
Universidad Autónoma de Madrid

Escuela Politécnica Superior

Departamento de Ingenieŕıa Informática

Doctor of Philosophy Dissertation

Easing the Smart Home:

a rule–based language and

multi–agent structure for end

user development in Intelligent

Environments

by

Manuel Garćıa-Herranz del Olmo

Co–advisor: Dr. Xavier Alamán Roldán

Co–advisor: Dr. Pablo Haya Coll

Madrid, Spain, European Union, 2009

A mis padres, Mary Carmen y Jaime, conspiradores, instigadores, compinches y

mecenas. Y a Mila, compañera consciente y voluntaria.

i

Abstract

As computing, networking and sensoring technologies evolve, increasing
their speed and lowering their size and cost, the number of computerized
elements present in our daily lives is ingrowing steadily and fast both in
number and diversity.

How many objects with processors, sensors or actuators do we already
cross by in an ordinary day? How much information is retrieved somehow
during the day about our lives? How many combinations of that information
and capabilities may result which benefit us? To whom of us exactly?

Despite their evolving number and diversity, most computing enriched
elements found in the environment are isolated from one another, created by
different third party developers, strange to the end–users lives and particular
needs. This is, in turn, a problem of control. Problem of special relevance
in personal environments which are free–choice environments and strongly
involved in families and individual self–definition.

Starting from this position, the present thesis analyses the problem of
putting the end–users in the loop of deciding the behaviors of their own
environments, analyzing, due to the heterogeneity of users, preferences and
environments, the adequateness of expression and structuring mechanisms.
What sort of language is best to deal with unskilled users with simple pref-
erences while allowing to express highly complex behaviors? How can we
deal with multiple inhabitants and domains of automation? What may
happen when different users with conflicting preferences share the same en-
vironment? How can we benefit from automatic learning while preserving
predictability? What sort of intelligence is fit to co–live with people in their
personal spaces?

In response to these questions, an Event Condition Action (ECA) rule
language is presented as the underlying kernel language for application–
independent control. This language is designed as an UI–independent ex-
pression and explanation mechanism in Intelligent Environments, opening
the door to predictable automatic learning. The naturalness of the lan-
guage and its adequateness to deal with non–programmers has been studied
through an end–user survey, measuring the resemblance of natural program-
ming structures with those of the kernel language, while its complex expres-
sion capabilities have been compared with state of the art event composi-
tion algebras. In addition, a multi–agent structure is presented to organize
and manage multi–preference environments, allowing users to translate their
natural hierarchies in their enriched environments, replicating the different
degrees of complexity present in human organizations.

The system presented in this work has been deployed and tested in
various environments of different nature as well as in combination with other
state of the art technologies. The particular challenges present in every
environment, as well as the synergistic and wrapping capabilities of such a
control mechanism extracted from our experience, are finally exposed.

ii

A medida que evolucionan las tecnoloǵıas de computación, comunicación
y sensado, aumentando su velocidad y reduciendo su tamaño y coste, el
número de elementos computacionales presentes en nuestra vida cotidiana
se está incrementando rápidamente, tanto en número como en diversidad.

¿Cuántos objetos con procesadores, sensores o actuadores nos cruzamos
en un d́ıa cualquiera? ¿Cuánta información acerca de nuestras vidas es
obtenida por estos elementos a lo largo del d́ıa? ¿Cuántas combinaciones
de esa información y las capacidades de esos elementos podŕıan redundar en
nuestro beneficio? ¿En beneficio de quién de nosotros, exactamente?

A pesar de que los elementos con capacidades computacionales son cada
vez más numerosos y variados en nuestro entorno, la mayor parte de ellos
conviven aislados unos de otros, creados por desarrolladores profesionales,
extraños a nuestras vidas y necesidades particulares, lo que redunda en una
incapacidad de control por parte del usuario. Este problema es de especial
relevancia en entornos personales, en los que la elección de las metas y
métodos depende de sus usuarios y en los que el entorno participa en la
definición que de śı mismos hacen sus habitantes de manera especialmente
cercana.

Partiendo de estas premisas, la presente tesis analiza el problema de in-
troducir al usuario final en el proceso de decisión de comportamientos de su
entorno, analizando la adecuación de distintos mecanismos de expresión y
estructuración a la diversidad y heterogeneidad de posibles usuarios. ¿Qué
clase de lenguaje es capaz de permitir expresar preferencias simples a usuar-
ios con bajos o nulos conocimientos de programación al mismo tiempo que
permite expresar preferencias complejas a usuarios avanzados? ¿Cómo pode-
mos afrontar múltiples usuarios y dominios de automatización? ¿Qué debe
ocurrir en el caso de que usuarios con preferencias opuestas compartan en-
torno? ¿Cómo podemos sacar partido del aprendizaje automático sin afectar
a las expectativas y previsiones que un usuario tiene de su entorno? ¿Qué
clase de inteligencia es adecuada para convivir con nosotros en nuestros en-
tornos privados?

En respuesta a estas cuestiones, esta tesis propone un lenguaje basado
en reglas ECA (Eventos Condiciones Acciones) como lenguaje base para un
control integral, independiente de la aplicación que se quiera controlar. Este
lenguaje ha sido diseñado como un mecanismo para la expresión y expli-
cación de comportamientos de Entornos Inteligentes, independiente de la
interfaz de programación utilizada, abriendo la puerta a un aprendizaje au-
tomático predecible. La naturalidad del lenguaje, aśı como su adecuación a
las capacidades de expresión de usuarios sin conocimientos de programación,
ha sido analizada mediante un estudio de usuario, probando las semejanzas
del lenguaje con los mecanismos naturales de programación humanos. Por
otra parte, su capacidad para expresar comportamientos complejos ha sido
comparada con álgebras de composición de eventos del estado del arte. Adi-
cionalmente, esta tesis propone una estructura multiagente que permite or-
ganizar y gestionar múltiples preferencias en un mismo entorno, permitiendo
a los usuarios del mismo trasladar sus jerarqúıas naturales a los Entornos
Inteligentes, replicando los distintos grados de complejidad presentes en las

iii

estructuras sociales.
El sistema descrito en esta tesis ha sido desplegado y probado en var-

ios entornos de distinta naturaleza aśı como en combinación con otras tec-
noloǵıas del estado del arte por lo que, finalmente, esta tesis resume los
particulares retos que presenta cada entorno, aśı como las sinergias obser-
vadas en nuestra experiencia.

Acknowledgements

Existe en mi trabajo la filosof́ıa subyacente de que la base, objetivo y medio
de todo sistema han de ser las personas. La tecnoloǵıa, por tanto, ha de ser
convertida en una herramienta humanizadora. Un canal capaz de extender las
capacidades de las personas más allá de sus ĺımites actuales sin desvirtuar su
esencia humana más profunda. Lejos de ser casual, esta filosof́ıa y este trabajo
surge de la afortunada experiencia vital y humana que he tenido y tengo la suerte
de disfrutar, fruto de la dichosa coincidencia de grandes personas –de su esfuerzo
y de su fe– a las que quiero y debo agradecer.

En primer lugar a mi familia, y en especial a mis padres, tesoro que me ha
enseñado el valor del amor, las ideas, la excelencia, la libertad y la convivencia
sin ocultar el precio que por todo ello se debe pagar. Por regalarme una cultura
y un amor por la cultura impagable y por descubrirme “el misterio de Dios en la
única realidad existente”. Os lo debo todo.

A Xavier Alamán, siempre abriendo puertas, sin cuya confianza, enseñanzas y
apoyo no habŕıa tenido ni por dónde empezar. A Pablo Haya, gúıa y compañero
al que le debo tanto de este trabajo y de mi experiencia doctoral, por hacerlo
siempre personal y por ser siempre más que los demás en su búsqueda de ser más
con los demás. A Germán Montoro, por su apoyo y desinteresados consejos y
al resto de componentes de AmILab, crisol de este trabajo, cuyo funcionamiento
y ambiente se debe a la aportación individual de humor y rigor de cada uno de
sus miembros. A Manuel Freire por su generosa ayuda, a Manuel Cebrián, cuya
amistad y agradables charlas me han acompañado y ayudado durante esta tesis
y a todos los miembros de mi departamento, en especial al grupo GHIA.

A Alexandra Cristea, Gladys Castillo Jordán, Juan Carlos Augusto y Alvaro
Ortigosa por sus revisiones, comentarios y sugerencias y a todos aquellos colegas
que con su esfuerzo, consejos y conversaciones me han ayudado consciente o
inconscientemente a lo largo de esta tesis, entre los que se encuentran Alvaro
Garćıa, Ana Iriarte, Roberto Moriyon, Ivan Dotu, Dominik Schmidt, Fabian
Hugelshofer, David Molyneaux, Rose Gostner, Yukang Guo y Eran Eden. Y,
especialmente, a Juana Calle, Marisa Moreno y Sonia Durán sin cuya delicada

v

vi

dedicación hubiera acabado loco hace tiempo.
A mis amigos, con los que tengo la suerte de crecer y enriquecerme y que me

han apoyado tanto moral como f́ısicamente en la realización de esta tesis. Gracias
de todo corazón.

A la responsable de la biblioteca de la Fundación Ortega y Gasset, cuyos
periódicos env́ıos de material humanista y cient́ıfico, han servido de base a más
de medio caṕıtulo de esta tesis.

Y, finalmente, a Mila, por bregar conmigo y apoyarme incondicionalmente.
Gracias Mila.

Gracias a todos.

Contents

Contents vii

1 Introduction 1
1.1 Background . 5
1.2 Challenges . 6

1.2.1 Living with another intelligence 10
1.2.2 Independent programming 10
1.2.3 The end–user as a programmer 12
1.2.4 Idiosyncrasy of end–users’ environments 14

1.3 Research contributions . 14
1.3.1 Rule–based Language . 15
1.3.2 Programming Structure . 16

1.4 Scope . 16
1.5 Thesis structure . 18

2 State of the Art 21
2.1 The System in control . 22

2.1.1 Blackbox systems . 22
2.1.2 Whitebox systems . 24

2.2 The System under control . 26
2.2.1 Centered on the programmer 26
2.2.2 Centered on the end–user 33

2.3 Summary . 42

3 Indirect control in AmI 45
3.1 The nature of Ubiquitous Computing 46

3.1.1 Based on human factors . 46
3.1.2 Based on the environment’s idiosyncrasy 48
3.1.3 Based on Ubiquitous Computing’s idiosyncrasy 49

3.2 Requirements . 49

vii

viii CONTENTS

3.2.1 End–user Requirements . 51
3.2.2 Requirements for the End–user as Developer 52
3.2.3 Requirements for the End–user as Consumer 55

3.3 Implemented solutions and requirements supported 57
3.3.1 S1. Abstraction layer . 57
3.3.2 S2. ECA–rule language . 59
3.3.3 S3. Multi–agent structure 61

4 ECA–rule language 65
4.1 Knowledge model . 67

4.1.1 Let there be light! . 68
4.1.2 Conditions . 70
4.1.3 Actions . 71
4.1.4 Events . 76

4.2 User expression . 85
4.2.1 End–user study . 85

5 Multi–agent Structure 93
5.1 Distributed reasoning . 93
5.2 Agent anatomy . 95

5.2.1 Internal indexing . 95
5.2.2 Blackboard representation 96

5.3 Execution model . 98
5.3.1 Explanation . 101
5.3.2 Learning . 102

5.4 Managing hierarchies . 103
5.4.1 Purpose . 104
5.4.2 Complexity . 105
5.4.3 Hierarchies – structure and definition: Multilayer filter . . . 107

6 Demonstrators 117
6.1 Applied Environments . 117

6.1.1 AmIlab . 117
6.1.2 Learning environments: Itechcalli 122
6.1.3 Security environments: Indra 123

6.2 User Interfaces . 126
6.2.1 A Graphical User Interface for programmers 126
6.2.2 The Magnet Poetry metaphor 129

6.3 Integration with other technologies 132
6.3.1 Integration with anthropomorphic figures 134
6.3.2 Integration with Phidgets 135
6.3.3 Integration with steerable projection 140

ix

7 Conclusions 145
7.1 Future Work . 148
7.2 Dissemination and contributions 151

7.2.1 Publications . 151
7.2.2 Projects . 153

Bibliography 155

A Grammar 169

B Conclusiones 173

List of Figures 177

List of Tables 179

Chapter 1

Introduction

“Therefore we are trying to conceive a new way of thinking about
computers in the world, one that takes into account the natural human
environment and allows the computers themselves to vanish into the
background” [122]

Almost twenty years after Weiser wrote of a new way of thinking about com-
puters, Ubiquitous Computing has become an adolescent discipline with many
fields of study, wide-ranging interests and vast possibilities. In fact, few disci-
plines are as holistic and multidisciplinary as the one triggered by Weiser’s vision
and this is, in my opinion, its biggest beauty and its greatest challenge.

Ubiquitous Computing’s pubescence uncovered the main challenge of our dis-
cipline: “vanishing computers”. Soon it was realized that this was a twofold
challenge: Physical — in which computers as big boxes in a table are to be
removed and, instead, embedded into everyday-life objects— and Conceptual
— in which what is to be removed is the specific knowledge needed to use a com-
puter, just as nobody needs to know today anything about electricity generation
to plug a toaster in the kitchen. This physical vanishing required smaller proces-
sors, lower energy consumption devices, greater network bandwidth [123], more
varied sensors and other hardware improvements to embed sensing and commu-
nicating computers in everyday-life objects. Conceptual vanishing, on the other
hand, required new interaction mechanisms for computers distributed in many
objects (traditionally not connected with computers) but in the paradoxical ab-
sence of a physical computer. Graphical, oral, physical, emotional and other
interfaces from the Human Computer Interaction community were devised for or
applied to the field.

Some of Ubiquitous Computing’s first steps have already found their way
to the market and into our lives. Traditional computing entities such as mo-

1

2 CHAPTER 1. INTRODUCTION

bile phones, portable music players or game stations are becoming smaller, more
powerful and cheaper (Moore was right). In addition, they sense and react to
many more stimuli. First, Graphical User Interfaces (GUI) widgets, as the tra-
ditional way of interaction, are being enhanced and extended through the use of
multi-touch devices. Second, many more interaction paradigms are being inte-
grated in devices: phones make calls based on natural speech interfaces, mp3s
shuffle their songs when they are shaken, mobile phones are silenced when turned
face down on a table and, in some game stations, batting a ball requires no but-
tons or pads (just a good swing). These new interaction possibilities respond in
some degree to the also increasing amount of services those small computers pro-
vide: agenda, calendar, notes, contacts, tasks, multimedia players, phone calling,
pagers, GPS navigators, cameras or even projectors come together or in sets in
those small devices (which are becoming increasingly harder to define as PDAs
or mobile phones). In any case, the growing omnipresence of Internet access is
gradually transforming them into virtually anything/everything. As a result, the
potential of those devices is spreading so far that they have to come in differ-
ent packets, a pret-a-porter solution for the technology market multiplying the
user’s possibilities even more: small mp3s with no screens for joggers, big ones
with a high capacity for home-lovers, medium for travelers; mobile phones for
teenagers, simplified versions for the elderly, expanded versions for businessmen
and so on. Each one with its own capabilities and interaction standards in what
is becoming everything but a global experience “as refreshing as taking a walk in
the woods” [122].

But this is just the beginning, and the greatest implications of this com-
puting vision are yet to come. Firstly, the amount of computers present in the
environment will grow exponentially. Besides obvious computers such as PCs,
PDAs or mobile phones, the environment will have many more “computers” in
fridges, mugs, windows, lamps, switches, walls, shoes, pens, pans, cupboards,
taps, stoves, doors, mats, notes and many other objects distributed throughout
our traditional environment. Therefore, the first consequence of this vision is
the number: computers are not only vanishing into the background but mul-
tiplying exponentially backstage. Secondly, since computers will be embedded
in everyday-life objects, they will be present in every space/scenario and will
have to support different users in different tasks through different tools. Most
importantly, since they will be present everywhere, users will be forced to deal
with them —as we have to deal today with writing or electricity. Thus, the sec-
ond implication of the Ubiquitous Computing vision is diversity: spreading and
multiplying computers in the background also multiplies the number of users and
tasks required to be “computerized”.

Returning to Ubiquitous Computing in today’s market, besides those tradi-
tional computing devices, we can already find some of these new computational

3

entities in our lives. The examples, even in this nascent stage, are already wide
and varied: RFID tags are found in supermarkets and shops, in car keys, ac-
cess cards or warehouses; NikeTMis selling shoes with sensors that communicate
with Apples’s iPodTM, lighting automation with movement sensors is required by
law in some public places and many other sensors and actuators are distributed
along our natural environment for different purposes (e.g. security alarms, video
surveillance, irrigation, heating or health care), not to mention the growing sup-
ply of automation and control systems for domains as varied as high-standard
homes, factories, hospitals or government institutions. As Weiser believed in
1991, the performance of technology is reaching the level to meet with his Ubiq-
uitous Computing vision. Can we say the same for applications?

We can realize the impact of diversity in the applications domain when we
look at today’s computers. Many of them run the same operating system and
almost every one of them is based on the same screen-windows-mouse interaction
paradigm. Even though this is beginning to change, most applications are still
designed with a specific purpose. Most importantly, users tend to use applica-
tions just for the purpose intended by the designer —with small exceptions such
as using mail applications to transfer files or the tray clock configuration menu as
a calendar. In other words, despite its relative expansion, computing is still quite
homogeneous: i.e. restricted to the computer domain, most computing user–
oriented processes share paradigms, tools and uses. Ubiquitous Computing, on
the other hand, aims precisely to break the “computing-computer” association
and transform it into “computing-everywhere”, breaking, among other things,
the classical homogeneity of computing processes. Real spaces do not have to
share strong interaction paradigms — such as the the mouse and the windows in
computers— and their objects may be varied and used in many different ways
—from fridges or TVs as lighting devices, ovens as pan cupboards or beds as
reading places, to give an example from the home domain. Consequently, Ubiq-
uitous Computing applications will need to deal not only with the high number
of computers present in the environment, but also with the combination of users,
goals and tools.

An example of this diversity and a glimpse of its consequences can be seen
nowadays in market applications that, even though far from ubiquitous, are al-
ready outside the computer in some way. I will expose a personal example: I
have a watch that wakes me up in a range of 20–30 minutes according to the
sleep phase, choosing the least traumatic moment. My toaster is able to detect
the color of the toast so the bread is perfectly toasted. My bedside table alarm
clock knows the temperature and humidity of both the inside and outside of the
house and can make basic weather predictions based on them. The heater and
irrigation in my home can both be programmed and the oven can clean itself
via a pyrolytic process. My TV is able to record any program and store it in

4 CHAPTER 1. INTRODUCTION

“my channel” for me to watch at anytime. Additionally, my mobile phone has a
GPS. In some sense I can say that my environment is able to perceive: the mobile
phone knows where I am, the alarm clock what the weather is like, my watch how
deeply asleep I am or the toaster how toasted the bread is. Additionally, they are
able to self-actuate: the oven can clean itself, the TV can record programs and
the irrigation and heater can be turned on and off automatically. Those are the
cornerstones of Ubiquitous Computing, but I strongly feel that the essence is still
missing. This is not because of the individual capabilities of the environmental
elements, but because of how the environment works as a whole. Waking me up
earlier if the weather prediction shows strong rains (and consequently the traffic
will be worse) or synchronizing the alarm clock with my watch (so I’m not only
woken up at the right time but also with nice music instead of an annoying buzz)
are impossible things, even though the necessary information and capabilities are
provided by one device or another. This is the first hole: isolation, meaning
unshared information/capabilities (e.g. How many clocks do I have to up-
date every time there is a blackout? Can’t they really synchronize themselves?).
The second hole has to do not with the capabilities of the environment but with
the way I am supposed to interact with it. Programming my alarm clock re-
quires turning a wheel, pressing two buttons (one increases the time in 5–minute
intervals, the other decreases it in 1–minute intervals) and shifting some levers to
choose between radio, buzzer or no alarm. Programming the alarm on my watch,
on the other hand (the left one, actually), requires keeping a button pressed for 2
seconds, then pressing a second button to enter a menu and set the time. There
are no levers and I actually do not know how to deactivate the alarm so it has
been sounding every day since I bought it. The irrigation is conceptually similar
to the alarm with an additional “duration” concept (turn on at 9:00 am for 2
hours) but programming it is completely different; there is a dial surrounded by
small buttons in circle, simulating a 24–hour clock in which every small button
corresponds to 30 minutes (the top button corresponds to the 00:00 to 00:30
time interval). If the button is pressed the irrigation will be turned on those
30 minutes. Conversely, the irrigation in my parents’ house has a new display
with completely different buttons, menus and options. Different from my dial
programming system, to that for my watch, to that for the alarm clock and (I
am sure this is no surprise) to that for my TV. Thus, for the concept “at some
time do something for this long”, I had to learn 5 different interfaces for 5 dif-
ferent devices. Sadly, I am fairly sure that if I acquire a sixth device I will be
acquiring a sixth interface too since, as a user, I am inexorably bound to each of
the designers’ interaction preferences. In conclusion, a second hole is revealed:
unsoundness or unshared interaction mechanisms and places (i.e. every
device has its own interaction mechanisms and has to be used from a different
place).

1.1. BACKGROUND 5

In these 20 years, the research community has been exploiting the many possi-
bilities of environments and objects capable of perceiving, computing, communi-
cating and actuating. This research has lead to many context–aware applications
often referred to as Smart : Smart kitchens, Smart floors, Smart laundries, Smart
mugs, Smart offices, Smart mirrors and more. This diversity of Smart things is
a potential victim of the two holes posed previously, with the obvious inconve-
nience that they will be everywhere. Especially because of their numbers, Which
device was able to perceive what? and How do I use that device? are questions
to be dismissed if we want Ubiquitous Computing to be “as refreshing as taking
a walk in the woods”. Can you imagine posing those questions with electricity?
Which socket was able to charge what device? How should we plug our devices
in a specific socket to be charged? I am, personally, sure Weiser would not have
considered it a disappearing technology in such a case.

1.1 Background

As noted previously, having different interaction mechanisms and places for every
device is beginning to be a problem even today, with few computing devices with
which to interact compared to the futuristic Ubiquitous Computing scenario with
thousands of computing entities present in the environment. This is, in summary,
a problem of control. How can users control their environment?

This question has been the main focus of research over the last 10 years at
the Ambient Intelligence Laboratory (from now on referred to as AmILab) at the
Universidad Autónoma of Madrid. The first problem was that of abstraction.
Strongly entangled to the isolation hole revealed above, it involves the challenge
of perceiving the numerous and varied computing entities in the environment in
a homogeneous way. Interaction was not addressed at the time, but a mechanism
— a blackboard-based middleware — was settled upon for building context-aware
global applications. That is, my irrigation system will never be alone again and
applications can be built to combine its capabilities with the weather information
retrieved by the bedside table clock. This middleware (from now on referred to
as the Blackboard) is a simple representation of the environment in terms of
entities of a type with properties and relations with each other (e.g. “grandma’s
lamp” of type “light” with property “status” and the relations “located at” link-
ing it with the entity “kitchen” of type “room” and “belongs to” linking it with
the entity “mother” of type “person”). This representation is guided by a public
schema so abstraction is easily accessible to any application. Access, on the other
hand, is done by a simple API with three main functions: Get, Set and Subscribe
for retrieving, modifying and being notified of changes, respectively, in the Black-
board elements. Thus, applications can work with any element of the Blackboard
in the same manner, regardless of the low–level details of the real element: e.g.

6 CHAPTER 1. INTRODUCTION

a KNX [1] light or a Phidget [52] controlled light will be both turned on if the
status of their Blackboard representation is set to on. This is done thanks to a
set of drivers translating each technology to the Blackboard representation, but
that is beyond the scope of this work and, even though we will have to go back
to it at some point, it is better described in [58][59].

Once the problem of perception (i.e. the isolation hole pointed above) is
addressed, the problem of human interaction (i.e. the unsoundness hole or un-
shared interaction mechanisms and places problem) was the next natural step
in our path. The Blackboard provided the necessary tools not only for creating
one–for–all interfaces, but also for generating them automatically and expanding
their capabilities through context awareness. Two interfaces, developed by AmI-
Lab group members, give an example of these possibilities. First, a GUI, formerly
known as Jeoffrey [2][61] and then improved as iFaces [50] uses the Blackboard
information to automatically generate a graphical user interface for every envi-
ronment. That is, the elements present in the room, their position, associated
images and capabilities are extracted from the Blackboard and the scheme to,
for example, present “grandma’s light” in the right corner of the kitchen and
with a slider in its control panel (since it is an adjustable light). Using this in-
formation, iFaces can also adapt the interface automatically to different kinds
of displays, e.g. knowing that an “adjustable” element will need some kind of
slider and that touch screens need large buttons, well suited to being touched by
fingers, it generates a different interface for them than for PDAs. The second
interface example is Odisea [85][86][87], a natural language interface with a cor-
pus and grammar that are also automatically generated from the Blackboard’s
information. Thus, any element added to the environment will automatically be
present in both iFaces and Odisea (the graphical and natural language interfaces,
respectively). Additionally, using the information from the Blackboard, Odisea
can disambiguate commands by checking the context state. For example, if the
user says “turn off the light” (or the recognizer only recognizes that), Odisea can
check how many lights are turned on in the environment, asking the user which
one of them to turn off or turning it off if only one is on.

1.2 Challenges

The future world of ubiquitous computing is one in which we will be
surrounded by an ever-richer set of networked devices and services.
In such a world, we cannot expect to have available to us specific
applications that allow us to accomplish every conceivable combination
of devices that we might wish [96]

Intelligent Environments (IE) are one of the consequences of Ambient Intelli-
gence. Half way between Robotics, Artificial Intelligence and Human Computer

1.2. CHALLENGES 7

Interaction, they present a multi–disciplinary domain in which Ubiquitous Com-
puting has to deal with already existing environments in which people are used
to live in and have defined a status quo between the unintelligent physical places
and their personal needs.

As analyzed by Cook, Augusto and Jakkula in an extensive survey [24], Am-
bient Intelligence is a discipline facing many challenges, from sensing, reasoning
(e.g. modeling, activity prediction and recognition, decision making or spatial
and temporal reasoning) or acting, to more human–centered challenges such as
HCI or privacy and security issues in a wide range of applications (e.g. smart
homes, health and monitoring assistance, hospitals, transportation, emergency
services, education or workspaces).

Personal environments, in particular, cohere the most singular challenges of
the status quo established between people and their environments. They play
a role in group and individual self–definition [28], they are free–choice environ-
ments [72] and, in summary, they are built and used to deal with all the five
levels of Maslow’s hierarchy of needs [80], bottom up: physiological, security,
social, esteem and self–actualization (see Figure 1.1).

Figure 1.1: Maslow’s hierarchy of needs [80]. Represented as a pyramid, needs
become more sophisticated as we move upwards in the pyramid. According to
Maslow, new needs arise as we satisfy all the needs of the underlying levels.

Every need requires an specific solution but, as we travel higher in Maslow’s
pyramid, the solutions to satisfy these needs become more entangled with the per-
son herself (e.g. while security can be handled by third parties, self–actualization
requires a committed individual). Therefore, the environment’s Intelligence has
to be carefully balanced with it’s Idiosyncrasy, which is a reflection of that of
its inhabitants and the roles they play in them. The purpose of the intelligence,
and the type of intelligence fit for that purpose are, consequently, two important
aspects to consider.

8 CHAPTER 1. INTRODUCTION

From creating/manipulating tools to shaping the environment, humans have
used and increased their control over the environment to fulfill their needs. In
this sense, IE pose an interesting challenge: Being populated with multiple and
interconnected sensors, actuators and computational capabilities, they provide
the tools to enhance traditional environments with new ways of interaction and
control: context–aware applications.

Context–aware applications are nothing more (or less) than indirect control
mechanisms i.e. part of the control (or all of it) is commanded not directly by
the user but indirectly through the context. Applied to the home domain, we
found a direct way to build context–aware applications —through the Blackboard
(see Section 1.1)— such as a photo frame showing the pictures belonging to the
inhabitants in the room. Needless to say the inhabitants, the photo frame, the
pictures and the room are represented in the Blackboard, as are their relations
(i.e. that person “likes” that picture or is “located in” that room). These kinds of
programs are designed by professional programmers to deal with particular prob-
lems or preferences with the degree of personalization they considered at the time
of programming. In the photo frame example new pictures could be incorporated
to the carousel by simply adding them to the Blackboard and relating them to
the correct person. In response, the photo frame automatically incorporates the
new picture to the picture carousel.

But while context–aware applications may enhance the control of and inter-
action with our environment the control problem is now moved to them: How
can I control which applications run on my environment and what they do? Let
us consider a user who prefers some pictures in the mornings, others in the af-
ternoon, does not want some pictures to be shown when some other person is
present and prefers to turn the carousel off when watching a movie. Similarly
to what happens with technologies nowadays, even though the capabilities and
tools are available in the environment, the user will find himself at a dead end:
if the professional programmer did not think about it from the start, it would be
impossible for the user to control the environment the way she wants. In other
words, even though these applications will automatically adapt to some changes
(such as the preferred pictures) their goals and means are fixed and may or may
not be those the end–users need since they are out of the loop.

When we look at traditional computer applications, we find that users con-
trol which applications run on their computers by installing/uninstalling them,
being forced to find a developer who thought of their problems before them.
In addition, to allow users to control what the applications do, most develop-
ers provide their programs with some end–user configurable variables. This ap-
proach (though commonly used) has two main drawbacks directly related to the
unshared interaction mechanism problem posed before: firstly, since dif-
ferent applications have different variables of interest, each of them will have

1.2. CHALLENGES 9

a different personalization interface, making the personalization problem
application–dependent. Secondly, since the parameterizable variables must
be chosen a priori by engineers, the more flexible they want to make the pro-
gram the more variables they have to add to the interface, creating an inverse
relationship between flexibility and simplicity.

These two drawbacks are at the core of a “disappearing technology”: Natu-
ralness and Easiness. Understanding naturalness as the way in which a system
preserves the basic human structures and methods, and easiness as the simplicity
of use it presents, i.e. preserving the status quo and having an accessible learn-
ing curve. In a way we are not proposing anything different from P. Maes [78]
when she stated competence and trust as the two main challenges software agents
need to solve. Thus, while an accessible learning curve empowers competence,
preserving the status quo guarantees trust.

In addition, people has intuition more strongly developed in traditional envi-
ronments than in computer environments, since they have lived much longer with
the former than the later. They have not only a stronger preconception of how
a mug is used than of how a web browser is used, but this preconception is so
strong that they will tend to perceive a mug not working the way they presumed
as a broken mug.

Therefore, as stated previously, “Which device perceive what?” and “How
is that device used?” are questions to be dismissed in Ubiquitous Computing.
Questions directly related to control that are hardly acceptable when considering
them in any other “disappeared technology” such as electricity (e.g. Which socket
was able to charge what device? How should devices be plugged in an specific
socket to be charged?)

With these principles in mind, the most important challenge is to put the
end–user in the loop of indirect control applications. That is, to transform
programmed indirect applications into programmable indirect applications that
allow end–users to program their own solutions.

Far from saying that professional applications cannot satisfy the end–user we
argue that, while they are especially well–suited to dealing with common, trans-
parent or complex problems such as finding objects, saving energy or managing
security, they lack the flexibility to deal with most of the small personal pref-
erences of users’ daily lives. Extending Newman’s et al. philosophy to indirect
control, we believe that users will wish to create configurations and combinations
of these devices, and will likely want to create particular configurations that no
application developer has foreseen [96].

Hence, context–aware applications are the corner stone of IE. However, the
main challenge of IE can be formulated as “how can the inhabitants of the en-
vironment control that applications” and how can we provide environments
with an intelligence whose purpose is to allow users to control their

10 CHAPTER 1. INTRODUCTION

environments in order to fulfill their needs. This statement can be analyzed as
four different challenges.

1.2.1 Living with another intelligence

When we talk about IE it is important to stress that the environment’s intelli-
gence must not only be chosen to deal with users’ preferences but also to co–live
with them in an environment that, as pointed out by Davidoff, plays a role in
group and individual self–definition [28]. Imagine an aware house, able to actuate
and to understand human preferences and desires. Considering Minsky’s six–level
model of mind [83], top to bottom: self–conscious reflection, self–reflection think-
ing, reflective thinking, deliberative thinking, learned reactions, and instinctive
reactions (see Figure 1.2); What kind of intelligence would we desire the house
to have? In which level of mind would we want it to stop? 2001: a space odyssey
(counting with Minsky as advisor) presented a fiction in which the environment’s
intelligence catastrophically reached the self–conscious level, one of the five di-
mensions of Salovey and Mayer’s emotional intelligence [82] (i.e. self–conscious
reflection, emotion control, motivation and self–motivation, empathy and social
abilities). Emotional Intelligence subsumes Gardner’s [48] concepts of interper-
sonal and intrapersonal intelligence, that is, the intelligence to deal with others
and intelligence to deal with our own intelligence (and the problems it poses).
While the former may be desired for many computing applications (see Cai’s
deliberation on Instinctive Computing for a deep view on the matter [17]), the
latter can hardly be considered as acceptable in anybody’s home, unless we are
willing to have a possibly unmotivated, apathetic or selfish home.

Thus, going back to Minsky’s model, IE should not provide environments with
intelligence in every level but it should fade intelligence as it reaches the higher
levels of the model. Therefore, considering the objective of “putting the end–
users in the loop”, the first step for IE is to provide the means for users to
program the “instinctive reactions” of the environment. Based on them,
some mechanism for learning reactions and deliberative thinking may be provided,
carefully considering what may be learned and what may not. Reflective and self–
reflection thinking must be particularly treated to deal with specific tasks such
as self–maintenance and, finally, self–conscious reflection can be considered unfit
to co–live with humans in personal environments.

1.2.2 Independent programming

Allowing users to program the instinctive reactions of an environment is strictly
related to what they are to program. It is, in summary, a problem of interac-
tion with the environment. The “unshared interaction mechanisms” problem,
posed at the beginning of this thesis, is traditionally located in the application–

1.2. CHALLENGES 11

Figure 1.2: Minsky’s six–level model of mind [83], as we move up through levels,
intelligence becomes more complex, able to learn, to reason and so on until it
is finally conscious of its own existence and intelligence and, consequently, work
upon that.

dependent problem but, when faced with an environment rich in interaction capa-
bilities, in which everything can be accessed from many places and, consequently,
through different UIs, the application–dependent problem is extended to a UI–
dependency problem: if the solution for a problem depends on the UI used to
solve it, the increasing number of interfaces that become available (e.g. natural
language, tangible interfaces or mobile phones) will bring the same drawbacks
as the application–dependent problem posed above. Thus, the programming
method must be UI–free and UIs must be just shortcuts to create the same
control structures. In this way, UIs will be chosen according to the interaction
needs of the moment and not according to their programming capabilities.

UI–independence requires thinking about a kernel programming language
in which sentences or programs are created through a diversity of UIs designed
to deal not with programming issues but to cope with interface needs. Thus, any
programming structure can be created or modified by any UI (see Figure 1.3).

12 CHAPTER 1. INTRODUCTION

This kernel language should be as close as possible to the end–user’s way of
thinking and programming since, as stated by Myers, “the closer the language
is to the end–user’s original mental plan, the easier the refinement process would
be” [93]. Additionally, creating a kernel language that takes into account the
end–user’s mental plan allows UI designers to focus just on interface issues and
avoids having multiple programming paradigms — the UI–dependency problem
—, one for each alternative a UI designer thought appropriate for the end–user
to consider and program with that particular interface.

Figure 1.3: Programming flow, from the user to the kernel language and from this
back to the user through a variety of UIs. UIs act exclusively as an intermediate
interface layer between the end–user and the common logic kernel.

1.2.3 The end–user as a programmer

Considering end–users as the programmers brings some additional challenges, in
particular when looking at their various degrees (or absolute lack) of expertise,
their diversity of backgrounds and a completely different concept of commitment
than that of a professional programmer. Firstly, the absence of a strict feeling of
commitment makes end–users more inclined to abandon under frustrating con-
ditions, thus, any alternative designed for end–users must provide an increas-
ing degree of complexity with a very low starting point. Any improvement
should stand on previous knowledge as in Papert’s ideal of “low threshold no ceil-
ing” [101] in which the difficulty of the system (or the challenges it poses) grows

1.2. CHALLENGES 13

according to the end–user’s skills in order to avoid anxiety (when challenges sur-
pass the skills) and boredom (when skills surpass the challenges) keeping the
user in the optimal flow of motivation (see Figure 1.4). Secondly, the diversity
of backgrounds, as stated at the beginning of this section, leads to many differ-
ent potential goals among users and scenarios. Thus, the programming language
must be flexible enough to cope with the different expression needs of each
circumstance. This flexibility must be balanced with the simplicity required to
deal with inexperienced users.

End–users, as inexperienced programmers, will likely tend to program their
preferences as they come, without an overall design or a proper test bench, thus
it may not be surprising that their creations are not as appropriate as they
thought them to be. This problem can be addressed through two different tools:
first, some sort of explanation mechanism will allows them to understand the
insights of the environment’s behaviors and its possible faults, thus a natural
explanation to a “why did you...” question will provide a sort of debugging
mechanism to end–users. Secondly, automatic learning may be applied to
either adapt the end–users’ programs to what they really wanted to program
or to spot in advance the possible failure points of a program so as to ease the
debugging process.

In summary, a system for end–user programming must balance simplicity (i.e.
naturalness and easiness) and flexibility of expression, with progressive complex-
ity, and provide scrutability and (semi)automatic adaptation of the end–users’
programs.

Figure 1.4: Csikszentmihalyi’s [27] notion of flow to analyze motivational factors
in learning. Used by Repenning and Iaonnidou as a guide for EUD usability [106]
from which this picture is taken.

14 CHAPTER 1. INTRODUCTION

1.2.4 Idiosyncrasy of end–users’ environments

Finally, end–user programming in Intelligent Environments present certain addi-
tional challenges in relation to the nature of personal environments. Firstly, each
person may create different programs, with different goals and for different pur-
poses. Even though these programs are created through the same mechanism, a
failure in one of them must not be perceived by the user as a failure of the overall
system, but just in the specific domain of the malfunctioning program, main-
taining the user’s trust in the system when a part fails. Additionally,
personal environments may be populated with multiple persons whose pref-
erences and goals may conflict. All these programs or preferences (from the
same or different users) must, additionally, coexist in an environment in which
a manager figure is not always clear (or not present at all). Finally, as stated
by Davidoff, personal environments are more than just places and “participate
in the construction of family identity”[29]. In conclusion, the programming
structure must provide an easy means to distribute and manage programs as
responsibilities, as well as the appropriate mechanism to deal with the various hi-
erarchies and conflicts of a not necessarily centralized, multi–user scenario. Thus,
the concept of human responsibility, as well as other hierarchical characteristics
such as purpose or location, must be translated to the programming domain and
tools must be provided for conflict resolution. Additionally, the creation and
automation procedures must be directly controlled by the users in such a way
that they can preserve those particular aspects of their lives they consider as
fundamental to defining their identities.

1.3 Research contributions

This work presents a working solution to end–user programmable indirect con-
trol. The above challenges are addressed and handled through what can be seen
as a twofold strategy: first, by designing a language that is able to deal with
most of the requirements derived from having an end–user as a programmer (such
as application–independent programming, an increasing degree of complexity, a
simple and flexible mechanism of expression, means of explanation or automatic
learning); and secondly, by establishing an underlying structure that, while
complementing the language to deal with the rest of the end–user requirements
(e.g. maintaining the user’s trust in the system when a part of it fails), tack-
les those requirements derived from the idiosyncrasy of the environment (such
as solving conflicts or allowing for the creation of hierarchies in multi–user en-
vironments). Neither the language nor the underlying structure were designed
as an end–user interface, but rather as underlying natural solutions over which
user interfaces can be developed focusing just on interaction principles. Thus,
the language can be seen as a lingua franca, capturing the essence of end–user

1.3. RESEARCH CONTRIBUTIONS 15

programming in a basic form of speech. Each form of interaction places specific
requirements on speech while the programming essence corresponds to the way
end–users think about programming and, thus, should be the same for every
form of interaction. This work presents a solution to this underlying program-
ming language and structure. According to the twofold strategy (i.e. language
and structure), the most important contributions are summarized as follows:

1.3.1 Rule–based Language

This work presents a rule–based language for programming indirect control ap-
plications. Pointed out by Myers as those naturally employed by users in solving
problems [93], rule–based languages preserve the natural essence of context–aware
applications: “When something happens, if some facts are present, then do some-
thing. Thus, users’ preferences are codified in this language as reaction rules in the
form of Event Condition Action (ECA) rules. The ECA structure is used firstly
as an application–independent mechanism of expression (since it encapsulates a
method of commanding, not what to command) whose degree of complexity relies
on the complexity of its atoms (events, conditions and actions) and can, thus, be
adjusted to the users’ skills. Secondly, it is used as an explanation mechanism
since the very rule that produced an action serves as a valid human explanation
to answer why that action was commanded. In addition, by tagging the actions
of the ECA rules with a ”confidence factor” adjusted by observing the reactions
of the user to the action, this work opens the door to automatic learning of ECA
rules.

In order to deal with Papert’s ideal of “low threshold, no ceiling”, the rule–
based language is designed as a base language of extreme simplicity that can
be extended —as the user’s skills are developed— with more powerful structures.
These structures, mainly Wildcards (designed to deal with generic concepts such
as “any light”) and Timers (designed to deal with time concepts such as “in
the next 5 minutes”) are designed in such a way that they are constructed using
the same concepts of the base language, so each forward step in the learning
curve brings the user closer to the next. Thus, complexity is isolated in
independent structures using the same base language concepts.

As concerns the expression capabilities, this work presents a new approach to
event composition and consumption policies. Thus, through the use of Timers and
using an event logic instead of an event algebra, it allows for defining context–
dependent composite events as well as expressing mixed consumption
policies

16 CHAPTER 1. INTRODUCTION

1.3.2 Programming Structure

In order to deal with the multiple sets of preferences of a user or group of users,
we have distributed rules along many independent reasoning engines
called agents. Each agent has its own set of rules and is related to the user
or group of users that created it, as well as to the elements they affect with
their rules. Additionally, they can also be related to the environment they act
on and can be tagged with the purpose they were built for. These agents are
represented in the Blackboard (the abstraction layer) as another part of the
context so they can be accessed and commanded like any other element of the
environment. In doing so, we have created a simple structure for modifying
the agents’ status through ECA rules, allowing the users to create their own
hierarchies by activating/deactivating agents according to context.

In summary, users can distribute their rules among different agents, grouping
those they consider in the same conceptual structure. The grouping reasons are
up to end–users and, in that manner, will be those directly matching their mental
responsibility structures, not ours. By not forcing any bundle (such as activity or
location) but allowing any, modularization is done according to the end–
users’ mental plan and helps them in locating responsibilities. Tagging each
agent with its owner, affected elements and other optional categorizations such
as location or purpose, together with the possibility of creating rules affecting
agents (or using them as part of the context) allows end–users to trans-
fer their natural hierarchies to the Ubiquitous Computing domain in
a straightforward manner. In order to increase the potential of hierarchy con-
struction, this work presents a multi–layer flexible mechanism that helps users
(without constraining them) to easily create and combine different hierarchical
domains.

1.4 Scope

Once we have defined end–user programming and indirect control as the main
frame of this thesis, and before delving into more complex descriptions, we want
to briefly describe what this system is intended for and what it is not, for the
sake of a better understanding of the following pages.

This work focuses on the application–dependent problem of personalization
and the inverse relationship between flexibility and simplicity noted above. Along
these lines, it seeks an end–user centered indirect control mechanism for providing
the user with the power to control everything naturally and easily. This work
does not aim or pretend to develop any particular interface but, conversely, to
create a programming mechanism that can be used through many interfaces.
This preserves the programming structure despite the interface in use — making
programming also UI–independent. In addition, it allows UI programmers to

1.4. SCOPE 17

focus just on UI issues. The idea behind this decision, as we will expose along
this thesis, is that while programming (especially for end–users) is a mental static
process, interfacing is a sensory/interaction process dependent on the context.
Thus, UIs will be chosen just in terms of interaction capabilities: i.e. to program
a reminder for a friend’s birthday, a different UI would be preferred than if driving
a car, taking a shower or working on a PC, but the underlying programming
mental plan will remain the same despite the choice in UI.

This work aims to extend end–users’ control over their environ-
ments by addressing the application–dependent problem and minimiz-
ing the inverse relationship between flexibility–simplicity posed above.
That is, by providing a natural way for indirect control (i.e. everything is con-
trolled in the same way). This is done in two ways: by increasing their control
possibilities and by simplifying control complexity.

In order to define the goal (and, consequently, the scope) of this thesis, we
must define the kind of control we are trying to provide. Thus, we will classify
the different types of control according to two questions: “How is the environ-
ment controlled?” and “Who creates the control structures?”. The first question
differentiates between direct control, in which the user explicitly commands
the actions to take place in the environment, and indirect control, in which
the actions are not directly executed but codified as reactions to some context
state triggering them. On the other hand, answering the second question,“Who
creates the control structures?”, we find two types of control structures: those
designed and programmed by a professional programmer for the benefit of
the user, and those programmed directly by the end–user.

This thesis focuses on indirect control mechanisms with a view to increasing
end–users’ control over their environments. Thus, it focuses on the end–user
programmed/indirect control quadrant of Figure 1.5 with some incursions
into the neighboring “end–user programmed/direct control” and “expert pro-
grammed/indirect control”.

Even though the system was tested in a variety of scenarios, it is important
to note that it was designed for non–programmers, with special emphasis on
personal environments. This user–centered approach means that, while other
systems pay special attention to problems such as the distribution of the comput-
ing load among network nodes or the minimization of bandwidth usage in a search
of an overall computing efficiency, we have opted for a human approach, taking
into account issues such as how social hierarchies can be exported easily to the
automation processes, how the complexity of the system can be adapted to the
user’s learning curve or how the natural programming and managing structures
of the end–users can be replicated in the Ubiquitous Computing domain, in order
to avoid making them feel unsafe or alienated in their own environments. In addi-
tion to personal environments, the system was evaluated in educational, security

18 CHAPTER 1. INTRODUCTION

Figure 1.5: Classification of control interfaces according to the type of control it
provides. It distinguishes between direct control, in which the orders are explic-
itly commanded by the user (e.g. turning on a light when a button is pressed)
and indirect control, in which some context implicitly commands the orders (e.g.
turning off the lights when nobody is left in the room). In relation to the pro-
grammer of the interfaces, it distinguishes between interfaces programmed by ex-
perts, in which a professional programmer decides what the user interface does,
and end–user generated interfaces, in which end–users design their own control
interface. Blue regions denote the focus of this work.

and research scenarios to test and enhance its expression capabilities. However,
we must stress that the main target of this work is personal environments.

Finally, as stated before, this work focuses on capturing the programming
essence of end–users in a programming language and structure. None of them
are designed to be end–user interfaces, but to establish the common ground over
which UIs are designed. Thus, UI designers can focus just on interaction issues
while the programming paradigms are kept unchanged for end–users, despite the
UI interface used in the interaction.

The scope of this thesis must be kept in mind in order to understand its
essence in the wider perspective. We hope this will be easier after analyzing the
most important examples of “programmable environments” in the following
section.

1.5 Thesis structure

This thesis is structured as follows: Chapter 2 analyzes the state of the art of
reactive Intelligent Environments. In Chapter 3, indirect control in Intelligent

1.5. THESIS STRUCTURE 19

Environments is analyzed, pointing out the most important characteristics of
these environments, the requirements stemming from them and the solutions this
work presents to deal with them. Chapter 4 describes the ECA–rule based lan-
guage used as the kernel language of the programming system, while Chapter 5
explains the multi–agent structure used to modularize rules, the Agent’s anatomy,
execution model and a mechanism to manage hierarchies in Intelligent Environ-
ments. Chapter 6 illustrates the practical use of this system, in the different
environments in which it was deployed, through a set of demonstrators, and user
interfaces created to test it. Finally, Chapter 7 summarizes the most important
conclusions derived from this work, presents some interesting lines of future work
and reports its dissemination in and contributions to the research community.

Chapter 2

State of the Art

Ambient Intelligence (AmI) is a field of research posing many challenges, from
integrating and communicating many different technologies at the lowest level
to considering the psychological, social and interaction implications of a human
population at the highest. That is, from the lowest hardware to the end–user.
All these challenges stem from the same objective: to give the environment some
intelligent capabilities. While some research has focused on how intelligently the
environment perceives (e.g. activity or location recognition), most efforts are
devoted to intelligently acting (for which intelligent perception is often needed).
This is normally referred to as context–aware environments, in the sense that
they act in consideration of what is happening in them. They have the ability to
perceive what is happening and the intelligence to act accordingly.

This aim is translated into many research trends that can be classified ac-
cording to their underlying philosophy regarding where is the intelligence?. Thus,
while some trends aim to build intelligent environments, able to perceive and au-
tonomously act in accordance to what they observe, certain others aim to provide
the necessary tools for humans to build intelligent applications. But this classifi-
cation can lead to misunderstandings: since any system is developed by humans,
where is the line between an intelligent environment and a developer who has the
tools to build it? Thus, we can look at it as a continuous back and forth from
closed systems to open ones, depending on whom and how easily the context–
aware capabilities can be extended or changed. In this sense, purely intelligent
environments are in the closed end, in which Intelligence is in the environment
(programmed once by someone) and any further improvement to the environ-
ment’s behaviors will be done by the environment itself. In the middle there are
those trends striving to provide some sort of tool for programmers to develop
new context–aware applications. Application Programming Interfaces (APIs),
Toolkits, languages or Frameworks are provided to ease the developer’s tasks by

21

22 CHAPTER 2. STATE OF THE ART

removing low–level information, homogenizing interaction or automatically dis-
tributing programs among nodes. At the other end of the classification are those
trends aiming to put the end–user in the loop. Thus, this classification is one
of continuous control, from system–centered, through programmer–centered to
end–user–centered control.

Another important characteristic of AmI systems is their opacity. That is,
the ease with which the whys of the environment’s behaviors can be understood.
Ranging from blackbox systems, in which the reasoning internals are completely
hidden from human understanding (the best example would be the use of artificial
neural networks) to whitebox systems, in which the reasoning internals are shown
in a human–readable way and tools are provided to scrutinize them.

The implications of this double classification are best understood when ana-
lyzing the most relevant home automation systems. Since this work is focused
on leveraging the end–user’s control over the environment, we will pay special
attention to whitebox end–user oriented systems.

2.1 The System in control

System–centered control systems are normally based on the assumption that the
end–user is either incapable or unwilling to pay the cost associated with pro-
gramming. Most of these systems are implemented by narrowing the automation
domain, so the intelligence of the environment can be better tuned to that par-
ticular domain of automation and, thus, achieve a higher degree of competence.

2.1.1 Blackbox systems

Since every system–centered control system uses some kind of Artificial Intel-
ligence technique, most are based on non–human–readable paradigms, such as
Artificial Neural Networks, Hidden Markov Models or Bayesian networks. There-
fore, most system–centered control systems can be considered blackbox systems.

The Neural Network house

Probably the most significant example of system–centered control is Mozer’s Neu-
ral Network house (NNH) [91]. Taking advantage of artificial neural networks
(ANN) and with the underlying philosophy that users do not want to program
even a simple VCR, this project has two different goals: to anticipate the user’s
needs and to minimize energy consumption. This is done in a four–field domain
(light, heating, water and ventilation) using the discomfort cost (a U.S. dollar
measure for dissatisfaction) and the energy cost to balance both goals.

The NNH seeks intelligence in three different domains: context generation,
goal definition and goal execution. Each is based on the previous one in order

2.1. THE SYSTEM IN CONTROL 23

to enable the house to “program itself” for the user’s benefit. This is done
by monitoring the environment, observing the actions taken by occupants and
attempting to infer patterns in the environment that predict these actions. Thus,
as in any other AmI system, the architecture is based on a context layer, in this
case relying on the environmental state and occupancy models and using ANN to
enlarge the context model with predictions about future actions (such us turning
on the shower in 30 minutes). This context information is then passed to setpoint
generators, in charge of determining the optimal value for each environmental
variable (e.g. light or temperature) [90]. That is, what has to be done in general
terms (e.g. increase the light to X). Finally, the setpoint profile is passed to the
device regulators, which are in charge of translating the global goal of the setpoint
generator into the minimum set of transformations to achieve it (e.g. increase
lamp1’s intensity 2 points and lower lamp2 and lamp3 3 points each). Setpoint
generators and device regulators use dynamic programming and reinforcement
learning.

Therefore, in the NNH, both establishing the overall goals and deciding how
they are accomplished are system decisions. In addition, the system cannot
explain its reasoning process in an understandable manner. It acts on the basis
of what happened, according to what it sees happening and believes is going to
happen. Thus, the user is completely out of the loop.

UMASS Intelligent Home

Another system–centered control approach can be found in the Intelligent Home
Project [77]. This project assumes the existence of context retrieval technologies
for identification and tracking of humans in the environment, identification of
preferences profiles (including deadlines for activities) and assimilating the occu-
pants’ preferences for parameters such as temperature. Thus, the way in which
preferences are obtained will determine how out of the loop the user is. Anyhow,
as Mozera’s et al. control was effected on an environmental variable basis, this
project focuses on appliances. Thus, the UMASS simulated environment is con-
trolled by intelligent agents that are associated with particular appliances. Each
agent has associated tasks and negotiates with other agents over the resources
when they are insufficient to meet the demands. Conflict resolution is done using
TÆms [31] domain independent task modeling framework that describes primi-
tive actions statistically via discrete probability distributions in terms of quality,
cost and duration, and tries to select the course of action that best meets the
current constraints and environmental conditions.

While probability distributions are easier to understand than weights in artifi-
cial neural connections, they are still far from being human–readable. In addition,
even though new agents can be created for new appliances (so the domain can be
expanded by developers) and the system takes into account the user’s preferences

24 CHAPTER 2. STATE OF THE ART

(and therefore may not be completely out of the loop), choosing the task to be
done is still under the System’s control.

2.1.2 Whitebox systems

While most system–centered control systems can be considered to be blackbox
systems, some of them can be said to be whitebox, either because their knowl-
edge representation is close to being human–readable or because they have been
designed to be understandable by end–users.

MavHome

Regardless of who has control over the environment, the end–user’s preferences
must be taken into account. While UMASS assumes the existence of a technology
to retrieve them, MavHome —closer to NNH— assumes that people are creatures
of habit [124] and will provide some periodicity or frequency for a number of
activities they perform in an environment. While this assumption opens the
door to automatic learning through observation, the domain must be constrained
in some way to make it feasible. In this sense, while NNH restricts the automation
to just certain environmental variables, MavHome assumes that there is only one
inhabitant in the home.

Observations of inhabitant behavior are encapsulated in even–based chains of
a Hierarchical Hidden Markov Model (HHMM) in which actions and rewards are
tied to the transitions between states in what is called a Hierarchical Partially
Observable Markov Decision Process (HPOMDP) [37][115]. In addition to the
HPOMDP, the observed data are also used to train a prediction algorithm and an
episode membership algorithm. These algorithms are used by a decision–maker
process to try to locate where in the HPOMDP model the inhabitant’s activities
are currently engaged. Once successful, the decision–maker looks ahead and
decides on an action, if one exists.

Two of the problems of learning from what users do are that users cannot
do all they would like to automate (e.g. turn all the lights at the same time),
nor do they want to automate everything they do (e.g. watering the plants). In
order to try to solve this problem, MavHome presents a user–centered subsystem,
employing a rules engine for maintaining knowledge of user preferences, safety
and security rules and constraints (such as specifying not to automate a particular
item).

While this rules engine can be seen as a change to the underlying philosophy,
MavHome uses it as another input mechanism. Thus, the rules are used as a
feedback mechanism to train the system (trying to learn what to do instead of
reading what to do). That is putting the control back in the system. Additionally,
even though HMM may have an interpretable graphical representation, being

2.1. THE SYSTEM IN CONTROL 25

thus interpretable, they are not strictly readable. Thus, while presented here
as a whitebox system, MavHome can be considered to be somewhere between
blackbox and whitebox systems, choosing one or the other according to whichever
system it is compared.

PRIMA

Another interesting approach to System–centered control is PRIMA [15]. While
its goal is to address the problem of supervised learning in intelligent environ-
ments, PRIMA defines two qualities that a machine learning Intelligent Environ-
ment should have: an understandable representation and reasoning and supervi-
sor corrections (feedback). For the latter, further on, three types of feedback are
distinguished: action corrections, deletions and preservation.

To achieve this, the PRIMA context model consists of situations, roles played
by entities and relationships between entities. It is a non–Bayesian model inspired
by concepts in planning and knowledge representation used in robotics [26]. The
situation is the cornerstone of the model, representing a particular state. Roles
are assigned using acceptance tests comparing some entity’s property with pre-
defined values (e.g. a person is playing the “Lecturer” role if she stands next to
the presentation screen). Entities, on the other hand, are defined as predicate
functions on several entities playing roles (e.g. the identity relation may be cre-
ated by comparing the names of two entities). A situation changes when there is
a change in the role of an entity or in the relation between two entities. Thus,
a network can be constructed using the situations as nodes and the changes in
roles and relationships as the arcs connecting different situations.

System behaviors are directly associated with the situations of the network;
therefore, since there is only one situation active at any moment, feedback is a
straightforward process. An interesting feature of this system is what is called
situation splitting and corresponds to different feedbacks for a single situation.
Thus, while the supervisor perceives two situations (one for which she gives a
positive feedback and another with a negative one), the system only perceives
one. The situating splitting is conducted as a classification process, taking into
account all the roles and relations of the training examples that were not con-
sidered relevant to defining the actual situation. While this is highly useful for
automatically adapting predefined rules, allowing the system to be fine tuned to
the user’s desires, we believe that a context model based on roles and relations
is oversimplified and may lead to situations in which the relevant element for
splitting is left behind.

¤
In conclusion, system–centered control systems aim to provide the environ-

ment with the necessary skills to infer what users want and do it for them. This
kind of approach presents two main drawbacks: understanding users’ preferences

26 CHAPTER 2. STATE OF THE ART

and dealing with “noisy” automation domains. Understanding the user’s prefer-
ences just from observation has the problems stated by Youngblood et al. [124]:
users not being able to do all they want to automate and not wanting to au-
tomate all they do. Leaving these constraints aside, the amount of variables to
analyze in unconstrained domains can make the learning process very difficult,
probably requiring more training examples than the user is willing to provide,
meaning that pruning the variables to be analyzed becomes a must. In this sense,
we believe that approaches restricting the automation domain to specific tasks
(e.g. lighting or heating) such as the NNH may fit best in real spaces than those
considering special context cases (e.g. only one inhabitant in the environment)
such as MavHome.

On the other hand, even the simplest scenarios (such as automating the win-
dows to control temperature) may depend on more variables than expected, lead-
ing automation to fail in many situations. As an example [66], opening a window
to control temperature may not be the right thing to do if it is noisy outside,
there is a strong smell in the street, someone is allergic to pollen and the pollen
count is high, it is raining or the windows produce glare on the TV. Even though
the system considers all these variables in making the right choice, Intille and
Larson point out a fundamental problem: the more complexity the algorithms
consider when making decisions, the less transparent those decisions will be to
the home owner.

Finally, while this kind of “opaque intelligence” (that the user cannot under-
stand, nor explicitly change) may be well suited for dealing with general out–
of–sight problems such as a presence simulator for vacations or saving energy to
heat water, having people willing to share their control over visible things with
an autonomous, incomprehensible environment, even more in their homes is, at
least, debatable.

2.2 The System under control

2.2.1 Centered on the programmer

In order to allow the environments to evolve as new ideas, technologies or au-
tomation domains mature, some systems have decided to give the control to the
developer. That is, instead of providing a particular automation domain, they
provide some high–level mechanism to easily program new applications in the en-
vironment. Since applications are not fixed in these kinds of systems but can be
developed by different programmers, an a priori blackbox/whitebox classification
is difficult and will depend on the particular applications that are programmed.

2.2. THE SYSTEM UNDER CONTROL 27

ParcTab

At Xerox Parc, one of the pioneering research centers in Ubiquitous Computing,
they defined the PARCTAB system [121], a prototype developed to explore the
impact and possibilities of mobile computation in an office environment. Orig-
inally, the system was based on three types of devices of different sizes: tabs,
pads and boards. Over this system, different context–aware applications where
programmed but, of special interest for this work are the context–triggered ac-
tions [109]: Active Badge [120] based “Watchdog” and tab–based “Contextual
Reminders”.

Context–triggered actions are simple IF-THEN rules used to specify how
context–aware systems should adapt by encoding a context triggering an ac-
tion. As an example, the watchdog program monitors Active Badge activity and
executes Unix shell commands in response. A user configuration file (containing
a description of Active Badge events and actions) is loaded on start–up. Entries
of the configuration file, codifying the IF–THEN rule, are of the form:

badge location event-type action

where badge and location are strings matching the badge wearer and current
location, event–type is a badge event type (i.e. arriving, departing, settled–in,
missing, or attention) and action a Unix shell command. As an example, a rule
for playing a rooster sound whenever anyone makes coffee would be encoded in
the following way:

Coffee Kitchen arriving ‘‘play -v 50 \~/sounds/ready.au’’

Even though this system was one of the pioneers of Ubiquitous Computing, it
already presented some very interesting capabilities and can be used to point out
some limitations. First, despite being designed for use by programmers, it uses
the natural IF–THEN structure for creating behaviors. In addition, the actions
were end–user oriented; since most of its end–users were programmers, a Unix
shell script seems adequate and understandable for all of them.

Secondly, it allowed different users to have different preferences over the same
objects, each carrying their own preferences in personal servers, thus tackling
one of the most fundamental problems of Intelligent Environment automation:
their multiple population. On the other hand, the simplicity of the language
did not have the necessary flexibility to address complex problems: its triggers
were fixed to a badge, location and event type (one of each not combinable with
other context information) and, secondly, even though the architecture allowed
different preferences to coexist in the environment, no mechanism for coordinating
conflicting preferences was supplied.

28 CHAPTER 2. STATE OF THE ART

Ubiquitous computing environment Operating Systems

Some systems have decided to adapt the classical computing paradigm to the
intelligent environment (a particular computing system). That is, by creating an
Intelligent Environment Operating System (OS). This is the case of Gaia [108]
and PlanB [7], each of which present a different approach. Thus, while Gaia
provides an ad–hoc operating system, with numerous modules specially designed
to deal with ubiquitous computing problems (such as a presence service or a
context service), PlanB focuses on adapting a Unix–based operating system to the
Ubiquitous Computing domain, being able to use all the already existing potential
of said OS to create context–aware applications. In this case, in particular,
proving the potential of simple Unix functions such as grep or pipe to create
powerful applications when the underlying OS is file–based.

In this sense, while both approaches have many features in common, one fo-
cuses on designing an OS specially adapted to the Ubiquitous Computing domain
while the other tries to maintain all the capabilities (and already known func-
tionalities) of a previous OS, adapting it to the Ubiquitous Computing domain.

This kind of approach, while extremely powerful to enabling the evolution
of the environment, has the same problem as most developer–centered control
systems: if a control structure is not carefully designed and imposed on every
programmer, the environment may end up populated by multiple applications,
each of which (programmed by a different programmer) will have its own ways to
control, adapt to and communicate with the end–user, leading to the application–
dependent problem posed at the beginning of this work.

Gator Tech

As with most developer–centered control systems, the Gator Tech Smart House [63]
aims to build an intelligent environment that is able to evolve as new technologies
do. Thus, they offer a development environment with various tools to help create
smart spaces. This development tool is designed for expert programmers and
offers a context builder to visually associate behaviors with context in the form
of a graph, a service composer to browse and discover services as well as compose
and register new ones, a debugging tool and a simulator.

While this kind of approach allows the house to evolve and incorporate new
domains of interaction, it leverages the control of developers without increasing
the end–user’s control. In addition, allowing developers to create their own appli-
cations (often needed) leads to a multi–author application populated environment
in which the user has to deal with different control paradigms for each applica-
tion (according to who its programmer was). That is, the application–dependent
problem posed at the beginning of this work. This problem is common to many
systems (such as Bardram’s java context awareness framework [9] or Dey’s et al.
Toolkit [34] for the Aware Home [72]) providing high-level tools for creating ap-

2.2. THE SYSTEM UNDER CONTROL 29

plications such as toolkits, frameworks or APIs in which services are provided to
communicate with the environment but the coding and resulting interfaces are
up to the developers. This application–dependent problem can be seen, in the
Gator Tech house, in the multitude of independent applications populating it:
smart blinds, smart bed, smart closet, smart laundry, smart bathroom, smart
mirror and so on.

ReBa

As part of the OXYGEN project at MIT, Kulkarny proposes a Reactive Be-
havioral system for the Intelligent Room [16] (ReBa). This system was born
as an alternative to a previous reactive rule–based system (developed for the
same project) codified in JESS [41], a java language based on facts and rules
implementing the Rete algorithm [38].

The new system, ReBa [75], is based on associating reactive actions at the ac-
tivity level. The base of the system is the Behavior bundle, a group of reactions
associated with a particular activity. Behavior bundles are organized hierar-
chically in a dependence tree in which, for example, the Brainstorming bundle
depends on the Meeting bundle, which in turn depends on the Occupied bundle.
Therefore sub–contexts of a particular context are defined in the tree as different
branches of the same node.

Through this tree, behavior agents (or bundles) form relationships with each
other to prioritize themselves. This prioritization is translated in the running sys-
tem into two different relations among bundles: overriding and depending. The
depending relation means that a particular behavior bundle cannot be activated
(even though the context matches) if the bundle on which it depends is not active.
Thus, the Meeting bundle cannot activate if the Occupied bundle is not active.
If an activity is performed within another, the bundle corresponding to the one
started second activates on top of the first, overriding it. Since similar actions
in different bundles are given the same name, one bundle can inform the other
that one of its actions is suppressing one of the actions of the other. Behavioral
agents are implemented as Metaglue [105] agents, a programming language for
multiagent systems.

Kulkarny states that making the design of new behaviors easy for all users is a
daunting task. But making the design of new behaviors easy for those users com-
fortable with programming —say, other Intelligent Room developers— is much
easier [76]. We believe that behaviors associated with an activity level are too
personal to be tackled by a professional developer. Personal environments being
what Kidd et al. call free–choice environments [72], the amount of activities can
be extremely large and dependent on the inhabitants of the environment. In ad-
dition, forcing the association of behaviors to activities may not be specially well
suited to dealing with some preferences naturally associated with other domains,

30 CHAPTER 2. STATE OF THE ART

such as the preferences of a particular person for a particular devices (despite the
activity) or a general domain (e.g. energy saving).

Considering the lack of control a user may suffer in an environment pro-
grammed by third parties, ReBa provides a mechanism through which users can
specify macros. While we believe this is a good step forward, user–defined macros
are not integrated with the rest of the system but have to be invoked when de-
sired. In addition if users find that the system is not performing as desired, they
can deactivate it, leaving just the macros. This deactivation mechanism is a good
feature of this system but since it requires choosing between “everything or noth-
ing”, a low performance of one bundle may lead to a loss of all the advantages of
the rest.

RuleCaster

RuleCaster [12] is an interesting example of a developer–centered control system.
While its main focus is on freeing programmers of the low–level details of a sensor
network when writing applications (allowing them to build applications for the
network as a whole rather than for each node of it), it presents some interesting
features in relation with the programming language too.

Firstly, applications are expressed as rules, pointing out a requirement that
will be central in end–user–centered control systems: applications are understood
both by humans and computers. Each application is composed of several blocks
of rules, each of which can specify space, time and state constraints to be satisfied
in order to evaluate the rules inside the block, where the time specifies how the
conditions of the rules have to be satisfied (e.g. simultaneously). Each rule is
composed of a goal and some conditions. The goal can either be an action or a
state change. If a state rule is satisfied, the new state is added to the current
network state (associated to the space of the rule block) e.g. if a rule with goal
“STATE hazard” is satisfied in a rule block with “SPACE(door)”, all rule blocks
with “STATE(door:hazard)” will be activated.

Even though this system is focused on automatically distributing programs
along the nodes of a sensor network, it provides some good ideas in relation
to programming languages, such as using a human–understandable language or
associating rule blocks to particular domains (states in this case). Nevertheless,
its rules are not provided with triggers, making them unsuitable to expressing
some contexts. In addition, associating rule blocks just to a state makes it difficult
sometimes to populate the environment with several behaviors codifying different
preferences for the same domain.

SmartOffice

The SmartOffice [45] presents a framework for coordinating and programming the
different modules of an Intelligent environment. Modules communicate (using an

2.2. THE SYSTEM UNDER CONTROL 31

XML–based protocol) with a supervisor acting as a resource server. The supervi-
sor is programmed using a rule–based language with two types of rules: backward
and forward. Backward rules are programmed in PROLOG while forward rules
are programmed in Clips.

Not all the agents should be aware of the resources given by other modules;
thus, instead of asking other modules for their particular services, they can ask
the resource manager for particular information (e.g. user’s location). This ap-
proach is similar to that of other blackboard-based systems such as Haya’s Black-
board [59], in which information is stored in a common repository so applications
can make use of it without knowing who generated it or how.

One of the characteristic features of this system is that each agent manages a
specific room function, following Coen’s intent [22], pushing messages in relation
with their specific function. Thus, a “gesture–detector” agent may have a rule
that, on an “ON-gesture” recognition, it pushes a “light–command” message.
The “light” agent may have another rule that, on “light–command” messages,
it pushes a “light” message with an ON value. In this manner, push messages
are propagated through the agent network, using the resource manager to hide
the details of the generating module and low–level reasoning. Backward rules, on
the other hand, are used to propagate the pull messages through which different
modules ask for contextual information.

While this system presents several advantages, context generation and appli-
cation programming are treated at the same level (the former as backward rules,
the latter as forward rules). This approach leads to a system split into modules
(each of which has some context and some “code”) instead of into process layers
in which information and applications are clearly separated. In addition, forc-
ing each module to manage specific functions eases system communications, but
forces programmers to split their application into the different modules it uses.
In other words, while programmers may have a global idea of their programs,
they have to split it and distribute it along the network in order to program it
(this is one of the problems tackled by RuleCaster [12]). While this may have
its drawbacks for professional programmers, it is unacceptable for end–user pro-
gramming.

Implicit Human–Computer Interaction

Another approach to developer–centered control is that of A. Schmidt [110], look-
ing for a way to specify what he called Implicit Human–Computer Interaction
(IHCI). That is, context–aware reactions. This was done in the form of a rule
with a context and an associated action codified in an XML–based language.

This language was designed to introduce the concept of IHCI and meet the
requirements of certain projects. Thus, it has some flaws such as, for example,
conditions must consist of a variable and a value. This means that conditions

32 CHAPTER 2. STATE OF THE ART

cannot be built to compare the values of two variables or to express generality
(e.g. “when some variable...”). Nevertheless, some of the characteristics of the
language have to be considered. Firstly, the context was defined as a group of
variables (e.g. pilot.on or sensor module.touch) wrapped in a context that could
be defined as “one”, “all”, “none”. Thus, through the “none” wrapper, contexts
could be defined as a negative statement. In addition, of special interest is the
way in which actions are associated to contexts. Contrary to most systems,
the context–action relation is not fixed in IHCI, but can be triggered when the
context is detected, when it is no longer valid or while it is active with the
ENTER, LEAVES and WHILE relations. We believe that these kinds of relations
should be considered when designing a control system in order to measure its
expressiveness.

Active Database Management Systems

Some researchers have decided to use an Active Database Management System
(ADBMS) approach and apply it to Intelligent Environments. These provide
interesting features regarding the potentials of the language, since they inherit
many capabilities from the well-studied field of ADBMS. This is the case of
Augusto and Nugent’s Temporal Reasoning Language [6]. This language is based
on Event Action Condition (ECA) rules. One of the greatest potentials (in our
point of view) is that the language is founded on Galton’s proposal to represent
events and states, inspired by natural language-based research [46], which brings
it closer to an end–user centered control system.

The language relies on three blocks, ON, IF and THEN, and a series of pred-
icates. The most important are Occur and Holds for events and conditions,
respectively. In addition, the language is enriched with time reasoning, con-
sidering both intervals and instants and events (E) and states (S). Therefore,
Occur(E, i1][i2) denotes the occurrence of event E in the instantaneous time ref-
erence represented as i1][i2 were i2 = i1 +1. On the other hand, Holds(S, [i1, i2])
denotes that the state S holds in the durative time reference [i1, i2] were i2 > i1.

This language presents some very interesting features, temporal algebra op-
erators, complex events and negation (treated as negation as a failure), among
others. These features served as an inspiration for this work and are discussed in
more detail in Section 4.1.4. Conversely, regarding the language, while its power
to describe most scenarios cannot be denied, temporal concepts are unavoidable
in describing anything. Everything must be described in terms of temporal re-
lations making the use of this language in an end–user centered control system
(according to a study conducted by Dey et al. [33]) more difficult . Dey et al.
observed that 56.4% of all the rules involved objects or the state of objects, 19.1%
activities, 12.8% locations and only 7.6% time. Thus, to deal comfortably with
7.6% of the tasks, this language adds the complexity of dealing with time to all

2.2. THE SYSTEM UNDER CONTROL 33

of them.

CONON

Regarding the use of rule-based languages for expressing desires in the form of
reactions to context states, some projects have put this mechanism to other uses.
This is the case of CONON [119], an OWL-encoded context ontology. CONON
studies the use of logical reasoning to check consistency of context information
and infer high–level context from low–level context. To do so it uses ontology
reasoning rules, defined in OWL, to describe properties such as Transitive or in-
verseOf. Thus, if the property location were defined in the ontology as Transitive,
knowing that Wang is located in the kitchen and the kitchen is located in the
first floor, the system would reason that Wang is also located on the first floor;
therefore the consistency of context information is acquired automatically. Addi-
tionally, in order to provide a mechanism for extracting high-level context from
low–level information, the system allows for the creation of User–defined context
reasoning rules in a manner that can define a rule of the type: “If Wang is located
in the bedroom and the bedroom light level is low and the bedroom drapes are
closed then Wang is sleeping”. We believe that this property is also desirable
in end–user–centered control systems so end–users can not only program their
environments but also enhance them with new context information with which
to work.

To achieve this, CONON relies on the importance of a descriptive event al-
gebra, adding to the traditional set of operators (AND, OR, ANY) an extra one
to compose more complex events (sequences, aperiodic and periodic) [113].

In the same line of work, the OCP system, developed at the University of
Murcia [98], involves “middleware which provides support for management of
contextual information and merging of information from different sources”. Based
on Semantic Web technologies, a context inference mechanism was developed
based on rules such as do–if rules or do–for–all rules. The inference is carried out
using the SWRL guidelines [3] and the Jena platform as the inference engine.

2.2.2 Centered on the end–user

Both system–centered and developer–centered applications are normally charac-
terized by having the end–user “out of the loop”, in the sense that a third party
decides the choice of which domains are automated or what the relevant factors
for automating them are. In order to leverage the control end–users have over
their environments, end–user centered control systems provide alternatives for
end–users to program their environments, choose what domains they want to
automate, how they want to do it or simply take or leave the system’s advice.
Either way, those systems are characterized by undoubtedly having the human

34 CHAPTER 2. STATE OF THE ART

“in the loop”

Blackbox systems

While most end–user centered control systems are whitebox, there are some in-
spiring examples of blackbox solutions.

Changing Places/House n

The first example of blackbox end–user centered systems is a great example of
the shift in philosophies between system–centered and end–user centered control
systems (even when the technological approach may be quite similar): in Intille’s
and Larson’s own words, the shift from the “controlling” home to the home that
is supportive [66].

House n is a project for creating supportive technologies that help people
to create and customize environments, live long and healthy lives and integrate
learning into their everyday activity in the home. Thus, their vision is not that
of system–centered control systems in which the computer technology is “ubiqui-
tously and proactively” managing the details of the home but, instead, they look
for a system able to present information to the user at the right time and place
so that she can learn and use it to improve her life. That is, empower people
with information that helps them make decisions.

As an example of this implementation, they have built a PDA–based pro-
totype to help users prevent congestive heart failure (CHF). The system uses a
Bayesian framework to integrate evidence of CHF, as well as to choose meaningful
questions to ask users in particular contexts. When users pull out their PDAs,
a simple question is prompted and, according to Intille and Larson, quickly an-
swered by users with almost no interruption since, they argue, this is a “point of
behavior” in which the user has already made a decision to stop whatever he or
she was doing [66]. This information is added to the preventive diagnosis profile
and when a progression towards a CHF is found, the person is notified.

We believe that this kind of approach, in which the system is only used to
inform the user, may be quite useful and can indeed help people to be aware of
their environments and be more sensitive about the effects of their actions. The
example of displaying information on the refrigerator as somebody approaches it
(comparing the average time it is left open with the average time of the 10 closest
neighbors [65]) is quite inspiring in this sense.

On the other hand, users may want to automate certain tasks and, no matter
how much someone wants to teach them, showing information about how they
must do them will hardly satisfy many expectations. In addition, any communi-
cation between the system and the user is a potential interruption (e.g. Microsoft
Paperclip) and, even choosing “points of behavior” like House n, may become an

2.2. THE SYSTEM UNDER CONTROL 35

unwanted and intrusive practice. Finally, when recommendations are not clear to
the user, a blackbox reasoning process such as a Bayesian network does not allow
the user to scrutinize the system and understand why the recommendations were
made.

A CAPpella

Other examples of blackbox end–user–centered systems are those of programming
by example. While the end–user is the one in charge of giving the example, un-
derstanding the particular action of the environment requires understanding the
internal processes through which the system considered the particular situation
to be another instance of the former example.

This is the case of a CAPpella [32], a programming by demonstration sys-
tem (PBD) that uses the Dynamic Bayesian Network framework equivalent of a
Hidden Markov Model to support activity recognition. The key idea of a CAP-
pella is that it empowers recognition by utilizing the users’ natural abilities to
understand their own behaviors. As stated in [32], while defining a meeting may
be a daunting task for a user (and definitions among users may be different),
recognizing a meeting when seeing one is a straightforward process.

In this sense, when the user wants to create a context–aware behavior, she
starts the a CAPpella recording system (software running on a machine). While
a CAPpella is running it captures data form all the sensors that are available
to the system. When the user is finished, she stops a CAPpella recording and
trains it on the recorded data. To do this, a CAPpella shows the user the events
detected and a video of the recorded period. The user can select the streams of
information she considers relevant. When the user repeats this process a number
of times (over a period of days or weeks), the ability of a CAPpella to recognize
the behavior with new data is improved.

Allowing the user to select the relevant events from the recording and using
them to train improves the accuracy of the system and reduces the number of
training examples needed. This work can be tedious, however, and has to be
repeated a number of times before the system learns. In addition, while this
approach allows users to specify which things should be automated (and which
not), it does not have a solution for the other problem of trained–by–observation
systems: users cannot physically do all they may want to automate.

Whitebox systems

Finally, most end–user centered control systems can be considered to be white-
box systems. In this sense, the vast majority of them are focused on end–user
programming. To achieve this, some of them present particular UIs while others
focus more on a language. As we will see, one of the characteristic features of

36 CHAPTER 2. STATE OF THE ART

such systems is the domain they are intended for: while some of them restrict
the programming domain to a particular space or task, others have been designed
to deal with different domains of automation. The simplicity and flexibility of
the programming solutions reflects whether they focused exclusively on a novice
population, an experienced one, or whether they tried to deal with both.

Intelligent Office System

Following a path somewhat close to that of the House n project, the Intelligent
Office System [20] explores the tension between user control and proactive services,
paying special attention (contrary to the House n project) to supporting user
comprehensibility of system behaviors. Thus, one of its main requirements is
scrutability, in some way inspired by McFarlane and Latorella’s work [71].

The system is based primarily on a context–retrieval process (sometimes gath-
ered automatically, sometimes by hand, through a UI, by the end–user e.g. “I’m
in my office”). Once a context history has been retrieved, a set of rules is induced
which represent the user’s preferences. Based on these rules the system provides
suggestions to the user when the environmental context changes (e.g. “shall I
turn the fan off?”). Suggestions can be accepted or rejected by the user in a UI
that also serves as a direct control mechanism for acting remotely on devices.

In order to provided the desired degree of scrutability, the Intelligent Office
System uses fuzzy decision trees [67] for inference. The rationale is that the rules
governing the system’s proactive behavior can be expressed symbolically which,
in turn, enables users’ understanding of these rules. In this sense, this system
is limited to a small domain of environmental variables (i.e. temperature, noise
level, light and humidity) and devices (i.e. window fan and heater). Continuous
changes in the environmental variables are mapped onto a fuzzy discrete category
(e.g. while 14◦ is 1.0 cold, 20◦ is 0.5 cold, 0.5 mild). Since the states of the
different devices are associated (through observation of context–history) with the
continuous values of the variables (e.g. 23◦, 55 noise level, 30 humidity and
52 light is associated with window closed, fan off and heater off), they can be
associated with the fuzzy discrete values of the variables (e.g. there is a 0.6
probability that the window is closed, the fan is off and the heater is off). Based
on this information, the system prompts a suggestion when the probability of
being in a state exceeds a proactive threshold and some device is not in the state it
should be. The control GUI, besides prompting suggestions and allowing the user
to directly control the devices, allows the user to change the proactive threshold,
the boundaries used to separate different categories (e.g. mild from hot), see
the rules generated by the system and add her own rules. End–user generated
rules are always of the type “When temperature = V AND Noise Level = W

AND Humidity = X and Light = Y and Window = Z THEN action”, where
V ,W ,X,Y and Z are either the discrete values of the variables (e.g. cold, mild

2.2. THE SYSTEM UNDER CONTROL 37

and hot for the temperature) or the value any and action altering the state of
one of the devices.

In conclusion, the Intelligent Office System provides an interesting example
of balance between system–centered and end–user–centered control in which the
end–user is always on top of the command chain. Nevertheless, it offers a very
restricted domain of automation and language expressivity for end–user generated
rules.

Alfred

Alfred [44] is a natural end-user programming interface for Intelligent Environ-
ments developed at MIT. This system is part of the Intelligent Room Project [57]
and designed as the heir to Rascal [43] and ReBa [76]. It is intended to allow
developers to deal with adaptive and reactive components in Intelligent Environ-
ments.

Alfred is designed as a multi-modal macro recorder specially designed to be
programmed through natural language [21]. Through Alfred, users can verbally
ask the system to record a new macro. Macros are primarily spoken commands.
An example would be Turn on the main lights. Open the drapes. Turn on my
desk lamp. Say ”good morning.” Stop recording.. After a macro is recorded
the user assigns a name to it (e.g. Good morning, computer). Every time the
user names the macro, the system executes it. In addition, users can add some
hardware triggers to the macro or call other macros from within it (i.e. When
I press this button [user presses a button] run the “Good morning, computer”
sequence). Despite all this, macros are simple task sequences lacking explicit
conditionals.

While this system is perfectly suited to enhance direct interaction and applies
some valuable ideas for multi–modal interaction, it lacks the potential to design
more complex context–aware applications, mainly the lack of conditionals.

e-Gadgets

In the e-Gadgets project and over the Gadgetware Architectural Style (GAS) [70],
Mavrommati et al. [81] have designed a mechanism through which to “program”
in-home devices. GAS includes a plug–synapse model describing objects as enti-
ties whose abilities can be inter–associated. Thus, people can associate compati-
ble plugs of different entities to create a composition of the respective services and
functions (i.e. synapses). These synapses can be visualized by the user, allowing
for a better understanding of the Intelligent Environment’s insights in order to
deal with one of the requirements of the system “The application behavior should
not surprise the user. This requirement is common to many other systems de-
scribed in this Chapter and points to the necessity of debugging tools, as well
as of mechanisms to make the users feel in control of their environment. As an

38 CHAPTER 2. STATE OF THE ART

example to better understand the system, the condition ”the book is on the desk”
will be coded by plugging the T–plug of the book entity to the proximity ability
of the desk entity.

While it poses an interesting programming paradigm, we believe that connect-
ing elements is not a natural programming method (see Section 3.3.2). Addition-
ally, this work is based on the concept of object as the main programming block.
While we completely agree with this, as we explain in Section 3.2.2, we believe
that some other concepts such as activity or time may be used for programming
too. Basing the programming language on connecting the abilities of different
objects has forced e–Gadgets to model some activities as abilities of the objects.
We believe that this approach may be misleading in an end–user programming
scenario in which the user cannot remember which object holds which activity.
This problem is subsumed by e–Gadgets by providing a transparent view of each
object’s capabilities, so the user can scrutinize the system and look for what they
need. Still, we believe that making a model closer to the end–user view will ease
this process.

In addition, conditions may not only depend on the relation between two
entities, but it may also depend on many other factors, such as time or the
relations between relations or properties (e.g. “the locations of Manuel and Pablo
are different”, “a light is brighter than another” or “a person who knows Pablo
but not Manuel”). Finally, in this approach, the configuration of the system is
treated as a whole, making it difficult to coordinate preferences from different
users.

MediaCubes

In the University of Cambridge’s AutoHAN project [14], a range of programming
languages for home automation have been explored. Firstly, Iota.HAN [11], a
concurrent XML scripting language, was designed as a domain–specific language
to express device behavior within the context of Home Area Networking. Being
designed as a system programming language, aimed at experienced programmers,
it corresponds to the developer–centered control of our classification.

Within the same project, Lingua Franca [54] was developed as a framework
facilitating the use of multiple scripting languages. Taking the idea of Iota.HAN
and trying to tackle its unsuitability for end–users, they developed Mediacubes,
a TUI similar to the mediaBlocks [118] (a series of cubes used to move media
from one place to another) but with the major difference that they provide a
programming interface, rather than an interface to a particular functionality.
More than an interface, the MediaCubes can be considered a language supported
by Lingua Franca. Thus, programs are not constructed by using words or graphics,
but by manipulating physical objects [54]. One of the problems of such a language
is that it is restricted to a particular UI, in this case the cubes, that may not be

2.2. THE SYSTEM UNDER CONTROL 39

well suited for all kind of situations. In this sense, Lingua Franca supports two
other languages that can be translated and used indistinctly with MediaCubes, a
script language and a graph–based GUI language, but they are not as well suited
for end–users as the MediaCubes.

In order to build a program, cubes are combined dynamically. Once two
faces touch, the cubes may be separated without removing the association. This,
while allowing the physical barriers inherent to the model (such as the physical
impossibility of making three faces of three cubes touch each other) to be broken,
may make the process more complicated to the end–user since we can say it is not
a WYSIWYG (What you see is what you get) UI and a cube may be connected to
another while you are seeing them in two different corners of the table. Besides
the interface related problems, MediaCube is based on the script language of
Lingua Franca and relies on a “Do–When” cube to specify causal relationships.
This particular cube codifies a script within its four faces: Do, When, Whenever
and Script. The script does what is connected to the Do face when (or whenever)
whatever is connected to the When (Whenever) face happens. This script can
be used as an event to connect other cubes by connecting its Script face to the
Do, When or Whenever faces of other cubes. Thus, it is possible to nest scripts
to compose more complex programs. The Script face of the outer program is
then connected to a “Submit” cube in order to load the program into the Lingua
Franca database. MediaCubes is a language for generating programs, but it
cannot be used to check, modify or delete any already running programs.

As an example, let us consider a simple program to codify “When I go shop-
ping, if I run out of fish, remind me to buy fish”. To do this we need two
Do–When cubes (A and B), and some other cubes for the events. The end–user
should code this program by combining the cubes in the following manner (we
use the notation X:Y–A:B to express “face Y of cube X is connected to face B of
cube A”): A:Whenever–C:OutOf/fish A:Do–B:Script(B:When GoShopping B:Do
Order/–).

While this project provides a good source of inspiration, such as having a
base language that can be generated from other places (other languages in this
case) or providing an end–user interface to program the environment, we believe
firstly, that constraining the language to a physical interface, while well suited
for particular scenarios, will fail in many cases (in which the physical objects
are not at hand, or the amount of different domain elements is too large, for
example). Secondly, that trying to untie the TUI from its physical barriers to
surmount some of its problems may be confusing to end–users, since it breaks
their preconceptions about physical objects. Finally, and most importantly, while
the interface may be well suited for end–users, a script piping language may not
be natural to most of them and may be the true bottleneck of the system.

40 CHAPTER 2. STATE OF THE ART

SiteView

Also exploring the possibilities of TUI, SiteView [10] offers a limited program-
ming TUI that focuses on a small control domain. This interface was created
with Papier–Mâche [73], a toolkit for rapidly creating tangible interfaces with
computer vision and RFID. Nevertheless, while SiteView focuses on controlling
a few elements (light and thermostat) in a single room, based on just three
conditions (day, time of day and weather), it offers some interesting views of
end–user–centered control.

Firstly, despite the strong limit on the automation domain, more than 40
tangible elements were created, revealing some limitations of an icon–based TUI
approach. Some good ideas were also put forth. Primarily, SiteView provided an
interface for accessing and modifying existing rules. This feedback was displayed
to the user as an English–like sentence, supporting a more transparent user under-
standing of system behavior. Secondly, the UI provides an environment display
that can be used to see the effect of a rule (i.e. How will this rule change the
environment) as well as to check the effects of all rules in some conditions (e.g.
How will the system react to a rainy Sunday morning). Thus, leaving aside the
expression limitations of the system, SiteView provides good ideas for scrutability
and testing, very important issues in inhabited end–user programmed spaces.

iCAP

Another example of an end–user–centered control system is iCAP [33], designed
to allow end–users to visually design context–aware applications. iCAP does this
by providing an UI to create if–then rules by dragging and dropping elements into
a matrix in which the vertical dimension represents the AND operator and the
horizontal dimension the OR operator (this is based on Pane and Myers’ match
form scheme [100]). Elements are provided by the system and can be created
by the user through widgets by selecting a name, a category, an icon and a type
(binary or 1–10 range). In addition, iCAP supports spatial relationships (e.g.
“adjacent room”) and temporal relationships (e.g. “5 minutes after I turn on the
lights”).

While this system presents many advantages, it was designed, like the Medi-
aCubes, to support a particular interface that may or may not be suited to every
possible scenario. In addition, while this interface is very well suited to novice
users, it may not be so to more expert users. As of this writing no further steps
have been taken to extend the language to other interfaces, assuming that the
rules may be generated with other UI, more suited to expert users. The language
has no events, so “When the TV is turned ON, if the light is ON, then turn OFF
the light” will be expressed as “If the TV is turned ON and the light is ON, then
turn OFF the light”, leading to the unwanted reaction of turning OFF the light
when the user turns it ON while watching TV (see Section 4.1). In addition,

2.2. THE SYSTEM UNDER CONTROL 41

it lacks powerful algebra to describe composite events or consumption policies
so, even assuming a more powerful UI, the underlying language will still have
limitations.

ACCORD

Accord [107] has developed a model in which every device in the environment is
represented. While this is the first step towards perception, presented by most
systems centered on developer control, Accord aims to allow the user to benefit
from it too. To do so, it presents a Tangible User Interface (TUI) based on jigsaw-
like pieces that can be piped to create control structures. This representation
corresponds to their main requirement for simplicity. Thus, as they state, “Our
emphasis is on reconfiguration rather than programming and we do not seek the
richness of programming expression allowed by iCAP”.

Most of the jigsaw pieces represent particular devices, acting as events, inputs
or outputs. As an example, piping the doorbell, the camera and the mobile phone
jigsaw pieces will make the system send a picture of the entrance to the mobile
phone when somebody rings the doorbell. Some other pieces codify high–level
events or more complex actions. Thus, there is a jigsaw piece codifying a “grocery
alarm” associated, possibly, with a barcode reader in the trash, and another piece
for “adding to a list”. Piping the grocery alarm to the adding to a list to the
mobile phone jigsaw piece will make the system send a message to the phone with
the shopping list every time a particular food runs out. In addition to the TUI,
the jigsaw metaphor has been also implemented as a GUI.

While this is a clear example of end–user–centered control, it acquires the
required degree of simplicity without considering the flexibility to deal with more
complex scenarios. Thus, while probably well suited for novice users, it presents
strong expressiveness limitations for adapting to the growing skills of more ad-
vanced end–users, breaking Csikszentmihalyi’s [27] notion of flow of motivational
factors in learning (see Section 3.2.2).

CAMP

CAMP [116], on the other hand, tries to balance simplicity and flexibility, allow-
ing users to build more complex control structures to control their environments.
Instead of an iconic UI like Accord’s jigsaw, CAMP uses the Fridge Magnet Po-
etry metaphor, based on word tokens that can be arranged and combined to
build a “poem”, i.e. a sentence codifying a control statement. This metaphor is
implemented as a GUI to assist users in searching for a word among the pieces.
In addition, CAMP does not require end–users to use any particular structure of
speech, allowing them instead to express their sentences in their own terms, only
constrained by the existing pieces.

42 CHAPTER 2. STATE OF THE ART

Once the end–user has composed a sentence, the system automatically trans-
lates it into instructions and parameters for devices, using a custom dictionary to
reword, restructure, decompose or replicate the user’s terms. This translation is
prompted in the interface as feedback to the user, making the debugging process
easy and natural. Thus, “Jim or Jane in the kitchen” is shown as “[Jim in the
kitchen] and [Jane in the kitchen]”.

CAMP is built atop the INCA infrastructure [117], an abstraction layer sup-
porting interfaces for capturing and accessing information, components for storing
information, a way to integrate streams of information and the removal of un-
wanted data. Thus, while the expression capabilities of CAMP are much wider
than those of other systems, such as the jigsaw pieces of Accord, its domain is
restricted to programming capture applications such as “Record picture in Billy’s
bedroom at night” or “When Jim, Jane and Billy talk, record and remember for
20 minutes”.

This system has influenced the design of one of the UIs we developed and
some of its characteristics will be described in Section 6.2.2.

2.3 Summary

In conclusion, we can see that two different philosophies drive most research
into Intelligent Environments, one foreseeing a future in which the environment
reminds an Artificial Intelligent entity, acting autonomously on behalf of the
inhabitant, the other in which the environment enhances the control its inhab-
itants have over their surroundings. In addition, some middle–ground systems
have decided, centering the control on developers, to restrict the autonomous
intelligence of the environment, allowing it to evolve easily to adapt to new tech-
nologies, ideas and domains of adaptation, while others have chosen to restrict
the control end–users have over their environments on behalf of more robust and
complex applications.

In this sense, our philosophy can be described in Taylor’s words:

An environment’s smartness should not be measured by how much and
what variety of data it can sense, or by the complexity of things it can
do with that data. Rather, we might imagine an environment’s intelli-
gence to be about how clearly the environment’s workings are revealed
to us (without making the world more complex), and how easily such
workings can be harnessed. The business of designing intelligence into
an environment should thus be concerned with building things that we
can get to work intelligently for us. [114]

This philosophy drives us to look at end–user–centered whitebox systems as
the solution for achieving our particular vision, but many of the contributions of

2.3. SUMMARY 43

other systems may enhance our requirements.
Thus, when looking at end–user–centered control solutions as a whole, there

are a number of characteristics that influence our work.
Firstly, while UI are a necessary tool for end–users to control their surround-

ings, we believe that the control system must not be driven by the UI interface,
but by the internal reasoning structures of end–users. UIs will then be designed
as an interaction mechanism, designed to suit the specific interaction needs of a
particular task or scenario.

Secondly, while end–users need a simple programming language, increasing
degrees of expertise and complex control domains will require a more advanced
programming structure. Therefore, a base language suited for novice end–users
should not restrict the capabilities of users with more expertise. Many developer–
centered control approaches provide some good ideas about how to leverage the
expression capabilities of a programming language. The challenge will be to
balance this flexibility with the simplicity required to deal with end–users.

Finally, the automation domains may be wide and varied, as may the en-
vironment’s inhabitants. Systems constraining their control domains (e.g. to a
particular task, a number of simultaneous users or a particular bundle for pref-
erences) fail at some point or another when facing an “in the wild” scenario.

These systems have laid the groundwork over which this thesis has grown.
An analysis of their strengths and weakness, as well as the idea we have about
a future in which Intelligent Environment technologies leverage people’s control
while preserving their social structures and freedom, have led to the requirements
detailed in the following chapter.

Chapter 3

Indirect control in Ambient

Intelligence environments

Ambient Intelligence (AmI) is a branch of research born from M. Weiser’s 1991
vision of a world in which computers are seamlessly integrated into it, vanished
in the background and interconnected [122]. It is based on environments rich
in perception and interacting capabilities and characterized by the heterogeneity
of environments, inhabitants, elements, capabilities and uses. Factories, personal
environments, transport systems, hospitals, airports or educational environments
are some examples of physical environments where AmI is applied. Energy sav-
ing [92], remote monitoring of relatives [94] or environmental control mecha-
nisms [2][88][12] are some of the applications it studies. While many of them
require some sort of automated reasoning, they have received much less attention
than other domains such as business processing or the semantic web.

Sharing some characteristics with them, the idiosyncrasies of Personal AmI
environments differ from those in some important points. Like business environ-
ments, they are physical but, contrary to them, they are highly personal, making
benefit and reward harder to define. Like the semantic web, the amount of ser-
vices and capabilities available can be extremely varied but of a different nature
and bounded to specific constraints such as physicality or privacy.

When talking about Indirect control, we refer to mechanisms for actuating
through implicit commands. Many forms of today’s automation in buildings,
such as turning lights on when somebody enters a room, belong to this type of
control. Some AmI research trends have decided to narrow the domain of study
to finding solutions for specific problems, such as saving energy, while others
have focused on developing mechanisms to freely program the complete domain
of the environment. Trying to solve the application–dependent problem (see

45

46 CHAPTER 3. INDIRECT CONTROL IN AMI

Chapter 1.2), this work focuses on the latter.
In this chapter we will analyze the special characteristics of indirect control

in Ambient Intelligence (AmI) environments (see Table 3.1), the requirements we
extracted from them (see Tables 3.2, 3.3 and 3.4)and the solutions we applied to
deal with these requirements (see Table 3.5).

3.1 The nature of Ubiquitous Computing environments in

relation to indirect control end–user programming

Intelligent Environments possess two characteristics that make them especially
unique: their physical-computing nature and their human population. Each of
them presents special features that have to be taken into account to design an
indirect control end–user programming system.

3.1.1 Based on human factors

When talking about AmI, the most important issue of concern is that they are
populated environments. Human–side characteristics arise from the way they
interact with and perceive their environment. What people know, how they
think, what they want or how they organize differs among groups (or persons),
environments and situations. In addition, there are some social characteristics,
strengths and limitations imposed by human psychology.

Computing technologies, when applied to personal environments, must deal
in the most sensible way with human nature if they are to succeed.

Heterogeneity

First of all, people are different. Age, education, genetics and many other factors
affect the way people think or reason, what they know and how skilled they are.
Thus, when designing a system for end–user programming, we must remember
that end–users will have different degrees (or an absolute lack) of exper-
tise (H1). In addition they will understand different things as problems. For
example, forgetting a glass of water in the kitchen before going to bed may seem
like a real problem to the elderly while it may go almost unnoticed for a 21-
year-old girl. Furthermore, for the same problems, different people use different
solutions, adapted to their way of thinking or to what they want to do. Thus,
under a shared problem as may be that of watering plants, some persons may
prefer to be reminded when to water them while others will prefer to automate
the watering process. Thus we find in human populations a heterogeneity of
goals and means among people (H2).

3.1. THE NATURE OF UBIQUITOUS COMPUTING 47

Preferences

This last problem is strictly related to the heterogeneity of preferences among
users, of special importance for this work.

Computing technologies have been applied to many human-populated places
but personal environments present a main difference over all of them: they are
personal. When talking about hospitals or factories, the inhabitants participate
toward achieving an external goal — i.e. to reduce treatment time or to increase
productivity — and they are externally rewarded to deal with the burden asso-
ciated to achieving that goal. Contrary to professional programmers, end–users
program as an orthogonal activity to their primary job function but, neverthe-
less, both non-technical and technical users receive essentially the same payoff
in using the technology in their workplace. On the contrary, there are other
contexts in which reward is received qualitatively (such us comfort) instead of
quantitatively (money). In this sense, domestic environments are clear examples
of the former. Since the payoff is noticeably different, the cost and the risk [13]
that the user is willing to assume will be different too. This influences how the
user is motivated to overcome the programming learning barriers [74]. To this
extent, we conjecture that end-users will invest less effort in programming tasks
at home than at work. Following this hypothesis, we firmly believe that domestic
environments require new programming paradigms, different from those devised
for professional environments.

In addition, the inhabitant’s benefit and the environment’s goal are ambiguous
terms whose meaning may vary from person to person. Benefit can be a very
personal concept (H3), as are the burdens users are willing to take for a
service variable. Nevertheless, while defining the inhabitant’s benefit may be
hard even for the inhabitants themselves, almost every one of them will be able
to define what they prefer on a smaller scale (e.g. to wake up to music and the
smell of coffee). In other words, their benefit may be defined as the sum of all
their preferences. Furthermore, what was preferred in the past, may not be so
in the future, since people evolve and change habits. Thus, we should consider
that there are multiple and variable preferences per inhabitant (H4). In
addition, since environments are normally populated by many people, we must
consider that the preferences of multiple inhabitants do not always agree
(H5).

Social issues

Social groups have their own ways of dealing with conflicts among their prefer-
ences. In fact, social groups are characterized (and many times define themselves)
by the communication and sharing among their members (H6).

In relation with the individuals, another important psychological issue, espe-
cially when talking about programming, is that since the reward is unclear, in

48 CHAPTER 3. INDIRECT CONTROL IN AMI

non–compulsory tasks, anxiety or boredom can lead to abandon [27] (H7).

3.1.2 Based on the environment’s idiosyncrasy

The second characteristic of AmI is that it is based on physical spaces. As
stated by Weiser, “computers are vanished into the background” [122], but the
background stays and many of their properties will have to be taken into account.
The most important for the purpose of this work are related to their physicality,
heterogeneity and the fact that they existed before AmI.

Physical spaces

Considering Intelligent Environments as a sort of computing system stresses the
differences brought by their physicality. Since the environments are bounded
in their physical extent (E1), humans coordinate devices and applications
within the same space more often than in different spaces. In addition, since
many elements are physical, their number is constrained by the physical space.
On the other hand, while their number is smaller, their diversity is greater.

Additionally, physical objects are more significantly bounded to the concept of
ownership, which also has strong repercussions on the way humans use them. In
this sense, location and ownership are natural characteristics of elements
(E2) in determining how they are used. Thus, while the number of elements of
interest is easily decreased through physical proximity or ownership (e.g. rarely
would an application be interested both in a light in one building and a door
in another), the number of data types (e.g. lights, doors, messages or calendar
events) is common to all of them.

Heterogeneous spaces

The second interesting property of physical spaces is their diversity. There are not
only numerous types of environments (E3) from a structural point of view,
but also multiple domains of automation (E4). That is, there are many
different types of environments that can be used for many different purposes.

Inhabited spaces

Finally, the internals of these computing systems are inhabited (and were
inhabited) by people (E5).

There are not only people living in them, but they are their homes and cars,
and summer houses and work places and parks and thus, as stated by David-
off et al. [28], they play a role in group and individual self–definition
(e5.1). In addition, since they were inhabited before they became a computing
system, there is a status quo (e5.2) already established. This status quo can

3.2. REQUIREMENTS 49

be appreciated in the way objects/places are used or in the way human beings,
due to their social nature, are used to dealing with hierarchical structures in
which tasks and responsibilities are spread among their members. Within the
house this structure has historically been easy to see: gardeners, housekeepers,
butlers and so on [56].

Additionally, human-populated environments are subject to constant changes.
These changes can be on different timescales.

Long timescale changes (E6) (space evolution) modify the structure or
population of the world, i.e. adding a new light, removing an old one, a new
person joining the community or a new intelligent space added to the world.

While the structure or population of the world remains unchanged, some set
of preferences may depend on local variations (short timescale change) (E7).
Thus, even if Xavier exists and there are lighting devices in his house, it does not
make sense to apply his preferences when he is not at home.

3.1.3 Based on Ubiquitous Computing’s idiosyncrasy

Finally, vanishing computers in the background adds some properties to the en-
vironments into which they vanished: the computing capabilities.

Thus, as perceiving and actuating capabilities grow in the environment, through
the progress in the development of small low-power hardware, wireless network-
ing, sensor technology and software services, the control possibilities grow expo-
nentially as the combination of possibly perceived contexts with possible actions.
That is, there are many more interaction possibilities (U1).

Secondly, the heterogeneity of physical environments is now enriched with the
heterogeneity of hardware and software embedded in them (U2).

Finally, since not every environment is equipped with the same sensors, actu-
ators or software systems, there can be huge differences in perception and
actuation capabilities among environments (U3).

3.2 Requirements for end–user programmed indirect–control

Once environments were supplied with perceiving and actuating capabilities,
much research effort went into creating “intelligent environments” to actuate
on the user’s behalf. In this sense, two main trends of research can be identified:
autonomous environments and automatic environments. The former represent
those systems that, without user intervention, try to reach the intended goals
(such as reducing energy consumption [91] or minimizing the number of tasks
the user has to do [23]). Many of these systems are based on “black box tech-
nologies”, meaning that they are not human–readable, such as neural networks,

50 CHAPTER 3. INDIRECT CONTROL IN AMI

Table 3.1: Properties of Ubiquitous Computing environments related to indirect
control end–user programming

Based on human factors

Heterogeneity
H1. Different degrees (or absolute lack) of expertise among users.
H2. Heterogeneity of goals and means.

Preferences
H3. Benefit can be a very personal concept.
H4. Multiple and variable preferences per inhabitant.
H5. Multiple inhabitants. Preferences do not always agree.

Social issues
H6. Anxiety or boredom can lead to abandon.
H7. Communication and sharing among inhabitants.

Based on the environment’s idiosyncrasy

Physical spaces
E1. Bounded environment.
E2. Location and ownership as natural characteristics of elements.

Heterogeneous spaces
E3. Multiple domains of automation (purpose).
E4. Numerous types of environments (structure).

Inhabited spaces
E5. Already lived in and used spaces.
e5.1. They play a role in group and individual self–definition.
e5.2. There is a status quo.

E6. Long timescale change (space evolution).
E7. Short timescale change.

Based on Ubiquitous Computing’s idiosyncrasy

U1. Many interaction possibilities.
U2. Heterogeneity of hardware and software.
U3. Huge diversity of possible context and actions.

Hidden Markov models (HMM) or Bayesian networks (BN). Even though HMM
and BN may have an interpretable graphical representation, being, thus, inter-
pretable, they are not strictly readable. Automatic systems, on the other hand,
represent those other systems trying to replicate the solutions that have been
explicitly given by the user. These systems are normally based on “white box
technologies” such as rule–based [12] or case–based [15] expert systems, since, as
stated by Myers, the closer the language is to the programmer’s original plan, the
easier the refinement process will be [93]. Closer or farther from the end–user’s
mental plans, those systems pretend to be programmable and, to that extent,
they provide a means for creating, structuring and organizing “code”. In this

3.2. REQUIREMENTS 51

sense, Myers points at rule-based languages as the ones naturally used by users
in solving problems [93]. Summarizing, while autonomous environments try to
“replace” the user, automatic environments try to extend their control.

While both approaches have advantages and disadvantages, they share the
problem of conflicting inputs due to more than one inhabitant, i.e. collisions.
While autonomous solutions have a hard time learning from a “noisy” environ-
ment, automatic approaches need some clarifying input for what to do in conflict
situations.

Our choice has been to leverage the user’s control over the environment
through an automatic approach, focusing on personal environments and trying to
get as close as possible to the end–user. In this sense, our work is profoundly
influenced by S. Davidoff et al. [28] “social characteristics of home life that should
but currently do not influence the development of smart home services”, such as
that “The house plays a role in family and individual self–definition”, “Families
are plural. Most systems are singular” or “The thermostat predicament : rules
don’t always agree”.

The purpose of the indirect control mechanism is to allow users to “program”
behaviors/preferences/implicit interaction into their environments. To accom-
plish this, we must identify the requirements of the user both as the developer of
the programs running in the environment and as the consumer of said programs.

3.2.1 End–user Requirements

R0. Human–centered interaction and flexible needs

Directly related with H3 and E5 (see table 3.1), allowing end–users to program
their environments is the main requirement of this work.

As stated before, physical places are populated by different people, used to
living in them. Thus, any technological improvement of their environment is not
only an additional service but a potential change of the status quo. For example,
conflict resolution is not always a straightforward process; it has to deal with
natural hierarchies and particular users’ preferences if it is to succeed. A similar
problem can be found in defining benefit, especially in personal environments.
Contrary to a business process, benefit can be a very personal concept, hard
to describe by third parties. As a consequence, we believe that end–users must
be able to program their environments in order to define their own preferences
and hierarchies, in contrast to most engineer–oriented programming techniques
of AmI and other domains.

52 CHAPTER 3. INDIRECT CONTROL IN AMI

Table 3.2: Requirements for end–users

Requirements for the End–user

R0. Human–centered
interaction and flexible
needs

Directly related with H3 and E5, enabling end–
users to program their environments is the main
requirement of this work.

3.2.2 Requirements for the End–user as Developer

Allowing the end–users to program the environment requires a programming
language in which they can express their preferences, as well as some aids to
improve the competence of such non–professional programs.

R1. Expressiveness

As stated by Davidoff et al. as a principle for end–user programming [29] —and
directly related with H3, E5 and E6— to allow the construction and modification
of behaviors must be the first requirement of an end–user development (EUD)
system.

Given the high heterogeneity of Intelligent environments (U1, U2 and U3),
the programming mechanism must preserve a static concept of programming for
the user (regardless of what is being programmed or from where). That is, the
programming mechanism must be application–independent (r.1.1)

In this sense we must analyze how end–users think about programming in-
stead of focusing on how specific applications are programmed. Truong et al. [116]
pose that end–users “tended to frame the description of their desired applications
in terms of their domestic goals and needs rather than in terms of device behav-
iors”. This conclusion was extracted from a study conducted over a three–week
period with 45 participants. The study was composed of two different surveys,
each of which described a particular scenario related to capture and access ap-
plications, depicted as comic strips. The survey asked participants to explain
the applications shown in the scenarios in their own words, and to devise an
application of their own.

Promising as the results were, since it only considered scenarios for capturing
and accessing audio/video streaming, it is not clear that the same conclusions
could be applied to more complex and varied cases. In this sense, Dey et al. [33]
conducted a similar experiment but following a broader approach. They found
that 56.4% of all the rules developed by the participants involved objects or the
state of objects, and that 19.1% of them involved activities. The remaining rules
referred to locations (12.8%), time (7.6%) and people different from the subject
(4%).

3.2. REQUIREMENTS 53

Inspired by Nardi’s view, when she stated that end–user programming lan-
guages should be task-specific, language primitives should map to tasks in the
domain the user understands [95], we believe that the system should be designed
to deal with all these concepts, with a special effort toward achieving simplicity
over the most commonly used (i.e. objects). As noted by Nardi, task-specificity
eases users’ understanding of what the primitives of the language do, allowing
users to develop applications because they can directly express domain semantics
in the high–level operations of the language [95].

In addition, another important point is how end–users conceptualize the tech-
nology behind the house. Truong et al. differentiated three models: System as
Effector, System as Assistant and System as Effector-Assistant Hybrid. When
they evaluated the CAMP programming tool, they realized that participants were
especially partial to the “System as Effector” model for describing scenarios and
applications, rather than considering the system as an assistant. This fact was
confirmed by the previous Dey et al. study. In this case 98% of all rules concerned
present a view of the house as a commanded system. We strongly support this
conclusion. In fact, as we will explain, this fact will be a key conditioning point
in the design of our expression tools.

In conclusion, we believe that the system must be designed as a commanded
system, to match the view end–users have of it.

Additionally, given the possible lack of expertise of programmers (H1), sim-
plicity (r.1.2) is the second requirement. To that extent, stressing how people
think about programming and conceptualize the technology behind the house can
be considered as having an expression system that is easy and natural.

Natural in the sense stated by Myers et al. [93] as faithfully representing
nature or life, meaning that it works the way people expect. When defining
programming as “the process of transforming a mental plan in familiar terms
into one compatible with the computer” [64] Myers et al. declared that the closer
the language is to the programmer’s original plan, the easier this refinement
process will be [93]. In the same article Myers et al. observe through two studies
examining the languages and structures that children and adults naturally use in
solving problems, that “an event-based or rule-based structure was often used,
where actions were taken in response to events”.

Easy, on the other hand, in the sense stated by Greenberg [53] as “removing
low-level implementation [so] programmers can rapidly generate and test new
ideas, replicate and refine ideas, and create demonstrations for others to try”. In
the same work he demonstrated, in relation to groupware application develop-
ment, how a good development tool can break the bottleneck suffered in Gaines’
BRETAM —a phenomenological model of how science technology develops over
time [42]— (see Figure 3.1(a)). This means that, even when some good ideas or
Breakthroughs (the B of BRETAM) arise successfully in the field, the constant

54 CHAPTER 3. INDIRECT CONTROL IN AMI

(a) Gaines BRETAM software developing model. Taken from [42]

(b) Csikszentmihalyi’s notion of flow for ana-
lyzing motivational factors in learning. Taken
from [106]

Figure 3.1: The two main problems due to the lack of appropriate development
tools. 3.1(a) refers to Gaines’ BRETAM software developing model [42] in which
Greenberg found that a lack of appropriate tools can cause a break in the Repli-
cation stage [53]. 3.1(b) refers to the notion of flow, introduced by Csikszentmi-
halyi [27] to analyze motivational factors in learning and used by Repenning and
Iaonnidou as a guide for EUD usability [106]

necessity to deal with hard low–level concepts impedes the Replication (the R of
BRETAM) and improvement of those previous ideas and hence stops the devel-
opment process. We believe that some clues for the development of Intelligent
Environment applications (professional and end–user development) can also be
found here.

Thirdly, to deal with different places, preferences, social structures or con-
cepts (H2, H4, E3, E4, U3) the end–user requires a flexible (r.1.3) means of
expression.

This flexibility has to be balanced with the simplicity of expression, paying
special attention to short–term effort and long–term restrictions (as in Papert’s

3.2. REQUIREMENTS 55

ideal of “low–threshold no ceiling” [101]) (r.1.4). We believe, like Repen-
ning and Ioannidou [106] —based on the notion of optimal flow of motivation
in learning [27] (see Figure 3.1(b))— that “anxiety results if challenges outweigh
the skills, while boredom results if skills outweigh the challenges” (H6), more
especially when talking about personal environments.

R2. Aid for competence

Competence is one of the two requirements stated by Maes for software agents [78].
The lack of expertise of programmers (H1) requires some aids to improve the pro-
gram’s performance. Thus, users may want to ask the system for an explanation
of its reactions, in order to understand and correct its behaviors, or they will
expect the system to understand what they really mean when programming, re-
gardless of small programming mistakes. That is, the system should provide an
easy debugging mechanism and programming assistance to minimize the anxiety
produced by error situations (H6).

3.2.3 Requirements for the End–user as Consumer

Following the principles of competence and trust stated by P. Maes [78] is of crit-
ical importance when analyzing the requirements of the end–user as a consumer.
Thus, the system must be trustable and competent. Trustable meaning that the
user must feel safe and confident in using the system; competent in the sense that
the system performs as expected and adapts to the user’s changing needs

R3. Trustable

Trust is especially significant since automated spaces are often personal, thus es-
pecially sensitive to mistrust or situations leading to anxiety (E5, H6). Kay et al.
[71] describe how “...when the user wants to know why systems are performing
as they are or what the user model believes about them, they should be able to
scrutinize the model and the associated personalization processes”. In this sense,
the system must be understandable, predictable and traceable (r.3.1) in
order to answer “What has happened”, “What is going to happen” and “Why
is it happening (or going to happen)”, natural questions of non–technical inhab-
itants (H1). Close to Cheverst’s et al. concept of scrutability, defined as “the
ability of a user to interrogate her user model in order to understand the system’s
behavior” [20].

Secondly, the system must be respectful (r.3.2) with the lifestyle choices [29]
of the inhabitants and, since the environments play a key role in group and
individual self–definition (E5), not everything must be automated, just what the
user asked to be.

56 CHAPTER 3. INDIRECT CONTROL IN AMI

Table 3.3: Requirements for end–users as developers

Requirements for the End–user as Developer

R1. Expressiveness Based on Davidoff’s principles for end–user pro-
gramming [29], allows the construction and mod-
ification of behaviors as directly related with H3,
E5 and E6.

r1.1. Application–
independence

One of the main problems of current technologies.
To keep a static concept of programming (regard-
less of what is being programmed or from where),
derives from U1, U2 and U3.

r1.2. Simplicity Easiness and Naturalness. Get as close as possi-
ble to the end-user’s programming mental plans
to allow non programmers to control their envi-
ronment H1.

r1.3. Flexibility H1, H2, H3, H4, E3, E4 and U3 require a flexi-
ble expression meant to deal with different places,
preferences or concepts.

r1.4. “Low threshold,
now ceiling”

Papert’s ideal [101]. Directly inferred from H6,
is extracted from [106] and the notion of optimal
flow of motivation in learning [27]

R2. Aid for competence One of the two requirements stated by Maes for
software agents [78]. The lack of expertise of pro-
grammers (H1) requires some aids to improve the
program’s performance. Easy debugging and pro-
gramming assistance. Competence is especially
necessary due to H6.

Finally, Davidoff et al. [29] stated that families’ routines suffer breakdowns
(E5), forcing a change in preferences or responsibilities within time. Thus, he
stated that systems must be “designed for breakdowns”(r.3.3), to deal with
them without catastrophic solutions.

R4. Extensibility and scalability

Regarding competence, since preferences are often bounded to physical elements
(E1, E2) that may change along with their owner’s lifestyle, a change in the
inhabitant’s lifestyle (H4, E3, E6) may be reflected in an evolution of the pref-
erences to which the system must adapt. That is, the system must allow for the
organic evolution of preferences [29].

3.3. IMPLEMENTED SOLUTIONS AND REQUIREMENTS SUPPORTED 57

R5. Reusability and portability

In addition, preferences are personal choices, bounded to places as long as the
person with those preferences uses them. But if the user moves to another space
she will probably maintain most of her preferences, trying to adapt them to the
structure of the new place (H4). In a similar way considering users in their
social context (H7), they may want to “copy” some of the behaviors observed
at a friend’s house, and probably the friend will be willing to share them with
them, therefore reusability and portability are two requirements of our indirect
control mechanism.

R6. Allow simultaneous and changing preferences

Finally, as context changes (E7), people join and share environments (H5) or
preferences grow (H4, E3), the number of coexisting programs is increased; thus,
a flexible manager and coordination mechanism is necessary. In addition, to face
the problem of having diverse inhabitants with different preferences, automatic
environments need to provide a means through which to create coordination struc-
tures, flexible enough to adapt to the different social coordination structures of
the inhabitants (i.e. hierarchies)

3.3 Implemented solutions and requirements supported

In order to deal with these requirements we have designed an ECA–rule based,
multi–agent mechanism, using the Blackboard of P. Haya [62] as an abstraction
layer in a multilayer structure that helps us in dealing with some of the require-
ments. The multilayer structure can be seen in Figure 3.2 and shows how the
system described in this thesis is used as the core language and structure of the
“end–user implicit interaction” layer. This layer uses the AmIlab Blackboard and
Privacy filter [36] as a context layer between it and the world.

We believe that simplifying the language and allowing the decomposition of
problems are essential to simplicity in adaptation.

3.3.1 S1. Abstraction layer

As in every intelligent environment, the first step is always that of perception
(see Figure 3.2), implemented in our approach through a middleware layer (“the
Blackboard”) in which every element of the environment, either real or virtual, is
represented as an entity with properties and relations between them [60]. Every
change in the environment is reflected in the blackboard and vice versa, easing
the process of expression (r1.2) by removing low–level details of the elements.

58 CHAPTER 3. INDIRECT CONTROL IN AMI

Table 3.4: Requirements for end–users as consumers

Requirements of the End–user as a Consumer

R3. Trustable. One of the two requirements stated by Maes for
software agents [78]. Especially significant since
the automated spaces are most often personal,
thus especially sensitive to mistrust or situations
leading to anxiety (E5 and H6). In order to em-
power trust some sub–requirements have been de-
fined.

r3.1. Understandable,
predictable and traceable.

In personal environments (E5) of non–technical
inhabitants (H1), naturalness is a warrant of
trust. Thus, “What has happened”, “What is
going to happen” and “Why is it happening (or
going to happen)” are key questions in need of
answers

r3.2. Respectful. The system must be respectful with lifestyle
choices [29]. Not everything must be automated,
that is the user’s choice (E5)

r3.3. Designed for
breakdowns.

Extracted from [29]. Since breakdowns occur,
both in software systems and in users’ routines,
the system must be prepared to deal with them
without catastrophic solutions (E5)

R4. Extensibility and
scalability

Allow for the organic evolution of spaces and pref-
erences. Preferences are often times bounded to
physical elements (E1, E2) that change along
with their owner’s lifestyle. Change of habits,
promotions or improvements (H4, E3, E6) are
translated into an evolution of the preferences too.

R5. Reusability and
portability.

Variable preferences (H4) and social interaction
(H7) require a means to reuse and share the en-
vironment’s behaviors

R6. Allow simultaneous
and changing preferences.

As context changes (E7), people co–exist (H5)
or preferences grow (H4, E3), the number of co-
existing programs is increased, therefore a flexi-
ble manager and coordination mechanism is nec-
essary

The blackboard uses a “photographic” representation of the world [60], in
which a TV is either ON or OFF and no event (e.g. turning ON) is directly
represented but indirectly inferred from the TV changing from ON “in one pic-
ture” to OFF in the next one. It also provides a simple API, homogenizing the
heterogeneity of elements in a simplified, event–free, function–free, application–
independent representation (r1.1)

3.3. IMPLEMENTED SOLUTIONS AND REQUIREMENTS SUPPORTED 59

Figure 3.2: AmiLab layers. The World layer (i.e. what is in the environment), the
Context layer (i.e. how Ubiquitous Computing accesses it: abstraction [60] and
privileges [36]) and the Interaction layer (i.e. how it can be used: Explicitly [2][88]
and Implicitly).

3.3.2 S2. ECA–rule language

Over this context layer, in the interaction layer in which all the applications are
located, is the indirect control mechanism. This mechanism is designed to allow
users to program their environment and it relies on a rule–based core language
(see Section 4).

We argue, like many others [15][33][110][113][119][116], that rule–based sys-
tems are a feasible approach for codifying user’s desires and preferences (r1.1).
In addition, rule statements can be easily translated to human–readable expres-
sions, therefore they can be understandable, predictable and traceable (r3.1) and
allow for autonomous learning techniques as well as debugging processes to be
applied (R2)

Understanding preferences as commands to the environment, we have cho-
sen imperative programming over declarative programming in the form of an
ECA–rule based programming language that provides a natural means of expres-
sion (R0, R1) and explanation and supports automatic learning techniques for
improvement (R2).

60 CHAPTER 3. INDIRECT CONTROL IN AMI

Expression

Since the diversity of context and actions can be huge, we should find a balance
between the language’s descriptive power and its simplicity. This is done by
basing our design on two principles: keeping a simple base language and isolating
complexity in those special functions that require it.

s2.1. Base–language

Following Papert’s ideal of “low–threshold no ceiling” [101], the rule–based lan-
guage uses a basic language with some expression extensions. The rule–based
language is composed of three parts: triggers and conditions, codifying the con-
text, and some associated actions, as an analogy of the natural “When ... if
... then ...” structure. Comparators and operators of the conditions and ac-
tions, respectively, are kept as simple as possible to create a clean and clear basic
programming language (r1.2) (See Section 4.1.1).

s2.2. Expression extensions

Some scenarios require more expressiveness, but adapting the whole language to
deal with those complex elements brings their complexity to the whole language.
Thus, we isolated the complexity to those elements requiring it, so users need only
deal with complex concepts in those cases where they are really needed (r1.3).
Additionally, we tried to express complexity in base language terms, making
it easy to understand complex concepts when the basics are known, drawing a
reasonable learning curve (r1.4).

One of the main problems of expression is time. Not every indirect controlled
action is to be executed immediately; some contexts trigger special situations in
which the required action depends on some time factor, e.g. “Turn off the oven
in 20 minutes” or “if somebody enters the room in the next 5 minutes send me a
message”. Other research has focused on temporal reasoning by embedding time
concepts in the whole representation and reasoning system [6]. This forces the
use of events, intervals, date lines or other representation mechanisms at the core
of the system, making it especially suited to dealing with time issues, but messy
and complicated when dealing with time–independent scenarios.

Of special interest in our approach is how we isolated time constraints by
confining them to a special kind of action: the TIMER (see Section 4.1.3).

This complex extension is built with the agent’s and base–language’s struc-
ture and increases the expression power considerably, allowing for the definition
(besides time–sensitive actions) of composite events and event consumption poli-
cies that cannot be defined in traditional ECA–rule based languages (see Sec-
tion 4.1.4)

3.3. IMPLEMENTED SOLUTIONS AND REQUIREMENTS SUPPORTED 61

Explanation

The second benefit of ECA–rules is that they are understandable and predictable.
Also, tagging changes on the blackboard (s.2.3) with the agent responsible
for the change makes them traceable (r3.1) (). This has been used in two ways
to create an easy debugging mechanism. First, as a mechanism for scrutability,
allowing users to ask agents about their internal state (s.2.4), (e.g. what
truth values do its conditions have, which rules are active or how confident is it
about the behavior of its actions)

(scrutability is defined as “the ability of a user to interrogate her user model
in order to understand the system’s behavior” [20]);

and second, as a mechanism of explanation logs (s.2.5) through which
agents show their internal reasoning process with different possible levels of detail
(see Section 5.3.1).

Learning

In addition, in order to provide the user with some competence feedback, a confi-
dence factor has been added to each action. This confidence factor is increased
and decreased through a reinforcement learning (s2.6) process and can be
used to either activate/deactivate rules automatically or to inform the user of a
malfunction (R2) (see Section 5.3.2). Furthermore, this variable may be used to
characterize the type of error a rule has so, if automatically solved, it will be at
the user’s command and, consequently, it will not be perceived as an intrusion
on the user’s control but as a refinement of their expressions (r3.2).

3.3.3 S3. Multi–agent structure

While rules are the minimum piece of reasoning information, they are not the
minimum reasoning structure. Most tasks and preferences comprise more than
one rule, conceptually treated as a single preference. Therefore, we have designed
a multi–agent structure to organize rules (see Section 5.1). An agent is the
minimum reasoning structure and different agents may be created with different
sets of rules. Each agent has three different sets of rules on–load, on–running
and on–finished encoded in a file, so it does not matter through which interface
the file has been created.

Agents, therefore, are a natural modularization tool (similar to having many
butlers that can be commanded) whose potential is increased by representing
them in the Blackboard as another part of the context (like a real butler would
be), and by combining their strengths with those of the Privacy and Blackboard
layers.

62 CHAPTER 3. INDIRECT CONTROL IN AMI

s3.1. Modularization

Modularization has been used to tackle many different automatic adaptation
problems.

Firstly, by allowing whole packages of rules to be added/removed/modified
without affecting the rest of the system (R4), it allows the problem of automation
to be split into smaller ones, simpler to solve.

When talking about a complex task such as configuring a home to adapt to a
wide range of preferences, a modular architecture allows the problem to be han-
dled in a limited, small scale, creating preferences for small domains, situations
or elements in a progressive manner. These small and individual tasks are easier
to handle than the overwhelming goal of “configuring the home”. In this way,
the “configuration of the home” is just the result of the combined actions of the
“configuration of the parts” represented in the different agents created to deal
with the smaller problems.

Besides simplifying the automation task, modularization allows the environ-
ment’s behaviors to be updated to long timescale changes through the addition
or removal of agents without affecting the rest of the system. For example, if an
agent is in charge of inferring the location of the inhabitants and a new, more
reliable, mechanism is installed, removing the old agent will affect no other part
of the system. Since every reasoning unit is independent, the only change will be
more accurate location information. Additionally, if a coffee maker is added to
the kitchen, an agent could be created to make coffee at 7:00 a.m. from Monday
to Friday or to announce when coffee is ready. If the coffee maker is removed, so
can the agent.

Secondly, it allows for the spreading of responsibilities among different mod-
ules so a failure of a part is not understood as a failure of the whole (r3.3),
favoring trust trough classification (i.e. a failure of the lighting preferences mod-
ule will not affect the trust of the security module). This is done similarly to real
environments in which a gardener, a broker or a maid will have different domains
of action with different associated responsibilities. Emulating this well-known
human modularization structure helps the user to find the responsible parts and
empowers trust through familiarity.

A modular architecture opens up a natural path to reusability, allowing whole
packages to be move or replicated to other spaces (R5). Thus, behaviors can be
easily exported from one place to another (e.g. “I like the way you control the
lights in your living room, can I copy it?”). Grouping behaviors under inde-
pendent agents, the only remaining task to achieve reusability is to define the
isomorphism between the two environments (e.g. “what you call lamp 1 in your
living room is called main lamp in mine”). Thus, if users want to export be-
haviors from one place to another, they only need to copy the agent in charge
and establish the correspondence between the elements in the two environments.

3.3. IMPLEMENTED SOLUTIONS AND REQUIREMENTS SUPPORTED 63

This idea is similar to that of the Digital Recipes explained by Newman, Smith
and Schilit [97]

s3.2. Blackboard representation

Agents are represented in the Blackboard as another part of the context and,
consequently, can be activated and deactivated through it (see Section 5.2.2).
This can be done through any direct control mechanism or through the indirect
control mechanism presented in this thesis. That is, through other agents. This is
specially useful for dealing with short timescale changes in which, even though the
structure or population of the world remains unchanged, some set of preferences
may depend on local variations. Modular agents can be used as a mechanism
for activating whole sets of preferences according to context. Combined with
the agent’s representation as another element of the world, a modular architec-
ture allows the creation of ”meta–agents” in charge of activating/deactivating
other agents according to the perceived context, “meta–meta–agents” in charge
of changing the changing policies according to context, and so on (R6).

s3.3. Multi–layer structure

Finally, agents are represented in the Blackboard as agent entities with status
and task properties and the is owner, located at and affects relations, linking it
with the user that created it, the location it acts in and the elements it affects,
respectively. Allowing (but not imposing) the tagging of agents with their owner,
location, activity, effects or purpose, allows the activation/deactivation to be
done in terms of the natural end–user hierarchies (R6) (e.g. when Mom is in
the room, their lighting preferences are applied over the child’s preferences) (see
Section 5.4).

This way of managing preferences is combined with the priority queues of
the Blackboard [62] (for dealing with context–independent collisions) and the
ownership rights and access policies of the Privacy layer to build a multi–layer
filtering structure for users to replicate their natural hierarchies and coordination
policies without external restrictions (such as having to relate their preferences
to activities).

At this point it is possible to see that most design decisions, from the simplic-
ity of the language to the modular architecture capabilities or the rule-based/event-
based structure, are aimed towards the same goal: to make the process of en-
vironment automation as easy and natural as possible. These solutions will be
explained in more detail in Chapters 4 and 5.

64 CHAPTER 3. INDIRECT CONTROL IN AMI

Table 3.5: Implemented solutions and requirements supported

S1. Abstraction layer
Eases the process of expression (r1.2) by remov-
ing low–level details of the elements
Homogenizes the heterogeneity of elements in a
simplified, event–free representation (r1.1)

S2. ECA–rule language
An ECA–rule programming based language al-
lows a natural means of expression (R0, R1)
It is human readable and thus understandable,
predictable and traceable (r3.1)
Allows autonomous learning techniques as well as
debugging processes to be applied (R2)

Expression
s2.1. Base–language Isolation complexity in special operator keeps

base language simple (r1.2)

s2.2. Expression extensions
Special operators allow dealing with different and
more complex concepts such as time or generality
(r1.3)
The special operators are designed in terms of the
base–language, having a reasonable learning curve
(r1.4)

Explanation
s2.3. Tagging of actions Makes the responsibility traceable (r3.1)
s2.4. Showing internal

state
Makes the reasoning process predictable (r3.1)

s2.5. Explanation logs Makes the reasoning process understandable
(r3.1)

Learning
s2.6. Reinforcement

learning
To locate malfunctioning rules and possibly sug-
gest improvements (R2, r3.2)

S3. Multi–agent struc-
ture

Rules are grouped in different independent agents

s3.1. Modularization
Spread responsibilities so a failure of a part is not
understood as a failure of the whole (r3.3)
It allows adding/removing/modifying whole pack-
ages of rules without affecting the rest of the sys-
tem (R4)
It allows moving or replicating whole packages to
other spaces (R5)

s3.2. Blackboard repre-
sentation

It allows activating and deactivating agents ac-
cording to context (R6)

s3.3. Multi–layer struc-
ture

Tagged with its owner, location, activity, effects
or purpose, the activation/deactivation can simu-
late natural hierarchies (packagesR6)

Chapter 4

ECA–rule language

Automated reasoning is probably one of the areas of computing that has received
the most attention in the history of computer science. Furthermore, it can be
said that it was actually the seed for it, unifying mathematicians, philosophers
and linguists in their efforts to define the Truth. Mathematical logic, modus
ponens and formal languages are still the basis for most reasoning approaches, e.g.
Situation Calculus, Event Calculus, ECA rules, Knowledge Representation and
Logic Programming. This diversity of approaches has often been enabled by the
necessity of expression of the domains in which we intended to apply automated
reasoning. Thus, when new domains are targeted for automated reasoning, new
reasoning techniques appear to fulfill their needs.

In recent years, business processing and the semantic web have received spe-
cial attention, the former pushing improvements in systems’ expression capabil-
ities, the latter in the interchange and sharing possibilities of reasoning struc-
tures. Argumentation semantics for defeasible logics [51], semantics of composite
events [19], interval–based event logics for ECA rules [102] and Rule Markup
Languages (e.g. RuleML) are some examples of the improvements derived from
the needs of these two domains.

Adaption Hypermedia and web–based systems have exploit the possibilities
of rule languages to express intelligent adaptive behaviors in personalized web
courseware, pointing out some requirements, close to that of Intelligent Environ-
ments, such us reuse, flexibility and ease of use. This is the case of LAG [25],
LAG–XLS [111] and GAM [30].

Since every kind of knowledge can be encoded in a language, with its strengths
and weaknesses, the first task is finding the language that best describes the
needs of our world of preferences, desires and conclusions and allows us to meet
our expression, explanation and learning requirements. Expression and learning
can be achieved through almost any language, but the explanation requirement

65

66 CHAPTER 4. ECA–RULE LANGUAGE

compels us to a language capable of describing its encoded knowledge in a human
readable way, thus excluding black-box alternatives such as neural networks.

Allowing users to program the “instinctive reactions” of an environment, in
an application–independent manner, is directly related with the inner structure
of instinctive reactions as well as with the internal mental processes of human
programming. That is, the universal mental patterns used by humans to pro-
gram. While Minsky elaborates the instinctive reactions as a set of “if–then”
rules [83], Myers points at rule-based languages as the ones naturally used in
solving problems [93]. Thus, we propose an Event Condition Action (ECA)
rule–based language as the core programming language for users to provide the
environment with a base–level intelligence. This core language is User Interface
(UI) independent —designed to match the internal mental plans of the user—
allowing UI–designers to focus just on interaction issues.

ECA–rules, in addition, allow us to encode the most important types of knowl-
edge for context–aware applications. First and most importantly, to express the
desires and preferences of the user. Since most of these desires involve the user’s
will to have something done when some situation arises, the language should be
capable of describing the “something to be done” and the “arising situation”,
in other words, actions and context. Secondly, regarding the conclusions, to
describe high-level context from low-level information.

Besides considering the human natural programming structures, the program-
ming language must take into account the different degrees of skills and chal-
lenges, derived from the heterogeneity of users, preferences and scenarios, as well
as a completely different concept of duty or payment than that of a professional
programmer. In this sense, the absence of an strict duty feeling makes end–users
more inclined to abandon under frustrating conditions than employees. In order
to avoid abandonment, any alternative designed for end–users must provide an
increasing degree of complexity with a very low starting point as in Paperts’ ideal
of “low–threshold no ceiling” [101] (see Section 3.2.2). Thus, the proposed ECA–
rule language is composed of a simple base language, codifying the most basic
programming concepts (objects, activities or location [33]) and a set of advanced
language extensions (built in the base language terms to ease the learning curve)
to deal with more complex concepts, such as generality or time, just when they
are needed.

One important issue of context-aware applications relates to when to check
the context in order to act as expected. Because supervised environments can
grow to considerable size, and given that not every component has the same
timing constraints, determining the time intervals for checking the state of the
context becomes a challenging problem. Thus we have decided to take an event-
based approach in which we assume that only a change in the environment can
trigger another change in it.

4.1. KNOWLEDGE MODEL 67

At this point, one of the main questions that naturally arises is: Why not
use existing algorithms or production rule systems? Rete [38] is a very efficient
algorithm for comparing large collections of patterns and objects, chaining in-
ferences in a fast and low–cost manner. Additionally some rule languages such
as CLIPS or JESS already support Rete, one of the most popular algorithms in
inference engines, already applied to some Ubiquitous Computing systems such
as [125] or [55]. Two problems surround this algorithm when applying it to our
research: centralization and certainty. Rete can be used in systems “containing
from a few hundred to more than a thousand patterns and objects” [38], but in
our system, patterns are distributed along different agents (as we will explain
in Chapter 5), each of which must only deal with its own small set of rules. In
other words, instead of a huge expert system, ours can be seen as the coexistence
of many smaller ones, each of which may be running on a different machine,
meaning that the execution time will hardly grow. In addition, languages such
as CLIPS or JESS do not allow some of the concepts we want to be expressed
(e.g. TIMERS, see Section 4.1.3) and present an unwanted degree of complexity
in other concepts we do not use. However, we have borrowed some ideas from
Doorenbos [35], replacing the Rete discrimination network with a set of memories
and an index, implemented as a hash table. This approach has proven practical
when Rete “working memory elements” are fixed-length tuples, and the length
of each tuple is short (e.g. 3–tuples), as in our case.

4.1 Knowledge model

Like many database management systems (DBMS), our knowledge model uses
event–condition–action rules (ECA–rules) that can be turned into condition–
action rules (CA–rules) or event–action rules (EA–rules) as needed. Since the
aim of the system is to allow the user to program the environment, reaction rules
are preferred to transformation rules [93]. These rules are clearly divided into
three parts, triggers (a.k.a. events), conditions and actions (see Appendix A for
the grammar), and have been designed to be as concise as possible:

• Triggers: supervised context variables responsible for activating the rule.
Only disjunction of primitive events is allowed in the triggers part.

• Conditions: a set of “context variable–value” pairs representing a con-
text state that needs to be satisfied for detonating the action. Only con-
junction of conditions is allowed. Disjunction can be codified as separate
disjunction–free rules.

• Action: a “context variable–value” pair to be set when, in a triggered action,
all its conditions evaluate to true. Several actions are allowed.

68 CHAPTER 4. ECA–RULE LANGUAGE

These parts are structured according to the following template:

trigger1 || trigger2 || ...

::

condition1 && condition2 && ...

=>

action1 && action2 && ...

;

While some systems use CA–rules to create reaction rules, the absence of
events in the abstract layer forces us to use ECA–rules. As an example of the
need for triggers, we can imagine a living room with a TV and a dimmer light
with three values: HIGH, LOW and OFF. In this scenario, when turning on the
TV, the user wants to set the light to its LOW value if it was on HIGH. This
behavior can be encoded into the context TV–ON AND LIGHT–HIGH with the
associated action LIGHT–LOW. If no triggers are specified, any change in any
variable of the conditions will cause the revaluation of the rule. Thus, if the user
sets the light level to HIGH when the TV is ON, all the conditions will evaluate
to true and the system will set the light level to LOW, against the user’s will. In
other words, “If TV = ON and LIGHT = HIGH then LIGHT = LOW” is not
powerful enough to express “When TV = ON if LIGHT = HIGH then LIGHT
= LOW”

In order to describe our system, we will use as a guide N. Paton and O. Dı́az’s
survey of fundamental characteristics of active databases [104]. Before going into
detail on the language, though, let us consider some simple and intuitive examples
to introduce our notation.

4.1.1 Let there be light!

The first example is to turn on a lamp when a switch is pushed. In English, the
rule would be expressed as “When the switch is pushed, if the light called lamp 1
is turned off then turn it on”. In this example, the trigger is the value of the
switch, so the rule will be triggered whenever this value changes. The condition
is the light being turned on, and the action is to turn it off.

switch:interruptor1:value ::

light:lamp_1:status = OFF

=>

light:lamp_1:status := ON

;

The condition can also be expressed in negative form:

4.1. KNOWLEDGE MODEL 69

switch:interruptor1:value ::

light:lamp_1:status != OFF

=>

light:lamp_1: status := ON

;

Implementing a toggle switch can be expressed using two rules:

switch:interruptor1:value ::

light:lamp_1:status = OFF

=>

light:lamp_1:status := ON

;

switch:interruptor1:value ::

light:lamp_1:status = ON

=>

light:lamp_1:status := OFF

;

Or, given that the light’s status property is binary, it can be expressed in only
one rule using the ASSIGN NOT operator (see Section 4.1.3).

switch:interruptor1:value ::

=>

light:lamp_1:status =! light:lamp_1:status;

Note that in the previous rule no condition was defined. Thus, every time the
switch is pushed, the action will be executed.

It is also possible to combine different conditions. In a second example we will
use the same switch to turn on a second lamp if the first one is already turned
on: “When the switch is pushed, if the light called lamp 1 is turned on and the
light called lamp 2 is turned off, then turn lamp 2 on”.

switch:interruptor1:value ::

light:lamp_1:status = ON && light:lamp_2:status = OFF

=>

Light:lamp_2:value := ON;

Other property types different from binary can be also used. For instance, the
following rule assumes that the room temperature can be in a continuous range
of integer values. The rule conditions have two parts: 1) the TV is turned on
and 2) the room temperature is quite high (more than 25◦ Celsius). The action
is turning on the air conditioning. The resulting rule is “When turning on the
TV, if the temperature is too high, turn on the air conditioning”.

70 CHAPTER 4. ECA–RULE LANGUAGE

tv:tv1:status ::

tv:tv1:status = ON && room:tv_room:temperature > 25

=>

aircon:tv_room:status := ON

;

Additionally, conditions may use not only property values but also relation-
ships between entities, such as “When Pablo enters the laboratory, greet him
through the avatar Maxine”.

person:Pablo:locatedat ::

person:Pablo:locatedat = room:lab_B403

=>

avatar:maxine:say := "Hello Pablo"

;

4.1.2 Conditions

The conditions part of the rule codifies the context of the actions, that is, how
certain variables of interest of the world should be at the time an event has been
detected in order to command the action. For simplicity’s sake, we have defined
all conditions as a three–part structure of the type < LHS > < comparator >

< RHS > (where LHS and RHS stand for left hand side and right hand side,
respectively). In addition, only conjunction of conditions is supported. Any
disjunction can be codified as separate rules, each them with only a conjunction
of conditions. This is done to ease the automatic learning process, so in the
underlying layer it is easier to identify which conjunction of conditions is driving
to unwanted actions. The basic set of comparators is the following:

• = : The EQUAL returns true if the LHS value is equal to the RHS value.
When comparing a relation with a value, it returns true if any relation of the
subset matches the specified value. If comparing two relations, it returns
a true value if LHS is a subset of RHS. Even though it may desirable to
add additional operators to compare sets of relations, most of them can be
built through this one. Thus, checking whether two subsets A and B are
strictly equal can be codified in the conditions A = B && B = A.

• != : The NOT EQUAL returns true when EQUAL returns false and vice
versa.

• > : The GREATER THAN, only for integers, returns true if the LHS value
is greater than the RHS value.

• < : The SMALLER THAN, only for integers, returns true if the LHS value
is smaller than the RHS value.

4.1. KNOWLEDGE MODEL 71

• >= : The GREATER THAN OR EQUAL, only for integers, returns true
if the LHS value is greater than or equal to the RHS value.

• <= : The SMALLER THAN OR EQUAL, only for integers, returns true
if the LHS value is smaller than or equal the RHS value.

These basic comparators can be easily extended. They are but an example
for working with some of the most common contexts we had to deal with. A
natural extension of these comparators set should include comparison of strings,
sets and algebraic expressions.

All comparators are designed to work with either a property, a relation or a
value in their LHS (or RHS). In order to extend the expressive power of the lan-
guage, a special type of LHS (or RHS) was created to deal with generic conditions
(e.g. “Any light of the room”): the Wildcard.

Wildcards

The special symbols ∗ and $ are used to manage and filter sets of entities instead
of a single entity in any part of the ECA–rule. They can replace the entity or
property in the pattern type : entity : property described in the introduction
(see Section 1.1). Thus, while light : lamp 1 : status refers to “lamp 1” status,
light : ∗ : status refers to every lamp’s status or, more accurately, to any lamp
status or set of lamps; e.g. the condition light : ∗ : status = ON would be
the set of all the lights turned on (evaluating to false if it is the empty set ∅,
and true otherwise). While the event light : ∗ : status can be translated as if
any light changes its status..., the symbol ∗ acts as a variable holding the set
of matching entities. This set can be accessed through the use of $ followed by
the id of the ∗ they have to access. This id is assigned automatically to ∗ from
left to right according to the order of appearance in the rule, starting from 0.
If a condition has a $ on the left hand side (LHS), the $ set would be filtered
to just those elements evaluating the condition to true. Thus, the conditions
“light : ∗ : locatedat = room : lab b403 && light : $0 : status = 1” will take all
the lights turned on in lab b403 by first obtaining all the lights in b403 and then
filtering this set to those turned on. An example of a rule using wildcards can be
seen in Rule 1.

4.1.3 Actions

Paton and Dı́az describe four options for actions: structure updates (of the
database or rule set), behavior invocation, abort transaction or “do–instead”
alternative course of action. Since the Blackboard is deliberately function–free,
behaviors are implicitly invoked through database changes. In this way, e.g. for
sending a message to somebody, no process is invoked, but a message entity is

72 CHAPTER 4. ECA–RULE LANGUAGE

Rule 1 Example of a rule that shows any message sent to M. Herranz in every
available display at M. Herranz’s location
message:*
::
message:$0:to = person:mherranz
&&
display:*:locatedat

= person:mherranz:locatedat
&&
display:$1:status = available

=>
message:$0:to -> display:$1

;

added to the blackboard (with its properties such as “text” or “sending time”)
and two relations created from the sender to the message (i.e. “from”) and from
the message to the receiver (i.e. “to”). Any messenger service will be subscribed
to additions of message entities and thus will be indirectly invoked when the new
message is added. Whether this service is an external application or another
set of rules for another agent (e.g. moving the relation “to” to the living room
display since the receiver is currently in it) is not considered in the action. Thus,
behavior invocation is treated as structure updates. The do–instead ac-
tion, as defined by M. Stonebraker et al. [112], is designed to act as a barrier
between the user’s command and its actual execution in the database. While
this is perfectly true in a DBMS in which the rules are directly embedded in
the DB and a manager is in charge of it, our system has no manager and rule
engines work as peers in an upper layer. Furthermore, the only way a rule engine
in our system has of knowing that some user commanded something is by being
notified of the change, and consequently when it is too late to do anything about
it. The same situation occurs with the abort transaction. While these kinds of
actions have no use in our system, their goals are also valid in our domain. The
absence of a system manager does not imply a complete peer relation among
actors at every instant: ownership rights and default policies act many times in
the manager’s place. For dealing with this kind of situation, the Blackboard has
two mechanisms to create policies according to these criteria (able to eliminate
or modify the users’ commands before they are executed) [36][62].

In relation with structure updates, the rule language provides eight basic
operations (see Appendix A):

• CE : Creates a new entity in the blackboard representation (such as a new
message). The character # is used to generate a unique identifier. It is
defined as <type> CE <entity name> (e.g. message CE msg# will create

4.1. KNOWLEDGE MODEL 73

a message entity with a random name such as msg150244561412313345)

• AP : Adds a new property to an existing entity. Since the ontology describes
two kinds of properties for types, i.e. compulsory and optional, AP is used
to add an optional property to an existing entity. If in the same rule, the
character generates the same identifier. Thus, message CE msg# &&
message:msg# AP image will create a new message and add the image
property to that message.

• -> : Adds a relation to an entity (if an inverse relation is defined in
the schema, the symmetric relation will be created automatically by the
Blackboard). It can either be used as <entity1:relation> -> <entity2> to
create the relation between entities 1 and 2, or as <entity1:relation> ->
<entity2:relation> to create the relation between entity1 and those related
with entity2.

• -< : Removes an existing relation. It functions in the same way as ->

• := : Assigns a value to a property. As with ->, it can be used to assign a
direct value or the value of another property.

• =! : Assigns the opposite value (only valid for booleans).

• =- : It subtracts from an integer property a direct value or the value of
another property.

• += : It adds to an integer property or concatenates to a string property a
direct value or the value of another property.

These basic operations can be easily extended. They are given here as an
example for working with plain structure context updates.

An example of a simple rule to control access and do some basic high–level
context inference can be seen in Rule 2

In addition, each action has an associated Confidence factor used to measure
(through a reinforcement learning process explained in Section 5.3) the perfor-
mance of the action. Briefly, if once executed, the action is not contradicted by
the user, its confidence factor is increased, and decreased otherwise.

The Timer

Working in the Ambient Intelligence domain, and trying to create a rule–based
mechanism to allow users to express their preferences so they can be automated,
we had to deal, at some point, with time–dependent actions like “five minutes
after I leave do...” or ”if in the next 5 minutes after I leave someone enters do...”.
To do this we created the Timer, a special action, executed as a new thread, with

74 CHAPTER 4. ECA–RULE LANGUAGE

Rule 2 Example of a rule that, when M. Herranz’s card is detected in the labo-
ratory door, if M. Herranz was not located in the lab, it opens the door for him
to enter, infers that he is now located in the lab and, consequently, increases the
number of inhabitants of the lab by one.
cardreader:entrance_B403:value ::
cardreader:entrance_B403:value = person:mherranz:card
&&
person:mherranz:locatedat != room:lab_B403
=>
person:mherranz:locatedat -> room:lab_B403
&&
room:lab_B403:habitants += 1
&&
lock:door_B403:status := OPEN

;

an ending horizon, an optional set of rules to execute when it is started (with the
timer starting as the only implicit event), a set of rules to analyze and execute
while the thread is running and an extra set of rules (with the timer ending as
the only implicit event) to execute when it is finished (see Table 4.1.3).

Ending time The time interval (Tw) in which
the Timer is active. It can be
fixed (e.g. 13:21:15 15th April
2009), relative (e.g. 5 minutes)
or infinite (i.e. it will end by
other a–priori unknown means)

Concurrence The number of times that this
timer can be running simulta-
neously

On finished rules A set of CA rules to be executed
when the Timer ends

On running rules A set of ECA rules active while
the Timer is running. They
can act on and be based on the
Timer status too

On load rules An optional set of CA rules to
be executed when the Timer is
started

Table 4.1: Parts of the Timer action

These parts are structured according to the following template:

4.1. KNOWLEDGE MODEL 75

TIMER ending_time concurrence

{

on_finished_rules

}

{

on_running_rules

}

{

on_load_rules

}

Since some actions would be executed some time after they were decided to
be taken (e.g. I now decide that I will turn off the lights in 10 minutes), a
mechanism for turning back the decisions, or changing the time horizon, must
be added (e.g. I now decide that I will turn off the lights in 10 minutes, unless
somebody enters). Thus the on–running rules may affect not only the world but
also the timer thread itself, or use the state of the thread as part of the context
through the following actions:

• TIMER.pause: The thread continues to be active but the countdown to
the ending time is stopped.

• TIMER.play: The countdown to the ending time is started from the point
it was.

• TIMER.stop: The countdown is forced to end. The on–finished rules are,
consequently, executed.

• TIMER.kill: The thread is forced to end. The on–finished rules are,
consequently, never executed.

• TIMER.start: Can only be used as a trigger. It is generated when the
timer starts.

• TIMER.replay: The countdown is re–started again from 0. The TIMER.start
event is generated.

• TIMER.reset: The thread is forced to start again. The on–running rules,
if present, are executed.

Since timers can be seen as actions taking place in an interval instead of at
a particular time (from where the timer was created until it ends), there is a
need to specify how many actions can be executed simultaneously, i.e. how many
timers should be running at the same time. This is done through the concurrent

76 CHAPTER 4. ECA–RULE LANGUAGE

constraint (no constraint by default). An example of a rule using timers can be
seen in rule 3

As we explain later, this timer structure can be used to express complex
events using atomic ECA rules (primitive event conjunction is only allowed) with
timers. Additionally, events (as well as conditions and actions) can be enriched
with the use of Wildcards.

Rule 3 Example of a rule turning on the alarm if the main door is opened for
5 minutes. Note that since no on–load rules are needed the optional last part,
corresponding to the on–load rules is omitted.
door:main_door:status ::
door:main_door:status = 1
=>
TIMER 5m 1
{
device:alarm:status := 1 ;

}
{
door:main_door:status ::
door:main_door:status = 0
=>
TIMER.kill

;
}

;

4.1.4 Events

While Paton and Dı́az identify events in DBMS as structure operations, behavior
invocations, transactions, user–defined or exceptions [104], we just consider (for
the same reasons listed in the actions section) the first, being indistinguishable in
our system from behavior invocations, user–defined events or exceptions. Trans-
actions, on the other hand, as the blackboard is implemented right now, are not
identifiable as events.

Event type

ECA rule systems distinguish between raw/atomic/primitive and complex/composite
events, defining the former as “an instantaneous, significant, atomic occurrence”,
and the latter as “built from occurred atomic or other complex event instances
according to the operators of an event algebra” [103]. While complex events are
strictly necessary for expression, we can view them as the result of a reasoning
process that can be encapsulated into an ECA rules chain in which all the events

4.1. KNOWLEDGE MODEL 77

present in the rules are raw. We will call these kinds of rules, having only a
disjunction of atomic events, atomic ECA rules. In this way, an atomic ECA
rule may trigger other ECA rules and so on, ending up in actions over the Black-
board. The result of this chain is a complex combination of atomic events. Since
ECA rules have not only events, but also conditions, the process of creating
complex events can be enriched with extra constraints derived from
the ongoing context in a way that a traditional event algebra cannot. In other
words, composite events can be codified in a chain of ECA rules launching ECA
rules as a reasoning process rather than as an event algebra. The initiator and
terminator events described by Paschke [102] in his Interval–based Event Calcu-
lus can be found in the ECA rules’ chain in the events triggering the first and
last rules of the chain, respectively.

To carry out this iterative process we use the timer action described above.
Actually, timers can be seen as de facto rule engines. They already have a set
of on–running rules and on–finished rules. If needed, a set of on–load rules can
be added or codified as on–running rules with the TIMER.start as trigger if we
want them to be executed when the action TIMER.replay is executed. We will
describe now how event algebra, interval definitions and consumption policies are
obtained and improved with this mechanism.

Event algebra

Event operators vary between systems, but the most common are discussed in a
number of articles [102][104][19]. These operators are resolved through timers in
the following way:

• Sequence : (E1; E2) occurs whenever E1 occurs before E2. Following our
semantic proposal, this would be codified in an ECA rule with E1 as the
only event, no condition and a timer as action. The timer will have no on–
finished rules and only one on–running ECA rule with E2 as the only event.
Tw denotes the maximum time window in which E1 and E2 are understood
to compose (E1; E2). C(E1;E2) and A(E1;E2) are the set of conditions and
actions, respectively, of the original ECA rule with (E1; E2) as an event:

E1 :: => TIMER Tw { } {E2 :: C(E1;E2) => A(E1;E2)}

The consumption policies (whether E2 should be detected only the first
time or every time it occurs in Tw) will be explained in Section 4.1.4

• Disjunction : E1orE2 occurs when either E1 or E2 is detected. This
composite event can be codified in our system in the following way:

E1 || E2 :: CE1orE2 => AE1orE2

78 CHAPTER 4. ECA–RULE LANGUAGE

• Conjunction : E1andE2 occurs when both E1 and E2 are detected in Tw.
This may be codified in the two rules codifying (E1; E2) and (E2;E1):

E1 :: => TIMER Tw { } {E2 :: C(E1andE2) => A(E1andE2)}
E2 :: => TIMER Tw { } {E1 :: C(E1andE2) => A(E1andE2)}

• Closure : closure(E, Tw) is signaled only the first time E occurs in the Tw

interval. Note that the concurrence parameter of the timer is set to 1:

E :: => TIMER Tw 1 { } { TIMER.start :: Cclosure(E,Int) => Aclosure(E,Int)

}

• History/Periodic : times(n,E) is signaled when E occurs n times in Tw:

E :: => TIMER Tw 1 { } { E :: => TIMER Tw 1 { } { ... E Ctimes(n,E)

:: => Atimes(n,E) ...}}

The concurrence parameter of the timer can be set to 1 if we want times(n,E)
to occur only when the nth event E occurs. If we do not set any concurrence
constraint to the first timer of the chain (leaving the rest of the timers with
concurrence 1) times(n,E) will occur every mth time E occurs with m ≥ n.
More variants can be obtained by varying the concurrence parameters of
the timers or/and using the TIMER.kill action in the on–running rules.

Notice that conceptual recursion (i.e. timers launching timers) is possible
as long as we have an upper bound (n in this case), since self–referencing is
not allowed in this semantic yet: i.e. a timer can launch another timer, but
cannot launch itself. The implications of adding self–referencing in terms
of simplicity and flexibility must be further studied.

• Aperiodic : Ap(E2, E1, E3) is detected when E2 occurs within the interval
defined by E1 and E3. In this case a timer is initiated with the raw event E1.
If E2 is then detected, a new timer is launched that, on any E3 detection,
will detect Ap(E2, E1, E3)

E1 :: => TIMER Tw { } { E2 :: => TIMER Tw { CAp(E2,E1,E3) =>

AAp(E2,E1,E3) } { E3 :: => TIMER.stop } }

• Not : not(E) detects the non occurrence of E during the Tw interval. This
is codified by a timer, killed if the event E occurs. The on–ending CA
rules are consequently executed after Tw only if E has not occurred. The
execution of the timer depends on the conditions initiating the interval.
Thus we will only describe the timer.

TIMER Tw 1 {Cnot(E) => Anot(E)} { E :: => TIMER.kill}

4.1. KNOWLEDGE MODEL 79

In most event algebras, every operator combines raw events or composite
events in a particular manner discussing whether or not the compositions detect
what they are supposed to detect or they are powerful enough. As an example,
Galton and Augusto [47] pointed out at the inadequacy of Snoop [19] detection–
based composition to differentiate between composite events E1;(E2;E3) and
E2;(E1;E3), driving Snoop to evolve to an interval based semantics based on
occurrences instead [18]. But all of them share a characteristic: they use a
context–independent composition of events, meaning that they compose events
considering just other events. As an example, when Snoop [19] analyzes how
the composition of events is affected by context, it describes context in terms of
events (e.g. whether an event occurrence is repeated or preceded by some other
event occurrence). Thus, an event E1; E1 in which the initiator E1 must occur
when the condition C is true (i.e. c) while the terminator E1 must occur when C

is false (i.e. ∼ c), cannot be defined just by event composition and has to use the
conditions of the ECA–rule (in those systems in which this is possible) to create
time dependent conditions.

Lets explain this example with some more detail. If at the time the initiator
event occurs (Ti) c must be a fact, and at the time the terminator event occurs (Tt)
∼ c must be a fact, it is possible to infer that an event E∼c has occurred at a time
Tn, Ti < Tn < Tt. Thus, in a context–independent event composition, we can try
to codify the composite event as E1;E∼c; E1. But if an event Ec occurs at time
Tm, Tn < Tm < Tt, the composite event will be incorrect (since the terminator
will be detected in a context in which ∼ c is not a fact), so the composite event
has to be codified as E1; E∼c;Ec; E∼c;E1. The process continues as long as we
continue to accept the possibility of Ec and E∼c happening between Ti and Tt,
giving birth to infinite rules. While this is a simple case in which initiator and
terminator depend on a common condition, it is good enough to illustrate the
problem of context–dependent events (see Figure 4.1).

Temporal reasoning allows to codify these conditions as conditions of the
ECA rule (rather than as conditions strictly associated to a particular events)
referring to the time in which the events Ti and Tt occurred. On the other
hand, the conditions for the events are merged with the rest of the conditions
of the rule, breaking the separation of these two conceptually different sets of
conditions. This merging may affect to the easiness of working with complex
context–dependent events scenarios in which, for example, different consumption
policies are established for each event of a composite event. Thus, in order to
apply a policies to a particular event, they have to be applied, one by one, to
each of its conditions, disseminated through the ECA–rule’s condition set.

The events of the example can be codified with timers in the following rule,
where CE1;E2 and AE1;E2 are, respectively, the conditions and actions associated
with the composite event:

80 CHAPTER 4. ECA–RULE LANGUAGE

(a) Context–dependent event composi-
tion

(b) Context–independent event composi-
tion

Figure 4.1: Comparison between context–dependent and context–independent
event composition. Since in the latter only events (and no conditions) can par-
ticipate in the construction of composite events, in order to detect the event of
A), an arbitrary long succession of e c and ec must be defined in B) as part of
the composite event

E1 :: c => TIMER Tw {} { E2 :: ∼ c && CE1;E2 => AE1;E2}

Interval definition

The natural structure for timers is to define relative intervals, i.e. one range
extreme is defined by an event (the initiator) while the other is a time value
relative to the initiator. Since the maximum Tw of the timer can be set to
infinity, infinite intervals can also be defined or ended according to context
instead of time values, since the action TIMER.stop ends the timer, as in the
Ap(E2, E1, E3) operator described in Section 4.1.4. Finally, regarding an interval
in which both extremes correspond to time values, there has been some discussion
about whether the initiator should be treated as another event (subscribing to
the “event” 5th January 2009 11:23:00) or as an internal variable, in which each
agent has its own internal calendar and clock. While the former option pleads
for a complete representation of the world in the Blackboard (included time), the
latter reduces the communication load with the Blackboard.

We have discussed the three absolute intervals (i.e. numeric values, events and
infinite) and one relative traditionally considered in the literature. In addition
to these types of intervals, some AmI domains need not just to define an interval,
but to dynamically change the interval according to context. As an
example, while developing a demo (combining this reasoning system with D.
Molyneaux’s steerable projection system [84] in an AmI environment) in which
the home guided the user in cooking by displaying messages on objects as they
were needed (e.g. when the water is boiling a “danger very hot water” message
was projected on the pot), we found a problem with boiling an egg. The egg must
be in boiling water for 12 minutes, thus, the initiator would be the conjunction
of “water boiling” and “egg in the pot” WbandEp and, naively, the terminator
would be 12 minutes relative to WbandEp. The problem is that these 12 minutes
are not only relative to the initiator, but also to the fact that the egg remains in

4.1. KNOWLEDGE MODEL 81

the pan and the water continues to boil. If any of these facts are contradicted,
the interval is no longer valid. Conversely, it is no longer invalid either: the egg
has spent some time in the boiling water and the composite event “egg boiled”
needs now less time to occur. In other words, the interval should be defined as
12 minutes after the egg is placed in the pot and the water has begun to boil,
but not any 12 minutes, 12 minutes of boiling water with the egg inside the pot;
otherwise, time “does not count”. This example can be expressed as “When I put
the egg in the boiling water, count 12 minutes, then turn off the stove. If during
the 12 minutes I remove the egg or turn off the stove, stop counting. If both the
egg is in the water and the water is boiling, continue counting”. This example is
codified in rule 4 with a TIMER as its action.

This kind of dynamic interval (either relative or absolute) can be expressed
with our timers (formerly created to deal with them). This is done through the
actions defined in Section 4.1.3. Further study is required regarding the need for
arithmetic modifiers of the TIMER time (e.g. TIMER.time + = 1m)

Consumption policies

One of the most common problems in detecting composite events is the con-
sumption policy of raw events. This term is typical of systems in which events
are represented in the database and, once used, have to be dispatched somehow.
Some authors [19] refer to it as context but, even though we do not model events
in the Blackboard, we prefer to use the term consumption policy instead of the
overused context.

When detecting a composite event, repeated occurrences of the same raw
event may lead to a situation in which the composite one can be detected in
various ways. Thus, (E1; E2) in the sequence E1, E

′
1, E2, E

′
2 can be detected in

four possible ways. Furthermore, we can consider all possible combinations of
these four ways as valid detections for some applications.

Traditionally, four different policies have been described. We will analyze
them, explain how to model them through timers, and propose a way to extend
timers to increase their expressiveness

• Recent. Which considers only the most recent occurrences of raw events.
Thus (E1; E2) in our previous example would be matched by E′

1E
′
2. It is

important to note that, since our system processes events as they occur,
the first terminator to occur would always be the most recent (the only one,
in fact). So several occurrences of terminators are only possible when the
composite event triggers a rule which takes time to execute, e.g. “5 minutes
after (E1; E2) do A”.

Recent policies are described with a timer with a not constrained concur-
rence factor, so a timer is launched for every event occurrence E1. Adding

82 CHAPTER 4. ECA–RULE LANGUAGE

Rule 4 Example of a rule codifying When the egg has been boiling for 12 minutes,
turn off the stove
device:pot:contains
||
device:pot:boiling
::
device:pot:contains = egg:egg
&&
device:pot:boiling = 1
=>
TIMER 12m 1
{
device:stove:status := 0 ;

}
{
device:pot:contains ::
device:pot:contains != egg:egg
=>
TIMER.pause

;
device:pot:boiling ::
device:pot:boiling != 1
=>
TIMER.pause

;
device:pot:contains
||
device:pot:boiling
::
device:pot:contains = egg:egg
&&
device:pot:boiling = 1
&&
TIMER.pause
=>
TIMER.start

;
}

;

4.1. KNOWLEDGE MODEL 83

an on–running rule to the timer of not(E1) (see Section 4.1.4) guarantees
that only the most recently launched timer is actually alive. Thus, any
time E1 occurs, a new timer is launched and previously launched timers
are killed. This is codified as:

E1 :: => TIMER Tw {} { E1 :: => TIMER.kill}

Finally, in order to implement the recent policy, it is necessary to include
in the previous rule the detection of the last occurrences of E2.

E1 :: => TIMER Tw {} { E1 :: => TIMER.kill ; E2 :: => TIMER Tw

{C(E1;E2) => A(E1;E2) } { E2 :: => TIMER.kill }

• Continuous. Which considers a sliding window and starts a new composite
event with each primitive event that occurs. It is the most natural policy
for timers, starting a new composition with every initiator and ending them
with the first occurrence of a terminator. In our example, two composite
events may be signaled, E1, E2 and E′

1, E2. For this policy, timers do not
have a concurrence constraint and, after detection of the terminator, they
end the timer TIMER.stop (in addition to the actions associated with the
composite event).

E1 :: => TIMER Tw {C(E1;E2) => A(E1;E2) } { E2 :: => TIMER.stop}

• Chronicle. Which consumes raw events in chronological order. Having no
method to self–reference timers, this policy cannot be currently expressed.
Since events are processed as they appear, the only way to express E1, E2

and E′
1, E

′
2 in our example, is to create a timer on E1 occurrences that, in

the on–running rules, launches itself again on E1 occurrences (in addition to
the actions associated with E2). Additionally, some sort of communication
between launched timers is needed. As an example, the first occurrence of
E1 will launch a timer T , waiting for E2 to occur. If before E2 occurs, a
second instance of E1 is signaled, a replica of T must be launched. This
replica T ′ is not to process any E2 event until its parent T is done. Thus, a
communication mechanism between related timers is needed to define this
policy.

• Cumulative Which is detected once for all occurrences beginning in the
first initiator and ending in the last terminator: E1, E

′
2 in our example

would be the only composite event detected. The advantage of being able
to define different policies for each event is that we can define intermediate
policies, in which some events follow different policies than others. Cumula-
tive can be expressed defining a continuous policy for E1 with a concurrent
factor of 1 and a recent policy for E2.

84 CHAPTER 4. ECA–RULE LANGUAGE

Figure 4.2: Illustration of consumption policies for composite event detection.
Various consumption policies are compared with a “mixed” policy in which the
composite event is designed to use the first instances of the initiator and termi-
nator event but the last instance of the in between events. Illustration inspired
by [19]

E1 :: => TIMER Tw 1 {} { E2 :: => TIMER TIMER.time { C(E1;E2)

=> A(E1;E2) ; } { E2 :: => TIMER.kill} }

In this way, a timer is started only with the first initiator, while the termi-
nator is described with the recent policy structure described above. Note
that the window time of the latter is set to the remaining time of the former.

The advantage of our mechanism is that policies are not globally established,
but assigned to each raw event. For example, in the sequence (E1; E2;E3), it can
be stated that E1 and E3 use the recent policy while E2 uses a different one.

E1 :: => TIMER Tw 1 {} { E2 :: => TIMER TIMER.time { C(E1;E2;E3)

=> A(E1;E2;E3) ; } { E2 :: => TIMER.kill ; E3 :: => TIMER.stop} }
Figure 4.2 illustrates the different consumption policy previously explained,

including a mixed one corresponding to the above rule.
The communication between the timer’s launchers and launched timers is still

an open issue and, while we are sure of the need of a communication mechanism
(e.g. specifying if a timer A must continue when the timer B that created it is

4.2. USER EXPRESSION 85

no longer alive or specifying a new action TIMER.parent.kill, pause, etc.), the
consequences and possibilities must be further studied.

4.2 User expression

The diversity of user goals, environments, expertise and preferences requires a
flexible expression mechanism, with a simple base–language and an increasing
complexity of Papert’s “low–threshold no ceiling” ideal [101] (see Chapter 3).
In this sense, the ECA–language exposed above presents a simple and natural
starting point, following the most fundamental concepts of natural programming
in an easy to understand and use programming language. This first programming
step is designed to allow users with little or no programming knowledge to gain
some control over their environment.

All the complexity required to deal with more subtle or intricate concepts
is crammed into specific operators in such a way that, while the base–language
remains complexity–free, users can increase their control possibilities along with
their skills. To make the growing process easier, these operators are built follow-
ing the same design principles and programming concepts of the base–language
(see figure 4.3).

In addition to the expressiveness they provide by themselves (i.e. wildcards
allow general rules to be expressed while Timers provide a tool for creating time
dependent actions), they have been used to create templates to translate complex
concepts into the language without having to add any further complexity to
it, improving in some cases the expression capabilities of traditional ECA–rules
based languages. This is the case of Timers in relation to event composition, in
which the templates presented for event algebra and interval definition allow UI
designers to directly translate end–user expressions into the ECA–rule language.

In order to measure the naturalness of the ECA–rule language for end–user
programming, we have conducted and end–user study

A user study has been conducted to measure the adequateness of the triggers–
conditions–actions structure and the event–free representation of the world for
end–user programming.

4.2.1 End–user study

The study was conducted over 30 Spanish speaker subjects, each of which was e-
mailed with a short description of an hypothetical smart home (described through
some plans)∗. In order to measure the naturalness of the language we categorized
participants into two groups to compare their results: those with programming
experience (P) and those without it (NP).

∗Questionnaire, plans and videos can be accessed from
http://amilab.ii.uam.es:8080/encuesta

86 CHAPTER 4. ECA–RULE LANGUAGE

Figure 4.3: Triggers–Conditions–Actions structure of the base language and de-
scription of the TIMER complex extension.

Participants were introduced into Intelligent environments by being told that
the home understands rules constructed by filling a template with three boxes:
one for triggers (WHEN), one for conditions (IF) and one for actions (THEN), as
long as they refer to the elements present in the plans. Triggers where briefly de-
scribed as “punctual changes in the environment causing our desire for something
to be done”. Conditions, on the oder hand, were described as “the set of states in
which certain elements have to be for us to desire something to be done”. Finally,
the actions were described as “the changes we desire to be done”. In addition
they were provided with two simple examples as part of their training: “When
the TV is turned on, if the sofa is occupied, the light level of the room is high and
the light is on, then turn off the light” and “When a window is opened, if nobody
is at home, then show in my mobile phone screen the image of the living room
camera”. Common sense and lack of fears were finally recommended.

Once naively introduced to the system, participants were asked to perform
a series of exercises. The main part of the exercises consisted in writing the
appropriate rules to codify the automatic behaviors shown in 5 animations. The
animations show scenes recorded in the house in which the environment was

4.2. USER EXPRESSION 87

automatically acting according to some context (e.g. turning on and off the lights
as people enter or leave the rooms or notifying the user if, when entering the house,
the keys were not left in the key–holder). Animations were accompanied with a
short description of the type “This animation shows a recording of the kitchen in
which the house has been programmed to prevent fires from remaining on when
no object is using them” (See figure 4.4). While any kind of verbal description
may bias the users, we found it necessary to focus them in the same task since the
same video, formerly without description, resulted in different users describing
different scenarios of different complexity. While this showed us that different
degrees of expertise and background result in different ways of identifying and
solving problems it was unacceptable to measure the language naturalness for
users tackling the same problems.

Thus, in summary, participants were asked to use a semi-formal grammar
splitting each rule in three parts. How to fill each part was leaved to their creativ-
ity but constrained to the name and properties appearing in the plan. Therefore,
a valid sentence could have been ”WHEN the NUMBER OF OCCUPANTS is
zero IF KITCHEN LIGHT is ON, THEN turn KITCHEN LIGHT off”. Upper-
case words represents grammar compulsory tokens, and the lowercase ones are
free choice tokens. It is worth noting that this semi-formal grammar has been
devised in such a way that produced sentences that can be directly translated to
our rule base language.

Answers were evaluated by an expert to measure: (I1) how well users stick
to the grammar, using only elements present in the plans, (I2) how well they
identify triggers and conditions, separating them in different sets and (I3) how
well did they assign these sets to their respective boxes. Their performance
was measured in a three value scale (3 for good, 2 for medium and 1 for bad).
Thus, I1 indicates the naturalness of context representation, that is, how hard
is for the end–user to codify her rules being able to use just the properties and
relations of a–priori fixed elements with fixed names. I2 and I3, on the other
hand, measure the adequateness of the triggers–conditions–actions structure. I2
by measuring how well end–users differentiate between elements acting as triggers
and those acting as conditions in the rule, meaning that conditions and triggers
were correctly separated by the user into two different sets. In other words, I2
measure how natural is to end–users the conceptual separation between triggers
and conditions. I3, on the other hand, measure how good was the association of
these sets to the triggers and conditions boxes provided, that is, how natural are
the “trigger”/“when” and “condition”/“if” words to categorize those sets.

A number of results were extracted from this part of the study. Firstly,
even though Programmers (P) performed better than non–programmers (NP) in
I1, there is no significant statistical difference between both groups, obtaining
a p–value of Mann–Whitney U test of 0.17 due to 64,62% of P obtaining a 3

88 CHAPTER 4. ECA–RULE LANGUAGE

Figure 4.4: Screenshoot of an exercise of the end–user study. It shows the ani-
mation and plans of the elements involved in the animation in the middle of the
web page and a short description of what is the video showing below it.

in their evaluation, against a 26,15% with a 2 and 53.75% of NP obtaining a 3
against 33,75% obtaining a 2. Secondly, identifying and separating triggers from
conditions (I2) resulted an easy task for both groups: 87,50% of NP obtained a
3 (2,81 ± 0,53 in average) as 90,77% of P (2,88 ± 0,41), showing no significant
statistical difference between their performance (p–value of 0.68). Finally I3 has
shown to be more complicated for NP users: 57,50% obtained a 3 against the
38,75% with a 1 (2,19 ± 0,96), being statistically significant (p–value of 0.0029)
that P users performed better in it (80,00% of P obtained a 3).

The great majority of tasks were solved using just one or two rules (both by
NP and P), while only one participant used more than three rules to encode a
task, while every scenario was encoded using less than three minutes on average
(see Figure 4.6).

In addition, users were asked to create two more scenarios of their own will,
defining the elements they need for them and creating their corresponding rules.
Since I1 resulted much better in this case than in the scenarios we provided. we

4.2. USER EXPRESSION 89

Table 4.2: I1 (Grammar), I2 (Differentiation of Triggers/Conditions) and I3 (Sep-
aration of Triggers/Conditions) results (in % for G=Good, M=Medium, B=Bad)
for end–users with (P) and without (NP) programming knowledge and their cor-
responding Mann–Whitney U test p–value.

I1 I2 I3

G M B G M B G M B

NP 63.75 28.75 7.50 87.50 6.25 6.25 57.5 3.75 38.75

P 60.00 27.69 12.31 90.77 6.15 3.08 80.0 9.23 10.77

p 0.17 0.68 0.0029

conclude that the bad performance of I1 was due to the unfamiliar home we were
presenting and the inability of users to familiarize with a complete house within
minutes. I2 and I3 present more interesting conclusions (See Figure 4.5). First,
that the separation between triggers and conditions can be made nat-
urally both by programmers an non programmers, allowing as to define
such separation as natural for programming despite the programming skills of
the programmer. Second, that the Spanish words for “when” and “if” are
semantically close (as they are in English) and may lead to misprints
among users unfamiliar with the inflexibility of computing languages
e.g. a sentence such as “when I enter the house, if it is empty...” can be also
expressed in natural language as “If I enter the house when it is empty...”. Thus,
even though triggers and conditions are easily differentiated we should
find a more natural way to classify them.

¤
While this language provides the necessary means of expression, an end–user

programming system requires more than that. In this sense, complex preferences
may be composed by more than one rule, users may have preferences over different
domains of control, or many users, with different preferences, may share a single
environment. Therefore, besides a language for expression, they will need a
mechanism for organizing, structuring and managing the rules they have created.
This mechanism will be analyzed in the following chapter.

90 CHAPTER 4. ECA–RULE LANGUAGE

(a) I2: Correct differentiation between triggers and conditions

(b) I3: Correct association of triggers and conditions

Figure 4.5: Graphs showing the results of our study for trigger–condition differen-
tiation and association for end–users with and without programming background
(P and NP respectively).

4.2. USER EXPRESSION 91

(a) Difficulty of each animation according to the participants

(b) Time spend in solving each animation

Figure 4.6: Graphs showing the perceived difficulty and time spent in solving
the animations both by end–users with and without programming background
(P and NP respectively).

Chapter 5

Multi–agent Structure

5.1 Distributed reasoning

Given that the grammar only defines the comparators, and actuators —leaving
the definition of entities to the blackboard— the addition of new types of ele-
ments to the environment does not pose any problems to the language, with new
elements being integrated smoothly in the rule-based system. This was proven in
the Phidgets, anthropomorphic figures and Steerable projection demonstrators
Sec 6.3.2, 6.3.1 and Sec 6.3.3 respectively, as we will show in Chapter 6.

On the other hand, due to the increase in controllable elements or to the
number of user preferences, the number of rules present in the environment may
grow considerably, resulting in a set of preferences that is difficult to manage. In
addition, even though the rule is the basic programming unit, tasks or preferences
will be, most of the time, composed of many rules. This is represented in our
system by agents.

An agent is a generic software structure holding and executing a set of rules,
irrespective of the UI or UIs used to program them. They are a way for users to
organize and manage preferences, rather than Artificial Intelligence (AI) entities,
and can be seen from the end–user point of view as an intuitive representation of
a butler, each of them with specific orders coded in their ECA rules. Thus, the
natural process by which the user associates certain tasks (and the associated re-
sponsibility) to a particular person or assistant (e.g. gardeners, maids or butlers)
is translated to the Ubiquitous Computing domain in the form of agents. Since
responsibilities are distributed among agents, a malfunctioning rule is easier to
locate, since the user knows which agent should be in charge of which particular
task. Moreover, this modularization allows users to modify or eliminate those
malfunctioning parts of the system without spreading the mistrust generated by
the failure to the overall system.

93

94 CHAPTER 5. MULTI–AGENT STRUCTURE

Since agents can be activated or deactivated independently, new automation
domains can be opened in the form of new agents. Thus, whole sets of preferences
can be activated and deactivated according to the user’s preferences.

The flexibility provided by a modularization mechanism is enhanced by the
fact that no grouping constraint is forced. Contrary to other systems in which
some kind of bundle is imposed (e.g. activity), our agents are only designed to be
independent wrappers of rules, the classification of the agent is up to the
end–user. Thus, depending on the users’ preferences, agents will be designed to
handle preferences related to activities (e.g. preferences for “watching a movie”),
scenarios (e.g. preferences for when I am alone), control domains (e.g. lighting
preferences), locations (e.g. preferences for the kitchen), devices (e.g. preferences
for the kitchen switch), persons (e.g. Pablo’s preferences) or any combination (e.g.
Pablo’s preferences for watching TV in the kitchen), among others.

This flexibility allows users to configure their environments according to their
mental control structures, instead of forcing them to adapt their mental structures
to the configuration mechanism for the environment.

In addition, modularization empowers the scalability of the system.
Agents can be added to control new, previously uncontrolled scenarios. They
can be removed when devices are removed or they can be duplicated when it is
desired to replicate particular behaviors of other people’s environments.

There is no accepted definition of what an agent is, and discussions abound
on the subject [40]. Thus, it is important to define what our agents are and
are not. Jennings et al. [68], in their definition of agents, highlighted three key
concepts: situatedness, autonomy, and flexibility. We will use these concepts in
order to define our agents.

Firstly, we share Jennings’ et al. understanding of situatedness, meaning that
“the agent receives sensory input from its environment and that it can perform
actions which change the environment in some way”. Secondly, in relation to Au-
tonomy, we must stress that our agents are not autonomous in the classical sense
of autonomous agents, but rather independent processing units, programmed en-
tirely by end–users, with no negotiation or communication mechanisms among
them. On the other hand, they show some soft autonomous features, such as
a light learning regarding the performance of their rules, a passive notification
mechanism about the learning and an are you alive? protocol. Therefore, we pre-
fer to consider our agents to be independent (from each other and from the user,
once programmed) rather than autonomous. Hence the stress we place through-
out this thesis on the difference between autonomous and automatic systems.
Finally, flexibility is defined by Jennings et al. as being responsive (i.e. “agents
should perceive their environment and respond in a timely fashion to changes
that occur in it”), social (i.e. “agents should be able to interact, when appro-
priate, [...] with humans in order to complete their own problem solving and to

5.2. AGENT ANATOMY 95

help others with their activities”) and pro–active (i.e. “agents should not simply
act in response to their environment, they should be able to exhibit opportunis-
tic, goal-directed behavior and take the initiative where appropriate”). While we
share both the responsive and social features, we disagree with the pro–active
property since, from the beginning, we designed the system to be automatic, not
autonomous, in an attempt to create a system that is completely predictable for
the user, that is, that it does simply what it has been told to do.

5.2 Agent anatomy

An agent is an independent inference engine defined through a file with three
different sets of rules, on load, on running and on finished, defined in table 5.2

On load rules A set of CA rules to be executed when the Agent
starts.

On running rules A set of ECA rules active while the Agent is
running.

On finished rules A set of CA rules to be executed when the Agent
ends

Table 5.1: Parts of the Agent structure

These sets are structured in the file according to the following template:

{

on_load_rules

}

{

on_running_rules

}

{

on_finished_rules

}

5.2.1 Internal indexing

The on–running ECA rules are internally indexed in three hash tables which in-
dex the rules through their triggers, conditions and actions, so when a change
in a Blackboard element is received, retrieving the triggered rules, those whose
conditions must be reevaluated and those whose actions may have recently af-
fected the same element (and may be reeducated,) is a fast and straightforward
process. A similar indexing is carried out with the on–load and on–finished CA
rules (with the exception of the hash table for triggers) and for rules, indexing

96 CHAPTER 5. MULTI–AGENT STRUCTURE

their conditions and actions by their LHS and RHS elements for the same purpose
(see Figure 5.1).

Figure 5.1: Internal structure of the agent with the hash table indexing of rules,
conditions and actions

5.2.2 Blackboard representation

Each agent is represented in the blackboard as another part of the context in the
same way a real butler would be represented as another person (but belonging
to the Virtual World of figure 3.2 instead of to the Real World). The agent type
has a property status and a compulsory relation owner linking it with the person
or groups of persons for which it works (those who programmed it). Optionally,
a property task, defining the goal the agent was programmed for, and a relation
location, linking it to the physical bounds within which it acts, may help users to
organize and manage their agents. On the other hand, their rules remain private,
keeping the representation of the world function–free (see Figure 5.2). The only
piece of internal function that is represented in the blackboard is the “affects”
relation linking the agent with all the elements that can be modified by it (those
present in the actions part of its ECA–rules). These properties and relations are
defined in Table 5.2.2

This representation as another part of the world provides a simple mechanism
for creating rules that act not only upon and on the state of the world, but also on
the state of the agents (i.e. the rule engines), dynamically modifying the reasoning
rules of the overall system according to context, or making decisions based on
their state —e.g. “When I enter the house activate my lighting preferences for
the house” or “If all agents affecting the entrance door are deactivated, turn on

5.2. AGENT ANATOMY 97

Properties Description Compulsory

name The name of the agent is actually the name as-
signed to the entity. To refer to the agent we
will use the string agent:<agent name>

yes

status The main property of the agent. It can be set
to ACTIVE, LEARNING or INACTIVE, mean-
ing, respectively, that the agent is completely
functional, is not taking any actions but con-
tinues listening and learning from what is hap-
pening in the environment, or that it is only
listening for possible changes in its status.

yes

purpose An optional property to allow users to catego-
rize their agents according to their mental struc-
tures. It can take any string value

no

Relations Description Compulsory

owner It links the agent to the person or group of per-
sons for which it works.

yes

affects This relation is automatically created between
the agent and those elements present in the ac-
tions of its rules.

yes

location An optional relation to an entity of the type en-
vironment (or any of its subtypes). It does not
restrict the agent to act or respond only to ele-
ments in that environment, but allows users to
categorize their agents in spatial terms.

no

Table 5.2: Properties and relations of the agent type

the alarm” (see Rule 5). This is an extremely useful point that allows end–users
to control their preference sets through the same mechanism they use to control
the rest of the environment.

R U alive?

It is important to note that the status property of the agent is not stored in the
Blackboard; instead, every agent has a small server implemented. Through this
server, agents accept requests from other processes to report their status. Thus,
when a process asks the Blackboard for the status of a particular agent, the
Blackboard asks the agent for the value before sending it back to the interested
process. This mechanism works as an “are you alive?” mechanism, allowing for
the identification of crashed agents by trying to retrieve their status.

Since agents are generated in the Blackboard on startup and removed on
shutdown, this process is necessary for agents to be able to verify, on startup,

98 CHAPTER 5. MULTI–AGENT STRUCTURE

Figure 5.2: Representation of an agent, properties and relations in the Blackboard

Rule 5 Example of a rule codifying the behavior “If all agents affecting the
entrance door are deactivated, turn on the alarm”

agent:*:status
::
agent:*:affects = door:entrance_door
&&
agent:$1:status != ACTIVE

=>
alarm:main_alarm := ON

;

whether another agent with the same name already exists in the Blackboard (and
notify the user to name the agent differently), or whether the agent represented
in the Blackboard was supposed to be itself (crashed and restarted), so it can
supersede it.

In addition, this mechanism can be used to periodically check the status of
the agents, removing them from the Blackboard in case they are dead.

5.3 Execution model

The execution model specifies how the set of rules is treated at runtime [104],
in other words, the rule execution process of a rule engine. Some properties
arise in our system from the fact that there are different rule engines running

5.3. EXECUTION MODEL 99

simultaneously. Firstly, rules are distributed among agents and each agent is
a rule engine that is highly uncoupled from the remaining agents. Secondly,
each timer is a new rule engine that is in some way associated with the agent
and timers that created it. While the coupling is higher in the timer case, they
still run in parallel threads and follow their independent execution model. No
strict semaphores are available since no process is modeled in the Blackboard.
Nevertheless, context variables are used in some cases to direct the execution
flow; hence, while more independent than the timers, agents are represented in
the Blackboard and their state can be changed through it, modifying the active
rule engines of the system according to context. Timers, on the other hand, are
just internal process of agents and cannot be modified but by their own rules.

Any form of rule engine (i.e. either timers or agents) shares the same execu-
tion model. This model has been designed to deal with the passive event detection
mechanism of subscription provided by the Blackboard. A passive event detec-
tion mechanism was chosen over an active one (pull–model)so as to minimize
the communication load between the Blackboard and the agents, as well as to
improve the reasoning time performance of agents. Thus, conditions are updated
as changes occur, so when a rule is triggered only the conditions involving the
trigger have to be updated, avoiding the cost of querying the database at the
crucial decision moment. Additionally, the shorter the time response must be,
the more frequently the system has to query the database in a polling mech-
anism, overloading it with unnecessary requests. Besides, since our knowledge
database is event–free, a passive mechanism has the additional benefit of implic-
itly describing events. Passive detection is used to update all condition values
save those having Wildcards (see Section 4.1.2), which are resolved by querying
the Blackboard in order to balance communication load between Blackboard and
agents and the agents’ cache size.

The execution begins with one of the five callback methods for structure up-
dates available in the subscription mechanism: Property changed, Entity removed,
Relation removed, Entity added and Relation added. The execution model can be
divided into nine phases (see Figure 5.3):

Figure 5.3: Forward directed execution model for ECA rules

100 CHAPTER 5. MULTI–AGENT STRUCTURE

• Educate rules: Educates previously executed actions according to the
event received.

• Update conditions: Updates the truth values of any condition contain-
ing the changed element. Conditions can be accessed through hash tables
within the rules, using as a hash key the elements involved in them. Rules
are also hashed within the agent. If a condition changes its value, the num-
ber of true conditions in the rule is updated. Later, when checking whether
all conditions for applying a rule are satisfied, this number is compared to
the number of conditions in the rule.

• Obtain triggered rules: Since events are just a conjunction of raw events,
obtaining the triggered rules is as simple as retrieving from a hash table all
the entries corresponding to the same hash key (i.e. the changing element),
e.g. a rule with the triggers light : lamp 1 : status || person : mherranz :
locatedat would be indexed twice in the hash table for the light : lamp 1 :
status and person : mherranz : locatedat hash keys.

• Update multiple conditions: Updates the values of all conditions refer-
ring to a Wildcard in the trigger part that can be matched with the changed
element. For example, if light : lamp 1 : status has changed, it updates
the value of the condition in the rule light : ∗ : status :: light : $0 : status

= 1 as if it were the rule light : lamp 1 : status :: light : lamp 1 : status =
1

• Filter conditions: It updates the values of all conditions of triggered rules
with Wildcards, updating their values from left to right.

• Obtain applicable rules: For all triggered rules, if the number of condi-
tions and true conditions are equal, the rule is tagged for execution.

• Apply rules: The actions of tagged rules are translated into structure
updates to send to the blackboard. Actions belonging to the same rule are
codified as transactions.

• Execute rules: All structure updates are sent to the Blackboard.

This process is repeated with every notification sent from the Blackboard.
Notifications are queued as they arrive and processed sequentially. Timers, on the
other hand, have their own subscription mechanism and are executed in parallel
with the agent that created them, having their own notification queues. Thus, in
the same agent, events can be processed sequentially or in parallel, according to
the programmer’s needs.

5.3. EXECUTION MODEL 101

5.3.1 Explanation

The results of the execution phases are shown and recorded in a log. ECA–rules
being human–readable structures, this log serves as an explanation mechanism
of the agent’s internal reasoning process and can be used for debugging pur-
poses. This, as stated in Chapter 3, is one of the solutions designed to improve
competence: since programs are developed and maintained by non–professional
programmers, a natural debugging (i.e. explanation) mechanism must be pro-
vided. In addition, making available the internal reasoning process of agents also
engenders trust.

By way of explanation, each agent provides a log of its reasoning process in
real time, allowing the user to choose between a basic mode and a verbose mode
(in which information is provided in more detail) (see Table 5.3.1). In addition,
agents can list their rule sets on request, showing their conditions with their
respective truth values. This makes it possible to spot an incoherence between
the real state of the environment and that perceived by the agent.

Exec. state Plain mode Verbose mode
Event Shows the event received

from the Blackboard.
Shows the event received
from the Blackboard.

Education Shows the actions that
have been educated (if
any).

Shows the actions that
have been educated (if
any) and the list of ac-
tions that remain to be ed-
ucated.

Conditions
update

Shows which conditions of
what rules have been up-
dated

Triggered
rules

Shows the list of triggered
rules

Filter mul-
tiple condi-
tions

Shows the filtered sets of
conditions

Applicable
rules

Shows the list of rules that
are to be applied

Executed
rules

Shows the list of actions
that are sent to the Black-
board

Shows the list of actions
that are sent to the Black-
board

Table 5.3: Structure for the agent explanation log

102 CHAPTER 5. MULTI–AGENT STRUCTURE

5.3.2 Learning

In an attempt to empower competence in an end–user programmed system, an
additional learning mechanism has been implemented. Other Ubiquitous Com-
puting systems, such as the MavHome [23], focus on environments that try to
learn from users’ behaviors in order to anticipate their actions. Ours, on the other
hand, aims to be as predictable as possible, not automating anything the user has
not tried to automate explicitly. Thus, the purpose of our learning mechanism,
far from anticipating the user, is to locate and possibly solve errors in the user’s
programs.

ECA–rules, as an explicit desire for intelligence, provide an implicitly open
door for learning. E.g. once the lights have been programmed to be adjusted
according to people getting in an out of the room, users will not be surprised if
the lights go on and off as people gets in an out of the room so automatic learning
upon that basis will only improve the competence of an expected behavior. This
predictability is especially important in personal environments, such as a home.

To do so, every time an action is executed by an agent, it is tagged for
education. When a context update is received, all the actions not responsible for
that change are educated and untagged for education.

Education is based on reinforcement learning. Each time a rule is executed
an education time interval is opened for reinforcement. If within this interval a
context update contradicts what the action commanded, the agent understands
that it was unwanted and decreases the confidence factor (from now on CF) of
the action (see Section 4.1.3); otherwise, it increases it.

If the CF drops below a certain value (i.e. the deactivation threshold), the
agent may, according to how the user configured it, automatically disable the
action or notify the user of the possible malfunctioning part.

Even when an action has been disabled the reinforcement process continues,
using what the action may have done (had it been enabled) to possibly increase
its CF (see Figure 5.4).

If the CF reaches a reactivation threshold, the action enters a reactivation
process similar to (but with the opposite effect of) the deactivation one 5.4).

The behavior of CFs over time gives further information about the action’s
correctness. Thus, while constantly increased or decreased CFs are signs of cor-
rect and incorrect actions, respectively, a sequentially increased and decreased
CF corresponds to an action associated with an ambiguous context. This con-
text has to be disambiguated by changing/adding/deleting some conditions (or
events) of the rule. Comparing the inflexion points in the CF evolution curve with
the Blackboard values at those times may provide a hint about what variables
must be added to the rule. Physical location may help to reduce the context to
analyze, since most preferences work on local variables.

5.4. MANAGING HIERARCHIES 103

Figure 5.4: Evolution of confidence factors over time in relation to action cor-
rectness

5.4 Managing hierarchies

When multiple users share the same space, as is normally the case, their diversity
of preferences is reflected in a multitude of context–aware applications running
over the same environment. In traditional environments, these preferences are
prioritized according to some ordering mechanism by the inhabitants. Analo-
gously, since context–aware applications are automated user preferences, they
must have a similar mechanism through which to apply the same ordering (ap-
plied in traditional environments by the inhabitants themselves) if they are to
coexist in the same environment.

Hierarchies are the natural social structures for establishing an order of pref-
erence but, linked as they are to the social group that created them, they are
multiple and dynamic and their complexity reflects the complexity of the social
group they rule. In addition, every social group has its own ways of generating
and accepting their hierarchies.

Managing preferences is closely related to the problem of creating hierarchies.
Multiple users inhabiting the same space make the interaction dependent on the
remaining users and their preferences. The problem of co–existence is as old as
mankind itself, and any system for home automation ignoring this aspect would
fail at some point.

The generation and acceptance of the social hierarchy is probably one of its
most important aspects. When a conflict arises, the social group in conflict
creates a hierarchy to solve it. The rules defined when delineating the hierarchy
are intended to keep the same conflict from arising in the future. To achieve this,
every member of the society must believe that the established rules are fair. That

104 CHAPTER 5. MULTI–AGENT STRUCTURE

is, that the result of the previous fight would be repeated if fought again. What
“weapons” are used in the fight and who and wins it, and how, are factors that
depend on the idiosyncrasies of the particular social group, the chronological
moment and the particular context of the fight since every society has its
own ways of generating and accepting its hierarchies. In this sense, the
acceptance of a hierarchy by the members of a society is closely related to the
fact that it is established according to their own values and ruling methods.

This way of looking at humans as the only generators/acceptors of hierarchies
is closely related to the very essence of this work. As we look to enrich the control
users’ experience over their environments —in contrast to other systems where
the focus is on autonomous artificial intelligence— we believe, as did Taylor [114],
that the environment’s intelligence might be judged by how it enables us to be
aware of the world and act on it. Thus, the environment’s “intelligence” is just
a complement to our own, true Intelligence and main engine of the environment.

Going back to indirect control over intelligent environments, the automatic
decision–making mechanism aims to be just an extension of the user’s control.
Decisions are automatic in the sense that they do not need direct human in-
tervention. It is important to point out, however, that behind any action or
command in the environment there is a human element. That is, automatic de-
cisions are human decisions –indirectly– and, as such, they are governed by the
same hierarchies governing users’ daily life.

Given that every action produced by an agent in the environment is —
indirectly— produced by a human, we believe that neither the system auto-
matically nor a third human party, such as an engineer, should specify
the hierarchies governing a social group. They should instead allow each social
group to express its own. This apparently naive principle poses a profound prob-
lem when designing a solution, since any fixed structure will interfere with the
possibly different natural structure of the user. Thus, the structure must be flex-
ible enough to adapt to the natural structures and organizations of social groups.
We propose two social factors for analyzing these structures and organizations :
purpose and complexity

5.4.1 Purpose

Since each type of conflict produces a different hierarchy domain, we find that
the purpose for those hierarchies that are built is varied and entangled. Social
hierarchies (i.e. who goes first?) and task hierarchies (i.e. What goes first?) are
just two examples of a potential clash: What happens if there is a conflict between
a high–priority person doing a low–priority task and a low–priority person doing
a high–priority task? A new hierarchy (or an exception) will be born: a hierarchy
of hierarchies, so to speak.

Some systems have handled this problem through classifying, organizing and

5.4. MANAGING HIERARCHIES 105

structuring. Kakas et al. [69], for example, provide each agent of a multi–agent
system with two types of priority rules: Role priorities and Context priorities.
Role rules prioritize according to the role of the parts involved (some sort of
social hierarchy), while context rules prioritize role rules according to some extra
context (some sort of task hierarchy). Additionally, each agent is supplied with
a motivation structure, a hierarchy over the goals it pursues. These goals are
defined according to Maslow’s needs categorization [79]. Finally, an additional
hierarchy is specified to define the agent’s “personality” (i.e. its decision policy
on needs to accomplish the goals of its motivation).

While this kind of structuring captures many of the flavors of human behav-
ior, it presents some problems when applied to personal environments. First, it
needs a professional (expert in Maslow’s theory) to program the system, and a
clear a priori classification of the users’ goals, roles and tasks. These engineering
solutions, while perfectly valid for domains such as business automation, should
not be applied to home environments in which a programming third party, an
overly rigid categorization or the need of a deep a priori definition breaks some of
Davidoff’s principles for smart home control, such as “allow an organic evolution”,
“easily construct/modify behaviors”, “understand improvisation” or “participate
in the construction of family identity”[29]. Thus, hierarchies should not be con-
strained to specific purposes or domains (e.g. roles or goals), nor presume a
knowledge of complex concepts (e.g. Maslow theory).

5.4.2 Complexity

Secondly, as a social structure, we considered complexity the second factor of
interest while analyzing hierarchies. How do we allow for the various degrees of
complexity of different social groups? How can we measure those different degrees
of complexity? Y. Bar–Yam’s [8] interdependence and scale concepts to measure
complexity are quite useful in this undertaking.

Interdependence describes the effects a part has over the rest of the system:
“If we take one part of the system away, how will this part be affected, and
how will the others be affected?” Not only will different systems suffer different
effects (Bar–Yam exemplifies it by removing a part from a metal, a plant and an
animal and analyzing the part and the crippled system: How well does the part
represent the system? How well does the system behave without the part? Does
it matter which part is removed?) but, more importantly, interdependences are
not equally easy to characterize in every system. In fact, as Bar–Yam points out,
“natural system components are typically interdependent in ways that are not
readily obvious” (What will happen if an adenine is removed from a DNA chain?
or a company from the stock market?).

Scale, on the other hand, refers to the different degrees of complexity a system
acquires depending on how close or far removed the observer is. That is, Bar–

106 CHAPTER 5. MULTI–AGENT STRUCTURE

Yam considers complexity as a subjective measure that depends not only on
the system, but also on the distance between the observer and the system. To
exemplify this he considers our planet and how it is seen as a single point moving
predictably along its orbit when seen from far away and as an incredibly complex
system (with a plethora of unpredictable variables such as movements in the
atmosphere, oceans, plants or human beings) when viewed in greater detail. The
important point of scale is not only that it changes the perceived complexity of
the system, but also that this change characterizes the system: “the variation of
complexity as scale varies can reveal important properties of a system”.

Basically, the study of complexity is not focused on the study of the parts
of a system, but on the relations between them. Interdependence and scale,
as a characterization of the nature of these relations, are helpful variables to
characterize, classify and describe complex systems. Thus, as highlighted by Bar–
Yam, while both a designed system such as a microprocessor, and a spontaneous
one such as the global economy, have millions of components, sharp differences
can be found between them in terms of how well the system can be understood
and how sensitive the system is to improvements or changes. On the one hand, a
microprocessor has been designed and tested, therefore it is more understandable
but, conversely, its growth depends on a new design and testing process. On the
other hand, the global economy –as a spontaneous system– is not fully understood
nor controlled by anybody but is more robust and adaptive to changes in the
environment and, in the overall scale, can dominate disturbances and changes in
its subcomponents, to name just some of the consequences of the idiosyncrasies
of their complexity.

Social networks range from the meticulously planned, as in military hierar-
chies, to highly spontaneous, as in the Internet. Some have their complexity
spread among the structure (e.g. the Ford T production chain), while others
condense it in specific parts (e.g. a diamond cutting business). When looking at
computer solutions for managing social structures, the different degrees of inter-
dependence and scale they allow are easy to see and measure. These degrees are,
in turn, a measure of the degrees of complexity that can be achieved with it.

It is of vital importance that the diversity of social structures be consid-
ered when designing a control mechanism to guide and manage said structures.
Thus, this mechanism, in addition to allowing the creation of strict and central-
ized hierarchies, must provide more flexible mechanisms to replicate the natural
coordination structures of human societies, despite the loss of control and under-
standing brought on by spontaneous structures when compared to planned ones
(e.g. ignoring the a priori degree of interdependence implies ignoring the effect
of removing a part from the overall system). In order to measure how flexible a
system is (i.e. how many degrees of complexity it can replicate), we can analyze
the different degrees of interdependence and scale it supports.

5.4. MANAGING HIERARCHIES 107

In conclusion, if we want to replicate different levels of interdependence we
need to provide a decentralized mechanism for hierarchy management. A mech-
anism of this kind, in which there is not necessarily a central agent coordinating
the processes, does not prevent the creation of centralized hierarchies, but it does
not impose them either. To enable different degrees of scale, on the other hand,
we need to provide different levels of programming. How many layers the solution
is structured into and how much complexity each of them holds will be up to the
users and depend on the problem they intend to solve.

5.4.3 Hierarchies – structure and definition: Multilayer filter

Now, when developing a mechanism to manage hierarchies, besides the underlying
structure, there are two more issues to take into account. The first refers to the
problem of Who is in charge of defining the hierarchies. The second, on the other
hand, deals with the What kind of conflicts is it designed to solve issue, since not
every kind of conflict is of the same nature and, consequently, is not directed by
the same control structures.

Once the decision is made not to impose any underlying structure to users for
creating their hierarchies, we must define the means by which users can express
their hierarchies in the Ubiquitous Computing. Doing so requires summarizing
some of the most important modularization properties of the system:

• A preference or task may include more than one action. Thus, decision
rules may be grouped into sets, depending on the preference or task they
belong to. Those sets are the agents explained in Section 5.

• Agents may be activated or deactivated according to context and they
must be understood as another piece of context. In other words, agents
are present in the blackboard layer [60] and may be activated/deactivated
through it.

• Agents must belong to a user or group of users, their actions being an
extension of their owners’. Additionally they are related to the elements
of the world they affect and may be tagged with the activity/purpose they
are designed for and the location in which they work (see Section 5.2.2).

These properties have been established to provide the necessary modulariza-
tion and structure to the indirect control mechanism as a response to the two
keystones posed by P. Maes [78] in the design of software agents: competence
and trust. Firstly, it favors competence by allowing the creation of complex tasks
–composed of many preferences– but treatable, form the activation/deactivation
point of view, as a whole. Secondly, since every agent is associated with a person

108 CHAPTER 5. MULTI–AGENT STRUCTURE

or group of persons, a location and an activity, the activation/deactivation pro-
cess can be conducted in the familiar terms of the natural environment’s social
and activities hierarchies, thus favoring trust.

With these properties in mind, and according to the nature of conflicts, we
have implemented a multi–layer structure to solve conflicts (see Figure 5.5). This
structure acts as a series of filters between the actions commanded by ECA–
rules and their effect on the world. Thus, an action represent an individual’s (or
individuals’) desire, while the hierarchies (codified in the multi–layer structure)
represent the social conventions or global interest. For a desire to change the
world, it must go through the social conventions or hierarchies. These hierarchies
can agree with the desire and let it pass through, cancel it or alter it in some
way, as we will explain.

This structure uses the AmILab layer structure (see Figure 3.2) to deal with
conflicts of different natures.

Conflicts are classified into two categories: ownership and collisions. In
addition, we distinguish between two kinds of collisions: context–dependent col-
lisions and context–independent collisions, according to whether the only impor-
tant factors to solve the conflict are the elements colliding and the object of
collision (the commanders and the entity), or there is any other relevant element
in the resolution.

Ownership conflicts and context–independent collisions, as we will show, can
be solved in the Privacy layer and the Blackboard of the Context layer. Context–
dependent collisions, on the other hand, must be solved in the interaction layer,
for which we propose the use of the same rule–based agent mechanism mentioned
in Section 5, allowing end–users to use the same programming structure
they use to program their preferences to program the hierarchies that
control those preferences. Thus, control is unified in the interaction layer:
i.e. everything, from the elements of the environment, the hierarchical policies,
the task flows or even the privacy settings, can be programmed by the user in the
same manner, creating a sound controlling experience in which the users perceive
their environment, in terms of programming, with no artificial bounds.

Filtering in the Context layer

Analyzing the layers from the environment to the user (see Figure 5.5), the Black-
board layer, where every element is represented, provides a priority queue for each
element [62]. This queue is governed by a policy and acts as the default policy to
apply in case of collision (i.e. if despite the rest of the layers a collision reaches
this point, the default policy is applied). The policy defines a time interval for
considering two orders as colliding and a function to apply taking into account
the actors in conflict and the element itself. This function gives a priority value
to each order, with the highest value taking precedence. Considering a door, an

5.4. MANAGING HIERARCHIES 109

Figure 5.5: Amilab layers from the conflict resolution point of view

example would be the following:

P = isperson ∗ 0.5 + isapplication ∗ 0.3 + issecurity ∗ 0.4

P Actor

0.9 Security person
0.7 Security application
0.5 Person
0.3 Application

Where isperson, isapplication and issecurity are binary variables with value 1
if the commander is a person, an application or part of the security staff, re-
spectively, and 0 otherwise. As an example, a command from a non mem-
ber of security trying to open the door will be assigned a priority value of
1 ∗ 0.5 + 0 ∗ 0.3 + 0 ∗ 0.4 = 0.5, while a security application trying to close it
at the same time will receive a 0 ∗ 0.5 + 1 ∗ 0.3 + 1 ∗ 0.4 = 0.7. Consequently, the
door will close.

Secondly, the Privacy layer allows users to establish access rights to the ele-
ments they own [36]. Besides being used as a privacy filter, it helps in constructing
hierarchies where the owner is the only relevant factor in the policy (i.e. users

110 CHAPTER 5. MULTI–AGENT STRUCTURE

freely control the access to their elements). Policies can be established for indi-
viduals, groups of individuals or following a “fair trade metaphor” in which users
can only access information (or control elements) of others to the same degree
they allow others to access (or control) their own. Privacy information is also
represented in the Blackboard (like any other element is); therefore, as we will
see, it can be changed depending on context through the interaction layer.

Filtering in the Logical layer

Finally, through the Interaction layer, users can create structures to control the
environment that are, in turn, represented as part of the environment. In this
way they can create agents whose rules control the status of other agents (in-
stead of a physical element of the environment). We will refer to these agents
as meta–agents. Similarly, a rule can be used to set the privacy preferences.
This mechanism for controlling indirect control structures allows for the cre-
ation of hierarchies in as many levels as desired. The complexity of the system
—interdependence and scale— is up to the inhabitants and their natural hier-
archies. Interdependence is easy to see (while not always easy to understand)
in the Blackboard as the graph created by all the affects relations. Depending
on the scenario this graph will range from pyramidal structures to unconnected
graphs or entangled networks, with a person(s) behind each agent, an element of
the environment in each leaf of the graph and, in between, a complex structure
of conditions that, as a whole, governs the overall automatic behavior of the en-
vironment (see Figure 5.6). Scale, on the other hand, can be appreciated in the
different levels in which hierarchies can be expressed.

To illustrate this with an example, let us consider two users sharing a house.
User A prefers the light level to be low while user B prefers it high. In this
situation, they can control their preferences through a single agent (associated
with both of them) in which three rules codify their preference: “if user A is in
the house but not B, when watching TV, set the light level to low”, “if user B is
in the house but not A, when watching TV, set the light level to high” and “if
both A and B are in the house, when watching TV, set the light level to medium”
(see Rule 6).

Conversely, they can have an agent for each, codifying their personal prefer-
ences (see Rule 7), another shared agent codifying their mutual preferences (i.e.
what they want when they are together) (see Rule 8) and a meta–agent deacti-
vating their personal agents and activating the shared one when both of them
are in the house and vice versa (see Rule 9).

Or, finally, they can do without agents and establish a default policy in the
Blackboard (since no other factor but themselves and the light is present in the
conflict) to establish the average as the desired value for the light when a conflict
arises.

5.4. MANAGING HIERARCHIES 111

Figure 5.6: An example of interdependence in the graph created by the connec-
tions between people and their agents (is owner), and the agents with the objects
they affect (affects).

While codifying the same behavior, the three approaches present a different
interdependence and scale and they will be preferred over the others according
to the idiosyncrasy of the social group. Thus, the former will be more frequent
in situations in which most of the preferences are shared (e.g. a couple sharing
a house), the second when each individual normally decides alone and some co-
ordinating mechanism is required (e.g. student roommates), while the third one
is more natural to sporadic environments in which personal preferences are sec-
ondary (e.g. a laboratory hallway). These structures have been observed in the
three real environments in which the system is deployed: a simulated living–room
in the AmILab laboratory (Autonomous University of Madrid, Spain), a simu-
lated security chamber at Indra’s facilities (Madrid) and an intelligent classroom
in the Itechcalli laboratory (Zacatecas, Mexico).

Cooperation between Logical and Context layers

Finally, we would like to briefly point out some synergies between layers. The
first one has already been mentioned and has to do with the possibilities provided
by the indirect control mechanism to change the privacy settings according to
context. The second one, conversely, has to do with how owner rights can be
automatically used to establish rights over agents.

While an element represents an object (either physical or virtual) for which
ownership rights are clearly defined, an agent represents a set of preferences

112 CHAPTER 5. MULTI–AGENT STRUCTURE

Rule 6 Example of hierarchy to set the light level when watching TV, according
to whether user A and B are in the room, codified in a single agent with three
rules

Agent: light Owner: person:A, person:B

tv:tv_1:status
::
tv:tv_1:status = ON
&&
person:A:locatedat = tv:tv_1:locatedat
&&
person:B:locatedat != tv:tv_1:locatedat

=>
light:dim_light:value := LOW

;

tv:tv_1:status
::
tv:tv_1:status = ON
&&
person:A:locatedat != tv:tv_1:locatedat
&&
person:B:locatedat = tv:tv_1:locatedat

=>
light:dim_light:value := HIGH

;

tv:tv_1:status
::
tv:tv_1:status = ON
&&
person:A:locatedat = tv:tv_1:locatedat
&&
person:B:locatedat = tv:tv_1:locatedat

=>
light:dim_light:value := MEDIUM

;

or desires, so the question “Who has the right to affect others’ preferences?”
becomes non–trivial. It may seem that preferences are exclusive the property of
their owner, but if they are preferences over someone else’s or shared objects, the
problem becomes more complicated.

Forcing users to establish privileges not only over their objects but also over
their preferences can be fairly intrusive. In fact, avoiding such processes in rela-

5.4. MANAGING HIERARCHIES 113

Rule 7 Example of two different agents holding the preferences of user A and B
respectively for the light when watching TV

Agent: lightA Owner: person:A

tv:tv_1:status
::
tv:tv_1:status = ON
=>
light:dim_light:value := LOW

;

Agent: lightB Owner: person:B

tv:tv_1:status
::
tv:tv_1:status = ON
=>
light:dim_light:value := HIGH

;

Rule 8 Example of an agent holding the agreed-on preferences of A and B when
watching TV together

Agent: lightAB Owner: person:A, person:B

tv:tv_1:status
::
tv:tv_1:status = ON
=>
light:dim_light:value := HIGH

;

tion to objects (and information) is the main goal of the Privacy layer and the
“Fair trade” policy for privacy management it provides [36].

While we strongly believe that conflicts must be solved at the human level,
information technologies can ease the process of finding them before they occur.
In this sense, the ownership and privileges information of the Blackboard and
Privacy layers may be used to find potential conflicts in meta–agents affecting
other agents.

Three factors are of main interest for this process: what elements are affected
by the agent, who the owner (or who has privileges) of these elements is and
who the owner of the meta–agent is. The basic idea is that if the owners of the
meta–agent have fewer privileges over the elements controlled by the agent than
the owners of the agent, a potential conflict arises.

114 CHAPTER 5. MULTI–AGENT STRUCTURE

Figure 5.7: Extending owner information to automatically establish meta–agent
permissions. The example shows a conflict found automatically when a meta–
agent (belonging to the green group) tries to control an agent affecting an object
not belonging to all members of the group

As an example, consider the meta–agent agAB and the agent agB in Fig-
ure 5.7. Agent agB has been created by user A and has some rules to modify
the lamp and the telephone. While the lamp is owned by the group AB, com-
posed of users A and B, the telephone is the exclusive property of user A. Now,
when the meta–agent agAB, created by group AB, tries to modify the state of
agent agB, the preferences of user B over the telephone may be controlling A’s
preferences over the telephone. Since the telephone is exclusively owned by A,
a human conflict may arise at some point (i.e. some person is trying to decide
about my preferences over my objects).

Once a potential conflict is identified, different strategies may be applied.
The most direct entail notifying the users of the potential conflict (leaving any
solution to their criteria) or splitting agent agB into two agents, agB1 and agB2,
agB1 comprising only the rules affecting those elements owned solely by A and B

(i.e. the lamp) and agB2 comprising the rest (i.e. the telephone). Then, agAB’s
rules affecting agB can be changed to affect agB1 instead.

5.4. MANAGING HIERARCHIES 115

Rule 9 Example of a meta–agent coordinating agents according to context. If
A and B are in the TV room, their respective agents are deactivated and the
common agent is activated. If either of them is alone in the room, his/her agent
is activated. If either of them leaves the room his/her agent is deactivated

Agent: coordinationAB Owner: person:A, person:B

person:A:locatedat || person:B:locatedat
::
person:A:locatedat = tv:tv_1:locatedat &&
person:B:locatedat = tv:tv_1:locatedat
=>
agent:lightA:status := INACTIVE &&
agent:lightB:status := INACTIVE &&
agent:lightAB:status := ACTIVE

;

person:A:locatedat | person:B:locatedat
::
person:A:locatedat = tv:tv_1:locatedat &&
person:B:locatedat != tv:tv_1:locatedat
=>
agent:lightA:status := ACTIVE

;

person:A:locatedat | person:B:locatedat
::
person:A:locatedat != tv:tv_1:locatedat &&
person:B:locatedat = tv:tv_1:locatedat
=>
agent:lightB:status := ACTIVE

;

person:A:locatedat
::
person:A:locatedat != tv:tv_1:locatedat
=>
agent:lightA:status := INACTIVE

;

person:B:locatedat
::
person:B:locatedat != tv:tv_1:locatedat
=>
agent:lightB:status := INACTIVE

;

Chapter 6

Demonstrators

The system was intended from the beginning to be a working system with which
to design real solutions to context–aware problems. It is currently running in
three different laboratories and has been tested in combination with other state–
of–the–art Ubiquitous Computing technologies. In addition, we have developed a
GUI interface to ease the creation of rules and an early prototype of an end–user
GUI.

6.1 Applied Environments

Each of the three laboratories in which the system is deployed was designed to
study the possibilities of Ambient Intelligence in different types of environments.
In the next subsections we will present some of the most relevant characteristics
of these laboratories.

6.1.1 AmIlab

The Ambient Intelligence Laboratory at the Universidad Autónoma of Madrid is
the oldest. Dating from 1999, its main focus is on applying Ubiquitous Computing
technologies to living spaces. With an intelligent living room (see Figure 6.1) and
a small working area, it holds up to 10 inhabitants in a variety of natural scenarios
such as tea times, birthday celebrations, work meetings, movie projections or work
hours.

In addition to the variety of scenarios, this laboratory is used on a daily
basis by students and researches to develop and test other ambient intelligence
technologies such as direct control mechanisms, multitouch surfaces, intelligent
objects and privacy–aware applications. This presents two additional scenarios in
which to use and test the indirect control mechanism, in addition to the above goal

117

118 CHAPTER 6. DEMONSTRATORS

Figure 6.1: A view of the laboratory B-403 living room at the Universidad
Autónoma of Madrid, Spain

of studying its application in personal environments: work places and research
places.

Personal spaces

As stated by Kidd et al [72], personal spaces are characterized by being “free–
choice” environments, thus the amount of activities, scenarios and, consequently,
preferences presented in them can be extremely varied. Most scenarios consist
of a limited set of preferences, conforming an overall view of multiple domains
with few specifications each. In this sense, the simulated AmIlab living room has
been populated with a diversity of agents, developed over time as new preferences
appear in what can be considered to follow an “organic evolution”. Extending
the behaviors of the system as preferences arise, in contrast to a designed model,
allowed us to observe a singular trend in the rules. Thereby, Wildcards were
hardly used, adding for example a new access rule for each person joining the
environment instead of a general rule of the type “when a person...”, like the
one shown in Rule 11. In addition, many agents were created, with different
purposes such as adjusting the lights when watching TV, showing environmental
information on a particular display, greeting upon entrance, or controlling the
TV from the couch. Agents had an average of 6 rules.

Since the simulated living room is somewhat integrated with the working
area of the lab, certain other agents were created to support daily activities in it.
Even though a laboratory has some physical similarities with a personal space,

6.1. APPLIED ENVIRONMENTS 119

it is shared by many more people with weaker relationships (than those of a
family). In addition, some devices, such as a shower, are present while others,
such as personal computers, can be found in greater numbers. In this sense,
while some of the agents built in the environment to support daily living cannot
be considered to be developed for an average home, given the low population of
the lab (ranging from 2 to 10 inhabitants, depending on the time) and the home–
like structure of most of it, they can be considered to be built to meet some of
the requirements of a particular personal space.

In our case, as an example, our lab had many lights and lamps but only two
switches (up and down). At the beginning, switches were associated with the
ceiling light, while the rest of the lights could be controlled through the direct
control GUI [2][50] and oral interfaces [86]. Since these interfaces were not always
running, some of us found some nights —when leaving late after a day of joy and
numerous accomplishments— that, before closing the door and going home, we
had to restart a computer to turn off some of the lights that were still on (the
same problem can be found in a large home when, after putting on our pajamas
and getting ready to go to bed, we realize that we have left the garage light on,
two floors down). To solve this problem, we enhanced the agent to control the
actions of the switches to transform them into context–aware switches. Thus,
when pressing the down switch, if the main light was still on, it was turned off.
If the main light was off but the second light was on, then the second light was
turned off and so on. Then, we added the same behaviors to the upper switch but
to turn the lights on (preserving the same order i.e. main light first, then second
light, and so on) and added some intermediate states to the dimmable lights so
they could go from on to off through a medium state (see Rule 10). In this way
we could control every light from a single place: a traditional switch. Anyone
familiar with the Hanoi towers puzzle will realize that any lighting combination
can be achieved in the room with a succession of pressing the up and down
switches. Nevertheless, for a visitor, unaware of these capabilities, the switch
continues to work as expected: the up switch turning on the main light and
the down switch turning it off. The writer of these lines used to press four ups
followed by two downs as he entered the room: half a second of what became an
automatic movement to set the two dimmable lights to their medium levels with
no other lights turned on.

Working spaces

Even though AmIlab focuses on the study of Ambient Intelligence applied to
personal environments, it is in itself a work place. Having deployed the agent–
rules mechanism as a working application, it has been used not only to design
applications that could be useful in a personal environment, but also to support
the daily activities of the laboratory. Thus, this daily experience has been useful

120 CHAPTER 6. DEMONSTRATORS

Rule 10 Example of rules for controlling a light and a dimmable lamp in the
environment with only one switch

device:switchUp:value ::
light:lamp_1:status = OFF =>
light:lamp_1:status := ON

;

device:switchUp:value ::
light:lamp_1:status = ON &&
dimmablelight:lampv1:value < 50 =>
dimmablelight:lampv1:value := 50

;

device:switchUp:value ::
light:lamp_1:status = ON &&
dimmablelight:lampv1:value > 50 &&
dimmablelight:lampv1:value < 100 =>
dimmablelight:lampv1:value := 100

;

device:switchDown:value ::
light:lamp_1:status = ON =>
light:lamp_1:status := OFF

;

device:switchDown:value ::
light:lamp_1:status = OFF &&
dimmablelight:lampv1:value > 50 =>
dimmablelight:lampv1:value := 50

;

device:switchDown:value ::
light:lamp_1:status = OFF &&
dimmablelight:lampv1:value < 50 &&
dimmablelight:lampv1:value > 0 =>
dimmablelight:lampv1:value := 0

;

for testing its robustness as well as its adaptation to a non–fictional working space
scenario.

One of the most characteristic examples of this kind of environment can be
seen in the access control agent. Contrary to personal environments, the members

6.1. APPLIED ENVIRONMENTS 121

of a work place change more frequently, therefore access policies have to adapt
more often. In addition, the social organization is more fixed and policies and
preferences are consciously designed. In this case, access rights were controlled
through a generic rule (see Rule 11) taking into account the membership of the
research group.

Rule 11 Example of rules for RFID door reader to grant access to the laboratory

cardreader:door:card ::
person:*:card = cardreader:door:card &&
person:$0:belongsto = group:amilab &&
door:main_door:status := CLOSE =>
lock:door_B403:status := OPEN &&

;

Research spaces

Finally, being a research laboratory, some of the technologies being studied had
special context needs for which the environment had no solution. This is the case
of a privacy–aware application that, in addition to the privacy configuration,
also needed to know location information. In this sense, the rule’s mechanism
was used to provide location information. This information, far from reliable in a
deployed environment, allowed us to test our technologies in otherwise impossible
scenarios. Some rules of the location agent, using the PCs and RFID card reader
to infer location information, can be found in Rule 12. In addition, the rules
were used to easily develop proofs of concept to test context–aware ideas such as
a switch that, depending on who is pressing it, acts over one element or another.
As an example, configuring the switch to turn on and off the TV (instead of the
lights) when a certain RFID card was placed in a nearby RFID reader was done
by adding a single meta–agent, with only 4 rules (2 to control the switch when the
card was in the RFID and 2 to deactivate/activate the former switch agent when
the card was inserted/removed). This meta–agent was added without having
to modify any other system agent, not even the one controlling the switch, and
enabled us to run some trials with a visitor to see her reaction to such an idea.

¤
In summary, the agent system is used daily at AmIlab to automate tasks

such as access control, lighting preferences, message delivery, device enhancement
(such as context–aware switches), or extracting high–level information (such as
location) from low–level information. Its set of rules and agents have been created
progressively over the last three years, as preferences arose from different users,
to deal with different day–to–day living/working/research problems.

122 CHAPTER 6. DEMONSTRATORS

Rule 12 Example of rules using PCs and the RFID door reader to infer location

cardreader:door:card ::
person:*:card = cardreader:door:card &&
person:$0:locatedat != room:lab_b403 =>
person:$0:locatedat -> room:lab_b403

;

cardreader:door:card ::
person:*:card = cardreader:door:card &&
person:$0:locatedat = room:lab_b403 =>
person:$0:locatedat -< room:lab_b403

;

pc:*:status ::
pc:$0:status = BUSY &&
person:*:isowner = pc:$0 &&
person:$1:locatedat != pc:$0:locatedat =>
person:$1:locatedat -> pc:$0:locatedat

;

pc:*:status ::
pc:$0:status != BUSY &&
person:*:isowner = pc:$0 &&
person:$1:locatedat = pc:$0:locatedat =>
person:$1:locatedat -< pc:$0:locatedat

;

6.1.2 Learning environments: Itechcalli

Within the Itech Calli project we created another laboratory at the Instituto
Tecnológico Superior of Zacatecas North, Mexico. This space was designed as a
Ubiquitous Computing classroom to be replicated in different places within the
state. Thus, the underlying idea of Itech Calli is to create a set of educational
spaces or classrooms interconnected in such a way that the students and teachers
could be located in any of them, having a remote class.

Being designed as a classroom, the set of capabilities of this environment is
different from those of AmIlab. Eight rows of student chairs, each equipped with
pressure sensors and a red button, a blackboard and two displays, a 50–inch
display beside the blackboard (the virtual window) and a secondary display at
the teacher’s desk, created a physical environment similar to a classroom (see
Figure 6.2). In addition, like AmIlab, it is equipped with lights, switches and
cameras.

6.1. APPLIED ENVIRONMENTS 123

Figure 6.2: A view of the Itech Calli laboratory’s living room at the Instituto
Tecnológico Superior Zacatecas Norte, Mexico

The set of agents deployed in it has quite a different set of rules, such as those
for controlling a slide presentation from different places (even remote places or
simultaneous places) or to activate and show some camera image in different dis-
plays as events occur (such as a student pressing a button to ask a question).
Following the natural structure of a classroom environment (contrary to the freer
structure of a living space), the agents were more structured and, normally, asso-
ciated with a particular activity such as exam, class, debate or free which allowed
the creation of meta–agents to manage the flow of activities (and their associated
preferences) held inside the space. In addition, due to the coordination require-
ments of a distributed classroom, the use of wildcards was more frequent (see
Rule 13).

6.1.3 Security environments: Indra

Finally, through the UAM–Indra Cátedra and as part of the Hesperia project, we
deployed a third laboratory at Indra’s Madrid facilities. The aim of the project is
to develop security technologies for home security and public spaces, and the lab
was designed to study security strategies in spaces with sensitive content (books
and computers in the first experiments). Here, the natural hierarchies were strict
and centralized, and so was the agent structure, which was designed top–down to
deal with problems such as sending alarms for unauthorized access to documents

124 CHAPTER 6. DEMONSTRATORS

Rule 13 Example of a rule for a ubiquitous classroom in which it is specified
that “When the red button of a chair is pressed (meaning that a student has
a comment to make) the virtual windows of all the rooms involved in the same
ubiquitous event will show the room in which the student pressed the button”

chair:*:red_button ::
chair:$0:red_button = 1 &&
room:*:contains = chair:$0 &&
room:*:isinvolvedin = room:$1:isinvolvedin &&
camera:*:locatedat = room:$1 &&
vWindow:*:locatedat = room:$2 =>
vWindow:$4:shows => camera:$3

;

or spaces or defining dynamic access rights, consulting times and securing reading
places according to context.

This scenario provided a test bench for the language’s most complex struc-
tures. Due to its secure nature, the programmers’ degree of expertise was ex-
pected to be higher and thus, we could exploit the potential of both Wildcards
and Timers (see Section 4.1.3).

The context–dependent event composition (see Section 4.1.4) was found here
in many scenarios. For example, in one scenario there was a one–person zone with
a drawer monitored through cameras from a security room. If somebody opened
and closed the drawer with no security personnel present at either time to watch
what had been taken out or placed inside, a high risk event was detected. If at
both times a security guard was present then a low risk event was detected, and if
a security guard was only present at one of the events then a medium risk event
was generated. Thus, when somebody opens the drawer, the composite event
generated will depend on whether or not a security guard is present at the time
of closing. Given that the maximum time for leaving the drawer open is 5 minutes
(otherwise the alarm is triggered), the code for detecting that context–dependent
composite event can be seen in Rule 14.

In addition, for the Hesperia project, we developed a PDA program to show
alerts generated on the Blackboard. The alert type is a subtype of message and,
as such, it has the type, priority and msg properties. In addition, it may have
the relations from, to and locatedat. The PDA program was subscribed to the
creation of alert entities so, when a new alert was added to the blackboard, it
received a notification with all its attributes (see [60] for a detailed description
of the subscription mechanism). This program allowed the user to set some
preferences about what kind of alerts should be sent according to the type of
alert and priority. In addition, a login screen was used to identify the user so

6.1. APPLIED ENVIRONMENTS 125

Rule 14 Example of a rule for detecting a context–dependent composite event in
which, after opening a drawer under surveillance, closing it generates a low risk
event or a medium risk event according to whether or not it is under surveillance.

drawer:security:status ::
drawer:security:status = OPEN &&
person:*:locatedat = room:security_room =>
TIMER 5m 1

{ alarm:security_drawer:status := ON;}
{

drawer:security:status ::
drawer:security:status = CLOSE &&
person:*:locatedat = room:security_room =>

<rules to apply to or logging of a LOW risk event>
&&
TIMER.kill

;

drawer:security:status ::
drawer:security:status = CLOSE &&
person:*:locatedat != room:security_room =>

<rules to apply to or logging of a MEDIUM risk event>
&&
TIMER.kill

;
}

;

only alerts directed to the user were shown in the interface (this information
corresponds to the to relation) (see Figure 6.3).

Alerts, as a reactive behavior, were generated through the use of the ECA–
rules described in this work, allowing the creation of different agents, codifying
preferences for different persons, domains and scenarios. These agents were acti-
vated and deactivated through the use of meta–agents, activating, for example,
all security agents when nobody was in the room and deactivating the security
agents for particular persons as they entered the room (and consequently do not
need to be notified) (see Rule 15).

The rules for creating the messages used the different elements of the environ-
ment and some timers, according to preferences. Alerts where created through the
Add entity, Add property and Add relation grammar operators (see Section 4.1.3).

¤
Summarizing, each environment presents a different challenge, from daily liv-

ing, working, researching, teaching or managing security. In all of them the

126 CHAPTER 6. DEMONSTRATORS

Rule 15 Example of the rules of a meta–agent in charge of activating and deac-
tivating the personal security agents of lab B403 members, in charge of sending
alarms related to the lab, as they leave and enter the environment, respectively.

person:*:locatedat ::
person:$0:locatedat = room:lab_B403 &&
person:$0:belongsto = group:amilab &&
agent:*:is_owner = person:$0 &&
agent:$1:task = security &&
agent:$1:locatedat = room:lab_b403 &&
agent:$1:task = ACTIVE =>
agent:$1:task = INACTIVE
;
person:*:locatedat ::
person:$0:locatedat != room:lab_B403 &&
person:$0:belongsto = group:amilab &&
agent:*:is_owner = person:$0 &&
agent:$1:task = security &&
agent:$1:locatedat = room:lab_b403 &&
agent:$1:task = INACTIVE =>
agent:$1:task = ACTIVE
;

easiness and naturalness was used in a different way: defining preferences and
policies, coordinating, prototyping research ideas or obtaining new high–level
context information quickly and easily. These challenges served to test the po-
tential of the base–language and its easiness, the complex operators and their
descriptive power, as well as the flexibility of our modular architecture to deal
with different classes of social organization.

6.2 User Interfaces

6.2.1 A Graphical User Interface for programmers

In order to facilitate rule creation, we developed a basic GUI. This GUI is not
supposed to be an end–user interface, but it eases the process for individuals with
low programming skills by freeing the user from having to know the grammar
of both the Blackboard and the agent rule mechanism. To do this, the GUI
automatically creates a navigation panel. The navigation is by location, so it
begins with the largest container in the Blackboard (the University in our case)
and allows for location–based navigation by double clicking to go inside a location
to see what other spaces are contained in it (e.g. from buildings to floors, from
floors to rooms and from rooms to areas). This location hierarchy is automatically

6.2. USER INTERFACES 127

(a) The login screen is used to identify the
user to send those alerts sent to him/her

(b) The program allows configuring the type
of alerts to receive, and the minimum priority
level to receive them

(c) The program in the PDA allows configur-
ing what type of alerts have to be shown and
when

(d) Alert messages show the alert
type and subtype, time and place
and the message attached to the
alert

Figure 6.3: Screen captures of the alert PDA software. 6.3(a) shows the startup
login screen 6.3(c) shows the main window of the program, 6.3(d) shows an alert
received and 6.3(b) shows the configuration screen. This program was coded by
Carlos Pimentel.

extracted from the Blackboard through the relations “contains” and “located at”.
A list of the types is presented in the upper middle part of the interface

according to the objects within the selected location (see Figure 6.4(a)). If the
user clicks on a type, a list of all the elements of that type, its properties and
relations, appears in the upper right part of the interface.

The bottom part of the interface is for rule management and contains a list
with all the rules that have been created and buttons to add, delete or modify
rules. When adding or modifying a rule, a new window opens with three parts
(triggers, conditions and actions), as shown in Figure 6.4(b). Operators and
comparators for the actions and conditions are chosen from a list, while the values
can be established by dragging and dropping from the Navigation window.

While this interface is not designed for end–users, it has been tested with first–
year students with no prior programming knowledge, allowing them to write their
own programs after a brief introductory lesson.

128 CHAPTER 6. DEMONSTRATORS

(a) Navigator window of the GUI rule creation tool. It has a navigation through
location panel on the top left part of the window, the list of the types of elements
present in the chosen location in the top middle, the list of the elements of the
selected type present in the location in the top right and the list of created rules
at the bottom

(b) New rule window of the GUI rule creation tool. Elements are dragged from the
navigator window and dropped in the corresponding area of this one (triggers, conditions
or actions)

Figure 6.4: A snapshot of the windows of the GUI for rule creation. This program
was coded by Carlos Pimentel.

6.2. USER INTERFACES 129

6.2.2 The Magnet Poetry metaphor

In addition to this GUI we developed an initial prototype for an end–user inter-
face. In order to be suitable for end–users, the interface must be easier than the
one presented, and the means for expression more natural. Thus, using terms
such as light:lamp 1:status is not acceptable.

When deciding what kind of interface metaphor to use, we considered different
types of natural interactions, such as natural language, icon–based and tangible
user interfaces (TUI). The natural language interaction was the preferred choice
from the beginning, since it did not require any kind of extra abstraction from
the user (contrary to an icon–based interface). Nevertheless, precisely because
natural language is ordinarily used for everything in users’ daily lives, and given
that not everything users perceive as being part of the environment is part of the
intelligent environment or can be done in it (e.g. moving objects, opening the
door or telling where a particular pair of socks is), a non–constrained interface
such as natural language may lead to uneasy situations in which the end–user
does not know what can be said and what can not, not being able to establish a
reasonable cause for it.

On the other hand, we believe that tangible interfaces, when correctly de-
signed, present a fairly natural means of interaction. Nevertheless, TUIs are
prone to number and expression problems. That is, when the set of concepts to
manage grows in number, TUIs become fairly complicated to use: they either
have to account for a huge number of physical pieces (difficult to find) or they
have to use an abstract mechanism to represent more than one concept with only
one piece (difficult to understand).

Thus, we opted for a GUI, based on a TUI using natural language interaction:
a “fridge magnet poetry” based GUI.

The magnetic poetry metaphor is based on small magnets, each of which has
something written on it. Poems (sentences) can be constructed by arranging the
magnets on a metallic surface. One of the strengths of the metaphor is that, since
the words are already written on the magnets, the expression is more accurate
and the capabilities of the environment can be seen at glance.

This concept of a magnet poetry based GUI was already applied by Truong et al
in CAMP [116]. It gave users complete freedom to use the tokens to build sen-
tences. In order to ease the “writing” process, CAMP provides some search
services as well as a “translator” to give feedback to the user on how the system
is understanding the sentence.

We, like Truong et al. [116], are very interested in domestic environments and
firmly believe that the magnetic poetry metaphor might succeed in some inter-
esting scenarios of this particular domain: it is appealing to non-programmers
and, more importantly, it allows end-users to program from the beginning in an
efficient and effective manner. Hence, with such a low learning curve, barriers are

130 CHAPTER 6. DEMONSTRATORS

overcome before the user decides to discard the metaphor. In addition, the natu-
ralness of the “when” “if” “then” structure of the rules, as well as the artlessness
of the “entities” “properties” and “relations” (nature of the rules’ bricks), makes
the language human-readable from the very beginning.

Figure 6.5: Base layout of the Magnet Poetry GUI, showing the different zones
for different types of magnets (nouns, verbs, values and links) and the working
zone (bottom of the figure) with two parts, a rule zone and a working space
around it. This program was partially coded by Amanda Vidal.

Currently, we have not devised any other environments where the metaphor
might be applied. Domestic environments are suitable for occasional program-
ming. However, production-oriented environments, such as an office, a laboratory
or a store, require more expressive tools.

The main difference between CAMP and our approach lies in how the process
of building a rule statement is implemented. In the case of CAMP, users build
their statement without imposing any restriction on the selection and arrange-
ment of the tokens. During the rule composition, tokens can be chosen freely and
they can be placed in any part of the statement. Once a phrase is completed,
several parsing techniques are applied to transform the original statement into a
computer-readable one. This includes rewording using dictionaries, decomposing
the phrase into a collection of sub-clauses, or removing redundant information.
Additionally, CAMP includes a status bar where the user is given feedback with
the interpreted statement. In this manner, the user can check incorrect or missing
statements, and, if required, fix them by changing certain tokens. What is more,
ambiguity and missing parameters in the rephrased description are flagged or set

6.2. USER INTERFACES 131

to predefined values. Dimensions flagged as missing can be indicated to the user
providing her with the opportunity to refine the description. Missing information
in the final description is replaced with default predefined values.

On the contrary, we argue that it is necessary to steer the user during the
statement building. This guidance has to include both token selection and place-
ment. Regarding the former, before each new step in the statement composition,
the set of tokens is filtered according to previously placed tokens. Thus, only to-
kens that can be placed at the end of the ongoing sentence are shown, removing
those that, if chosen, might lead to a wrong sentence. This results in a smaller
set space, easing the search process and giving a better formed sentence (the user
can only select from the correct set of tokens). In addition, tokens are displayed
in different cabinets, corresponding to verbs, nouns and values to decrease the
search space through positioning (see Figure 6.5).

Therefore, our methodology allows the user to construct less natural state-
ments, although the expressiveness remains the same. For instance, Table 6.1
shows how some of the example statements posed by Truong et al. might be
reformulated in our proposal. It is interesting to note that Truong’s and Dey’s
studies reveal that people find it natural to interact with technologically–enriched
homes as commanded systems. Thus, command–like sentences are natural to
users when instructing their homes. While Truong et al. believe that users want
to express themselves freely, we believe that they want to express themselves
easily and accurately. Although “freely” normally implies “easily”, we prefer to
explore other means of “easy expression” that are more accurate than “free ex-
pression”, believing that the feeling of freedom experienced by a user is hardly
affected if the language is powerful and easy enough. In addition, the satisfac-
tion experienced by being able to express oneself freely can be overcome by the
frustration of a system unable to correctly interpret the sentences.

Besides a steered composition of sentences, our system also presents a feed-
back process through which users can see the sentence in the machine–like lan-
guage by clicking on the “translate” button of the interface. While the machine–
like language is not as easy to read as the one that uses magnets, users do not
have to write on it but just use it to check the correctness of the sentence, if
desired. Knowing what should be written makes the understanding process that
much easier.

According to the above, ambiguous sentences are less probable, since we pro-
vide several mechanisms for verifying that composed rules are semantically un-
equivocal. This implies that the task will be correctly accomplished on the first
attempt, avoiding disturbing iterations. Moreover, we surmise that as a CAMP
user gains more control over the interface, he will adapt his expression to the

132 CHAPTER 6. DEMONSTRATORS

Table 6.1: Several statements represented as CAMP approach and our approach.

CAMP statement Our statement

“record video everywhere Saturday
night”

When Saturday night Then
record video of everywhere.

“record picture in Billy’s bedroom at
night”

While Billy is in bedroom if
at night Then record picture of
Billy

“record 1 picture every 4 minutes
in Billy’s bedroom every night until
morning stop”

While Billy is in bedroom if
at night Then record picture of
Billy and time between pictures
equals 4 minutes

”always show me where baby Billy is” show me Billy’s location
“always record picture of baby Billy
and display at my location a picture
of baby Billy”

Record picture of Billy and show me
picture of Billy

internal representation of the tool rather than continue to use his own words.
Essentially, users learn how the system builds statements thanks to the feedback
they receive whenever a new rule is inserted. In other words, the user learns
how to tune the system to obtain a better response. As such, we believe that
users will prefer to become familiar with the system’s expressions rather than let
the system interpret (or misinterpret) their words. This can be seen in the way
people perform searches in free–expression searchers such as GoogleTM.

This interface is based on a “Magnet poetry” grammar and a parser for trans-
lating it to the ECA–rule language grammar. A simple language was created to
test the concept within a limited domain. This language was created to allow
users to configure some switchable and adjustable objects (such as the light, the
speakers, the coffee maker, the volume of the speakers or the radio) according
to their state, the state of the door and some location information. The EBNF
grammar used for this example is shown in Rule 16.

This EBNF grammar is used to generate a “Step by Step” analyzer to guide
the composition of sentences. Thus, when a token is input, it returns the list of
possible subsequent tokens allowed by the grammar. Once the user is finished
composing the sentence, the resulting tokenized sentence is passed to a translator
for conversion to base–language rules. These rules can then be loaded into an
agent. This process is illustrated in Figure 6.6.

6.3 Integration with other technologies

One of the main goals of the AmIlab laboratory since its inception has been to
integrate different technologies smoothly and easily. This integration has focused
on hardware technologies. EIB, Phidgets, RFID, X10 and others were integrated

6.3. INTEGRATION WITH OTHER TECHNOLOGIES 133

Figure 6.6: Execution flow for translating sentences generated in the Magnet
Poetry GUI to the ECA–rule kernel language. First an EBNF grammar is used
to generate a Step by Step analyzer to guide the composition of sentences. The
tokenized sentences produced by the end user are translated to the ECA–rule
language and loaded into an agent.

through the blackboard. Some of them, such as the Phidgets, were intended
to extend the end–users’ creation capabilities of the agent system to the hard-
ware domain. This hardware integration was done through the transparent view
provided by the Blackboard, but the agent system allowed us to easily merge
new software technologies and systems, hence combining their potential with the
already existing context–aware capabilities. Thus, we incorporated the anthro-
pomorphic virtual character “Maxine” [39] of the University of Zaragoza, Spain,
to deliver messages in the environment from a wall–mounted 50” display. What
to say, when to say it and the mood to use when saying it were behaviors pro-
grammed through the agent mechanism. All the low–level complex behaviors
such as lip synchronization or facial expressions were part of the state–of–the–art
work incorporated by the Zaragoza team (see Section 6.3.1). The last example
of synergy can be seen in our work with the Embedded Systems Laboratory of
Lancaster University (UK), in which we combined their Smart–its technology and
steerable projection system [84] with the blackboard representation and agents
structure to create a guided cooking scenario in which the system guided the user
to cook the selected dish by projecting over the different elements involved in the
recipe (e.g. salt, pans or stove) (see Section 6.3.3). All the system logic was
again delivered by the agents’ mechanism while the new sensing and projection
capabilities were the fruit of the work done at Lancaster University.

134 CHAPTER 6. DEMONSTRATORS

6.3.1 Integration with anthropomorphic figures

Focusing on multi–modality and social interaction in Ambient Intelligence, Max-
ine [39] is a script-directed engine, of the Universidad de Zaragoza, for the man-
agement and visualization of 3D virtual worlds, written in C++ and based on
a set of open source libraries. Those virtual worlds may include actors with
synthesized speech, synchronized lip movements and different moods.

All the elements that constitute a virtual scenario are defined and managed
through a scene graph including images and texts (bmp, gif, jpeg, pic, png, rgb,
tga, tiff and alpha channel), simple geometric primitives and complex geomet-
ric models (3DS, flt, lwo, md2, obj, osg), simple lights, 3D and ambient sound,
animated characters (Calc3D), animated actors (provided with voice synthesis
and facial animation with lip–sync) and synthetic voices (with voice selection,
volume control, speech speed, insertion of pauses, tone, word emphasis, pronun-
ciation specification). The engine also manages auxiliary elements like cameras.

While this system facilitates the creation of applications with 3D virtual
worlds (such as a PowerPoint presentation [39]), its focus is on programmers.
Thus, we decided to try to integrate it into the environment as another part of
the world, to allow users to take advantage of a virtual character for their own
purposes.

To accomplish this, we created a driver and modeled Maxine as a virtual
person in the environment with three properties: say, mood and emphasis. The
say property was inherited from the previously existing synthesizer type, while
the other two were added to exploit the visual capabilities of an anthropomorphic
character. The mood property could take one of the following values: “anger”,
“disgust”, “fear”, “joy”, “sadness”, “surprise” and “neutral”, while the emphasis
ranged between 0 and 1.0. Then, Maxine was shown on a 50–inch wall display in
the living room.

First of all, Maxine was integrated with the oral direct interaction mecha-
nism [86] so users had a visual reference to command the environment, whereas
before they had to speak to the void, which lead to uneasy situations when the
speech recognition failed.

A Study of the Use of a Virtual Agent in an Ambient Intelligence Environ-
ment [89] reported that almost half of the subjects (48%) preferred to interact
with a virtual agent in their conversation with the ambient intelligence environ-
ment, only 14% of them considered that they preferred to carry out the inter-
action without the support of the virtual agent and 38% did not express any
specific preference. In addition, one of the most important consequences of driv-
ing the interaction through an avatar was related to trust. Thus, when the speech
recognition failed, the avatar provided a visual so people naturally placed the re-
sponsibility on it, leaving their trust on the rest of the system unaffected. This
fact is strongly related to the “spreading responsibilities” issue of Section 3.3.3

6.3. INTEGRATION WITH OTHER TECHNOLOGIES 135

that led to the modularization of agents in the first place.
The integration with the oral direct control mechanism turned Maxine into

an input device. Modeling it in the Blackboard also turned it into an output
device that could be harnessed by users in their context–aware applications.

Some examples, freely developed by first–year graduate students with no prior
programming knowledge, were aimed at greeting people as they entered, notifying
of events, making comments about weather conditions or changing the environ-
ment with Maxine’s mood. While not everybody will want to have such behaviors
in their personal homes (specially those in which a bad–tempered avatar can turn
the lights off unexpectedly), it gave an idea of the flexibility and creation capa-
bilities of the rule–based system and its integration. An example of some of these
rules can be found in Rule 17.

This experience reassured our confidence in the Blackboard architecture for
how easy it was to integrate new software into it, and in the Agents-Rules mech-
anism for how simple it was for the first–year graduate students to translate
a wide range of ideas into operating behaviors, even though they had no prior
programming knowledge.

6.3.2 Integration with Phidgets

Probably the most important feature of Intelligent Environments is their hardware-
software duality. The computing/interaction power leaves the computer environ-
ment to merge with the natural human environment. Doors, sofas, coffee makers,
telephones, tables and more become a part of the macro–computing entity that
is the environment, serving as inputs, outputs or processing units.

In the Department of Computer Science at the University of Calgary, Chester
Fitchett and Saul Greenberg developed a system to deal with the problem of easily
incorporating physical devices into user interfaces: the Phidgets. Analogous to
physical widgets, the Phidgets —or physical widgets— “abstract and package
input and output devices, hiding implementation and construction details while
exposing functionality through a well defined API” [52]

As with Maxine, while Phidgets facilitate the creation of physical interfaces,
its focus was on programmers. In our case, our work on automatic adaptation
handles the problem of programming a Smart Environment by a non-programmer
and our Blackboard middleware deals with the problem of integrating new devices
into the environment.

After developing a first prototype of the multi–agent mechanism for indirect
control, we incorporated two first–year undergraduate students to AmIlab to test
the ease with which users with no prior programming knowledge could create
new sets of behaviors. To do this, we introduced them to the AmIlab living room
and briefly explained (without mentioning the acting and perceiving capabilities
of the environment) what kind of objects there were (i.e. a TV, a telephone, a

136 CHAPTER 6. DEMONSTRATORS

radio, a coffee maker, two sofas, a CD player...). After that, we told them that
the room was intelligent and could act on and perceive the room. In addition,
they were told that the environment could be commanded, which required them
to write the set of behaviors they wanted the room to have (as if it were their
own room).

Even though the experimental laboratory had different types of perceiving
and actuating devices, we found that their number and location was not wide
enough to support their initial first ideas. In other words, thinking about them
as end–users in an intelligent room, they not only wanted to create new behaviors
but to sense and actuate it in places were the infrastructure did not allow them
to do so.

To let them do so, we wanted to create a mechanism for rapidly and easily
extending the architecture of the environment so that end–users could adapt the
hardware in their homes, as they do with software, through the agents mechanism,
according to their needs.

The Phidgets system provides a board, called InterfaceKit, with eight slots,
to which different kinds of sensors can be connected. We used the InterfaceKit
as the base for our augmenting hardware experiment and created a set of drivers
for different types of Phidgets sensors, with each analog sensor having different
drivers with different accuracy ranges (binary, 3 values, 5 values...). Since the
sensors were physically tagged with their type (e.g. Pressure, Light, Temperature
or Distance), users could easily identify them and tell what accuracy range they
wanted. The second step was to associate the sensor with a real object that was
to be augmented. This was done through a configuration file in which, for every
slot of the InterfaceKit, there was a four–slot template. The slots corresponded
to the sensor being used (type of sensor and degree of accuracy desired), and the
type, entity and property they wanted to associate with the sensor. Thus, for
sensing whether a sofa was occupied or not, they plugged a weight sensor on a
slot of the InterfaceKit (slot number 0 in this case), placed the sensor under the
sofa cushion and created a configuration file with values binary weight, furniture,
sofa 1 and occupied in the 0 slot template (see Table 6.2).

Table 6.2: Example of Phidget configuration file for adding a weight sensor to a
sofa to sense if it is occupied or not

Sensor: binary weight
Driver: binary
BBtype: furniture
BBentity: sofa 1
BBproperty: occupied

6.3. INTEGRATION WITH OTHER TECHNOLOGIES 137

Then, we developed a program that, given a configuration file, associated the
sensed value of the sensors to the Blackboard properties of an entity, creating it
automatically if it did not exist in the Blackboard.

In addition to other works such as [63], this mechanism supplies, besides the
sensors’ drivers (with their hysteresis processes, thresholds and other low level
procedures), a direct abstraction from low–level context (i.e. a sensor is pressed)
to high–level context (i.e. the sofa is occupied) that is more suitable to work
with.

The combination of hardware and software adaptation allowed the students to
create extremely interesting applications in under fifty hours. Next, we provide
a representative set of examples in a form similar to the Recipe suggested by
Mark W. Newman et al [12]: with some “ingredients” —those elements added to
the environment— and some “procedures” —the set of behaviors encoded in the
agents.

Augmented phone

Purpose: to display relevant information on the phone and to react to its status
—on–hook/talking.

Ingredients: An LCD Phidget display and a 5–mm presence Phidget sensor.
These elements were added to the Blackboard context as two new entities:

a display called telephone display and a device called telephone with an in use
property. The configuration file is shown in Table 6.3. We should note that the
Phidget LCD comes with an integrated InterfaceKit, so there is no need to add
another. The LCD needs no configuration file and is created automatically when
running the driver. Users only have to give it a name.

Table 6.3: Code of the configuration file for the augmented telephone. Sensor
indicates the type of sensor plugged into the first slot of the interface kit. BBtype,
BBentity and BBproperty indicate, respectively, the ontology-type and names of
the entity and property to which the sensor is assigned.

Sensor: binary 5mm
BBtype: device
BBentity: telephone
BBproperty: in use

Alternatively, a Telephone Agent was created to control the telephone with
the following behaviors:

138 CHAPTER 6. DEMONSTRATORS

• When the telephone is picked up, if the TV or the radio are on then lower
their volumes.

• When there is a change in Manuel’s location, then show the new location
on the telephone display.

• When the telephone is picked up, then deactivate the doorbell.

• When the telephone is on–hook, then reactivate the doorbell.

• When somebody rings the doorbell, if the telephone is picked up then show
an alert on the display.

Is it possible to see that the new ingredients are seamlessly integrated with
the already existing elements of the Blackboard.

As a measure of complexity, for developing the phone, the students had to
write nine lines of “code”: four in the configuration file and five corresponding
to the rules, using the GUI.

Augmented sofa

Purpose: use the sofa as a control center in which it is possible to receive and
generate general information and, additionally, perceive when the sofa is occupied
to activate the control center.

Ingredients: Light and temperature sensors (for lab b403’s temperature and light
properties), an LCD display (for the arm of the sofa: sofa display) and a pressure
binary sensor (for the occupied property of the sofa).

Those elements were controlled by two different agents, one in charge of dis-
playing weather information when nobody is seated on the sofa and another for
using the display and buttons as an interface to explicitly notify of an activity in
progress. The latter will be presented in section 6.3.2. The former is composed
by the following rules:

• When the sofa is unoccupied then show the temperature and light values
on the sofa display.

• When the temperature value changes, if the sofa is unoccupied then update
the temperature value on the sofa display.

• When the lighting value changes, if the sofa is unoccupied then update the
lighting value on the sofa display.

6.3. INTEGRATION WITH OTHER TECHNOLOGIES 139

Creating scenarios

In the previous section we showed two examples of personalization that focused
mainly on adding hardware but, as already stated, the power of the system comes
precisely from the synergistic combination of both personalizing hardware and
software.

One of the first things the students wanted to do was to adapt the environment
to some activities, creating sets of behaviors to apply according to previously
defined scenarios. These scenarios were mainly linked to specific activities such
as relaxing, working, watching TV or taking a nap.

The problem involved the difficulty of automatically extracting context in-
formation of such an extremely high degree of abstraction —an example of this
difficulty can be found in Nuria Oliver’s work [99]. To this end we suggested that
they implement interfaces distributed along the room (smoothly merged into it)
for users to explicitly specify the activity they were involved in.

The scenarios were created as different agents, one for each (i.e. relaxing,
watching TV, napping, or working) and a meta–agent in charge of activating and
deactivating them according to the activity in progress (see Section 5.4.3). Thus,
for every agent the meta-agent had two rules of the type:

• When the activity changes to relax, if the relax agent is deactivated then
activate the relax agent.

• When the activity changes, if the relax agent is activated and the activity
is not relax then deactivate the relax agent.

As an example to illustrate the types of behaviors encoded by the students in
the agents, we show some of the rules of the relax agent:

• When the relax agent activates, if the main light is turned on then turn on
the secondary light and turn off the main light.

• When the relax agent activates, then deactivate the doorbell agent.

• When somebody rings the doorbell, then show an alert on the sofa display.

These rules give an idea of three different types of behaviors: on–load rules,
meta–agent rules and normal rules referencing the new “phidgeted” elements.

The interface for specifying the activity in progress was developed over the
augmented sofa, re–augmenting it through the following recipe:

Purpose: Create an interface to specify the activity in progress.

Ingredients: Two touch sensors for interacting (corresponding to entities sofa
button change and sofa button select)

140 CHAPTER 6. DEMONSTRATORS

Procedures:

• When the sofa becomes occupied then show RELAX on the display.

• When the sofa button change is pressed, if the sofa display shows RELAX
then update it to WORK.

• When the sofa button change is pressed, if the sofa display shows WORK
then update it to SIESTA.

• When the sofa button change is pressed, if the sofa display shows SIESTA
then update it to WATCHING TV.

• When the sofa button change is pressed, if the sofa display shows WATCH-
ING TV then update it to RELAX.

• When the sofa button select is pressed, then set the room activity to the
display value.

It is possible to see that the first five rules define a circular menu, while the
last one is in charge of the activity selection.

It should be noted that the agent was built incrementally as new necessities
arose, from a one button and no display interface, to just choosing the WATCH-
ING TV activity, to the circular menu with the two buttons and LCD display
presented above.

Since the implementation was gradual and alternated with other activities, it
is hard to estimate the total amount of time spent in developing the interface.
About an hour is probably a good approximation.

Our experience with students helped us to evaluate how creation tools em-
power creativity, as well as how easy it is for non–programmers to create complex
devices when they are provided with easy tools.

Additionally, as in the Maxine experience (run at the same time), this experi-
ence reassured our confidence in the Blackboard architecture for how easy it was
to integrate new hardware into it, and in the Agents-Rules mechanism for how
simple it was for the first–year students to translate a wide range of ideas into
operating behaviors, even though they had no prior programming knowledge. Fi-
nally, it convinced us of the necessity of physical building blocks, easy to use by
the end-user, to augment or create ad-hoc devices in contrast to —or in addition
to— market physical devices.

6.3.3 Integration with steerable projection

While the Phidget and Maxine experiences served to test how to integrate hard-
ware and software technologies with the Blackboard–Agents platform, the follow-
ing experiment shows an integration with an already existing state–of–the–art
hardware–software technology.

6.3. INTEGRATION WITH OTHER TECHNOLOGIES 141

The University of Lancaster developed a system to dynamically project images
on objects, looking for “cooperation between mobile smart objects and projector-
camera systems to enable augmentation of the surface of objects with interactive
projected displays” [84]. The system was based on the Smart–its [49], small
devices integrating different sensing, communication and processing capabilities
and combined with a steerable projector–camera system to track objects visually
as they move around, and project interactive interfaces and information on the
object surfaces taking into consideration the shape and orientation of the object
so the image is shown undistorted to the user.

In this sense, the objects were self–describing, carrying all their information
in an Object Model. The projector–camera system provided a projection service
that any object could request by sending its Object Model and the image to be
displayed. While the Object Model carried information exclusively about the
object (i.e. a unique object identifier, appearance knowledge, 3D model and
sensor knowledge), the location and orientation of the object had to be supplied
by the projection–camera system (see Figure 6.7).

Figure 6.7: Cooperative Augmentation of Smart Objects with Projector-Camera
Systems. Extracted from [84]

External context information, on the other hand, was harder to retrieve and
the programming mechanism difficult and slow. In order to expand the system
so context–aware applications could be easily deployed and benefit from the pro-
jection capabilities too, we integrated those systems into the Blackboard–Agent
platform.

The experiment was conducted as a cooking scenario, in which the system
guided the user through the cooking process by displaying visual messages on
the objects. Thus, for example, when water was boiling in a pot, the system

142 CHAPTER 6. DEMONSTRATORS

would project a message on the pot (“Warning: hot water. Add egg now”) and a
message on the egg box (“Add one egg to the pot”) for the “boiled egg” recipe.

To do so, we added to the Blackboard new entities corresponding to the new
objects in the kitchen (i.e. stove, medium pot and eggs), with their corresponding
properties and a parameter with their unique id’s. In addition we developed a
driver that, upon the creation in the Blackboard of a message entity of the type
REQUEST PROJECTION, sent a request to the projector using the same format
that a smart–it would have used. As an example, a message with the property
type set to REQUEST PROJECTION, and a relation locatedat linking it to the
entity medium pot was used by our driver to send a projection request to the
projector, as if it were from the Smart–it in the medium pot. The image to
project was codified as a URL in the text property of the message.

With the elements modeled in the Blackboard and the driver running, the
recipes were programmed as rule–based agents. Having one agent per recipe,
multiple recipes could have been handled through meta–agents. An example of
a rule for displaying a message in the pot can be seen in Rule 18.

It is important to note that all merging and programming (including the
driver) was done in less than a full work day, while most of the time was spent in
associated tasks such as creating the hardware (pans, stove, salt...). In addition,
while the Smart–its, camera–projector system and recipe agents were running in
Lancaster University (UK), the Blackboard on which they were modeled (and to
which the agents and drivers were subscribed) was in the Universidad Autónoma
de Madrid (Spain) (in the first pan-European boiling experience).

In conclusion, this experiment proved the potential of the Blackboard–Agents
mechanism as a mechanism for integrating/coordinating/merging already existing
hardware and software systems.

All of these experiments allowed us to test our hypothesis that this system
will subsume the application–dependent and flexibility–simplicity inverse relation
problems. The most important conclusions derived form them will be discussed
in the following section.

6.3. INTEGRATION WITH OTHER TECHNOLOGIES 143

Rule 16 Grammar for a simple example to control some elements of the envi-
ronment with the Magnet Poetry GUI.

SENTENCES : (SENTENCE) +;
SENTENCE : ’WHEN’ CONDITIONLIST CONDITIONS? ’THEN’

ACTIONLIST;
CONDITIONS : ’IF’ CONDITIONLIST;
CONDITIONLIST : CONDITION (’AND’ CONDITIONLIST)*;
ACTIONLIST : ACTION (’AND’ ACTIONLIST)*;

LOCATION : ’HOUSE’ ’KITCHEN’ | ’LIVING ROOM’ | ’SOFA’;
PERSON : ’PABLO’ | ’MANUEL’ | ’GERMAN’ | ’XAVIER’;
OBJECT : OPENCLOSEOBJECT | ADJUSTABLEOBJECT

| SWITCHABLEOBJECT;

CONDITION : CSWIT | CADJU | COPEN | CCONT;

CSWIT : SWITCHABLEOBJECT (SWITCHABLESTATUS
| LOCATIONOP LOCATION);

SWITCHABLEOBJECT : ’THE_LIGHT’ | ’THE_KITCHEN_SPEAKER’
| ’THE_RADIO’ | ’THE_LIVING_SPEAKER’
| ’THE_COFFEMAKER’ | ’THE_TV’;

SWITCHABLESTATUS : ’IS_ON’ | ’IS_OFF’;

CADJU : ADJUSTABLEOBJECT (ADJUSTABLESTATUS
| LOCATIONOP LOCATION);

ADJUSTABLEOBJECT : ’THE_DIMMER_LIGHT’ | ’THE_VOLUME’;
ADJUSTABLEOP : ’IS’ | ’IS_NOT’;
ADJUSTABLESTATUS : ’HIGH’ | ’LOW’ | ’OFF’;

COPEN : OPENCLOSEOBJECT OPENCLOSESTATUS;
OPENCLOSEOBJECT : ’THE_DOOR’;
OPENCLOSESTATUS : ’IS_OPEN’ | ’IS_CLOSED’;

LOCATIONOP : ’IS_IN_THE’;

CONTENTOP : ’CONTAINS’;
CONTENT : PERSON | OBJECT | LOCATION;
CCONT : LOCATION CONTENTOP CONTENT;

ACTION : ADJUSTABLEOBJECT ADJUSTABLEACTION
| SWITCHABLEOBJECT SWITCHABLEACTION;

SWITCHABLEACTION : ’TURN_ON’ | ’TURN_OFF’;
ADJUSTABLEACTION : ’TURN_ON’ | ’SET_LOW’ | ’SET_HIGH’;

144 CHAPTER 6. DEMONSTRATORS

Rule 17 Example of rules for using Maxine’s capabilities to greet people on
entering the room, notifying events, expressing “feelings” on weather conditions
and changing the environment based on mood

person:mherranz:locatedat ::
person:mherranz:locatedat = room:lab_b403 =>
person:maxine:say := "Hello Manu"

;

device:coffeemaker:status ::
device:coffeemaker:status = OFF =>
person:maxine:say := "The coffee is ready"

;

room:lab_b403:temperature ::
room:lab_b403:temperature > 25 =>
person:maxine:say := "So hot in here" &&
person:maxine:emotion := DISGUST

;

person:maxine:emotion ::
person:maxine:emotion = DISGUST =>
light:lamp_1:status := 0

;

Rule 18 Example of a rule for projecting a “Warning: hot water” message on a
pot using the steerable projector driver. The CE operator creates a new entity,
AP adds a property to the entity and the character # is replaced by a unique
identifier (see Chapter 4)

device:medium_pot:temperature ::
device:medium_pot:temperature > 70 =>
msg CE hot_water# &&
msg:hot_water# AP type &&
msg:hot_water#:type := REQUEST_PROYECTION &&
msg:hot_water# AP text &&
msg:hot_water#:text := "file://D:/cooking/hotwater.png" &&
msg:hot_water#:locatedat -> device:medium_pot

;

Chapter 7

Conclusions

This work has presented a kernel language and structure for indirect control in
Intelligent Environments. Both the language and the structure were designed to
match the natural human mental processes for expressing and organizing pref-
erences, pursuing a control mechanism through which all the elements of the
environment may be used and programmed seamlessly and in a natural way:
Bringing the means for programming the environments closer to how
users think about their environments.

This objective presented two problems in current environments: unshared
information/capabilities and unshared interaction mechanisms. That is,
even though different elements of the environment can perceive or act on the envi-
ronment (e.g. a thermostat or a doorbell), they do not share their information or
capabilities with the rest of the environment’s elements. In addition, while some
of those elements can be controlled or programmed, this is done in different ways.
These two problems together lead to a frustrating control experience, increased
as the number of perceptive, active, controllable or programmable elements grows
in the environment.

In addition, when designing a system to solve these problems, a number of
issues have to be considered. These issues, analyzed in Chapter 3 can be summa-
rized by two terms: the heterogeneity of users (i.e. heterogeneity of preferences,
environments and expertise) and their multiplicity (i.e. the coexistence of mul-
tiple users, preferences and domains of control).

The underlying philosophy is that the intelligence of the environment must
be used to leverage the control experienced by its inhabitants, contrary to other
trends pursuing an artificial intelligence, able to autonomously manage the envi-
ronment on behalf of the user (see Chapter 2). Therefore, the work is based on an
automatic control paradigm, through which users are able to program behav-
iors that will, hereafter, execute automatically. Contrary to this paradigm is the

145

146 CHAPTER 7. CONCLUSIONS

autonomous control paradigm in which the system decides what behaviors
are best suited to satisfy the user.

Finally, the work pursues a UI–independent programming paradigm. That
is, instead of focusing on how to design an end–user programming interface,
this work looks to devise a paradigm that captures the end–users’ programming
essence in a mechanism that can be easily translated to different UIs. Therefore,
while different UIs can be designed to meet specific interaction requirements, the
programming means will not be altered from UI to UI. In addition, by having
such a mechanism, UI–designers can focus just on interface issues.

The programming mechanism is based on two key components: an Event Con-
dition Action (ECA) rule expression language, and a multi–agent modularization
structure, respectively designed to deal with the heterogeneity and multiplicity
issues.

Regarding the language, an ECA–rule based language has proven to be
a natural means of expression, as suggested by Myers and others (see Sec-
tion 3.3), especially when programming reactive behaviors by associating an ac-
tion to a specific context.

Besides, by being human–understandable expressions, they provide a valid
base for explanation that, in addition to favoring trust (as many authors sug-
gest, see Section 2), has proven to be an essential debugging mechanism to
improve competence. In addition, ECA–rules provide a feasible ground for ma-
chine learning (see Section 5.3.2).

Over and beyond the above, having a simplified base–language with a set of ex-
tensions to express more complex concepts (such as generality or time), provides
a mechanism to isolate complexity, thus tackling the inverse relationship be-
tween flexibility–simplicity common to most end–user oriented programming
systems. In this way, users only have to deal with that complexity that is strictly
required by their problems. Moreover, building the complex extensions using
the base–language structures and concepts provides a gentle learning curve in
which every learning step forward eases further improvements.

Finally, by working with Timers (see Section 4.1.3) we realized the potential
of using an event logic instead of an event algebra to build composite events.
Even though this is not strictly related with an end–user directed approach, it
presented some interesting questions about the intrinsics of event composition.
In this sense, Timers allow a procedural definition of composite events, compared
to the more declarative composition of event algebras (in which a number of
combinable composite events are declared, e.g. sequence, disjunction or closure)
(see Section 4.1.4). In addition, composite events and consumption policies are
coded simultaneously in the Timer, allowing for more flexible combinations of
different events and consumption policies. The structures for coding the most
common event algebras and consumption policies of the literature have been de-

147

scribed. The questions about whether or not it is appropriate to lose the ease of
construction of a more declarative approach and of how far a procedural mech-
anism can go compared to the former is yet to be studied. Nevertheless, some
initial steps have been taken with the definition of two uncommon event com-
positions: context–dependent event composition and mixed consumption policies
(see Sections 4.1.4 and 4.1.4).

Regarding the multi–agent modularization structure, this has been suc-
cessfully used to allow an organic evolution of the system’s set of preferences,
as well as to spread responsibilities among different modules (to the benefit of
a more trustable and robust system) (see Section 5.1). Furthermore, represent-
ing the agents in the Blackboard, and providing them with an “are you alive?”
protocol, opened the door to self–recovery strategies to address the breakdown
of agents.

In addition, representing the agents in the Blackboard as another part of the
system allows for the possibility of creating rules for the activation and deacti-
vation of agents (i.e. of packets of preferences) according to context. That is,
to build hierarchies. Tagging agents in the Blackboard with contextual infor-
mation such as who they work for, where they work, what elements they affect
or what specific task they are intended to solve, allows users to structure their
hierarchies according to their natural structures. In addition, a rule–based lan-
guage also supports a natural description mechanism to express the prioritization
rules of a hierarchy. Not imposing any degree of interdependence and providing
different degrees of scale guarantees that the coordination structures built with
this system can have many possible degrees of complexity (as natural social
structures have).

Finally, combining the coordination possibilities of the multi–agent mecha-
nism with those of the Blackboard and Privacy layers provides for a more power-
ful means of dealing with specific domains of hierarchies and offers some synergies
in hierarchy composition, such as activating and deactivating agents according
to privacy settings or modifying the privacy settings through agents according to
context.

Lastly, this work has proven its potential for successfully adapting to various
types of environments and scenarios. Firstly, by allowing problems of very
different nature to be addressed, such as controlling all the lights through a
single switch (in an almost switchless environment), redirecting and synchroniz-
ing camera images according to context to create a virtually united distributed
classroom, configuring the alert system of a security room, inferring location in-
formation to support and test other research or controlling the access rights to
a working place, among others. Secondly, by allowing for the smooth inte-
gration of new technologies in Intelligent environments, either software
(such as the University of Zaragoza’s anthropomorphic figure, see Section 6.3.1),

148 CHAPTER 7. CONCLUSIONS

hardware (such as the University of Calgary’s Phidgets, see Section 6.3.2) and
software–hardware systems (such as the University of Lancaster’s steerable pro-
jection, see Section 6.3.3). Thirdly, by allowing the integration with dif-
ferent UI either designed for programmers or end–users (see Section 6.2). And
finally, by allowing for the coexistence and combination of novice, ex-
pert, programmer and research end–users, by providing an easy and fast
way to interact with and program the environment (as in the personal, working,
teaching and researching environments of Section 6.1). The experienced gained
over the course of this work has strengthened our initial beliefs that the synergy
between human intelligence and the environment’s capabilities can be triggered
with a sound controlling mechanism.

7.1 Future Work

This work presents a combination of four different lines of research, some of which
have been emphasized more than others, namely Ambient Intelligence, Human
Computer Interaction, Automatic Reasoning and Multi–agent systems. All these
lines of research are actively open at present and most can be studied and applied
with more emphasis to the domain of this work.

First of all, the system presented in this work has been designed as a working
system and therefore applied to different real environments. In this sense, we
might extend our research to include new types of environments and users with
special needs. Along these lines we are currently engaged in two Spanish projects
that embrace particular and very different groups of users: elderly people with
Alzheimer’s and those afflicted by Down syndrome. We might evaluate the use of
agents–rules in their particular scenarios, as well as the benefits of the magnetic
poetry metaphor in these concrete groups and study how generic the metaphor
is.

Language

Regarding the ECA–rule language, the limitations of the test environments have
driven us to pay special attention to particular groups of events/conditions/actions.
In this sense, different domains and automation scenarios will require studying
other kinds of components. In particular we are studying how to deal with future
and past conditions such as “if the previous time the door was open...” or “If
yesterday at this time the door was open...”. This timing issue is also present
in conditions and actions relating to audio/video streams in which the use of
expressions such as “the last 3 minutes of recorded video” will allow the user to
achieve a complete multimedia control experience.

One of the main lines of research currently open is the extension of the set of
comparators and operators of the grammar. In particular the study of operators

7.1. FUTURE WORK 149

and comparators for sets (to take full advantage of the possibilities of Wildcards
and relations) and the possible benefits of using arithmetic conditions in end–user
oriented scenarios.

Finally, the potential of an event logic approach over an event algebra needs
to be considered further. In this line of research, we are currently studying the
potential of self–reference in Timers —the implications of allowing a Timer to
launch itself as an action of one of its rules— and communication between Timers
and their launching entities (i.e. a Timer being able to reference the Wildcard
values of the rule that launched it or a Timer that can stop, restart or kill the
Timer that launched it).

Agents

Regarding the multi–agent mechanism, there are a number of research lines with
promising potential.

Firstly, in relation to the explanation mechanism of Section 5.3.1, research
should be conducted on global explanation mechanisms, meaning that the user
is able to ask the overall system for an explanation of an action. This requires
a basic answering mechanism for the agent responsible for the action. Another
more interesting approach is an “explanation on inaction” service, that is, how
can the system answer a question of the type “Why didn’t you turn on the lights
right now?”. Since no action took place, finding the agent responsible is more
difficult and will require more communication mechanisms among agents than
the previous service.

Also along the lines of autonomous agents, mobility and self–management
should be considered. This work sets the basis for identifying breakdowns but
there is no mechanism for the system to act upon that knowledge and restart the
dead agent. In addition, at this point, agents are fixed to the machine in which
they are launched. Given the changing nature of Intelligent Environments, in
which people and resources may move to one place or another, computing devices
can turn on and off and there are a multitude of small computers distributed
among the environment, agents should be able to move across the network to
keep running even under these changing conditions.

In addition, the potential of the confidence factor of actions (exposed in Sec-
tion 5.3.2) set the basis for automatic learning, but no current mechanism is im-
plemented for suggesting possible triggers or conditions that may disambiguate an
ambiguous context (in which the action is successively right and wrong). Given
the nature of Ambient Intelligence, in which the training examples are few and
distributed in time, this kind of learning should be based on semantic heuristics
(knowing that rules in an environment probably depend on variables of that same
environment) in addition to pure pattern matching.

Finally, finding potential conflicts among different agents before the conflict

150 CHAPTER 7. CONCLUSIONS

occurs is an interesting feature that will result in more competent systems. Thus,
users could be advised of potential conflicts between their respective preferences
in order to improve their hierarchies. This line of research is already open, using
Software Engineering techniques in general and, in particular, studying the poten-
tials of graph transformation tools to analyze the rules generated by the different
users in order to check the model. This will probably require considering the im-
plications of modeling the rules in the environment in one way or another. The
benefits of this kind of intelligent data analysis approach to increase reliability
have been already pointed out by Augusto, Nugent and McCullagh [5][4].

End–user Interfaces

Finally, regarding end–user programming, this work has presented the fundamen-
tal kernel language for an end–user programming system for Intelligent Environ-
ments, albeit with some basic UIs to ease the programming process. Nevertheless,
a good end–user interaction/programming experience must count toward both a
natural and easy programming paradigm and interface. Therefore, we should
study other natural interaction paradigms such as oral interaction or tangible
user interfaces, and how to overcome the problems stated in Section 6.2.2.

In addition to UI for creating rules, it is necessary to explore what kind of
interfaces are best suited for users to manage their agent system. This includes
some representation in the real world of the virtual agents present in an envi-
ronment, a personal manager to create, delete or modify agents and a sharing
mechanism to allow users to interchange/search behaviors.

Regarding the Magnet Poetry UI, a number of issues must be studied to allow
the interface to be valid in larger and more complex scenarios. While some of
these issues are being studied, the main lines of future work are the following:
improving efficiency and effectiveness, and management.

Efficiency can be improved by providing search aids for easily finding the
magnets with the desired concept. This includes a predictive text mechanism for
finding or filtering tokens using a keyboard, and allowing the users to create their
own tokes subsuming a combination of other tokens, for example.

Effectiveness, on the other hand, can be improved by enhancing the debugging
mechanisms, such as by providing a more natural feedback of how well the system
interpreted a rule.

Finally, exploring how to manage user–defined statements includes studying
what kind of approaches are best suited to organize the user’s preferences. A
first alternative is to allow the users not only to create new behaviors, but to
manage their complete set of agents and rules, moving rules from one agent
to another or creating/deleting/modifying rules and agents from the same place.
Conversely, a second alternative would be to allow the users to defer to the system
the automatic organization of their rules. This alternative involves automatically

7.2. DISSEMINATION AND CONTRIBUTIONS 151

grouping rules according to some natural modularization concepts (such as what
space or device they affect), as well as considering the modularization of other
users with a similar set of rules. While this alternative limits the personalization
options provided by the modularization mechanism, it will probably be preferred
by truly novice users, while experienced users will still be able to use the plethora
of tools provided by the system, for both managing (agents) and programming
(the language).

7.2 Dissemination and contributions

This work has been featured in and produced a number of research publications,
and has contributed to diverse research projects.

7.2.1 Publications

• Manuel Garćıa-Herranz, Xavier Alamán, and Pablo Haya. The intelligence
of Intelligent Environments. Instinctive Computing International Work-
shop, Carnegie Mellon University, Pittsburgh, USA, June 15–16 2009. To
be published as a book chapter in the LNAI State–of–the–Art Surveys.

• Manuel Garćıa-Herranz, Pablo Haya, Xavier Alamán. Easing the Smart
Home: Translating human hierarchies to intelligent environments. In Joan
Cabestany, Franciso Sandoval, Alberto Prieto, and Juan M. Corchado, ed-
itors, IWANN(1), volume 5517 of Lecture Notes in Computer Science, pp.
1529–1544. Springer, 2009

• Manuel Garćıa-Herranz, Pablo A. Haya, Germán Montoro, Abraham Es-
quivel, and Xavier Alamán. Easing the Smart Home: Semi-automatic
Adaptation in Perceptive Environments. Journal Of Universal Computer
Science (ISSN 0948–695x. Online edition: ISSN 0948-6968). 14 (9). 2008.
pp. 1529–1544 JCR (0.315)

• Manuel Garćıa-Herranz, Pablo A. Haya, Xavier Alamán, and Pablo Mart́ın.
Easing the Smart Home: augmenting devices and defining scenarios. 2nd
International Symposium on Ubiquitous Computing & Ambient Intelli-
gence. Thomson, editorial. ISBN: 978-84-9732-605-6. Zaragora, Spain,
2007, pp. 67–74. Best Paper Award

• Manuel Garćıa-Herranz Pablo A. Haya, A. Esquivel, G. Montoro and X.
Alaman. Semi-automation in Perceptive Environments: A rule-based agents
proposal. VII Congreso Internacional de Interacción Persona-Ordenador.
ISBN: 84-690-1613-X. (INTERACCION 2006). Puerto Llano, Spain. 2006,
pp. 81–90.

152 CHAPTER 7. CONCLUSIONS

• Manuel Garćıa-Herranz, Pablo A. Haya, G. Montoro, A. Esquivel, and
X. Alamán. Adaptación automática de entornos activos mediante agentes
basados en reglas. 2nd International Workshop on Ubiquitous Computing
& Ambient Intelligence. ISBN: 84-6901744-6. Puertollano, Ciudad Real,
Spain, 2006 pp. 189–204

• Javier Gómez, Germán Montoro, Pablo A. Haya, Manuel Garćıa-Herranz,
Xavier Alamán. Easing the integration and communication in ambient
intelligence. Accepted for publication in International Journal of Ambient
Computing and Intelligence (IJACI). 2009

• Pablo Llinás, Germán Montoro, Manuel Garćıa-Herranz, Pablo Haya, and
Xavier Alamán. Adaptive interfaces for people with special needs. In Sigeru
Omatu, Miguel Rocha, José Bravo, Florentino Fernández Riverola, Emilio
Corchado, Andrés Bustillo, and Juan M. Corchado, editors, IWANN(2),
volume 5518 of Lecture Notes in Computer Science, pp. 772–779. Springer,
2009.

• A. Esquivel, P.A. Haya, M. Garćıa-Herranz, X. Alamán. A Proposal for
Facilitating Privacy-Aware Applications in Active Environments. Advances
in Soft Computing (ISSN 1615-3871). Vol. 51, 2009, pp. 312–320

• A. Esquivel, P.A. Haya, M. Garćıa-Herranz, X. Alamán. Harnessing the
“Fair Trade” metaphor as privacy control in Ambient Intelligence. Ambient
Intelligence Perspectives (ISBN 978-1-58603-946-2). P. Mikulecky et al.
(Eds.). IOS Press. 2008, pp. 73–81.

• Abraham Esquivel, Pablo A. Haya, Manuel Garćıa-Herranz, Xavier Alamán.
Managing Pervasive Environment Privacy Using the ”fair trade” Metaphor.
Lecture Notes in Computer Science (LNCS), ISSN 0302-9743 . Vol. 4806.
2007. pp. 804–813

• Germán Montoro, Manuel Garćıa-Herranz, Pablo A. Haya, Xavier Alamán,
Daniel Brande, Sandra Baldassarri, Eva Cerezo y Francisco J. Seron. In-
tegración de un agente virtual 3D en un entorno de inteligencia ambiental.
2nd International Symposium on Ubiquitous Computing & Ambient In-
telligence (UCAMI’07). José Bravo, Xavier Alamán, editores. Thomson,
editorial. ISBN: 978-84-9732-605-6. 2007 pp. 135–142.

• P.A. Haya, G. Montoro, A. Esquivel, M. Garćıa-Herranz and X. Alamán.
Desarrollo de aplicaciones sensibles al contexto en Entornos Activos. 2nd
International Workshop on Ubiquitous Computing & Ambient Intelligence.
ISBN: 84-6901744-6. Puertollano, Ciudad Real, Spain. 2006. pp. 205–217

7.2. DISSEMINATION AND CONTRIBUTIONS 153

• Pablo A. Haya, Abraham Esquivel, Germán Montoro, Manuel Garćıa-Herranz,
Xavier Alamán, Ramón Hervás, José Bravo. A Prototype of Context
Awareness Architecture for Ambience Intelligence at Home. International
Symposium on Intelligent Environments. ISBN: 1-59971-529-5. Cambridge,
United Kingdom. 2006. pp. 49–55.

• Pablo A. Haya, Germán Montoro, Abraham Esquivel, Manuel Garćıa-Herranz
and Xavier Alamán. A Mechanism for Solving Conflicts in Ambient Intel-
ligent Environments. Journal Of Universal Computer Science (ISSN 0948-
695x. Online edition: ISSN 0948-6968), 12 (3), 2006. 284–296. JCR (0.315)

7.2.2 Projects

HADA

Hipermedia Adaptativa para la atención a la Diversidad en entornos de in-
teligencia Ambiental (HADA) is a project supported by the Spanish Ministry
of Education and Science (TIN2007-64718). The project is currently open (from
01/10/2007 to 31/09/2010), and its main goal is to develop technologies and tools
to integrate Adaptive Hypermedia and Intelligent Environments to ease the use
of new technologies for users with special needs, specifically the elderly and those
with Down syndrome. http://hada.ii.uam.es/

ALIADO

ALzheimer Intelligent Ambient DOmótic system (ALIADO) is a project sup-
ported by the Spanish Ministry of Industry, Tourism and Commerce (TSI2008-
020100-2008-296). It is a currently open project (from 01/01/2008 to 31/06/2009)
in which several universities are involved (Universidad Autónoma de Madrid, Uni-
versidad de Castilla la Mancha and Universidad de Salamanca) along with some
companies (CEDETEL and Tulecom Group S.L.). Its main goal is to develop
technologies to support people with Alzheimer’s disease.

Hesperia

Homeland sEcurity: tecnoloǵıaS Para la sEguridad integRal en espacIos públicos
e infrAestructuras (Hesperia) is a currently open project (from 2005 to 2009) sup-
ported by the Spanish Ministry of Industry, Tourism and Commerce and private
companies in which the Universidad Autónoma de Matrid participates through
the Cátedra UAM–Indra. Its main objective is the development of technologies
for the security and operational control of infrastructures and public spaces (see
Section 6.1.3). http://www.proyecto-hesperia.org/

154 CHAPTER 7. CONCLUSIONS

Itech Calli

Itech Calli (“inside the house” in the Nahuatl language) was a project supported
by the Universidad Autónoma de Madrid and the Grupo Santander Central His-
pano, already finished (from 01/01/2006 to 31/12/2007). The research groups
participating in this project were the Universidad Autónoma de Madrid, Instituto
Tecnológico Superior Zacatecas Norte and Universidad Nacional del Centro de la
Provincia de Buenos Aires. Its main goal was to deploy an Active Environment
at the Technological Institute Superior North Zacatecas, its main focus being on
teaching environments (see Section 6.1.2). http://itechcalli.ii.uam.es/

U-CAT

Ubiquitous Collaborative Adaptive Training (U-CAT) was a project supported
by the Spanish Ministry of Science and Technology (TIN2004-03140). Currently
finished (from 01/01/2005 to 31/12/2007), its main goal was to develop inte-
grated environments to facilitate the conduct of educational activities in arbitrary
places by using different physical devices. http://orestes.ii.uam.es/ucat/

Bibliography

[1] http://www.knx.org/. [cited at p. 6]

[2] Xavier Alamán, Ruben Cabello, Francisco Gómez-Arriba, Pablo A. Haya,
Antonio Mart́ınez, Javier Mart́ınez, and Germán Montoro. Using context
information to generate dynamic user interfaces. In 10th International Con-
ference on Human-Computer Interaction, HCI International 2003, Crete,
Greece, June 22-27 2003. [cited at p. 6, 45, 59, 119]

[3] H.P. Alesso and C.F. Smith. Developing semantic web services. AK Peters,
Ltd., 2005. [cited at p. 33]

[4] J.C. Augusto and C.D. Nugent. A new architecture for smart homes based
on ADB and temporal reasoning. In Proceedings of 2nd International
Conference On Smart homes and health Telematic, ICOST2004), Assistive
Technology Research Series, pages 106–113. Citeseer, 2005. [cited at p. 150]

[5] Juan Carlos Augusto and Paul J. McCullagh. Ambient intelligence:
Concepts and applications. Comput. Sci. Inf. Syst, 4(1):1–27, 2007.
[cited at p. 150]

[6] Juan Carlos Augusto and Chris D. Nugent. The use of temporal reasoning
and management of complex events in smart homes. In Ramon López
de Mántaras and Lorenza Saitta, editors, ECAI, pages 778–782. IOS Press,
2004. [cited at p. 32, 60]

[7] Francisco J. Ballesteros, Enrique Soriano, Gorka Guardiola Muzquiz, and
Katia Leal Algara. Plan B: Using files instead of middleware abstractions.
IEEE Pervasive Computing, 6(3):58–65, 2007. [cited at p. 28]

[8] Y. Bar-Yam. Analyzing the effectiveness of social organizations using a
quantitative scientific understanding of complexity and scale. NECSI Tech-
nical Report, May 2007. [cited at p. 105]

155

156 BIBLIOGRAPHY

[9] J.E. Bardram. The java context awareness framework (jcaf)-a service in-
frastructure and programming framework for context-aware applications.
Pervasive Computing, pages 98–115, 2005. [cited at p. 28]

[10] C. Beckmann and A. Dey. Siteview: Tangibly programming active environ-
ments with predictive visualization. In Adjunct Proceedings of UbiComp,
pages 167–168, 2003. [cited at p. 40]

[11] G. M. Bierman and P. Sewell. Iota: A concurrent XML scripting language
with applications to home area networking. Technical Report UCAM-CL-
TR-557, University of Cambridge, Computer Laboratory, January 2003.
[cited at p. 38]

[12] Urs Bischoff and Gerd Kortuem. Rulecaster: A programming system
for wireless sensor networks. In Paul J. M. Havinga, Maria Eva Lijd-
ing, Nirvana Meratnia, and Maarten Wegdam, editors, EuroSSC, volume
4272 of Lecture Notes in Computer Science, pages 262–263. Springer, 2006.
[cited at p. 30, 31, 45, 50]

[13] Alan F. Blackwell. First steps in programming: A rationale for attention
investment models. In HCC, pages 2–10. IEEE Computer Society, 2002.
[cited at p. 47]

[14] Alan F. Blackwell and Rob Hague. AutoHAN: An architecture for program-
ming the home. In HCC, pages 150–157. IEEE Computer Society, 2001.
[cited at p. 38]

[15] Oliver Brdiczka, Patrick Reignier, and James L. Crowley. Supervised learn-
ing of an abstract context model for an intelligent environment, smart ob-
jects and ambient intelligence. In SOC-EUSAI 2005, Grenoble 2005, 2005.
[cited at p. 25, 50, 59]

[16] Rodney Brooks. The intelligent room project. In Proceedings of the 2nd
International Cognitive Technology Conference (CT’97), Aizu, Japan, 1997.
[cited at p. 29]

[17] Yang Cai. Instinctive computing. In Thomas S. Huang, Anton Nijholt,
Maja Pantic, and Alex Pentland, editors, Artifical Intelligence for Human
Computing, volume 4451 of Lecture Notes in Computer Science, pages 17–
46. Springer, 2007. [cited at p. 10]

[18] S. Chakravarthy, R. Elmasri, and A. Aslandogan. SNOOP EVENT SPEC-
IFICATION: FORMALIZATION ALGORITHMS, AND IMPLEMENTA-
TION USING INTERVAL-BASED SEMANTICS. [cited at p. 79]

157

[19] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
events for active databases: Semantics, contexts and detection. In Proceed-
ings of the Twentieth International Conference on Very Large Databases,
pages 606–617, Santiago, Chile, 1994. [cited at p. 65, 77, 79, 81, 84]

[20] K. Cheverst, H.E. Byun, D. Fitton, C. Sas, C. Kray, and N. Villar. Explor-
ing issues of user model transparency and proactive behaviour in an office
environment control system. User Modeling and User-Adapted Interaction,
15(3):235–273, 2005. [cited at p. 36, 55, 61]

[21] Michael Coen, Luke Weisman, Kavita Thomas, and Marion Groh. A con-
text sensitive natural language modality for an intelligent room, March 14
1999. [cited at p. 37]

[22] Michael H. Coen. Building brains for rooms: Designing distributed software
agents. In AAAI/IAAI, pages 971–977, 1997. [cited at p. 31]

[23] D. J. Cook, M. Youngblood, E. Heierman, K. Gopalratnam, S. Rao,
A. Litvin, and F. Khawaja. Mavhome: An agent-based smart home. In
Proceedings of the IEEE International Conference on Pervasive Computing
and Communications, pages 521–524, 2003. [cited at p. 49, 102]

[24] J.C. Cook, D.J. Augusto and V.R. Jakkula. Ambient Intelligence: Tech-
nologies, applications and opportunities. Pervasive and Mobile Computing,
2009. [cited at p. 7]

[25] Alexandra I. Cristea and Michael Verschoor. The LAG grammar for au-
thoring the adaptive web. In ITCC (1), pages 382–288. IEEE Computer
Society, 2004. [cited at p. 65]

[26] James L. Crowley, Joëlle Coutaz, Gaëtan Rey, and Patrick Reignier. Per-
ceptual components for context aware computing. In Gaetano Borriello
and Lars Erik Holmquist, editors, Ubicomp, volume 2498 of Lecture Notes
in Computer Science, pages 117–134. Springer, 2002. [cited at p. 25]

[27] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience.
Harper Perennial, New York, 1991. [cited at p. 13, 41, 48, 54, 55, 56, 177]

[28] S. Davidoff, M.K. Lee, J. Zimmerman, and AK Dey. Socially-aware re-
quirements for a smart home. In Procs of the International Symposium on
Intelligent Environments, pages 41–44, 2006. [cited at p. 7, 10, 48, 51]

[29] Scott Davidoff, Min Kyung Lee, Charles Yiu, John Zimmerman, and
Anind K. Dey. Principles of smart home control. In Paul Dourish and
Adrian Friday, editors, Ubicomp, volume 4206 of Lecture Notes in Com-
puter Science, pages 19–34. Springer, 2006. [cited at p. 14, 52, 55, 56, 58, 105]

158 BIBLIOGRAPHY

[30] Paul de Vrieze, Patrick van Bommel, and Theo P. van der Weide. A generic
adaptivity model in adaptive hypermedia. In Paul De Bra and Wolfgang
Nejdl, editors, AH, volume 3137 of Lecture Notes in Computer Science,
pages 344–347. Springer, 2004. [cited at p. 65]

[31] K.S. Decker. Task environment centered simulation. Simulating Organi-
zations: Computational Models of Institutions and Groups. AAAI, 1996.
[cited at p. 23]

[32] Dey, Anind K., Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. a
CAPpella: programming by demonstration of context-aware applications.
In Proceedings of ACM CHI 2004 Conference on Human Factors in Com-
puting Systems, volume 1, pages 33–40, 2004. [cited at p. 35]

[33] A.K. Dey, T. Sohn, S. Streng, and J. Kodama. iCAP: Interactive proto-
typing of context-aware applications. Lecture Notes in Computer Science,
3968:254, 2006. [cited at p. 32, 40, 52, 59, 66]

[34] Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of context-aware
applications. Human-Computer Interaction (HCI) Journal, 16(2-4):97–166,
2001. [cited at p. 28]

[35] Robert B. Doorenbos. Production matching for large learning systems.
Technical Report CS-95-113, Carnegie Mellon University, School of Com-
puter Science. [cited at p. 67]

[36] Abraham Esquivel, Pablo A. Haya, Manuel Garćıa-Herranz, and Xavier
Alamán. Managing pervasive environment privacy using the f̈air
tradem̈etaphor. In International Workshop on Pervasive Systems, PerSys
2007, 2007. [cited at p. 57, 59, 72, 109, 113]

[37] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov model:
Analysis and applications. Machine Learning, 31:32, 1998. [cited at p. 24]

[38] Charles Forgy. Rete: A fast algorithm for the many patterns/many objects
match problem. Artif. Intell, 19(1):17–37, 1982. [cited at p. 29, 67]

[39] Sandra Baldassarri Francisco Serón and Eva Cerezo. Maxineppt: Using
3d virtual characters for natural interaction. In II International Work-
shop on Ubiquitous Computing and Ambient Intelligence (wUCAmI’2006),
Puertollano, Ciudad Real, Spain, November, 14 2006. [cited at p. 133, 134]

[40] S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy
for autonomous agents. Lecture Notes in Computer Science, 1193:21–??,
1997. [cited at p. 94]

159

[41] Ernest J. Friedman-Hill. Jess, The Java Expert System Shell. Sandia
National Laboratories, Livermore, CA, USA, March 1998. Version 4.0.
[cited at p. 29]

[42] Brian R. Gaines. Modeling and forecasting the information sciences. Inf.
Sci, 57-58:3–22, 1991. [cited at p. 53, 54]

[43] Krzysztof Gajos. Rascal - a resource manager for multi agent systems in
smart spaces,shop of central and eastern europe on multi-agent systems
ceemas. Krakow, Poland, 2001. [cited at p. 37]

[44] Krzysztof Gajos, Harold Fox, and Howard Shrobe. End user empowerment
in human centered pervasive computing, July 31 2002. [cited at p. 37]

[45] C. Le Gal, J. Martin, A. Lux, and J. L. Crowley. Smartoffice: Design of
an intelligent environment. IEEE Intelligent Systems, 16(4):60–66, July-
August 2001. [cited at p. 30]

[46] A. Galton. Eventualities. The Handbook of Time and Temporal Reasoning
in Artificial Intelligence, 2004. [cited at p. 32]

[47] A. Galton and J.C. Augusto. Two approaches to event definition. Lecture
notes in computer science, pages 547–556, 2002. [cited at p. 79]

[48] H. Gardner. Frames of mind. Basic Books New York, 1983. [cited at p. 10]

[49] H.W. Gellersen, A. Schmidt, and M. Beigl. Multi-sensor context-awareness
in mobile devices and smart artifacts. Mobile Networks and Applications,
7(5):341–351, 2002. [cited at p. 141]

[50] Javier Gómez, Germán Montoro, and Pablo A. Haya. ifaces: Adaptative
user interfaces for ambient intelligence. In IADIS Multi Conference on
Computer Science and Information Systems, pages 133–141, Amsterdam,
The Netherlands, 25–27 July 2008. IADIS Press. [cited at p. 6, 119]

[51] Guido Governatori, Michael J. Maher, Grigoris Antoniou, and David
Billington. Argumentation semantics for defeasible logics. In PRICAI,
pages 27–37, 2000. [cited at p. 65]

[52] S. Greenberg and C. Fitchett. Phidgets: Easy development of physical
interfaces through physical widgets. In Proceedings of the 14th Annual ACM
Symposium on User Interface Software and Technology - ACM UIST’01,
pages 209–218, Orlando, Florida, November 11-14 2001. ACM Press. Best
paper award. Earlier version as report 2001-686-09. [cited at p. 6, 135]

[53] Saul Greenberg. Toolkits and interface creativity. Multimedia Tools Appl,
32(2):139–159, 2007. [cited at p. 53, 54]

160 BIBLIOGRAPHY

[54] Rob Hague. End-user programming in multiple languages. Technical report
ucam-cl-tr-651, phd thesis, University of Cambridge, Computer Laboratory,
October 2005. [cited at p. 38]

[55] Daniela Hall, Christophe Le Gal, Jérôme Martin, Olivier Chomat, and
James L. Crowley. Magicboard: A contribution to an intelligent office
environment. Robotics and Autonomous Systems, 35(3-4):211–220, 2001.
[cited at p. 67]

[56] L. Hamill and R. Harper. Talking Intelligence: A Historical and Conceptual
Exploration of Speech–based Human–machine Interaction in Smart Homes.
In International Symposium on Intelligent Environments, pages 121–127,
Cambridge, United Kingdom, November 11-14 2006. Microsoft Research.
[cited at p. 49]

[57] Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchida, and Tyler Horton.
Building agent-based intelligent workspaces. In International Conference
on Internet Computing, pages 675–681, 2002. [cited at p. 37]

[58] Pablo A. Haya. Tratamiento de Información Contextual en Entornos In-
teligentes. PhD thesis, Universidad Autónoma de Madrid, 2006. [cited at p. 6]

[59] Pablo A. Haya, Abraham Esquivel, Germán Montoro, Manuel Garćıa-
Herranz, Xavier Alamán, Ramón Hervás, and José Bravo. A prototype
of context awareness architecture for ambience intelligence at home. In
International Symposium on Intelligent Environments, pages 49–55, Cam-
bridge, United Kingdom, 2006. Microsoft Research. [cited at p. 6, 31]

[60] Pablo A. Haya, Germán Montoro, and Xavier Alamán. A prototype of a
context-based architecture for intelligent home environments. In Interna-
tional Conference on Cooperative Information Systems (CoopIS 2004), vol-
ume 3290 of Lecture Notes in Computer Science (LNCS), Larnaca, Cyprus,
October 25-29 2004. [cited at p. 57, 58, 59, 107, 124]

[61] Pablo A. Haya, Germán Montoro, Xavier Alamán, Rubén Cabello, and
Javier Mart́ınez. Extending an xml environment definition language for
spoken dialogue and web-based interfaces. In In Developing User Interfaces
with XML: Advances on User Interface Description Languages Workshop
at AVI04, Gallipoli, Italy, May 25 2004. [cited at p. 6]

[62] Pablo A. Haya, Germán Montoro, Abraham Esquivel, Manuel Garćıa-
Herranz, and Xavier Alamán. A mechanism for solving conflicts in am-
bient intelligent environments. Journal Of Universal Computer Science,
12(3):284–296, 2006. [cited at p. 57, 63, 72, 108]

161

[63] Sumi Helal, William Mann, Hicham El-Zabadani, Youssef Kaddoura, and
Erwin Jansen. The gator tech smart house: A programmable pervasive
space. IEEE Computer, 38(3):50–60, March 2005. [cited at p. 28, 137]

[64] Jean-Michel Hoc and Anh Nguyen-Xuan. Language Semantics, Mental
Models and Analogy, chapter 2.3, pages 139–156. Academic Press, 1990.
[cited at p. 53]

[65] Stephen S. Intille. Designing a home of the future, July 11 2002. [cited at p. 34]

[66] Stephen S. Intille and Kent Larson. Designing and evaluating supportive
technology, June 29 2003. [cited at p. 26, 34]

[67] C. Z. Janikow. Exemplar learning in fuzzy decision trees, August 14 1996.
[cited at p. 36]

[68] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research
and development. Journal of Autonomous Agents and Multi-Agent Systems,
1(1):7–38, 1998. [cited at p. 94]

[69] Antonis C. Kakas and Pavlos Moraitis. Argumentation based decision
making for autonomous agents. In AAMAS, pages 883–890. ACM, 2003.
[cited at p. 105]

[70] Achilles Kameas, Stephen J. Bellis, Irene Mavrommati, Kieran Delaney,
Martin Colley, and Anthony Pounds-Cornish. An architecture that treats
everyday objects as communicating tangible components. In PerCom, page
115. IEEE Computer Society, 2003. [cited at p. 37]

[71] J. Kay, B. Kummerfeld, and P. Lauder. Managing private user models
and shared personas. In UM03 Workshop on User Modeling for Ubiquitous
Computing, pages 1–11, 2003. [cited at p. 36, 55]

[72] Cory K. Kidd, Robert Orr, Gregory D. Abowd, Christopher G. Atkenson,
Irfan A. Essa, Blair MacIntyre, Elizabeth Mynatt, Thad E. Starner, and
Wendy Newstetter. The aware home: A living laboratory for ubiquitous
computing research. In Proceedings of the Second International Workshop
on Cooperative Buildings - CoBuild’99, 1999. [cited at p. 7, 28, 29, 118]

[73] Klemmer, Scott R., Jack Li, James Lin, Landay, and James A. Papier-
mache: toolkit support for tangible input. In Proceedings of ACM CHI
2004 Conference on Human Factors in Computing Systems, volume 1, pages
399–406, 2004. [cited at p. 40]

[74] Andrew Jensen Ko, Brad A. Myers, and Htet Htet Aung. Six learning
barriers in end-user programming systems. In VL/HCC, pages 199–206.
IEEE Computer Society, 2004. [cited at p. 47]

162 BIBLIOGRAPHY

[75] A.A. Kulkarni. A reactive behavioral system for the intelligent room. PhD
thesis, Massachusetts Institute of Technology, 2002. [cited at p. 29]

[76] Ajay Kulkarni. Design principles of a reactive behavioral system for the
intelligent room, April 09 2002. [cited at p. 29, 37]

[77] Victor Lesser, Michael Atighetchi, Brett Benyo, Bryan Horling, Anita Raja,
Régis Vincent, Thomas Wagner, Ping Xuan, and Shelley XQ. Zhang. The
UMASS intelligent home project. In Oren Etzioni, Jörg P. Müller, and
Jeffrey M. Bradshaw, editors, Proceedings of the Third Annual Conference
on Autonomous Agents (AGENTS-99), pages 291–298, New York, May 1–5
1999. ACM Press. [cited at p. 23]

[78] Pattie Maes. Agents that reduce work and information overload. Commu-
nications of the ACM, 37(7):31–40, July 1994. [cited at p. 9, 55, 56, 58, 107]

[79] Abraham H. Maslow. Motivation and Personality. Harper, New York, 1954.
[cited at p. 105]

[80] A.H. Maslow. A theory of human motivation. Twentieth Century Psychol-
ogy: Recent Developments in Psychology, page 22, 1946. [cited at p. 7]

[81] Irene Mavrommati, Achilles Kameas, and Panos Markopoulos. An editing
tool that manages device associations in an in-home environment. Personal
and Ubiquitous Computing, 8(3-4):255–263, 2004. [cited at p. 37]

[82] JD Mayer and P. Salovey. The intelligence of emotional intelligence. Intel-
ligence(Norwood), 17(4):433–442, 1993. [cited at p. 10]

[83] Marvin Minsky. The Emotion Machine. Simon & Schuster, New York,
2006. [cited at p. 10, 11, 66]

[84] David Molyneaux, Hans Gellersen, Gerd Kortuem, and Bernt Schiele. Co-
operative augmentation of smart objects with projector-camera systems.
In John Krumm, Gregory D. Abowd, Aruna Seneviratne, and Thomas
Strang, editors, UbiComp, volume 4717 of Lecture Notes in Computer Sci-
ence, pages 501–518. Springer, 2007. [cited at p. 80, 133, 141, 178]

[85] Germán Montoro. Estudio e integración de un sistema de diálogos dinámico
en un entorno inteligente. PhD thesis, Universidad Autónoma de Madrid,
2005. [cited at p. 6]

[86] Germán Montoro, Xavier Alamán, and Pablo A. Haya. Advances in Perva-
sive Computing, chapter Spoken interaction in intelligent environments: a
working system. Eds. Austrian Computer Society (OCG), 2004. [cited at p. 6,

119, 134]

163

[87] Germán Montoro, Xavier Alamán, and Pablo A. Haya. A plug and play
spoken dialogue interface for smart environments. In Fifth International
Conference on Intelligent Text Processing and Computational Linguistics
(CICLing’04), volume 2945 of Lecture Notes in Computer Science (LNCS).
Springer-Verlag, February 15-21 2004. [cited at p. 6]

[88] Germán Montoro, Pablo A. Haya, and Xavier Alamán. Context adaptive
interaction with an automatically created spoken interface for intelligent
environments. In The 2004 IFIP International Conference on Intelligence
in Communication Systems (INTELLCOMM 04), number 3283 in Lecture
Notes in Computer Science (LNCS), Bangkok, Thailand, November 2004.
[cited at p. 45, 59]

[89] Germán Montoro, Pablo A. Haya, Sandra Baldassarri, Eva Cerezo, and
Francisco J. Serón. A study of the use of a virtual agent in an ambient
intelligence environment. In Helmut Prendinger, James C. Lester, and
Mitsuru Ishizuka, editors, IVA, volume 5208 of Lecture Notes in Computer
Science, pages 520–521. Springer, 2008. [cited at p. 134]

[90] Michael Mozer, Lucky Vidmar, and Robert H. Dodier. The neurothermo-
stat: Predictive optimal control of residential heating systems. In Michael
Mozer, Michael I. Jordan, and Thomas Petsche, editors, NIPS, pages 953–
959. MIT Press, 1996. [cited at p. 23]

[91] Michael M. Mozer. The neural network house: An environment that adapts
to its inhabitants. In Proceedings of the AAAI Spring Symposium on Intel-
ligent Environments. AAAI Press, 1998. [cited at p. 22, 49]

[92] Debra Mozer, Michael C., Dodier, Robert H., Anderson, Marc, Vidmar,
Lucky, Cruickshank, Robert P III, Miller. The neural network house: An
overview. 1994. [cited at p. 45]

[93] Brad A. Myers, John F. Pane, and Andy Ko. Natural programming lan-
guages and environments. Commun. ACM, 47(9):47–52, 2004. [cited at p. 12,

15, 50, 51, 53, 66, 67]

[94] Elizabeth D. Mynatt, Jim Rowan, Sarah Craighill, and Annie Jacobs. Dig-
ital family portraits: supporting peace of mind for extended family mem-
bers. In CHI ’01: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 333–340, New York, NY, USA, 2001. ACM.
[cited at p. 45]

[95] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End
User Computing. MIT Press, Cambridge, MA, USA, 1993. [cited at p. 53]

164 BIBLIOGRAPHY

[96] Mark W. Newman, Jana Z. Sedivy, Christine Neuwirth, W. Keith Edwards,
Jason I. Hong, Shahram Izadi, Karen Marcelo, and Trevor F. Smith. De-
signing for serendipity: supporting end-user configuration of ubiquitous
computing environments. In Symposium on Designing Interactive Systems,
pages 147–156, 2002. [cited at p. 6, 9]

[97] M.W. Newman, T.F. Smith, and B.N. Schilit. Recipes for digital living.
Computer, 39(2), 2006. [cited at p. 63]

[98] I. Nieto, J. Bot́ıa, and A. Gómez-Skarmeta. Informa-
tion and hybrid architecture model of the ocp contex-
tual information management system. 12(3):357–366, 2006.
|http://www.jucs.org/jucs 12 3/information and hybrid architecture—.
[cited at p. 33]

[99] N. Oliver, A. Garg, and E. J. Horvitz. Layered representations for learn-
ing and inferring office activity from multiple sensory channels. Com-
puter Vision and Image Understanding, 96(2):163–180, November 2004.
[cited at p. 139]

[100] John F. Pane and Brad A. Myers. Tabular and textual methods for selecting
objects from a group. In VL, pages 157–164, 2000. [cited at p. 40]

[101] Seymour Papert. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, New York, 1980. [cited at p. 12, 55, 56, 60, 66, 85]

[102] Adrian Paschke. ECA-ruleML: An approach combining ECA rules with
temporal interval-based KR event/action logics and transactional update
logics. CoRR, abs/cs/0610167, 2006. informal publication. [cited at p. 65, 77]

[103] Adrian Paschke. The reaction ruleML classification of the event / action /
state processing and reasoning space. Technical report, November 10 2006.
[cited at p. 76]

[104] N. W. Paton and O. Diaz. Active database systems. ACM Computing
Surveys, 31(1):63–103, 1999. [cited at p. 68, 76, 77, 98]

[105] Brenton Asher Phillips. Metaglue :–a programming language for multi-
agent systems. Master’s thesis, Massachusetts Institute of Technology,
Dept. of Electrical Engineering and Computer Science, 1999. [cited at p. 29]

[106] Alexander Repenning and Andri Ioannidou. What makes End-User Tick?
13 Design Guidelines, chapter 4, pages 51–85. Human-Computer Interac-
tion Series, Vol. 9. Springer-Verlag, 2006. [cited at p. 13, 54, 55, 56]

165

[107] Tom Rodden, Andy Crabtree, Terry Hemmings, Boriana Koleva, Jan Hum-
ble, Karl-Petter Åkesson, and Pär Hansson. Between the dazzle of a new
building and its eventual corpse: assembling the ubiquitous home. In David
Benyon, Paul Moody, Dan Gruen, and Irene McAra-McWilliam, editors,
Conference on Designing Interactive Systems, pages 71–80. ACM, 2004.
[cited at p. 41]

[108] Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ran-
ganathan, Roy H. Campbell, and Klara Nahrstedt. Gaia: A middleware
infrastructure to enable active spaces. IEEE Pervasive Computing, pages
74–83, Oct-Dec 2002. [cited at p. 28]

[109] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. In IEEE Workshop on Mobile Computing Systems and Appli-
cations, Santa Cruz, CA, US, 1994. [cited at p. 27]

[110] Albrecht Schmidt. Implicit human computer interaction through context.
Personal and Ubiquitous Computing, 4(2/3), 2000. [cited at p. 31, 59]

[111] N. Stash, A. Cristea, and P. De Bra. Explicit intelligence in adaptive hyper-
media: Generic adaptation languages for learning preferences and styles.
In Proc. of HT2005 CIAH Workshop, Salzburg, Austria, 2005. [cited at p. 65]

[112] Michael Stonebraker, Anant Jhingran, Jeffrey Goh, and Spyros Potamianos.
On rules, procedure, caching and views in data base systems. SIGMOD
Rec., 19(2):281–290, 1990. [cited at p. 72]

[113] Joo Geok Tan, Daqing Zhang, Xiaohang Wang, and Heng Seng Cheng.
Enhancing semantic spaces with event-driven context interpretation. In
Hans-Werner Gellersen, Roy Want, and Albrecht Schmidt, editors, Per-
vasive, volume 3468 of Lecture Notes in Computer Science, pages 80–97.
Springer, 2005. [cited at p. 33, 59]

[114] A.S. Taylor. Intelligence in Context. In International Symposium on Intel-
ligent Environments, pages 35–44, Cambridge (United Kingdom), 5-7 April
2006. Microsoft Research. [cited at p. 42, 104]

[115] Georgios Theocharous, Khashayar Rohanimanesh, and Sridhar Mahadevan.
Learning hierarchical partially observable markov decision process models
for robot navigation. In ICRA, pages 511–516. IEEE, 2001. [cited at p. 24]

[116] Khai N. Truong, Elaine M. Huang, and Gregory D. Abowd. CAMP: A
magnetic poetry interface for end-user programming of capture applications
for the home. In Nigel Davies, Elizabeth D. Mynatt, and Itiro Siio, editors,
Ubicomp, volume 3205 of Lecture Notes in Computer Science, pages 143–
160. Springer, 2004. [cited at p. 41, 52, 59, 129]

166 BIBLIOGRAPHY

[117] K.N. Truong and G.D. Abowd. Inca: A software infrastructure to facilitate
the construction and evolution of ubiquitous capture & access applications.
In In the Proceedings of Pervasive 2004: The Second International Con-
ference on Pervasive Computing, pages 140–157, Linz,Austria, April 2004.
[cited at p. 42]

[118] Brygg Ullmer, Hiroshi Ishii, and Dylan Glas. mediablocks: Physical con-
tainers, transports, and controls for online media. In SIGGRAPH, pages
379–386, 1998. [cited at p. 38]

[119] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology
based context modeling and reasoning using owl. In Proceedings of PerCom
2004, pages 18–22, Orlando, FL, USA, march 2004. [cited at p. 33, 59]

[120] Roy Want, Andy Hopper, Veronica Falc ao, and Jonathan Gibbons. The
Active Badge location system. ACM Transactions on Information Systems,
10(1):91–102, January 1992. [cited at p. 27]

[121] Roy Want, Bill Schilit, Norman Adams, Rich Gold, Karin Petersen, David
Goldberg, John Ellis, and Mark Weiser. An overview of the parctab ubiqui-
tous computing experiment. IEEE Personal Communications, 2(6):28–43,
december 1995. [cited at p. 27]

[122] Mark Weiser. The computer for the 21st century. Scientific American,
September 1991. [cited at p. 1, 2, 45, 48]

[123] Mark Weiser. Some computer science issues in Ubiquitous Computing.
Communications of ACM, 36(7):75–84, July 1993. [cited at p. 1]

[124] G. Michael Youngblood, Diane J. Cook, and Lawrence B. Holder. Man-
aging adaptive versatile environments. Pervasive and Mobile Computing,
1(4):373–403, 2005. [cited at p. 24, 26]

[125] T. Zhangt and B. Brügge. Empowering the user to build smart home
applications. In Toward A Human-Friendly Assistive Environment:
ICOST’2004, 2nd International Conference on Smart Home and Health
Telematics, page 170. IOS Press, 2004. [cited at p. 67]

Appendices

167

Appendix A

Grammar

169

170 APPENDIX A. GRAMMAR

Table A.1: Rule–based language’s grammar

rule <triggerlist> ‘::’ <conditionlist>? ‘⇒’ <actionlist> ‘;’

triggerlist <trigger> (‘‖’ <trigger>)∗

trigger element

conditionlist <condition> (‘&& ’<condition>)∗

condition <element> <comparator> <element>

actionlist <action> (‘&& ’<action>)∗

action
<element> <operation> <element> <confidence>?
| <timer>

confidence ‘|’ INT

timer ‘TIMER’ <timer time> <concurrence>?
‘{’ <timer end agent>? ‘}’ ‘{’ <rulelist>? ‘}’

timer end agent <timer end stat>+

timer end stat
timer end rule
LINE COMMENT
COMMENT

timer end rule (<conditionlist> ‘⇒’)? <actionlist> ‘;’

timer time NAME

concurrence INT

rulelist <rule>+

comparator

EQUAL
NOT EQUAL
GREATER
SMALLER
GREATER OR EQUAL
SMALLER OR EQUAL

operation

ADD PROPERTY
ADD RELATION
ASSIGN
ASSIGN NOT
CREATE ENTITY
MINUS
PLUS
REMOVE RELATION

element
literal
BB ENTITY
BB ELEMENT

literal NAME |INT

171

Table A.2: Lexicon

BB ENTITY NAME ’:’ NAME

BB ELEMENT NAME’:’NAME’:’NAME

NAME

(DIGIT∗ (LETTER|’ ’) ((LETTER|’ ’|’.’) |DIGIT)∗’#’?
(CHAR∗ (((’ ’|’\t’) CHAR)∗

’*’
’$’(DIGIT)+

LETTER ’a’..’z’|’A’..’Z’

CHAR LETTER|DIGIT |’ ’|’.’|’#’|’-’|’\\’|’|’|’/’|’:’|’*’

INT ’0’..’9’+

EQUALS ’=’

NOT EQUALS ’ !=’

GREATER ’>’

SMALLER ’<’

GREATER OR EQUAL ’>=’

SMALLER OR EQUAL ’<=’

ADD PROPERTY ’AP’

ADD RELATION ’->’

REMOVE RELATION ’-<’

ASSIGN ’:=’

ASSIGN NOT ’=!’

CREATE ENTITY ’CE’

PLUS : ’+=’

MINUS : ’-=’

Appendix B

Conclusiones

En este trabajo se ha presentado una estructura y lenguaje base para el control
indirecto de Entornos Inteligentes. Tanto el lenguaje como la estructura han
sido diseñados en semejanza a los procesos mentales naturales para expresar y
organizar preferencias, persiguiendo un mecanismo de control a través del cual
todos los elementos del entorno puedan ser usados y programados igualmente y
de forma natural: Acercando el modo de programación del entorno al
modo en que los usuarios razonan acerca de su entorno.

Este objetivo presenta dos problemas en los entornos actuales: los elementos
computacionales no comparten su información ni capacidades ni com-
parten sus mecanismos de interacción. Esto es, a pesar de que diversos
elementos del entorno son capaces de percibir y actuar en el entorno (como un
termostato o un timbre), no comparten la información percibida ni sus capaci-
dades de acción con el resto de los elementos del entorno. Adicionalmente, mien-
tras que algunos de estos elementos pueden ser controlados y programados, cada
uno de ellos presenta una forma y/o lugar de programación distinto del resto.
La combinación de estos dos problemas redunda en una experiencia de control
frustrante, volviéndose más frustrante a medida que crece el número de elementos
activos, perceptivos, controlables o programables en el entorno.

Por otra parte, para diseñar un sistema que solucione estos problemas, se
deben tener en cuenta otra clase de consideraciones. Analizadas en el Caṕıtulo 3,
estas consideraciones pueden ser resumidas en dos: la heterogeneidad de usuar-
ios (preferencias, entornos y conocimientos) y su multiplicidad (la coexistencia
de usuarios, preferencias y dominios de control).

La filosof́ıa subyacente a este trabajo entiende que la inteligencia del entorno
debe usarse para mejorar las capacidades de control de sus habitantes, en con-
traposición a otros enfoques que persiguen una inteligencia artificial capaz de
gestionar de forma autónoma el entorno por el usuario (ver Caṕıtulo 2). Aśı, este

173

174 APPENDIX B. CONCLUSIONES

trabajo se basa en un paradigma de control automático, a través del cual
los usuarios son capaces de programar comportamientos que, de ah́ı en adelante,
se producirán de forma automática, en contraposición con los paradigmas de
control autónomo en los que el sistema decide qué es lo más adecuado para el
usuario.

Finalmente, el trabajo desarrollado en esta tesis, persigue un paradigma de
programación independiente de la interfaz de programación. Esto es,
en lugar de centrarse en diseñar un interfaz de programación adecuada para el
usuario, se persigue capturar la esencia de los mecanismos de programación nat-
urales en un lenguaje que pueda ser traducido fácilmente a distintas interfaces de
programación. De esta forma, mientras que diferentes interfaces de programación
pueden ser creadas para cumplir determinados requisitos de interacción, el modelo
subyacente de programación permanece invariable. Este tipo de sistema, que fija
el modelo de programación, permite a los desarrolladores de interfaces centrarse
exclusivamente en problemas de interacción

El mecanismo o sistema de programación se basa en dos componentes clave:
un lenguaje de expresión basado en reglas ECA (Eventos Condiciones Acciones)
y una estructura multiagente de modularización diseñadas, respectivamente, para
hacer frente a los problemas de heterogeneidad y multiplicidad.

En relación con el lenguaje, el lenguaje de reglas ECA ha probado ser
un mecanismo natural de expresión, como sugeŕıan Myers y otros (ver
Sección 3.3), especialmente para programar comportamientos reactivos que aso-
cian una acción a un determinado contexto.

Por otra parte, al ser expresiones compresibles, proporcionan un base válida
de explicación que, además de favorecer la confianza que el usuario deposita
en su entorno (como sugieren múltiples autores, ver Sección 2), ha probado ser
un mecanismo de depuración fundamental para mejorar la competencia del
entorno. Adicionalmente, las reglas ECA, definidas por el usuario, proporcionan
una base factible para el aprendizaje automático (ver Sección 5.3.2).

Sobre lo anterior, el hecho de disponer de un lenguaje base simplificado dotado
de una serie de extensiones con las que expresar conceptos más complejos (como
generalidad o tiempo), proporciona un mecanismo para aislar la complejidad
del lenguaje, haciendo frente a la relación inversa entre simplicidad y
flexibilidad propia de la mayor parte de sistemas de programación orientados al
usuario. En este sentido, los usuarios sólo tienen que tratar con la complejidad
estrictamente necesaria para resolver sus problemas. Por otra parte, el construir
las extensiones complejas usando los conceptos y estructuras del lenguaje base
proporciona un curva de aprendizaje suave en la que cada paso adelante
facilita futuros avances.

Finalmente, de nuestra experiencia con los Timers (ver Sección 4.1.3) colegi-
mos el potencial de usar una lógica de eventos en lugar de un álgebra de

175

eventos para construir eventos compuestos. Pese a que estas conclusiones poco
tienen que ver con un enfoque directo en el usuario final, presenta algunas cues-
tiones interesantes en relación con la composición de eventos. En este sentido,
los Timers permiten una definición de eventos compuestos por medio de proced-
imientos en contraposición con la declarativa de las álgebras de eventos (en las
que un conjunto de eventos compuestos combinables como secuencia, disyunción
o cierre son definidos) (ver Sección 4.1.4). Por otra parte, los eventos compuestos
son codificados, con los Timers, junto con sus poĺıticas de consumo, permitiendo
combinaciones más flexibles de distintos eventos compuestos y poĺıticas de con-
sumo. Se han descrito las estructuras de Timers que codifican las álgebras de
eventos y poĺıticas de consumo más comunes en la literatura. En qué situaciones
es apropiado renunciar a la facilidad que proporciona una solución declarativa y
cómo de lejos puede llegar un mecanismo de descripción mediante procedimien-
tos comparado con aquella son cuestiones abiertas que requieren un estudio más
profundo. No obstante, los primeros pasos han sido marcados en este trabajo
en torno a dos composiciones de eventos poco comunes: composición de even-
tos dependientes del contexto y poĺıticas de consumo mixtas (ver Secciones 4.1.4
y 4.1.4).

En relación con el sistema de modularización multiagente, ha sido usado
con éxito tanto para permitir una evolución orgánica del conjunto de preferen-
cias del entorno como para diseminar la responsabilidad que el usuario pone
en el sistema en diferentes entes independientes (en beneficio de un sistema más
robusto y de una mayor confianza del usuario en el mismo) (ver Sección 5.1). Por
otra parte, al representar los agentes en el modelo del mundo como una parte
más (virtual) del entorno y dotarlos de un protocolo “are you alive?” o “¿estás
vivo?” se abren las puertas a estrategias de recuperación automática con las que
hacer frente a cáıdas inesperadas de los agentes.

Adicionalmente, el representar los agentes como una parte más del mundo,
permite la creación de reglas que activen o desactiven agentes (esto es, conjun-
tos de preferencias) en relación con el contexto. En otras palabras, construir
jerarqúıas. El etiquetar los agentes en el modelo del mundo con información
contextual como para quién trabajan, dónde trabajan, que elementos son afecta-
dos por sus reglas o a qué tarea en particular se dedican, permite a los usuarios
estructurar sus jerarqúıas de acuerdo a sus estructuras naturales. Por otra parte,
un lenguaje basado en reglas proporciona un mecanismo natural para expresar
las reglas de prioridad de una jerarqúıa y, al no imponer ningún grado de in-
terdependencia y proporcionar diferentes grados de escala se garantiza que las
estructuras de coordinación construidas con este sistema pueden tener diversos
grados posibles de complejidad (como de hecho tienen las distintas estruc-
turas sociales).

Finalmente, la combinación de las posibilidades de coordinación del mecan-

176 APPENDIX B. CONCLUSIONES

ismo multiagente con aquellas del modelo del mundo y la capa de privacidad,
proporciona un potente mecanismo para trabajar con dominios jerárquicos es-
pećıficos y ofrece diversas sinergias en la composición de jerarqúıas como activar
o desactivar agentes de acuerdo a las preferencias de privacidad o modificar las
preferencias de privacidad mediante agentes de acuerdo al contexto.

Por último, el presente trabajo ha demostrado su potencial de adaptación en
diversos tipos de entornos y escenarios. En primer lugar, permitiendo resolver
problemas de muy diversa naturaleza como controlar todas las luces de un
entorno desde un solo interruptor, redirigir y sincronizar las imágenes de v́ıdeo
para unir virtualmente una clase distribuida, configurar un sistema de alertas
en un entorno de seguridad, inferir información de localización con que probar
otras tecnoloǵıas o controlar los derechos de acceso a un entorno laboral, entre
otras. En segundo lugar, permitiendo una integración fluida de nuevas
tecnoloǵıas en Entornos Inteligentes, tanto tecnoloǵıas software (como el
avatar antropomorfo de la Universidad de Zaragoza, ver Sección 6.3.1), hardware
(como los Phidgets de la Universidad de Calgary, ver Sección 6.3.2) o sistemas
compuestos tanto de hardware como de software (como el sistema de proyección
dirigible de la Universidad de Lancaster 6.3.3). En tercer lugar, permitiendo su
integración en distintas interfaces de usuario, tanto diseñadas para progra-
madores como para usuarios finales (ver Sección 6.2). Y, finalmente, facilitando
la programación a usuarios finales noveles, expertos, programadores
y cient́ıficos, proporcionando una manera fácil y rápida de interaccionar con y
programar el entorno (como muestra la experiencia en entornos personales, lab-
orales, educativos e investigadores descrita en la Sección 6.1). La experiencia
ganada a lo largo del presente trabajo ha fortalecido en conjunto nuestras creen-
cias iniciales en que la sinergia entre la inteligencia humana y las capacidades del
entorno puede ser detonada proporcionando un mecanismo de control integral.

List of Figures

1.1 Maslow’s hierarchy of needs . 7
1.2 Minsky’s six–level model of mind . 11
1.3 Programming flow: user’s thoughts, UIs, kernel language 12
1.4 Cszentmihalyi’s [27] notion of flow . 13
1.5 Classification of control interfaces . 18

3.1 Developing problems due to the lack of appropriate tools 54
3.2 AmiLab layers . 59

4.1 Context–dependent and context–independent event composition . . . 80
4.2 Mixed consumption policies for composite event detection 84
4.3 ECA–rule language structure . 86
4.4 Screenshot of an exercise of the end–user study 88
4.5 End–user study results for trigger/condition identification 90
4.6 End–user study time and difficulty of the exercises 91

5.1 Internal structure of the agent . 96
5.2 Representation of an agent, properties and relations in the Blackboard 98
5.3 Forward directed execution model for ECA rules 99
5.4 Evolution of confidence factors over time 103
5.5 Amilab layers from the conflict resolution point of view 109
5.6 Example of interdependence in a graph 111
5.7 Automatic inference of meta–agent permissions 114

6.1 A view of AmIlab . 118
6.2 A view of Itech Calli laboratory . 123
6.3 Screen captures of the alert PDA software 127
6.4 GUI for rule creation . 128
6.5 Base layout of the Magnet Poetry GUI 130
6.6 Execution flow of the Magnet Poetry GUI 133

177

178 LIST OF FIGURES

6.7 Steerable Projection System [84] . 141

List of Tables

3.1 Properties of Ubiquitous Computing 50
3.2 Requirements for end–users . 52
3.3 Requirements for end–users as developers 56
3.4 Requirements for end–users as consumers 58
3.5 Implemented solutions and requirements supported 64

4.1 Parts of the Timer action . 74
4.2 End–user study for ECA–rule use . 89

5.1 Parts of the Agent structure . 95
5.2 Properties and relations of the agent type 97
5.3 Structure for the agent explanation log 101

6.1 Several statements represented as CAMP approach and our approach. 132
6.2 Example of Phidget configuration file 136
6.3 Code of the configuration file for the augmented telephone 137

A.1 Rule–based language’s grammar . 170
A.2 Lexicon . 171

179

	Abstract
	Acknowledgements
	Contents
	Chapter 1. Introduction

	1.1 Background
	1.2 Challenges
	1.3 Research contributions
	1.4 Scope
	1.5 Thesis structure

	Chapter 2. State of the Art
	2.1 The System in control
	2.2 The System under control
	2.3 Summary

	Chapter 3. Indirect control in AmbientIntelligence environments
	3.1 The nature of Ubiquitous Computing environments inrelation to indirect control end–user programming
	3.2 Requirements for end–user programmed indirect–control
	3.3 Implemented solutions and requirements supported

	Chapter 4. ECA–rule language
	4.1 Knowledge model
	4.2 User expression

	Chapter 5. Multi–agent Structure
	5.1 Distributed reasoning
	5.2 Agent anatomy
	5.3 Execution model
	5.4 Managing hierarchies

	Chapter 6. Demonstrators
	6.1 Applied Environments
	6.2 User Interfaces
	6.3 Integration with other technologies

	Chapter 7. Conclusions
	7.1 Future Work
	7.2 Dissemination and contributions

	Bibliography
	Appendices
	List of Figures
	List of Tables

