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Nomenclature

∆V Hyperpolarization.

µ Mean of a probability distribution.

σ Standard deviation of a probability distribution

σposit Standard deviation of a position probability distribution.

σvel Standard deviation of a velocity probability distribution.

gCa High-threshold non-inactivating Calcium conductance.

gK,Ca Calcium-activated Potassium conductance.

gK Delayed recti�er Potassium conductance.

gL Leakage conductance.

gNa Fast Sodium conductance.

Ipump Sodium-activated pump current.

ICa High-threshold Calcium current.

IK,Ca Calcium-activated potssium current.

Ik Outward-persistent potassium current.

IL Leak current.

INa Fast sodium current.

rav Average �ring rate.

BTA Burst-Triggered Average
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Contents

BTP Burst Triggered Probability of stimulus.

IBI Inter-Burst Interval

ISI Inter Spike Interval

PCA Principal Component Analysis.

ROC Receiver Operating Characteristic.

SilTP Silence Triggered Probability of stimulus.

STA Spike-Triggered Average

STP Spike Triggered Probability of stimulus.
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Abstract

In the present thesis we have described a sensory code in a spike-bursting mechanorecep-

tor in the leech Hirudo medicinalis. We have stimulated the neuron using naturalistic

tactile stimuli with di�erent statistical distributions while intracellularly recorded the cell

bursting activity. Analyzing the input/output relationship, we found that this sensory

code is based on the number of spikes per burst (burst size): Larger number of spikes

per burst codes for larger velocity values of an object indenting the skin of the animal.

We also found that the burst rate codes for velocity values of the stimulus.

Analyzing the �exibility of this sensory code, we further found that the burst sizes and

rate code not for stimulus values per se, but for their ratio with the standard deviation

of the stimulus distribution. There was a reduction in excitability correlating to an

increase in hyperpolarization in response to higher stimulus variances. We examined

whether the slow reduction in excitability induced by sodium-pump activity that has

been seen in many neuronal types is also involved in this sensory coding. We have

shown, by pharmacologically eliminating the action of sodium pumps, that the regulation

of excitability by sodium pumps is necessary for the neuron to make di�erent responses

depending on the statistical context of the stimuli. In particular, sodium-pump activity

allowed this sensory code to adapt to the stimulus velocity variance. Modeling further

showed that sodium pumps can be a general mechanism of adaptation to statistics on

the time scale of 1 min.
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Resumen

En este trabajo de tesis hemos descrito el código sensorial de una neurona mecanorecep-

tora de la sanguijuela (Hirudo medicinalis) que dispara en ráfagas de potenciales de ac-

ción. Hemos registrado la actividad en ráfagas de la neurona a la vez que provocábamos

su respuesta con estimulos táctiles con distinta distribución estadística. A través del

análisis de la relación estímulo/respuesta, hemos encontrado que esta neurona tiene un

código sensorial basado en el número de potenciales de acción por ráfaga: Ráfagas con

mayor número de potenciales de acción codi�can mayores valores de velocidad. Tambien

hemos encontrado que la frecuencia entre ráfagas codi�ca la velocidad del estimulo táctil.

Analizando si se trataba de un código �exible, encontramos que el tamaño de ráfaga y la

frecuencia entre ráfagas no estaban codi�cando el valor de la velocidad per se, sino el ratio

del valor de la velocidad entre la varianza del estimulo. La neurona presenta además una

reducción de la excitabilidad que corrrelaciona con un incremento en la hiperpolarización

de la membrana en respuesta a varianzas del estimulo más grandes. Examinamos si la

lenta reducción de la excitabilidad que se ha observado en otros tipos neuronales y que

está inducida por la actividad de las bombas de sodio, está también implicada en este

código sensorial. Hemos demostrado, a través del bloqueo farmacológico de las bombas

de sodio, que la regulación de la excitabilidad por bombas de sodio es necesaria para

que la neurona varíe su respuesta dependiendo del contexto estadístico del estimulo. En

particular, la actividad de las bombas de sodio permite al código sensorial adaptarse a

la varianza en las distribuciones de velocidades del estímulo. Simulaciones en un modelo

de esta neurona muestran además que las bombas de sodio pueden ser un mecanismo

general para la adaptación a la estadística en la escala de 1 minuto.
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1
Introduction

1.1 The neuronal code problem

One of the most relevant characteristics of animals is that they have nervous systems.

These structures are complex systems that evaluate external and internal conditions

and generate di�erent behaviors. The level of complexity varies along the evolutionary

scale, but all nervous systems are processors of sensory and motor information. This

processing entails �ltering and interpreting sensory information and allows animals to

react to changes in the environment, to make decisions and to respond with appropriate

behaviors.

Nervous systems are built on several types of cells, categorized in two main groups:

neurons and glial cells. Neurons are believed to be the most important active elements in

the information network that drives di�erent behaviors. They are known to receive, code

and transmit the incoming information. Glial cells are usually described as supporting

cells, however, recent studies show that astrocytes (macroglial cells of the central nervous

system) are also implicated in information processing (Parpura et al., 1994; Volterra and

Steinhäuser, 2004).

The study of how nervous systems work requires understanding how they process in-

formation, and for that we must �rst understand how neurons represent this information.

This neuronal representation does not seem to be based on a �xed set of rules for the
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1 Introduction

whole nervous system. In contrast, this representation could depend on the neuron that

is interpreting and processing the information, as well as on the information itself. A

neuronal code is the way in which a neuron represents the incoming information.

In this thesis we decided to study sensory neurons, in order to have direct control over

the stimulus eliciting the neuronal response. The role of sensory neurons is to translate

the perceptible external world to the neuronal language. Sensory neurons are sensitive

to physical variables such as temperature, pressure, concentration of a certain substance,

intensity of light, wavelength, etc. The translation of these variables to the neuronal

language constitutes a sensory code.

1.1.1 How to study a neuronal code

Wondering about neuronal codes leads to many di�erent questions and approaches. Ap-

proaches to this problem go from a molecular to a systems point of view. We can, for

example, be interested in describing the molecular mechanisms that underlie the neuronal

representation of the information. Or we can wonder about how a population of neurons

processes the information, and consequently forget about the role of single neurons.

This thesis, is focused on the representation of information by a single neuron. In this

scenario, it is useful to consider neurons as black boxes, so that only input (stimulus)

and output (neuronal response) are the essential signals that need to be analyzed to

understand the neuronal code (Figure 1.1, top).

Borst and Theunissen (1999) pointed out three important questions when studying any

neuronal code: �What is being encoded?� refers to the stimulus ensemble and stimulus

features that the neuron processes, �How is it being encoded?� is centered in the type

of code that the neuron uses, and �With what precision?� is related to the variance in

the stimulus-response relationship, and therefore to the ability to discriminate between

di�erent stimulus values by the neuronal response (Figure 1.1, bottom). To answer these

three interconnected questions, it is necessary to study the stimulus-response relationship.

This relationship can be obtained through experiments in which we control and monitor

the stimuli and record the neuronal responses at the right temporal scale.

To know what is being encoded by the neuron, we have to �nd a correlation between

some parameters of the stimulus and the neuronal response. Choosing the correct stimu-

lus ensemble and the relevant stimulus parameters is not trivial. Indeed, it is important

to take into account that the way in which these parameters vary can lead to di�er-

ent interpretation of the results. In some cases, simple stimuli can suggest the relevant

parameters, but some authors, like Sejnowski (1999), consider that realistic stimuli are

14



1.1 The neuronal code problem

Figure 1.1: Studing neuronal codes. Schematic representation of the process to under-
stand a neuronal code. Top: Neurons receive input (stimulus) and produce
outputs (neuronal response). Bottom: The relation between some features
of the stimulus and the response gives a clue to understanding the neuronal
code. What? refers to the stimulus features that are being encoded in a cer-
tain way by some response features (How? ), and the variance of the response
give an approximation of the precision of the code.

needed to describe the e�ciency of a neuronal code.

The description of the type of code, or how is the information being encoded, encloses

two questions: �Which parameters of the response are carrying the information?� and

�what is the relationship between the input and the output?�. To answer the �rst ques-

tion, we need to �nd the relevant parameters in the neuronal response that carry the

information about the stimulus. For the second question, we have to extract, from the

stimulus-response relationship, the way in which di�erent values of the response param-

eters are coding for di�erent values of the stimulus.

The precision of the neuronal code refers to the ability of the response to accurately

discriminate between di�erent values of the stimulus. This precision can be quanti�ed

using methods of signal discrimination analysis that have been largely applied in this

�eld (Rieke et al., 1997).

Another important aspect of the study of a neuronal code is its reliability. The re-

liability of a neuronal code refers to its reproducibility when the neuron is exposed to

15



1 Introduction

repeated presentation of the same stimulus and is closely related to what, how and with

what precision a neuron encodes information. Information theory (Shannon, 1948) is a

rigorous mathematical framework that can be used to quantify this reliability. Informa-

tion theory methods can determine how much information about the stimulus parameters

is contained in neuronal responses and also evaluate the nature and precision of the neu-

ronal codes (Rieke et al., 1997).

1.1.2 Types of neuronal codes

Neurons are cells with an excitable membrane, and that means that their membrane

potential changes in response to appropriate stimuli. There are two types of changes in

membrane potential: action potentials or spikes and graded potential changes. Spikes

are fast changes of the membrane potential and are typically considered all-or-non stereo-

typed waveforms. Graded potential changes are non-stereotyped events and their shape

strongly depends on the stimulus.

Spikes or graded potential changes travel along the neuronal membrane and arrive to

the presynaptic end, where they produce the release of neurotransmitters to the synaptic

gap. Neurotransmitters are responsible for changes in membrane potential of the post-

synaptic neuron and consequently for the transmission of the information from neuron

to neuron. Thus, it seems clear that neuronal codes are built on spikes or on graded

potential changes. Which features of these membrane potential changes can be relevant

for coding the input that excite the neuron? In the case of gradual changes, the value

and dynamics usually correlate to the stimulus. In the case of spikes, there are more

options and controversy. Several types of coding have been proposed, such as the num-

ber of spikes per time unit (rate coding, Adrian and Zotterman, 1926; Adrian, 1928), the

precise timing when they occur (temporal coding, Bialek et al., 1991) or the temporal

clustering of spikes (burst coding, Lisman, 1997). However, it has been shown that spikes

in some neurons are not as stereotyped as believed, and that their shapes carry some

information that could be used by post-synaptic neurons (shape coding, Polavieja et al.,

2005).

These di�erent types of codes will be described separately, but most probably neurons

do not have one pure type of code but a weighted combination of a few. Indeed, the

debate between rate and temporal coding could be viewed as the discussion about two

extremes of the same idea. Depending on the neuron, the precise spike times could have

more or less importance in the code.

16



1.1 The neuronal code problem

Figure 1.2: Graded potential changes coding light intensity. Photoreceptors and
an LMC of the blow�y retina and lamina code light intensity in a single pixel
of the compound eye. The stimulus is a randomly modulated light source.
The signals are intracellular recordings of the graded changes of membrane
potential induced by the stimulus. Six photoreceptors carrying the same sig-
nal converge on a single LMC and drive it via multiple parallel synapses.
For clarity, only two of the six photoreceptors are depicted. The oval inset
shows a photoreceptor-to-LMC synapse. The presynaptic site on the photore-
ceptor axon terminal (PR), contains synaptic vesicles (v), grouped around a
prominent presynaptic ribbon (p). This release site faces four postsynaptic
elements, containing cisternae (c). (Figure from Laughlin et al., 1998)

1.1.2.1 Coding based on graded potential changes

A non-spiking neuron transmits the incoming information by graded changes in its mem-

brane potential. In Figure 1.2 (from Laughlin et al., 1998) we can see two examples of

non-spiking neurons involved in phototransduction: Photoreceptors and Long Monopo-

lar Cells (LMC) in blow�y. Photoreceptors transmit information about light intensity,

17



1 Introduction

while LMC (postsynaptic to photoreceptors) make a more complex processing of the light

signal. Both cells use graded potential changes to encode information.

Graded potential changes can carry more information than spikes. This is due to the

fact that graded potential changes are continuous signals, while spikes are not. However,

while neurons have mechanisms to accurately regenerate spikes through the axon, they

do not have these kinds of mechanisms for graded potential changes. Therefore, part of

the information carried by graded potential changes can be lost if it has to travel long

distances.

1.1.2.2 Shape coding

Spike shapes vary from neuron to neuron, but they are typically considered stereotyped

events of each cell. However, spikes in the same neuron can present di�erent shapes.

These di�erences are usually neglected because they are believed to have poor or no e�ect

in the whole network. Nevertheless, there is experimental evidence of the implication of

spike shapes on the neuronal code (Polavieja et al., 2005; Alle and Geiger, 2006; Shu

et al., 2006).

Polavieja et al. (2005) recorded the activity of pyramidal neurons of rat cortex stim-

ulated by dynamic clamp (a technique of conductance injection that mimics natural

synaptic input) to examine the e�ect of stimulus history on spike shape. They found

that di�erent shapes of spikes (taller or wider, Figures 1.3A-B) had di�erent conductance

histories, as we can see in Figure 1.3C. They proposed a spike-shape code for pyramidal

cells, in which broader somatic spikes are reliably produced in response to higher con-

ductance input, allowing for four times more information transfer than spike times alone.

This study shows experimentally that the shapes of spikes carry information about the

stimulus.

Alle and Geiger (2006) showed that axons can transmit analog signals in addition to

spikes at the mossy �ber�CA3 synapse. By analog signals they understand excitatory

presynaptic potentials, which result from subthreshold dendritic synaptic inputs. These

excitatory presynaptic signals were found to propagate to the presynaptic buttons, where

they modulate the neurotransmitter release produced by spikes. In this context, spikes

(digital signals) and subthreshold potentials (analog signals) are believed to be indepen-

dent, however, for a external observer, the subthreshold potentials are indeed changing

the shape of spikes.

From this point of view, Shu et al. (2006) found that modest changes in the somatic

membrane potential of a presynaptic neuron modulate the amplitude and duration of

axonal spikes and also the average amplitude of the EPSPs (excitatory potsynaptic po-
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1.1 The neuronal code problem

Figure 1.3: Spike shapes carry information about the stimulus in cortical neu-
rons. A. Rapid changes in synaptic conductances at low input levels evoke
tall and slim spikes (red); high input level evoke short and fat spikes (green).
B. Sorting the spikes by their waveforms reveals a characteristic width�height
distribution. C. The stimulus histories leading to similar action potentials
are closely related, suggesting that each action potential waveform encodes
in a compressed format tens of milliseconds of stimulus history prior to �ring.
D. Di�erent trials with the same naturalistic conductance pattern show that
the same spike-shapes are reliably produced by the same stimulus history,
demonstrating that there is very little noise in the encoding. E. Comparison
of the rate of information transfer, R, for the total somatic voltage responses
(black symbols), the spike-shapes alone (gray open symbols) and the data
where all the action potentials are replaced by a mean spike-shape. Spike-
shape alone carry four times more information than pulsatile spikes (Figure
from Juusola et al. (2007))
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1 Introduction

tentials) produced by these spikes in the postsynaptic neuron. These results further

prove that the shapes of spikes can in fact have an e�ect on the postsynaptic neuron,

and consequently on the information transmission.

Taking into account that spike shapes can both carry information about the stimulus

and have an e�ect on the postsynaptic neuron, it seems reasonable to conclude that

neurons may also use a code based on spike shapes.

1.1.2.3 Rate coding

The �ring rate of a neuron is the number of spikes per second that the neuron is �ring.

When the speci�c spike sequence does not contain more information about the stimulus

than the �ring rate, we say that the neuron is using a rate code. Rate coding was �rst

described by Adrian and Zotterman (1926). They showed that the �ring rate of stretch

receptor neurons in the frog muscles is related to the force applied to the muscle. In

Figure 1.4 we can see a clear example of rate coding in a chemoreceptor of the honey

bee. The chemoreceptor was stimulated by increasing concentrations of CO2 and its

response was an increasing �ring rate (Lacher, 1964).

Figure 1.4: Increasing �ring rate in the response of a chemoreceptor in honey
bee to increasing [CO2]. The chemoreceptor of the honey bee was stimu-
lated by di�erent [CO2] (0.03, 0.5, 2, 5 , 10, 25, 50, 100% of CO2 in air). The
�ring rate of the neuron increased with [CO2]. (Figure from Lacher, 1964)

The term �ring rate refers to spikes per time unit, but there are di�erent averaging

procedures to calculate it. According to these procedures we can get di�erent quantities:

spike-count rate, time-dependent �ring rate and average �ring rate. The spike-count

rate is calculated by dividing the number of spikes in a trial by the duration of the trial.
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1.1 The neuronal code problem

The disadvantage of this rate is that it loses all temporal resolution about variation in

the neuronal response during the trial. The time-dependent �ring rate is de�ned by

the number of spikes in short time intervals, which improves the temporal resolution.

However, for very short time interval (and high temporal resolution), it needs to be

averaged from several trials to avoid only two possible �ring-rates values (0 and 1). The

average �ring rate is the average of the spike-count rate over several trials and also the

time average of the time-dependent rate.

Variability in spike times can be considered noise in the neuronal response. The ad-

vantage of coding information by �ring rates is that the neuronal response is averaged in

time. This average in time makes the rate code robust with respect to the noise. How-

ever, rate coding has two disadvantages. First, averaging needs time, and consequently,

the information encoding is slow. And second, by considering the variability in the spike

sequence as noise, all the information that could be contained in the precise timing of

the spikes is neglected (Stein et al., 2005). Thus, the assumption of rate coding might

be ignoring parts of the code.

1.1.2.4 Temporal coding

A temporal code implies that precise spike timing or high-frequency �ring-rate �uctua-

tions carry information. It is important to note that there is no absolute time reference

in the nervous system, so that the information is carried either in terms of the relative

timing of spikes in a population of neurons or with respect to an ongoing brain oscillation

(Stein et al., 2005). This type of code was defended by Bialek et al. (1991) to understand

neuronal coding from the point of view of the organism. They argued that calculating

�ring rates needs an average over trials that it is not realistic in nature. They defended

that to claim that a neuron uses �ring rates to code information, one also needs to ex-

plain how the organism could estimate these �ring rates from real-time observation of the

spike trains. Precision and reproducibility of spike timing are the basis to di�erentiate

between rate and temporal codes (Figure 1.5).

To test the type of code, the stimulus has to be repeated in order to evaluate the im-

portance of spike times in the code. The relevant parameter for a rate code is the �ring

rate, but it can be achieved by di�erent spike sequences. However, a temporal code is

based on precise spike times. Figure 1.6 shows a real example of temporal coding in the

central auditory area of songbirds. The spike timing turns out to be highly reproducible

and to carry a 20% more information than modulations of spike rate (Wright et al.,

2002). However, spike timing has a dual nature, as it can re�ect the neuronal code but

is also a�ected by the temporal properties of the stimulus. In any neuronal code, stimuli
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Figure 1.5: Rate coding versus temporal coding. Repetition of the same stimulus
produces neuronal responses in which precision and reproducibility of the
spike trains vary depending on the type of code. Rate coding (left) requires
a neuronal response in which repetition of the same stimulus are represented
by the same �ring rate, but it allows variability in the spike times. Temporal
coding (right) involves a neuronal response in which repetitions of the same
stimulus produce the same speci�c spike train.

that change rapidly tend to generate precisely timed spikes and fast changes in �ring

rates. To resolve this, Theunissen and Miller (1995) proposed that, for a temporal code,

information carried by spike times should be related to properties of the stimulus, but

in a shorter time scale than the fastest time scale that characterize variations in stimulus.

1.1.2.5 Burst coding

Bursts are discrete groups of spikes that are followed by a period of quiescence before

the next group of spikes occurs. In Figure 1.7 we can see an example of burst �ring

from a neuron of mouse �rst somatosensory cortex. Neurons �ring in bursts are found

in many di�erent animals and in many di�erent parts of the nervous system (Connors

and Gutnick, 1990). In mammals, we can �nd bursty neurons in many parts of their

nervous system, for instance in the neocortex (Connors and Gutnick, 1990; Gray and

McCormick, 1996; Markram et al., 2004), hippocampus (Kandel and Spencer, 1961; Su

et al., 2001), thalamus (Jahnsen and Llinás, 1984; Schingnitz and Werner, 1980) or

cerebellum (Womack and Khodakhah, 2002). There are well known neurons �ring in

bursts in other animals like lobster (Combes et al., 1997), Aplysia (Barker and Gainer,

1975; Carnevale andWachtel, 1980), Clione (Arshavsky et al., 1989) or the weakly electric

�sh (Metzner et al., 1998). Indeed, almost every neuron can be forced to �re in bursts

under pharmacological manipulation or when the relevant stimulus oscillates around the

�ring threshold.
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1.1 The neuronal code problem

Figure 1.6: Temporal coding in a central auditory area of songbirds. A. Spike
raster plot of the response of a single neuron of the central auditory area
of songbirds to a natural sound (80 repetitions). B. Peri-stimulus time his-
togram (histogram of the times at which neurons �re) with 1 ms bins C.
Sound pressure waveform for the natural sound ensemble.D. Blowup of seg-
ment shown in the box in A. The scale bar is 50 ms. (Figure from Wright
et al. (2002))
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Figure 1.7: Intrinsic bursting activity in mouse cortex. Repetitive intrinsic burst-
ing in response to prolonged stimulus in a neuron near to the border of layers
V and Vl in mouse �rst somatosensory cortex. Figure from Connors and
Gutnick (1990).

The generation of bursts in vivo can be controlled by inputs onto the dendrites and by

network characteristics or by intrinsic cellular mechanisms (Krahe and Gabbiani, 2004).

When the origin is intrinsic, burst �ring occurs as a result of the interaction of two types of

biophysical processes: fast currents generating spikes and slower mechanisms controlling

when bursts occur. According to the localization of these two processes, experimental

(in vitro) and modeling studies point at two burst generating mechanisms: adendritic

and dendritic.

Adendritic mechanisms imply only somatic currents. These mechanisms take place

in neurons that are electrotonically very compact, in which there is not any relevant

interaction between dendrites and soma. In Figure 1.8a we can see a model of a cerebellar

granule cell based on seven somatic conductances (Krahe and Gabbiani, 2004). The slow

process controlling burst activity is thought to be an alternating activation of a persistent

Na+current and a slow repolarizing K+current. The fast process generating spikes within

bursts relies on fast Na+/K+ channels and a fast spike afterhyperpolarization (AHP)

produced by a Ca2+-dependent K+ current, which accelerates the removal of inactivation

of fast Na+channels. In addition, a resurgent Na+current, INaR, is responsible for a

delayed depolarizing afterpotential (DAP), which helps to trigger the next spike of the

burst.

Dendritic mechanisms take into account the interaction between somatic and dendritic

currents and are usually described as �ping-pong� mechanisms. Some models show that

changes in size and electrotonic structure of dendritic trees can change the �ring mode

from tonic to bursty (Mainen and Sejnowski, 1996), indicating the possible importance of

dendritic trees in the generation of bursts. Spike backpropagation from the soma to the
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1.1 The neuronal code problem

(a) Adendritic mechanism. (b) Dendritic mechanism.

Figure 1.8: Bursting mechanisms. a. Adendritic mechanism: Model of a cerebel-
lar granule cell based on seven somatic conductances. Top left : schematic
electrotonic structure and conductance list. Top right : High-frequency burst
spikes rely on fast Na+ (INa,s), delayed recti�er (IDr,s) and fast afterhyperpo-
larization (AHP, IK(Ca)) currents. The Ca

2+-dependent K+ current, IK(Ca),
is activated by a Ca2+ conductance, ICa. A resurgent Na+ current, INaR,
mediates the depolarizing afterpotential (DAP). Bottom: two bursts in re-
sponse to a current pulse. Bursting is favored by a persistent Na+ current
(INaP) and terminated by a slow K+ current (IK-slow). b. Dendritic mech-
anism: Model of a electrosensory lateral-line lobe (ELL) pyramidal cell of
the weakly electric �sh. Top left : schematic electrotonic structure with soma
and dendrites and conductance list of each part. Top right : Narrow somatic
spikes (1) propagate back into the apical dendrite where they broaden due
to slower dendritic conductances, INa,d and IDr,d (2). Current sourcing back
into the soma causes a DAP (3). Bottom: Somatic and dendritic spike bursts
recorded separately in two cells (somatic spikes truncated). The slowdown
in dendritic spike repolarization is due to slow inactivation of a dendritic K+

conductance (IKv3.3) and results in a potentiation of the somatic DAP (ar-
rows). When the DAP reaches threshold for a high-frequency spike doublet,
the second spike fails to backpropagate. This allows the AHP to terminate
the burst. Figure modi�ed from Krahe and Gabbiani (2004).
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dentritic tree is usually the basis of the dendrite-dependent burst generation (Krahe and

Gabbiani (2004)). Figure 1.8b shows a model of electrosensory lateral-line lobe (ELL)

pyramidal cells of the weakly electric �sh (Krahe and Gabbiani, 2004). Somatic spikes

propagate back to the apical dendrite and produce the activation of slower dendritic

conductances, that cause a DAP in the soma. When DAP reaches the �ring threshold,

the neuron �res a burst of two high-frequency spikes (or doublet).

Burst �ring has important implications in the information transfer between neurons.

For instance, bursts are known to facilitate synaptic transmission (Lisman, 1997), can

improve the signal-to-noise ratio of responses (Cattaneo et al., 1981; Sherman, 2001) or

detect certain signals better than isolated spikes (Gabbiani et al., 1996). Experimental

and theoretical evidence shows that burst �ring represents another type of neuronal code

(Gabbiani et al., 1996; Krahe and Gabbiani, 2004). In the study of a neuronal code based

on bursts it is necessary to describe which burst parameters are relevant for information

transmission. Several proposals have been made, including spike frequency (Izhikevich

et al., 2003), burst duration (DeBusk et al., 1997; Lisman, 1997), latency of the �rst

spike (Middlebrooks et al., 1994), interspike interval within a burst (Doiron et al., 2007;

Oswald et al., 2007) and number of spikes per burst (Martinez-Conde et al., 2002; Kepecs

et al., 2002; Arganda et al., 2007; Eyherabide et al., 2008).

The burst-size code proposed by Kepecs et al. (2002) can serve as example to further

understand how bursts can be the basis of a neuronal code. In a previous study, Gabbiani

and Metzner (1999) analyzed the neuronal response of �rst and second-order sensory

neurons in the the weakly electric �sh. When the animal was stimulated by weak electric

�elds with random amplitude modulations, spikes in the P-receptor elements (�rst-order

sensory neurons) accurately encoded these random amplitude modulations (probably by a

rate code). The ELL pyramidal cells (second-order sensory neurons, in the electrosensory

lateral line lobe) �red short bursts of spikes that were found to extract up and down-

strokes (slopes) in the random amplitude modulations.

Kepecs et al. (2002) used a simple model of pyramidal neurons based on two compart-

ments (soma and dendrite) to investigate the signaling properties of bursts (Figure 1.9a).

They mimicked a random amplitude modulated stimulus and reproduced the experimen-

tal result of bursts detecting slopes (Figure 1.9b). The simulated neuronal response was

composed of bursts of several sizes (number of spikes per burst) and also isolated spikes.

They analyzed the value of stimulus slopes eliciting bursts of di�erent sizes, and they

obtained that larger bursts where coding for larger values of slopes. In Figure 1.9c we

can see the probability distributions of slopes before bursts of two to �ve spikes. These

distributions are clearly di�erent, supporting the hypothesis of a burst-size code.
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(a) Pyramidal neuron model.

(b) Stimulated burst �ring. (c) Slope probability distributions given
di�erent burst sizes

Figure 1.9: Burst-size coding. a.Two-compartment model of pyramidal neurons. So-
matic currents are Hodgkin-Huxley-type and generate fast spikes. Dendritic
region contains a persistent sodium current and a slow potassium current
responsible for bursting. b. Top: Random input applied to the dendrite.
Bottom: membrane potential response (with bursts and isolated spikes) c.
Distribution of stimulus slope before bursts of di�erent sizes. B2 represents
bursts of two spikes, B3 bursts of three spikes, and so on. Figures from Kepecs
et al., 2002.

1.2 Code Flexibility: Adaptation in sensory systems

Adaptation of the neuronal response is a process by which the responsiveness of the neu-

ron changes as a result of previous stimulation. Although there are some sensory neurons

that do not adapt their response (as a population of SI cortical neurons responding to

noxious stimuli, Kenshalo and Isensee, 1983), adaptation takes place at di�erent levels

in most sensory systems. Adaptation to static stimuli is a well-known phenomenon in

nervous systems, but a constant value of stimuli is not likely in nature, as animals live

in a continuously changing environment. Sensory systems have to deal with stimuli that
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Figure 1.10: Adaptation optimizes neuronal coding. a. Top: An example of a
stimulus distribution. Bottom: The most e�cient stimulus/response rela-
tionship (the cumulative distribution). Equal probability in the stimulus
distribution (shaded areas) are transformed to equal response ranges, mak-
ing all responses equally likely. b. Top: Two di�erent stimulus distributions,
illustrating a change from the �rst one, p1(s), to a new one, p2(s). Bottom:
The most e�cient stimulus/response relationship also changes from r1(2)
and r2(s). Figure from Wark et al., 2007, adapted from Laughlin, 1981.

�uctuate in time and that even change their scale of values. A sensory neuron has a

limited range of outputs, which is insu�cient to represent all the values of stimulus that

are present in a natural context and that can span in many orders of magnitude.

To code more e�ciently, a neuron needs to change its coding strategy when the sta-

tistical distribution of the stimulus varies. That means that the neuron should have

a �exible neuronal code, capable of reassigning its range of outputs to the new range

of inputs. Figure 1.10 shows how changes in the intput/output relationship makes the

neuronal code more e�cient. In Figure 1.10a top we can see the probability distribution

of a stimulus and Figure 1.10a bottom, the input-output relationship corresponding to a

maximum information transfer without noise that coincides with the cumulative prob-

ability of the stimulus (Laughlin, 1981). In Figure 1.10b we can see how the optimal

response changes if the distribution of the stimulus varies.

Adaptation makes it possible for the neuron to have a more e�cient code since it is a
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1.2 Code Flexibility: Adaptation in sensory systems

process that changes the neuronal response depending on the previous stimulation. The

neuron can �t its response to di�erent stimulus statistics to maximize the information

transfer (infomax principle, Linsker, 1988) or to enhance the response to some values of

the stimulus while suppressing the response to others (selective coding principle, Sobel

and Tank, 1994; Wimmer et al., 2008). From a more general point of view, in a con-

text in which stimuli change probabilistically and the biological mechanisms have noise,

adaptation allows the neuron to optimize the performance of a task, for example cod-

ing (Grzywacz and Balboa, 2002). However, it is important to notice that even if an

adaptive neuronal code allows the neuron to be sensitive to details in a wider range of

stimulus values, there can also exist one disadvantage. As the neuron reassigns its output

to di�erent inputs scales, the neuronal response could entail certain ambiguity.

To understand the functions and mechanisms that are responsible for the �exibility

of neuronal systems under real-world conditions, it is necessary to study adaptation to

stimuli in their statistical context. Neuronal adaptation to stimulus statistics enables the

neurons to be sensitive to details of the stimulus at di�erent ranges of values. Adaptation

to the mean of the stimulus, the simplest parameter of a distribution, is a basic process-

ing strategy in all sensory modalities that permits sensitivity to �uctuations around the

mean (Barlow and Mollon, 1982; Walraven et al., 1990). A more sophisticated strategy

is the adaptation to the variance of the stimulus distribution (Brenner et al., 2000; De-

weese and Zador, 1998; Fairhall et al., 2001; Maravall et al., 2007; Meister and Berry,

1999; Shapley, 1989; Smirnakis et al., 1997) and perhaps to higher-order moments (Kvale

and Schreiner, 2004). Stimulus variance also changes in time in natural conditions, and

adapting to it allows the matching of output range to input range and a higher informa-

tion transfer (Brenner et al., 2000; Fairhall et al., 2001; Sharpee et al., 2006).

1.2.1 Possible mechanisms underlying adaptation

Despite the importance of adaptation to stimulus statistics for the correct functioning of

many systems, the underlying mechanisms remain largely unknown. Theoretical anal-

ysis and experimental evidence argue in favor of the existence of multiple mechanisms,

(from synaptic or network, Abbott et al., 1997; Markram et al., 1998; Tsodyks and

Markram, 1997, to intrinsic or single-neuron mechanisms, Diaz-Quesada and Maravall,

2008; Sanchez-Vives et al., 2000a; Rieke, 2001; Sanchez-Vives et al., 2000b; Stemmler

and Koch, 1999), which probably span several time scales and work under di�erent con-

straints (Fairhall and Bialek, 2002; Gilboa et al., 2005) and that could even have di�erent

e�ects on di�erent types of code (Prescott and Sejnowski, 2008).
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At the single-neuron level, di�erent ionic currents have been described to be impli-

cated in adaptation processes, especially the calcium-activated potassium currents. For

instance, in the newt, the hyperpolarization produced by these currents has been shown

to be necessary for odor adaptation (Kawai, 2002). More recently, sodium has been seen

to play a relevant role in neuronal response adaptation (Bhattacharjee and Kaczmarek,

2005). Current injection experiments have identi�ed slow sodium inactivation in bipolar

cells (Kim and Rieke, 2003; Rieke, 2001) and sodium-dependent potassium conductances

in cortex (Sanchez-Vives et al., 2000b) as potential mechanisms.

1.3 The leech as a tool to study sensory codes

The present thesis describes our study of a burst code in a mechanoreceptor cell of the

leech Hirudo medicinalis. In this section we will describe the utility of using the leech to

understand basic processes in nervous systems and also why we have studied the sensory

code (and its properties) in this particular neuron.

1.3.1 Why the leech?

Nervous systems allow animals to perform very complex tasks such as coordinating muscle

movements, discriminating among di�erent values of one stimulus, making decisions,

learning or creating memories. To study the underlying circuits and mechanisms of these

abilities, one strategy consists of using the simplest possible system. The balance between

structural simplicity and processing complexity points at the leech as a good candidate

for studying basic neuronal mechanisms and circuits.

The nervous system of the leech is composed of a longitudinal cord connecting a head

ganglion to a tail ganglion, passing through 21 segmental and practically identical gan-

glia (Figure 1.11). This ganglionic structure satis�es experimental requirements such as

survival of synapses in isolated ganglia and healthy maintenance of neurons during long

recordings. Furthermore, the segmented body of the leech makes it possible to perform

experiments in a reduced preparation preserving structures, connections and functions of

segments (Figure 1.12). It is then possible to apply controlled stimuli on the skin while

recording intracellularly the response of a sensory neuron. Therefore, we can analyze the

properties of the stimulus that the neuron is coding and the type of code that it is using.

Each segmental ganglion is composed of circa 400 neurons, big enough to be visible

throw a dissection microscope (from 10 µm to 80 µm, Figure 1.13a), arranged in two

layers and protected by glial cells. The ventral layer is mainly composed of sensory

cells, while the dorsal side houses most of the motor-neurons. Interneurons are located

30



1.3 The leech as a tool to study sensory codes

(a) Segmental body of the leech.

(b) Anatomical arrangement of leech organs.

Figure 1.11: Leech Anatomy. a. Scheme of the segmental anatomy of the leech focused
on the nervous system structure. b. Position of the Nerval cord within the
rest of the morphological structures, shown in a transverse view. (Modi�ed
from Nicholls and Van Essen (1974))
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Figure 1.12: Reduced preparation of the leech nervous system. The neu-
roanatomy of the leech allows experimental preparations preserving the con-
nections between sensory neurons to their receptive �elds. (Modi�ed from
Blackshaw (1981))

throughout the ganglion. Most of the neurons are easily identi�ed by simple visual in-

spection according to their shapes, sizes and positions inside the ganglion. Due to these

anatomical features, it is relatively easy to perform electrophysiological recordings in the

leech.

1.3.2 Why T cell?

Mechanosensory systems are good candidates for the study of sensory codes, as the

stimulation can be easily controlled. Inside the leech segmental ganglia (Figure 1.13a),

there are three types of mechanosensory neurons responding to: touch (T cells), pressure

(P cells) and noxious mechanical stimuli (N cells). All of them can be easily recognized

not only by size and position, but also by the temporal structure of their action potentials

through intracellular recordings (Figure 1.13b). These three types of mechanoreceptors

have been largely studied, including their �ring pattern, connectivity, shapes, receptive

�elds, relevant stimuli, biophysical properties, etc. Among these three types of neurons,

only T cells have a bursty �ring when the skin is mechanically stimulated (Figure 1.13c,

Van Essen (1973))
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(a) Ventral side of leech ganglion.

(b) Leech mechanoreceptors response to electrical
stimulation.

(c) T cell response to a mechanical step-like
stimulus.

Figure 1.13: Mechanosensory neurons in a segmental ganglion. a. Ventral side of
a leech ganglion. Colored neurons are T, P and N. (Modi�ed from Muller
et al., 1981) b. Typical �ring pattern of a T, P and N neurons elicited
by current injection. (Modi�ed from Nicholls and Baylor, 1968) c.T cell
response to a simple step-like mechanical stimulation (of height 0.4 mm and
duration of 300 ms). .
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(a) T cell receptive �elds. (b) Overlapping receptive �elds.

Figure 1.14: Overlapping of receptive �elds. a. Receptive �elds of T cells drawn
on a piece of the skin. (→) marks dorsal and ventral mid lines of the skin;
(↓) marks central annulus; solid lines represent boundaries in the receptive
�elds of the three T cells of the same lateral packet; dashed lines represent
receptive �elds of the T cells in adjacent ganglia. Figure from Nicholls and
Baylor (1968). b. Receptive �elds of two T cells in adjacent ganglia both
innervating lateral skin. Each receptive �eld spans 12 to 13 annuli over three
body segments, and extensively overlap. Figure from Yau (1976).

As we can see in Figure 1.13a, there are six T cells in each segmental ganglion, separated

in two packets. T cells form a mechanosensorial network in which T cells on the same

side of the ganglion are electrically connected, and T cells on di�erent sides are connected

via an interneuron (Baylor and Nicholls, 1969b). The neuronal processes of each packet

only go through the ipsilateral nerve roots. Therefore, the receptive �elds of each T

cell is located ipsilaterally to the position of the soma and map to either the dorsal,

lateral or ventral region. Each T cell also sends axons through connectives between

ganglia, expanding its receptive �elds to the adjacent segments. Each receptive �eld

substantially overlaps with the adjacent ones (Figure 1.14).

The above description probably have important e�ects on the population code of the
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T cells circuits, however we could wonder about the coding properties at a single neuron

level. All T cells are mechanosensory neurons �ring in bursts when the skin in their

receptive �elds is being indented by a moving object (Nicholls and Baylor, 1968). In

Figure 1.13c we can see the dynamics of their response, which are as follows: When the

object over the skin doesn't move, the cell remains silent; only when the object changes

its position (going upwards or downwards) the T cell �res in bursts. This simple evidence

and previous studies (Carlton and McVean, 1995) lead to think that T cells are coding

changes in position or, in other words, velocities.

It is also known from previous studies, that repetitive mechanical stimulation of the

skin leads to an after-hyperpolarization of the T cell membrane that can last from seconds

to minutes and that have e�ects on the �ring rate of the neuron (Baylor and Nicholls,

1969a; Catarsi and Brunelli, 1991; Catarsi et al., 1990; Jansen and Nicholls, 1973; Mar

and Drapeau, 1996; Scuri et al., 2002, 2005; Van Essen, 1973). This hyperpolarization, up

to 30 mV, is mainly produced (75% of its total amplitude) by the activity of the sodium

pump, or Na+/K+ATPase, in response to the increase of Na+ ions resulting from the

spiking activity of the neuron (Baylor and Nicholls, 1969a; Jansen and Nicholls, 1973).

The rest of the hyperpolarization, up to 5 mV, is due to a calcium-dependent potassium

current, IK,Ca (Jansen and Nicholls, 1973). The activity of the sodium pump controls

the excitability of T cells in the scale of 1 min and therefore (Van Essen, 1973), may

a�ect to sensory code of the T cell.

We thus consider that anatomy and neurobiology of the leech permit simple and pow-

erful experiments to study the properties of a sensory code based on bursts.
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Objectives

This thesis is focused on three aspects of the sensory code: a) the stimulus that is coded

by the sensory neuron, b) the type of code that the neuron uses and c) the adaptive

properties of the sensory code.

Our aim in this study was to demonstrate that:

� Some features of bursts can be used by neurons to code and discriminate between

di�erent values of stimulus features, in this case, of stimulus velocity.

Previous studies show that among the three types of the leech mechanoreceptors,

T cell responds to the lightest mechanical stimuli (Nicholls and Baylor, 1968) and

that its repines get rapidly adapted when the skin is stimulated by a constant

pressure (Pinato and Torre, 2000). This points at changes in position, or velocity,

as the relevant stimulus features for T cell. We here wanted to probe this idea in

a more quantitative way, using statistically richer stimuli functions.

Moreover, T cell response has been described to be bursty when the skin is me-

chanically stimulated (Van Essen, 1973). Thus, we considered that bursts had to

be playing and important role in the sensory coding of velocities.
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� A neuronal response based on bursts can show adaptation to the statistics of the

stimulus, in this case, to the standard deviation of velocities.

Regardless of the type, sensory codes have to deal with a more o less variable

environment. In most of the cases, evolution could have forced neuronal codes to

be �exible in order to allow animals to act e�ciently in a changing natural context.

This �exibility could be supported by changes in the excitability of the neuronal

membrane.

It is known that the T cell response decrease after repetitive stimulation (Baylor

and Nicholls, 1969a; Jansen and Nicholls, 1973; Mistick, 1978) and thus, we thought

that this could be an e�ect of the adaptation to stimulus statistics.

� The ubiquitous sodium pump may be a molecular substrate for the adaptation of

neuronal codes to the statistical context.

The sodium-potassium ATPase, or sodium pump, is ubiquitous in neurons. Dur-

ing �ring, Na+ ions accumulate inside the axon, driving the sodium pump, which

continues its activity even when the spike trains have ceased. The sodium pump

exchanges three internal Na+ ions for two external K+ ions, and the resulting

imbalance causes the membrane to recover from depolarization and can even hy-

perpolarize the membrane.

The membrane hyperpolarization reduces membrane excitability, for example, in

dopaminergic neurons (Shen and Johnson, 1998), spinal networks (Darbon et al.,

2003), hippocampus (Gustafsson and Wigström, 1983; Vaillend et al., 2002), C-

�bers in bullfrog sciatic nerve (Kobayashi et al., 1997), insect mechanoreceptors

(French, 1989) and human skin receptors (Kiernan et al., 2004). And therefore can

be underlying adaptation processes.

In T cell, the sodium pumps are known to control the membrane excitability on the

scale of 1 min (see section 1.3 for references). This control of excitability is achieved

by inducing a 1 minute lasting hyperpolarization of up to 30 mV as a consequence

of �ring activity. Thus, sodium pumps are good candidates to be responsible of

neuronal response adaptation.
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3
Materials and Methods

3.1 Experimental preparation and recording set-up

Adult leeches, Hirudo medicinalis, weighting between 4 and 6 grams, were bought from

Zaug GmbH Biebertal and kept in a pond water tank at 18ºC.

To anesthetize the animal before the dissection, the leech is �rstly cooled in a extracel-

lular solution at 4ºC for few minutes. The ordinary extracellular solution contained 115

mM NaCl, 4 mM KCl, 1.8 mM CaCl22H20, 1.5 mM MgCl22H20, 10 mM glucose, 4.6

mM Tris maleate, 5.4 mM Tris base. NaOH was added to achieve a pH of 7.4 at room

temperature (24�26ºC).

Once the leech is anesthetized, the reduced nervous system preparation is made under

a dissection microscope (Stemi SV11, Zeiss) using Fine Science Tools. Semi-intact leech

preparations (three or four central ganglia with intact connections to their corresponding

skin �aps) were used for the experiments (Figure 3.1a).

Intracellular recordings were performed typically from ganglia G8 or G9 and the skin

of the outer segments was used to pin the skin �aps to a Petri dish �lled with Sylgard

(Dow Corning).

The experiments were carried out over an anti-vibration table (Newport) and under

a �uorescence microscope (Axioskop 2 FS Plus, Zeiss) as shown in Figure 3.1b. Neu-
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ronal activity was intracellularly recorded using chlorinated silver electrodes in 40-70 MΩ
quartz micro-pipettes (pulled by a P-2000 puller and �lled with 3 M Potassium Acetate).

Signals were received by a preampli�er connected to an ampli�er (Axo probe-1A, Axon

Instruments) and, through signal �lters, sent to the data acquisition cards of a PC com-

puter with a custom made acquisition program, Biosyst (written in Matlab by M. Juusola

and G. de Polavieja).

(a) Semi-intact preparation.

(b) Experimental set-up.

Figure 3.1: Nervous system preparation and experimental set-up. a. Drawing of
the nervous system preparation with 3 ganglia (Photoshop modi�cation from
lab pictures). b. Experimental disposition: (1) Fluorescence microscope,
(2) micro-manipulator, (3) pre-ampli�er attached to a micro-electrode, (4)
nervous system preparation, (5) �owing system, (6) mechanical stimulator
and (7) anti-vibration table.
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3.2 Stimulation of T cell

(a) Experimental scheme. (b) Mechanical Stimulation.

Figure 3.2: Mechanical stimulation on the skin. a. Sketch of the experimental
preparation while stimulating and recording from the ventral T cell (Modi�ed
from Blackshaw, 1981). b. Drawing illustrating that tip of the stimulator
is always in contact to the skin while stimulating. Photoshop modi�cation
from lab pictures.

3.2 Stimulation of T cell

A computer controlled mechanical stimulator was used to elicit the activity of a T cell

in response to a indenting object on its receptive �eld (Figure 3.2a). The basis of this

stimulator is a solenoid that makes possible to perform any mathematical function in

one dimension (upwards and downwards). The function to be perform is created and

controled by a computer program. The computer also receives a feedback from the

stimulator, recording the movement of the tip and allowing us to know the real stimulus

applied over the skin.

On the tip of the stimulator we put a 3 mm diameter ball, in order to touch the skin

without causing any damage. We made sure that the ball was always in contact with

the skin during the experiment to guarantee that the stimulus was being applied on the

skin at all times (Figure 3.2b). This condition was ensured by testing that the T cell had

activity in response to step-like stimulus in all the tip trajectory.

Simple functions (or stimulus inputs) such as pulses, ramps or sines, in which it is

possible to control amplitude, duration and frequency, can be quite informative about
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the sensory code of T cells. However, this information can be more signi�cant and more

e�cient using one ideal function scanning randomly a particular bandwidth of frequencies

and amplitudes, as it avoids confusion in the analysis caused by adaptation to a repetitive

stimulus and there are responses to di�erent values of the stimulus in the same recording.

These conditions are satis�ed by a white Noise function, that creates a random signal

with a �at power spectral density for a given bandwidth in frequencies and ideally has

no auto-correlation in the spacial domain.

We have used a Gaussian white noise, whose amplitudes follow a Gaussian distribution,

in with standard deviation and cut-o� frequency. To build an approximation to this

Gaussian white noise with a chosen cut-o� frequency, we used the equation

wn(t) = A

[
N∑
i=1

αi cos(ωit) + βi sin(ωit)

]
+B (3.1)

where αi and βi are N random numbers taken from a Gaussian probability distribution,

ωi areN random values of frequency with a uniform probability distribution and t is time.

A and B are constants to control standard deviation and mean (to force the function to

be standard normal: µ = 0 and σ = 1) . Equation 3.1 was, later on, multiplied by the

desired standard deviation.

Equation 3.1 is a pseudo-random white noise that can be performed by the mechanical

stimulator as a function that is continuous in time (Figure 3.3a). The real stimulus that

is �nally applied over the skin is not a perfect white noise and has a small degree of auto-

correlation, however it gets very close to a Gaussian probability distribution of stimulus

values (Figure 3.3b) and a �at power spectra density up to the cuto� frequency (Figure

3.3c). The mechanical stimulator allows a position range with a maximum of 1 mm with

0.1 µm resolution and a frequency range from 0 to 100 Hz.

3.2.1 Protocols of mechanical stimulation

In order to analyze the role of bursts in the sensory code of T cells, we used 10 minute long

pseudo-random stimuli with Gaussian distributions for positions with di�erent variances.

Di�erent velocities distribution were achieve by modifying the maximum trajectory of the

stimulus and the cut-o� frequency. The stimulus maximum trajectory that we used for

experiments was 1 mm long (the maximum allowed by the stimulator) and the maximum

cut-o� frequency, 20 Hz. The standard deviations of the velocity of the stimuli (σvel)

were usually between 0.75 and 9 mm/s.
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(c) Power spectra density of frequency.

Figure 3.3: Mechanical �White Noise�. a. 12 seconds of a pseudo-random mechanical
stimuli (cuto� frequency: 5 Hz, σposit = 32 µm). b. Probability distribution
of the same stimulus values compared to a Gaussian with same µ and σ. c.
Power Spectra Density of this stimulus.
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3.3 Use of drugs

To test if the changes in the excitability of the cell membrane could be responsible of

the adaptation of T cell sensory code, we used pharmacological blockers of the sodium

pump and of the calcium-dependent potassium channels. Sodium pump and calcium-

dependent potassium channel are known to produce the after-hyperpolarization of the

T cell membrane in response to activity. As hyperpolarization of neuronal membranes

usually produce a decay in excitability, we considered that blocking hyperpolarization

should block the e�ect of changes in excitability.

These blockers were �rst quickly applied to the preparation using a pipette and after-

ward, at a constant �ow of 1 ml/min, using a �ow system.

Strophantidin, a reversible blocker of sodium pump (responsible of the 75% of the

hyperpolarization), was applied in a concentration of 0.15 mM in extracellular solution

(with 1% ethanol to better dissolve the drug, Jansen and Nicholls, 1973). We checked

that strophantidin was e�ective after 15 min, as the hyperpolarization after repetitive

stimulation almost disappeared.

We also used apamin, known to block the calcium-dependent potassium conductance

in a concentration of 1 nM in the T neurons (Mozzachiodi et al., 2001). We observed its

e�ect as a reduction of 5 mV in hyperpolarization.

Both, strophantidin and apamin, were purchased from Sigma Aldrich.

3.3.1 Mechanical protocols for drug experiments

For the experiments with strophantidin, we used two types of stimulation. One to be

sure that the drug has been e�ective, and another to study the e�ect of the drug on the

adaptive properties of the sensory code.

To test if the drug was e�ective, the protocol consisted of a 10 seconds train of 40 µm

mechanical steps at 1.5 Hz on the skin of the leech, followed by 20 seconds of several

400 µm-amplitude sine-wave patterns at 10 Hz, and then repeating the initial train

(Figure 3.4). The �rst part of the protocol makes the neuron �re a single spike at every

40 µm mechanical step. The second part elicits a strong response in T cell. This strong

response has as a consequence a hyperpolarization big enough to avoid, for a variable

period of time, the single spike �ring in the third part of the protocol. When the blocking

of sodium pumps by strophantidin is e�ective, the hyperpolarization disappears and the

cell continues �ring in the third part of the protocol.

Next, to study the e�ect of blocking the sodium pump in the adaptation of the code to

stimulus statistics, we applied 3 min of white noise stimulation for two di�erent variances.
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Figure 3.4: Short protocol to test drugs e�ect in after-hyperpolarization. This
short protocol is compound of a 10 seconds train of 40 µm mechanical steps
at 1.5 Hz on the skin of the leech, followed by 20 seconds of several 400 µm-
amplitude sine-wave patterns at 10 Hz, and then another 20 seconds repeating
the initial train.

We applied shorter stimulus than the ones we used studying the sensory code, because

we typically found 6�9 min of healthy �ring. Before the addition of strophantidin, we

carried out a control experiment in 1% ethanol (as ethanol was needed to better dissolve

strophantidin) using the same stimulation protocol. For these shorter recordings we

used σvel of 1.5 and 2.25 mm/s. Larger variances are more likely to deteriorate the

electrophysiology as a result of vibrations, and lower variances show more variability in

the neuronal response.

For the experiments with apamin, we also tested the e�ect of the drug through a

protocol showing the reduction of after-hyperpolarization (20 seconds of several 400 µm-

amplitude sine-wave patterns at 10 Hz). And to observe the e�ect of inactivation of

the calcium-dependent potassium conductance in the adaptation, 10 minutes white noise

stimuli with σvel of 1.5 and 2.25 mm/s were applied over the skin.

To check the signi�cance of our results we made pair-wise tests after checking that

the data were normally distributed (Lillierfors and Jarque-Bera tests, Jarque and Bera,

1980; Lilliefors, 1967).

3.4 Analysis methods

Custom made MatLab software (developed by Raúl Guantes) based on signal discrimi-

nation methodologies was used to analyze the electrophysiological recordings. To prove

our hypothesis that the T cell uses bursts to code stimulus velocity, we looked for corre-

lations between some characteristic of bursts and the velocity of the stimulus applied to

the skin.

The �rst step consisted in separating bursts in the recorded signal (using ISI distribu-

tion, section 3.4.1). Once the bursts were separated, we needed to �nd the characteris-
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tics of the spike activity that correlate to velocity values (using di�erent representations

of the stimulus velocity distributions given certain characteristics, sections 3.4.3-3.4.4-

3.4.5). When the characteristics were found, the next steps were to test their ability to

discriminate velocity values (using Receiver-Operating Characteristics analysis, section

3.4.6) and to analyzed whether the neuronal response was coding any other feature of

the stimulus (using Principal Component Analysis, section 3.4.7).

3.4.1 ISI distributions

Inter-spike intervals (ISIs) distributions, obtained by plotting the histogram of all times

between spikes (Kepecs and Lisman (2003)), can be used to discriminate di�erent time

scales in a spike train. When a neuron �res in bursts, intervals between spikes inside a

burst are signi�cantly shorter than intervals between bursts and isolated spikes (Figure

3.5a). As a result of these di�erent time scales, ISIs distributions for bursty neurons show

a bimodal appearance (Figure 3.5b). In Figure 3.5b there is a sharp peak for small inter-

spikes intervals (around 15 ms, corresponding to intra-bursts ISIs) followed by a wider

peak for longer intervals (around 100 ms, corresponding to intervals between bursts).

The fact that these two peaks are distinctly separated allows us to identify intra-bursts

ISIs from inter-bursts ISIs by just setting an ISI threshold. Thus, spikes separated by

ISIs longer that the threshold are considered to belong to di�erent bursts, while spikes

separated by ISIs shorter than the threshold are assumed to belong to the same burst.

When ISIs before and after a spike are longer than this threshold, we consider it as an

isolated spike.

The cumulative ISI distribution is the probability that the inter-spike time is shorter

than a certain value t and is computed as Pcum(t) =
´ t
0 PISI(τ)dτ . This distribution

shows a distinct plateau that indicates an appropriate ISI threshold for bursts discrimi-

nation. In Figure 3.5c this plateau is around 50 ms.

3.4.2 Spike and Burst-Triggered Average

A �rst approach to study the stimulus that elicits a neuronal response is to calculated the

Spike-Triggered Averaged stimulus, C(τ) (STA). STA is the average value of the stimulus

at time τ before a spike. It can be obtained using equation

C(−τ) =
1
n

n∑
i=1

s(ti − τ),

where n is the number of spikes, ti is the occurring time of one spike and τ is time before
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Figure 3.5: ISI distribution allow the identi�cation of bursts. a. Spike train in
a T cell. We can qualitatively appreciate that there are two di�erent time
distribution, one between bursts (tinter) and another between spikes of the
same burst (tintra). b. Inter-spike interval histogram shows two timescales.
c. Cumulative ISI distribution. There is a distinct plateau at around 50 ms.
(Figures made from a 10 minutes long recording of a T cell stimulated by a
mechanical white noise of σvel = 2.25 mm/s and with a cut-o� frequency of
5 Hz)
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Figure 3.6: Burst triggered average for bursts of 2 spikes. Average absolute value
of velocity before bursts of 2 spikes (from a 10 minutes long recording of a T
cell stimulated by a mechanical white noise of σvel = 2.25 mm/s and with a
cut-o� frequency of 5 Hz). Error bars are standard deviation. Red vertical
line indicates the time 0 (when a burst is elicited).

spike, s(ti − τ) is the value of the stimulus at a certain time τ before the spike.

The same equation can be applied for bursts treated as units or for bursts of a given

size. We get then the Burst-Triggered Average stimulus (BTA). In Figure 3.6 we can

see an example of Burst-Triggered Average stimulus for bursts of two spikes in which we

used absolute value of velocity as stimulus.

3.4.3 Probability distribution of velocity values

Instead of the mean value (and standard deviation) of the stimulus at time τ before a

spike (STA), we also represented what we called the Spike, Burst or Silence Triggered

Probability for velocities (STP, BTP and SilTP respectively). These probabilities are

more informative than STA because, when we are not plotting absolute values, di�erent

distributions for negative and positives values can be hide behind the average.

Silences are de�ned as periods between bursts lasting at least 100 ms. As the most

probable interval between burst is 100 ms (see section 3.4.1, Figure 3.5b), we consider

that if there is an interval between spikes longer than 100 ms it is because there is not a

su�cient stimulus to elicit a spike.

STP, BTP and SilTP are the probability distributions of velocity values, v , before

spikes of di�erent sizes (P (v|spike)), bursts (P (v|b=n), b for bursts, n for number of

spikes per burst) and silences (P (v|silence)). In Figure 3.7 we can see an example of
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(a) BTP for velocities given b = 2. (b) SilTP for velocities given a silence.

Figure 3.7: Burst and Silence Triggered Probability for absolute values of stim-
ulus velocity before bursts of 2 spikes. These type of �gures show the
probability of stimulus velocity values at di�erent times before bursts using a
color code. Warmer colors mean more probability as shown in colorbars. a.
BTP for velocities given bursts of 2 spikes. b. Silence Triggered Probability
for velocities given a T cell silence. (From the recording of Figure 3.6)

BTP for velocities before bursts of two spikes (Figure 3.7a) and of SilTP for velocities

before periods of non spiking or silences (Figure 3.7b) from a recording of a T cell that

has been stimulated by a mechanical white noise of σvel = 2.25 mm/s and with a cut-o�

frequency of 5 Hz. More likely values of velocity are in warmer colors (as shown at the

colorbars in Figure 3.7). Figure 3.7a shows that from 40 to 20 ms before a burst of two

spikes, the most probable velocity is around 2-3 mm/s.

We also represented the probability of velocity values in a time interval before a burst

(Figure 3.8). We considered the time of the �rst spike of a burst as the time in which

the burst is �red. We used time intervals before a burst instead of just a time value

for two reasons: First, we don't accurately know the exact response time of T cells (if

there is any), and second, time intervals improve the statistic as they allow us to have

more velocity values. For long recordings (10 minutes long, see section 3.2.1), we took

stimulus intervals by either using 20 ms (centered at �15 ms) before the onset of bursting

or 20 ms around the maximum response (de�ned as the most di�erent to 0 mm/s, in

Figure 3.8 is between -40 and -20 ms), both of which corresponded to where the coding

was more signi�cant. Both intervals give similar results when plotting the probability

distributions, as we can see in the main �gure of Figure 3.8. Short recordings (3 and

5 minutes long, see section 3.3.1) showed less variability using the second method, and

were chosen for the statistical analysis in strophantidin and apamin conditions and their

controls.
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Figure 3.8: Probability distribution in 20 ms intervals before bursts of 2 spikes.
Probability distributions for absolute values of velocities between 25 and
5 ms (in cyan) and between 40 and 20 ms (in magenta) before bursts of
2 spikes in a recording of a T cell stimulated by a mechanical white noise of
σvel = 2.25 mm/s and with a cut-o� frequency of 5 Hz. Inset : Probability
distribution in time (the same as in Figure 3.7) with dashed lines to show
the intervals in which the response is being analyzed ([-25,-5] in magenta,
[-40,-20] in cyan).
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To study the adaptation of the code to the statistical context, we analyzed how these

distributions changed when the T cell was stimulated by mechanical white-noises with

di�erent σvel.

3.4.4 Stimulus-dependent and non-dependent �ring rate

Calculating probability distributions was our basic methodology to understand coding

and adaptation, however to compare our results to others in literature we performed

additional analysis considering stimulus-dependent spike and burst rate to construct

input/output relationships (Brenner et al., 2000; Maravall et al., 2007). Spike rates take

into account every spike in the recording, while burst rates only consider the �rst spike

of every burst.

Stimulus-dependent spike rate, P (spike|s), and stimulus-dependent burst rate, P (b|s),
are both obtained from Bayes' theorem

P (event|s)
P (event)

=
P (s|event)
P (s)

,

where, event can be a spike or a burst , P (s) is the total stimulus probability distribution
and P (event) is the average event rate. P (s|event) can be obtained from the recordings

taking the stimulus values before events, as we calculated P (v|b=n).

We were especially interested in understanding the role of bursts in the coding of veloc-

ity values, therefore we analyzed P (b|v) (typically written as r(v)), and P (b) (typically
written as rav).

Input/output relationships are expressed in literature as normalized rates, r(s)/rav,
versus stimulus values (Brenner et al., 2000; Maravall et al., 2007), as this quantity is

easily calculated following this method, and also avoids mismatching when comparing

di�erent recordings with di�erent rav (mean rate of the whole recording).

We also studied the independent �ring rate. All methods to calculate �ring rates use

a binning and counting procedure that generates an estimation of its value. To avoid

bin dependence, we used an approximation of spike and inter-bursts rate based on the

inter-spikes intervals (Dayan and Abbott, 2001). This is know as instantaneous spike or

burst rate and is calculated for every spikes or burst as 1/ISI or IBI (inter-burst interval).

Input/output relationships were plotted as instantaneous spike or burst rate versus

velocities in a 20 ms interval (centered in -15 ms or in time of maximum response, see

3.4.3) before the spike or burst.

Intra-burst rates (rate within a burst) have been calculated as spike-count rate, dividing

number of spikes per burst (2 or more) by duration (time from the �rst spike to the last
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one in the same burst).Input/output relationships were plotted as intra-burst rates versus

velocities in the 20 ms interval before the burst.

To better visualize the input/output relationship for rate (spike, burst or intra-burst

rate), we calculated the mean and standard deviation of rate values for every velocity

value.

3.4.5 Stimulus-dependent and non-dependent mean burst size

To study the role of burst-sizes we also calculated the input/output relationship for the

mean burst-size (mean number of spikes per burst).

Stimulus-dependent mean burst-size was calculated with the same approach as stimulus-

dependent rate. We used equation 〈b(v)〉 =
∑

n P (b=n | v)× n where P (b=n | v) is the
velocity-dependent probability for bursts of n spikes computed from Bayes' theorem. As

in the case of rates, to compare to previous works in literature, we used normalized burst

sizes, b(v)/bav (where bav is the mean burst-size of the whole recording).

Independent mean burst-sizes were calculated using distribution of burst-sizes in the

recording. Input/output relationships for mean burst-sizes have plotted as mean burst-

sizes versus velocity values in the 20 ms interval before the burst. Again, to better

visualize them, we calculated the mean and standard deviation of mean burst-sizes for

every velocity value.

3.4.6 Receiver-Operating Characteristics analysis

In order to quantify the ability of bursts to discriminate stimulus velocities and the

importance of burst size in the neuron's coding, we used receiver-operating characteristics

(ROC) analysis (Green and Swets, 1966).

The ROC analysis is a method that quanti�es the discrimination of values between two

probability distributions. It uses two relevant probabilities: probability of false alarm (or

false positive) and probability of correct detection (or true positive).

In Figure 3.9 we can see a theoretical example with two populations, A and B. Figure

3.9a shows the probability distributions of a variable x in groups A and B. The question

that ROC analysis answers is �with what probability can we say that x = x′ belongs to

the B group?�. Probability of false alarm is the probability of x = x′ given A, while

probability of correct detection is the probability of x = x′ given B (Figure 3.9a). The

arbitrary threshold (x = x′) is displaced to make the ROC curve (Figure 3.9b), in which

we compare probability of correct detection versus probability of false alarm. The area

under the ROC curve (AUC) is the quantitative value that determines the quality of the
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discrimination (values around 0.5 mean no discrimination). As a qualitative approach,

the more bowed is the ROC curve toward the upper left corner, the better is the detection

and discrimination.
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Figure 3.9: ROC analysis quanti�es discrimination. a. Probability distributions of
a variable x in two populations or groups (A and B). Dashed area represents
the probability of false alarm and gray area, the probability of correct detec-
tion. Black vertical line indicates an arbitrary threshold or x value. b. ROC
curve for these two probability distributions. Black dot indicates the value
of probability of correct detection versus probability of false alarm for the
arbitrary threshold. (Bidirectional arrow in both �gures is used to illustrate
that the threshold is slid to construct ROC curve).

In our analysis, we used the ROC curve to discriminate between stimulus velocities

based on the observation of the burst size (Gabbiani and C., 1998). We calculated

how well bursts distinguish stimulus velocities in comparison to those corresponding

to absence of �ring. This amounts to analyzing the overlap of probability of correct

detection of velocity and the probability of false alarm.

The probability of correct detection of velocity is the probability of stimulus having a

velocity value ν given that the neuron �res, p(ν|�ring). The probability of false alarm

is the probability of stimulus having a velocity value ν given that the neuron remains

silent, p(ν|silence). They have been calculated using equations

PCorrect detection =
ˆ ∞
νth

dν · p(ν|�ring)

and

PFalse alarm =
ˆ ∞
νth

dν · p(ν|silence),
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where νth is the velocity threshold separating the velocities to be detected from those

that should remain undetected. νth is usually unknown, and its use is avoided studying

the plot of the probability of correct detection versus false alarm for all νth (the ROC

curve). The diagonal of this kind of plot, PCorrect detection = PFalse alarm , represents the

chance level of detection.

3.4.7 PCA analysis

We also quanti�ed whether other stimulus features, apart from velocity, could be also

encoded in the T cell's response. That was one of the reasons to use mechanical Gaussian

white-noise stimulus instead of a constant or a repetitive stimulus. Gaussian white-noise

stimuli present many pattern features, so we can analyze if there are other features apart

from velocity that can be important for triggering bursts.

To �nd other features, we used a dimensionality reduction method known as principal

component analysis (PCA). PCA is a mathematical tool that allows identifying patterns

in data of high dimensionality. Using PCA, we found the relevant directions in stimulus

space preceding burst �ring (Oja, 2002).

PCA was mathematically achieved by constructing the covariance matrix of the stim-

ulus before bursts,

Cburst(τ, τ ′) =
〈
s(tburst − τ) · s(tburst − τ ′)

〉
− 〈s(tburst − τ)〉 ·

〈
s(tburst − τ ′),

〉
where s(tburst − τ) represents a segment of stimulus velocities of length τ before bursts,

and 〈 〉 denote averaging over all bursts. The eigenvectors of the covariance matrix are

the principal components or relevant stimulus features associated with bursting, and the

eigenvalues give the relative contributions of these di�erent components.

We followed a similar approach in which the matrix to be diagonalized is the covari-

ance matrix with the correlation matrix of the whole mechanical stimulus subtracted

(De Ruyter van Steveninck and Bialek, 1988; Agüera y Arcas et al., 2003). We took

stimulus segments of 220 ms (200 ms before bursts and 20 ms after the beginning of the

burst to take into account delays in response) sampled at 2 ms resolution.

3.5 Neuronal model

To simulate T cell responses, we modi�ed a multicompartment model of the T neuron,

made by Catarsi and collaborators (Cataldo et al., 2005). A neuronal model doesn't

replace a real neuron in the study of a sensory code, but it actually allows to control all
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parameters and virtually test the consequences of changes in their values.

A neuronal model makes possible, for example, to study the contribution of the size

of the neuron, a parameter that we cannot change in a real neuron. When working with

real neurons, blocking ionic currents to test their role involves the use of drugs, and that

entails some uncertainties. It is very di�cult to be sure that the drug is only a�ecting the

target ionic current. And furthermore, drugs usually compromise the neuronal survival,

so the interpretation of results is not always clear. An important advantage of the model,

is that these uncertainties can be avoided: it is possible to remove just one ionic current

(with no risk of killing the neuron) and then test the pure e�ect of the absence of this

current.

(a) T cell model.

(b) Simulated afterhyperpolarization.

Figure 3.10: T-cell model neuron. a. Electrical circuit for each of the two
compartments (soma and dendrite). Ionic conductances included leak-
age conductance (gL), fast Na+conductance (gNa), delayed recti�er
K+conductance (gK), high-threshold non-inactivating Ca2+conductance
(gCa), Ca2+-activated K+ conductance (gK,Ca) and Na+-activated pump
current (Ipump). b. Neuron model response to a square wave stimula-
tion (current step amplitude of 8 nA, period of 1.2 s) triggering 1 spike per
period, followed by a sine wave with an amplitude of 40 nA and a frequency
of 2 Hz producing higher activity. A refractory period is produced, as in the
real neuron, after that high activity.

For simplicity, our model contains just two compartments, a soma/axon and a dendrite

(Figure 3.10a), which are known to be su�cient elements to create a bursty neuron
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(Krahe and Gabbiani, 2004). They consist of a membrane capacitance, C = 1 mF/cm2

in parallel with two inward currents (a fast sodium current, INa, and a high-threshold

Ca+2current, ICa), an outward-persistent potassium current, Ik, a leak current, IL, and

two currents that are solely regulated by intracellular Na+ and Ca2+ pools, a Ca2+-

activated potassium current, IK,Ca, and the sodium pump, Ipump. These last two currents

are slow outward currents that are modulated by activity and are therefore responsible for

di�erent adaptation processes. IK,Ca is fast (Cataldo et al., 2005; Wang, 1998), and the

slower Ipump is responsible for the long refractory time after sustained activity (Cataldo

et al., 2005) (Figure 3.10b).

3.5.1 Details of the T-cell model

The model has been constructed with di�erential equations

− CdVS
dt

= ISL + ISNa + ISK + ISCa + ISK,Ca + ISpump + gc(VS − VD)/p (3.2)

and

− CdVD
dt

= IDL + IDNa + IDK + IDCa + IDK,Ca + IDpump + gc(VD − VS)/(1− p)− Istim, (3.3)

where the indexes S and D stand for soma and dendrite, respectively, gc is the electrotonic

coupling and p is the ratio of soma to total membrane area. Istim is the stimulation

according to Gaussian white noise with a given frequency cut-o� and variance.

The voltage activated ionic currents are given by

I iNa = gNamNa
3h(Vi − VNa),

I iK = gKn
2(Vi − VK)

and

I iCa = gCamCa(Vi − VCa),

where the index i stands for either soma or dendrite. Conductances and Nernst potentials

are the same for both compartments and given by gNa = 350 mS/cm2, gK = 90 mS/cm2,

gCa = 0.5 mS/cm2, VNa = 45 mV, VK = -62 mV and VCa = 60 mV.

The activating and inactivating gating variables m, n and h evolve according to �rst

order kinetics as usual, dm(Vi)
dt = [m∞(Vi)−m(Vi)]

τm
, where the asymptotic values and time
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3.5 Neuronal model

constants are given by (Cataldo et al., 2005)

m∞,Na(Vi) =
1

1 + e−(Vi+35)/5
τm,Na = 0.1

h∞(Vi) =
1[

1 + e(Vi+50)/9
]2 τh =

13.8
1 + e(Vi+36)/3.5

+ 0.2

n∞(Vi) =
1

1 + e−(Vi+22)/9
τh =

5
1 + eVi+10/10

+ 1

m∞,Ca(Vi) =
1

1 + e−(Vi+10)/2.8
τm,Ca = 0.6

The two currents modulated by the intracellular Ca2+ and Na+ pools are given by

I iK,Ca = gK,CakCa(Vi − VK)

and

I ipump = gpumpkNa(Vi − Vpump),

where gK,Ca = 3 mS/cm2, gpump = 0.5 mS/cm2 and Nernst potential for the sodium

pump Vpump = −200 mV for both soma and dendrite. The dynamics for ion-dependent

conductances and ionic concentrations are described as �rst order processes (Keener and

Sneyd, 1998; Yamada et al., 1989)

dkCa
dt

=

[
Ca2+

]
− kCa

τk,Ca

d
[
Ca2+

]
dt

=
−αCaICa −

[
Ca2+

]
τi,Ca

dkNa
dt

=

[
Na+

]
− kNa

τk,Na

d
[
Na+

]
dt

=
−αNaINa −

[
Na+

]
τi,Na

,

where time constants for concentration-dependent conductances take the values τk,Ca =
10 ms, τk,Na = 100 ms for both compartments. Time constants for removal of ions are
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τi,Ca = 1250 ms, τi,Na = 16000 ms for soma, and τi,Ca = 1000 ms, τi,Na = 20000 ms for

dendrite. Note that time constants for sodium ions are one order of magnitude larger than

those for calcium to take into account the empirical fact that the decrease in excitability

and recovery due to Ipump is much slower than the one due to IK,Ca (Cataldo et al.,

2005; Jansen and Nicholls, 1973; Schlue, 1991). The proportion of the ionic currents

contributing to the pools of calcium and sodium are given by parameters αCa = 0.1,
αNa = 0.016 for soma, and αCa = 0.2, αNa = 0.16 for dendrite.

In this model, di�usion of ions between compartments is not described. Moreover,

although removal of sodium ions should strictly depend on pump activity Ipump, this

contribution is very small compared to the in�ux of sodium due to the fast sodium

current, INa (Ipump is of the order of pA while INa spans tenths of nA). Therefore sodium

removal may be modeled using an exponential decay, as described by the dynamics of

ionic concentrations.

The electrotonic coupling is gc = 1.5 mS/cm2 and the ratio of soma to total membrane

area by p = 0.7. The di�erential equations for the time evolution of voltage and gating

variables, as well as for the ion concentrations and pump conductances were numeri-

cally integrated using a fourth order Runge-Kutta method with integration time step of

0.05 ms.

Note that capacitance and all conductances in the model have values in units per

surface area, and thus the voltages equations 3.2 and 3.3 are scaled by surface area of

each compartment. To express the stimulus current in current units, nA, we assume a

dendrite area of 0.1 mm2.
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Results

4.1 Bursts Coding for velocity

We argue that T cells detect velocity values of an object indenting the skin. This idea is

�rstly based on the observation that T cells respond with bursts to the onset and o�set

of a simple mechanical step-like stimulus (Figure 1.13c in section 1.3). The results that

follow show more detailed evidence for a velocity sensory code based on bursts.

4.1.1 T cell spikes detect the absolute value of stimulus velocity

To better characterize the features of the stimulus that elicits �ring activity in T cells,

we used mechanical Gaussian white noise stimuli and intracellularly recorded the T cell

spikes. We then wanted to �nd whether there was any correlation between the T cell

response and the stimulus velocity values. For that, we plotted the probability distri-

butions of velocity values for 100 ms in three di�erent situations (before any time point

of the recording, before a spike and before a silence), obtaining a �gure where warmer

colors mean higher probability (Figure 4.1, see section 3.4.3).

Figure 4.1a shows the probability distributions of the stimulus velocity in the 100 ms

before any time point of the recording. By construction, the most likely values in the

total stimulus are close to 0 mm/s while higher velocities are very unlikely. Figure
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(a) Total stimulus probability at any time.

(b) Spike triggered probability for velocities.

(c) �Silence� triggered probability for velocities.

Figure 4.1: T cells detect absolute values of velocity. a. Probability distribution
of velocities before any time point for a mechanical Gaussian white noise
stimulus of a σvel = 3 mm/s and a cut-o� frequency of 5 Hz. b. Spike
Triggered Probability of velocities before a spike (same stimulus as in a). c.
Silence Triggered Probability of velocities before a silence (same stimulus as
in a). Red vertical lines indicates time 0, when a spike is �red or the middle
of a silence (plotted in a. for comparative purpose).
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4.1b represents the Spike Triggered Probability (STP, described in section 3.4.3) in the

100 ms prior to any T cell spike. In this �gure we can see that in an interval from 60

to 5 ms before the spike, most likely velocities are di�erent from 0 mm/s (ranging from

2 to 5 mm/s in absolute value). This is especially signi�cant, as in the total stimulus

distribution of velocities these values have a very low probability (compare Figure 4.1a

and Figure 4.1b). From these �gures we could infer that T cell spikes are actually elicited

after 60 to 5 ms of certain velocity values, which are indeed the most unlikely among the

velocity values of stimulus.

Figure 4.1c shows probability distribution of the stimulus velocity in the 100 ms before a

T cell silence (the Silence Triggered Probability for velocities, SilTP). Silences are de�ned

as periods between spikes lasting at least 100 ms (see section 3.4.3). Red vertical line

indicates the mid time in a silence. In Figure 4.1c we can see that velocity values before

a silence show a distribution similar to the velocity distribution of the total stimulus.

Therefore, silences in T cell do not discriminate between values of velocity.

In Figure 4.1b we can also see two probability plateaus between -60 and - 5 ms. By

plateau we should understand a time interval in which velocity values are approximately

constant. There is a plateau around 3 mm/s and another around -4 mm/s. Positive

values are more likely than negative, and that makes the negative plateau less evident.

Both plateaus indicate that T cells are responding to a certain range of positive (tip of

the stimulator entering the skin) and negative (tip exiting the skin) values of velocity.

We represented separately the positive and negative velocity stimuli eliciting spikes to

better appreciate negative values. Comparing these two probability distributions (Figure

4.2), we �nd an acceptable symmetry in the velocity values that produced spikes when the

skin was being entered and exited. Therefore, we considered for simplicity the absolute

value of the velocity as the relevant coded variable.

4.1.2 T cell uses a burst code for velocity values

Most of the T cell spikes appear in bursts of di�erent sizes (di�erent number of spikes

per burst) in response to the mechanical stimulation. Figure 4.3 shows an extract from

a T cell recording where we can see bursts of di�erent sizes and isolated spikes. In this

�gure it is also shown the positions and velocities of the stimulus that elicits the bursty

activity. Note how bursts are �red after positive and negative slopes in positions, and

steady values of velocities (grey areas in Figure 4.3).

Bursts and isolated spikes were identi�ed in the recordings using the distribution of inter-

spike intervals (see section 3.4.1). ISI distributions have a �rst peak indicating the time
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(a) STP for positive values of velocity.

(b) STP for negative values of velocity.

(c) STP for absolute values of velocity.

Figure 4.2: T cells detect positive and negative velocities. a. STP of positives
velocities before spikes. b. STP of negative velocities before spikes. c. STP
for absolute values of velocity. Again red vertical lines indicate the time when
a spike is �red. Data from the recording in Figure 4.1.
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4.1 Bursts Coding for velocity

scale for intra-burst spiking (around 10 ms in Figure 4.4a). The distribution also has a

long tail of roughly Poissonian decay (coe�cient of variation 1.1) indicating the existence

of long uncorrelated inter-burst times. This ISI distribution has a bimodal appearance

in which the value of lowest probability between the two modes (around 50 ms in Figure

4.4a) gives a tool to discriminate between burst and isolated spikes. The cumulative ISI

distribution also shows a plateau at around 50 ms (Figure 4.4b). This value of 50 ms,

very di�erent from that of the intra-burst time intervals (around 10 ms), gives a clear

time separation between bursts and isolated spikes. We thus found that bursts were

separated by at least 50 ms. We considered then a spike as isolated if it was separated

from any other by more than 50 ms, and as part of a burst if it was 50 ms or less close

to another. Visual inspection of this procedure con�rmed a good separation of bursts.

We found that bursts typically have from 2 to 7 spikes (Figure 4.5) and that the propor-

tion of isolated spikes is just around 13-26% depending on the stimulus variance.

3
0
 m

V
0
.5

 m
m

1
0
 m

m
/s

200 ms

Figure 4.3: T cell �res bursts of di�erent number of spikes. Upper trace: T cell
�ring bursts of di�erent sizes in response to an object indenting the skin that
goes up and downwards. Middle trace: Positions of the tip of the stimulator.
Lower trace: Velocities of the tip of the stimulator. Grey areas show the
relevant stimulus that elicits the burst �ring. Data from a T cell response
to a mechanical Gaussian white noise stimulus of σvel = 3 mm/s and cut-o�
frequency of 5 Hz.

63



4 Results

0 50 100 150
0

0.02

0.04

0.06

0.08

ISI (ms)

P
(I

S
I)

(a) ISI distribution.

0 50 100 150
0

0.5

1

ISI (ms)

P
cu

m
(I

S
I)

(b) Cumulative ISI distribution.

Figure 4.4: Spikes within bursts are separated by no more than 50 ms. a. Prob-
ability of ISI distribution for a response to a Gaussian white noise stimulus
with σvel = 3 mm/s and a cut-o� frequency of 5 Hz. b. Cumulative ISI
distribution, showing a plateau around 50 ms.
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Figure 4.5: Probability distribution of bursts sizes. Smaller bursts show higher
probability than larger bursts. Data from a T cell recording excited by a
mechanical Gaussian white noise stimulus of σvel = 3 mm/s and cut-o� fre-
quency of 5 Hz.

4.1.2.1 Burst size code

The Burst Triggered Average for velocities before di�erent burst-sizes (see section 3.4.3),

in Figure 4.6a, shows that velocities eliciting di�erent burst-sizes were statistically di�er-

ent. Analyzing the probability distributions of velocities before isolated spikes or a bursts

of given size, we con�rmed that the neuron responded to increasing stimulus velocity with

bursts of increasing size, thus covering the tail of the stimulus velocity distribution (Fig-

ure 4.6b). Distributions were calculated for illustrative purposes using the stimulus in

the time interval of 5�25 ms before the �rst spike in the burst (grey area in Figure 4.6a),
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4.1 Bursts Coding for velocity

but any �xed time or time intervals in the coding region of 5�40 ms before spiking gave

similar results (see section 3.4.3).
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(a) BTA for velocities given di�erent burst-size.
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(b) Probability distribution of velocities given di�erent burst-sizes.

Figure 4.6: Di�erent sizes of bursts code di�erent velocities values. a. Burst
Triggered Average for velocities given isolated spikes (red, b = 1), bursts of
2 spikes (green, b = 2), bursts of 3 spikes (blue, b = 3) and , bursts of 4 or
more spikes (magenta, b ≥ 4). Red vertical line indicates time 0 (when the
burst is �red). Grey area marks the time interval from where we extracted
velocity values to make histograms in b. Standard deviations are omitted for
clarity (σb=1 w 1.48, σb=2 w 1.53, σb=3 w 1.63, σb≥4 w 1.80). b.Velocity
distributions before isolated (red), bursts of 2 spikes (green), bursts of 3
(blue) and bursts of 4 or more spikes (magenta). Data from a recording
of the response of a T cell to a mechanical Gaussian white noise with a
σvel = 3 mm/s and a cut-o� frequency of 5 Hz.
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Figure 4.7: Bigger bursts discriminate velocities values better than smaller
bursts. ROC curves of velocity detection for bursts against periods of si-
lences. Red line is for isolated spikes and shows the worse discrimination.
Green line is for bursts of two spikes, while blue is for bursts of 3 and ma-
genta for bursts of 4 or more spikes. As it can be observed, bigger spikes
are very good at the discrimination task. Data from a recording of a T cell
responding to a mechanical Gaussian white noise whit a σvel = 3 mm/s and
a cut-o� frequency of 5 Hz.

To calculate the ability of bursts to discriminate between values of stimulus velocity in

comparison to periods of non spiking, we carried out an analysis using an ideal observer

procedure (ROC analysis, see section 3.4.6). This method quanti�es the discrimination

of values between two probability distributions, calculating the overlap between the two

distributions given the di�erent values of the stimulus. Using ROC analysis we compared

the quality of velocity values detection of every burst size. Through this procedure,

we found that isolated spikes were poor at this discrimination task, whereas bursts of

increasing size performed excellently (Figure 4.7). A similar burst-size code has been

previously predicted using biophysical models of pyramidal bursting neurons (Kepecs

et al., 2002).

Burst sizes are then playing an important role for coding velocities in T cells. Exam-

ining the neuronal gain of burst sizes as a function of stimulus velocity (input/output

relation for average burst size, see section 3.4.5), we found that average burst size typi-

cally increases with stimulus velocity (Figure 4.8).
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Figure 4.8: Larger burst sizes code larger velocity values. Mean burst size as a
function of the stimulus velocity. Error bars are standard deviation. D from
a recording of a T cell responding to a mechanical Gaussian white noise with
a cut o� frequency of 5 Hz and a σvel = 3 mm/s.

We conclude that stimulus velocity is actually encoded in the number of spikes per

burst, in such a way that longer bursts code for higher velocities.

4.1.2.2 Burst rate code

Burst-size provide a good characterization of the response for the relevant range of coded

input velocities. However neuronal codes are usually described by more than a feature

of the �ring activity. For that reason, we also checked whether the �ring rate was able

to describe the neuronal gain as a function of the velocity.
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(c) Intra-burst rate per velocity.

Figure 4.9: Burst rate also code velocity. a. Spike rate as a function of the stimulus
velocity. b. Bursts rate as a function of the stimulus velocity. c. Intra-burst
rate as a function of the stimulus velocity. Error bars are standard deviation.
Data from the same recording as Figure 4.8.
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Figure 4.9 shows the input/output relation for spike (Figure 4.9a), burst (Figure 4.9b)

and intra-burst rate (Figure 4.9c), calculated as described in section 3.4.4. In Figure

4.9a we can see that the mean spike rate increases with velocity, although there is also a

great variability in the response. By contrast, burst rate shows an evident increase with

velocity values and small variability. Regarding intra-burst rate, in Figure 4.9c, we can

notice that there is no relation between the rate within a burst and the value of velocity

eliciting that burst.

We conclude that, apart from burst-sizes, stimulus velocities are encoded by burst

rate values. That means that higher velocity values produce a higher frequency between

bursts.

4.1.3 T cell also codes other components of the stimulus but poorly

We demonstrated that velocity is a relevant variable coded for by T cell bursts. Even

though, we wondered whether it is the only one. The fact that T cell responds just to

the onset and o�set of a step-like stimulus (Figure 1.13c in section 1.3) indicates that

positions are not very relevant for the T cell neuronal code. However, as step-like stimuli

are not naturalistic, we used Gaussian white-noise stimuli to analyze the contribution of

positions to the code. In Figure 4.10 it is shown the Spike Triggered Probability (SPT,

see section 3.4.3) of positions for a 10 minutes recording. We found that focusing in the

60 ms interval before the T cell spikes, the probability of a stimulus position has a slope.

This slope indicates that it is the change in positions what is being code, and not the

position values.

Once stimulus positions were left out of the coding, we further explored the features of

the stimulus that could be coded by bursts. Then we used Principal Component Analysis

(see section 3.4.7). PCA is a mathematical method that �nds the relevant directions in

stimulus space preceding burst �ring, in other words, the relevant features of the stimulus

that the neuronal response may be coding.

Figure 4.11 gives the two �rst principal components extracted by this analysis together

with the Burst Triggered Average (BTA) for velocities and accelerations. It can be seen

that the �rst component matches with the BTA for velocities while the second matches

with the BTA for accelerations. Thus, we found a small acceleration component, around

20-25% of total contribution to bursting versus 70-75% for the velocity component, to

which the neuron is also sensitive. The rest of components make a much lower contribu-

tion.

We further used ROC Analysis to test the ability of the bursts to discriminate values of

stimulus accelerations in comparison to periods of silence. We found a poor discrimina-
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4.1 Bursts Coding for velocity

Figure 4.10: T cell doesn't code for position values. STP of positions calculated
from the same recording of Figure 4.1. Red vertical line indicates time 0
(time when the spike is �red).
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Figure 4.11: Bursts code mainly for velocity but also for acceleration. Solid
lines represent the burst triggered average for velocity (red) and acceleration
(green) values of the mechanical stimulus. Dashed lines represent the �rst
(red; 71.15%) and the second (green; 25.43%) components calculated by
PCA. (Data from a recording of a T cell responding to a mechanical Gaussian
white noise with a cut-o� frequency of 5 Hz and a σvel = 3 mm/s)
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Figure 4.12: Bursts discriminate much better velocity than acceleration. Red
solid line represents the ROC curve for bursts discrimination of values of
stimulus velocity (from 25 to 5 ms before the bursts) in comparison to peri-
ods of non spiking. Green solid line represents the same ROC curve but for
values of stimulus acceleration. Green dotted line represent the ROC curve
for values of stimulus acceleration in a di�erent time interval (from 90 to
70 ms before the bursts). Data from a recording of a T cell responding to
a mechanical Gaussian white noise with a cut o� frequency of 5 Hz and a
σvel = 3 mm/s.

tion for accelerations values as shown in Figure 4.12. The ROC curve for discrimination

of velocities (red) in the coding interval (between 25 and 5 ms before the bursts are

triggered) performs much better than the ROC curves for discrimination of accelerations

(green) in that coding interval and also in the most discriminant interval for acceleration

(between 90 and 70 ms before the bursts are triggered). Therefore, even if there is a

small acceleration component, bursts of T cell are worse for coding that property of the

stimulus than for velocities.

4.2 Adaptation to stimulus statistics in T cells

In the previous section, we have described the sensory code of the T cell. We have shown

that it is based on both the number of spikes per burst and the burst rate. However,

it is also relevant to know whether it is a �exible code or not. Leeches, as any other

animal, have to deal with a changing environment, and a �exible code might be a survival

advantage. Therefore, the question is whether the T cell is able to adapt its response to

changes in the statistical context of the stimulus.

In the following, we will described the adaptive properties of the T cell response to
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di�erent stimulus distributions. We will analyzed the e�ect on the code of the previous

activity and also of the reduction of excitability. Furthermore, we will show that the T

cell response adapts to the stimulus variance.

4.2.1 Burst memory of previous activity

As it has been demonstrated, di�erent burst-sizes code for di�erent velocity values, but

how well this burst-size code discriminates between velocity values? In Figure 4.13a we

can see, trough inspection of ROC curves, that burst-sizes coding performs an acceptable

discrimination when comparing velocity probability distribution given non consecutive

burst-sizes.
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(a) ROC curve for non-consecutive burst-sizes.
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(b) ROC curve for consecutive burst-sizes.

Figure 4.13: Discrimination of velocity values. a. ROC curves for velocity distribu-
tions given non consecutive burst-sizes. Purple dashed line: discrimination
between velocities detected by isolated spikes and by bursts of 3 spikes. Dark
green dashed line: discrimination between velocities detected by bursts of
2 spikes and by bursts of 4 or more spikes. b. ROC curves for velocity
distributions given consecutive burst sizes. Red dashed line: discrimination
between velocities detected by isolated spikes and bursts of 2 spikes. Green
dashed line: discrimination between velocities detected by bursts of 2 spikes
and bursts of 3 spikes. Blue dashed line: discrimination between velocities
detected by bursts of 3 spikes and bursts of 4 or more spikes. Black dashed
line: Probability of correct detection (CD) equal to probability of false alarm
(FA). Data from a recording of a T cell responding to a mechanical Gaussian
white noise with a cut-o� frequency of 5 Hz and a σvel = 2.25 mm/s.
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However velocity values discrimination gets worse when comparing distribution given

consecutive burst-sizes. This was qualitatively observable in the wide overlap of condi-

tioned distributions of velocity (Figure 4.6) and quantitatively, though inspection of the

corresponding ROC curves (Figure 4.13b). In the following we will discuss the origin of

this overlapping.

Velocity distributions given a certain burst-size are wide and this produces a consid-

erable overlapping between them. We wonder whether the distributions widths could be

due to an in�uence on previous activity on the burst-size. To validate this hypothesis,

we tested the in�uence of the size and timing of the previous burst on the velocity coding

of the current burst-size.

Figure 4.14 shows an example for bursts of 2 spikes, although other burst-sizes have

been also tested, obtaining similar results. In Figures 4.14a and 4.14b, we see that bursts

of two spikes code for smaller velocity values when they are preceded by isolated spikes

or bursts of less than 4 spikes and for higher velocity values when preceded by bursts

of 4 or more spikes. Velocity distribution before bursts of 2 spikes given the previous

burst-size are di�erent enough to be distinguishable by ROC analysis (Figure 4.14c).

This observation led us to think that the size of a burst could be coding for the value of

the velocity related to the previously detected velocities instead of for the value of the

velocity itself.

Using the same example, in Figures 4.15a and 4.15b we can notice that bursts of 2 spikes

preceded by silences (de�ned as inter-bursts intervals larger than 100 ms) code for smaller

velocity values than when preceded by inter-burst intervals shorter than 100 ms. Velocity

distributions given this conditions are again di�erent enough to be distinguishable by

ROC analysis (Figure 4.15c). It seems that the burst-size codes for velocity values related

to the velocities detected in a previous time window. No activity means that no relevant

velocities have been detected lately, and this causes the threshold to lower, so that smaller

velocities have the opportunity to be detected.

This previous activity dependence entails wider and more overlapping velocity distri-

butions, but thanks to it, the neuron has the possibility of making a comparison of the

current velocity value to the previous one, coding in such a way the value within a con-

text. This could be just an inevitable consequence of biophysics constrains in the T cell

�ring activity, however it actually has an important e�ect on the T cell velocity coding.

4.2.2 Excitability changes in T cell membrane

In the previous section, we saw how the T cell can be coding velocity values that are

relevant in the context of the stimulus. This means that the T cell has an adaptive
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(a) BTA for velocities given bursts of 2 spikes preceded by bursts smaller
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(b) Velocity probability distributions given bursts of 2 spikes
preceded by bursts smaller or larger than 4 spikes.
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Figure 4.14: Burst-size memory of previous burst-size. a. BTA for velocities given
bursts of 2 spikes. Dark green line: BTA for velocities given bursts of 2
spikes preceded by bursts of 4 or more spikes (bn = 2|bn−1 ≥ 4). Light green
line: BTA for velocities before bursts of 2 spikes preceded by isolated spikes
or bursts of less than 4 spikes (bn = 2|bn−1 < 4). Grey area marks the time
interval from where we extracted velocity values to make histograms in b.
Error bars in a. and c. are standard deviation. b. Velocity probability dis-
tributions for (bn = 2|bn−1 ≥ 4) and (bn = 2|bn−1 < 4) in the time window
of 25 and 5 ms before a burst. c. ROC curve for velocity distributions for
(bn = 2|bn−1 ≥ 4) and (bn = 2|bn−1 < 4) in the time window of 25 and 5 ms
before a burst. Data from the same recording as �gure 4.13.
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(a) BTA for velocities given bursts of 2 spikes preceded or not preceded
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(b) Velocity probability distributions given bursts of 2 spikes
preceded or not preceded by a silence.
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(c) ROC curve.

Figure 4.15: Burst-size memory of time to the previous burst. a. Dark green
line: BTA for velocities given bursts of 2 spikes preceded by a silence (bn =
2|tprev > 100 ms). Light green line: BTA for velocities given bursts of
2 spikes preceded by an inter-bursts interval smaller than a silence (bn =
2|tprev ≤ 100 ms). b. Velocity probability distributions for (bn = 2|tprev >
100 ms) and (bn = 2|tprev ≤ 100 ms) in the time window of 25 and 5 ms
before a burst. Grey area marks the time interval from where we extracted
velocity values to make histograms in b. Error bars in a. and c. are standard
deviation. c. ROC curve for velocity distributions for (b = 2/t > 100~ms)
and (b = 2/t = 100~ms) in the time window of 25 and 5 ms before a burst.
Data from the same recording as �gure 4.13.
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4.2 Adaptation to stimulus statistics in T cells

response at least in a short term scale. We thought that the T cell sensory code could

also present adaptation to statistics in a longer term scale. To prove this idea, we �rst

needed to test if there were changes in the excitability of this neuron when exposed to

long stimuli with di�erent probability distributions of velocities.

The T cell, mainly due to the action of the sodium pumps, hyperpolarizes its membrane

in response to activity. T cell membrane hyperpolarization, in turn, produces a reduction

in the �ring rate, as mentioned in section 1.3.2. To increase the �ring activity, the neuron

has to be stimulated with a stronger stimulus. In the case of the T cell, a stronger

stimulus means a stimulus presenting higher velocities. This fact led us to think that

hyperpolarization and the consequent reduction in �ring activity could be depending

on the velocity variance. To test this hypothesis we recorded the spiking activity of a

T cell while the skin was being stimulated with Gaussian white-noise distributions of

displacements with di�erent standard deviations.

1 s

0
.5

 m
m

Figure 4.16: T cell response to two mechanical Gaussian white noise stimuli of
di�erent σvel. Voltage responses of the T cell (top) when the skin was stim-
ulated with Gaussian white noise distributions of displacements with a cuto�
frequency of 5 Hz and two di�erent standard deviations (bottom, red lines,
σposit = 0.0425 mm and σvel = 0.75 mm/s; blue lines, σposit = 0.1275 mm
and σvel = 2.25 mm/s).

It is illustrative, as a qualitative approach, to consider the raw spike trains that are

produced by the neuron after it has been stimulated for several minutes and therefore

the response can be already adapted. In Figure 4.16 (top) we can see that, as we de-

scribed in section 4.1, the neuron preferentially responded with bursts of spikes to slope

in stimulus position (stimulus velocity). Notably, the �ring characteristics for the two

stimulus distributions were similar, despite their large di�erence in variance (compare

blue spike train to red schematic spikes, in Figure 4.16 top). This is possible because
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the neuron was more hyperpolarized for larger σvel of the mechanical stimuli (23 mV for

σvel = 0.75 mm/s, in red, and 27 mV for σvel = 2.25 mm/s, in blue), and therefore was

in a state of reduced excitability. For the same value of stimulus velocity, there was less

response when the stimulus distribution had larger σvel.

We quanti�ed the dependence of hyperpolarization and reduction of excitability on σvel
(Figure 4.17). In Figure 4.17a it is shown for the response to two di�erent velocity distri-

butions (blue, σvel = 0.75 mm/s and red, σvel = 2.25 mm/s) how the hyperpolarization,

∆V , increases with time when the T cell is being stimulated, but also reaches stationary

values after 1 minute of stimulation. As we can see in this �gure, the stationary value of

∆V is larger for larger values of σvel. Figure 4.17b shows the di�erent stationary values

of ∆V for T cell responses to velocity distributions with di�erent σvel (ranging from 0.75

to 6.3 mm/s). Stationary values of ∆V increase with increasing stimulus velocity, σvel,

reaching a top value around 28 mV at σvel of 2.25 mm/s.

Figure 4.17c shows the decrease with time of the �ring rate, expressed as rav. As we

can see for the same two recordings of Figure 4.17a (cut-o� frequency of 5 Hz for both

and σvel of 0.75 mm/s in red and of 2.25 mm/s in blue), at the start of stimulation,

rav was higher for larger σvel. During the �rst 10 s there is an abrupt decay in the rav,

followed by a slower decay for approximately 1 min until stationary �ring is reached.

Larger reduction of excitability with increasing σvel is then apparent in the �ring rate.

To see this more detailed, we also calculated the initial average �ring rate, rav, for

the �rst second of stimulation as a function of the σvel (Figure 4.17d). The initial rate

was higher with increasing σvel until a value of around 40 spikes/s at σvel of 6.3 mm/s

(Figure 4.17d, full circles). We also calculated the rav when the response of the neuron

was adapted after 10 min of stimulation. This rate was smaller and depended less on

σvel, reaching a value of 13 spikes/s for σvel > 2.25 mm/s (Figure 4.17d, white squares).

The reduction of excitability can be calculated as the di�erence between the initial spike

rate and the spike rate when the neuron was adapted, rav(t = 1 s) − rav(t = 10min),
which increases with σvel and varies between 0 and 27 spikes/s.

For the Figure 4.17 we used cut-o� frequencies of 5, 10 and 20 Hz, and we found that

neither the hyperpolarization values nor the reduction in excitability depended substan-

tially on the value of the cut-o� frequencies; instead they depended only on σvel. The

dynamics of adaptation were also found to be on the order of 1 min for the range of the

stimulus cut-o� frequencies considered in Figure 4.17.
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Figure 4.17: Excitability of T cell is reduced with increasing σvel . a. Dynamics
of membrane voltage for the stimulus ensembles in Figure 4.16(red circles,
σvel = 0.75~mm/s; blue squares, σvel = 2.25~mm/s) . b. Increase in
membrane hyperpolarization after 200 s of Gaussian white noise stimulation
as a function of σvel. c. Dynamics of the average spike rate for the stimulus
ensembles in Figure 4.16 . d. Average spike rate as a function of σvel
(full circles represent average spike rate in the �rst second; empty squares
represent the average �ring rate after 10 min of stimulation). Solid lines
are �ts to exponential curves y = a(1�e�bx). (For b and d, solid lines are
�ts to exponential curves y = a(1�e�bx). For a and c, solid lines are �ts
to exponential and power-law growth/decay, y = a(1�e�bx) + cxd and y =
ae�bx + cxd, respectively. Error bar are standard deviations)
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4.2 Adaptation to stimulus statistics in T cells

4.2.3 T cell response adaptation to the standard deviation of stimulus

velocity distribution.

As shown in section 4.2.2, the T cell membrane shows an increase in hyperpolarization

and a decrease in excitability in proportion to stimulus velocity standard deviation. How

does this change in excitability a�ect the T cell sensory coding? To answer this question

we studied the activity of T cell in response to stimuli with di�erent velocity standard

deviations.

In Figure 4.18 we can see, through inspection of the spike triggered probability of

velocities (STP, see section 3.4.3), how T cell changes its response to increasing veloc-

ity standard deviation (σvel = 1.5, 2.25 and 3 mm/s) moving the conditional velocity

distributions, P (v|spike) toward increasing values of velocity . Figures 4.18d-e show the

same STP of velocities as Figures 4.18a-b but with velocity values scaled by the σvel of

every stimulus. Distributions of non scale velocity are clearly di�erent, but distributions

of σvel-scaled velocities are practically identical.
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Figure 4.19: Similar distribution of burt sizes in response to di�erent σvel. Prob-
ability distributions of burst size for 10 min long responses to stimulus en-
sembles of di�erent standard deviations. (σvel = 0.75 (black), 1.5 (red), 2.25
(green), 3 (orange), 4.5 (blue) mm/s; green and blue correspond to a cut-o�
frequency of 10 Hz and the rest, to a frequency of 5 Hz)

This scaling could be due to an adaptation of the T cell response to the standard

deviation of the stimulus velocity distribution. However, two scenarios are possible. First,

in the case of a non-adaptive sensory code, the conditional velocity distributions could

also change if the proportion of larger bursts increased with σvel while the proportion of

smaller bursts decreased. Second, in the case of an adaptive sensory code, the conditional

velocity distributions should changed while the proportion of every burst size should stay

similar. When analyzing the distribution of burst sizes for di�erent stimulus variances,
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we realized that the proportion of every burst size stays similar until values of 5 or

6 spikes per burst (Figure 4.19). In all cases, larger bursts are much less probable.

Without adaptation we would expect an increase of the probability of �nding longer

bursts relative to short bursts as stimulus velocity variance increases. Instead, what we

found is an approximately exponential decay of the burst size probability for all stimulus

variances.

To further prove that the T cell response adapts to the stimulus variance, we analyzed

the adaptive properties of the T cell sensory code. We have shown, in section 4.1.2,

that stimulus velocity is coded for in burst size and burst rate. Isolated spikes respond

to values of stimulus velocity close to those corresponding to silences (Figures 4.6b and

4.7). We have thus concentrated on adaptive scaling of bursts as they show an excellent

ability to discriminate velocities di�erent to those corresponding to silences.

Taking as an illustrative example bursts of two spikes, we can see in Figure 4.20a how

the velocities coded by bursts of two spikes are higher for larger σvel. This �gure shows

the burst triggered average of velocities (BTA, see section 3.4.3) prior to burst of two

spikes. To examine the dependence of σvel, we again plotted the BTA in Figure 4.20a,

but this time as a function of the ratio of the stimulus velocity to the σvel. We found

that when velocities are scaled by σvel, bursts of two spikes code for very similar values

of scaled velocities (Figure 4.20b). That means that the T cell is able to adapt its code

to the statistics of the stimulus. Indeed, the relevant scaling parameter was found to be

σvel.

To show more detailed evidence about this adapting scaling to σvel, we analyzed the

adaptive properties of the response of the T cell to stimulus ensembles with �ve di�erent

σvel ( 0.75, 1.5, 2.25, 3 and 4.5 mm/s). Instead of the BTA, we plotted the conditional

velocity distributions in an interval of 20 ms before bursts of two spikes (P (v|b=n), see
section 3.4.3). We again found that bursts of two spikes were produced in response to

higher velocities for larger standard deviation of the stimulus distribution (Figure 4.21a).

We also plotted the probabilities in Figure 4.21a as a function of the ratio of the stimulus

velocity to the σvel. These probabilities of σvel -scaled velocities were found to be similar

and, therefore, independent of the stimulus variance (Figure 4.21b).

This adaptive scaling was found for other burst sizes and even for isolated spikes, as

shown in Figure 4.22. We concluded then that bursts of a given size were produced in

response not to stimulus velocity, but to the ratio of velocity and the standard deviation

of the velocity distribution. Note that the di�erent stimulus ensembles have di�erent σvel
and also two di�erent cut-o� frequency (5 and 10 Hz, see legend of Figure 4.19). The

adaptive scaling was found to be independent of the cut-o� frequency.
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Figure 4.20: BTA for velocities given bursts of 2 spikes. a. Burst Triggered Average
of velocities prior to bursts of 2 spikes for two di�erent velocity distributions
(cut-o� frequency = 5 Hz and σvel = 1.5 mm/s, light green, and 3 mm/s,
dark green). b. Same as in a but with velocity values scaled by σvel. Vertical
red lines indicate the time when a spike is �red. Error bars are standard
deviation.
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Figure 4.21: Velocity distributions given bursts of two spikes show adaptive
scaling to σvel. a. Velocity distributions before bursts of two spikes for
di�erent stimulus ensembles. b. Same as in a, but with velocity divided by
σvel. (Same stimulus ensembles as in Figure 4.19)
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The same scaling was also found in the input-output functions. The normalized (by the

mean burst-size) burst sizes in response to stimulus velocities were di�erent depending

on the stimulus variance (Figure 4.23a). The same normalized burst sizes, were instead

produced in response to the ratio of velocity and σvel (Figure 4.23b). Normalized (by

the mean burst rate) burst rates showed the same scaling relationship. Similarly to the

case of normalized burst sizes, normalized burst rates for di�erent input variances were

elicited proportionally not to absolute velocity values (Figure 4.23c) but to velocities that

were relative to the σvel (Figure 4.23d).

(a) Velocity distributions given b = 1. (b) σvel-scaled velocity distributions
given b = 1.

(c) Velocity distributions given b = 3. (d) σvel-scaled velocity distributions
given b = 3.

Figure 4.22: Velocity distributions given other burst-sizes also show adaptive
scaling to σvel. a. Velocity distributions before isolated spikes for di�erent
stimulus ensembles. b. Velocity distributions as in a, but with velocity
divided by σvel. c. and d. as a and b but for bursts of 3 spikes. (Same
stimulus ensembles as in Figure 4.19)
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Figure 4.23: Burst rate and burst-size coding also adapts to σvel. a. Average
burst-size as a function of stimulus velocity, normalized by the mean burst-
size value at each stimulus σvel. b. Average burst-size as a function of the
stimulus velocity rescaled by σvel. c. Normalized (by mean burst rate) burst
rate as a function of the stimulus velocity. e. Burst rate as a function of the
stimulus velocity rescaled by σvel. (Same stimulus ensembles as in Figure
4.19).

4.2.4 Adaptive scaling of principal components

Velocity is the most relevant variable that is coded, but as shown in section 4.1.3 is not

the only one, and so we also tested whether there was adaptive scaling for other relevant

stimulus features. To do this, we calculated the neural gain as a function of the two

main stimulus components obtained by PCA (see section 3.4.7). We demonstrated in

section 4.1.3 that these two components corresponded to stimulus velocity and accelera-

tion (illustrated in insets of Figures 4.24b and4.24d). Both components showed a similar

adaptation to stimulus variance, as we can see in Figure 4.24.
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(a) Normalized rate as a function of the 1st

component.
(b) Normalized rate as a function of the 1st

component/σvel.

(c) Normalized rate as a function of the 2nd

component.

acc

(d) Normalized rate as a function of the 2nd

component/σacc.

Figure 4.24: First two principal components obtained by PCA show adaptive
scaling. a. Normalized rate as a function of the dominant eigenvector
(velocity) for a stimulus of frequency cut-o� 5 Hz, and three standard de-
viations: σvel = 1.5 (black solid line), 3 (red dashed line), 4.5 mm/s (blue
dotted line). b. Same as a, but for velocity rescaled by the corresponding
standard deviations. Inset: Black solid line: �rst eigenvector s1. Green
dashed line: Burst triggered average of the stimulus velocity, roughly cor-
responding to the mean velocity before bursts. c. Normalized rate as a
function of the second leading eigenvector (acceleration) for the same stim-
ulus parameters as in a. d. Same as c, but with acceleration rescaled by the
corresponding distribution widths. Inset: Black solid line: second eigenvec-
tor s2. Green dashed line: Derivative of the �rst component, showing that
the second eigenvector gives the acceleration.
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4.3 The role of sodium pumps in the adaptive scaling

4.3 The role of sodium pumps in the adaptive scaling

Activity-dependent hyperpolarization has been shown to produce a reduction in excitabil-

ity in the T cell membrane. In this cell, hyperpolarization is due to the action of two mem-

brane components: sodium pumps and calcium-dependent potassium channels. Sodium

pumps are known to be responsible of the 75% of the activity-dependent hyperpolariza-

tion (Baylor and Nicholls, 1969a; Van Essen, 1973) while calcium-dependent potassium

channels produce the residual 25% (Jansen and Nicholls, 1973). In order to describe the

biophysical substrates of the T cell adaptation to statistics, we investigated the possible

implication of both molecular species.

4.3.1 Adaptive e�ect of sodium pumps activity

The action of sodium pumps produces a hyperpolarization of the T cell membrane that

reduces the excitability of the cell (Van Essen (1973)). These changes in excitability could

account for the adaptive scaling found in T cell response. Therefore, we investigated the

role of sodium pumps in this process.

10 s

5
0

 m
V

1
 m

m

Figure 4.25: Elimination of hyperpolarization by the action of strophantidin.
Top: T cell voltage response to a mechanical protocol to test reduction
of excitability (bottom). Middle: Voltage response of the same T cell as
in top after adding strophantidin to the bath solution.. Bottom: Protocol
consisting of a 10 s train of 40 mm mechanical steps at 1.5 Hz on the skin of
the leech, followed by 20 s of several 400 mm-amplitude sine-wave patterns
at 10 Hz, and then repeating the initial train.

We �rst examined the e�ect of the sodium pump on the activity-dependent hyperpo-

larization and on the reduction of excitability using a simple protocol for skin stimula-

tion. Skin was subjected to a series of small (40 mm) mechanical steps at a frequency

of 1.5 Hz both before and after 20 s of skin displacement that consisted of 400 mm

amplitude sinusoidal patterns at 10 Hz (Figure 4.25, bottom). In control conditions,
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the membrane hyperpolarized by 10 mV during the sinusoidal stimulation and did not

respond to the following step stimuli for 20 s (Figure 4.25, top). When we bathed the

preparation with strophantidin (Figure 4.25, middle), a well-known blocker of the sodium

pump (Jansen and Nicholls, 1973; Van Essen, 1973), the hyperpolarization disappeared

and the cell responded almost immediately to the following step stimuli. We conclude

that the hyperpolarization that is induced by the pump activity after �ring increases the

voltage-to-spike threshold.
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Figure 4.26: Blocking sodium pumps eliminates the dynamics necessary for
adaptive rescaling. Top: Velocity distribution before bursts of three
spikes for a stimulus ensemble with σvel = 2.25 mm/s and a frequency
cut-o� of 5 Hz until t = 20 s (solid line) and until t = 100 s (dashed line).
Bottom: Same as in top but in the presence of the sodium pump blocker
strophantidin 0.15 mM, showing no shift to higher velocities..

We then examined the e�ect of the sodium pumps on adaptation. Adaptation to

statistics implies that a burst of given size is �rst produced in response to low velocities,

but after 1 min of stimulation it is produced in response to higher velocities. As we

showed in section 4.2.2, the T cell response is adapted after 1 min of stimulation (Figure

4.17c). This implies that there is a shift of the response to higher velocities, higher the

larger the stimulus variance. For a burst of three spikes, for example, the distribution

of preceding velocities showed this shift to higher velocities. In Figure 4.26 top we
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4.3 The role of sodium pumps in the adaptive scaling

can see how in normal conditions the response in the �rst 100 seconds is shifted when

compared to the response to the �rst 20 seconds . After sodium pumps were blocked

with strophantidin (Jansen and Nicholls, 1973), there was at most 6�9 min of healthy

�ring response (see section 3.3), enough time to observe neither hyperpolarization nor a

shift to higher velocities. Figure 4.26 shows how the strophantidin eliminates the shifting

to higher velocities.

Notably, there was a substantial disruption of adaptive scaling in the presence of the

sodium-pump blocker strophantidin, shown for σvel of 1.5 (black) and 2.25 mm/s (red)

(Figure 4.27). This is indicated by the fact that velocity distributions or input/output re-

lationships scale much better in control condition (Figures 4.27a-e top) than in strophan-

tidin condition (Figures 4.27a-e middle). As a measure of disruption of adaptive scaling,

we used the di�erence in the mean value of the two ensembles, d (for velocity distribu-

tions) and he root-mean-square error, RMSE, between the two curves (for input/output

relations). This disruption of adaptive scaling was signi�cant for all quantities impli-

cated in the coding, including the distribution of velocities before bursts of two spikes

(Figure 4.27a, p = 0.03), bursts of three or more spikes (Figure 4.27b, p = 0.045) and all

bursts (Figure 4.27c, p = 0.011), as well as the burst rate (Figure 4.27d, p = 0.012) and

burst-size input/output relationships (Figure 4.27e, p = 0.012). P values were obtained

from pair-wise t-tests after checking that the data of the di�erences between controls and

strophantidin conditions were normally distributed (Lilliefors and Jarque-Bera tests).

We tested that this disruption of adaptive scaling by strophantidin was not a result

of additional non-stationary e�ects of the drug by checking that the input-output re-

lationships were independent of the order of presentation of the stimulus distributions.

In Figure 4.28a we can see the adaptive scaling in control condition in the T cell re-

sponse to Gaussian white noise of cut-o� frequency of 5 Hz and two di�erent σvel (1.5

and 2.25 mm/s). Figure 4.28b shows that the presentation order does not underlie the

disruption of the adaptive scaling. In this case we �rst presented the stimulus with a

σvel = 2.25 mm/s (red), then the one with σvel = 1.5 mm/s (black) and then again the

one with σvel = 2.25 mm/s (dashed red). Neither the �rst nor the second normalized

burst rate input/output relation for σvel = 2.25 mm/s showed adaptive scaling with the

one of σvel = 1.5 mm/s.

With all these results, we concluded that the sodium pump is necessary for adaptation

to statistics on a slow time scale in the mechanoreceptor neuron.
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Figure 4.28: No non-stationarity a�ecting the input-output relationships in
presence of strophantidin. a. Normalized burst rate as a function of
velocity divided by σvel = 1.5 mm/s (black line) and σvel = 2.25 mm/s (red
line) and a frequency cut-o� of 5 Hz. b. In presence of strophantidin, we
used a stimulation protocol �rst using an ensemble with σvel = 2.25 mm/s
(solid red line), then σvel = 1.5 mm/s (black line) and again σvel = 2.25 mm/s
(dashed red line).

4.3.2 Non adaptive e�ect of calcium-dependent potassium conductance

Activity-induced hyperpolarization in T cell is mainly due to the sodium pump, but to

a lesser extent is also the result of a calcium-dependent potassium conductance with a

contribution up to 5 mV (Jansen and Nicholls, 1973). We therefore tested whether this

potassium conductance has an in�uence on adaptive scaling using the speci�c blocker

apamin, which is known to inhibit the calcium-dependent potassium conductance in the

T cell (Mozzachiodi et al., 2001, see section 3.3).

We �rst tested that adding 1 nM of apamin decreased hyperpolarization values after

stimulation protocols designed to see this e�ect (Figure 4.29a). We con�rmed a signi�cant

decrease of hyperpolarization of 5 mV for these protocols (P < 0.002, Figure 4.29b). We

also tested that in our experiments using Gaussian white noise, apamin had the same

e�ect, and we found that hyperpolarization after bursts was reduced by 4-6 mV (Figures

4.29c and 4.29d).

Then, we performed the same test as we had previously performed to show that block-

ing sodium pumps had a signi�cant disruptive e�ect on adaptive scaling (Figures 4.26and

4.27). We found that the shift of coded velocities in control conditions (Figure 4.30a top)

is similar to that of apamin conditions (Figure 4.30a bottom). We also found that the rel-

evant coding variables, like normalized rates, show the same adaptive scaling as controls

(Figure 4.30b).

89



4 Results

Apamin

1nM

Control

20 mV
10 s

V∆

400 µm

(a) Voltage response with Apamin and in con-
trol.

0

5

10

15

20

25

30

V
 (

m
V

)

Apamin 1nMControl

p<0.002 (n=4)

∆

(b) Signi�cant reduction of hyperpolarization.

0 100 200 300 400

Time(ms)

-100

-80

-60
Control

Apamin 1nM

σvel=1.5 mm/s

V
(m

V
)

(c) Average voltage trace with and without
apamin (σvel = 1.5 mm/s ).

0 100 200 300
-100

-80

-60
σvel=2.25 mm/s

Control
Apamin 1nM

V
(m

V
)

Time(ms)
400

(d) Average voltage trace with and without
apamin (σvel = 2.25 mm/s ).

Figure 4.29: 1 nM of apamin decreases afterhyperpolarization in T cell. a. Volt-
age response in control (in blue) and in presence of apamin 1nM (in red)
to stimulation protocols designed to produce hyperpolarization (in black;
section 3.3). b. Comparison of hyperpolarization in 4 di�erent T cells with
and without Apamin. Controls hyperpolarize 5 mV more (pair-wise t-test,
P < 0.002 and n = 4). Error bars are s.e.m. c. Average voltage trace after
bursts in response to a Gaussian white noise with cut-o� frequency of 5 Hz
and σvel = 1.5 mm/s for 4 control experiments (in blue) and 4 experiments
in presence of apamin for the same neurons (in red). d. Same as c but for
stimulation with σvel = 2.25 mm/s . Error bars in c and d are standard
deviations.
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Figure 4.30: Blocking calcium-dependent potassium current has no signi�cant
e�ect in adaptive scaling. a. Top: Velocity distributions before bursts
of 2 spikes for the �rst 20 s of recording (thick black line) and the �rst
100 s (dashed line) in a control recording. Stimulus ensemble with cut-o�
frequency 5 Hz and σvel = 2.25 mm/s shown as thin continuous line. Bot-
tom: Same as top but with 1 nM of apamin. b. Top: Normalized burst rate
showing adaptive scaling for two ensembles of standard deviations σvel = 1.5
(black) and 2.25 mm/s (red) and cut-o� frequency of 5 Hz in control experi-
ment. Bottom: As top but with 1 nM of apamin. c-g. Signi�cance tests for
adaptive scaling, comparing controls and apamin condition (top) and those
for controls and strophantidin condition (bottom, as in Figure 4.27). Scale of
y-axis has been chosen identical for apamin and strophantidin conditions for
quick comparison. No signi�cant di�erence is found between controls and
apamin condition for the �ve quantities measured. Error bars are s.e.m.
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We �nally tested that none of the relevant coding properties had signi�cant di�erences

to controls, �nding no sign of a signi�cant disruption of adaptive scaling (Figures 4.30c-

f). Only for the case of the velocity distributions prior to bursts of 2 spikes, there is an

e�ect close to be signi�cantly di�erent from controls (Figure 4.30c, p = 0.078). Figure

4.30c-f gives also the results for strophantidin for comparison (bottom, same as Figure

4.27), showing that for the apamin condition the results are also more similar to controls

in the mean values and in no case the small di�erences are statistically signi�cant.

4.3.3 Neuronal model

To further investigate the role of sodium pumps in adaptive scaling, we used a two-

compartment model. The model, described in section 3.5, includes all known conduc-

tances for the T neuron (Cataldo et al., 2005). The responses of the model neuron to

simple protocols that hyperpolarize the membrane (in section 3.3.1) were similar to those

observed in experiments (Figure 4.31; compare with experimental results in Figure 4.25).

After a high frequency stimulation, the membrane potential of the neuron model gets hy-

perpolarized, reducing its excitability (Figure 4.31a). When the sodium pump is removed

from the model, this hyperpolarization does not take place, and consequently there is

not a reduction in excitability (Figure 4.31b). Removing the sodium pump currents is

similar to the adding strophantidin in real experiments. The small gap that we observed

in absence of sodium pump currents (Figure 4.31b) is a result of the recovery time of

the after-hyperpolarization calcium-dependent potassium conductance, gK,Ca, which has

a faster time scale than that of the sodium pump (Cataldo et al., 2005; Jansen and

Nicholls, 1973). This gap also takes place in the real T cell (in Figure 4.25 middle, the

�rst mechanical step does not elicit response).

4.3.3.1 E�ect of the sodium pumps in the neuronal model

To simulate the mechanical stimulation of T cells, we stimulated the neuronal model with

Gaussian white noise current stimuli of di�erent σvel, with units in nA/s. These current

stimuli have the disadvantage of skipping the transduction of the mechanical stimuli.

However we found a similar response in the natural and in the modeled cell.

Analyzing the simulated responses to Gaussian white noise current stimuli of di�erent

σvel, we determined that the sodium pump has e�ects in both coding and adaptive

scaling. As we can see in Figure 4.32a (top: with sodium pump, bottom: without sodium

pump), without the sodium pump, the neuron saturated earlier and thus did not code

high velocities. Adaptive scaling took place in the complete model for velocities up to
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4.3 The role of sodium pumps in the adaptive scaling

(a) Simulated response to a protocol hyperpolarizing the
membrane.

(b) Simulated response to a protocol hyperpolarizing the
membrane without sodium pumps.

Figure 4.31: Simulated response of the neuronal model is similar to real T cell
response. a. Neuron model response to a square wave stimulation (current
step amplitude of 8 nA, period of 1.2 s) triggering 1 spike per period, followed
by a sine wave with an amplitude of 40 nA and a frequency of 2 Hz producing
higher activity. b. Response of the neuron model to the same stimulation
without the sodium pump.

twice the σvel of the stimulus (Figure 4.32b top), which is similar to the experimental

results (Figure 4.23d). The same model without sodium-pump dynamics showed no

adaptive scaling in the normalized rate (Figure 4.32b bottom), which is also similar to

the experimental results in presence of strophantidin (Figure 4.27d).

As we did for real experiments, we tested in the model neuron whether the adaptation

to the statistics of the burst-size coding was disrupted without the action of the sodium

pump. Checking the distributions of stimulus velocities before bursts of two spikes in

response to Gaussian white noise stimuli of di�erent σvel, we also determined that there

was no adaptive scaling in absence of sodium pumps (Figure 4.33). In the complete

model, di�erent velocity distributions given bursts of two spikes matched when scaled by

σvel (Figure 4.33b top). When the sodium pump is removed, the velocity distributions

do not match so well (Figure 4.33b, bottom).

To �nd out whether the sodium pumps could be the only elements responsible for adap-

tive scaling in the model, we also tested the e�ects of eliminating the calcium-dependent

potassium current, IK,Ca. We removed this current from the model but retaining the

sodium pump, as we did in real experiments by the use of apamin. The IK,Ca is the

other hyperpolarizing conductance of the T cell that can be responsible for 25% of the
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(a) Burst rate coding for velocity values. (b) Adaptation of burst rate coding to σvel.

Figure 4.32: Sodium pumps a�ect coding and adaptive scaling in the model. a.
Top: Normalized burst rate for the model neuron in response to Gaussian
white-noise current stimulation ensembles of di�erent σvel (black: 4.5 nA/s;
red: 9 nA/s; blue: 18 nA/s; cut-o� frequency = 8 Hz). Bottom: Normalized
burst rate as in top �gure, but without the sodium pump. b. Normalized
burst rates in top (complete model) and bottom (without the sodium pump)
with the stimulus velocity rescaled by the σvel.
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(a) Burst-size coding for velocity values. (b) Adaptation of burst-size coding to σvel.

Figure 4.33: Adaptive burst coding also needs the action of sodium pumps in
the model. a. Top: Velocity distribution given bursts of 2 spikes for
the model neuron in response to Gaussian white-noise current stimulation
ensembles of di�erent σvel (black: 4.5 nA/s; red: 9 nA/s; blue: 18nA/s; cut-
o� frequency = 8 Hz). Bottom: Velocity distribution given bursts of 2 spikes
as in top �gure, but without the sodium pump. b. Velocity distribution
given bursts of 2 spikes in top (complete model) and bottom (without the
sodium pump) with the stimulus velocity rescaled by the σvel.
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hyperpolarization in the early response to stimulation. The recuperation for this hy-

perpolarization takes place in 1 or 2 seconds. This time should not be enough for the

neuron to �estimate� the standard deviation of the stimulus distribution at the frequen-

cies considered since there is no time to collect enough statistics. We showed within the

model that this current is not related to the adaptive scaling seen in the input/output

relations, but rather to burst duration and frequency adaptation inside bursts, as it has

been demonstrated in other models of neurons (Wang, 1998) . We plotted the normalized

burst rate in response to Gaussian white noise stimuli of di�erent σvel for the complete

model (Figure 4.34a top) and for the model without the IK,Ca current but retaining the

sodium pump (Figure 4.34a bottom). We can see in Figure 4.34b that normalized rates

versus velocity and the same plots scaling stimulus velocity by σvel are almost identical

for the complete model and the model without the IK,Ca current. This Figure shows

that the removal of IK,Ca did not eliminate the adaptive scaling, again consistent with

the experimental results (Figure 4.30). This result is in clear contrast to the behavior

in Figure 4.32 for the sodium pump, allowing us to argue that, at least in the model,

sodium pumps are necessary and su�cient for the adaptive scaling.

4.3.3.2 Generality of the e�ect of sodium pumps

We also used the model to test the generality of the e�ect of the hyperpolarization due to

sodium pumps. It is well known that neuronal �ring depends on neuron size experimen-

tally and in model studies (Van der Heyden et al., 1994). In our case, the model o�ers

the opportunity to test which types of neurons might best show the hyperpolarization

due to sodium pump activity. In particular we calculated, within the model and under

plausible conditions, the dependence of hyperpolarization on neuron size.

We tested three cases: Case A assumes that area only a�ects the absolute values of

capacitance and conductances; case B studies the e�ect of surface on sodium dynamics;

case C takes into account both cases A and B simultaneously.

Case A: Area a�ecting only absolute values of capacitance and conductances.

In this case we kept the same speci�c values for membrane capacitance and conduc-

tances (values per unit area), and change only the membrane area. Making explicit the

dependence of the voltage equations on compartment areas, we have

− CAS
dVS
dt

= As(ISL + ISNa + ISK + ISCa + ISK,Ca + ISpump) +
1
RC

(VS − VD) (4.1)
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(a) Burst rate coding for velocity values. (b) Adaptation of burst rate coding to σvel.

Figure 4.34: Removal of calcium-dependent potassium current does not elim-
inate adaptive scaling in the model. a. Top: Normalized burst rate
for the model neuron in response to Gaussian white-noise current stimula-
tion ensembles of di�erent σvel (black: 4.5 nA; red: 9 nA; blue: 18; cut-o�
frequency = 8 Hz). Bottom: Normalized burst rate as in top �gure, but
without the calcium-dependent potassium current.. b. Normalized burst
rates in top (complete model) and bottom (without the calcium-dependent
potassium current) with the stimulus velocity rescaled by the σvel.
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and

− CAD
dVD
dt

= AD(IDL + IDNa + IDK + IDCa + IDK,Ca + IDpump) +
1
RC

(VD − VS)− Iext, (4.2)

with AS and AD the soma and dendritic areas, respectively, and 1
RC

the axial resistance.

Capacitance C and intrinsic conductances are in units per area, as explain in section 3.5.1.

To relate these equations to equations 3.2 and 3.3 in that section, we can divide both

members of each of the equations above by the corresponding somatic and dendritic area,

respectively. In this way we obtain exactly equations 3.2 and 3.3 with Istim = Iext/AD and

gC = 1/(RCAD) with p = AS/(AS + AD). To consider a di�erent area in the equations

4.1 and 4.2, we can simply multiply the areas by a surface factor S. This amounts to

rescaling stimulus current and electrotonic coupling, Istim/S and gC/S, in equations 3.2

and 3.3.

Using a sinusoidal stimulus paradigm of amplitude 40 nA and frequency 2 Hz, we

calculated the afterhyperpolarization ∆V = |Vhyp − Vrest| and recovery time to half the

hyperpolarization value, τ1/2
rec , as a function of the surface scale factor S varying linearly

between 0.2 and 3. As shown in Figures 4.35a (top) and 4.35b (top) larger size implies

smaller hyperpolarization and shorter half recovery time.

Case B: Area a�ecting sodium dynamics.

Here we supposed that the removal of Na+ ions is a process physically located at the

membrane and increases with surface area (which amounts to scale the time constant in

each compartment as τNa/S). One could also hypothesize a slower decrease of sodium

concentration with size due to di�usion e�ects, but previous modeling studies and ex-

perimental observations in other systems support the �rst assumption (Van der Heyden

et al., 1994). Moreover, the contribution of the fast sodium current to sodium in�ux

(αNa) has been shown to be inversely proportional to the volume beneath the membrane

(Keener and Sneyd, 1998; Yamada et al., 1989). Therefore the gain term in the equation

for the sodium dynamics (see section 3.5.1) is proportional to the surface-to-volume ratio.

For a cylindrical compartment this factor scales inversely with the compartment radius

r, and thus we varied the surface factors S and r to scale the sodium dynamics (S from

0.2 to 3 and r from 0.5 to 1.5). We obtain a slower (linear) decrease in hyperpolarization

with neuron size and a power-law decrease in recovery time (middle of Figures 4.35a and

4.35b).
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Case C: Cases A and B together.

Combining both contributions in cases A and B when changing compartmental areas,

that of absolute conductances and sodium dynamics, we found that hyperpolarization

may be stronger for smaller neurons (bottom of Figures 4.35a and 4.35b).

With all these evidences in the neuronal model, we concluded that the e�ect of sodium

pump hyperpolarization may increase in smaller neurons.

(a) E�ect of size on ∆V (b) E�ect of size on τ
1/2
rec

Figure 4.35: Hyperpolarization and half-recovery time increase with decreasing
neuron size according to the model. a. Hyperpolarization amplitude,
∆V , as a function of surface scaling factor when scaling only the absolute
values of capacitance and conductances (Top), when scaling only the sodium
dynamics (Middle) and when scaling simultaneously the absolute values of
capacitance and conductances and the sodium dynamics (Bottom). b. Same

as in a. but for half-recovery time, τ1/2
rec . Solid lines correspond �ttings:

∆V = 4.2e−0.84S (a, top), ∆V = 35 − 65S (a, middle), ∆V = 95e−1.6S +
8.6S−1/2 (a, bottom), τ1/2

rec = 2.7S−0.93 (b, middle), τ1/2
rec = 2.7S−1.37 (b,

bottom).
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5
Discussion

In the present thesis, we have described a neuronal code based on burst sizes (number

of spikes per burst). We �rst dissected the coding properties of a bursting neuron, the

mechanoreceptor of the leech Hirudo medicinalis known as T cell, and showed that the

neuron uses a burst code. Bursting has been found to be important in information trans-

mission, as it improves synaptic reliability (Lisman, 1997), the signal-to-noise ratio of

neuronal responses (Livingstone et al., 1996) and the detection of behaviorally impor-

tant features of the stimuli (Gabbiani et al., 1996). It is possible that bursts could act

as unitary events or, alternatively, that their structures might convey extra information.

Consistent with the second theory, it has been proposed that burst parameters are re-

sponsible for coding. Spike frequency during bursts might determine which postsynaptic

neurons become excited (Izhikevich et al., 2003). Also, modeling studies of a general

class of bursting neurons have shown that burst-size codes for stimulus slope (Kepecs

et al., 2002). Experimental evidence that duration correlates with stimulus optimality in

visual cortex (DeBusk et al., 1997) supports such a burst-size code.

This is to our knowledge the �rst time that a neuronal code based on di�erent burst

sizes (number of spike per burst) has been experimentally described. Before this work,

theoretical studies (Kepecs et al., 2002) pointed at the burst size as a possible burst

feature to code for stimulus slopes. Experimental results (Cattaneo et al., 1981; DeBusk
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et al., 1997; Martinez-Conde et al., 2002) also suggested that the burst size could be

coding for optimality in the stimulus. After our work, Eyherabide et al. (2008) found

another burst size code in the auditory system of the grasshopper.

We have also shown that this neuronal code presents adaptive scaling. This �nding

further supports the relevance of burst size coding, as it has the �exibility that is needed

for dealing with the changing real-world stimuli. In this manner the system can detect the

velocity of approaching objects, with adaptive scaling allowing for the detection of high

velocities relative to common stimuli such as water displacements. The most robust result

for adaptive scaling is the one that we obtained when analyzing the velocity distributions

prior to burst sizes. Both, the normalized burst rate and the normalized burst size coding

also showed adaptive scaling. However the normalization was needed because the mean

burst size and rate also depended on the variance of stimulus velocities. This fact suggests

that non normalized burst rates and sizes could be elements of the neuronal code carrying

information about the velocity scale. This could avoid ambiguities in the neuronal code.

Maybe the burst size could be coding the relative importance of the velocity values

withing the total stimulus distribution, while the non normalized burst rate could be

signaling the global stimulus variance.

We further found that blocking sodium pumps had a strong and signi�cant disrup-

tive e�ect on adaptive scaling. This result points to the sodium pumps as important

elements for the adaptive scaling in the leech mechanoreceptor. Sodium pumps activity

is a homeostatic mechanism maintaining ionic gradients. However, it has been shown

that sodium pump activity may induce hyperpolarization in neuronal membranes (Shen

and Johnson, 1998; Darbon et al., 2003; Gustafsson and Wigström, 1983; Vaillend et al.,

2002; Kobayashi et al., 1997; French, 1989; Kiernan et al., 2004) . Our results go a step

further and implicate this ubiquitous mechanism in the adaptation of neuronal codes to

stimulus statistics.

We also tested whether blocking the calcium-dependent potassium current had an

e�ect on adaptive scaling. However no single statistical test showed a signi�cant role for

this current, albeit we found some evidence for it having a very weak e�ect on rescaling,

close to statistical signi�cance for bursts of two spikes.

We also modeled this neuron to further show that sodium pumps can be a general mech-

anism for adaptive scaling. We expect sodium pumps to be important for adaptive scaling

in other systems when tested with similar stimulations. Favorable preparations would

be those in which hyperpolarization has already been shown to be induced by sodium-

pump activity (Shen and Johnson, 1998; Darbon et al., 2003; Gustafsson and Wigström,

1983; Vaillend et al., 2002; Kobayashi et al., 1997; French, 1989; Kiernan et al., 2004).
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Both insect mechanoreceptors (French, 1989) and human skin receptors (Kiernan et al.,

2004) are experimental systems similar to the one that we employed, and protocols very

similar to ours could be directly adapted to these systems. In hippocampal pyramidal

neurons there is a brief hyperpolarization of 1 s as a result of calcium-dependent potas-

sium current and a hyperpolarization of 20 mV lasting 1 min that is due mainly to the

sodium pump in normal conditions (Gustafsson and Wigström, 1983), similar to what

occurs in the leech T neuron. In terms of functional relevance, this hyperpolarization in

hippocampus may be seen as a way to avoid overexcitation (Vaillend et al., 2002), but

more generally, it might scale neuronal responses to input statistics. When sodium-pump

activity is reduced in hippocampal neurons, there is still hyperpolarization as a result of

a sodium-sensitive potassium conductance (Gustafsson and Wigström, 1983). The situa-

tion seems to be reversed in visual cortex, where there is hyperpolarization as a result of

activity a�ecting a time scale of 30 s that is mostly due to a sodium-dependent potassium

current, and in which sodium pumps might be of secondary importance (Sanchez-Vives

et al., 2000a).

Generally, sodium pumps and some potassium conductances may hyperpolarize the

membrane on overlapping time scales in many neurons, with di�erences in their relative

importance, as is the case in the T neuron, in hippocampus (Gustafsson and Wigström,

1983; Vaillend et al., 2002), in C-�bers in the bullfrog sciatic nerve (Kobayashi et al.,

1997), insect mechanoreceptors (French, 1989) and probably in visual cortex (Sanchez-

Vives et al., 2000a,b). Adaptive scaling in bipolar cells in the retina has been shown to

be due to slow sodium inactivation (Rieke, 2001; Kim and Rieke, 2003). This is an e�ect

that might be quite general on the time scale of 1 s, and that is, in principle, compatible

with adaptive scaling on the scale of 1 min as a result of sodium pump activity.

Adaptive scaling could be based on more than one single-neuron mechanism. With

mechanisms acting on di�erent time scales, the neuron could adapt its response dealing

with the complex dynamics of stimuli. With mechanisms acting on the same time scale,

the neuron could show an adaptive response able to deal under di�erent constraints, as,

for instance, modulating its adaptive response by di�erent molecular mechanisms.
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Conclusions

In this thesis, we have shown that:

� The touch mechanoreceptor (T cell) of the leech Hirudo medicinalis codes by the

number of spikes per burst the velocity values of an object indenting the skin of

the animal, in such a way that larger bursts code for higher velocities.

� There is a reduction in membrane excitability that correlates to an increasing

activity-dependent hyperpolarization with increasing stimulus variance.

� The burst size code and the burst rate of the T cell adapt to the stimulus statistic,

more precisely to the stimulus variance.

� The sodium-pump dynamics, contributing for the 75% of the activity-dependent

hyperpolarization, are a su�cient mechanism for a neuronal adaptation to stimulus

variance on the time scale of 1 min. This has been tested both experimentally and

using numerical simulations.

� The calcium-dependent potassium current, even if it contributes up a 25% to the

activity-dependent hyperpolarization, has no signi�cant e�ect on the adaptive scal-

ing.

The results of this thesis have been published in Arganda et al. (2007).
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Conclusiones

En esta tesis hemos demostrado que:

� El mecanoreceptor de tacto (célula T) de la sanguijuela Hirudo medicinalis codi�ca

la velocidad de un objeto sobre la piel del animal a través del número de potenciales

de acción por ráfaga, de tal modo que las ráfagas mayores (con mayor número de

potenciales de acción) codi�can velocidades mas altas.

� Hay una reducción en la excitabilidad de membrana que correlaciona con la hiper-

polarización dependiente de actividad, que a su vez aumenta con mayores varianzas

en las distribuciones de velocidad del estímulo.

� El código por tamaño de ráfaga y la frecuencia entre ráfagas de la célula T se

adaptan a la estadística del estimulo, más especí�camente a la varianza de la dis-

tribución de velocidades del estímulo.

� La dinámica de las bombas de sodio, que contribuye en un 75% a la hiperpolar-

ización dependiente de la actividad, es un mecanismo su�ciente para la adaptación

a la varianza del estímulo en la escala de 1 min. Esto ha sido demostrado tanto

por experimentos como por simulaciones numéricas.

� La corriente de potasio dependiente de calcio, a pesar de que contribuye hasta un

25% a la hiperpolarización dependiente de actividad, no tiene ningún efecto signi-

�cativo en la adaptación a la estadística.

Los resultados de esta tesis han sido publicados en Arganda et al. (2007).
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