE GENERATED ACTIVITY 93 
5.3.1 THE SET-UP PERIOD 93 
5.3.2 COUNTING THE EFFECTIVE TRANSITION NUMBER 94 
5.4 UPDATING NODE STATISTICS 95 
5.5 CHECKING THE STOPPING CRITERIA 97 
5.6 CONCLUSIONS 97 
REFERENCES 97 

6 POWER COMPUTATION SUB-SYSTEM 99 

6.1 PARSING THE VHDL SIMULATION MODEL 100 
6.1.1 WHY PARSING THE VHDL MODEL? 101 
6.1.2 OBTAINING THE IDENTIFIERS 103 
6.1.3 OPTIMIZATION 105 
6.2 PARSING THE XILINX DESIGN XDL FILE 105 
6.2.1 ANALYZING AN FPGA SLICE DEFINITION 106 
6.2.2 ANALYZING A NET DEFINITION 109 
6.3 GENERATING THE XML SETTINGS FILE 111 
6.3.1 USING A PACKAGE TO GENERATE XML 112 
6.4 EXTRACTING THE CAPACITANCES 113 
6.4.1 PARSING THE XILINX CAPACITANCE REPORT FILE (PWA) 114 
6.5 CALCULATING THE POWER CONSUMPTION AND WRITING A REPORT 115 
6.6 GENERATING THE POWER MAPS 116 
6.7 CONCLUSIONS 116 
REFERENCES 117 

7 TEST CASES AND ANALYSIS 119 

7.1. TEST CIRCUITS 119 
7.1.1 QUADRATURE DIRECT DIGITAL FREQUENCY SYNTHESIZERS (QDDFS) 119 
7.1.2 DISTRIBUTED-ARITHMETIC FIR FILTER (FIRDA) 122 



 

7.1.3 FAST FOURIER TRANSFORM (FFT) 123 
7.1.4 ARITHMETIC CIRCUITS 123 
7.2 ANALYSIS OF THE RESULTS 124 
7.2.1 TECHNIQUE CHARACTERIZATION 124 
7.2.2 SOFTWARE EVALUATION 125 
7.2.3 GRAPHICAL REPRESENTATION OF THE RESULTS 126 
7.3 POWER MEASUREMENT 126 
REFERENCES 129 

8 EXPERIMENTAL RESULTS 131 

8.1 A-DYP PRELIMINARY EVALUATION 132 
8.1.1 TOTAL DYNAMIC POWER ESTIMATION 133 
8.1.2 IMPACT OF THE INPUT PATTERNS DEFINITION 134 
8.1.3 TOOL’S EVALUATION 135 
8.1.4 POWER MAPS 136 
8.2 A FIRST COMPLETE TEST CASE: FIRDA FILTERS 139 
8.2.1 TOTAL DYNAMIC POWER ESTIMATION 139 
8.2.2 ESTIMATING POWER FOR INDIVIDUAL NODES 140 
8.2.3 ACCURACY VS. EXECUTION TIME TRADEOFF 147 
8.2.4 TOOL’S EVALUATION 152 
8.2.5 POWER MAPS 154 
8.2.6 ENERGY ANALYSIS OR ENERGY OF THE COMPUTATION 158 
8.3 IMPACT OF THE INPUT PATTERNS DEFINITION 160 
8.3.1 TOTAL DYNAMIC POWER ESTIMATION 162 
8.3.2 DYNAMIC POWER ESTIMATION FOR INDIVIDUAL NODES 166 
8.3.3 INPUT PATTERNS FROM REAL SCENARIOS 168 
8.4 ADDITIONAL EXPERIMENTS ON VIRTEX-II 171 
8.4.1 IMPACT OF THE INPUT PATTER DEFINITION ON TOTAL POWER 172 
8.4.2 DYNAMIC POWER ESTIMATION FOR INDIVIDUAL NODES 173 
8.4.3 ACCURACY VS. EXECUTION TIME TRADEOFF 175 
8.4.4 TOOL’S EVALUATION 178 
8.4.5 POWER MAPS 179 



 

 IX

8.5 CONCLUSIONS 181 
REFERENCES 182 

9 CONCLUSIONS AND FUTURE WORKS 183 

9.1 MAIN CONTRIBUTIONS OF THIS THESIS 183 
9.1.1 THE POWER PLATFORM FRAMEWORK AND A-DYP 184 
9.1.2 SHORT-PULSE FILTERING AS A CALIBRATION RESOURCE 185 
9.1.3 A-B NODES CLASSIFICATION 186 
9.1.4 ENERGY OF THE COMPUTATION 186 
9.2 REVERSE ENGINEERING 186 
9.3 PUBLICATIONS 187 
9.4 FUTURE TASKS 189 
9.4.1 HIGH-LEVEL POWER ESTIMATION 191 
9.5 HOW TO ESTIMATE POWER CONSUMPTION 192 
9.6 HOW TO BUILD A POWER ESTIMATOR 193 
REFERENCES 193 

COMPLETE REFERENCES LIST 195 

TCL/TK SCRIPT FOR THE A-DYP POWER ESTIMATION TOOL 201 

INPUT PATTERNS FILE (.DO) 213 

THE CONFIGURATION .INI FILE 215 

POWER REPORT FILE 219 



 

Acronyms 
API Application Program Interface 

ASIC Application Specific IC  

ATP Area Time Power 

CAD Computer Aided Design 

CLB Configurable Logic Block 

CMOS Complementary Metal Oxide Semiconductor 

DSP Digital Signal Processing 

DUT Design Under Test 

EDA Electronic Design Automation  

FF Flip-Flop 

FIR Finite Impulse Response 

FPGA Field Programmable Gate Array 

FSM Finite State Machine 

HDL Hardware Description Language  

IC Integrated Circuit  

IDE Integrated Development Environment 

IEEE Institute of Electrical and Electronic Engineers  

IEEE 1076 IEEE VHDL standard  

IEEE 1364 IEEE Verilog HDL standard  

iid Independent and identically distributed 

IOB Input/Output Block 

ITRS International Technology Roadmap for Semiconductors 

LUT Look-Up Table 

LSB Less Significant Bit 

NC Set Near Closed Set 



 

 XI

MSB Most Significant Bit 

MPU Microprocessor Unit 

OVI Open Verilog International  

PAR Place and Route 

PCB Printed Circuit Board 

PPR Partitioning, Place and Route 

P&R Place and Route 

RTL Register Transfer Level 

QAM Quadrature Amplitude Modulation 

QDDFS Quadrature Direct Digital Frequency Synthesizer 

QPSK Quadrature Phase Shift Keying 

SDF Standard Delay Format 

TWG Technical Working Group 

UUT Unit Under Test 

VITAL VHDL Initiative Towards ASIC Libraries  

VHDL VHSIC (Very High-Speed IC) HDL  

VI VHDL International 

 



 

 

 



 

Chapter 1. 

“If performance per watt is to remain constant over the next few years, power costs 

could easily overtake hardware costs, possibly by a large margin.” and “…one could 

envision bizarre business models in which the power company will provide you with 

free hardware if you sign a long-term power contract.” Luiz André Barroso, a 

principal engineer at Google [Bar05] 

1 Introduction 

Revising the history of the technology [Rab96], power consumption is a recurring 

problem in an area like digital circuit design where complexity grows according to 

Moore’s law. When CMOS technology was introduced, it was believed that the power 

consumption problem was solved for digital circuits. In this technology, the static power 

consumption is very low and the electric current only flows in the circuit when some 

computing is done. In that time, the major concerns of the VLSI designers were area 

and performance, and power consumption was mostly of secondary importance. 

Nevertheless, the number of transistors per unit of area, and the number of transistors 

in a single die have reached a limit where the power consumption is a problem. Now 

power is as important as area and speed. But several other factors have contributed to 

this trend as is briefly discussed below. This is particularly true for FPGAs, where the 

power consumption noticeably rises due to the increase in the clock frequency, chip 

area (capacitance), and the ability to be programmed. 

Perhaps the primary driving factor that made power consumption as important as 

area and speed has been the remarkable success and growth of portable electronic 

products. In these applications, average power consumption is a critical design 
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concern. In addition, maximum power consumption is also a constraint in the 

contemporary electronic industry. 

In this Chapter, a motivation for low power design is presented together with the 

research objectives of this thesis, 

1.1 Average Power Consumption 

1.1.1 Portable Electronic Products 

MP3 players, pagers, mobile phones, portable CD players, notebooks, etc., demand 

high-speed computation and complex functionality with low power consumption. In 

these applications average power consumption is a critical design concern.  

Example 1.1: A portable multimedia terminal, when implemented using off-the-shelf 

components not optimized for low-power operation, consumes about 40 W. For 10 

hours of operation between recharges, with a Lithium-Ion battery with 100 Wh/kg of 

energy density1, it will require 4 kg of batteries. Energy density and weight is displayed 

at Table 1.1 for several battery technologies, including the Lithium-Polymer-Potential 

technology not yet available in the market. 

Technology 
Energy Density 

[Wh/kg] 

Weight 

[Kg] 

Nickel-Metal-Hydride 80 5.00 

Lithium-Ion 100 4.00 

Lithium-Polymer-Potential 400 1.00 

Table 1.1: Battery Sizing 
 

Example 1.2: A more realistic example can be outlined looking at an actual portable 

computer running a multimedia application. It consumes 24.8 Watts [Kol01]. In the 

scenario as in example 1.1 (10 hours of operation between recharges, lithium-ion 

                                                 

1 Energy density is the amount of energy stored per unit of weight expressed in watt-hour per kilogram. 
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battery) this computer will require 2.48 kilograms of battery. Battery sizing for other 

technologies is shown in Table 1.2. 

Technology 
Energy Density 

Wh/kg 

Weight 

Kg 

Nickel-Metal-Hydride 80 3.10 

Lithium-Ion 100 2.48 

Lithium-Polymer-Potential 400 0.62 

Table 1.2: Battery Sizing 
 

From the examples, we can see that without low-power design techniques portable 

devices will suffer usability problems. 

1.1.2 Environmental Impact  

For consumer electronics power savings means significant money saving. It could 

also be viewed as a long term objective for low power design. The smaller the power 

dissipation of electronic systems, the lower the heat pumped into the rooms, the lower 

the electricity consumed and hence the lower the impact on global environment, and 

less the office noise (e.g., due to elimination of a fan from the desktop), and less the 

office heat removal requirements [Ped97]. 

The United States Environmental Protection Agency (EPA) publishes Energy Star 

guidelines that suggest ways to reduce power consumption and to save money by 

eliminating unnecessary energy use. Office equipment, led by computers, is the fastest 

growing electrical load in the business world. In fact, office equipment accounts for 7-

20% of all commercial sector electricity usage [Kaw01] [Lai01]. 

Some works studied the electric energy used by computing equipment ([Ang01] 

[Kaw00] [Hay01]). [Kaw01] and [Lai01] report that total power use by office and 

network equipment in the U.S. is about 2% of total electricity use. They also say that 

power management currently saves 23 % of the energy consumption; and complete 

saturation with proper power management and night shut down will save 38 %. On a 

monthly or annual basis, owners could save millions of dollars in electricity costs and 

the pollution associated with electricity use can be reduced. 
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1.2 Maximum Power Consumption 
Table 1.3 shows maximum power consumption trends for MPUs and high 

performance ASICs according to the ITRS forecast [ITRS05]. These trends are 

presented in three categories: 

1) high-performance desktop applications, for which a heat sink on the package is 

permitted;  

2) cost-performance, where economical power management solutions of the highest 

performance are most important; and  

3) portable battery operations (now designated as the “Harsh” application category 

by the Assembly and Packaging TWG).  

Total power consumption continues to increase, despite the use of a lower supply 

voltage. The increased power consumption is driven by higher chip operating 

frequencies; the higher interconnect overall capacitance and resistance, the increasing 

gate leakage of exponentially growing, and scaled on-chip transistors. 

Fig. 1.1 shows maximum power predictions for high-performance and cost 

performance MPUs and high performance ASICs according to different ITRS updates 

since 2001. Note that, for high-performance MPU, power consumption significantly 

exceeds the high-performance single-chip package power limits, even with allowed 

power densities in excess of 250 W/cm2 [ITRS05]. Thus, power will be limited more by 

system level cooling and test constraints than packaging. This fact is considered from 

the 2003 forecast. 

[Gun01] reports that power consumption of processors produced by Intel almost 

doubles every 4 years2. The cost associated with packaging and cooling of such 

devices could reach relatively high values. 

 

                                                 

2 In this moment, there is a controversy about the maximum power dissipation reported by the industry. An independent 
analyst, [Smi01],  reports 72 W of maximum power consumption for the 1.4 GHz Athlon; and  87-88 W for the 1.8 GHz 
Pentium 4. The same article refer to an interesting concept: the programs used by the vendors to run that tests are 
safeguarded as restricted information in order to prevent the development of thermal viruses. 
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 2007 2010 2012 2014 2016 2018 2020 

High-performance with heatsink (W) 189 198 198 198 189 198 198 

Cost-performance (W) 104 119 125 137 151 151 157 

Battery (W) – (low cost/hand Held) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Table 1.3: Allowable maximum power for the next years 
 

Since core power consumption must be dissipated through the packaging, 

increasingly expensive packaging, cooling strategies and protection mechanisms are 

required as chip power consumption increases. Consequently, there is a clear financial 

advantage to reducing the power consumed in high performance systems (See Fig. 

1.2). 
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Fig. 1.1: Trends in maximum power consumption according to ITRS 
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Fig 1.2 shows that, as power increases, the relationship between the dissipated 

power and the cooling solution cost that should be adopted is non-linear. 

 
Fig. 1.2: Cost Associated with Packaging and Cooling Systems. Reproduced from [Gun01] 
 

Reliability is another technological issue. The systems must be designed to ensure 

that the chip does not exceed the maximum specified operation temperature, even 

when it is dissipating the maximum power. High power systems often run hot and high 

temperature trends to increase occurrences of silicon failure mechanisms [Lal97]. For 

example it has been shown that the switching activity is a valuable parameter to 

estimate the available working time before failure [Iye86]. 

Another crucial driving factor is that excessive power consumption is becoming the 

limiting scale factor in integrating more transistors on a single chip or on a multiple-chip 

module. 

Power supply rail design is a specific topic directly related to the maximum 

dissipated power. 

1.3 Power Consumption in FPGAs 
Although the background, techniques, research literature, theory, and motivations 

presented in this thesis are mostly aimed at CMOS circuits, the implemented software 

is integrated with the Xilinx design flow and experiments are performed on SRAM-
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based FPGAs of the same vendor. The ability of these programmable logical devices 

for prototyping, digital electronics teaching and training, adaptation to modern systems 

with evolving specifications, economical viability for specific markets like industrial 

automation, control, aerospace, or high-end medical imaging, and the availability of 

state-of-the-art digital technology for end users all around the world, have spread 

FPGAs quickly since their commercial launch in 1985 [Wil99]. Furthermore, FPGAs are 

low cost devices in these contexts and vendors offer friendly development software, 

tutorials, teaching resources, and tools that enable accessing the technology in a few 

weeks with a reasonable level of expertise after a relatively short training period. 

Beyond these applications, FPGAs are also competing with ASICs and DSPs in the 

digital consumer market. 

The specific nature of FPGAs leads to particular design techniques and the EDA 

tools for them also require specific considerations from their conception (i.e. analysis) 

to their implementation. The abundant routing resources and programmability 

significantly affect the device’s power consumption. Furthermore, state-of-the-art VLSI 

technologies are applied to current FPGA production, e.g. 90 nm to Virtex-4 [XDS06] 

and Altera Stratix-II [Alt05]. This leads to unprecedented integration levels and 

transistor counts on a single chip which converts FPGA to high-performance ICs with 

the power consumption problems reported by ITRS [ITRS05]. In this way, it is 

interesting to evaluate techniques proposed to ASICs and adapt or develop new ones 

according to FPGA technologies. 

1.4 Research Objectives 
In this work, FPGAs are more than a technological framework in order to verify 

theoretical research; they are the core of this study. The main goal in this thesis is the 

average power estimation at the individual nodes level on FPGAs. In order to do it, a 

power estimation framework is developed. This general framework has common tools 

and data structures that can be reused within a family of EDA tools for low power 

design. 

The instance of this framework presented in the following chapters is a gate-level 

statistics-based power estimation tool for both the total and individual nodes power. 

This tool must produce accurate estimation values, i.e. with less than 10% of error in 
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the total power in relation to physical measurements over real devices, in a reasonable 

run time when the required accuracy is moderate, e.g. with 90% confidence that error 

is less than 10%. 

1.5 Thesis Organization 
This thesis is organized in nine chapters. This chapter has presented a motivation 

for and introduction to the low-power design problems that will be presented in the next 

chapters.  

Chapter 2 analyzes CMOS and FPGA power consumption and presents the 

problems that must be overcome in order to estimate power or energy dissipation in 

these technologies. There is also an interesting summary about thermodynamics of 

computation in this chapter. 

Chapter 3 describes the state-of-the-art in gate-level power estimation with focus on 

the statistical techniques. These first three chapters make up the introductory part of 

the thesis. 

The lack of modern power estimation tools for FPGAs within commercial design 

flows, leads us to propose a power estimation framework in Chapter 4 that can support 

the statistical tool whose activity estimation and power computation parts are detailed 

in Chapters 5 and 6 respectively. 

Chapter 7 presents test circuits used in the power estimation experiments and tool 

evaluation. This chapter also describes the measurement methodology necessary to 

generate values against which the estimations are compared. In this way the 

developed tool can be calibrated and debugged. The development boards and devices 

employed in the measurements are also briefly presented. 

Chapter 8 shows the experimental results in a chronological order where the 

circuits, devices and tests are joined together in order to evaluate the development and 

produce a robust EDA tool. 

Finally, Chapter 9 presents the main conclusions and topics for future research in 

the power-aware EDA tools and low-power design areas. 
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Chapter 2. 

“When we come to design the Ultimate Computers of the far future, which might 

have “transistors” that are atom-sized, we will want to know how the fundamental 

physical laws will limit us. When you get down to that sort of scale, you really have 

to ask about the energies involved in computation, and the answer is that there is 

no reason why you shouldn’t operate below kT”. From “Lectures on Computation” 

by Richard P. Feynman [Fey96]. 

2 VLSI Power Consumption 

This Chapter explains the sources of power dissipation for the CMOS technology. 

CMOS is (and will remain) the industry workhorse up to and beyond the year 2020 

according to ITRS predictions [ITRS2005]. From 2020 it is anticipated new nanoscale 

devices representing alternatives to CMOS. These new devices will be introduced 

utilizing different and new ways of processing and storing information. Most of the 

proposed devices rely on new materials and properties not well studied yet. 

The details about the power consumption in FPGAs are particularly specified. 

Finally, how the activity must be calculated has been carefully studied. 

As power optimization is not the topic in this thesis, it is treated briefly in this 

chapter. A parallel work at our laboratory that presents optimization techniques 

applicable to SRAM-based FPGAs is [Sut05]. 
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2.1 Analysis of Power Consumption 
It has been shown that designing VLSI for low power requires a design methodology 

at every level of the design hierarchy. The main components of such a methodology 

are estimation and optimization [Lan94], the classical analysis and synthesis pair. 

In order to estimate and optimize the power consumption of a digital circuit it is 

necessary to know how energy is dissipated. The way each factor interacts with the 

others will also clarify the effects these elements have on every VLSI design stage. 

This analysis will determine which elements can be overlooked within a specific design 

environment. Indeed, designing digital circuits with FPGAs requires specific 

assumptions, as it will be pointed out later on, after a brief discussion on power 

dissipation sources in CMOS circuits. 

2.1.1 Thermodynamics of Computation 

Beyond the technological frenzy in the electronic industry nowadays, it is important 

to stop a moment in order to study the fundamental laws about the power consumption 

and thermodynamics of computation. In Feynman’s book “Lectures on Computation”, 

Chapter 5 [Fey96], two essential questions are studied. The first one is: “How much 

energy must be used in carrying out a computation?” This thesis explores how much 

energy will be used in carrying out a computation within a particular technological 

context: SRAM-based FPGAs, its goal is the estimation of this amount of energy in 

advance. Nevertheless, the second question is more fundamental: “What is the 

minimum energy required to carry out a computation?” In this section this second 

question is considered. Although they are much more efficient than earlier computers, 

the existing ones dissipate enormous amounts of energy, 108kT, compared with the 

theoretical lower bound kT (T is the temperature and k is the Boltzman’s constant). The 

main reason for this waste is the use of macroscopic components with relatively huge 

inertia which require macroscopic amounts of energy to switch quickly. On the other 

hand, a microscopic device such as DNA replication has relatively high energy 

efficiency: 20-100kT per operation.  

In [Fey96] a physical definition of the information content of a message is studied. In 

general when we develop an algorithm, we do not think about this but 
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No computing can be done without the participation of the physical world. 

Rolf Landauer, in his classic 1961 paper pioneered applying thermodynamics to 

computation [Lan61]. In that paper, it is claimed that any logically irreversible 

computation, such as the erasure of a bit, must be accompanied by a corresponding 

entropy increase; and any logically reversible computation can be executed by a 

thermodynamically reversible device. This is also known as the basic principle of the 

thermodynamics of information processing or Landauer’s principle. His work and other 

contributions are summarized in [Fey96], where the first conclusion is that the amount 

of information in a message is proportional to the free energy required to reset the tape 

to zero. In this way, some energy is necessary to reset a tape with “surprise” bits, but it 

is interesting to realize that a reset tape also contains energy. Bennet [Ben82] 

designed a machine that uses such tapes with information as fuel. The tape after that is 

randomized, full of information and again, some work must be done to reset it. For a 

detailed study of all these topics, please see the references mentioned in this section. 

Also interesting is the work in [Ben03], where Landauer’s principle is revised and the 

historic arguments against it are refuted.  

The second conclusion in [Fey96] is that ideally, it is possible to operate a computer 

without any loss of energy. This computation should be done in a reversible computer 

infinitesimally slowly. The only entropy loss comes in the resetting process for the next 

operation and does not depend on the complexity of the computation but on the 

number of output bits N: 

2lnNkT  (Eq. 2.1) 

2lnkT is about 3 x 10-21J at room temperature. Unfortunately, the price we must pay 

for this is that we will never know when the computation is finished.  

There is not a minimum amount of energy required to carry out a computation, but 

there is a limit when the computation is done at a certain speed.  In this way, the third 

point studied in [Fey96] is the amount of free energy required to carry out a 

computation in a finite time. If we have a reversible computer that goes forward at a 

rate r –it is r times more likely to make a forward computation than a backwards one- 

then the minimum energy that must be expended per computational step is  
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rkTEs lnmin, =  (Eq. 2.2) 

The smaller is r, the lower the energy. With some mathematical development, time 

can be the variable: 

takenactuallysteppertime
steppertakentimekTstepperlossenergy
____

___min___ =  (Eq. 2.3) 

Again, if the computation is infinitesimally slow, there is no loss of energy.  

2.1.2 Sources of Power Dissipation 

Beyond the thermodynamic arguments in the previous sections, it is clear that an 

efficient technology for digital circuit materialization from the power consumption point 

of view must dissipate the lowest energy possible when some computation is actually 

performed, and no energy in any other case. This occurs in CMOS circuits (with slight 

differences with the ideal case) and other modern technologies. Older technologies, 

such as vacuum tubes and relays dissipate relatively huge amounts of energy –even 

compared with the CMOS technology, that dissipates relatively enormous amounts of 

energy compared with the thermodynamic lower bounds- doing some computation or 

not. Power dissipation in CMOS circuits is caused by three main sources [Ped97]: 

1. Leakage current which is primarily determined by the technology used in its 

construction, and consists of: 

• Reverse bias current in the parasitic diodes formed between source 

and drain diffusions and the bulk region in a MOS transistor.  

• Sub-threshold currents that arise from the inversion charges that 

exists at the gate voltages below the threshold voltage. 

 This is also known as static power consumption. In older technologies, with 

minimum feature size of 0.15 μm or larger, adequate design decisions at the 

physical level may reduce this first source of power dissipation to very low 

values. However, recent work like [Kao02] suggest that it may represent over 

40% of total power at the 70 nm technology. It is also true that, leakage 

power is proportional to the number of transistors in the off state and FPGAs 

requires more transistors to implement a logic function than ASICs. 
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 Nevertheless, all these forecasts about power consumption can be 

interpreted more as a problem statement than a possible future prediction. 

For example, using triple-oxide technology [Kle05], the overall static power in 

Virtex-4 devices with 90 nm process is reduced compared to Virtex-II Pro 

devices with 130 nm process. 

2. Short-circuit current which is due to the DC path between the supply rails 

during output transitions,  

3. Switching current: it is dissipated when capacitive loads are charged and 

discharged during logic changes. 

Ideally, a CMOS circuit dissipates no static power since in the steady state there is 

no direct path from Vdd to ground. Nevertheless, the MOS transistor is not a perfect 

switch and there will always be parasitic currents. Until now the static current had little 

effect on the overall power consumption. However, [Li03] found FPGA architectures 

(with more than 4 inputs in the LUTs) where leakage power emerges as a mayor 

source of power dissipation in devices using the projected 0.10 um technology. 

The short-circuit power consumption, for example in an inverter gate, depends on 

the gain of the inverter, the supply voltage, the device threshold, the input rise/fall time 

and the operating frequency. The maximum short-circuit current flows when there is no 

load; this current decreases with the load.  

From Xilinx and Altera datasheets, short-circuit power is 10% of dynamic power. If, 

however, design for high performance is taken to the extreme where gates with large 

fanout are used to drive relatively small loads, then there will be an excessive penalty 

in terms of short-circuit power consumption. 

The dominant source of power dissipation is the switching power dissipation and is 

given, for a circuit node, by: 

clkddi fswEVCP ⋅⋅⋅⋅= )(5.0 2
 (Eq. 2.4) 

Where:  

C is the physical capacitance seen by the gate under consideration,  

Vdd is the supply voltage,  
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E(sw) (referred as the switching activity) is the average number of transitions in the 

circuit per 1/fclk time, and  

fclk is the clock frequency. 

Vdd

In Out

C

1

2

 
Fig. 2.1. Dynamic power consumption in a CMOS inverter 

 

For a 0 → Vdd transition, switch 1 is closed (Fig. 2.1), an energy E0→1 = C * Vdd
2 is 

drawn from the power supply Vdd, and the energy EC = ½ C * Vdd
2 is saved in the 

capacitance C. The other ½ C * Vdd
2 is dissipated in transistor 1. 

For a Vdd → 0 transition, switch 2 is closed, no energy is drawn from Vdd, but the 

energy previously stored in C is dissipated [Guy98] in transistor 2. 

2.1.2.1 Extending the Dynamic Power Formula 

Firstly, in [Li03] a simple model is proposed in order to consider the short-circuit 

power within Eq. 2.2. This component also depends on the switching activity. It can be 

assumed that the ratio between short-circuits and switching power, Rsc is a constant. In 

this way, an effective capacitance is defined as follows: 

)1(ˆ
scRCC +=   (Eq. 2.5) 

Ĉ  is the total equivalent capacitance connected to the output of the gate under 

consideration. In this way, the short-circuit component can be integrated together with 

the charging and discharging of the node capacitances. These two power components 

are referred to as dynamic power dissipation. 
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Another point to consider is that Eq. 2.2 is obtained for a CMOS inverter, but the 

same results can be dragged for other logic gates and MOSFET based circuits. The 

only difference between the inverter and other CMOS gates, in order to calculate the 

load capacitance, is the number of transistors in each complementary part (Fig. 2.2). 

P-Block

N-Block

Vdd

In Out

C

 
Fig. 2.2: Dynamic power consumption in a generic CMOS gate 

 

For the whole circuit, the power can be calculated adding up all the contributions: 

i
i

iclkdd swECfVP )(ˆ
2
1 2 ∑=   (Eq. 2.6) 

It should be noted that in some work in this area, the 0.5 factor does not appear in 

the formula. In these cases the switching activity is replaced by the effective frequency. 

The effective number of signal cycles doubles the number of signal transitions. 

The last point studied in this section, related to Eq. 2.3, is that it only considers full 

swings between Vdd and GND. Short glitches have partial swings and are considered 

by iswE )(ˆ , the effective switching activity. 

i
i

iclkdd swECfVP )(ˆˆ
2
1 2 ∑=  (Eq. 2.7) 

Details of iswE )(ˆ and iĈ estimation are explained in Chapter 5. 
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2.2 Power Consumption in FPGAs 
The previous section exposes the three variables, and degrees of freedom, inherent 

in the low-power design space: voltage, physical capacitance, and data activity. 

Because of the quadratic relationship to the power, voltage reduction offers the most 

effective means to minimize power consumption. Furthermore, this power reduction 

has a global effect, experienced not only in one gate or circuit node, but throughout the 

sub-circuit or device supplied with the same voltage. However, programmable logic 

devices are studied in this work. Once a specific commercially available device is 

selected, the nominal power supply voltages are given in the data sheets and only 

capacitance and switching activity need to be estimated (and optimized). 

FPGAs consume much more power than ASICs because they have a large number 

of transistors per logic function in order to program the device. Nevertheless, 

programmability is the essence of this technology and this overhead must be assumed. 

In this section the different electronic components of a SRAM-based FPGA are 

analyzed in order to determine whether or not Eq. 2.4 can be applied to all the nodes in 

any design. 

Most of the models used to explain the power consumption behavior of SRAM-

based FPGAs are based on the equations derived from the analysis of the CMOS 

inverter. As it was said before, an efficient technology would dissipate the lowest 

energy when some computing is actually performed, while no energy is dissipated in 

any other case. SRAM-based FPGAs, like the ones used in this work as technological 

framework, have pure CMOS circuits but also pass-transistor structures, SRAM, 

buffers, input and output circuits [Gar00]. 

As it is presented in [Rab96b] (See chapter 3 by C. Svensson and D. Liu), the 

combinational CMOS static logic is the selected technology for low power. Though, for 

timing control in synchronous circuits, simple, non-precharged, dynamic flip-flops, or 

static gate based flip-flops appear to be the best suited techniques. It is important to 

note that, in the case of flip-flops, there is a component of the dynamic power 

consumption that does not depend on the input activity and thus behaves like static 

power consumption. This is the power consumed by transistors clocked at their gates. 

The power consumption for a non-precharged TSPC flip-flop is: 
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2)8)2/(448( ddoioid fVCCCCP αα +++=   (Eq. 2.8) 

The first two terms do not depend on the input activity. Ci and Co are respectively 

the input and output capacitances at the transistors and α is the data activity. 

Another problem found in logic circuits and in particular in FPGAs, comes from the 

high capacitance nodes where drivers are used to decrease the delay and the short-

circuit power consumption due to long rise and fall times in the following stages. As 

shown in [Rab96b], using a tapered inverter chain, and minimizing the delay, the driver 

causes an excess power consumption of 80% over the load. 

2.2.1 Programmable Routing 

[Bet99] describes two important circuits in the design of FPGA routing switches: 

pass transistors and tri-state buffers. Routing switches are either pass transistors or 

pairs of tri-state buffers (one in each direction), and allow routing wire segments to be 

joined to form longer connections (Fig 2.3). Multiplexers allow routing wires to be 

connected to the input pins of logic blocks, while demultiplexers (a set of pass 

transistors) allow routing wires to be driven by output pins of logic blocks (Fig. 2.4). 

tri-state buffer
wire segment

pass transistor

SRAM cell

 
 

Fig. 2.3: Routing Switch 
 

input pin

Track buffer

output pin

Logic block

 
 

Fig. 2.4: Logic Block Routing 
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Pass transistors connecting different wire segments can be modeled by equivalent 

resistances and capacitances. In this way, it is possible to lump together the 

capacitances of wire segments and pass transistors in a net or node. In other words, 

these transistors are considered part of the wire. Buffers can be treated as logic cells 

and the wires, including pass transistors, are driven by these buffers. For example, Fig. 

2.5 shows a net composed by several wire segments and pass transistors from buffer 

A to buffer B. 

buffer A buffer Bwire segment

pass transistor

 
 

Fig. 2.5: Net or node model 
 

2.2.2 Physical Capacitance 

Interconnection plays a prominent role in determining the total chip area, delay and 

power, and hence, must be accounted for as early as possible during the design 

process. In the particular case of FPGAs, the long routing tracks, with significant 

capacitance, consumes relatively a lot of power for every transition. For example, 

[Poo02] [Poo05] found for theoretical models that 57% of the total energy consumption 

is due to connections between the logic clusters. 

Power dissipation is linearly dependent on the physical capacitances driven by 

individual gates. So, once a design is mapped, placed and routed in a specific 

technology, capacitance calculation could be easily done using information from the 

target library. Unfortunately, this is not the case for commercial FPGAs: often, 

manufacturers do not provide the information about internal nodes capacitance or at 

least they do not give it directly. This makes mandatory the development of a solution 

in this thesis for the capacitance retrieval problem and it is presented in Chapter 6. 
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2.2.3 Switching Activity 

In addition to voltage and physical capacitance, switching activity is the third factor 

that determines the dynamic power consumption. A chip may contain a high amount of 

physical capacitance, but if there is no switching in the circuit, then no dynamic power 

will be consumed. In a combinational circuit, if two consecutive and identical vectors 

are presented at the circuit inputs, no power is dissipated. The data activity determines 

how often this switching occurs. There are two components to the switching activity: 

1. fclk which determines the average periodicity of data arrivals, and  

2. E(sw) which determines how many transitions each data arrival will 

generate.  

Fclk and E(sw) are strongly related. Fclk can not be unlimitedly increased. The 

corresponding signal must have enough time, 1/fclk, to reach the steady state before the 

arrival of the new input vector. 

For circuits that do not experience glitching, E(sw) can be interpreted as the 

probability that a power consuming transition will occur during a single data period. 

Even for these circuits, calculation of E(sw) is difficult as it depends not only on the 

switching activities of the circuit inputs and the logic function computed by the circuit, 

but also on the spatial and temporal correlations among the circuit inputs. 

For certain design styles, glitching can be an important source of signal activity. 

Glitching refers to spurious and unwanted transitions that occur before a node settles 

down to its final steady-state value. Glitching often arises when paths with unbalanced 

propagation delays converge at the same point in a circuit. Since glitching can cause a 

node to make several unnecessary power consuming transitions, it should be avoided 

whenever possible [Boe95]. 

The data activity E(sw) can be combined with the physical capacitance C to obtain 

switched capacitance, Csw = C.E(sw), which describes the average capacitance 

charged during each data period 1/fclk. It is a useful magnitude for comparing 

implementations running at different clock frequencies and with different voltages. 
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2.3 Switching Activity Computation 
The computing of switching activity in a logic circuit is difficult because it depends on 

a number of parameters. Some of these parameters are technology-dependent factors 

and will be treated below. The input pattern dependence, the delay model at each 

design stage, the circuit logic function and, for some techniques, the circuit structure, 

are not technology-dependent factors. The impact of these factors on the circuit node 

activity will be illustrated in the following sections. 

2.3.1 Dependence on the Input Patterns 

N Input I Input J Output Tr

1 0-0 0-0 0-0 N 

2 0-0 0-1 0-0 N 

3 0-0 1-0 0-0 N 

4 0-0 1-1 0-0 N 

5 0-1 0-0 0-0 N 

6 0-1 0-1 0-1 Y 

7 0-1 1-0 0-0 N 

8 0-1 1-1 0-1 Y 

9 1-0 0-0 0-0 N 

10 1-0 0-1 0-0 N 

11 1-0 1-0 1-0 Y 

12 1-0 1-1 1-0 Y 

13 1-1 0-0 0-0 N 

14 1-1 0-1 0-1 Y 

15 1-1 1-0 1-0 Y 

16 1-1 1-1 1-1 N 

Table 2.1: Activity for an AND gate with independent inputs 
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For example, consider a two-input AND gate g with independent inputs I and J 

whose signal probabilities are ½, then Eg (sw) = 3/8. This holds because in 6 out of 16 

possible input transitions, the output of the two-input AND gate makes a transition as is 

shown in Table 2.1. 

Now suppose that it is known that only patterns 00 and 11 can be applied to the 

gate inputs and that both patterns are equally probable, then Eg (sw)=1/2 (Table 2.2). 

N Input I Input J Output Tr

1 0-0 0-0 0-0 N 

2 0-1 0-1 0-1 Y 

3 1-0 1-0 1-0 Y 

4 0-0 1-1 0-0 N 

Table 2.2: Activity for an AND gate with spatial dependence among the inputs 
 

Alternatively, if one assumes that it is known that every 0 applied to input I is 

immediately followed by a 1, while every 1 applied to input J is immediately followed by 

a 0, then Eg (sw) = 4/9 (Table 2.3). 

N Input I Input J Output Tr

1 0-1 0-0 0-0 N 

2 0-1 0-1 0-1 Y 

3 0-1 1-0 0-0 N 

4 1-0 0-0 0-0 N 

5 1-0 0-1 0-0 N 

6 1-0 1-0 1-0 Y 

7 1-1 0-0 0-0 N 

8 1-1 0-1 0-1 Y 

9 1-1 1-0 1-0 Y 

Table 2.3: Activity for an AND gate with temporal dependence among the inputs 
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Finally, if one assumes that it is known that I changes whenever J changes its value, 

then Eg (sw) = ¼ (see Table 2.4). 

N Input I Input J Output Tr

1 0-0 0-0 0-0 N 

2 0-0 1-1 0-0 N 

3 0-1 0-1 0-1 Y 

4 0-1 1-0 0-0 N 

5 1-0 0-1 0-0 N 

6 1-0 1-0 1-0 Y 

7 1-1 0-0 0-0 N 

8 1-1 1-1 1-1 N 

Table 2.4: Activity for an AND gate with spatial-temporal dependence among the inputs 
 

The first case is an example of spatial correlations between gate inputs; the second 

case illustrates temporal correlations; while the third case describes an instance of 

spatial-temporal correlations. 

In general there are first order and higher order temporal correlations. In the first 

case the next value of a signal depends on its current value. In the second case it also 

depends on the n previous values. 

There are also special names for some types of correlations for internal signals. 

Spatial, temporal and spatial-temporal correlations at state lines, induced by a finite 

state machine, are known as sequential correlations. Even if primary inputs are 

uncorrelated, the state lines can be strongly correlated. Another interesting case of 

spatial correlation in internal signals is due to reconvergent fanout known as structural 

correlations. Reconvergent nodes are explained below in this Chapter. A very 

interesting study of the effects of correlations on power estimation methods is 

presented in [Sch96a]. 

With the previous examples, it is clear that the straightforward approach of 

estimating power just by using a simulator and applying a big but arbitrary set of input 
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patterns may give erroneous results due to this pattern-dependence problem. 

Experiments that quantify this fact are presented in this thesis. 

It is clearly unfeasible to estimate the power consumption by exhaustive simulation 

of the circuit. Even for a combinational circuit with n inputs, it is not enough to apply the 

2n combinations because the activity depends on the node state after the last applied 

vector. In the restrictive case of uniform distribution, the number of combinations is 22n. 

Some techniques have been proposed to overcome this difficulty by using probabilities 

that describe the set of possible logic values at the circuit inputs. Some mechanisms to 

calculate these probabilities for gates inside the circuit have also been proposed. 

Alternatively, exhaustive simulation may be replaced by Monte-Carlo simulation with 

well-defined stopping criterion for specified relative or absolute error in power estimates 

and a given confidence level [Naj98]. A survey of activity estimation techniques will be 

presented in Chapter 3. 

2.3.2 Delay Model 

Any power estimation techniques must account for steady-state transitions (which 

consume power and are necessary to perform a computational task). Based on the 

used delay model also the glitches could be considered (which dissipate power without 

doing any useful computation). Sometimes, the first component of power consumption 

is referred to as the functional activity while the latter is referred to as the spurious 

activity. It is shown in Chapter 5 that the average number of transitions per clock cycle 

in a combinational multiplier reaches high values in some nodes. The spurious power 

dissipation may be more significant in FPGAs than in ASICs because of the relative 

importance of the nets [Sha02]. 

Current power estimation techniques often handle both zero-delay (non-glitch) and 

real delay models. In the first model, it is assumed that all changes at the circuit inputs 

propagate through the internal gates of the circuits instantaneously. The latter model 

assigns a finite delay to each gate in the circuit and can thus account for the hazards in 

the circuit. A real delay model, post P&R, increases the computational requirements of 

the power estimation techniques while improving the accuracy of the estimates. On the 

other hand, support for the zero-delay models is useful for power estimation in early 

stages of the design process. Furthermore, between these two simulation models, 
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there are others coming from different points in the design flow (post synthesis, 

technology mapping, and place). The closer the simulation model is to the post P&R 

version, the more accurate could be the estimation. 

The computing of spurious activity requires careful logic and circuit level 

characterization of the gates in a library as well as detailed knowledge of the circuit 

structure. This means that different results will be obtained if the estimation is done 

using a model generated before the technology mapping, when no technological data 

may be taken into account and no timing information is available; or after the 

technology mapping, when timing information is available just for the logic but not for 

the nets; or after the place and route, when a complete timing information is available. 

VHDL users know how to write abstract, technology independent descriptions, but 

now it is necessary to simulate the actual hardware. How can such a simulation be 

done? The answer is VITAL (IEEE 1076.4 standard) [VIT01]. The VITAL (VHDL 

Initiative Towards ASIC Libraries) is a modeling specification that defines a 

methodology which promotes the development of highly accurate, efficient simulation 

models for ASIC components in VHDL. 

2.3.2.1 The IEEE VITAL Standard 

The way to describe “physical” hardware in VHDL is to write VHDL models of those 

components. This is supported in VHDL through the use of instantiation. Historically, 

gate-level simulation using VHDL has been notoriously slow. This led to the creation of 

the 1076.4 working group to provide a mechanism to allow fast gate-level simulation 

using VHDL. Their effort became known as the VITAL standard. VITAL is not an issue 

for VHDL designers, but an EDA vendor/ASIC supplier issue. A simulator is VITAL 

compliant if it implements the VITAL package in its kernel. 

The FPGA vendor’s library elements need to be implemented entirely in VITAL 

primitives. They also provide tools that generate these VHDL models from post map, 

P&R, etc. proprietary files. Also note that, with the VHDL model, a SDF (Standard 

Delay Format) file [SDF01] is generated. The SDF file contains timing data and the 

VITAL compliant simulator, having implemented an SDF reader, directly imports it into 

the simulator. The naming conventions and types of VITAL generics provide the 

placeholders to load timing data via back-annotation. 
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Although an SDF file specifies delays as min:typ:max values, only one of these 

values will be used for back-annotation. The selection of the specific delay values (min, 

typ or max) could be done by the back-annotation program under a user controlled 

option. 

2.3.3 Logic Function 

In the first place, switching activity at the output of a logic gate depends on the 

Boolean function of the gate itself. For example, under the assumption that the input 

signals are uncorrelated, switching activity at the output of a two-input NAND or NOR 

gate is 3/8 and at the output of a two-input XOR gate is ½ (see Table 2.5). 

N Input I Input J Output NAND NOR XOR

1 0-0 0-0 0-0 N N N 

2 0-0 0-1 0-0 N Y Y 

3 0-0 1-0 0-0 N Y Y 

4 0-0 1-1 0-0 N N N 

5 0-1 0-0 0-0 N Y Y 

6 0-1 0-1 0-1 Y Y N 

7 0-1 1-0 0-0 N N N 

8 0-1 1-1 0-1 Y N Y 

9 1-0 0-0 0-0 N Y Y 

10 1-0 0-1 0-0 N N N 

11 1-0 1-0 1-0 Y Y N 

12 1-0 1-1 1-0 Y N Y 

13 1-1 0-0 0-0 N N N 

14 1-1 0-1 0-1 Y N Y 

15 1-1 1-0 1-0 Y N Y 

16 1-1 1-1 1-1 N N N 

Table 2.5: Activity for different logic gates 
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Indeed, switching activity at the output of a K-input NAND or NOR gate approaches 

½K-1 for large K whereas that for a K-input XOR gate remains at ½. The proposition for 

a K-input NAND gate can be demonstrated as follows.  

As mentioned, the number of input vector combinations, when activity is studied at a 

gate or circuit output, is 22K, being K the number of primary inputs. In order to analyze a 

K-input NAND gate, all the combinations can be arranged in groups. In each group the 

first K-input vector is kept fixed, and for the second k-input vector has 2K combinations. 

In all but one group there is just one case where a 1 to 0 transition is generated, when 

the second vector is formed by all 1’s. The exceptional group is the one with the fixed 

vector with all 1’s, where the possible transition is from 0 to 1. This happens in all the 

cases in the group except when the second vector is also the one formed by all 1’s, 

keeping the gate output at logic 0. 

Then, there are 2K–1 groups with one transition, and one group with 2K–1 

transitions. The transition probability for the NAND gate where the inputs are 

independent is: 
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If K is big enough the second constant term can be neglected, then: 
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The demonstration for the K-input NOR gate can be developed in the same way. 

2.3.4 Circuit Structure 

If probabilistic techniques are used to estimate the switching activity, probabilities 

are calculated and propagated from primary inputs to the inner nodes and finally, to the 

circuit outputs. But dependencies among the inputs complicate probability calculations. 

Although primary inputs were supposed uncorrelated other dependencies originated on 

the circuit structure remain: the reconvergent nodes, circuit nodes that receive inputs 

from two paths connected to some gate output (Fig. 2.6). If a network consists of 

simple gates and has no reconvergent fan out nodes, then the exact switching activities 

can be computed during a single post-order traversal of the network [Ped94]. For 
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networks with reconvergent nodes, the problem is much more challenging, as internal 

signals may become strongly correlated and exact consideration of these correlations 

cannot be performed with reasonable computational effort or memory usage. Current 

power estimation techniques either ignore these correlations or approximate them, 

thereby improving the accuracy at the expense of longer run times. Exact methods 

(i.e., symbolic simulation) have also been proposed, but are impractical due to 

excessive time and memory requirements. 

 
Fig. 2.6: Example of a reconvergent node 

 

2.3.5 Technology-dependant Factors 

In actual networks, statistical perturbations of circuit parameters may change the 

propagation delays and produce changes in the number of transitions because of the 

appearance or disappearance of glitches. For that reason it is useful to determine the 

change in the signal transition count as a function of these statistical fluctuations. 

Variation of gate delay parameters may change the number of glitches occurring 

during a transition as well as their duration. In this way, the spurious component of 

power dissipation is sensitive to IC parameter fluctuations [Ben94]. 

2.4 Conclusions 
The need for lower power systems is crucial in electronic applications from portable 

devices to high-end computers. Nevertheless, designing for low power adds another 

dimension to the already complex VLSI design problem: the design has to be optimized 

for power as well as for performance and area. 

Optimizing these three axes necessitates a new generation of EDA tools at all 

design phases. These power aware tools and methodologies include power estimation 

tools. Behavioral synthesis, logic synthesis and layout optimization tools require 
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accurate and efficient estimation of the power consumption of alternative 

implementations. 

There are several sources of power consumption in CMOS circuits (Fig. 2.7) but the 

dynamic power is the main component. In order to estimate the dynamic power 

consumption, both activity and capacitance must be gauged. Activity is hard to 

estimate because its dependence on the input patterns (known as the pattern-

dependence problem). Nevertheless, the capacitance recovery is a specific design 

problem for commercial FPGAs because of the lack of these data or any direct 

information about how to calculate the capacitance at each circuit node. 

 

 
 

Fig. 2.7. Sources of power consumption in CMOS circuits and FPGAs 
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Chapter 3. 

“If it (the author refers to questionable estimations about power consumption of 

computer equipment in the USA) were correct , we are approaching a notable 

inflection point in human affairs, where we expend as much effort in moving 

information as we do in moving matter.” From “The Computer and the Dynamo” by 

Brian Hayes [Hay01] 

3 Power Estimation Techniques 

The problem of design for low power cannot be achieved without accurate power 

prediction and optimization tools. Power dissipation must be estimated as soon as 

possible and during all the design process –in particular within an optimization loop- to 

meet the power budget without having to go through a costly redesign effort. When 

designing the corresponding PCB, the power consumed by the devices needs to be 

estimated as accurately as possible to design the power supplies, voltage regulators, 

heat sink and cooling system. Since FPGAs provide short design cycles and a fast 

time-to-market, the PCB is usually designed at the same time as the logic for the 

FPGAs. It means power estimation should de done as soon as possible for FPGA. 

Several techniques for VLSI power estimation that deal with the pattern-dependence 

problem were proposed some years ago [Gho92] [Naj94]. Nevertheless, the problem is 

not completely solved yet, even at the gate level. Due to the computational complexity 

of power estimation, high accuracy and short run-time cannot be met together. This 

problem is observed for average power estimation in individual gate power estimation; 

and for total average power consumption in large sequential circuits [Koz01]. 
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There are some issues to be considered together with accuracy, in order to evaluate 

the techniques in practice: 

• As with all the design restrictions, the power budget must be considered in 

all the design stages, especially in the earlier ones. In this way, it must be 

provided with the design specifications. In other words, there should be 

estimation tools from the beginning of the design stages. If a power 

consumption problem is detected later, all the known drawbacks found in 

engineering could happen when deviations from the specification are 

discovered later. 

• If the technique is not useful for the large circuits found in today and future 

practice, it is not effective because these circuits are generally the ones that 

have the highest power consumption. 

• The switching activity is the most difficult factor to obtain in the power 

consumption equation. The strong dependency on input patterns could be a 

problem considering the lack of this information within the design process, 

especially in the first stages. 

In this Chapter, various techniques for power estimation at the circuit, and logic level 

are reviewed. These techniques are classified according to the approach they are 

based on: probability or statistics. The design level and the type of circuits they could 

be applied to (combinational, sequential) are clearly mentioned when necessary. In 

addition, the first section groups together earlier techniques that produce power values 

but do not consider the pattern-dependence problem and could not be applied to 

current (with more than a few hundred gates) designs. 

In the FPGA world, the techniques that operate over logic-level descriptions are very 

useful because these descriptions can be easily obtained from the RTL ones through 

synthesis. Other approaches try the power estimation problem starting from high-level 

descriptions [Buy05] in order to use them within power-aware EDA tools. However, this 

work is mainly focused on techniques based on logic-level descriptions due to two 

reasons. Techniques based on high-level descriptions also present high levels of error 

because these techniques will never have the necessary technological details to obtain 

precision and; as mentioned above, techniques developed for logic-level descriptions 
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can be used starting from synthesizable RTL descriptions that could be considered a 

high-enough level of abstraction. In Chapter 4, the implementation of a statistical-based 

approach at the logic-level is presented, and its details are given in Chapters 5 and 6. 

3.1 Power Estimation History –or Simulative 
Approaches 

3.1.1 SPICE-like Circuit Simulation 

The simplest techniques for power estimation are based on circuit simulation, where 

the circuit is evaluated with a representative set of input vectors. They are accurate and 

capable of handling various technologies, different circuit design styles, single and 

multi-phase clocking methodologies, tri-state drives, etc. However, this technique 

experiences two serious problems. The model size for large, cell-based designs leads 

to efficiency problems: memory and execution time became strong constraints for its 

applicability. However, the most important problem is the size of the stimulus vector set 

necessary to calculate accurately the activity. As was mentioned in Chapter 2, the 

number of possible combinations at primary inputs is 22n. Still running this huge 

simulation, the real distribution of the stimuli and its correlations should be considered. 

This is known as the pattern-dependence problem. 

The first problem, the efficiency, can be tackled simplifying the model as is shown 

below. On the other hand, to solve the pattern-dependence problem two approaches 

have been developed. The first approach is statistical and the second is based on 

probabilities. 

In the next sub-sections, several simulation-based techniques are presented sorted 

in an increasing order of efficiency (but decreasing order of accuracy). 

3.1.1.1 Timing Simulators 

The efficiency can be improved based on simplified table-driven device models, 

circuit partitioning and single-step nonlinear iteration but with some inaccuracy in 

modeling leakage effects. PowerMill of Epic Design Technology [Den94] is a transistor-

level power simulator and analyzer, which applies an event-driven timing simulation 

algorithm to increase the speed by two to three orders of magnitude over SPICE.  
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3.1.1.2 Switch Simulators 

The transistor model can be further simplified to a simple resistive switch using a 

discrete data representation (0, 1, X, for example). Switch-level simulation techniques 

are in general much faster than circuit-level simulation techniques, but are not as 

accurate. Examples of switch-level simulators are IRSIM or the IRSIM-CAP simulator 

[Lan94], which is a modification of IRSIM. 

3.1.1.3 Gate Level Simulators 

These simulation programs rely on the accuracy of the macromodels built for the 

gates in the ASIC library as well as gate-level timing analysis. The accuracy depends 

heavily on the quality of the macromodels, the glitch filtering scheme used and the 

accuracy of physical capacitances provided at the gate level. The speed is 3-4 orders 

of magnitude faster than SPICE. 

In [Büh00], using these simulators, a gate level switching activity estimation is 

presented based on bit-parallel simulation first published in [Sch95]. The first 

optimization is made executing several bitwise operations in parallel within the same 

processor instruction. This algorithm also offers some improvements in memory 

management and data structures. 

3.1.1.4 Hierarchical Simulation 

The idea is to use a hierarchy of power simulators (for example, at architectural, 

gate-level and circuit-level) to achieve a reasonable accuracy and efficiency tradeoff. 

For example, see the Entice-Aspen tool [Geo94]. This power analysis system consists 

of two components: Aspen, which computes the circuit activity information, and Entice 

which computes the power characterization data. A stimulus file must be supplied to 

Entice where power and timing delay vectors are specified. The set of power vectors 

discretizes all possible events in which power can be dissipated by the cell. With the 

relevant parameters set according to the user’s specifications, a SPICE circuit 

simulation is invoked to accurately obtain the power dissipation of each vector. During 

logic simulation, Aspen monitors the transition count of each cell and computes the 

total power consumption as the sum of the power dissipation for all cells in the power 

vector path. 
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3.2 Statistical Approaches 

3.2.1 Monte Carlo Simulation 

Although the techniques shown in this section make use of standard simulators, the 

difference to the previous simulative approaches is that in this case the techniques are 

based on statistics. The first statistical technique for power estimation is a Monte Carlo 

simulation that minimizes the pattern dependence problem. 

The first paper in this direction, for total average power estimation over 

combinational circuits, is [Bur93]. Other work extended its scope in order to estimate 

the average power for individual gates ([Xak94] [Naj98]). 

The technique proposed in [Bur93] is based on the assumption that  

the power consumed by the circuit over a long enough period T has a normal distribution. 

It is made up of applying randomly generated input patterns at the circuit primary 

inputs and monitoring the power dissipation per time interval T using a standard 

simulator. The required number of power samples is expected to be a small fraction of 

the total number of possible vector combinations. It is calculated in function of a 

tolerated relative error at a given confidence level which enables the user to tune the 

accuracy of the measurement. This accuracy requires a given computational effort. 

The first point to be noted is that existing simulators can be used in the inner loop of 

the Monte-Carlo program. It makes the technique easier to implement than the 

probabilistic ones as is shown below, which require the development of specialized 

simulators. In addition, the convergence time for this approach could be fast enough to 

compete with the probabilistic techniques whose main advantage is its speed. This is 

due to the dimension independence property of Monte Carlo techniques: the number of 

samples required to make an estimate is independent of the problem size ([Bur93]). In 

any case, despite the sample size, big designs require more time because a longer 

simulation time is required to evaluate each single input vector. Another factor that 

contributes to the speed is the distribution of the overall circuit power: that is generally 

very nearly Gaussian and very narrow around its mean. Naturally, it will be shown that 

the lower the required accuracy, the faster the power estimation. 
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A weakness of the technique presented in [Bur93] is that when the power 

consumption values on individual nodes are required, the convergence is very slow. In 

addition, the method does not handle spatial correlations at the circuit inputs. Finally, 

this statistical technique is directly applicable only to combinational circuits. 

The power consumption for individual nodes is solved in [Xak94] [Naj98]. The 

original approach is extended for sequential circuits in [Sax02], but other statistical 

techniques are also developed for sequential designs ([Koz01]). The limitation of the 

spatial correlations at the circuit inputs is not so severe compared with the probabilistic 

approach, where they are hard to manage even at the internal nodes. For total power, 

[Sch96a] reports 10-25% of additional error for several circuits when spatial 

correlations at internal signals are ignored. 

3.2.2 Total Power (McPower) 

Code 3.1 shows the main loop of the statistical estimation as it was presented in the 

first version ([Bur93]). Two stages compose each iteration, and both are critical in order 

to guarantee the correctness of the measurement. 

1 Repeat 
2  // guarantees that typical power is measured 
3 Setup; 
4 // ensures the correctness of the stopping criterion 
5  Sample; 
6 // average power is measured 
7 Until (Stop (mean_pow, stdev_pow)); 

Code 3.1: Basic Monte Carlo power estimation algorithm 
 

The setup phase serves to guarantee that power values observed at the end of 

successive intervals are samples of independent random variables as required by the 

method. The power is not measured in the setup phase. At the end of this phase, the 

circuit is as if it were operating in a random point of time. The exact application of this 

phase depends on whether the circuit is purely combinational, or being combinational, 

if it has registered inputs. 

The power values observed during the sample phase are noted down and used to 

decide when to stop. The duration of this phase is specified by the user, allowing a 

number of transitions per sampling interval on each input. For every input signal xi, a 
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random number generator sets its value with probability P(xi). Once xi has switched, 

another random number generator decides the duration of the new state following the 

distributions )(1 tFxi  and )(0 tFxi , for the high and low values respectively. The probability 

P(xi) and distributions )(1 tFxi  and )(0 tFxi  are supplied by the user, but it can be 

simplified asking the user just the average time the input is high and low: 1
xiμ  and 0

xiμ . 

For combinational circuits with registered inputs, the duration of this phase would be a 

discrete multiple of the clock period. 

If the power consumed by a circuit over a period T has a distribution that is very 

close to normal and the successive input patterns are independently generated, then 

the following stopping criterion can be derived. It can be shown that the number, N, of 

measurements (sample size) is: 
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Where p is the measured power average of the random sample over a period T, s is 

the standard deviation of the power random sample, (1-α)*100% is the confidence that 

relative error, ε, in the measurement is less than a specified value. Tα/2 is obtained from 

the t-distribution with (N–1) degrees of freedom. 

Nevertheless, the major disadvantage of this approach is that it is very slow to 

provide the power consumed by individual gates or small groups of gates. These 

estimations are useful to diagnose high consumption problems, find the circuit parts 

that consume more energy, and reliability estimation. Another important use of this 

information is to optimize a design for low power at the technology mapping, placement 

or routing stages. It would take a bigger sample to estimate (with the same accuracy) 

the power of individual gates, because some gates may switch very infrequently, and 

as p decreases in Eq. 3.1, N increases. This problem is known as the slow 

convergence problem. 
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3.2.3 Power of Individual Gates (MED) 

This statistical technique is a direct extension of McPower. It provides both the total 

and individual-gate power estimates [Naj98], with the same benefits shown above. 

Preliminary results of this extension were presented in [Xak94].  

In order to solve the slow convergence problem for individual gates it is proposed a 

new stopping criterion. At each iteration, the number of transitions at every node, ni, is 

written down and its average n and standard deviation s are calculated. Ni/T is an 

estimation of the transition density, D(xi), at node i. 

According to the Central Limit Theorem, the average n = ∑ ni/N has a distribution 

which is close to normal for large N. For N > 30, that typically is the minimum number 

to satisfy near-normality, ε1 is a sample upper bound of the percentage error, 
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This may also be expressed as the percent deviation from the population mean η: 
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Where ε is the user specified error tolerance. Thus Ec. 3.2 provides a stopping 

criterion to yield the user specified accuracy (Ec. 3.3), with confidence (1 - α) x 100%. 

However, the slow convergence problem has not been solved yet. In order to 

overcome it, a threshold for the average transition count, nmin, is defined. This limits the 

maximum iteration number tolerated by the algorithm. The following modified stopping 

criterion is proposed for nodes with n < nmin: 
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It is shown in [Naj98] that nmin.ε becomes an absolute error bound characterizing the 

accuracy for low-density nodes. With confidence (1 - α) x 100%: 

εη α
min

2/ n
N

szn ≤≤−  

In short, the circuit nodes have been divided in two sets. For the regular nodes, 

where n > nmin, Ec. 3.2 is used as stopping criterion. For low-density nodes, where n < 

nmin, it is used Ec. 3.4. In both cases, the stopping criterion is tested after N > 30.  

Low-density nodes have the least effect on circuit power. Therefore, the above 

strategy reduces the execution time, with little or no penalty. All the results presented in 

[Naj98] are also verified in this thesis for circuits implemented on FPGA. 

Another point clarified in this second version of the technique is the use of two 

operation modes, synchronous and asynchronous mode. In the synchronous mode the 

inputs are generated as if they were part of a synchronous circuit with its inputs coming 

from registers.  

In this way, the specific setup and sample routines are selected according to the 

operation mode. In the synchronous mode the input pulse widths are multiples of the 

clock period, Tc and a clock cycle is enough for setup. Instead of this, in the 

asynchronous mode the time between transitions and setup are as explained in 

[Bur93]. 

3.2.4 Improvements in Statistical Methods 

The problem with the classical statistical estimation method is the execution time. 

Current big designs could require unacceptable run times when the user specifies 

medium or high accuracy requirements. In this thesis an improvement for the classical 

Monte Carlo power estimation method for individual nodes is presented. Equally, some 

tasks that presented results in this subject are briefly commented in this section 

The first approach to solve this slow convergence problem was presented in 

[Xak94]. As is explained in the previous section, the nodes with less activity than a 

threshold ηmin are considered low-activity nodes. For these nodes, an absolute error 

bound ηmin.ε is obtained. Even with this improvement, high execution times are 

observed while the accuracy is exceeded for regular nodes. In [Kwa98], circuit nodes 
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are partitioned in M groups according to their contribution to the total power dissipation, 

gradually decreasing the error to the high power groups. This error-to-group 

assignment is computed using a quadratic programming formulation. In [Din00] the 

authors present efficient sampling techniques for estimating the total power 

consumption of large hierarchical circuits. 

3.3 Probabilistic Approaches 
The other strategy to deal with the pattern dependence problem is probabilistic. In 

the statistics-based strategies the circuit under test is simulated with a number of 

patterns and after that, the resulting waveforms are processed as shown in Fig. 3.1. 

On the other hand, if an appropriate probability characterization for circuit inputs is 

provided, the circuit can be simulated just once. In this way, some processing must be 

done somehow before the simulation run to compute the required probability values at 

the inputs. Thus, a single run of a probability analysis tool replaces a number of 

conventional circuit simulation runs. The issues to be defined for each specific 

technique in the following paragraphs are: 

• what probability measures are required, 

• how they must be obtained, and 

• what type of analysis or simulation must be done. 

 
Fig. 3.1: Probabilistic (bottom) vs. Statistic approach (top) 

 

As the results of the analysis still depend on the supplied probabilities –because the 

user must specify the typical behavior at the circuit inputs- it is said that techniques 
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based on probabilistic approaches are weakly pattern dependent, like the statistical 

ones. 

3.3.1 Some Important Definitions 

In this sub-section, the main probability definitions used in these power estimation 

techniques are briefly presented. 

3.3.1.1 Definition 3.1: Signal Probability 

The signal probability at a node x, Ps(x), is defined as the average fraction of clock 

cycles in which the steady state value of x is a logic high. 

It’s important to observe that this measure is not affected by the circuit internal 

delays because steady state values are taken into account. 

3.3.1.2 Definition 3.2: Transition Probability 

The transition probability at a node x, Pt(x), is defined as the average fraction of 

clock cycles in which the steady state value of x is different from its initial value. 

As for signal probability, transition probability is not affected by the circuit internal 

delays. If these measurements are used to estimate power consumption in internal 

circuit nodes, toggle power (and spurious activity) is immediately excluded. But if it is 

used at circuit primary inputs, generally registered, there is no possibility of glitches, 

thus there is no lack of precision. In this way, signal probability and transition 

probability are good candidates to specify signal characteristics at circuit inputs. 

Assuming a zero delay model, power consumption can be computed as: 
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 (Eq. 3.5) 

Eq.3.5 gives a lower bound for Pav, compared with the general definition (Eq. 2.6) 

since Eq. 3.5 assumes at most one transition within a clock cycle. 

The transition density, takes into account gate delays. It was introduced after the 

above definitions in [Naj91] and [Naj93]. The model for logic signals x(t) do not take 
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into account waveform details as the rise/fall times, over/under-shoots, etc. being just a 

function of the time that takes the values 0 or 1. 

3.3.1.3 Definition 3.3: Transition Density 

If a logical signal x(t) makes nx(T) transitions in a time interval T, then the transition 

density of x(t) is defined as: 

T
TnxD x

T
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→∞

=
  (Eq. 3.6) 

The transition density takes into account gate delays, so average power dissipation 

can be accurately computed as: 
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 (Eq. 3.7) 

Instead of using D(x), expressed in transitions per time unit, it is useful in 

synchronous circuits, to employ the transition number per clock cycle. 

3.3.1.4 Definition 4: Equilibrium Probability 

If x(t) is a logic signal, then its equilibrium probability is defined as: 
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 (Eq. 3.8) 

Equilibrium probability is the signal probability version taking into account gate 

delays. If a zero-delay model is assumed, P(x) = Ps(x). 

3.3.2 Probabilistic Power Estimation Techniques 

The first paper found applying probabilistic techniques for VLSI power estimation is 

[Cir87] where zero-delay model and spatial and temporal independence is assumed. 

Required probability measurement at circuit inputs: Signal probabilities, Ps(xi). 

Analysis algorithm: Signal probabilities are propagated from primary inputs using 

basic probability theory. 

Example: Let y = AND (x1, x2) 
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Given x1, x2 spatially independent; both signals with probability Ps(x1) and Ps(x2):  

)().()( 21 xPxPyP sss =  

3.3.2.1 Probabilistic Simulation 

In [Naj90], the reliability was studied more than the power, where the shape of the 

current waveform and not only its average current is important. The values at each time 

of the expected current waveform are calculated as the weighted average of all 

possible current values. 

Restrictions: Spatial independence at primary inputs is assumed but temporal 

independence is not. 

Required probability measures at circuit inputs: Probability waveforms. They are 

sequences of values indicating repeatedly the probability that the signal is high for a 

time interval and the probability that it makes a transition from low to high at the end of 

the interval. The transition times separating these intervals are deterministic. Fig. 3.2 is 

an example where the probability waveform is computed from four probable logical 

waveforms of a signal. 

 
Fig. 3.2: Probability waveform computed from four logical waveforms 

 

The drawback is the way to obtain the probability waveform. There are two 

(impractical) options: direct writing of the real number sequence, and obtaining it from a 

representative set of logical input waveforms. At least what should be the waveform 

length is not a trivial decision at any of the digital circuit design steps. Therefore, any 
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extension of [Naj90] should give a method to obtain a statistical-proved representative 

waveform. 

Analysis algorithm: It is said that the simulator is probabilistic since it operates on 

probability waveforms but the simulation algorithm itself is deterministic. The spatial 

independence on internal nodes is managed through supergates, built on a partition of 

the circuit. But it is observed that it is computationally expensive to manage large 

supergates. 

Probability waveforms are propagated from primary inputs computing the 

corresponding probability waveforms at all nodes. The propagation algorithm is similar 

to event driven logic simulation with a delay model. Indeed, the technique enables 

specifying logical waveforms at circuit inputs, so logical and probability waveforms can 

coexist in this algorithm. When an event occurs at a gate input, the gate generates an 

output event scheduled after a determined time delay. 

The reported results are within 20% for peak currents and 10% for average current, 

which can be used to estimate average power according to: 

avddav IVP .=
  (Eq. 3.9) 

3.3.2.2 Transition Density Propagation 

As in the technique explained above, in [Naj93] the activity is studied as causing 

stress failures. In addition to average power estimation, this technique can be used to 

estimate the average power and ground currents, the susceptibility to electromigration 

failures, and the extent of hot-electron degradation. 

Restrictions: Spatial independence at primary inputs is assumed. 

Required probability measurements at circuit inputs: For each input, equilibrium 

probability and transition density must be specified. 

Obtained measurements: Immediate. 

Analysis algorithm: as a digital circuit maps the logic signals from the primary inputs 

to every internal node, also the statistics of every internal node are determined by 

those at primary inputs. In fact, this technique gives an algorithm to compute the 
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transition density and equilibrium probability at every node from those given at primary 

inputs. 

The circuit is considered as an interconnection of logic modules, each representing 

a combinational logic function with certain delay characteristics. The propagation of the 

transition density and equilibrium probability is done module by module and is called 

density simulation. [Naj93] shows that propagation can be reduced to the propagation 

problem in a zero-delay logic module. It is also important to understand how the 

partition of the circuit under test in logic modules affects the accuracy. Exact 

measurements can be obtained for a partition without reconvergent fanouts. 

Nevertheless, they were reported as poor as 32% error for the lowest level partitioning 

on an ISCAS-85 benchmark circuit. 

Before explaining the density propagation problem, it is important to review the 

Boolean Difference definition (⊕ denotes the exclusive-or operation): 
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 (Eq. 3.10), 

Being x an input and y an output of the considered logic module, observe that only if 

δy/δx is 1, then a transition at x will cause a transition at y. Then, in [Naj93] it is 

demonstrated how the density can be calculated at a logic module output given the 

transition densities at the n (spatially independent) primary inputs: 
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  (Ec. 3.11) 

Intuitively, each input signal contributes to the total density by the average rate of 

transmitted transitions times the transition density of such input signal. If the transitions 

are transmitted from an input xi to y 50% of the times and the transition density of xi is 2 

x 106 transitions per second, then the contribution of xi to the transition density of y is 

106 transitions per second. 

There are other techniques to evaluate P(δy/δx) probabilities for use in Eq. 3.10, but 

in [Naj93], Binary Decision Diagrams (BDDs) were used. With this, the average power 

consumption can be calculated using Ec.3.7. 



Statistical Power Estimation on FPGAs 

 48 

If logic modules are chosen so that all reconvergent nodes are inside them, the 

calculated transition density is exact. But the main drawback of this technique appears 

when the size of the modules with this property becomes bigger and bigger. In such 

cases the speed-accuracy trade-off acquires importance. The partition into logic 

modules affects the calculation of D(y). 

3.4 Sequential Circuits 
The methods described in section 3 have been developed for combinational logic 

circuits. Accurate average switching activity estimation for finite state machines (FSMs) 

is considerably more difficult for two reasons: 

1. The probability of the circuit being in each of its possible states has to be 

calculated, maybe indirectly; 

2. The present state line inputs of the FSM are strongly correlated 

• Temporally correlated due to the machine behavior, as represented 

in its state transition graph and, 

• Spatially correlated because of the given state encoding. 

As for combinational circuits there are probabilistic and a statistical techniques. 

Nevertheless, in this work just the contributions among the statistical techniques are 

studied in the next section. 

3.4.1 Statistical Approaches  

The first work in this section estimates the power for the flip-flops and the 

combinational block of a sequential circuit separately extending the technique 

presented in [Naj98]. The rest of the presented papers assume that the FSM is 

embedded in the circuit and estimate the power of the circuit as a whole. 

3.4.1.1 Power Consumption of the Sequential Circuit Combinational 

Part  

In [Sax02] (the idea was firstly presented in [Naj95]) it is assumed that the studied 

sequential circuits have the synchronous design style. The power consumption for a 

combinational block of a sequential circuit could be estimated but no technique can be 
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applied if there is no information about the input patterns at all primary inputs including 

the inputs coming from state register outputs. Specifically, this information is not given 

for the state lines in a sequential circuit. Therefore, it is important to differentiate the 

two main stages in this technique for power estimation: 

1. The necessary statistics acquisitions at the state register outputs.  

2. With these statistics, any technique for combinational circuits can be applied 

over the combinational part of the sequential circuit. 

In [Sax02] a statistical technique is proposed for the first stage and just this part of 

the estimation technique will be explained. The sequential circuit is simulated under a 

zero delay model because only steady state values are important to characterize the 

activities at the state lines. It means that fast, functional simulations over a RTL or 

higher-level circuit descriptions should be used. In addition, while computing these 

statistics, the power consumption must be estimated just for the registers. 

The applied technique is based on two assumptions: 

1. The sequential circuit implements a non-decomposable FSM.(i.e. all the 

states in the FSM are reachable from all the others in a finite number of clock 

cycles), and 

2. The state of the FSM at cycle k becomes independent of its initial state as 

k → ∞. This means that the FSM must be aperiodic. 

The required statistics for the later power estimation stage on the state lines, xi(t), 

are the signal probability, P(x), and transition density, D(x). But it can be demonstrated 

that 

D(x) = P(tx) where 
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  (Eq. 3.12) 

So, it is sufficient to describe an algorithm to estimate P(xi) and the same can be 

used to estimate P(txi) = D(xi). 

The goal is to estimate P(x) for all state lines. The probability of an event A is 

denoted by P{A}. It immediately gives 
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It means that the probability that the machine is in state xi after a long time is 

independent of the state X0, at which it was initialized. Therefore, the solution requires 

solving two sub-problems: 

1. Estimating the left side of Eq.3.13 for some k and then  

2. Obtaining an adequate k that guarantees convergence. 

To solve the first problem the technique consists of running N simulations. Each run 

j, generates a waveform for each state line xi 

)()( kx j
i  with k = 0, 1, 2, ... 

An estimate for the signal probability at every time k is obtained by 
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Using a technique for the estimation of proportions, the required number of 

simulation runs N can be obtained with a given error and confidence level. If the 

confidence level is (1-α)x100% that: 
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zα/2 is such that the probability the standard normal random variable is greater than 

α/2. 
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To solve 2) two sets of N simulations are run in parallel starting at different initial 

states X0 and X1. As P(xi|X0) and P(xi|X1) must converge to P(xi), both their difference 

and average are monitored. When P(xi|X0) and P(xi|X1) are within ±ε for L consecutive 

cycles, the node convergence is declared. 

To accelerate the convergence the waveforms are filtered before checking their 

difference and average. A 100 points FIR filter with a cutoff frequency of 0.02 Hz is 

used. When all nodes converge, the simulation is terminated and the last average for 

each node is reported as its signal probability. 

For the primary input vector generation two considerations must be observed: 

1. Periodic sequences must be avoided, and 

2. The different N sequences for the N runs must be independently generated. 

3.4.1.2 Sequential Circuits with Multimodal Distributions in Power 

Consumption 

In the statistical techniques the simulation must start at a given initial state of the 

sequential circuit, but bias in the convergence should be checked. As reported for 

combinational circuits, multimodal distributions in power consumption can be found in 

sequential circuits. [Cho96] explains it by the Near-Closed (NC) sets. Intuitively, a NC 

set is a set of states that is unlike to get out or get into the set. 

In this paper, two methods are proposed to estimate power consumption for 

sequential circuits with, possibly, NC sets:  

1. If the STG modeling the sequential circuit is given, a STG based statistical 

method is used.  

2. If it is not the case, the circuit is simulated during a warm up stage before 

any data sampling. 

In this paper, it is shown how the method proposed in [Naj98] gives biased results 

when there are NC sets. 

When the STG is given, and the NC sets (Gi) are identified, the average normalized 

activity (transition probability) at node y can be estimated, using the conditional 

activities for each set: 
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  (Eq. 3.16) 

Taking into account this equation, a modified Monte Carlo technique can be applied. 

In the modified Monte Carlo method, the initial states are generated according to the 

probabilities of NC sets. Now the problem is how to compute the state probabilities. A 

general solution is presented in [Cho96]. 

In the second case, the STG is not available for the sequential circuit under study. 

As it could be the common case for a general power estimation tool, it is studied here 

in detail. Conservatively, let us assume that there are two NC sets G1 and G2: 
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In this case we do not have the probabilities but it can be shown that )( i
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very close to P(Gi) as k is big enough. 
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where E and |E| are the state space and its cardinality, and ),( jiPk . Intuitively, if 

the Markov chain starts from a state uniformly selected, at the kth clock cycle, the 

probability of arriving at any state in Gi is )( i
k

upwarm GP − . 

It can also be shown that, if transition matrix P is aperiodic and irreducible, for all i, j: 
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 (Eq. 3.18) 

π(j), the steady state probability of state j is independent of i. From (Eq. 3.14) and 

(Eq. 3.15) )( i
k

upwarm GP −  converges to P(Gi) as k approaches to infinity: 
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If P is also diagonalizable, its eigenvalues: Eλλλλ ≥≥≥≥= ...1 321 , and there 

are two NC sets G1 and G2,  
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where p1 and p2 such that 0 ≤ p1, p2 ≈ 1. It can always be found 
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Experimentally it has been found that λ2 ≈ p1 + p2 -1 and 

k
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If the allowed error is specified, the minimum k can be calculated. K is the warm-up 

period. Starting from a random initial state, and after the warm-up period, a new initial 

state is generated conforming to the probabilities of NC sets. 

As it was assumed no information on STG, λ2 and |E| are specified conservatively. 

|E| is assumed to be 2n+m considering temporally correlated primary inputs. N is the 

number of primary inputs and m is the number of state bits.3 Λ2 must be specified by 

the user, under but close to one. 

With this, k may be computed given the tolerated error, e, n, m, and λ2. For 

example, in [Cho96] some experiments are run with:    

λ2 = 0.999 

P(Gi)=0.1 ; e=1% 

n=3 ; m=3 ; 2n+m =64 

Then k999.0201.01.0 6 ×≤×  ; 11061
64
001.0log 999.0 ≅=k  

This is a rather small test circuit but with values for a long run. The next example 

can be considered with operational values. 

                                                 

3 The STG must be a Markov chain: If primary inputs were time independent this condition holds and 2n could be used for 
|E|, but as it can not be the case the Extended ETG is a Markov chain and it can have until 2n+m states. 
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λ 2 = 0.9 

P(Gi)=0.1 ; e=5% 

n=17 ; m=74 ; 2n+m =64 

Then k9.0205.01.0 91 ×≤×  ; 649
272,4759E

005.0log 9.0 ≅
+

=k  

This warm-up period requires a simulation time for each sample blindly assuming 

NC sets. In this way, this technique is considered conservative and this could lead to 

computational inefficiency.  [Yua96] proposes a solution for this problem that is 

explained below.  

3.4.1.3 A Technique to Generate a Random Sample in Sequential 

Circuits 

Statistical estimation techniques require samples of independent and identically 

distributed (iid) data. However, sequential circuits present strong correlations among 

state lines. As it was said in section 3.4.1.1, a mayor drawback in [Sax02] trying to 

solve this problem is that spatial and high order temporal correlations among state 

signals are not considered. This could yield to poor accuracy as reported in [Sch96a]. 

[Cho96] works with the conservative assumption that the FSM has two NC sets. In 

the case that an actual circuit under test does not have NC sets, this assumption leads 

to a warm-up period longer than necessary. 

In [Yua96], the problem with the correlations in sequential circuits is overcome using 

a randomness test to determine an independence interval over which the circuit should 

be simulated between two power sampling cycles. The independence interval is 

incremented until the hypothesis that the sequence is composed of iid’s is statistically 

accepted with a user-defined significance level. After this a power random sample can 

be obtained. A distribution-independent stopping criterion is then used to analyze the 

power data until the desired accuracy is achieved.  

More formally, the circuit under test dissipate P1, P2, …, Pn power values in n 

consecutive clock cycles. The sequence can be viewed as a random process { Pj }. 

Since mean estimation require random samples and the consecutive values are 

correlated, P1, P2, …, Pn cannot be directly used.  
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The task here is extracting an iid sequence from this original time series. If we 

assume that { Pj } is Φ-mixing4 and stationary with finite variance, there exists an 

interval of m clock cycles, such as Pk, Pk+m, Pk+2m … which are independent. If we find 

such independent interval m, a random sample can be constructed by recording the 

power dissipation once every m clock cycles. 

[Yua96] propose the use of a randomness test, the ordinary run test, belonging to 

the category of a non-parametric hypothesis test, to examine the statistical 

independence of the data in the power sequence and then to choose a proper 

independence interval; which is used to generate a random sample. 

The ordinary run test works on an ordered sequence of two-symbol data. In these 

sequences, a run is defined as a succession of one or more identical symbols limited 

by the other symbol. The hypothesis is that the sequence is randomly generated. If it is 

true, the number of runs has a normal distribution. 

Let an ordered sequence contain m and n symbols of each type. The total number 

of elements is N=m+n. Let U be the number of runs in the sequence. If the hypothesis 

is true, U has an asymptotic normal distribution. 

The z statistic is:  
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 (Eq. 3.21) 

A small z in absolute value statistically indicates that the hypothesis H is true.  

H: The sequence is random. 

A: The sequence is not random.  

 (Eq. 3.22) 

                                                 

4 Φ-mixing refers to the property that the future behavior of { Pj } becomes more and more independent of its past as the 
distance in time increases. 
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Let a value c > 0 such that H is accepted if  

|z|< c  (Eq. 3.23) 

The user specifies a value α, called the significance level, and c is calculated by: 
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  (Eq. 3.24) 

In short, to evaluate the sequence randomness, count m, n, and U and calculate the 

value of z with Eq. 3.18. Finally, accept or reject H using Eq. 3.20. 

In the specific power estimation problem, in order to obtain a two-symbol sequence, 

in [Yua96] the median of the power sequence is calculated. With this, a symbol A is 

assigned to the values smaller than the median, and B, to the others. 

To obtain the independence interval, [Yua96] proposes to evaluate try-values from 

cero, and collect the sequence using these values until the hypothesis is accepted. 

Once an independence interval is statistically obtained, the random sample sequence 

is efficiently obtained. 

The random sample sequence acquisition is optimized running a zero delay 

simulation during the independence interval while a real delay model is used to sample 

the power. To measure the sample convergence, in [Yua96] a non-parametric criterion 

is employed [Yua98]. 

3.4.1.4 Block Sampling in large Sequential Circuits 

[Koz01] observed that several techniques for average power estimation use signal 

probability and transition density as inputs. However, for large sequential circuits, with 

several operation modes, it is possible to define two input sets with the same signal 

probabilities and transition densities at every input, obtaining different power 

consumption figures. To show it, several sequential circuits were tested with two such 

input sets. The first vector set have spatial and temporal correlations, in the other 

vector set input signals are generated randomly, with the same signal probabilities and 

transition densities as in the first set. The reported average error in respect to the first 

vector set was about 30% but there was a circuit with an error of 120%. 
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The authors claim that an accurate method for power estimation in sequential 

circuits must simulate the circuit for realistic and typical vector sets, referred to as 

power vector sets. Nevertheless, in practice it is almost impossible to obtain a short 

enough power vector that considers the typical operation of the circuit with all its 

operation modes. 

The proposed solution is based on a block sampling approach. Randomly selected 

blocks are simulated from a potentially huge power vector set. For each block, a lower 

bound and an upper bound are obtained for the power consumption. The average of 

these two values estimates the power dissipation taking into account all possible initial 

states, but in an original way, as is explained below. Using a Monte Carlo mean 

estimation technique, both bounds can be obtained with a specified error and 

confidence level. 

This approach requires the solution of some sub problems. To perform a well 

defined estimation, a well defined initial state should be specified. However, some 

initial states, and input vectors could lead to unfeasible operations in the FSM. To solve 

this problem, the state bits are all set to X state (the unknown state, in this context) at 

the beginning of the block simulation. During the three valued simulation the upper and 

lower bounds are computed assuming at every transition from X to a 0 or 1, the 0 and 1 

values for X to compute the upper and lower bounds. For example if the output of a 

gate makes an X->1 transition, assuming ‘0’ for the unknown state, a power consuming 

transition would happen, participating to the upper bound. If ‘1’ were assumed for the 

unknown state (1->1) no power would be consumed, participating to the lower bound. 

In that way the true power consumption for the simulated block is guaranteed to be 

between the upper and lower bounds, and the initial state is well-defined. 

The second sub problem is the choice of the block size. It can affect the tightness of 

the bounds. As it becomes larger, more X’s will become defined, but from some block 

sizes and larger ones, there will be little reduction in the number of X’s. In [Koz01] the 

block size was set empirically to 500 cycles. 

Finally, within a Monte Carlo mean estimation technique, the number of samples to 

estimate the average upper bound may be different from that required for the average 

lower bound, so the sampling is continued until the stopping criterion have been met for 

both means. 
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The stopping criterion is: 
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Zα/2 is defined so that the area under the standard normal distribution is equal to 

α/2. 

μN is the sample mean 

SN is the sample standard deviation. 
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the estimation, 
1

1

1 ε
εε
−

= . 

3.5 Power Estimation Methods Applied on FPGAs 
In the FPGA arena, the first approaches to power estimation, was a set of equations 

where the inputs are the number of logic blocks, I/O blocks, etc. In addition, a rough 

value for the activity must be specified. For example, Xilinx presents such equations in 

[Faw97], [Xil97h], [Tan99], [Xil00]. Just to mention one case, [Xil97h] presents a simple 

method to calculate the power dissipation in the XC4000 family. Power was estimated 

based on the number of logic cells and the percentage of them toggling every clock 

cycle. Later, these operations were automated in spreadsheets and tools in the web 

[XilPow]. The estimation, although more sophisticated, is based on similar data and 

equations as in [Xil97h] and with the same drawback: low accuracy. Altera has a 

similar approach and set of tools [Alt04]. This approach, although inaccurate, is useful 

for early power estimates. 

[Gar99] presents a power consumption model for FPGA based on incremental 

measurements. Starting from a simple design, one of the internal resources is 

increased keeping the rest as it is. The difference in the current consumption is 

annotated to measure the power consumed by the selected element. With the power 

values for every resource (flip-flop, LUT, interconnect lines, etc.), and the number of 

occurrences of each type in the design, total and individual power can be computed. 
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Nevertheless, the user must provide the activity and the pattern-dependence problem 

is not considered. 

[Osm98] employs the Xilinx’s 4000 family as technological framework. This paper 

presents an activity estimation technique. It is based on the propagation of probabilistic 

parameters (signal probability and activity) from primary inputs to all the internal circuit 

nodes. 

[Shan02] analyzes the dynamic power consumption of the Virtex-II family and 

reports where the power is consumed in these devices. Furthermore, it reports static 

and short-circuit power values for these devices. The main goal of that work is to detect 

in which part of FPGA the power is consumed in order to help actual designers to 

optimize power, and develop future power-efficient FPGAs. This information is also 

useful to engineer accurate EDA tools for low power design. Although the reported 

results are valuable, it should be noted that the authors use non-public information for 

the capacitances used in power computation: capacitances are obtained using Spice 

simulations from detailed schematics of the FPGA circuits. The sources of dynamic 

power were separated in logic, clock and the different routing resources. The steps to 

estimate the power consumption have been mentioned, but they have not been 

integrated within an EDA tool. 

[Poo02] applied the probabilistic approach and evaluated different FPGA 

architectures for power efficiency. However, this implementation did not consider glitch 

power, or spatial and temporal signal correlations. Physical measurements were not 

provided because theoretical FPGA models were analyzed. [Li03] also analyzed FPGA 

architectures but glitch power and signal correlations were considered and important 

conclusions were reached. It is significant to note that the goal in [Poo02] and [Li03] is 

different to the one in this thesis. Here, it is important to measure the power dissipated 

in actual devices with real designs in order to develop a robust and accurate power 

estimation platform, while present and future FPGA architectures are studied. 

Finally, in the Xilinx Integrated Software Environment (ISE), a power estimation tool, 

called XPower [XilUser], [Xil01] is provided since 5.1i version. It is a software tool that 

calculates the power consumption based on the physical implementation on a specific 

device and a timing simulation file. With a proper vector set used in the simulation, it 

can provide acceptable estimations of power usage. It is important to emphasize the 
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word “proper”. The user can provide arbitrary input vector sets. Therefore, the tool 

cannot guarantee that simulated activity really converges with the average values. 

Input vector generation is a user responsibility. The user should provide these input 

vectors by a specialized software tool but this program does not exist yet. In practice, 

XPower ignores the effect of data statistics on power consumption. 

[And04] presents novel techniques for early activity and capacitance prediction on 

FPGAs. Activity estimation is based on zero-delay simulation models and a prediction 

function for glitches. On the other hand, the capacitance estimation is based on both 

technology-independent parameters and the specific interconnect architecture of the 

current FPGA where the design is implemented. These techniques are useful within 

optimization loops of power-aware synthesis, placement and routing tools, and early-

power estimation. 

Even considering all this work, it is clear that power estimation is not up to date in 

today’s commercial or academic FPGA environments. This thesis contributes to the 

previous research lines by the development of a new FPGA-oriented power estimation 

platform, where the accuracy is statistically guaranteed and main modules can be 

selected for specific applications. 

3.5.1 Related Works at the UAM5 

Low Power Design has two fundamental pillars: estimation and optimization. [Sut05] 

presents a methodology for power optimization at the topological, architectural, and 

algorithmic levels for FPGAs. The application of pipeline, block disabling, and other 

general purpose techniques are characterized for several FPGA families. In addition, a 

number of techniques are studied in order to reduce the power consumption in finite 

state machines and arithmetic circuits. 

Power consumption produces temperature increases in the die and the entire chip. 

[Lop03] proposes the use of ring oscillators in the FPGA at positions that can be 

selected by the user. The technique permits the verification and detection of hot spots 

in the FPGA device. 

                                                 

5 Universidad Autónoma de Madrid, School of Engineering 
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3.6 Conclusions 
Even at the gate level, the problem of power estimation is not completely solved yet. 

Due to its computational complexity, accuracy and speed cannot both be met. This 

problem is observed for average power estimation, working with individual gates; and 

for total average power consumption, in large sequential circuits [Koz01]. 

Although both probabilistic and statistical techniques are studied in this work, the 

later ones are selected for the platform developed in this thesis and experiments due to 

the tunable accuracy properties they present, easier implementation, and general 

application, particularly in the FPGA environments. 

Even considering all the work developed for FPGAs, commercial and academic 

tools for FPGA environments are not up to date for estimating power consumption. This 

thesis contributes to the previous work by developing a new FPGA-oriented power 

estimation platform, where the accuracy is statistically guaranteed. The main modules 

in this platform could be selected for specific applications. Also, the software pieces 

can be easily updated and improved making the platform flexible enough for today’s 

fast changing FPGA technologies. 
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Chapter 4. 

“It was Ross Freeman, really, who had the radical notion that transistors are free”. 

By Xilinx Staff, “Celebrating 20 Years of innovation”, XCell Journal, Spring 2004. 

4 A-DyP: A Tool for Average 

Power Estimation in FPGAs 

In this Chapter, the main structure and characteristics of the power estimation 

platform for FPGA environments are presented together with a power estimation tool: 

A-DyP (Average Dynamic Power estimator). This tool is able to estimate average 

power for both the whole design and individual nodes. A-DyP is statistical-based, 

allowing the user to specify the tolerated error at a given confidence level.  

Several techniques have been developed to estimate the power consumption of 

digital circuits (See Chapter 3). The present work tries to contribute to the previous 

research lines by the development of a new FPGA-oriented power platform and A-DyP 

that is implemented over this platform. The power platform includes: 

• A data structure known as the Common Power Database. 

• An abstraction layer to access the Power Database independently of the 

database engine currently used. 

• Use of accepted standards formats in order to make straightforward the 

integration with current EDA software. These files are used for information 

interchange between the commercial applications and the different programs 
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in this power estimation system. The platform provides parsers for these 

formats. 

• Parsers for the standard VCD format and VHDL. 

• Tcl/Tk automation in order to integrate the common and the specific 

programs within a power estimation tool. 

• A common approach to manage configuration data and an API to access this 

information from several programs in a power estimation system. 

• An input generator program that is able to produce stimulus for both a 

simulator and a pattern generator that typically can be found together with a 

logic analyzer. 

• Parsers for Xilinx proprietary formats useful for power estimation in that 

environment. 

• Software components to read the Common Power Database; and write 

common power reports, write files compatible with scientific graphing tools to 

produce power, capacitance, activity maps, etc. 

• Integration within available design flows. 

 A-DyP is developed on the power estimation platform. It can execute all the 

estimation process automatically, from the generation of input vectors (according to the 

user specifications), to the correlation of the physical node positions with their 

individual power consumptions. The last task allows the designers to create power 

maps that can help to detect hot spots in the die. The current version of the tool can be 

integrated into the latest Xilinx ISE suite and it has been tested with the Modelsim 

simulator. 

A-DyP has two main sub-systems: the first one is responsible for the average 

activity estimation of the individual nodes in the DUT, while the second one calculates 

the power multiplying the estimated activities by the corresponding node capacitances. 

This Chapter presents an overview of the estimation tool implementation and the use of 

the power platform. The development details of the different tasks composing each 

subsystem are treated in depth in the next chapters. 
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4.1 A-DyP Main Structure  
A-DyP is composed by several pieces of software and some of its programs interact 

with third-party tools. The main external application that forms part of the A-DyP core is 

the simulator. Nevertheless, synthesis and compilation tools are necessary in order to 

generate a design layout (from the layout, a VHDL model is obtained for the power 

estimation). Finally, a scientific graphing tool helps to draw power, capacitance and 

activity maps. 

Fig. 4.1 shows the main structure of the proposed tool. It is composed of two main 

sub-systems that share a data repository: The Power Database. The Activity 

Estimation Sub-system estimates the average activity and standard deviation for all the 

individual nodes in the DUT. The estimated values are stored in the Power Database. 

On the other hand, the Power Computation sub-system multiplies these estimated 

activities by the corresponding node capacitances according to Eq. 2.7. The way the 

FPGA vendors provide node capacitances and other physical information is complex 

enough to implement this functionality in this separate piece of software. 

The user interface is not strictly part or the Activity Estimation Sub-system as 

suggested in the Fig.4.1. It is the user friendly way provided by the power estimation 

toolkit to write the parameters (ini) file. Likewise, the ini file is a plain text file.  

Before starting the activity estimation, compile and elaborate the VHDL model for 

the simulator is needed to be able to start the simulation. This is called the Set-Up 

phase and is the first task of the Activity Simulation Sub-system. The Set-up phase is 

detailed below. 

It is important to note that the power estimation is part of a design flow and the 

simulation model is obtained after the design was synthesized and implemented for a 

particular FPGA device. In the context of the estimation process, the part of the design 

flow necessary to generate the simulation model and the other input files is considered 

the Preparation Phase. 
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Fig. 4.1: Average dynamic power estimation tool (A-DyP). Main structure 
 

In the next sections all the work is presented to give the reader a global view of the 

platform, the development of the tool, and underlying methodology. The preparation, 

the tool itself, and the post processing steps are explained. The user interface, the set-

up phase, the Activity and Power Computation sub-systems, and the Power Database 

that compose A-DyP are also briefly set out. 

4.2 The Preparation Phase 
The goal here is to obtain a model of the DUT for which the power can be estimated.  

Before running the proposed power estimation tool, the DUT needs to be 

synthesized and compiled. The synthesis can be done with any tool compatible with 

the Xilinx ISE design flow and the compilation must be done with the Xilinx ISE [Xil]. 
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The power estimation tool could operate with designs specified in any HDL 

supported by the simulator, or mixed designs, and at any level in the development 

process. However, in order to consider the impact of the technology mapping, and the 

PAR, both a design description and an accurate delay model should be provided.  

ISE produces a layout file after the PAR in a proprietary format (NCD). This file is 

translated with the netgen command to a VHDL simulation model and the 

corresponding SDF delay model (Standard Delay Format) [SDF01]. This command is 

included in the Xilinx ISE distribution. It can be executed from the ISE graphical 

interface, the command line, or automatically from the power estimation tool when it 

detects these files do not exist in the working directory. For example, the following line 

can be found in the set-up script: 

netgen –ofmt vhdl –sim –w –aka –pcf design.pcf 

design_name 

where 

design_name is the NCD design file 

–ofmt vhdl specify vhdl or verilog output format for simulation. 

–sim generate a netlist compatible with a simulation tool. 

–w overwrites the output file 

–aka write “Also-Know-As” names as comments. This is a very important option in 

this work and its use will be explained in detail in Chapter 6. 

–pcf design.pcf is an input constraint file. 

The VHDL simulation model obtained uses a structural style where VITAL cells are 

instantiated [VIT01]. VHDL VITAL timing data is annotated from the SDF file using the 

simulator’s built-in SDF annotator. VHDL SDF annotation works on VITAL cells only. 

The IEEE 1076.4 VITAL ASIC Modelling Specification describes how cells must be 

written to support SDF annotation, but Xilinx, as other FPGA and ASIC vendors, 

naturally has already written the VITAL cells and provide tools that create compatible 

SDF files (netgen).  
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Note that in some cases the VITAL library could not have been compiled and be 

ready to use, but it can be built with the source files and tools provided by Xilinx. For 

specific information about how to do it, you can refer to the vendor documentation 

[XilSav] (Chapter 6: “Simulating Your Design”). 

4.2.1 User Interface 

The proposed power estimation tool can be executed in several ways: 

1. From the simulator prompt 

2. From the operating system command line 

3. From the web interface 

4. From a remote application using the power estimation web service 

Whatever the execution method, three files are needed: 

1. The Xilinx design file (NCD) 

2. The Xilinx physical constraints file (PCF) (optional) 

3. The tool parameters file (INI) 

The first two files are generated in the preparation phase. Nevertheless, a user-

friendly wizard (Fig. 4.2) is provided in order to help write correct INI files. This wizard 

is called the User Interface in this documentation.  

Using the wizard, the user must first specify the necessary input files for the power 

estimation process (Fig 4.3). Next, the wizard parses the VHDL simulation model and 

offers the user the list of found entities. The user selects the top-level entity, and 

specifies the activity characteristics for every input port (Fig 4.4). In short, the possible 

input ports types are: 

1. Periodic 

2. Constant Value 

3. Random 
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Fig 4.2: Power Estimation Wizard. Presentation step 
 

 

Fig 4.3: Power Estimation Wizard. Input file specification step 
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In the last step, the statistical parameters needed to run the selected power 

estimation technique must be specified: 

• Tolerated error 

• Confidence level 

• Minimal activity mean, that divides the nodes in regular and low density ones 

In addition, other advanced parameters can be selected although default values are 

provided for all the input boxes: 

• Minimal glitch length 

• Startup cycles 

• Which information is stored in the Power Database 

Once the user specifies all the parameters necessary for the power estimation tool, 

the wizard generates a correct-by-construction INI file. An example INI file can be 

found in Appendix C. 

 

Fig 4.4: Power Estimation Wizard. Input port characterization step 
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In the current version, the following INI file sections are read in various power 

estimation programs: 

• FILES 
• CIRCUIT FEATURES 
• CIRCUIT CONFIGURATION 
• STAT PARAMETERS 
• OPTIMIZATION 
• CLOCK 
• PORTS 

 

 
Fig 4.5: Power Estimation Wizard. Parameter specification step 

 

4.2.2 Power Estimation Set-Up Phase 

Besides de INI file, the power estimation wizard also generates other two files 

needed in the setup phase: first_ini_msim.do and ini_msim.do. These files 

must exist when the estimation Tcl/Tk script is interpreted and like the INI file, they are 

saved as plain text. Code 4.1 is a first_ini_msim example.  
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1 # 
5 # FIRST_INI_MSIM.DO 
6 # 
7 # Activity Estimation using Statistics with Modelsim 
8 # 
9 # Changes the current directory. 
10 cd D:/Users/PE 
11 # Convert NCD to XDL (ncd2xdl) 
12 catch "exec xdl -ncd2xdl topQDDFS_CORDIC.ncd 

topQDDFS_CORDIC.xdl" MESG 
13 # Creates a new design library. 
14 vlib work 
15 vmap work work 
16 # 
17 # Compiles the VHDL file into the work library 
18 vcom topQDDFS_CORDIC_timesim.vhd 
19 # -sdftyp Annotates VITAL in the specified SDF file typical 

timing. 
20 # -t Specifies the simulation time resolution. 
21 # -noglitch Disables VITAL glitch generation. 
22 vsim -sdftyp topQDDFS_CORDIC_timesim.sdf 

work.topQDDFS_CORDIC -t 1ps -noglitch 

Code 4.1: Simulator macro file that sets-up the power estimation tool 
 

These first_ini_msim.do and ini_msim.do are macro files for the 

simulator that compile (line 15) the VHDL model and start the simulation (line 19). In 

addition, a XDL file is generated with the xdl command (line 16). This file is 

necessary in the power computation sub system (see Chapter 6). 

The difference between first_ini_msim.do and ini_msim.do is that the 

second is interpreted in the case estimation process is suspended for any reason or 

when the same design is studied with other parameters. In this case, the simulation 

must be started without compiling the design because it has been done before. 

22.1 Activity Estimation Sub-system 
The main purpose of the Activity Estimation Sub-system is the activity estimation of 

the individual nodes in the DUT. Also in this section, the generation of input vector files 

for the pattern generator will be introduced. The pattern generator equipment enables 

the physical measurement of the device current consumption with the same stimulus 

as in the simulation. 
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The activity estimator interacts with a commercial simulator in its inner loop and calls 

several programs to generate circuit stimuli and evaluate the simulator results until the 

stopping criterion is reached for every node as is shown in Fig 4.6. In fact, this Sub-

system can be seen as a wrapper for the simulator program. 

 

Fig. 4.6: Activity Estimation Sub-system 
 

Each box in Fig. 4.6 represents a program with a specific purpose. All these 

programs are integrated or glued within a Tcl/Tk script in order to implement the 

statistical estimation technique. A simplified version of the Tcl procedure implementing 

this technique is Code 4.2. The complete Tcl/Tk script used in this work is printed in 

Appendix A. 
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1 #################################################### 
2 # 
3 # Estimate Average Transition Number for all Nodes 
4 # 
5 proc activityEstim {} { 
6   upvar 1 blkNr blkNr 
7   set END_SIM false 
8   global sampleNum 
9    
10   while { $END_SIM == false } {   
11      
12     puts "Generating..." 
13     exec generator.exe -pg tla -d [pwd]     
14      
15     puts "Simulating..." 
16     do simulate.do   
17      
18     puts "Saving..."  
19     saveVec 
20      
21     puts "Analizing transitions.vcd..." 
22     catch "exec Transitions.exe -d [pwd] transitions[expr 

$blkNr - 1].vcd" sampleNum 
23     puts "$sampleNum clock cycles analized..." 
24  
25     puts "Updating..."  
26     exec Update.exe -d [pwd]     
27      
28     catch { exec Cuter.exe -d [pwd]} END_SIM    
29   } 
30  
31   quit -sim 
32   puts "END OF ACTIVITY ESTIMATION!"  
33    
34 } 

Code 4.2: Tcl procedure implementing the statistical estimation technique 
 

The loop between lines 10 and 29 repeats the core tasks of the activity estimation 

until the stopping criterion is reached. 

Each iteration starts with the generation of a new block of input vectors. 

Generator.exe, at line 13, writes a macro file (simulate.do) with the vectors in 

an appropriate format for the simulator according to the user definitions. This program 

also produces the same vectors for the specified pattern generator equipment. The 

second output enables physical power measurements to further verification and tuning 

of the tool (section 4.3.1). 
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As the model was compiled and the simulation was initiated with the Set Up phase, 

the .do file can be interpreted by the simulator using the do command directly as 

shown at line 16. A complete .do file with a stimuli block is reproduced in Appendix B. 

Once the current input pattern block is simulated, it is necessary to save the 

corresponding simulation results. It is done by the Tcl procedure call at line 19 (Code 

5.2 or Appendix A). The activity results are stored using the VCD standard format 

[VCD01]. This format is widely accepted in the industry and in several commercial and 

open source simulators and EDA tools. 

At line 22, with transitions.exe, the VCD simulation results are parsed. The 

signal transitions are counted within each clock cycle for all the circuit nodes, and the 

pulse durations are calculated in order to decide if it is long enough or it should be 

filtered. This program returns the current number of clock cycles analyzed in order to 

give the user some feedback about the estimation progress. 

At line 26, update.exe computes the average and standard deviation for all the 

nodes in the circuit. This is done using the new data extracted from the last VCD 

results file. With these new results, the program updates the Power Database 

Finally, the current iteration ends with Cuter.exe, which tests if all the nodes in 

the DUT have reached the stopping criteria defined in Eq. 3.2 and 3.4.  

Implementation details of these programs and scripts are explained in Chapter 5. 

4.3.1 Input Patterns for the Pattern Generator 

It is useful to measure physically the power consumption of as many designs as 

possible in order to develop an accurate power estimation tool. Furthermore, it is 

necessary to tune, adjust and correct the tool for future devices and designs. In this 

way, the same input patterns generated for the software tool are generated for a 

pattern generator equipment. In the current development, a Tektronix logic analyzer 

and pattern generator are used. So, in this implementation, just files for Tektronix 

equipment can be generated. 
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4.3.2 The Power Estimation Platform 

Several pieces of the Activity Estimation Sub-system can be re-used in other power 

estimation tools. The simulator is naturally part of any power estimation tool based on 

the statistical approach. It is an external development and in this way is considered the 

first component of the Power Estimation Platform. Nevertheless, the simulator must 

satisfy the VCD, VITAL and SDF standard formats.  

In Fig. 4.6, the re-usable components are represented by light gray boxes. Some 

components are not used “as is” but as the base development for a new one with 

extended behavior. This is the case in the Power Database, where there are common 

data structures and information that are independent of the specific application, but the 

data necessary for the current technique can not be present.  

4.4 Power Computation Sub-System 
At the end, the estimated activity for all the DUT nodes is multiplied by the 

corresponding node capacitances. Unfortunately, those capacitances are not provided 

directly by the FPGA vendor. So, they are obtained with the Power Computation Sub-

system. The basic operation of this sub-system is depicted in Fig. 4.7. 

Clearly, the Power Computation Sub-system depends on the vendor tools and the 

proprietary formats they use, but for the current IDE with its special features, all the 

development can be reused in other power estimation tools. For example, a maximum 

power estimation tool can use all these programs as they are. It is just possible that the 

order in which they are used is different.  

The representation of the layout, the way capacitances are retrieved, etc. are examples 

of the dependency on the vendor software and proprietary formats. The tool that Xilinx 

provides for the power computation, XPower, is essential in this particular estimation 

flow. Why is it called power computation and not a power estimation tool? The reason 

is that users can provide XPower with an arbitrary input vector set, and in this way, the 

pattern dependence problem is not treated at all. This problem is described in Chapter 

3. XPower calculates the power with the activity provided by the user and capacitance 

values stored in proprietary databases.  
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Fig. 4.7: Power Computation Sub-System 
 

The main goal of the Power Computation Sub-system is to obtain capacitance 

through XPower reports. This can be done providing XPower with the activities 

estimated according to statistical considerations. With this information, XPower reports 

the capacitances. Finally, parsing this report the capacitances can be stored in the 

Power Database. Retrieving the capacitances, A-DyP can compute the power for every 

node, and the whole circuit. Also, now the power can be grouped in logic, nets and 

clock or other classifications depending on the additional information obtained from 

other sources about the nodes. 

In the Power Computation sub system, a problem related to the different ways the 

same objects are identified within the vendor tools, must be solved.  The first time the 

problem appeared was while trying to generate the activities for XPower with a so-



Statistical Power Estimation on FPGAs 

 80 

called setting file. This is an XML file where the activities are specified for individual 

nodes. Code 4.3 shows a fragment of a settings file for XPower. 

<Power_Net name=”CORDIC/DATAPATH_Z/result_32(2)”> 
  <Power_Activity freq=”159.009009Mhz” src=”Simulation” 

duty=”0.000%” /> 
 </Power_Net> 
 <Power_Net name=”CORDIC/ DATAPATH_Z/result_32(3)”> 
  <Power_Activity freq=”170.945946Mhz” src=”Simulation” 

duty=”0.000%” /> 
 </Power_Net> 

Code 4.3: XPower setting file fragment 
 

It should be easy to generate the XML file from the Power Database, but that is not 

the case because the identifiers stored in the Power Database, and obtained from VCD 

files, are different. The names for the XML file are built according to different alphabets, 

hierarchical separators and rules. This problem leads to a heavy processing as shown 

in the upper part of Fig 4.7. It is called in this work Multiple Identifiers’ Problem. 

The following examples can help to see the problem. They were extracted from test 

cases, where their VCD, XDL and XML names are shown in the first, second and third 

places respectively. 

Example 4.1: 

lfirda_gen0_lfir_prt1_gen0_bqrom_bqrom_6_rom_gen1_1_rom_outrom_0 

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.6.ROM/GEN1.1.ROM/GEN0.3.ROM 

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.6.ROM/GEN1.1.ROM/outrom_0 

Example 4.2: 

lfirda_gen0_lfir_prt1_gen0_bqrom_bqrom_4_rom_gen3_3_gen31_gen31_0_add_outxor2_4 

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.4.ROM/GEN3.3.GEN31.GEN31.0.ADD/GEN0.2.lXOR2 

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.4.ROM/GEN3.3.GEN31.GEN31.0.ADD/outxor2_4 

Example 4.3: 

lfirda_gen0_lfir_prt1_gen0_bqrom_bqrom_1_rom_inoutphases_64_cymuxg 

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.1.ROM/GEN3.0.GEN31.GEN31.6.ADD/GEN0.1.MUXCY.lMUXCY 

lFIRDA/GEN0.LFIR/PRT1/GEN0.BQROM.BQROM.1.ROM/GEN3.0.GEN31.GEN31.6.ADD/GEN0.1.MUXCY.lMUXCY/O 
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To solve the multiple identifiers problem and generate the XML file, the VHDL 

simulation model and the XDL design files are parsed. During this process, an 

identifiers dictionary is built in the Power Database. 

The Activity Estimation Sub-system deals with VHDL, SDF and VCD files, all using 

the first set of identifiers. The second set is what must be generated for XPower. 

Chapter 6 explains the details of the Power Computation Sub-system and its solution to 

the described problem. 

1 # 
2 # Capacitance Estimation 
3 # 
4 proc capacitanceEstim {} { 
5    
6   puts “Starting POWER Computation…” 
7   puts “” 
8  
9   # VHDL Parsing 
10   puts naestate “Analizing vhdl file…”  
11   exec parserVHD.exe –d [pwd] 
12    
13   # XDL Parsing 
14   puts naestate “Analizing phisical info. (xdl file)”  
15   exec xdlParser.exe –d [pwd] 
16    
17   # XML Activity Report 
18   puts naestate “Gen. Activity Rep. in XML format…”  
19   exec XMLRep.exe –d [pwd] 
20    
21   # Connection with XPower 
22   puts naestate “Gen. Power Report with XPower…”  
23   do Connect2Xpower.do 
24    
25   # PWA Parsing 
26   puts naestate “ Analizing Capacitance Report…”  
27   exec PWAparser.exe –d [pwd] 
28    
29   # Calculates Power and write a Report 
30   puts “Writing Power Report…”  
31   exec report.exe –d [pwd] –v 
32    
33   # Maps 
34   puts “Activity, Cap., and Power Maps…”  
35   exec activityMap.exe –d [pwd] –r 1 
36   exec capacitanceMap.exe –d [pwd] –r 1   
37   exec powerMap.exe –d [pwd] –r 1 
38 } 

Code 4.4: Tcl procedure that implements the Power Computation Sub-system 
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The same way as in the Activity Estimation Sub-system, all the Power Computation 

processing is integrated within a Tcl/Tk script. A simplified version of the Tcl procedure 

implementing this technique is Code 4.4. The complete Tcl/Tk script for power 

estimation is reproduced in Appendix A. 

At lines 11 and 15, the VHDL and XDL parser are executed. From the XDL file, as 

depicted in Fig. 4.7, important information is extracted: the node positions in the layout. 

With this information, power maps can be drawn where the resolution could be 

selected by the user. 

Once identifiers for the XML file are obtained, it is generated (see line 19). 

At line 24, other script file (.do) is interpreted and from it, XPower is run as a 

command line application. Chapter 6 explains the details related to this script.  

Within the step described above, a capacitance report is generated. At line 27, a 

parser for this report generated by XPower is executed. The analyzed PWA file has 

capacitance information for every internal node in the DUT. 

At line 32, report.exe calculates the power for the individual nodes and writes a 

report with detailed information. In addition, it obtains the power consumption of the 

different FPGA resources. 

Lines 35 to 37, are examples of the different information that can be related to the 

physical position of the nodes in order to draw maps. In this case a resolution 1 is 

specified which means that the specific magnitude for the nodes in the same CLB are 

added. The files with the information relating the FPGA positions and the specific 

magnitude can be imported using any scientific graphing tool. 

4.5 The Power Database 
In Fig. 4.8, light gray boxes represent tables that can be used in any power 

estimation tool. In other words, they belong to the Power Platform. Node contains 

information independent of the current run for a specific circuit node. For example, the 

activity depends on the current run but the node capacitance does not. 

FPGAResource contains slices, pads, and embedded cores with its position in the 
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die. These resources are part of a Circuit, the circuit is implemented in an 

FPGADevice, and this device belongs to an FPGAFamily. 

The main fields in theses tables are: 

FPGAFamily 

Name, Vdd_core, Vdd_pads  

FPGADevice 

Name, Size_X, Size_Y, Min_Glitch 

Circuit 

 Name, VCD_Nodes, Latency 

FPGAResource 

Name, Type, Pos_X, Pos_Y 

Node 

 Name_VCD, Name_AKA, Capacitance, Low_level_res_type 

The application specific tables are Signal, containing information related with 

a node for a particular run (EstimParams), and Sample with the number of 

transitions in a node and clock cycle. 

The main fields in theses tables are: 

EstimParams 

 Error, Confidence, Min_Act 

ImputPort 

Name, Port_Type 

ImputLine 

 Position, Params 

Signal 

 Activity_Avg, Activity_StdDev, Saples_at_Conv 
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Sample 

 Clk_cycle, trn_num 

 

Fig. 4.8: Power Database 
 

An abstraction layer is convenient to access the Power Database independently of 

the database engine currently used. In this way, the database engine can be changed 

with a bounded impact in the system implementation. 

4.6 Conclusions 
The architecture of the system is carefully designed and a Power Estimation 

Platform is developed. This feature and the use of standard formats enable the current 

development to be re-used in other power estimation and optimization tools. 

A very important difficulty found in this work is introduced in this chapter: the Multiple 

Identifiers’ Problem. It comes from the lack of integration with third-party tools as a 

vendor goal, at least in the power estimation area. In spite of the effort to solve this 
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problem, there are cases without a solution. For example, for some FPGA families and 

software versions, there are nodes where the Multiple Identifiers’ Problem persists. 

Furthermore, a new flavour of this problem is introduced with each new version, 

making it even more difficult to solve. Nevertheless, it is reasonable to believe that in 

the near future, the vendor will clearly specify formats for data interchange and 

integration with third party developers in the power estimation area. 
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Chapter 5. 

“Computers may be thought of as engines for transforming free energy into waste 

heat and mathematical work”, Charles H. Bennett [Ben82] 

5 Activity Estimation Sub-system 

This chapter describes the development details of the Activity Estimation Sub-

system. This is one of the two sub-systems in the A-DyP estimation tool. It is 

responsible for the estimation of the individual nodes average activity and standard 

deviation in the DUT. 

As the preparation phase, user interface, and set-up phase for A-DyP were 

described in Chapter 4, here just the activity estimation core (see Fig. 4.6) is explained 

in detail. The Activity Estimation Sub-system interacts with a commercial simulator in 

its inner loop and calls several programs and scripts. This sub-system can be seen as 

a wrapper for the simulator program. 

All the programs and scripts composing the Activity Estimation Sub-system are 

integrated within the Tcl/Tk script shown in Code 4.1 (The complete Tcl/Tk script used 

in this work can be found in Appendix A) and they are: 

1. The pattern generator program 

2. The script that runs the patterns in the simulator 

3. The script that saves the simulator results 

4. The program that analyzes the simulation results 
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5. The program that updates the average and standard deviation for all the 

nodes in the DUT 

6. The program that checks if the stopping criteria for all the nodes in the DUT 

was reached 

5.1 The Pattern Generator 
The goal of this program is generating a macro file for the simulator with stimuli 

produced according to the user specifications. In Appendix B there is an example of 

this macro file. generator.exe is a console application with more than 750 lines of 

source code. These applications typically don't require user interaction. As with all the 

programs in this work, generator.exe is coded in Object Pascal, which is the 

language in the Delphi IDE. The Pattern generator, like the other programs in this 

system, read parameters from an INI file. The parameters obtained this way are called 

indirect parameters. 

generator.exe also accept command line parameters: 

generator -pg tla -d dir 

-d dir specifies the working directory 

-pg enables the specification of target pattern generation equipment. In the current 

version this parameter just accepts the tla value for a Tektronix pattern generator. 

From the INI file, this program reads the PORT section to obtain the complete input 

port characterization of the DUT: 

1. Number of ports 

2. Input port names and types (clock, connected to a constant or random value) 

3. Input port parameters according to its type 

Also, the program reads the statistical parameters. These data belong to the Power 

Database. It is accessed through the abstraction layer and is currently implemented by 

a simple INI file. 
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The produced stimuli can be random, vector or bit constants, or periodic digital 

values. The same vectors generated for the simulator are formatted to the pattern 

generator in order to verify the power estimation system. 

It should be noted that all the designs given as input to this tool are synchronous 

circuits. So the input stimuli are generated in synchrony with the system clock. As 

pointed in [Xak94] the input pulse widths are discrete multiples of the clock period. In 

that paper it is shown that the probability that a low (high) signal will transition high 

(low) on the clock edge is: 

0
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P =  (Eq. 5.1.) 
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P =  (Eq. 5.2.) 

Where TC is the clock period and µ0 and µ1 are the mean low and high pulse widths. 

Both probabilities are computed in the User Interface program and are retrieved here 

from the INI file. The main algorithm in this program uses these probabilities to 

generate the input patterns for every clock cycle and a simplified version is shown in 

Code 5.1.  

1 if InputsArray[iPort].ranValues[j-1][i] = '1' then 
2 begin 
3   if random <= InputsArray[iPort].detail[i].param2 then 
4     InputsArray[iPort].ranValues[j][i] := '0' 
5 else InputsArray[iPort].ranValues[j][i] := '1'; 
6 end 
7 else begin // '0' 
8   if random <= InputsArray[iPort].detail[i].param1 then 
9 InputsArray[iPort].ranValues[j][i] := '1' 
10 else InputsArray[iPort].ranValues[j][i] := '0'; 
11 end;  

Code 5.1: Program fragment for the random vectors generation 
 

In InputsArray, all the information about the input ports is stored. ranValues 

stores a random input stimuli block where the first index points to a whole vector and 

the second one accesses to a specific bit position. At line 1, the last bit value, randomly 

generated, is tested. In the case it is ‘1’, it is decided if the next value will change to 

logic ‘0’ or will stay at ‘1’. The probability of transition from high to low is stored in 



Statistical Power Estimation on FPGAs 

 90 

InputsArray[iPort].detail[i].param2. In the lines from 7 to 11 the case 

where the current bit is logic ‘0’ is considered. 

Another point in this program is the computation of the number of vectors to 

stimulate the circuit in a single estimation cycle. Eq. 3.1 and 3.4 determine the sample 

size needed in the statistical technique to converge. Nevertheless, when long enough 

input sets are applied, the amount of activity in a relatively big design could produce 

huge files. For example, a simulation of the FIRDA(8) test circuit (see section 7.1.2), 

with 9495 nodes, generates a 7.9MB vcd file applying 70 input vectors. In order to 

reduce it to tractable file sizes, samples are bounded and the activity estimation is 

computed in an iterative fashion. A reasonable maximum number of vectors is 

determined empirically to be generated in a single iteration with the function 

GetMaxRun (Code 5.2). This function basically depends on the circuit size, 

NodesCount. 
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Fig. 5.1: Maximum sample size computation 

 

K_SAMPLE/NodesCount is depicted in Fig 5.1 where the current value of 

K_SAMPLE, the sample size tuning constant, is one million. SAMPLE_BLK_SIZE and 

MAX_SAMPLE_SIZE are the minimum and maximum sample sizes and their current 

values are 16 and 250 respectively. It can be observed that for small designs, as many 
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as MAX_SAMPLE_SIZE vectors can be generated in one iteration, and as few as 

SAMPLE_BLK_SIZE for a big circuit. 

1 function GetMaxRun: Integer; 
2 begin 
3  NodesCount := getNodesCount; 
4  result := MIN(MAX_SAMPLE_SIZE, MAX(SAMPLE_BLK_SIZE, 

Trunc(K_SAMPLE /NodesCount))); 
5 end; 

Code 5.2: Function for the sample size bounds determination 
 

The actual vector number must be less than the computed upper bound and not 

greater than the calculated according Eq. 3.1 and 3.4. Sample sizes (Eq. 3.1 and 3.4) 

are computed with the Code 5.3 for every node in the circuit. 

1 if(media < umbral)then 
2   N := sqr((ZalfaDiv2*desvio)/(umbral*errorUser)) 
3 else N:= sqr((ZalfaDiv2*desvio)/(media*errorMuestra)); 

Code 5.3: Function for the sample size bounds determination 
 

5.2 Simulating the Input Patterns and Saving the 
Simulation Results 

As the input vectors are produced using the macro language of the simulator, they 

can be directly interpreted (See Code 4.2, line 16), the simulated time advances, and a 

(huge) number of transitions are produced for the DUT. 

In order to further analyze this activity, it is necessary to save the simulation results. 

It is done by the Tcl procedure shown in Code 5.4. The activity results are stored in the 

standard VCD format which is an IEEE standard [VCD01]. This standard defines the 

Verilog Hardware Description Language (HDL). However, the VCD file format is also 

specified in this standard. A VCD file is an ASCII file containing header information, 

variable definitions, and value changes in these VCD variables. ModelSim, the selected 

simulator in the current implementation, provides simulator command equivalents for 

VCD system tasks and extends VCD support to VHDL designs. So, the ModelSim 

commands can be used on either VHDL or Verilog designs. 
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In [Mod03], ModelSim VCD commands and VCD tasks, creating a VCD file, and 

example VCD outputs, can be studied. 

1 ######################################### 
2 # 
3 # Save a VCD file for further analysis 
4 # 
5 proc saveVec {} { 
6   upvar 2 blkNr blkNr 
7  
8   # Flushes VCD file buffer to the last VCD file 
9   vcd flush transitions$blkNr.vcd 
10  
11   # Turns off VCD dumping 
12   vcd off transitions$blkNr.vcd 
13   vcd flush transitions$blkNr.vcd 
14  
15   # Increments the number of simulation blocks 
16   incr blkNr 
17  
18   # Adds all VHDL signals to the next VCD file 
19   vcd add -file transitions$blkNr.vcd * 
20 } 

Code 5.4: Tcl procedure that saves simulation VCD results 
 

blkNr just enables generating different .vcd file names. vcd off turns off VCD 

dumping over the specified file. vcd flush flushes the VCD file buffer to the last 

VCD file. It is not possible to close these files in the usual way during a simulation, so 

different files are generated. vcd add adds all VHDL signals to the next VCD file 

preparing it for the next estimation iteration. 

As the estimation process moves forward, some nodes converge and it could be 

important to exclude them from the VCD file. It could significantly reduce the VCD file 

size and the corresponding file parsing time. Nevertheless, there is not an effective way 

to do it. The missing option could be –nodes and the following command 

vcd add -file transitions$blkNr.vcd * 

could be replaced with 

vcd add -file transitions$blkNr.vcd –nodes node_list.txt 

where the node_list.txt file contains the list of the nodes that have not yet 

reached the stopping criteria. 
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5.3 Analyzing the Generated Activity 
The goal of this program is the analysis of VCD files generated by the simulator. It 

should count the effective number of transitions for every node in each clock cycle. It is 

also a console application. transitions.exe has more than 800 lines of source 

code and the most important fragments are explained in this section. 

transitions.exe accept command line parameters: 

transitions -d dir vcd_file_name 

-d dir specifies the working directory 

vcd_file_name is the current VCD file that will be analyzed in this iteration of 

the estimation process. 

From the INI file, this program reads several indirect parameters where the most 

important are related to the clock, the duration of the minimum glitch pulse and the 

circuit latency. For example, in a pipelined circuit the program should wait a number of 

cycles before collecting samples of the circuit activity. The discarded activity is, in fact, 

generated outside the normal operation of the DUT. 

The parser for the VCD files (like the other parsers in A-DyP) is based on the 

techniques proposed in [Aho86]. 

5.3.1 The Set-up Period 

In order to consider the set up period, Code 5.5 is executed (It is a simplified 

version). interpDecl (line 1) is a Boolean variable that, when it is true, the 

variable definitions part in the VCD file is  parsed using the analizeDeclVCD 

procedure.  

firstCycles (line 3) is another Boolean variable that avoids considering the 

activity in the first simulated clock cycle because the nodes are not initialized 

(unknown logic state). Other cycles are ignored by user request according to 

the INI file parameter SetupCycles (line 4). This feature, as mentioned above, is 

useful for pipelined circuits. Although in the current implementation, this data is 

retrieved from the INI file, it is obtained using an abstraction layer, 
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PowerEstimationManager, in order to make it easy to implement any change. 

For example, this information could be stored using any database engine. 

From line 8 to 15 it is assumed that the VCD declarations were parsed in a previous 

estimation cycle. When the number of set up cycles is bigger than the number of the 

simulated ones in the actual iteration, nothing must be considered in the statistical 

sample for the current estimation sample. 

countTrnVCD, at line 17, is the procedure that parses the value changes section 

in the VCD file. 

1 if interpDecl then 
2 begin 
3   firstCycles := true; 
4   SetupCycles := 

PowerEstimationManager.GetLatency; 
5  
6   analizeDeclVCD; 
7 end // interpDecl is true 
8 else begin 
9   SetupCycles := 

PowerEstimationManager.GetRemainingSetUpCycles; 
10   if SetupCycles = 0 then 
11     firstCycles := false 
12   else firstCycles := true; 
13  
14   salteaDeclVCD; 
15 end; 
16  
17 countTrnVCD; 

Code 5.5: Program fragment that consider the set up period 
 

5.3.2 Counting the Effective Transition Number 

In [Lan94], rather than counting a short glitch as a full rail-to-rail transition, it is 

modeled as a swing from ground to Vdd/2 and back to ground. Here another approach 

is used to take this effect into account. 

Code 5.6 is a simplified version of the algorithm that counts the effective number of 

transitions for each node and clock cycle.  
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1 if (tsim - Nodes[id-1].lastTr) > minGlitch then 
2 begin 
3   Nodes[id-1].trn := Nodes[id-1].trn + 1; 
4   Nodes[id-1].lastTr := tsim; 
5 end 
6 else begin 
7   if Nodes[id-1].trn > 0 then 
8     Nodes[id-1].trn := Nodes[id-1].trn - 1; 
9   NodesLine[id-1].lastTr := 0; 
10 end; 

Code 5.6: Program fragment that counts effective transitions 
 

Nodes is a data structure in the main memory. It stores, for every node, the number 

of transitions in the current clock cycle and the simulated time of the last transition. At 

line 1, the pulse duration is checked. If it is long enough, the transition is considered as 

an effective one (lines 3 to 4). In the case the glitch was too short, the pulse is ignored 

and also the transition that initiated it is taken away (lines 7 to 9).  

It should be noted that this data structure in memory (Nodes) leads to an important 

optimization. Dealing directly with the Power Database could require an unfeasible 

execution time. In the current implementation, just at the end of a clock cycle, the 

Power Database is accessed to store the analysis results. 

5.4 Updating Node Statistics 
The goal of this simple program is to update the statistics for all the nodes according 

to the new samples collected in the current iteration of the activity estimation process. 

Also it is decided if the stopping criterion is reached for every node. update.exe has 

just 77 lines of source code and a simplified version of the main procedure is explained 

in this section (Code 5.7). 

Besides the indirect parameter read from the INI file, update.exe accepts 

command line parameters: 

update -d dir 

-d dir specifies the working directory 



Statistical Power Estimation on FPGAs 

 96 

 

1 procedure UpdateCut; 
2 var 
3   media, desvio, N: Real; 
4 begin 
5   if (muestra >= minSamples) then 
6   with NodeT do begin 
7      Open; 
8      while (not eof) do   // Visit every node 
9      begin 
10        if not (FieldByName('Cut_Cond').asBoolean) then 
11        begin // no converged 
12          media := FieldByName('average').asFloat; 
13          desvio :=  
14            sqrt((FieldByName('SumatCuad').asInteger 
15            /muestra)-sqr(media)); 
16          if(media < umbral)then 
17             N:= sqr((ZalfaDiv2*desvio)/ 
18                     (umbral*errorUser)) 
19          else 
20             N:= sqr((ZalfaDiv2*desvio)/ 
21                     (media*errorMuestra)); 
22          if(N < muestra) then  
23          Begin // has converged 
24            Edit; 
25            FieldByName('Cut_Cond').asBoolean := True; 
26            FieldByName('SampleAtConv').AsInteger :=  
27     muestra; 
28            Post; 
29          end; 
30        end; //del if 
31        Next; 
32     end; //del while 
33     Close; 
34   end; // del with 
35 end; 

Code 5.7: Program fragment that updates node statistics 
 

At line 5 it is checked that the effective number of clock cycles is at least a minimum 

number, currently 30. This is required by the statistical technique. Just when it is true, 

the stopping criterion can be evaluated. At lines 12 and 13 the mean and standard 

deviation are calculated. Lines from 16 to 21 compute the sample size for the current 

node depending on it is a regular or a low density one. Line 22 decides the node 

convergence and, in this case the node information is edited in the Power Database to 

reflect this fact. When a node converges, the sample size at the present time is stored 

for further analysis. 
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5.5 Checking the Stopping Criteria 
Cuter.exe is the simpler program in the power estimation system with just 37 

lines of source code. Its goal is to determine if all the nodes are marked as reaching 

the stopping criteria or not. In the first case it outputs “true”. In any other case the 

output is “false”. This output is captured in the activity estimation Tcl procedure to 

decide if other estimation iteration is necessary or not. 

cuter.exe accept command line parameters: 

cuter -d dir 

-d dir specifies the working directory 

5.6 Conclusions 
In this Chapter, the Activity Estimation Sub-system is explained in detail, completing 

the general description in the previous Chapter. It can be recognized that some 

software pieces could be used in other power estimation tools, for example, a 

maximum power estimation tool. Being independent programs, they can be 

coordinated with a Tcl script in another order or with another algorithm. In this way 

these programs form the Power Platform framework. 
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Chapter 6. 

“While power consumption is an urgent challenge, its leakage or static component 

will become a major industry crisis in the long term, threatening the survival of 

CMOS technology itself, just as bipolar technology was threatened and eventually 

disposed of decades ago. Leakage power varies exponentially with key process 

parameters such as gate length, oxide thickness, and threshold voltage; this 

presents severe challenges in light of both scaling and variability. Off currents in 

low-power devices increase by a factor of 10 per technology cycle. Therefore 

design technology must be the key contributor to maintain constant static power.” 

[ITRS05] (pp.17) 

6 Power Computation Sub-system 

This chapter describes the development details of the Power Computation Sub-

system. This is the second of the two sub-systems in the A-DyP power estimation tool. 

It is responsible for calculating the average power of the whole circuit and individual 

nodes in the DUT. 

In order to obtain a power or energy estimation, the activity for all the DUT nodes 

must be multiplied by the corresponding node capacitances (Eq. 2.7). Unfortunately, 

those capacitances are not provided by some FPGA vendors, or not in a direct way in 

the best case. Currently, they are not thinking on the connectivity with third party tools 

at this point. Therefore, capacitances are obtained with the Power Computation Sub-

system as shown in Fig. 4.7. In this way, the Power Computation Sub-system depends 

on the specific vendor flow, and could not be ported to other FPGA design flow but 

must be re-implemented. However, capacitances are not the only data collected here. 
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Node positions and other relevant information is obtained and stored in the Power 

Database. On the other hand, this development could be used in other power 

estimation tools of the same vendor, for example, for peak power estimation. 

Now it is appropriate to mention that Xilinx provides a power computation tool: 

XPower. In this thesis, it is called a power computation tool because users can apply 

the activity generated from an arbitrary input vector set as its input, and in this way the 

pattern dependence problem is not treated at all. That problem is described and 

analyzed in Chapter 3. XPower calculates the power with the activity provided by the 

user and capacitance values stored in proprietary databases.  

The main goal of the Power Computation Sub-system is to retrieve node 

capacitances considering the particular way the specific FPGA vendor could provide 

them and compute the individual and total power.  

A possible method to retrieve capacitance values is by XPower. The activities 

obtained with the Activity Estimation Sub-system, and stored in the Power Database, 

are given to XPower by a so-called settings file. This is an XML file where the activities 

can be specified for individual nodes. It should be easy to generate the XML file from 

the Power Database, but that is not the case because the identifiers used by the 

activity estimation sub-system and the simulator, and the different files related with the 

power estimation process are built according to different alphabets and lexical rules. 

This problem leads to heavy processing as shown in the upper part of Fig 4.7 and is 

called in this work the Multiple Identifiers’ Problem. 

To solve the multiple identifiers problem and finally obtain the capacitances for the 

individual nodes, the VHDL simulation model and the proprietary XDL design file are 

parsed. During this process, an identifiers dictionary is built in the Power Database. 

6.1 Parsing the VHDL Simulation Model 
The goal of this program is the analysis of VHDL models generated by the netgen 

Xilinx tool from a post PAR layout.  The result of this analysis is a dictionary of 

identifiers, stored in the Power Database, which solves the multiple identifiers problem. 

It is also, as all the programs in this work, a console application. parserVHD.exe 
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has more than 600 lines of source code and the most important fragments are 

explained in this section. 

parserVHD.exe accept command line parameters: 

parserVHD.exe -d dir 

-d dir specifies the working directory 

6.1.1 Why Parsing the VHDL Model? 

From the first studies done to solve the multiple identifiers problem, the VHDL model 

was identified as a vehicle to relate the names in the different parts of the system. For 

example, Code 6.1 shows a slice’s flip-flop instantiation. The VHDL label at line 1 can 

be used to find the identifier generated in other formats in the Xilinx design flow. The 

relationship can be understood observing this label and the output port of the 

instantiated component. The name of the signal connected to the output port is linked 

to the Xilinx’s identifier through the label as shown in Code 6.2, line 6. Replacing the 

“.”, “/”, etc with “_” we have a complete match. Unfortunately, it was found that the rule 

explained in this paragraph has a number of exceptions. 

1 QDDFSC_CORDICR_PIPELINE_PIPELINE_10_DPTH0_DPTH0_DPATHX_GEN0_
GEN0_1_REGC_REGC_REG : X_FF 

2   generic map( 
3     INIT => '0' 
4   ) 
5   port map ( 
6     I => 

QDDFSC_CORDICR_PIPELINE_PIPELINE_10_DPTH0_DPTH0_DPATHX_outxo
rcy, 

7     CE => ce_s, 
8     CLK => c_s, 
9     SET => GND, 
10     RST => QDDFSC_CORDICR_x_datapath_11_0_FFY_RST, 
11     O => QDDFSC_CORDICR_x_datapath_11(1) 
12   ); 

Code 6.1: Example instantiation of a Slice flip-flop in VHDL 
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1 inst "QDDFSC/CORDICR/x_datapath_11(0)" "SLICE" , placed 
R17C39 CLB_R17C39.S1 , module "hset" "hset" 
"QDDFSC/CORDICR/x_datapath_11(0)" , 

2  cfg 
"XORF:QDDFSC/CORDICR/PIPELINE.PIPELINE.10.DPTH0_DPTH0.DPATHX
/GEN0.GEN0.0.lXORCY: 

3  
4 ... 
5 FFX:QDDFSC/CORDICR/PIPELINE.PIPELINE.10.DPTH0_DPTH0.DPATHX/G

EN0.GEN0.0.REGC_REGC.REG:#FF 
6 FFY:QDDFSC/CORDICR/PIPELINE.PIPELINE.10.DPTH0_DPTH0.DPATHX/G

EN0.GEN0.1.REGC_REGC.REG:#FF 
7 ... 
8 " 
9 ; 

Code 6.2: Example of a Slice definition in XDL 
 

Nevertheless, a mature solution was obtained generating the VHDL model with a 

specific option that adds, as comments, the node names as known in other programs 

of the Xilinx design flow. This option is –aka: “Write Also-Know-As names as 

comments”. This is the only explanation found in the documentation [Xil05]. Code 6.3 

shows the same component as Code 6.1 but with the –aka comment at line 1. 

1 QDDFSC_CORDICR_PIPELINE_PIPELINE_10_DPTH0_DPTH0_DPATHX_GEN0_
GEN0_1_REGC_REGC_REG : X_FF -- 
AKA:QDDFSC/CORDICR/PIPELINE.PIPELINE.10.DPTH0_DPTH0.DPATHX/G
EN0.GEN0.1.REGC_REGC.REG 

2     generic map( 
3       INIT => '0' 
4     ) 
5     port map ( 
6       I => 

QDDFSC_CORDICR_PIPELINE_PIPELINE_10_DPTH0_DPTH0_DPATHX_outxo
rcy, 

7       CE => ce_s, 
8       CLK => c_s, 
9       SET => GND, 
10       RST => QDDFSC_CORDICR_x_datapath_11_0_FFY_RST, 
11       O => QDDFSC_CORDICR_x_datapath_11(1) 
12     ); 

Code 6.3: Example instantiation of a Slice flip-flop in VHDL with the –aka option 
 



Power Computation Sub-system  Parsing the VHDL Simulation Model 

 103

6.1.2 Obtaining the Identifiers 

The VHDL model generated from the post PAR layout is based on the instantiation 

of components representing the physical resources within the Slices: LUTs, XOR 

gates, FFs, etc. All this VHDL code must be parsed in order to obtain the required 

identifiers. 

Code 6.4 is a simplified version of the procedure that parses each component 

instantiation within the architecture of the VHDL model.  

1 procedure componentInstantiation; 
2 var 
3   componentIdentifier: String; 
4   portIdentifier: String; 
5   netIdentifier: String; 
6   AKAIdentifier: String; 
7   Index: String; 
8 begin 
9   parea(PAL); // Label 
10   parea (Ord(':')); 
11   componentIdentifier := valcompl.s; 
12   parea(PAL); // Component Identifier 
13   AKAIdentifier := ''; 
14  
15   // Correlate simulator and XPower Names 
16   parea(AKA); 
17   parea (Ord(':')); 
18   AKAIdentifier := valcompl.s; 
19   parea (PAL); 
20   if preanalisis = Ord('(') then 
21   begin 
22     parea (Ord('(')); 
23     Index := valcompl.s; 
24     parea(PAL); // Port Identifier 
25     //Id with parenthesis 
26     AKAIdentifier := AKAIdentifier + '(' + Index + ')'; 
27     parea (Ord(')')); 
28   end; 
29    
30   // There could be a postfix after the parenthesis 
31   if preanalisis = PAL then 
32   begin 
33     AKAIdentifier := AKAIdentifier + valcompl.s; 
34     parea (PAL); 
35   end; 
36  
37   // Generic Map  
38   ... 
39  
40   // Port Map 
41   if preanalisis = PRT then 
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42   begin 
43     parea (PRT); 
44     parea (MAP); 
45     parea (Ord('(')); 
46  
47     // Lista de inicializaciones 
48     while preanalisis <> Ord(')') do 
49     begin 
50       portIdentifier := valcompl.s; 
51  
52       parea(PAL); // Port Identifier 
53       parea(ASC); 
54       netIdentifier := valcompl.s; 
55       parea(PAL); // Net Identifier 
56       if preanalisis = Ord('(') then 
57       begin 
58         parea (Ord('(')); 
59         Index := valcompl.s; 
60         parea(PAL); // Port Identifier 
61         //para poder hacer la comparación con vdc que pone 

paréntesis: 
62         netIdentifier := netIdentifier + '[' + Index + ']'; 
63         parea (Ord(')')); 
64       end; 
65       if (portIdentifier = 'O') or (portIdentifier = 'Q') 

then 
66         addVHDLName (AKAIdentifier, netIdentifier, 

componentIdentifier, true) 
67       if preanalisis <> Ord(')')then 
68         parea (Ord(',')); 
69     end; 
70  
71     parea (Ord(')')); 
72     parea (Ord(';')); 
73   end 
74 end; 

Code 6.4: Procedure that parses VHDL instantiations 
 

The type of component instantiated is obtained at line 11 and is also stored in the 

Power Database. Afterwards, the power consumption could be grouped by FPGA 

resources (flip-flops, OR gates, LUTs, etc.). From line 16 to 35, the “aka” name is 

obtained. These names are written within comments, so the lexical analyzer was 

modified to avoid ignoring them. In this way, comments with the AKA token are 

considered special comments.  

From line 41, the port map section of the current instantiation is analyzed, but just 

the output port is explored to relate with the “aka” name as explained above. At line 66, 
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the addVHDLName procedure is called to store the relevant collected information in 

the Power Database, but through the abstraction layer in order to write a code 

independent of a specific database engine. 

6.1.3 Optimization 

For some users it could be useful to study different scenarios changing the primary 

input activity rates. It could also be useful to estimate the power consumption with 

several accuracies in different stages of the design process. The VHDL model of a 

large design could be a several-MB file and analyzing it is a heavy time consuming 

task. As the information extracted from the VHDL model is independent from input 

pattern characteristics and the selected accuracy, it should not be analyzed more that 

once for a design. The program described in this section takes it into account and 

detects if it was previously executed with the current design, saving a significant 

execution time in subsequent power estimations. 

6.2 Parsing the Xilinx Design XDL file 
The XDL files are text files that can contain all the information necessary to generate 

the binary configuration of an FPGA device. In fact, XDL files are generated from circuit 

layouts in proprietary binary format (NCD). 

The file described in this section obtains the position of the nets in a post PAR 

design. Also it finishes the uncompleted names dictionary started with the VHDL parser 

explained above.  

Although the code is structured as a parser, the grammar is undocumented and was 

discovered studying test cases and some comments found in the XDL files.  

The results of the analysis are stored in the Power Database. As all the programs in 

this work, the XDL parser is a console application. xdlParser.exe has more than 

850 lines of source code and the most important fragments are explained in this 

section. 

xdlParser.exe accept command line parameters: 

xdlParser.exe -d dir 
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-d dir specifies the working directory 

The XDL file contains two parts: The first one with slice definitions and the second 

one with net specifications. The treatment of these specific file parts are explained in 

the following sub-sections. 

6.2.1 Analyzing an FPGA Slice Definition 

The syntax rule for an FPGA slice definition (instances, in the XDL vocabulary) is: 

instance <name> <sitedef>, placed <tile> <site>, cfg 

<string>; 

or: 

instance <name> <sitedef>, unplaced, cfg <string>; 

As in this work just full PAR designs have been studied, the first is the only used 

form. Code 6.5 is a simplified version of the procedure that parses these Slice 

definitions: 

1 procedure DInstance; 
2 var 
3   row, column, sliceNum: Integer; 
4   p, q: Integer; 
5   sliceName: string; 
6   IOB: Boolean; 
7   CLB: Boolean; 
8 begin 
9   CLB := false; 
10   row      := -1; 
11   column   := -1; 
12   sliceNum := -1; 
13  
14   parea (INS); 
15  
16   parea(Ord('"')); 
17   sliceName := valcompl.s; 
18   parea(PAL); 
19   parea(Ord('"')); 
20  
21   parea(Ord('"')); 
22   parea(PAL);  
23   parea(Ord('"')); 
24  
25   parea(Ord(',')); 
26  
27   parea(PLC);  
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28   parea(PAL); 
29  
30   if Pos('CLB', valcompl.s) > 0 then // It’s a CLB 
31   begin 
32     CLB := true; 
33     p := pos ('R', valcompl.s); 
34     valcompl.s[1] := ' '; 
35     q := pos ('C', valcompl.s); 
36     // Row in the FPGA where the CLB (Slice) is placed 
37     row := StrToInt(Copy (valcompl.s, p+1, q-p-1)); 
38     p := pos ('.', valcompl.s); 
39     // Column in the FPGA where the CLB(Slice) is placed 
40     column := StrToInt(Copy (valcompl.s, q+1, p-q-1)); 
41     q := Length (valcompl.s); 
42     // Specific Slice within the CLB 
43     sliceNum := StrToInt(Copy (valcompl.s, p+2, q-p-1)); 
44  
45     addSliceInSlicesT(SliceName, row, column, sliceNum); 
46   end 
47   else ... 
48  
49   parea(PAL); parea(Ord(',')); 
50  
51   while preanalisis <> CFG do 
52     parea(preanalisis); 
53   parea(CFG); 
54  
55   parea(Ord('"')); 
56  
57   if CLB then DConfCLB (row, column, sliceNum) 
58  
59   else ... 
60  
61   parea(Ord('"')); 
62   parea(Ord(';')); 
63 end; 

Code 6.5: Procedure that parses Slice definitions in an XDL file 
 

Once a slice definition is found, from line 30 to 46, the slice position (<site>) is 

obtained. At line 45, the slice position is stored in the Power Database. It will be utilized 

later to build power maps, as explained below. 

The slice configuration is complex enough to write a separated procedure as shown 

at line 47. Code 6.6 is a complete example of a Slice definition. Fig. 6.1 shows the 

same slice but as shown in the Xilinx FPGA Editor.  
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1 inst "round4/mult4/Mult/ADD/suma2_reg(14)" "SLICE" , placed 
R17C35 CLB_R17C35.S0 , 

2  cfg "XORF:round4/mult4/Mult/ADD/un4_suma2_s_14: 
3       XORG:round4/mult4/Mult/ADD/un4_suma2_s_15: 
4       CYMUXF:round4/mult4/Mult/ADD/un4_suma2_cry_14: 
5       CYMUXG:round4/mult4/Mult/ADD/un4_suma2_cry_15: 

CYSELF::F 
6       CYSELG::G CKINV::1 COUTUSED::0 YUSED::#OFF XUSED::#OFF 
7       XBUSED::#OFF F5USED::#OFF YBMUX::#OFF CYINIT::CIN 

DYMUX::1 
8       DXMUX::1 CY0F::F1 CY0G::G1 
9       

F:round4/mult4/Mult/ADD/un4_suma2_axb_14:#LUT:D=(A1@A3) 
10       

G:round4/mult4/Mult/ADD/un4_suma2_axb_15:#LUT:D=(A1@A4) 
11       RAMCONFIG::#OFF REVUSED::#OFF BYMUX::#OFF BXMUX::#OFF 
12       CEMUX::#OFF SRMUX::#OFF GYMUX::GXOR FXMUX::FXOR 
13       SYNC_ATTR::ASYNC SRFFMUX::#OFF INITY::LOW 
14       FFX:round4/mult4/Mult/ADD/suma2_reg[14]:#FF 
15       FFY:round4/mult4/Mult/ADD/suma2_reg[15]:#FF INITX::LOW 
16       

_PINMAP:24:0,1,2,3,4,5,6,8,7,9,10,11,12,15,14,13,16,17,18,19
,20,21,22,23" 

17  ; 

Code 6.6: Example of a Slice definition 
 

 
Fig. 6.1: Example of a Slice as shown in the Xilinx FPGA Editor 
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When the FPGA slice definition of Code 6.6 is analyzed, it should be detected all the 

internal nets: LUT outputs (Lines 9 and 10), XOR outputs (Lines 2 and 3), multiplexers 

(Lines 4 and 5), flip-flops (Lines 14 and 15), etc. Code 6.7 analyzes Slice 

configurations. 

1 procedure DConfCLB (row, column, sliceNum: Integer); 
2 var 
3   p, q: Integer; 
4   fieldXName: string; 
5 begin 
6   while preanalisis <> Ord('"') do 
7   begin 
8      if isSliceRes (valcompl.s) then 
9      begin 
10        // Resource type separator 
11        p:= Pos(':',valcompl.s); 
12        fieldXName:= Copy (valcompl.s, p + 1 , 
13                           Length(valcompl.s)- p); 
14        // Id separator 
15        q:= Pos(':', fieldXName); 
16        fieldXName:= Copy (fieldXName, 1, q - 1); // Id 

extraction 
17        if fieldXName <> ':' then 
18          if AKAFound then 
19            updatePos(fieldXName, row, column, sliceNum) 
20          else updateXName(fieldXName, row, column, 

sliceNum); 
21      end; 
22  
23      parea(preanalisis); 
24   end; 
25 end; 

Code 6.7: Procedure that parses Slice configurations in an XDL file 

 
Once a new name is obtained (line 16), its position is stored in the Power Database 

(from line 18 to 20). This is done until the end of the configuration is detected. 

At the end of the analysis, the positions of the internal nodes are in the Power 

Database for future uses like drawing power maps. These maps are explained below in 

this chapter. Note that the Power Database is accessed through an abstraction layer as 

explained in Chapter 4. 

6.2.2 Analyzing a Net Definition 

The syntax for a Net definition is: 
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net <name> <type>, 

  outpin <inst_name> <inst_pin>, 

  ... 

  inpin <inst_name> <inst_pin>, 

  ... 

  pip <tile> <wire0> <dir> <wire1> , # [<rt>] 

  ... 

; 

The net location, from the power consumption point of view, is determined by the 

position of the output pin that drives the net. This output pin is situated in the 

<inst_name> slice. Slice names and their positions have been previously stored when 

the slice definitions were parsed. With Code 6.8, these nets are parsed: 

1 procedure DNet; 
2 var 
3   netName, sliceName: string; 
4 begin 
5   parea (NET); 
6  
7   sliceName := ''; 
8  
9   parea(Ord('"')); 
10   netName := valcompl.s; 
11   parea(PAL); 
12   parea(Ord('"')); 
13  
14   if preanalisis = PAL then 
15     parea (PAL); 
16   parea(Ord(',')); 
17  
18   // Skip the config 
19   if preanalisis = CFG then 
20   begin 
21     parea(CFG); 
22     parea(Ord('"')); 
23     while preanalisis <> Ord('"') do 
24       parea(preanalisis); 
25     parea(Ord('"')); 
26     parea(Ord(',')); 
27   end; 
28  
29   // Look for the net driver  
30   while (preanalisis <> OPN) and (preanalisis <> Ord(';')) 

do 
31     parea(preanalisis); 
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32  
33   if preanalisis = OPN then 
34   begin // This is the net driver 
35     parea(OPN); 
36     parea(Ord('"')); 
37     // The Slice where the driver is positioned 
38     sliceName := valcompl.s; 
39     parea(PAL); 
40     parea(Ord('"')); 
41     parea(PAL); 
42     parea(Ord(',')); 
43   end; 
44  
45   // Update the net position 
46   addNet (netName, SliceName); 
47  
48   // Skip all other text within the net definition 
49   while preanalisis <> Ord(';') do 
50     parea(preanalisis); 
51   parea(Ord(';')); 
52 end; 

Code 6.8: Procedure that parses net definitions in an XDL file 
 

At line 10 the net name is obtained. At line 38 the Slice where the driver is 

positioned is retrieved from the definition. Finally, at line 46 the net position is updated 

in the Power Database through an abstraction layer. Now, all the net positions have 

been determined. 

6.3 Generating the XML Settings File 
The Xilinx’s power computation tool, XPower, can store and retrieve the activity of 

the individual nodes (and other user settings) in XML format. However, XML files can 

be edited and also generated from scratch with a third party tool. In this way, XPower 

could be used for report generation.  

The program described in this section generates an XML settings file for XPower in 

order to compare and debug the A-DyP results. Although the generation is relatively 

fast, it could be skipped when the estimation time budget is critical. 

As all the programs in this work, the XML generator is a console application. 

XMLRep.exe has approximately 500 lines of source code and the most important 

fragments are explained in this section. 
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XMLRep.exe accept command line parameters: 

XMLRep.exe -d dir 

-d dir specifies the working directory 

6.3.1 Using a Package to Generate XML 

To make the XML generation easier, a public package was used: XDOM.  The 

'Extended Document Object Model' Package for Delphi and Kylix contains several 

functions, classes, and components which support the processing of XML documents. 

It allows representing an XML document by Delphi objects which reproduce the 

structure and content of the XML document in an object tree [XDOM].  

An XML setting file is composed by a head and a body. The head contains 

information related to the whole circuit (ambient temperature, voltage, etc.), and the 

report body contains specific information of individual nodes. Code 6.9 shows an 

example for one circuit node. 

1 <Power_Net name="clk"> 
2   <Power_Activity freq="20.000000Mhz" /> 
3 </Power_Net> 

Code 6.9: Example of a net description in a XPower XML setting file 
 

Code 6.10 is a simplified version of the procedure that shows how such information 

is retrieved from the Power Database in order to generate the XML report body. 

1 procedure CreateXMLPowerBody (var powerNets: TdomNode); 
2 var 
3   lname: String; 
4   media, desvio, netAct: Real; 
5   muestra   : Integer; 
6   CkFrec    : Real; // Clock frequency 
7   net, act: TDOMElement; 
8 begin 
9   // Computes the clock frequency 
10   ... 
11  
12   // SQL query to retrieve node information 
13   ... 
14    
15   // XML body generation 
16   while not eof do 
17   begin 
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18     lname := FieldByName('X_Name').asString; 
19     netAct := FieldByName('average').asFloat; 
20     netAct := netAct * CkFrec/2; 
21  
22     net := Doc.createElement('Power_Net'); 
23     powerNets.appendChild(net); 
24     net.setAttribute('name', lname); 
25     act := Doc.createElement('Power_Activity'); 
26     net.appendChild(act); 
27     act.setAttribute('freq', formatFloat('0.00000', 

netAct)+'MHz'); 
28     powerNets.appendChild(Doc.createTextNode(indent)); 
29    
30     Next; 
31   end; 
32 end; 

Code 6.10: Procedure that generates the net descriptions in a XPower XML setting file 
 

The activity stored in the Power Database is used to generate the body of the XML 

file. Although all the internal nodes are included in the XML report body, some are 

ignored by XPower because they are output-only fields or other reasons. From line 22 

to 28, the XDOM package is used to produce the description of an individual node 

activity. 

6.4 Extracting the Capacitances  
XPower can be used to produce a capacitance report file (PWA) for all the nodes in 

the DUT. With the generated XML settings file, XPower can be invoked by command 

line: 

xpwr design[.ncd] [constraint[.pcf]] [options] 

Where design is the name of the physical design file, constraint specifies 

the name of a physical constraints file. options is one or more of the XPower 

options (see the XPower documentation [Xil05]).  

In this work XPower is executed with the following parameters: 

-l limit  

-x test_xpwr.xml  

-o test.pwr  
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-t script.tcl 

-l limit imposes a limit in the number of lines on the verbose report. An integer 

value must be specified as an argument.  

-x test_xpwr.xml instructs XPower to use the generated XML settings file as 

explained in section 6.3. 

-o test.pwr changes the name of the report file.  

-t script.tcl enables the use of a Tcl commands file. Currently, this option is 

not present in the Xilinx documentation. In this work just one command is of the main 

interest, annotateDesign, which generates a detailed capacitance report, in fF 

(femtofarads), for all the internal nodes in the input physical design file. Unfortunately, 

this command is not found in the documentation at all. 

6.4.1 Parsing the Xilinx Capacitance Report File (PWA)  

The file generated with the annotateDesign command by XPower, is analyzed 

to extract the node capacitances and store them in the Power Database. As with all the 

programs in this work, the PWA parser is a console application. PWAparser.exe 

has more than 450 lines of source code and the most important fragments are 

explained in this section. 

PWAparser.exe accepts command line parameters: 

PWAparser.exe -d dir 

-d dir specifies the working directory 

Code 6.11 is a simplified version of the procedure that extracts and stores individual 

capacitances. 

1 procedure PWAline; 
2 var 
3   c: integer; 
4   signal: string; 
5 begin 
6   signal := valcompl.s; // node name 
7   parea(PAL); 
8  
9   parea (Ord(',')); 
10  
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11   c := StrToInt(valcompl.s); // capacitance 
12   parea(PAL); 
13  
14   parea (Ord(',')); 
15  
16   parea(PAL); // activity 
17  
18   SaveCapacitance (signal, c);  
19 end; 

Code 6.11: Procedure that extracts node capacitances from a PWA file 
 

At line 6, the node name is obtained, and at line 11, its capacitance in fF. Node 

activity is also reported but this is ignored because it has been already stored in the 

Power Database.  

6.5 Calculating the Power Consumption and Writing a 
Report 

With the activities and capacitances of each node in the DUT, now, the individual 

power consumptions can be computed. Also, using the information collected by parsing 

the XDL and PWA files, the power consumption can be grouped by general circuit type: 

logic, signals, clocks and I/Os. Furthermore, there is enough information to differentiate 

the power of the different logic resources within the slices. It means that can be 

produced a report that also shows the power consumed by the LUTs, XORs, MUXs, 

etc. within the slices in the physical design. 

report.exe is the command line program that produces the power consumption 

reports. An example report is shown in Appendix D. 

report.exe has approximately 550 lines of source code and accepts the 

following parameters: 

report.exe -d dir -v 

-d dir specifies the working directory 

-v if present, indicates that the report will contain the power estimation for all the 

individual nodes, in other cases this information is excluded. 
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6.6 Generating the Power Maps 
With the information collected during the estimation process, several maps can be 

drawn. On one hand, node positions are obtained parsing the XDL file. On the other 

hand activity, capacitance and individual power consumption are also available in the 

Power Database. Relating positions and node property values, the maps can be drawn 

with a user specified resolution. 

activityMap.exe, capacitanceMap.exe and powerMap.exe are 

command line programs that produce the information for the activity, capacitance and 

average power consumption maps respectively. Several example maps are shown for 

the test cases in Chapter 8.   

Each one of these programs has approximately 130 lines of source code and 

accepts the following parameters: 

{activityMap.exe, capacitanceMap.exe, powerMap.exe} -d 

dir –r resolution 

-d dir specifies the working directory 

-r resolution defines the grain for the map drawing. A resolution res means 

that the property values of the nodes in res x res CLBs are added together. 

The information is written to a text file where each line is in the form: 

column row property_value 

Thus, this information can be used to plot 2D and 3D figures using scientific 

graphing software. 

6.7 Conclusions 
In this Chapter, the Power Computation Sub-system is explained in detail, 

completing the Chapter 4 general description. Although this system has been 

developed taking into account proprietary formats, it can be recognized that some 

software pieces could be used in other power estimation tools for the same vendor. 

Being independent console applications, they can be coordinated within another Tcl 

script. In this way these programs belong to the Power Platform. 
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The Multiple Identifiers’ Problem comes from the lack of integration with the vendor 

software in the power estimation area. This problem is not completely solved in this 

work because new modifications are introduced with each new version, making it very 

difficult to find a definitive solution. Nevertheless, it is reasonable to believe that in the 

near future, FPGA vendors will specify formats for data interchange and integration 

with third-party developers in the power estimation area. 
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Chapter 7. 

 “How much energy must be used in carrying out a computation? This doesn’t 

sound all that academic. After all, a feature of most modern machines is that their 

energy consumption when they run very fast is quite considerable.” Richard P. 

Feynman in Lectures on Computation[Fey96].  

7 Test Cases and Analysis 

In this Chapter, a number of test circuits are briefly explained. These circuits are 

implemented in several FPGA devices. The possible tests to study the power 

estimation problem over these circuits, and to evaluate the power estimation tool are 

also enumerated. Using these circuits and running the test described below, a set of 

experiments and its results are presented in Chapter 8. 

As it is necessary to physically measure the average core power for the test circuits, 

the experimental setups are also briefly described in this Chapter. 

7.1. Test Circuits 
Table 7.1 and 7.2 show the circuits studied in this work and their resource utilization 

in the specific devices where they were implemented. In the subsections each circuit is 

explained in some detail. 

 

7.1.1 Quadrature Direct Digital Frequency Synthesizers 
(QDDFS) 
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Circuit Code Description Device 

1 QDDFS- 
CORDIC(RTL) 

Quadrature Direct Digital Frequency 
Synthesizer based on CORDIC. Portable RTL 
HDL. 

XCV300E-8-PQ240 

2 QDDFS- 
CORDIC(RTL-
A) 

Quadrature Direct Digital Frequency 
Synthesizer based on CORDIC. Portable RTL 
HDL with area restriction. 

XCV300E-8-PQ240 

3 FIRDA(1) Distributed Arithmetic FIR Filter. Completely 
serial (Digit 1) 

XCV400E-8-PQ240 

4 FIRDA(2) Distributed Arithmetic FIR Filter. 2-bit serial 
(Digit 2) 

XCV400E-8-PQ240 

5 FIRDA(3) Distributed Arithmetic FIR Filter. 3-bit serial 
(Digit 3) 

XCV400E-8-PQ240 

6 FIRDA(4) Distributed Arithmetic FIR Filter. 4-bit serial  
(Digit 4) 

XCV400E-8-PQ240 

7 FIRDA(8) Distributed Arithmetic FIR Filter. Completely 
combinational (Digit 8) 

XCV400E-8-PQ240 

8 FFT_A Fast Fourier Transform, version A XCV800-HQ240-4 

9 FFT_B Fast Fourier Transform, version B XCV800-HQ240-4 

10 FFT_C Fast Fourier Transform, version C XCV800-HQ240-4 

11 FFT_D Fast Fourier Transform, version D XCV800-HQ240-4 

12 MULT32-C Unsigned Combinational 32-bit Multiplier XCV50PQ240-4 

13 ADDER32-C Unsigned Combinational 32-bit Adder XCV50PQ240-4 

14 MULT16-P Unsigned Pipelined 16-bit Multiplier XCV50PQ240-4 

15 DIV16-P Unsigned Pipelined 16-bit Divider XCV50PQ240-4 

16 10MULT16-C Ten Unsigned Combinational 16-bit Multiplier XC2V3000FG676-6 

Table 7.1: Studied Circuits 

 
Two implementations of (COordinate Rotation Digital Computer) CORDIC-based 

QDDFS circuits are described in this sub section. Measurements for these 

implementations have been done over a Virtex-E FPGA (XCV300E-8PQ240 device) 

[XDS02]. The QDDFS circuits have been driven by a 100 MHz clock. Nevertheless, at 

the outputs, digital sine and cosine waveforms are generated with the specified period. 
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Power has been measured for several output frequencies (fout): 1, 10, 20 and 30 MHz. 

These fout are computed according to: 

M
clk

out
ffcw

f
2
⋅

=
 (Eq. 7.1) 

 

Circuit # Slices Slice FF #Nodes Min. Period 
(ns) 

1 484 (15%) 773 (12%) 5411 8.591 

2 484 (15%) 773 (12%) 5407 9.220 

3 159 (3%) 307 (3%) 1486 5.781 

4 303 (6%) 597 (6%) 2774 7.305 

5 456 (9%) 897 (9%) 4092 6.276 

6 595 (12%) 1177 (12%) 5245 6.484 

7 1163 (24%) 2305 (24%) 9495 5.903 

8 3424 (36%) 6364 (33%) 32622 12.803 

9 3384 (35%) 6364 (33%) 32760 11.767 

10 3424 (36%) 6364 (33%) 32242 11.731 

11 3424 (36%) 6364 (33%) 32708 10.457 

12 640 (83%) 193 (12%) 6627 40.377 

13 49 (6%) 97 (6%) 656 11.354 

14 172 (22%) 341 (22%) 2194 9.638 

15 425 (55%) 831 (54%) 3257 9.899 

16 1654 (11%) 586 (2%) 27471 14.928 

Table 7.2: Resource utilization of the Test Circuits 
 

Where fcw (frequency control word) is a circuit primary input that determines the 

output frequency; fclk is the clock frequency; and M is the internal accumulator width (18 

for these test cases). Table 7.3 shows the fcw values used in the experiments. 
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 Fout [MHz] Fcw (decimal) fcw (hexadecimal) 

1 2621 A3D 

10 26214 6666 

20 52429 CCCD 

30 78643 13333 

Table 7.3: QDDFS output frequencies 
 

CORDIC based QDDFS is implemented with a portable HDL. The second circuit is 

implemented with this portable implementation but with an area restriction. For a 

detailed description of these circuits and their implementation in FPGA, see [Car03]. 

From the point of view of the power estimation these circuits are useful to test the 

results accuracy. However the Monte-Carlo technique cannot be tested due to the fixed 

inputs and the periodic outputs. Simulating one whole QDDFS cycle is enough for 

average power estimation. 

7.1.2 Distributed-Arithmetic FIR Filter (FIRDA) 

These are different implementations of a FIR filter. For all these circuits distributed 

arithmetic [May01] and the relative placement technique [XST03] are applied. The 

filters use 64 6-bit coefficients, 8-bit input and output words, 12.5 MHz fixed sampling 

frequencies, and a 2/3 cut-off frequency. Measurements for these implementations 

have been done over a Virtex-E FPGA (XCV400E-8PQ240 device) [XDS02]. 

Implementation  Internal Digit  Clk Frequency [MHz] 

FIRDA(1) 1 100 

FIRDA(2) 2 50 

FIRDA(3) 3 33.3 

FIRDA(4) 4 25 

FIRDA(8) 8 12.5 

Table 7.4: Clock frequencies for FIRDA implementations 
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The difference among these implementations is the internal digit size from bit serial 

to completely combinational. As the sampling frequency is fixed, the clock must be 

adjusted to compute each sample before the next is available. Table 7.4 summarizes 

this specific information. 

For a detailed description of these circuits and their implementation in FPGA, see 

[Ang03]. 

7.1.3 Fast Fourier Transform (FFT) 

FFT_A, B, C and D are 64-point pipelined FFT implementations that fulfill the 

Hiperlan/2 and IEEE 802.11a-g standards. This implementation uses the Radix-4 

algorithm. In order to fulfill the mentioned standards the design is pipelined and 

R4MDC (Radix-4 Multi-path Delay Commutator) is the selected architecture due to its 

area, speed and power figure. Measurements for these implementations have been 

done over a Virtex FPGA (XCV800HQ240-4 device) [XDS01]. The core is carefully 

designed and optimized for Virtex and Virtex-E devices by means of the relative 

placement technique [XST03]. There are small differences among versions A-D. Each 

one try an optimization in the implementation of one component in the FFT core. 

In [San03] a detailed description of these circuits and their implementation in FPGA 

can be found. 

7.1.4 Arithmetic Circuits 

Four fundamental arithmetic circuits have been implemented to test A-DyP: A 

combinational 32-bit multiplier, a combinational 32-bit adder, a pipelined 16-bit 

multiplier and a pipelined 16-bit divider. All these circuits operate with unsigned 

integers. The 32-bit adder and multiplier were specified using a simple behavioral 

VHDL description. For the pipelined multiplier and divider, the corresponding cores 

were generated with Core Generator [XCG03]. Measurements for these 

implementations have been done over a Virtex XCV50PQ240-4 device [XDS01]. 

Another arithmetic circuit has been implemented over a Virtex-II XC2V3000FG676-6 

device [XDS15]. It is made up of ten 16-bit combinational multipliers with registered 

input and outputs.  
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7.2 Analysis of the Results 
The test circuits described in the previous section are utilized in the experiments. 

They are measured, and simulated with several input pattern sets. These sets are 

characterized in such a way that several spatial and temporal correlations are defined. 

Furthermore, there are several parameters that users must specify for each A-DyP run. 

In this way, a tool characterization for these parameters is necessary. 

The main goal in this work, from a practical point of view, is to obtain an accurate 

estimation for total and individual node power. Thus, in this section several tests are 

described in order to characterize the statistical technique and evaluate the power 

estimation tool as a software piece. 

7.2.1 Technique Characterization 

7.2.1.1 Testing the Total Power Estimation 

The goal here is testing the tool accuracy. To reach it, it is necessary to measure 

physically the power consumption in order to compare them with the total average 

dynamic power estimations. This enables the tool calibration.  

The input vectors are the same for both the estimations and the physical 

measurements. As explained in Chapter 5, generate.exe produces vectors in an 

adequate format for the simulator, and also translates these stimuli for the pattern 

generator. A-DyP results can also be compared with XPower [Xde03] Results. The 

activity generated for the same input vectors is written as an XML settings file as 

described in Chapter 6. 

7.2.1.2 Testing the Power Estimation for Individual Nodes 

It is not possible a physical power measurement for the individual nodes within the 

chip. Nevertheless, long run simulations are executed in order to have values to 

compare with the average power estimations for the nodes. Of course, the total power 

in these experiments is as accurate as possible compared with physical 

measurements. 
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The correctness of the implementation is tested specifying different values for the 

tolerated error for the individual nodes. Several simulations are run with a threshold for 

the minimal mean of 0.35, and tolerated errors varying from 30% to 3%. 

7.2.1.3 Importance of the User Defined Accuracy 

In this test, the accuracy improvement is analyzed against the execution time 

necessary to complete the simulations. This is also known as the accuracy vs. run-time 

tradeoff. The run time is represented by the number of samples necessary to obtain the 

required accuracy. This approach gives a value independent of the platform: computer, 

operating system, etc. 

Accuracy is given by the confidence level and error pair but the minimal activity 

mean, that divides the normal from the low activity nodes, must also be studied. 

7.2.1.4 Importance of the User Defined Minimal Mean Threshold 

This is another test to study the accuracy vs. execution time tradeoff. In this case, 

the tolerated error and confidence are fixed and the minimal mean vary from 0.05 to 1 

transitions per clock cycle. The percentage of regular and low activity nodes is studied 

and interesting conclusions can be obtained. 

7.2.1.5 Importance of the Input Pattern Definitions 

To test the importance of the input pattern descriptions, several specifications are 

defined for the primary inputs and for each circuit, varying from statistically independent 

inputs to other figures including connecting some inputs to a counter or even fixed 

values. This introduces test cases where primary inputs have spatial or temporal 

dependencies. 

7.2.2 Software Evaluation 

Beyond the correctness and accuracy, the execution time is essential in a practical 

artifact like this power estimation EDA tool. 

Although the total execution time is studied, the run time of every sub program and 

script in the system is also analyzed. This is very important in order to focus the 



Statistical Power Estimation on FPGAs 

 126 

optimization effort over the specific part of the system with the highest computational 

complexity and execution time.  

7.2.3 Graphical Representation of the Results  

Activity, capacitance, and power consumption maps are drawn for the circuits 

running in typical operating conditions. This enables the hot spots in the die to be 

discovered and which parts of the design should be optimized from the power 

consumption point of view. These figures also induce the study of correspondence 

between power consumption and temperature [Lop03]. 

7.3 Power Measurement 

 
Fig. 7.1: Xilinx HW-AFX-PQ240-100 development board 

 

As it was presented above, it is necessary to measure the test circuit’s average 

power under the user specified conditions in order to calibrate, debug, and even 

develop an accurate power estimation tool. Several development boards were used for 

that purpose. The first one, employed in the preliminary experiments was developed by 
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Lopez-Buedo [Lop97] and those results were [Tod00], [Tod01] and [Sut01] but they are 

not presented in this work. 

An important feature of a development board for average power measurement is to 

have special connectors for the logic analyzer and pattern generator. Other special 

characteristic of these boards is that power supply jacks are separated for the FPGA 

core, FPGA I/O, and general circuitry.  

In the experiments with Virtex and Virtex-E devices a Xilinx HW-AFX-PQ240-100 

development board as the one shown in Fig. 7.1 [APX99] was used. The socket in this 

board accepts 2.5V Virtex and Virtex-E devices in PQ240 and HQ240 packages. 

Another development board with similar characteristics for power measurement was 

used for Virtex-II devices. This is the Xilinx Virtex II FG676 development board as the 

one shown in Fig. 7.2 [APX03]. The socket in this board accepts 1.5V Virtex-II devices 

in FG676 packages. 

 
Fig. 7.2: Xilinx Virtex II FG676 development board  

 

The most important characteristics of the devices used in this work are listed in 

Table 7.5.  
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A Tektronix Pattern Generator TLA7PG2 [Tek02] produces the stimuli as described 

in Chapter 5. Circuit outputs are also verified by means of a Tektronix Logic Analyzer 

TLA07A [Tek01]. An ammeter is used to measure average core currents maintaining 

the core voltage, Vccint, at the nominal values as shown in Fig. 7.3. 

Family Device  Size (CLB) Slices Distributed RAM BlockRAM 

Virtex XCV50PQ240-4 16x24 768 24,576 bits 32,768 bits 

Virtex XCV800HQ240-4 56x84 9408 301,056 bits 114,688 bits 

Virtex-E XCV300EPQ240-8 32x48 3072 98,304 bits 131,072 bits 

Virtex-E XCV400EPQ240-8 40x60 4800 153,600 bits 163,840 bits 

Virtex-II XC2V3000FG676-6 64x56 14336 448 Kb 1728 Kb 

Table 7.5: FPGAs members used in the experiments 
 

Power Supply

Development Board

Logic Analizer 
+ Pattern Generator

Vccint Vccio

FPGA

V A

Patterns

Outputs

 
Fig. 7.3: Experimental setup 

 

It is important to note that just the core current and voltage are measured. In this 

way I/O –or off-chip- power is excluded from the study. Core power can be divided into 

three components: dynamic, static, and synchronization power. The static, and static 

plus synchronization power measurements enables the division of these three 

components by subtraction. To measure the static power, the FPGA is configured with 

the DUT but neither stimuli nor clock are applied. Static plus synchronization power is 
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measured similarly but this time the clock signal is applied at the specified frequency. 

In [Sut05] a detailed description of all the experimental setups described in this section 

can be found. 
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Chapter 8. 

“Every experiment proves something. If it doesn't prove what you wanted it to 

prove, it proves something else” Anonimous 

8 Experimental Results 

In the previous Chapter, a number of test circuits were briefly explained. These 

circuits are implemented in several FPGA devices. Also in Chapter 7, the possible tests 

to be executed in order to gauge these circuits and evaluate the estimation tool were 

enumerated. These elements (devices, designs, and tests), generate an important 

number of combinations and the results could be presented in several ways. In this 

chapter the experimental results are presented as they were obtained. Therefore, 

preceding results induce more ideas and experiments, and at the end a complete 

evaluation of the development gives a comprehensive picture to the reader. 

First, QDDFS-CORDIC circuits are exercised. In these designs, there is a primary 

input that determines the period of the digitally synthesized sinusoidal waveform. With 

these circuits, the first evaluations of the current development are run in order to test 

accuracy, run time, software correctness, etc. The statistical approach is not evaluated 

with these designs because the inputs are precisely fixed. 

Next, FIRDA filters evaluate the main characteristics of the implemented statistics-

based power estimation technique. With these results, besides the accuracy, efficiency 

will be studied and a significant optimization is proposed. This saving in execution time 

is done without any loss of accuracy. 
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In the third place, the impact of the input pattern definitions is verified. Several 

synthetic pattern definitions are applied to arithmetical circuits. On the other hand, real 

world patterns are used over FFT implementations. 

Finally, some of the experiments mentioned in the above paragraphs are repeated 

over circuits implemented on Virtex-II devices. 

As the power is linear with the operating frequency, it is better to express the 

measurements by means of a normalized, frequency-independent unit. For this reason, 

in this work the measurements for synchronous circuits will be expressed in power per 

unit of frequency. With the current technology, and for a wide range of applications, 

mW/MHz is the preferred unit of energy. It could also be useful to consider the 

mW/MHz per node: two circuits with similar measured mW/MHz may have a different 

number of nodes, suggesting that the smaller one may have hot spots. Note that 

mW/MHz is a unit of energy equivalent to nJ. The energy consumption is the main 

function to optimize in low power design. 

For all the test cases just the dynamic power is considered and the static, I/O and 

clocking power have been subtracted. In all these experiments post PAR VHDL models 

with routed delays are used in the simulations. 

8.1 A-DyP Preliminary Evaluation 
Over QDDFS-CORDIC circuits, a special set of test cases is executed. These 

circuits are implemented using a Virtex-E XCV300E-8PQ240 device. The statistical 

method is not tested but other programs within A-DyP are because all the primary 

inputs are fixed during the simulation. At the outputs, digital sine and cosine waveforms 

are generated within a specified period. With these tests, the computed power value 

can be compared with physical measurements. In this way, the estimations accuracy 

and the software tool correctness are studied. Almost all the A-DyP software 

participates in this computation. Also, the viability to draw power maps from the 

collected data is verified. Another point to note with these QDDFS-CORDIC circuits is 

that the clock power is considered within the estimations. 
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8.1.1 Total Dynamic Power Estimation 

Table 8.1 shows the results for two QDDFS-CORDIC implementations. For each 

implementation four output frequencies (Fout) are synthesized. The measured total 

energy is compared with two estimations. In the first one, all the activity reported by the 

simulator is considered (Tg=0). In the second one, short glitches are filtered in order to 

avoid the overestimation observed in the first case. Tg represents the glitch pulse width 

where the time is so short that transitions are not rail to rail but smaller. In several 

papers like [And04], partial glitches are filtered. They define a partial glitch on a net as 

a pulse with duration shorter than the driver’s delay. 

It is important to note that there is another reason which leads to these inaccuracies. 

As pointed out in [Bae02]: “Logic simulators are neither precise nor reliable at 

measuring switching activity. It is due to the fact they are not accurate at simulating 

glitch propagation”. In any case, without these short pulses, less power than that 

calculated with Eq. 2.7 is dissipated. Note that, filtering these short pulses, the error is 

less than 10% for all the cases. However, when no glitches are filtered, the error can 

reach more than 80%, always in excess. 

Tg = 0 Opt. Tg  
Fout Measured 

Estimated Error (%) Estimated Error (%) 

1 4,608 6,651 55,2 4,388 -4,8 

10 6,174 9,717 65,5 6,031 -2,3 

20 7,002 10,772 61,0 6,660 -4,9 Q
D

D
FS

- 
C

O
R

D
IC

(R
TL

) 

30 7,362 11,059 57,0 6,750 -8,3 

1 4,356 7,020 71,9 4,424 1,6 

10 5,868 10,313 86,7 6,427 9,5 

20 6,534 11,375 81.3 6,919 5,9 Q
D

D
FS

- 
C

O
R

D
IC

(R
TL

-A
re

a)
 

30 6,876 12,140 76,6 6,982 1,5 

Table 8.1: Total Power Estimation for QDDFS-CORDIC Designs 
 

The power values in Table 8.1 are shown in mW/MHz as in all the test cases in this 

work. Nevertheless, it is important to note that the clock frequency was 100 MHz for all 
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the measurements and estimations in these QDDFS-CORDIC cases. The optimum 

value for the min. glitch duration, Tg, calculated for this device, is 650 ps. 

8.1.2 Impact of the Input Patterns Definition 

This set of test cases is particular from the point of view of the input patterns 

characterization. The input value for the FCW input port (frequency control word) must 

be calculated to obtain the specified output frequency, but it is fixed for the complete 

simulation and measurement process. 

As the clock frequency is always 100 MHz, about the same power consumption 

could be expected for all the output frequencies. The number of operations per unit of 

time is the same (the number of points in Fig. 8.1). However note that, for the selected 

cases, the higher the output frequency the higher the power consumption. This is 

because, for the highest frequencies, there are fewer points per output cycle, and the 

discrete steps must be larger, generating more activity in the output MSBs. A difference 

about the double in the power consumption is observed in Table 8.1, and these cases 

are not the extreme ones considering the output frequency range of this QDDFS-

CORDIC. 
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Fig. 8.1: Different output frequencies with the same clock period in QDDFS-CORDIC circuits 

 
In despite of this circuit does not test the statistical technique, it is clear that the 

input characteristics will impact over the power figure. 
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8.1.3 Tool’s Evaluation 

In these special test cases, the transition analysis process is the most time 

consuming task as shown in Table 8.2 and Fig. 8.2. Nevertheless, it will be shown that 

this remains true for all the test cases. In this way, it is clear that an effort must be 

made to improve its efficiency. 

 Task Exec. Time [sec] 

Input vector generation 0 

Simulation 18 

Saving 0 

Transition analysis 101 

Statistics computation 0 A
ct

iv
ity

 E
st

im
at

io
n 

Stopping criteria evaluation 0 

VHDL parsing 0 

XDL parsing 0 

XML generation 65 

XPower execution 4 

PWA parsing 0 Po
w

er
 C

om
pu

ta
tio

n 

Report writing 1 

Table 8.2: A-DyP execution Time. QDDFS-CORDIC, 30 MHz, RTL 
 

Task Exec. Time [sec] 

Total Execution 203 

Initialization 4 

Activity Estimation 119 

Power Computation 77 

Tcl/Tk script 3 

Table 8.3: A-DyP total execution Time. QDDFS-CORDIC, 30 MHz, RTL 
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In order to have an idea about the absolute A-DyP execution times, Table 8.3 

summarizes them by sub-system. The total execution time in the example is around 3 

minutes. 
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33%

2%
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4% 0%

Input vector generation
Simulation
Saving
Transition analisys
Statistics computation
Stoping criteria evaluation
VHDL parsing
XDL parsing
XML generation
XPower execution
PWA parsing
Report writing
Power Maps

  
Fig. 8.2: A-DyP Execution Time for QDDFS-CORDIC 

8.1.4 Power Maps 

 
Fig. 8.3: Power Map. Resolution 1 CLB for QDDFS-CORDIC 
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As a first illustration, just one case is shown for the QDDFS-CORDIC RTL and Area-

Restricted designs. It can be noted that neither the highest capacitance zones (Fig. 8.5 

and 8.8) nor the highest activity points (Fig. 8.4 and 8.7) in the circuit have necessarily 

the highest power consumption (Fig. 8.3 and 8.6). 

 
Fig. 8.4: Activity Map. Resolution 1 CLB for QDDFS-CORDIC 

 

 

Fig. 8.5: Capacitance Map. Resolution 1 CLB for QDDFS-CORDIC 
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Fig 8.6: Power Map. Resolution 1 CLB for QDDFS-CORDIC, Area-Restricted 

 
Figs. 8.6, 8.7 and 8.8 show the power, activity and capacitance maps for a QDDFS-

CORDIC design with restricted area, whereas Figs. 8.3, 8.4 and 8.5 show the same 

maps but in this case, the design was synthesized without any area restriction.  

 
Fig. 8.7: Activity Map. Resolution 1 CLB for QDDFS-CORDIC, Area-Restricted 
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Fig. 8.8: Capacitance Map. Resolution 1 CLB for QDDFS-CORDIC, Area-Restricted 

 

8.2 A First Complete Test Case: FIRDA Filters 
For this set of test cases a complete tool evaluation was performed. The 

experiments were performed over different implementations of a FIR filter using 

distributed arithmetic [May01]. They use 64 6-bit coefficients, 8-bit input and output 

words, 12.5 MHz fixed sampling frequency, and a 2/3 cut-off frequency. The difference 

among these implementations is the internal digit size, from the serial version to the 

combinational one. 

8.2.1 Total Dynamic Power Estimation 

Both estimated and measured power values are shown in Table 8.4. Note that the 

clock frequency must be adjusted given the fixed sampling frequency of 12.5 MHz. For 

example, in the digit-4 case, the clock frequency must be 25 MHz because two 4-bit 

digits are processed for each sample. 

The min. glitch duration, Tg, calculated as the optimum value for this device is 140 

ps. Note that, filtering these short pulses, the error is less than 9% for all the cases. 

However, when no glitches are filtered, the error can reach more than 20%, always in 

excess. 
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Tg = 0 Opt. Tg 
Digit Measured 

Estimated Error (%) Estimated Error (%) 

8 5.328 6.460 21.3 5.804 8.9 

4 3.737 3.992 6.8 3.559 -4.8 

3 2.625 2.902 10,6 2,626 0.0 

2 1.804 1.942 7.7 1.736 -3.7 

1 0.821 0.908 10.6 0.817 -0.4 

Table 8.4: Total Power Estimation (mW/MHz) for FIRDA Designs 
 

8.2.2 Estimating Power for Individual Nodes 

The goal of this test is to evaluate if the results fit the user specified accuracy. The 

power consumption of the individual nodes must be bounded by a tolerated error within 

a specified level of confidence. The combinational FIRDA implementation is studied in 

these experiments. 

Fig 8.9 shows relative error distributions for different levels of accuracy. This 

accuracy is specified in the upper right corner of each histogram. For example, 96/4 

means 96% confidence and 4% error. With the statistical approach, the requirement is 

that the relative error for regular nodes must be bounded to ε with (1-α) x 100% 

confidence. Therefore, if the number of regular nodes is big enough, it is also expected 

that less than α x 100% of the regular nodes, have more than ε x 100% error. This is 

achieved in all the cases shown in Fig. 8.9.  

As the power consumption for the individual nodes cannot be physically measured, 

the comparisons were made against the results obtained from a long simulation run 

(98% of confidence with less than 2% error). In this set of test cases the threshold for 

the activity mean, that divides regular and low activity nodes, is 0.25. 

The statistical method is applied for the activity, but as the expectation is a linear 

operation, then (See Eq. 2.6): 

)(5.0)( 2
iddi AEVCPE ⋅⋅⋅=   (Eq. 8.1) 
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Fig. 8.9: Individual node power: relative error distributions for FIRDA_8 
 

It is supposed that capacitance and supply voltage are constants. In this way, the 

relative error is the same for both the activity and power consumption for the individual 

nodes, except when the capacitance is zero. If we call the mean power, μP, and the 

mean activity, μA,  
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 (Eq. 8.2) 

However, when the capacitance reported by the vendor is zero, the power is zero 

whatever the activity value. Thus, a concentration of zeros in the distributions is 

observed.  

Nevertheless, it is important to note in these experiments that beyond achieving the 

required accuracy, it is exceeded. This is due to the highest activity nodes, which 

converge earlier in the estimation process, and are over-analyzed. How can it be 

observed -and measured- that this accuracy is exceeded? Not less, but much less than 

α x 100% of the regular nodes, have more than ε x 100% error. To quantify it, it is 

interesting to study some “effective” accuracy value, a value that reflects the obtained 

accuracy with the statistical estimation tool, in opposition to the required accuracy. 

8.2.2.1 The Effective Accuracy Notion 

Accuracy is determined by the tolerated error and the confidence level. It is possible 

to specify a small error but with low confidence or a higher error with a high confidence 

level. However, in practice these scenarios are not the most significant ones. Usually, 

high accuracy is specified selecting a small error value with a high confidence level; 

and a low accuracy, selecting a high tolerated error with a low confidence level. That 

suggests that accuracy could be normalized tying together the error and the accuracy 

in just one value. For example the confidence-error pairs could be 99/1, 98/2, 97/3… 

100-ε%/ε%. Given a power estimation run, it can be defined εc values so that the 

number of nodes with a relative error higher than εc is less than εc x 100% of the normal 

nodes. 

How does this εc work? To clarify the idea, Table 8.5 shows a hypothetical example: 

a circuit with 100 normal nodes with the relative errors in power consumption shown in 

ascending order. These values are obtained from a run where the tolerated error is 

15% with 85% of confidence. 
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-0,201 -0,077 -0,049 -0,022 0,009 

-0,162 -0,075 -0,048 -0,021 0,011 

-0,145 -0,074 -0,046 -0,019 0,013 

-0,134 -0,072 -0,045 -0,018 0,016 

-0,124 -0,070 -0,044 -0,016 0,019 

-0,118 -0,068 -0,042 -0,015 0,020 

-0,111 -0,067 -0,041 -0,014 0,023 

-0,108 -0,066 -0,040 -0,012 0,025 

-0,105 -0,065 -0,038 -0,011 0,027 

-0,103 -0,064 -0,036 -0,009 0,029 

-0,101 -0,062 -0,035 -0,008 0,031 

-0,097 -0,060 -0,034 -0,006 0,035 

-0,095 -0,059 -0,032 -0,004 0,039 

-0,092 -0,057 -0,030 -0,003 0,043 

-0,090 -0,056 -0,030 -0,001 0,048 

-0,088 -0,054 -0,028 0,000 0,055 

-0,086 -0,054 -0,027 0,001 0,061 

-0,084 -0,053 -0,026 0,003 0,074 

-0,082 -0,051 -0,025 0,006 0,103 

-0,079 -0,050 -0,023 0,007 0,171 

Table 8.5: Power values of a hypothetical run over a 100-nodes circuit 
 

From Table 8.5, several εc values can be analyzed. In the first row of Table 8.6, 

there are 3% nodes with more than 15% error. In this case, it is clear that the required 

accuracy is exceeded. The accuracy would be satisfied even if 15% of the nodes have 

more than 15% error. 
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εc Nodes %Nodes 

0.15 3 0.03 

0.14 4 0.04 

0.13 5 0.05 

0.12 6 0.06 

0.11 8 0.08 

0.10 13 0.13 

0.09 17 0.17 

Table 8.6: Accuracy analysis of a 100-nodes circuit (required 15% error, 85% confidence) 
 

It can also be observed that 8% of the nodes have more than 11% error. In this run, 

if 11% error and 89% confidence were specified, they would also be satisfied. 

Nevertheless, 13% of the nodes have more than 10% error. This means that a 10% 

error and 90% confidence is not reached. From this particular example, the effective 

accuracy notion can be perceived. The maximum accuracy that could be reached is 

11% error with 89% confidence (in fact it is higher considering decimal fractions). 
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Fig. 8.10: Effective accuracy for FIRDA_8 

 
More formally, the effective accuracy εef is defined by the maximum εc that can be 

obtained from the estimation results. It means that the tightest accuracy this run could 

fit is with a confidence (1- εef) x 100% that relative error is less than εef. 
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Fig. 8.10 shows the results of this study for the combinational FIRDA 

implementation. The effective accuracy is around 1.8 times better than the user defined 

accuracy for this set of test cases. This value is computed according to Eq. : 

 

 (Eq. 8.3) 

 

where ei and eeff,i are the specified and the corresponding effective error respectively 

for the i-th of p estimation runs (p=18 in Fig. 8.10). 

The observation described in this section gives the opportunity for an optimization: a 

smaller sample can satisfy the user specified error and confidence and it can be done 

without any loss of accuracy. 

8.2.2.2 A-B Nodes Classification6 

Besides the effective accuracy notion, the nodes do not converge linearly. For 

example, for the combinational FIRDA version (with 90% accuracy, error is less than 

10%, and minimum activity 0.25) it is observed that 98% of the nodes, representing 

99% of the power, have met the stopping criteria halfway through the estimation 

process. This behavior is observed in Fig. 8.11. 

From an “economical” point of view, this last 1-2% of the nodes costs a fortune in 

execution time terms. Normally these extremely expensive 1-2% nodes could be 

accepted earlier in the estimation process with low accuracy loss. In this way, normal 

nodes can be classified in two groups: normal and with high cost. 

According to this second observation, being ε the tolerated error and (1-ε) x 100% 

the level of confidence, we can consider the estimation process finished when more 

than (1-ε) x 100% of the normal nodes have converged. But in order to adjust the 

optimization strength, a new parameter is defined, so that when more than 1-

                                                 

6 The name comes from a technique applied in inventory control -and other areas in Operations Research- where the articles 
are classified in three groups, A, B, and C according to the total annual expenditure for each item. It helps a company 
identify the importantt items (5%-20% of type A, accounting for 55%-65 of sales). Then it is possible to concentrate effort 
on applying inventory control policies for these type A items, producing substancial savings. The ABC classification, 
sometimes referred to as the 80/20 rule and as Pareto analysis, was devised at General Electric during the 1950s. 
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ε*OptStrength% of the nodes have converged, the estimation process is considered 

finished. For example, with a specification that error is 10% with 90% of confidence, 

and 1000 normal nodes, if the optimization strength is 1.0, then the estimation is 

considered complete when more than 900 nodes have met the stopping criterion. If the 

parameter is set to 0.5, then the estimation is considered complete when more than 

950 nodes have converged. 
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Fig. 8.11: Convergence for FIRDA_8 

 

The condition to stop the estimation is then, 

Ste
N

N

normal

no ⋅≤
 (Eq. 8.4) 

Where Nnormal is the normal nodes count, Nno, is the number of normal nodes that 

have not converged, ε is the user specified error and St is the specified optimization 

strength. 

Fig. 8.12 shows how, as the optimization strength is higher; the effective error 

approaches the specified one (10%) making every simulated clock cycle in the taken 

sample useful and efficient. Furthermore, a dramatic saving in execution time is 

observed. The savings are expressed in relative terms where 1.0 corresponds to the 

case without optimization strength. For example, Fig. 8.11 shows that when St = 1.0, 

the sample size is less than 40% of the one without optimization. 
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Fig. 8.13 shows relative error distributions for different user specified optimization 

strengths. In the experiments in this subsection it is specified with 90% confidence that 

error is less than 10%, and the minimum activity threshold is 0.25. Although the 

effective accuracy is a random variable, it is clear that it approaches to the one 

specified by the user as the optimization strength increases. The goal here is to 

connect the effective accuracy concept with the proposed nodes classification. It is 

verified that with this optimization technique the effective accuracy comes close to the 

specified one. 
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Fig. 8.12: Execution time and effective accuracy in function of the optimization strength for the 

FIRDA_8 test circuit  

 

8.2.3 Accuracy vs. Execution Time Tradeoff 

In is interesting to study how the execution time depends on the required accuracy. 

Besides the tolerated error and confidence, the accuracy is in principle also a function 

of the activity threshold that divides the nodes into normal and the low activity ones. 

The tunable accuracy-execution time properties are studied in this section. Fig. 8.14 on 

page 149 shows that for both normal and low activity nodes, as error decreases and 

the confidence level increases, the number of samples increases monotonically. For all 

the experiments in this set, the input signals were specified as time independent, with 

probability 0.5 and 0.5 transitions per clock cycle. The min. activity threshold is 0.25. 
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Fig. 8.13: Individual node power: relative error distributions for FIRDA_8 
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Fig. 8.14: Accuracy vs execution time tradeoff for FIRDA_8 
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Fig. 8.15 Accuracy vs. execution time tradeoff for FIRDA_8 

 
On the other hand, Fig. 8.15 shows the results of different runs with 95% confidence 

and 5% error, varying the min. activity threshold. As expected, the required number of 

samples increases monotonically as the minimum mean decreases.  

Even with this strong functional relationship between the activity threshold and the 

execution time, a low impact on the total power estimation error is observed in this test 
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case where the activity threshold changes. In fact, the correlation between this 

parameter of accuracy and the total power relative error is very low, as shown in Fig. 

8.16. 
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Fig. 8.16: Min. Activity threshold vs. total relative error in total power for FIRDA_8 

 
A more meaningful picture representing the accuracy vs. execution time tradeoff is 

Fig. 8.17, where all the involved variables are present and the behavior of the 

estimation system is characterized. The x-axis represents the accuracy, where a xi 

values correspond to an xi% error with 100-xi% confidence. This experiment confirms 

the robustness of the technique, allowing a tunable accuracy. 
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Fig. 8.17: Characterization of the accuracy/execution-time tradeoff for FIRDA_8 



Experimental Results  A First Complete Test Case: FIRDA Filters 

 151

4 8 12 16 20
100

1000

10000

100000

Sa
m

pl
es

Error%

Min. Mean
 0.05
 0.15
 0.25
 0.40
 0.50
 0.05opt
 0.15opt
 0.25opt
 0.40opt
 0.50opt

Device: xcv400e, pck pq240, speed -8
FIRDA_8

 
Fig. 8.18: Characterization of the accuracy/execution-time tradeoff for FIRDA_8. Optimization 

strength 0.75 

 
Nevertheless, all the previous cases in this section were run with an optimization 

strength value equal to zero. Fig. 8.18 shows the same characterization for 

optimization strength 0.75 and the comparison with the non optimized case. The 

dashed lines represent the cases without optimization. 

In order to give more information about the results in Fig. 8.18, Table 8.7 shows the 

execution time savings with respect to the non optimized case. 

 Min. Act. 

Error 0,05 0,15 0,25 0,4 0,5 

5 0,76 0,45 0,53 0,35 0,30 

8 0,81 0,55 0,57 0,40 0,30 

10 0,82 0,55 0,58 0,45 0,32 

15 0,85 0,69 0,62 0,56 0,40 

20 0,84 0,65 0,49 0,47 0,47 

Table 8.7: Execution time savings for FIRDA_8. Optimization strength 0.75 
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It is observed that the best savings are obtained in the most favorable cases, where 

the required accuracy and execution times are high. 

8.2.4 Tool’s Evaluation 

As shown in section 8.1.3, beyond the results in relative terms, it is also interesting to 

consider the absolute execution times. Table 8.8 and Fig. 8.19 show the results for the 

combinational FIRDA with the optimization strength set to 0.75. The error is 5%, 95% 

confidence, and min. mean is 0.25. 

 Task Exec. Time [secs] 

Input vector generation 13 

Simulation 742 

Saving 24 

Transition análisis 2669 

Statistics computation 16 A
ct

iv
ity

 E
st

im
at

io
n 

Stopping criteria evaluation 17 

VHDL parking 1 

XDL parking 1 

XML generation 107 

XPower execution 12 

PWA parking 0 

Report writing 3 

Po
w

er
 C

om
pu

ta
tio

n 

Maps generation 10 

Table 8.8: A-DyP execution Time for FIRDA_8 

 
In order to have an idea about the absolute A-DyP execution times, Table 8.9 

summarizes them by sub-system. This run, where the accuracy is relatively high 

requires 1 hour (Pentium 1.6 GHz, main memory 512 MB). In Table 8.10 the same 

design is tested with a lower accuracy requirement: 15% error with 85% confidence. 

Now the total execution time is about 6 minutes. Total time includes all the necessary 

procedures to run the test. For example, it includes the elaboration done by the 
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simulator for the VHDL design. Nevertheless, this time does not include the compilation 

time, which is necessary just once for the first run of each design. 
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Fig. 8.19: A-DyP Execution Time for FIRDA_8 

 

Task Exec. Time [sec] 

Total Execution 3678 

Initialization 49 

Activity Estimation 3481 

Power Computation 134 

Tcl/Tk script 14 

Table 8.9: A-DyP total execution time. FIRDA_8, high accuracy 

 

Task Exec. Time [sec] 

Total Execution 387 

Initialization 51 

Activity Estimation 191 

Power Computation 141 

Tcl/Tk script 4 

Table 8.10: A-DyP total execution time. FIRDA_8, low accuracy 
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8.2.5 Power Maps 

In this sub-section some power, capacitance and activity maps are shown. Fig. 8.20 

and 8.21 show two power maps for the FIRDA_8 circuit with different resolutions. For 

the first one, the power consumption is added within a 1x1 CLB square. The second 

figure lumps together the power consumption within the 4x4 CLBs. Although it seems 

less accurate, the second alternative could give a better idea about the internal 

temperature in the die. 

 
Fig. 8.20: Power Map. Resolution 1 CLB 

 

 
Fig. 8.21: Power Map. Resolution 4 CLBs 
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Fig. 8.22 and 8.23 show a capacitance and an activity map for the FIRDA_8 circuit 

respectively. 

 
Fig. 8.22: Capacitance Map. Resolution 1 CLB 

 

 
Fig. 8.23: Activity Map. Resolution 1 CLB 

 

In Section 8.2.3 it is shown that correlation between the activity threshold and the 

total power relative error is very low. The total power is a macroscopic magnitude but it 

is also useful to study what happens at a higher resolution level, for example at the 

CLBs scale, in the programmable-element world. 
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Fig. 8.24 shows a map with the differences between 2 simulation runs with activity 

thresholds 0.18 and 0.8. Those are the estimations with the highest difference in total 

power for the activity threshold studied range. In this figure, the differences are around 

10 μW, being the CLB power consumption in the 0-370 μW range. Consequently, these 

differences could be considered weak noise. Nevertheless, if the relative differences 

are computed, the results show high values. Relative differences are computed 

according to Eq. 8.5. 

yxm

yxMyxm
yxmMrel P

PP
P

,,

,,,,
,,,

−
=  (Eq. 8.5) 

Where PS,x,y is the power consumed at CLB in column x, row y, and simulation 

run S. Average, standard deviation and maximum values for these differences are 

shown in Table 8.11 for square groups of n x n CLBs. 

Resolution Mean Std. Deviation Maximum 

1x1 3,3% 7,5% 88,4% 

2x2 2,9% 6,4% 82,2% 

4x4 1,8% 1,4% 6,4% 

Table 8.11: Relative differences between two simulation runs with different minimum activity 
thresholds 

 

 
Fig. 8.24: Map that shows the difference between 2 estimations with activity thresholds 0.18 and 

0.8. Resolution 1x1 CLB 
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Now, it is clear that the activity threshold is an accuracy parameter for individual 

node estimations and, in general, low resolution power estimations with the 

implemented technique. 

Fig. 8.25 shows some projections from de 3D representation keeping specific rows 

constant. 
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Fig. 8.25: 2D projections from the 3D map of Fig. 8.23 
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8.2.6 Energy Analysis or Energy of the Computation  

All the FIRDA circuits are evaluated in this section, from the combinational version 

to the serial one, including digit sizes of 8, 4, 3, 2 and 1. The circuit behavior from the 

user point of view is the same for all the cases; the I/O data rate is also equal. Just the 

clock frequency must be adjusted to serve the incoming data taking into consideration 

the current digit size. The combinational version requires the slowest clock frequency 

but needs the highest area. The serial (digit-1) version needs the smallest area at the 

highest clock frequency. The question is now, which is the architecture with the lowest 

power figure? 

  

 

Fig. 8.26: Power Maps for the FIRDA circuits 
 

Revisiting Eq. 2.7: 

i
i
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As the digit size decreases, fclk must be increased and the total power will augment 

in the same way. At the same time, the area decreases and this means that 

capacitance is reduced. What will the prevailing effect be on power consumption? Will 

the power increase or decrease in serialized versions? The power maps for the 

different implementations are shown in Fig. 8.26. As the area increases, a lower power 

per unit of area is observed. Conversely, for the digit-1 case the area is minimal but the 

energy consumption is concentrated in this region of the die. 

It is clear that the computation done over the data is the same, and at the same rate. 

Could it be thought of as some energy associated with a computation? In this case, the 

energy per operation should be the same for all the FIRDA architectures. 

In [Fey96], a study about the energy and thermodynamics of computing is 

presented. In that work it is concluded that, for practical cases –practical in opposition 

to idealized machines that operates infinitesimally slow, for example-, there is an 

amount of energy proportional to the computational work. Therefore, this test case is 

an opportunity to verify these ideas (see Section 2.3.1). 
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Fig. 8.27: Power and area for the different FIRDA versions 

 

Depending on the application constraints, the best version of the filter can be 

selected according to its power consumption or area occupation. Fig. 8.26 shows that 

when the area increases, the total power consumption decreases. If the design is 

restricted by area, the serial version should be used, being 8 times smaller than the 
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parallel one. However, when the power budget is reduced, the parallel implementation 

is the preferred one, with half as much again as the serial version. 

It is interesting to analyze the synchronization and logic power separately. Fig. 8.27 

shows that the logic power varies slightly. It is higher in serial versions due to the 

additional control logic. In this way the idea of energy associated with a computation 

have an empirical counterpart. It is important to note that for this proposition to be true, 

the spurious activity must be reduced. This is the case in these circuits due to the use 

of pipelines. 

If both power and area need to be optimized together, the serial version is the best 

choice, as shown in Fig. 8.28. In fact, the synchronization power for the serial version is 

a little more than 3 times higher than the parallel circuit: As in pipelining, additional 

power is required to manage the data. Consequently, total power, including 

synchronization and dynamic power for the serial version, is almost double that of the 

parallel implementation. 
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Fig. 8.28: Power*Area for the different FIRDA versions 
 

8.3 Impact of the Input Patterns Definition 
In this section some test circuits are evaluated with different input pattern definitions 

as shown in Table 8.12. 
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Test case number 1 can be considered as the standard one where the designer 

does not have information about the scenario where the circuit will be used, or he 

wants to obtain a first approach to the circuit power consumption values. 

In cases 2 and 3 the activity is not the same for the different bits within the operands 

at the primary inputs but it is increased from one end to the other all along the 

operands. In the same way, cases 4 and 5 are close to the cases where the circuit 

inputs are 2’s complement numbers and the sign bits switches less than the rest. 

Case number 6 is a high activity and power consumption one. It can serve to know a 

power consumption value near to the maximum. On the other hand, case 7 is a low 

power one. A high signal probability means that almost all the time the signals are ‘1’ 

and that the activity must be low. 

Finally, cases 8 and 9 exercise the circuit within two particular situations were some 

circuit inputs are connected to a counter’s output. 

Test Case Description 

1 All inputs are independent random patterns 

2 The activity for the MSB is set to 0.05 and is increased linearly to 0.95 for 
the LSB. 

3 The activity for the MSB is set to 0.95 and is decreased linearly to 0.05 for 
the LSB. 

4 The activity is set to 0.05 for the 4 MSBs and 0.5 for the rest. 

5 The activity is set to 0.05 for the 8 MSBs and 0.5 for the rest. 

6 The activity is set to 0.95 for all the bits. 

7 The signal probability is set to 0.95 for all the bits. 

8 The 4 LSBs are connected to a counter and the rest are independent 
random bits. 

9 The 4 MSBs are connected to a counter and the rest are independent 
random bits. 

Table 8.12: User Defined input Patterns 
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8.3.1 Total Dynamic Power Estimation 

In this sub section the total measured and estimated power are reported for every 

input pattern definition specified in Table 8.12. The studied circuits are SUM32, 

MUL32, DIV16P and MUL16P and the results are presented in Tables 8.13 to 8.16 

respectively. All of them are implemented in a Virtex XCV50PQ240-4 device. 

Tg = 0 Opt. Tg 
Case Measured 

Estimated Error (%) Estimated Error (%) 

1 1.352 1.40 3.5 1.36 0.6 

2 1.258 1.42 12.9 1.35 7.2 

3 1.273 1.39 9.6 1.36 6.8 

4 1.217 1.26 3.2 1.21 -0.3 

5 1.086 1.11 1.8 1.07 -1.6 

6 1.800 2.61 45.2 2.47 37.3 

7 0.159 0.15 -8.0 0.15 -6.5 

8 1.319 1.38 4.5 1.31 -0.4 

9 1.332 1.38 3.8 1.34 0.4 

Table 8.13: Total Power Estimation for the SUM32 Design 
 

In Table 8.14, for the combinational 32-bit multiplier, the estimation was not possible 

without any glitch filtering because the extremely high activity reported by the simulator 

produces overflows in the program that parses the VCD files. These estimations are 

made filtering glitches shorter than 50 ps. Even in this case, the error can reach more 

than 500%! always in excess. Filtering these short pulses, the error is less than 10% 

for all the cases except one with a 29% error. 
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Tg = 50 Opt. Tg 
Case Measured 

Estimated Error (%) Estimated Error (%) 

1 18.859 92.261 389.2 17.256 -8.5 

2 16.297 90.952 458.1 17.153 5.3 

3 17.309 93.352 439.3 16.47 -4.8 

4 16.634 89.223 436.4 16.483 -0.9 

5 16.172 79.483 391.5 15.528 -4.0 

6 22.616 120.561 433.1 22.756 0.6 

7 4.898 31.709 547.5 6.3165 29.0 

8 18.934 93.594 394.3 18.29 -3.4 

9 19.034 92.692 387.0 18.141 -4.7 

Table 8.14: Total Power Estimation for the MUL32 Design 
 

Tg = 0 Opt. Tg 
Case Measured 

Estimated Error (%) Estimated Error (%) 

1 4.710 7.25 53.9 4.60 -2.4 

2 3.941 6.39 62.0 4.01 1.7 

3 4.501 7.05 56.5 4.38 -2.6 

4 3.672 5.86 59.7 3.76 2.3 

5 4.238 6.95 63.9 4.30 1.5 

6 4.978 11.53 131.7 6.13 23.2 

7 1.366 2.13 56.0 1.51 10.7 

8 4.703 7.17 52.4 4.57 -2.7 

9 4.330 6.82 57.5 4.25 -2.5 

Table 8.15: Total Power Estimation for the DIV16P Design 
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Tg = 0 Opt. Tg 
Case Measured 

Estimated Error (%) Estimated Error (%) 

1 3,392 5,194 53,1 3,264 -3,8 

2 2,939 4,813 63,8 2,938 -0,1 

3 3,210 4,873 51,8 3,107 -3,2 

4 2,763 4,349 57,4 2,769 0,2 

5 2,814 4,462 58,5 3,155 12,1 

6 3,966 7,764 95,8 4,216 6,3 

7 0,732 1,247 70,3 0,917 25,2 

8 3,359 5,126 52,6 3,222 -4,1 

9 3,295 5,157 56,5 3,175 -3,6 

Table 8.16: Total Power Estimation for the MUL16P Design 
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Fig. 8.29: Total Power Estimations in a Virtex 50 Device. 
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Fig. 8.29 graphically resumes the data shown in Tables 8.13 to 8.16. The black 

squares represent the estimations before an adequate glitch filtering while the red dots 

correspond to the values after a short pulse filtering with a value obtained for the 

device, in this case XCV50PQ240-4. As in all the experiments, it is noticeable or even 

absurd the overestimation in the number of transitions that a standard simulator report 

for a post PAR circuit. The line represents the situation without error. 

The differences in total power consumption for every circuit and input pattern 

definition are shown in Fig. 8.30. Figs. 8.30.a, b, c and d show the result for SUM32, 

MUL32, DIV16P and MUL16P respectively. 
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Fig. 8.30: Total Power for the different Input Patterns (See Table 8.11). 
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The main conclusion from Fig. 8.29 is that a user can define different input sets and 

obtain any power figure between zero and at least the value obtained for the input 

definition number 6. In other words, it is essential to specify an input set that is as real 

as possible in order to obtain meaningful results. 

8.3.2 Dynamic Power Estimation for Individual Nodes 

The power consumption for individual nodes is also completely different for each 

defined input pattern. Each set can produce hot spots or hot areas in different places in 

the FPGA and with different amplitudes. Fig. 8.31 shows a power map for the input 

pattern definition number 1 with the MUL16P design layout in the background. Cases 

2-9 are shown in Fig. 8.32 for the same design. For all the figures the same colors 

represent the same power values as is shown in Fig. 8.31. Furthermore, the red color 

represents 2.5 mW or more. 

 
Fig. 8.31 Power Map for MUL16. Resolution 1 CLBs 

 

In Fig. 8.32.a and 8.32.b it is clear that the inputs LSB (down) and MSB (up) are the 

most active respectively and gradually the power consumption decreases towards the 

MSB and LSB respectively. 

Fig 8.32.e clearly represents the most power consumption case with almost all the 

design area in red. On the other hand, Fig. 8.32.f is the less active case where the 1 x 

1 most active CLB squares consume about 0.7 mW. 
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Fig. 8.32: Power Map. Resolution 1 CLBs 
 

From these figures it can be observed that, given a power or activity map, it could be 

inferred which input patterns are applied to the primary inputs. Conversely, applying 

specific input pattern sets, it could be possible to generate specific power and activity 

maps, both static and dynamic. A consecutive sequence of maps could be considered 

or called a power movie. These movies naturally have several interesting physical 

properties like temperature and electromagnetic emission. It could also be possible to 

discover which inputs or programs are applied to a circuit watching these power 

movies. 

8.3.3 Input Patterns from Real Scenarios 

FFT_A, B, C and D are 64-point pipelined FFT implementations that fulfill the 

Hiperlan/2 and IEEE 802.11a-g standards. The target device for these designs is a 

Virtex XCV800HQ240-4. The tolerated error for the estimations is specified as 20% 

with 80% confidence. The activity threshold is 0.25 and the optimization strength is 

0.75. Input data are modulated QAM and QPSK. The results are shown in Table 8.17. 
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Tg = 0 Opt. Tg  
Circuit Measured 

Estimated Error (%) Estimated Error (%) 

FFT_A 27.75 33.44 +21 27.41 -1 

FFT_B 27.75 32.54 +17 26.25 -5 

FFT_C 27.63 32.79 +19 26.71 -3 Q
A

M
 

FFT_D 24.88 33.67 +35 27.70 +11 

FFT_A 28.00 33.35 +19 27.56 -2 

FFT_B 27.13 32.49 +20 26.12 -4 

FFT_C 27.75 32.72 +18 26.59 -4 Q
PS

K
 

FFT_D 24.88 33.59 +35 27.65 +11 

Table 8.17: Total Power estimations for the FFT circuits 
 

In Table 8.17, filtering the short pulses, the error is less than 11% for all the cases. 

However, when no glitches are filtered, the error can reach 35%, always in excess. 

The results in Table 8.17 show a very small difference between these modulations 

at the average total power level. Fig. 8.33.a and 8.33.b show the power maps for these 

input data modulated QAM and QPSK respectively with a seemingly small difference 

for the average power consumption at the CLB level. 

Nevertheless, ultimate conclusions must be derived studying the power 

consumption at the CLB level computing the individual relative differences according to 

Eq. 8.5. 

Average, standard deviation and maximum values for these differences are shown 

in Table 8.18 for square areas of n x n CLBs. 
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(a)

 

(b)

Fig. 8.33: Power Map. Resolution 1 CLBs 
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Resolution Mean [%] Std. Deviation [%] Maximum [%] 

1x1 10.9 13.2 197.3 

2x2 7.9 8.7 60.0 

4x4 5.4 6.8 37.3 

Table 8.18: Relative differences between two simulation runs with different minimum activity 
thresholds 

 

Table 8.18 shows that there is an important difference between the input patterns for 

individual node and, in general, low resolution power estimation in the implemented 

technique. This effect is attenuated as the resolutions decrease and, at the end, it is 

very low for total power. Fig. 8.34 shows the absolute values of the relative differences 

at the 1x1 CLB resolution. 

 
Fig. 8.34: Relative power differences between QAM and QPSK modulations at 1x1 CLB 

resolution 
 

8.4 Additional Experiments on Virtex-II 
Up to now, all the experiments were performed on Virtex and Virtex-E devices. 

However, it is interesting to check if the tool and methodology is applicable to another 

Xilinx family such as Virtex-II. The new experiments are performed on a design with ten 
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16-bit combinational multipliers with registered inputs and outputs. For this test case a 

complete tool evaluation was run. 

8.4.1 Impact of the Input Pattern Definition on Total Power 

Both estimated and measured power values, in mW/MHz, are shown in Table 8.19. 

The design is evaluated with the different input pattern defined in Table 8.12. 

The min. glitch duration, Tg, calculated as the optimum value for this device and test 

case is 900 ps. Note that, filtering these short pulses, the error is less than 6% for all 

the cases except one with 18.8%. On the other hand filtering glitches shorter than 50 

ps, the error can reach more than 350%, always in excess. As in the combinational 32-

bit multiplier, it was not possible the estimation without any glitch filtering because the 

extremely high activity reported by the simulator produces overflows in the program 

that parses the VCD files. 

Tg = 50 Opt. Tg 
Case Measured 

Estimated Error (%) Estimated Error (%) 

1 10.97 43.92 300.7 11.13 1.6 

2 10.14 42,30 317.3 10.14 0.0 

3 9.81 39.90 306.7 10.14 3.3 

4 9.31 36.57 292.7 9.17 -1.5 

5 11.56 41.22 256.5 10.92 -5.6 

6 15.01 62.09 313.6 14.83 -1.2 

7 3.25 14.77 354.2 3.86 18.8 

8 10.96 45.26 312.8 10.95 -0.1 

9 10.81 43.88 305.9 10.80 -0.1 

Table 8.19: Total Power Estimation for the 10MULT16-C Design 

 
The differences in total power consumption for every input pattern definition are 

shown in Fig. 8.35. 
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Fig. 8.35: Total Power for the different Input Patterns (See Table 8.11) for 10MULT16-C. 

 

In the same way as shown in Fig. 8.30, Fig. 8.35 indicates that an as real as 

possible input set specification is essential in order to obtain meaningful results. 

8.4.2 Dynamic Power Estimation for Individual Nodes 

In this section it is shown if the results, at individual node level, fit the user specified 

accuracy as in section 8.2.2. Fig 8.36 shows relative error distributions for different 

levels of accuracy. This accuracy is specified in the upper right hand corner of each 

histogram and it is achieved in all the cases shown in this figure. 

As the power consumption for the individual nodes can not be physically measured, 

the comparisons were made against the results obtained from a long simulation run 

with a sample size of 65158 clock cycles with the following parameters: 95% of 

confidence that error is less than 5%, the threshold for the min. activity is 0.05, and the 

optimization strength equal to zero. In this set of test cases the threshold for the activity 

mean, that divides regular and low activity nodes, is 0.25, the optimization strength is 

0.50, and the input patterns are generated independently. 
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Fig. 8.36: Individual node power: relative error distributions for 10MUL16_C 
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Fig. 8.37: Individual node activity: relative error distributions for 10MUL16_C 
 

As there are a number of nodes where the reported capacitance is zero, a 

noticeable high column in Fig. 36 is observed. In this case, it is more interesting to see 
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what happens to the activities. With the same parameters, Fig. 8.37 shows activity 

relative error distributions for different levels of accuracy. 

8.4.3 Accuracy vs. Execution Time Tradeoff 

As in section 8.2.3, how the execution time depends on the required accuracy is 

studied. Fig. 8.38 shows a graphical representation of the accuracy vs. execution time 

tradeoff where all the variables are present and the estimation system is characterized. 

The x-axis represents the accuracy, where a xi values correspond to an xi% error with 

100-xi% confidence. This experiment also confirms the robustness of the technique, 

allowing a tunable accuracy. Dashed lines represent the cases without optimization 

and the solid lines correspond to simulation runs with optimization strength 0.5. 
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Fig. 8.38: Accuracy/execution-time tradeoff for 10MULT16_C 

 

In order to give more information about the results in Fig. 8.38, Table 8.20 shows 

the execution time savings with respect to the non optimized case. 

As pointed out previously, this optimization without any loss of accuracy is possible 

because the effective accuracy is higher than the specified one and the nodes do not 

converge linearly. Fig. 8.39 shows how 98% of the nodes representing 99% of the 

power met the stopping criterion halfway through the simulation run. The estimation 
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time and the nodes percent are presented in relative terms to make easier further 

comparisons. 

 Min. Act. 

Error 0,05 0,15 0,25 0,4 0,5 

5 0,84 0,56 0,31 0,46 0,27 

8 0,88 0,58 0,43 0,47 0,32 

10 0,87 0,52 0,50 0,45 0,37 

15 0,88 0,60 0,51 0,58 0,48 

20 0,88 0,61 0,55 0,46 0,30 

Table 8.20: Execution time savings for 10MULT_C. Optimization strength 0.50 
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Fig. 8.39: Convergence time for 10MULT16_C 

 

Table 8.21 is similar to Table 8.20 but the optimization strength is 1.00.  

 
To complete the results shown in Fig. 8.38, Fig. 8.40 adds a third axis to show the 

behavior of the optimization strength parameter. 
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 Min. Act. 

Error 0,05 0,15 0,25 0,4 0,5 

5 0,89 0,59 0,48 0,50 0,38 

8 0,89 0,61 0,52 0,52 0,40 

10 0,89 0,59 0,58 0,54 0,49 

15 0,91 0,68 0,59 0,58 0,48 

20 0,92 0,70 0,68 0,46 0,30 

Table 8.21: Execution time savings for 10MULT_C. Optimization strength 1.00 
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Fig. 8.40: Accuracy/execution time tradeoff for 10MUL16_C for different optimization strength 
values 
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8.4.4 Tool’s Evaluation 

Table 8.23 and Fig. 8.41 show the run times estimating the power consumption for 

the 10MULT16_C test circuits with optimization strength 1.00. The error is 10%, 90% 

confidence, and the threshold for the low activity nodes is 0.25 transitions per clock 

cycle. Table 8.22 summarizes the execution times by sub-system 

Transition 
analisys

42%

Simulation
33%

Saving
14%

Others
4%

Power Maps
2%Tcl/Tk script

5%

 
Fig. 8.41: A-DyP relative execution times for 10MULT16_C 

 

Task Exec. Time [min] 

Total Execution 42 

Initialization 0 

Activity Estimation 38 

Power Computation 2 

Tcl/Tk script 2 

Table 8.22: A-DyP total execution time for 10MULT16_C 
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 Task Exec. Time [secs] 

Input vector generation 8 

Simulation 817 

Saving 347 

Transition analysis 1063 

Statistics computation 13 A
ct

iv
ity

 E
st

im
at

io
n 

Stopping criteria evaluation 12 

VHDL parsing 11 

XDL parsing 1 

XML generation 0 

XPower execution 16 

PWA parsing 1 

Report writing 25 

Po
w

er
 C

om
pu

ta
tio

n 

Maps generation 40 

Table 8.23: A-DyP absolute execution time for 10MULT16_C 
 

8.4.5 Power Maps 

Each input pattern definition can produce hot spots or hot areas in different places in 

the FPGA and with different amplitudes. Fig. 8.42.a, b and c show power maps for the 

input pattern definition number 1, 6, and 7 respectively (See Table 8.12) for the 

10MUL16_C design. The layout is in the Fig.8.42.a’s background. For all the figures 

the same colors represent the same power values. Furthermore, red represents 3.6 

mW or more. The parameters for the simulation runs were 85% confidence that error is 

less than 15%, Tg is 900 ps, the threshold for the low activity nodes is 0.25 transitions 

per clock cycle, and the optimization strength is 0.50. 
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(a)

 

(b)

 

(c) 

Fig. 8.42: Power Maps for 10MUL16_C. Resolution 4x4 Slices 
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Fig 8.42.b clearly represents the highest power consumption case with most hot 

spots. On the other hand, Fig. 8.42.c is the less active case where the 4 x 4 most 

active slices square squares consume about 1.5 mW. As in Fig. 8.32, it can be 

observed that given a power or activity map, it could be inferred which input patterns 

are applied to the primary inputs. Conversely, applying specific input pattern sets, it 

could be possible to generate specific power and activity maps. 

8.5 Conclusions 
A number of experiments were performed on three Xilinx families (Virtex, Virtex-E 

and Virtex-II) in order to show that the proposed statistical technique works with these 

technologies. The FPGAs have the same basic structure, i.e. the programmable block 

array and the network to interconnect them. However they correspond to different VLSI 

technological generations. 

Several sources of error were detected in the power estimations within the current 

Sw/Hw framework: pulses shorter than the physically possible ones, simulator 

inaccuracies to propagate glitches, lack of information about the error in the reported 

capacitances, and probably others. As the observed error is always in excess, a glitch 

filtering policy was proposed as a calibration resource that leads to accurate results. 

An improvement to the classical Monte Carlo power estimation method for individual 

nodes has been presented. Although the method is implemented and evaluated within 

the particular Xilinx ISE design flow and devices, there are no restrictions to apply the 

technique within other FPGA design environments or even general CMOS design 

flows. The problem with the classical statistical estimation method is the execution 

time. Current big designs could require unacceptable run times when the user specifies 

medium to high accuracy requirements. The proposed A-B technique takes up shorter 

execution times enabling its practical use within existing design flows. Moreover, the 

proposed technique is simple and very easy to implement. It has been shown that the 

optimization is done without loss of accuracy at the individual nodes level. This is 

because it makes use of the extra accuracy generated running the classical approach 

that is effectively higher than the one specified by the user. To quantify and measure 

this extra precision, a definition of effective accuracy was proposed. 
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The experiments confirm the robustness of the technique, allowing a tunable 

accuracy. According to the precision required at each moment in the design process, 

appropriate values can be set for both the minimum mean activity and the error-

confidence pair. The execution time of the tool monotonically increases with the 

required precision. It has also been verified that the actual relative error for individual 

nodes is bounded by the one specified by the user. 

An as real as possible input set specification was verified as being essential in order 

to obtain meaningful results. Although it is a known issue in the power estimation world, 

here it was confirmed over the FPGA technology with for the QDDFS-CORDIC case, 

where the inputs are fixed during each specific evaluation. 

Finally, an experiment was performed to verify the energy of computation principles 

resumed in section 2.3.1. The different implementations of the FIRDA circuit are an 

appropriate test case because they perform the same computation. It is observed that 

total power is higher for the serial version. However, this is due to the increase in clock 

power. Dynamic power excluding the clock is almost the same for all the 

implementations, from the combinational case to the serial one. 
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Chapter 9. 

 “Lo último que uno sabe es por donde empezar” from Pensées (1660) by Blaise 

Pascal (1623-1662) 

9 Conclusions and Future Works  

In this chapter the main conclusions and contributions of this thesis are summed up. 

Also the publications generated from this work and the ideas that can be developed in 

the future are listed below. Finally, some recommendations about how to build a power 

estimation system and how to estimate power along the design process are proposed. 

Power estimation within a real scenario was found to be a very challenging task. As 

the developed software is included within FPGA design flows, reverse engineering is 

the only tool available to solve some practical problems. This is due to the lack of 

support to third-party integration in the commercial FPGA world, particularly to the 

issues related to power estimation. 

9.1 Main Contributions of this Thesis 
A lot of techniques for power estimation have been published but almost all do not 

go beyond simulation. On the other hand there are a relatively small number of papers 

about power estimation techniques specifically developed, adapted or tested on 

FPGAs. In this way, the main contribution of this thesis is the development of a power 

estimation methodology for FPGA and a power estimation tool which was calibrated 

against physical measurements. 

A platform for power estimation on FPGA was developed. Over this platform a 

statistical power estimation tool was built. A number of measurements were performed 
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over three Xilinx families (Virtex, Virtex-E and Virtex-II) in order to show that the 

statistical technique works with these technologies covering more than 10 years of PLD 

evolution. There are also experiments on the Xilinx 4000 family but as the capacitances 

were not provided for them; those results are not presented in this thesis. All these 

FPGAs have the same basic structure, i.e. the programmable block array and the 

network to interconnect them. However they correspond to different VLSI technology 

generations and there are additional resources within the programmable blocks in the 

newer families. The conclusions presented in this chapter are based on thousands of 

hours of experimentation on the circuits and development boards described in Chapter 

7. 

9.1.1 The Power Platform Framework and A-DyP 

The current version of A-DyP, the statistical power estimation tool, is not an end in 

itself, but a foundation upon which other power-aware tools can be built. It is hoped this 

tool is the first iteration necessary for the development of a more general power 

estimation framework called Power Platform in this thesis. For this reason, the 

programs, data structures, formats and software technologies were designed or 

selected according to this goal. On the other hand, all the programs and scripts in A-

DyP access data in the Power Database and the configuration files which include 

application and project parameters. The appropriate way to work with this information is 

through a software layer independent of the database engine and file formats. 

A power estimation tool must be integrated within a design flow. In this way, 

standard formats must be selected to enable interoperability though different software 

vendors and versions. 

Upon the Power Platform, a statistical-based power estimation tool for FPGA 

devices has been developed with the following features: 

• A Tcl/Tk script implements the high-level instructions of the estimation 

algorithm and integrates the programs that deal with specific functionality 

within the system. One such script enables the reuse of the programs and is 

a fundamental piece in the Power Platform framework. 

• Any standard simulator that deals with VCD activity files can be used in the 

inner loop of the Monte-Carlo program making the technique easy to 
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implement. In order to manage post PAR designs the simulator must also 

support VITAL and SDF files. 

• If the accuracy selected is not too high, the execution time is reasonable, 

even for current big designs. 

• A simple input specification can be defined. 

• Temporal, and spatial (at the internal nodes level) correlations are 

considered. 

• The most accurate model available can be used, i.e. glitches can be taken 

into account. All the presented experiments are performed over post PAR 

designs, but there is no restriction to apply A-DyP to post synthesis, map, or 

post place designs. 

The experiments confirm the robustness of the technique, allowing a tunable 

accuracy. According to the precision required at each moment in the design process, 

appropriate values can be set for both the minimum mean activity threshold and the 

error-confidence pair. The execution time of the tool monotonically grows with the 

required precision. It has also been verified that the actual relative error for individual 

nodes is bounded by the one specified by the user. 

Finally, the importance of properly defined input pattern characteristics is pointed 

out. The use of this tool with a default or arbitrary input pattern can result in an activity 

figure with unpredictable error. It was verified that it is essential to specify an as real as 

possible input set in order to obtain meaningful results. Although it is a known issue in 

the power estimation world, here it was confirmed with the FPGA technology even for 

the QDDFS-CORDIC case, where the inputs are fixed during each specific evaluation. 

9.1.2 Short-pulse Filtering as a Calibration Resource 

There are several sources of error in the power estimations within the current 

Sw/Hw environment: the simulator reports pulses shorter than the physically possible 

ones and have inaccuracies propagating glitches; there is a lack of information about 

the error in the reported capacitances; and probably others. As the observed error is 

always in excess, a glitch filtering policy is proposed to calibrate the tool. It is shown 

that this strategy led to accurate results. 



Statistical Power Estimation on FPGAs 

 186 

Although it is a solution within the current environment, these sources of error 

should be eliminated improving the simulators with better models. 

9.1.3 A-B Nodes Classification 

A new improvement for the classical Monte Carlo power estimation method for 

individual nodes has been presented. Although the method is implemented and 

evaluated within the particular Xilinx ISE design flow and devices, there are no 

restrictions to apply the technique within other FPGA design environments or even 

general CMOS design flows. 

The problem with the classical statistical estimation method is the execution time. 

Current big designs could require unacceptable run times when the user specifies 

medium to high accuracies. The proposed A-B technique has reasonable execution 

times enabling its practical use within existing design flows. Moreover, the proposed 

technique is simple and very easy to implement. 

It has been shown that the optimization is done without loss of accuracy at the 

individual nodes level. This is because the A-B method makes use of the extra 

accuracy generated running the classical approach that is effectively higher than that 

specified by the user. To quantify and measure this extra precision, a definition of 

effective accuracy is proposed. 

9.1.4 Energy of the Computation 

An experiment was performed to measure the energy of computing according to the 

thermodynamic principles resumed in section 2.3.1. The different implementations of 

the FIRDA circuit are an appropriate test case because they perform the same 

computing. It is observed that total power is higher for the serial version. However, this 

is due to the increase in clock power. Dynamic power excluding the clock is almost the 

same for all the implementations, from the combinational to the serial case. 

9.2 Reverse Engineering 
As mentioned in section 9.3.1, the lack of integration of current Xilinx tools with third-

party programs in the power estimation area leads to reverse engineering tasks. These 

tasks were particularly time consuming in this thesis and the hardest one was that 
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related to capacitances retrieval. In section 4.4 it is explained that the different names 

found in the different programs of the design flow to identify the same circuit nodes 

prevent knowing to which node correspond some values in the capacitances report. 

Even parsing the VHDL simulation model, where the also-known-as option writes within 

comments the alternative names, the problem is not completely solved due to 

inconsistencies and remaining bugs. On the other hand, there is no documented 

procedure to retrieve the capacitances with the appropriate precision in fF since ISE 6. 

Other reverse engineering tasks are explained in Chapter 6. E.g. complete 

documentation in order to parse XDL files is not found. 

9.3 Publications 
The most important papers related to the topics covered in this thesis are, in 

chronological order: 

• E. Todorovich and E. Boemo, “A-B Nodes Classification for Power 

Estimation”, 16th International Conference on Field Programmable Logic and 

Applications (FPL 2006), Madrid, Spain, August 28-30, 2006. 

• E. Todorovich, F. Angarita, E. Boemo, “Statistical Power Estimation for 

Fpga’s”, 15th International Conference on Field Programmable Logic and 

Applications (FPL 2005), pp. 515-518, ISBN: 0-7803-9362-7, August 24-26, 

Tampere, Finland. 

• E. Todorovich, E. Boemo, F. Cardells, J. Valls, “Power Analysis and 

Estimation Tool integrated with XPower”, Twelfth ACM International 

Symposium on Field-Programmable Gate Arrays, FPGA 2004, Monterey, 

California, USA, February 22-24, 2004. ISBN 1-58113-829-6. 

• E. Todorovich, M. Gilabert, G. Sutter, S. Lopez-Buedo, and E. Boemo, “A 

Tool for Activity Estimation in FPGAs”, Lecture Notes in Computer Science, 

Vol. 2438, pp. 340-349. Springer-Verlag, Berlin Heidelberg 2002. 

• G. Sutter, E. Todorovich, S. Lopez-Buedo, E. Boemo, “Low-Power FSMs in 

FPGA: Encoding Alternatives”, Lecture Notes in Computer Science, Vol. 

2451, pp. 363-370. Springer-Verlag, Berlin Heidelberg 2002. 
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• G. Sutter, E. Todorovich, S. Lopez-Buedo, and E. Boemo, "FSM 

Decomposition for Low Power in FPGA", Lecture Notes in Computer 

Science, Vol. 2438, pp. 350-359. Springer-Verlag, Berlin Heidelberg 2002. 

Other partial results were also published in the following conferences about FPGA 

technology and power consumption: 

• F. Angarita, J. Marin-Roig, E. Todorovich, E. Boemo, “Relación área-

potencia en la implementación con aritmética distribuida de un Filtro FIR en 

FPGA”, JCRA 2005, pp. 59-63, ISBN: 84-9732-439-0, Granada, 13-16 

Septiembre 2005. 

• Todorovich E., A. Holderbeke, N. Acosta, E. Boemo, “Estimación de 

Consumo de Potencia en FPGA a través de un Servicio Web”, Jornadas de 

Computación Reconfigurable y Aplicaciones, JCRA 2004, Barcelona, 

España, 13-15 de Septiembre de 2004. 

• Sutter G., Todorovich E. and E. Boemo, “Design of Power Aware FPGA-

based Systems”, Jornadas de Computación Reconfigurable y Aplicaciones, 

JCRA 2004, Barcelona, España, 13-15 de Septiembre de 2004. 

• Todorovich E., “Tcl/Tk para Herramientas EDA”, JCRA 2003, Madrid, 

España, 10-12 de octubre de 2003. Pág 529-538. 

• Todorovich E., Sutter G., Boemo E., “Estimación de Actividad para FPGA 

Basada en una Técnica Estadística”, JCRA 2003, Madrid, España, 10-12 de 

octubre de 2003. Pág 217-224. 

• Sutter G., López-Buedo S., Todorovich E., Boemo E., “Logic Depth, Power, 

and Pipeline Granularity: Some Examples on FPGAs.”, JCRA 2003, Madrid, 

España, 10-12 de octubre de 2003. Pág 201-208 

• E. Todorovich y N. Acosta, "Estimación de Capacidad en FPGAs 

Comerciales", VIII Congreso Argentino de Ciencias de la Computación, 

CACIC 2002, Universidad de Buenos Aires, 15 al 18 de octubre de 2002. 

• G. Sutter, E. Todorovich y E. Boemo, “Metodología para la reducción de 

consumo en circuitos integrados reprogramables”, III Workshop de 
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Investigadores en Ciencias de la Computación, San Luis, Argentina, 22-24 

de Mayo 2001, pp. 14-17. 

• E. Todorovich, G. Sutter, N. Acosta, S. López-Buedo y E. Boemo "Relación 

entre Velocidad y Consumo en FPGAs", VII WorkShop de IBERCHIP, 

Montevideo, Uruguay, 21-23 de Marzo, 2001. 

• G. Sutter, E. Todorovich, S. López-Buedo y E. Boemo "Propiedad 

Conmutativa y Diseño de Bajo Consumo: Algunos Ejemplos en FPGAs", VII 

WorkShop de IBERCHIP, Montevideo, Uruguay, 21-23 de Marzo, 2001.  
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9.4 Future Tasks 
Once the power estimation problems, together with the techniques proposed in the 

specialized literature at the different levels of abstraction are carefully studied; and the 

current software and hardware technologies in the area are exercised by means of the 

practice and experimentation for a long time, then it is possible to think about a number 

of related future tasks: 
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Testing A-DyP on other Xilinx FPGA technologies. At the present time these 

technologies are, at least, Virtex-II pro, Virtex-4, and Spartan-2 and 3. Each technology 

and software version has their own features that must be considered in order to gauge 

power. Several programs within the Power Computation Sub-system should be 

extended, the whole system should be revised and the Power Platform framework 

could be improved with every newly analyzed FPGA family. 

Porting A-DyP to Altera FPGAs. This is another interesting and challenging task. 

The Activity Estimation Sub-system can be mostly reused but the Power Computation 

Sub-system must be rewritten. It is a good opportunity to improve the Power Platform 

framework. 

Other statistics-based power estimation methods. There are several techniques 

based on statistics developed for specific power estimation problems that can be 

studied and implemented. These problems include total power estimation for big 

sequential circuits, advanced sampling techniques for hierarchical designs, etc. 

Peak or maximum power estimation. This is more than a single problem but a 

family of problems related with different definitions of maximum power in CMOS 

circuits: e.g. the peak single-cycle power is the maximum total power consumed during 

one clock cycle; the peak n-cycle power is the maximum average power of a 

contiguous sequence of n clock cycles; the peak sustainable power is the maximum 

average power that can be sustained indefinitely. These tasks could reuse and improve 

the Power Platform framework. 

Static Power optimization. Due to technology scaling, static power is an 

increasingly (40% of total power at the 70 nm technology node) dominant component in 

current ICs. In this way, static power optimization is an interesting subject for research 

in FPGAs [And06]. 

Early capacitance estimation. It is interesting to estimate the design capacitances 

before the place and route process [And06]. Before layout, capacitances depend on 

parameters like the node fanout. In general, the relationship can be mathematically 

stated by an n-degree polynomial function. The coefficients of this function calibrate the 

function for different FPGA families or devices. These values can be obtained by an 

evolutionary algorithm. 
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EDA tools for Low Power Design. Beyond power estimation, a complete power 

aware design flow includes synthesis, technology mapping, placement, and routing 

tools for low power design. A clear opportunity exists for research on all these EDA 

tools. 

Temperature Estimation. It could be useful to develop a tool that exploits the 

relationship between power dissipation and temperature in order to extend the Power 

Platform framework to support temperature estimation for FPGAs. 

9.4.1 High-level Power Estimation 

The macromodelling approach is considered the solution for the RTL power 

estimation problem [Bru05]. Nevertheless, there are several interesting situations and 

related problems not considered yet, that can be studied, i.e.: 

Hard core power estimation. This thesis analyzes the dynamic power consumption 

in the programmable fabric of FPGAs, i.e. the configurable logic blocks and routing 

resources that connects them. This is the most important part in Low Power Design 

because of its power inefficiency. On the other hand, hard cores in FPGAs are 

expected to perform as well as their equivalent in ASIC. Nevertheless, designers are 

interested in total power. Consequently, the hard-core power consumption on the 

FPGA must also be considered. 

High-level power estimation based on neural networks. Gate-level power 

estimation techniques are both useful and accurate. However, the required run time 

can prevent calling them within optimization loops. Therefore, a power aware design 

flow needs complementary high-level and very fast power estimation tools. Given the 

number of slices, minimum period, and other parameters it could be interesting to use 

neural networks to estimate total average power. However, as the power consumption 

also depends on the activity, this additional input could be obtained from a very fast run 

with a low accuracy specification and a zero delay simulation model. 

IP power characterization. Over the last few years, functional macro verification 

has emerged as an essential skill in the hardware engineer’s education and practice. IP 

power and activity characterization can be included within these standard practices. 

The power can be reported for several well defined scenarios when a specific 

technology and implementation tools are selected. Even when the core is available for 
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a number of current and future technologic targets, the activity characteristics should 

be specified with the core documentation. Furthermore, assertions about average and 

maximum activity should be specified in the future hardware verification plans. 

Power Estimation for embedded processors. Nowadays a number of embedded 

soft and hard cores for microprocessors are available for designers. This increases the 

research interest in areas such as low power microprocessor soft cores, low power 

buses, high-level power estimation for this type of circuits, power-aware compilers and 

operating systems, and in general new techniques to reduce the computational 

complexity, i.e. activity of the implementations. 

Impact of RTL synthesis. As pointed out in [Bru05], the RTL power estimation of 

the fine-grain primitives is difficult due to the impact of the synthesis. In this way it is 

interesting to measure the noise in power consumption of these primitives applying 

different synthesis tools and options. 

9.5 How to Estimate Power Consumption 
Power consumption can be estimated at any point in the design cycle. You can use 

spreadsheets provided by the FPGA vendors to estimate the power consumption if you 

have not begun your design, or if your design is not complete. To use these 

spreadsheets, you need to enter device resources, operating frequency, toggle rates 

etc. As you do not have an existing design, then you will need to estimate the number 

of device resources your design could use, the specified operating frequency, and a 

safe average toggle rate (i.e. a high enough value). 

After your have the first versions of your design, you can use A-DyP to estimate the 

power consumption. In this case, very short runs with low accuracy, high activity 

threshold, and high optimization strength are recommended. At this point in the design 

cycle it is interesting to know the power consumption range. You can identify hot spots 

and which parts of the design consumes the most power leading the optimization 

efforts. 

When you have stable and verified versions within the specified power budget, you 

can run highly accurate simulations with as real as possible input patterns in order to 
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obtain precise power values, say within 10% error in relation to potential physical 

measurements of the circuit on the PCB. 

9.6 How to Build a Power Estimator 
One of the most important decisions software (and currently, hardware) designers 

must face is whether they will integrate their contributions with open source tools or 

within commercial IDEs. Power estimation is a typical, but not the only case where this 

decision has fundamental and practical consequences. 

In this thesis the second option is the selected one. This enables us to work with 

real devices. I.e. measure their current consumption with an ammeter and compare 

these physical amounts with software estimations. Experiments with actual devices 

give a fundamental advantage over approaches working with theoretical models that 

are compared with other models supposedly more accurate. 

However, working with proprietary software has also significant drawbacks. This is 

particularly hard when the integration with third-party tools is not considered or 

foreseen in the design of that proprietary software. In this case the lack of information 

and support could force the application of challenging reverse engineering techniques. 

To avoid this time consuming task, FPGA vendors could provide open, even more, 

standard interfaces to retrieve and provide the necessary information accurately in the 

different parts of the design flow. 

A general objective when writing a power-aware tool is software quality. In order to 

reuse all or parts of the developed software, eventually port it, and interoperate with 

other tools in an EDA design flow, standard formats must be used as far as possible. 

Another goal is to produce reusable software components. In this way, a power 

platform has been proposed with a basic middleware that connects the database with 

the application programs. Several programs can be used as-is or adapted for other 

power estimation tools e.g. the VCD parser. There are other tools for which the reuse is 

limited within the Xilinx scope e.g. the XDL parser. 
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Appendix A 

Tcl/Tk script for the A-DyP Power 

Estimation Tool 

Code A.1 is the Tcl/Tk script used in this work to integrate the several programs 

needed for the A-DyP Power Estimation Tool. The estimation process is triggered 

when the powerEstim procedure is called (without arguments) within the Modelsim 

command line. It was tested with Modelsin 5.7g SE. 

1 ###################################################### 
2 # 
3 # 
4 # ESTIMATE.TCL 
5 # 
6 # Activity Estimation using Statistics with Modelsim 
7 # 
8 #  Elías TODOROVICH 
9 #   etodorov@uam.es 
10 # 
11 #      Script TCL/TK 
12 #  
13 ###################################################### 

  
14  
15  
16 # Global Scope Variables 
17 # Related with text specified indirectly in Tk labels 
18  
19 set naestate  Start 
20 set sampleNum 0 
21  
22  
23 ################################## 
24 # 
25 # Main Procedure: Power Estimation 
26 # 
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27 proc powerEstim {} { 
28  
29   set actEstimFinished true 
30   set suspendActEstim false 
31  
32   # Statistics on Execution Time 
33  
34   set ts [clock seconds]   
35   set te 0 
36   set tact 0 
37   set tcap 0 
38   set tini 0 
39  
40   # Sample Block Number 
41  
42   set blkNr 0 
43   set fName transitions$blkNr.vcd 
44   set existe [ file exists $fName ] 
45   while { $existe == 1 } { 
46     incr blkNr 
47     set fName transitions$blkNr.vcd     
48     set existe [ file exists $fName ] 
49   } 
50   puts "" 
51   puts "Proccesing Block Sample number $blkNr..." 
52   puts "" 
53  
54   # Power Estimation 
55  
56   if { [iniPowerEstim $blkNr] } { 
57     puts "" 
58     puts "Starting ACTIVITY Estimation..." 
59     puts "" 
60  
61     # If you are not using SE comment the next line 
62     # Not all Modelsim simulators support Tk  
63     drawFeedbackDialog 
64  
65     activityEstim 
66  
67     capacitanceEstim 
68  
69     set te [clock seconds] 
70  
71     if { $actEstimFinished=="true" } { 
72       writeTotalExecTimeStat 
73       saveResults 
74     }  
75  
76   } else { 
77     puts "" 
78     puts "Error: File user.ini not found." 
79     puts "" 
80   } 
81 } 
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82  
83  
84 ################################## 
85 # 
86 # Initialize Power Estimation 
87 #   i: Current Bloch Number 
88 # 
89 proc iniPowerEstim { i } { 
90  
91   upvar 1 ts ts 
92   upvar 1 tini tini 
93  
94   set existTables [ file exists "SamplesTb.db"] 
95   if { $existTables } { 
96     set genera " ------------ Continuing...--------------" 
97     set tauxini [clock seconds] 
98     do ini_msim.do 
99     set tauxend [clock seconds] 
100     set tini [expr $tauxend - $tauxini] 
101   } else {  
102     # Show the user interface to set the parameters 
103     exec User.exe  
104  
105     set file [ open transitions.log { RDWR CREAT TRUNC } ]  
106     set genera " ------------ File transitions.log ------" 
107     close $file 
108     set tauxini [clock seconds] 
109     do first_ini_msim.do 
110     set tauxend [clock seconds] 
111     set tini [expr $tauxend - $tauxini] 
112   }     
113  
114   # Adds all VHDL signals to a VCD file 
115   vcd add -file transitions$i.vcd * 
116  
117  
118   set existINIFile [ file exists "User.ini" ] 
119   if { $existINIFile } {  
120     set file [ open transitions.log { RDWR APPEND } ] 
121     puts $file $genera 
122     puts $file " ----------------------------------------" 
123     set fecha [clock format $ts -format "  %d %b %Y  

%H:%M:%S"]  
124     puts -nonewline $file " Generated at: "  
125     puts $file $fecha 
126     puts $file "" 
127     close $file 
128   } 
129   return $existINIFile 
130 } 
131  
132  
133 ############################## 
134 # 
135 # Tk: Build the top level widget  
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136 # 
137 proc drawFeedbackDialog {} { 
138  
139   upvar 1 ts ts   
140   upvar 1 te te 
141   upvar 1 actEstimFinished actEstimFinished 
142   upvar 1 suspendActEstim suspendActEstim 
143   global sampleNum 
144   global naestate 
145   set maxWidth 35 
146  
147   # (If exists) Destroy the feedback window 
148  
149   catch {destroy .main}  
150  
151   # Creates the Estimation Process Drawback Window 
152  
153   toplevel .main 
154   wm deiconify .  
155   wm title .main "State of the Estimation Proccess" 
156  
157   # 
158   # Create a frame for the information labels 
159   # 
160  
161   frame .main.top -bd 10 -bg black 
162   pack  .main.top -side top -fill x 
163  
164   # Create the start date and time label 
165  
166   set fechaStart [clock format $ts -format "%d %b %Y  

%H:%M:%S"]  
167   append init "Start at: " $fechaStart 
168   label .main.top.start -text $init -bg black -fg white  
169   pack  .main.top.start  
170  
171   # Create the status label 
172  
173   set naestate "Initializing..."   
174   label .main.top.status -textvariable naestate -bg black -

fg white -width $maxWidth -anchor center -font {bold 12} 
175   pack  .main.top.status 
176  
177   # Create feedback information labels 
178  
179   label .main.top.samplestitle -text "Samples Processed: " 

-bg black -fg white -font {bold 12} 
180   label .main.top.samples -textvariable sampleNum -bg black 

-fg white -font {bold 14} 
181   pack  .main.top.samplestitle 
182   pack  .main.top.samples 
183  
184   # 
185   # Create a frame for buttons 
186   # 
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187  
188   frame .main.bottom -bd 10 -bg black 
189   pack  .main.bottom -side bottom -fill both -expand true 
190  
191   button .main.bottom.cerrar -text CLOSE -command { destroy 

.main } 
192   pack   .main.bottom.cerrar -side right -padx 2m -pady 2m    
193  
194   button .main.bottom.cancelar -text SUSPEND -command { \ 
195   set suspendActEstim true 
196   set actEstimFinished false 
197   set naestate "WAIT..." 
198   update 
199  } 
200   pack   .main.bottom.cancelar -side right -padx 2m -pady 

2m    
201 } 
202  
203  
204 #################################################### 
205 # 
206 # Estimate Average Transition Number for all Nodes 
207 # 
208 proc activityEstim {} { 
209   upvar 1 blkNr blkNr 
210   upvar 1 te te 
211   set END_SIM false 
212   upvar 1 suspendActEstim suspendActEstim 
213   global sampleNum 
214   global naestate 
215  
216   # Statistics on execution time 
217   set tgen 0 
218   set tsim 0 
219   set tsav 0 
220   set ttrn 0 
221   set tupd 0 
222   set tcut 0 
223   upvar 1 tact tact 
224  
225   while { $END_SIM == "false" } {  
226    
227     set naestate "Generating..." 
228     puts $naestate  
229     update 
230     set tauxini [clock seconds] 
231     exec generator.exe -pg tla -d [pwd]     
232     set tauxend [clock seconds] 
233     set tgen [expr $tgen + $tauxend - $tauxini] 
234  
235     set naestate "Simulating..." 
236     puts $naestate   
237     update 
238     set tauxini [clock seconds] 
239     do simulate.do   
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240     set tauxend [clock seconds] 
241     set tsim [expr $tsim + $tauxend - $tauxini] 
242  
243     set naestate "Saving..."  
244     puts $naestate 
245     update 
246     set tauxini [clock seconds] 
247     saveVec 
248     set tauxend [clock seconds] 
249     set tsav [expr $tsav + $tauxend - $tauxini] 
250  
251     set naestate "Processing..."   
252     update 
253     puts "Analizing transitions[expr $blkNr - 1].vcd..." 
254     set tauxini [clock seconds] 
255     catch "exec Transitions.exe -d [pwd] transitions.vcd" 

sampleNum 
256     set tauxend [clock seconds] 
257     set ttrn [expr $ttrn + $tauxend - $tauxini] 
258     puts "$sampleNum clock cycles analized..." 
259  
260     set naestate "Updating..."  
261     puts $naestate 
262     puts "" 
263     update 
264     set tauxini [clock seconds] 
265     exec Update.exe -d [pwd]     
266     set tauxend [clock seconds] 
267     set tupd [expr $tupd + $tauxend - $tauxini] 
268  
269     set tauxini [clock seconds] 
270     catch { exec Cuter.exe -d [pwd]} END_SIM  
271     set tauxend [clock seconds] 
272     set tcut [expr $tcut + $tauxend - $tauxini]   
273   } 
274  
275   set tact [expr $tgen + $tsim + $tsav + $ttrn + $tupd + 

$tcut] 
276     
277   quit -sim 
278   set naestate "END OF ACTIVITY ESTIMATION!"  
279   puts "" 
280   puts $naestate 
281   puts "" 
282   puts "See transitions.log for details in pwd." 
283   puts "" 
284   update   
285  
286   # Tk Command 
287   # Destroy the suspend button 
288  
289   destroy .main.bottom.cancelar 
290  
291   # transitions.log: le agrega estadisticas de tiempo  
292   # de ejecucion y la hora de finalizacion 
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293   set file [open transitions.log {RDWR APPEND}]   
294  
295   puts $file "Activity Estim. Time Statistics (seconds)" 
296   puts $file [append z1 "Input vector generation\t" $tgen] 
297   puts $file [append z2 "Simulation\t" $tsim] 
298   puts $file [append z3 "Saving\t" $tsav] 
299   puts $file [append z4 "Transition analisys\t" $ttrn] 
300   puts $file [append z5 "Statistics computation\t" $tupd] 
301   puts $file [append z6 "Stoping criteria evaluation\t" 

$tcut] 
302   puts $file "" 
303  
304   close $file    
305 } 
306  
307  
308 ############################################## 
309 # 
310 # Capacitance Estimation 
311 # 
312 proc capacitanceEstim {} { 
313   upvar 1 te te 
314   upvar 1 ts ts 
315  
316   global naestate 
317  
318   # This procedure colects Statistics on execution time 
319   #   tvhd txdl txml txpw tpwr tmap 
320   upvar 1 tcap tcap 
321  
322   puts "" 
323   puts "Starting POWER Estimation..." 
324   puts "" 
325  
326   # VHDL Parsing 
327   set naestate "Analizing vhdl file..."  
328   puts $naestate 
329   update   
330   set tauxini [clock seconds] 
331   exec parserVHD.exe -d [pwd] 
332   set tauxend [clock seconds] 
333   set tvhd [expr $tauxend - $tauxini] 
334  
335   # XDL Parsing 
336   set naestate "Analizing phisical info from xdl file..."  
337   puts $naestate 
338   update   
339   set tauxini [clock seconds] 
340   exec xdlParser.exe -d [pwd] 
341   set tauxend [clock seconds] 
342   set txdl [expr $tauxend - $tauxini] 
343  
344   # XML Activity Report 
345   set naestate "Generating Activity Rep. in XML format..."  
346   puts $naestate 
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347   update  
348   set tauxini [clock seconds] 
349   #exec XMLRep.exe -d [pwd] 
350   set tauxend [clock seconds] 
351   set txml [expr $tauxend - $tauxini] 
352  
353   # Connection with XPower 
354   set naestate "Generating Power Rep. with XPower..."  
355   puts $naestate 
356   update 
357   set tauxini [clock seconds] 
358   do Connect2XPower.do 
359   set tauxend [clock seconds] 
360   set txpw [expr $tauxend - $tauxini] 
361    
362   # XPower Report Parsing: Not neccesary now 
363   #set naestate "Analizing Power Rep (pwr: text format)..."  
364   #puts $naestate 
365   #update  
366   #set tauxini [clock seconds] 
367   #exec pwr.exe -d [pwd] 
368   #set tauxend [clock seconds] 
369   #set tpwr [expr $tauxend - $tauxini] 
370  
371   # PWA Parsing 
372   set naestate "Analizing Capacitance Report..."  
373   puts $naestate 
374   update 
375   set tauxini [clock seconds] 
376   exec PWAparser.exe -d [pwd] 
377   set tauxend [clock seconds] 
378   set tpwa [expr $tauxend - $tauxini] 
379  
380   # Calculates Power and write a Report 
381   set naestate "Writing Power Report..."  
382   puts $naestate 
383   update 
384   set tauxini [clock seconds] 
385   exec report.exe -d [pwd] -v 
386   set tauxend [clock seconds] 
387   set trep [expr $tauxend - $tauxini] 
388  
389   # Power Mapping 
390   set naestate "Maping to Physical Positions..."  
391   puts $naestate 
392   update 
393   set tauxini [clock seconds] 
394   exec powerMap.exe -d [pwd] -r 1 
395   exec powerMap.exe -d [pwd] -r 2 
396   exec powerMap.exe -d [pwd] -r 4 
397  
398   exec activityMap.exe -d [pwd] -r 1 
399   exec activityMap.exe -d [pwd] -r 2 
400   exec activityMap.exe -d [pwd] -r 4 
401  
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402   exec capacitanceMap.exe -d [pwd] -r 1 
403   exec capacitanceMap.exe -d [pwd] -r 2 
404   exec capacitanceMap.exe -d [pwd] -r 4 
405   set tauxend [clock seconds] 
406   set tmap [expr $tauxend - $tauxini] 
407  
408   set tcap [expr $tvhd + $txdl + $txml + $txpw + $tpwa + 

$tmap + $trep] 
409  
410   set naestate "END OF POWER ESTIMATION!"  
411   puts "" 
412   puts $naestate 
413   puts "" 
414   puts "" 
415   update 
416  
417   # Write Execution Time Statistics on the Log File 
418   # File: transitions.log  
419  
420   set file [open transitions.log {RDWR APPEND}]   
421  
422   puts $file "" 
423   puts $file "Capacitance Estimation Time Statistics 

(seconds)" 
424   puts $file [append z1 "VHDL parsing\t" $tvhd] 
425   puts $file [append z2 "XDL parsing\t" $txdl] 
426   puts $file [append z3 "XML generation\t" $txml] 
427   puts $file [append z4 "XPower execution\t" $txpw] 
428   puts $file [append z5 "PWA parsing\t" $tpwa] 
429   puts $file [append z6 "Report writing\t" $trep] 
430   puts $file [append z7 "Power Maps\t" $tmap] 
431   puts $file "" 
432  
433   close $file 
434  
435   # Ring the terminal bell 
436   bell 
437 } 
438  
439  
440 ######################################### 
441 # 
442 # Save a VCD file for further analysis 
443 # 
444 proc saveVec {} { 
445   upvar 2 blkNr blkNr 
446  
447   # Flushes the contents of the VCD file buffer to the last 

VCD file 
448   vcd flush transitions$blkNr.vcd 
449  
450   # Turns off VCD dumping to the last file and records all 

VCD variable values as x 
451   vcd off transitions$blkNr.vcd 
452   vcd flush transitions$blkNr.vcd 
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453  
454   # Es importante para abrir el archivo VCD que esta siendo 

usado por el simulador: 
455   # hasta que termina la simulación. 
456   file copy -force transitions$blkNr.vcd transitions.vcd 
457  
458   # Increments the number of simulation blocks 
459   incr blkNr 
460  
461   # Adds all VHDL signals to the next VCD file 
462   vcd add -file transitions$blkNr.vcd * 
463 } 
464  
465  
466 ############################################## 
467 # 
468 # Finalization Tasks for Power Estimation 
469 # 
470 proc saveResults {} { 
471  
472   # Use different names for back-up files 
473   set x 1 
474   set nom "estim" 
475   append bkDir $nom $x 
476  
477   while { [ file isdirectory $bkDir ] } { 
478     set bkDir $nom 
479     incr x 
480     append bkDir $x 
481   } 
482  
483   set bkDir [append nom $x] 
484   file mkdir $bkDir 
485    
486   foreach f [glob -nocomplain TekPatGen*.txt] { 
487     file copy $f $bkDir/$f 
488     file delete $f 
489   } 
490   foreach f [glob -nocomplain NodesTb.*] { 
491     file copy $f $bkDir/$f 
492     file delete $f 
493   } 
494   foreach f [glob -nocomplain SamplesTb.*] { 
495     file copy $f $bkDir/$f 
496     file delete $f 
497   } 
498   if { [file exists "User.ini"] } { 
499     file copy "User.ini" $bkDir/User.ini 
500   } 
501   foreach f [glob -nocomplain *.vcd] {file delete $f}   
502   if { [file exists "transitions.log"] } { 
503     file copy "transitions.log" $bkDir/transitions.log 
504     file delete "transitions.log" 
505   } 
506   if { [file exists "test_xpwr.xml"] } { 
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507     file copy "test_xpwr.xml" $bkDir/test_xpwr.xml 
508     file delete test_xpwr.xml 
509   } 
510   if { [file exists "test.pwr"] } { 
511     file copy "test.pwr" $bkDir/test.pwr 
512     file delete test.pwr 
513   } 
514   if { [file exists "report.txt"] } { 
515     file copy "report.txt" $bkDir/report.txt 
516     file delete report.txt 
517   } 
518   foreach f [glob -nocomplain *.dat] { 
519     file copy $f $bkDir/$f 
520     file delete $f 
521   } 
522   foreach f [glob -nocomplain CapMapTb.*] { 
523     file delete $f 
524   } 
525   foreach f [glob -nocomplain ActMapTb.*] { 
526     file delete $f 
527   } 
528   foreach f [glob -nocomplain PowerMapTb.*] { 
529     file delete $f 
530   } 
531 #  foreach f [glob -nocomplain SlicesTb.*] { 
532 #    file delete $f 
533 #  } 
534 } 
535  
536  
537 ############################################## 
538 # 
539 # Write on Log file Total Execution Time Statistics 
540 # 
541 proc writeTotalExecTimeStat {} { 
542   upvar 1 te te 
543   upvar 1 ts ts 
544   upvar 1 tact tact 
545   upvar 1 tcap tcap 
546   upvar 1 tini tini 
547   global naestate 
548  
549   set difHora -1 
550  
551   # Total Execution TIME 
552   set TotalExecTime [expr $te - $ts] 
553  
554   # 
555   # Tk Commands 
556   # Create the end date and time label 
557   # 
558  
559   set fechaEnd [clock format $te -format "%d %b %Y  

%H:%M:%S"]  
560   append endinit "End at: " $fechaEnd 
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561   #label .main.top.end -text $endinit -bg black -fg white  
562   #pack  .main.top.end 
563  
564   # Elapsed Time 
565   set elapsedTime [expr $te - $ts] 
566   set naestate "END - TIME: " 
567   set min [clock format $elapsedTime -format "%M:%S"] 
568   set hora [clock format $elapsedTime -format "%H"] 
569   set hora [expr $hora+$difHora] 
570   #if { $hora > 23 } { 
571   # set hora [expr $hora-24] 
572   #} 
573   append et "Elapsed Time: " $hora 
574   append et ":" $min 
575   set naestate $et 
576   update 
577  
578   # Tcl/Tk Script Execution Time 
579   set tclExecTime [expr $TotalExecTime - $tact - $tcap - 

$tini] 
580  
581   # Write on Log File 
582   set file [open transitions.log {RDWR APPEND}]   
583  
584   puts $file "" 
585   puts $file "Power Estimation Execution Time Statistics 

(seconds)" 
586   puts $file [append z1 "Total Execution\t" $TotalExecTime] 
587   puts $file [append z2 "Initialization\t" $tini] 
588   puts $file [append z3 "Activity Estimation\t" $tact] 
589   puts $file [append z4 "Capacitance Estimation\t" $tcap] 
590   puts $file [append z5 "Tcl/Tk script\t" $tclExecTime] 
591   puts $file "" 
592  
593   #puts $file $fechaEnd 
594   close $file 
595  
596 } 

Code A.1: Power Estimation main Tcl/Tk script 
 



 

Appendix B 

Input Patterns File (.do) 

Code B.1 shows the complete contents of an input pattern .do file. This example 

corresponds to a simulation run for the FIRDA_8 test circuit. These do files are 

generated by the generate.exe program according to the user specifications. See 

Chapter 4 for more details about the generate.exe program. These scripts are run 

with Modelsin 5.7g SE. 

1 # 
2 # SIMULATE.DO 
3 # 
4 # Activity Estimation using Statistics with Modelsim 
5 # 
6 #  Elías TODOROVICH 
7 #   etodorov@uam.es 
8 # 
9 # 
10 # 
11 force R 0 
12 force C 1 8ns , 0 48 ns -repeat 80 ns 
13 force ND 1 
14 force I0 00000000 0 ns , 01101111 80 ns , 01001001 160 ns , 

01100110 240 ns , 00111101 320 ns , 10001111 400 ns , 
10011000 480 ns , 00101011 560 ns , 11001011 640 ns , 
01010011 720 ns , 01111101 800 ns , 10100101 880 ns , 
00011100 960 ns , 11110100 1040 ns , 11011101 1120 ns , 
10101011 1200 ns , 01111000 1280 ns 

15 run 1360 ns 
16 force I0   11011100 80 ns , 00110101 160 ns , 10101010 240 

ns , 01001001 320 ns , 11010100 400 ns , 11000011 480 ns , 
00000110 560 ns , 10100101 640 ns , 11100000 720 ns , 
10000000 800 ns , 11011100 880 ns , 01101101 960 ns , 
01010001 1040 ns , 11011011 1120 ns , 01110001 1200 ns , 
10011101 1280 ns 

17 run 1280 ns 
18 force I0   01101001 80 ns , 00111000 160 ns , 10110100 240 

ns , 01101111 320 ns , 01111111 400 ns , 01000000 480 ns , 
00111010 560 ns , 01101100 640 ns , 11111101 720 ns , 
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00011011 800 ns , 00010101 880 ns , 00110100 960 ns , 
10101001 1040 ns , 10011111 1120 ns , 11010110 1200 ns , 
10100000 1280 ns 

19 run 1280 ns 
20 force I0   11000001 80 ns , 11110001 160 ns , 10100011 240 

ns , 10010000 320 ns , 11010101 400 ns , 10011101 480 ns , 
01111000 560 ns , 01011111 640 ns , 11010001 720 ns , 
11100101 800 ns , 10011100 880 ns , 00010100 960 ns , 
11101110 1040 ns , 00001000 1120 ns , 00101000 1200 ns , 
01100100 1280 ns 

21 run 1280 ns 
22 force I0   00011100 80 ns , 00110100 160 ns , 11000000 240 

ns , 10110110 320 ns , 00100000 400 ns , 00000101 480 ns , 
10101010 560 ns , 00001111 640 ns , 00110001 720 ns , 
00101011 800 ns , 01110001 880 ns , 11000101 960 ns , 
11111001 1040 ns , 00011101 1120 ns , 01110010 1200 ns , 
00100111 1280 ns 

23 run 1280 ns 
24 force I0   11010100 80 ns , 11110101 160 ns , 01100101 240 

ns , 11101000 320 ns , 00001111 400 ns , 00011110 480 ns , 
00000011 560 ns , 10010110 640 ns , 01101000 720 ns , 
11011010 800 ns , 10111101 880 ns , 01001010 960 ns , 
01100100 1040 ns , 11010011 1120 ns , 00101100 1200 ns , 
11101000 1280 ns 

25 run 1280 ns 
26 force I0   10011101 80 ns , 10001010 160 ns , 10011000 240 

ns , 00101110 320 ns , 10000010 400 ns , 00110001 480 ns , 
01010000 560 ns , 10001011 640 ns , 01111010 720 ns , 
00010000 800 ns , 01010010 880 ns , 10010111 960 ns , 
00100011 1040 ns , 10011110 1120 ns , 00101011 1200 ns , 
11110001 1280 ns 

27 run 1280 ns 

Code B.1: Input Pattern simulate.do example file 



 

Appendix C 

The Configuration .ini File 

Code C.1 shows the complete contents of an A-DyP configuration .ini file. These .ini 

files are text files but they can be generated by the User Interface (see Figs. 4.2-5) 

according to the user specifications. See Chapter 4 for more details about this 

program. This example corresponds to a simulation run for the 10MULT16_C circuit. 

In section FILES, from lines 1 to 5, the names of the required files in A-DyP are 

specified. They must be in the working directory. In section CIRCUIT FEATURES, 

from lines 7 to 11, the nodes number is annotated. Also, the name of the top level 

entity, the device name, and device family are specified. From lines 13 to 16, in the 

CIRCUIT CONFIGURATION section, parameters related with circuit characteristics 

are detailed. Next, in the STAT PARAMETERS section, from lines 18 to 21, the 

required parameters for the statistical technique are selected. In the OPTIMIZATION 

section, from lines 23 to 27, parameters related with A-DyP performance are specified. 

Finally, in the CLOCK, PORTS, and PORTx sections, the input pattern characteristics 

for every input port in the DUT including the clock are detailed. 

1 [FILES] 
2 Ncd=mult_rep.ncd 
3 Vhdl=mult_rep_timesim.vhd 
4 Sdf=mult_rep_timesim.sdf 
5 Pcf=mult_rep.pcf 
6  
7 [CIRCUIT FEATURES] 
8 VHDL Nodes=27471 
9 Top Entity=mult_rep 
10 Device=xc2v3000fg676-6 
11 Device Family=VIRTEX_II 
12  
13 [CIRCUIT CONFIGURATION] 
14 Min Glitch=900 
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15 Latency=2 
16 SetupCyclesR=0 
17  
18 [STAT PARAMS] 
19 Confidence=95,00 
20 Error=5 
21 Bound=0,05 
22  
23 [OPTIMIZATION] 
24 OptStrength=100 
25 Save Samples=NOSAVE 
26 All Samples=MIN 
27 VCDStart=27484 
28  
29 [CLOCK] 
30 Name=CLK 
31 Period=20 
32 Period Scale=ns 
33 Setup Time=8 
34  
35 [PORTS] 
36 Port1=CLK C 20 ns 
37 Port2=B R 16 
38 Port3=A R 16 
39 Count=3 
40  
41 [PORT2] 
42 Pos0=R 0,5 0,5 
43 Pos1=R 0,5 0,5 
44 Pos2=R 0,5 0,5 
45 Pos3=R 0,5 0,5 
46 Pos4=R 0,5 0,5 
47 Pos5=R 0,5 0,5 
48 Pos6=R 0,5 0,5 
49 Pos7=R 0,5 0,5 
50 Pos8=R 0,5 0,5 
51 Pos9=R 0,5 0,5 
52 Pos10=R 0,5 0,5 
53 Pos11=R 0,5 0,5 
54 Pos12=R 0,5 0,5 
55 Pos13=R 0,5 0,5 
56 Pos14=R 0,5 0,5 
57 Pos15=R 0,5 0,5 
58 Last Value=1101000110001110 
59  
60 [PORT3] 
61 Pos0=R 0,5 0,5 
62 Pos1=R 0,5 0,5 
63 Pos2=R 0,5 0,5 
64 Pos3=R 0,5 0,5 
65 Pos4=R 0,5 0,5 
66 Pos5=R 0,5 0,5 
67 Pos6=R 0,5 0,5 
68 Pos7=R 0,5 0,5 
69 Pos8=R 0,5 0,5 
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70 Pos9=R 0,5 0,5 
71 Pos10=R 0,5 0,5 
72 Pos11=R 0,5 0,5 
73 Pos12=R 0,5 0,5 
74 Pos13=R 0,5 0,5 
75 Pos14=R 0,5 0,5 
76 Pos15=R 0,5 0,5 
77 Last Value=1111000100101110 

Code C.1: A-DyP typical configuration .ini file 
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Appendix D 

Power Report File 

Code D.1 shows the contents of an A-DyP power report file. This example 

corresponds to a simulation run for the 10MULT16_C circuit with the parameter 

specified in Code C.1.  

1 ----------------------------------------------------------- 
2 |                                                       
3 | TOTAL AND INDIVIDUAL NODES POWER ESTIMATION V1.0 
4 |                      Universidad Autonoma de Madrid   
5 | - e-mail: etodorov@uam.es    
6 | - REPORT -       
7 | - This file was generated on 17/02/2006 15:20:44      
8 |                  
9 ----------------------------------------------------------- 
10   
11  
12  ---------------------------------------------------------- 
13 |                Summary                                   | 
14  ---------------------------------------------------------- 
15 - Statisticals Parameters:  
16             Confidence   : 95,00 % 
17             Error        : 5 % 
18             Minimal Mean : 0,05  transitions per clock cycle 
19  
20 - Taken Samples:          6973 
21 - Low Density Nodes:      5,99 % 
22 - Regular Density Nodes:  94,01 % 
23  
24 - Total Transition Count per Clock Period: 12846,8 
25 - Nodes Count                            : 27471 
26 - Transition average density per Node    : 0,468 
27  
28  ---------------------------------------------------------- 
29 | 
30 |                Power Summary                             | 
31  ---------------------------------------------------------- 
32  
33 - Total Estimations: 
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34        - Avg. Power [mW]:               881,51 
35        - Capacitance [pF]:              25910 
36        - Switched Cap. [fF per clock]:  289,36 
37  
38 - Estimations for the Logic Resources: 
39  
40  ---------------------------------------------------------- 
41  
42 |  FPGA REs.   | Power [mW] | Capacitance [pF] | Switched 

Cap [fF per Clock] | 
43  ---------------------------------------------------------- 
44                  0,00          0                  0,00 
45   X_AND2         87,78         3991               39,01 
46   X_BUF_PP       163,97        7595               72,88 
47   X_BUFGMUX      32,63         290                14,50 
48   X_FF           137,11        5050               60,94 
49   X_INV          0,00          0                  0,00 
50   X_LUT4         87,25         2782               38,78 
51   X_MUX2         82,32         4665               36,59 
52   X_ONE          0,00          0                  0,00 
53   X_ROC          0,00          0                  0,00 
54   X_TOC          0,00          0                  0,00 
55   X_TRI_PP       290,45        1536               26,67 
56   X_XOR2         0,00          0                  0,00 
57   X_ZERO         0,00          0                  0,00 
58  
59 - Estimations for the General PFGA Resources: 
60  ---------------------------------------------------------- 
61 |  FPGA REs.   | Power [mW] | Capacitance [pF] | Switched 

Cap [fF per Clock] | 
62  ---------------------------------------------------------- 
63  
64   Signals        180,43        14908              80,19 
65   Clocks         32,63         290                14,50 
66   I/O            290,45        1536               26,67 
67   Logic          378,00        9175               168,00 
68  
69 -The 50 Highest Power Consumption INTERNAL* Nodes are: 
70  ---------------------------------------------------------- 
71 | Nodename        | Avg. Activity | FPGA REs. | Avg. Power | 
72  ---------------------------------------------------------- 
73  
74   mult_i0_p[3]          0,4902       X_FF       0,7636 
75   mult_i0_p[0]          0,3559       X_FF       0,7007 
76   b_7_ibuf              0,4913       X_BUF_PP   0,6242 
77   b_15_ibuf             0,4839       X_BUF_PP   0,6139 
78   b_6_ibuf              0,4799       X_BUF_PP   0,6092 
79   mult_i4_a_int[15]     0,4932       X_FF       0,5584 
80   mult_i4_a_int[6]      0,4879       X_FF       0,5524 
81   mult_i4_a_int[5]      0,4811       X_FF       0,5381 
82   b_14_ibuf             0,4816       X_BUF_PP   0,5296 
83   b_10_ibuf             0,4859       X_BUF_PP   0,5252 
84   mult_i1_a_int[8]      0,4961       X_FF       0,5196 
85   b_13_ibuf             0,4961       X_BUF_PP   0,5193 
86   a_8_ibuf              0,4972       X_BUF_PP   0,5145 
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87   mult_i2_a_int[7]      0,4810       X_FF       0,5134 
88   mult_i9_a_int[13]     0,4919       X_FF       0,5119 
89   b_9_ibuf              0,4856       X_BUF_PP   0,5078 
90   mult_i0_a_int[1]      0,5028       X_FF       0,4917 
91   b_4_ibuf              0,4831       X_BUF_PP   0,4911 
92   a_4_ibuf              0,5012       X_BUF_PP   0,491 
93   mult_i2_a_int[15]     0,4932       X_FF       0,488 
94   mult_i9_a_int[15]     0,4932       X_FF       0,4869 
95   mult_i1_a_int[4]      0,4998       X_FF       0,4867 
96   b_3_ibuf              0,4885       X_BUF_PP   0,4848 
97   a_10_ibuf             0,4876       X_BUF_PP   0,4817 
98    
99    ... 
100  
101  ---------------------------------------------------------- 
102  
103 * Clk buffers and I/O Blocks are not included. 
104  
105 -Complete List of nodes in alphabetical order: 
106  ---------------------------------------------------------- 
107 | 
108 | Nodename       | Avg. Activity | FPGA REs. | Avg. Power | 
109  ---------------------------------------------------------- 
110  
111   a[0]         0,4863              0 
112   a[10]        0,4864              0 
113   a[11]        0,4813              0 
114   a[12]        0,4886              0 
115   a[13]        0,4915              0 
116   a[14]        0,4816              0 
117   a[15]        0,4952              0 
118   a[1]        0,5028              0 
119   a[2]        0,4912              0 
120   a[3]        0,4896              0 
121  
122    ... 
123  

Code D.1: A-DyP typical power report file
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