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November 2009

http://www.uam.es
http://www.ii.uam.es/~dhernan
http://www.eps.uam.es
http://www.eps.uam.es




“Roads? Where we’re going we don’t need roads.”
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Abstract

Ensemble methods and Bayesian techniques are two learning paradigms that can be useful
to alleviate the difficulties associated with automatic induction from a limited amount of data
in the presence of noise. Instead of considering a single hypothesis for prediction, these methods
take into account the outputs of a collection of hypotheses compatible with the observed data.
Averaging the predictions of different learners provides a mechanism to produce more accurate
and robust decisions. However, the practical use of ensembles and Bayesian techniques in ma-
chine learning presents some complications. Specifically, ensemble methods have large storage
requirements. The predictors of the ensemble need to be kept in memory so that they can be
readily accessed. Furthermore, computing the final ensemble decision requires querying every
predictor in the ensemble. Thus, the prediction cost increases linearly with the ensemble size.
In general, it is also difficult to estimate an appropriate value for the size of the ensemble. On
the other hand, Bayesian approaches require the evaluation of multi-dimensional integrals or
summations with an exponentially large number of terms that are often intractable. In prac-
tice, these calculations are made using approximate algorithms that can be computationally
expensive. This thesis addresses some of these shortcomings and proposes novel applications of
ensemble methods and Bayesian techniques in supervised learning tasks of practical interest.

In the first part of this thesis we analyze different pruning methods that reduce the memory
requirements and prediction times of ensembles. These methods replace the original ensemble by
a subensemble with good generalization properties. We show that identifying the subensemble
that is optimal in terms of the training error is possible only in regression ensembles of intermedi-
ate size. For larger ensembles two approximate methods are analyzed: ordered aggregation and
SDP-pruning. Both SDP-pruning and ordered aggregation select subensembles that outperform
the original ensemble. In classification ensembles it is possible to make inference about the final
ensemble prediction by querying only a fraction of the total classifiers in the ensemble. This is the
basis of a novel ensemble pruning method: instance-based (IB) pruning. IB-pruning produces a
large speed-up of the classification process without significantly deteriorating the generalization
performance of the ensemble. This part of the thesis also describes a statistical procedure for
determining an adequate size for the ensemble. The probabilistic framework introduced in IB-
pruning can be used to infer the size of a classification ensemble so that the resulting ensemble
predicts the same class label as an ensemble of infinite size with a specified confidence level.

The second part of this thesis proposes novel applications of Bayesian techniques with a
focus on computational efficiency. Specifically, the expectation propagation (EP) algorithm is
used as an alternative to more computationally expensive methods such as Markov chain Monte
Carlo or type-II maximum likelihood estimation. In this part of the thesis we introduce the
Bayes machine for binary classification. In this Bayesian classifier the posterior distribution
of a parameter that quantifies the level of noise in the class labels is inferred from the data.
This posterior distribution can be efficiently approximated using the EP algorithm. When EP
is used to compute the approximation, the Bayes machine does not require any re-training to
estimate this parameter. The cost of training the Bayes machine can be further reduced using a
sparse representation. This representation is found by a greedy algorithm whose performance is
improved by considering additional refining iterations. Finally, we show that EP can be used to
approximate the posterior distribution of a Bayesian model for the classification of microarray
data. The EP algorithm significantly reduces the training cost of this model and is useful to
identify relevant genes for subsequent analysis.
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Resumen

Los métodos basados en conjuntos y las técnicas Bayesianas son dos paradigmas de apren-
dizaje que pueden ser útiles para aliviar los problemas asociados a la inducción automática
cuando la cantidad de ejemplos de los que se dispone es limitada y cuando estos datos están
contaminados por ruido. En lugar de considerar una sola hipótesis para predecir, estos métodos
tienen en cuenta las predicciones de una colección de hipótesis compatibles con los datos obser-
vados. Promediar estas predicciones proporciona un mecanismo para obtener decisiones finales
más precisas y robustas. Sin embargo, el uso práctico de los métodos basados en conjuntos y las
técnicas Bayesianas presenta ciertas complicaciones. En particular, los requisitos de memoria
de los métodos basados en conjuntos son elevados. Los elementos del conjunto necesitan ser
almacenados en memoria para ser accesibles de manera eficiente. Además, el cálculo de la de-
cisión final del conjunto requiere obtener la predicción de todos y cada uno de los elementos del
conjunto. De este modo, el coste de predicción del conjunto se incrementa linealmente con su
tamaño. En general, también es dif́ıcil estimar un valor apropiado para este tamaño. Por otro
lado, los enfoques Bayesianos requieren la evaluación de integrales multidimensionales o sumas
con un número exponencial de términos, que frecuentemente son intratables. En la práctica estos
cálculos se llevan a cabo utilizando algoritmos aproximados que pueden ser costosos computa-
cionalmente. En esta tesis se introducen y analizan una serie de mejoras para los métodos de
aprendizaje automático basados en conjuntos y las técnicas Bayesianas. Aśı mismo, se proponen
nuevas aplicaciones de estos métodos en problemas de interés práctico.

En la primera parte de esta tesis analizamos distintos métodos de poda que reducen los
requisitos de memoria y el tiempo de predicción de los métodos basados en conjuntos. Estos
métodos sustituyen el conjunto original por un subconjunto con buenas propiedades de generali-
zación. En la práctica, el subconjunto que es óptimo en términos de error de entrenamiento sólo
se puede encontrar en conjuntos de regresión de tamaño intermedio. Para conjuntos mayores, se
analizan dos métodos aproximados: agregación ordenada y poda SDP. Tanto agregación orde-
nada como poda SDP seleccionan subconjuntos que mejoran la capacidad de generalización del
conjunto original. En conjuntos de clasificación es posible hacer inferencia sobre la decisión final
del conjunto tras obtener la predicción de sólo unos pocos de los clasificadores del conjunto. Esta
es la base para un nuevo método de poda llamado poda basada en instancia (poda BI). La poda
BI acelera el proceso de clasificación sin aumentar significativamente el error del conjunto. Esta
parte de la tesis también describe un procedimiento estad́ıstico para fijar un tamaño adecuado
para el conjunto. En particular, el marco probabiĺıstico introducido en la poda BI se puede uti-
lizar para fijar el tamaño de un conjunto de clasificadores tal que el conjunto resultante prediga
la misma clase que un conjunto de tamaño infinito con un nivel de confianza especificado.

La segunda parte de esta tesis propone nuevas aplicaciones de las técnicas Bayesianas con
énfasis en la eficiencia computacional. Espećıficamente, el algoritmo de propagación de esperan-
zas (PE) se utiliza como alternativa a otros métodos computacionalmente más costosos como
pueden ser los métodos Monte Carlo o la estimación basada en máxima verosimilitud de tipo
II. En esta parte de la tesis introducimos la máquina de Bayes para clasificación binaria. En
este clasificador Bayesiano la distribución posterior de un parámetro que cuantifica el nivel de
ruido en las etiquetas de clase es inferida a partir de los datos. Esta distribución posterior se
puede aproximar eficientemente utilizando el algoritmo PE. Cuando el algoritmo PE se utiliza
para calcular la aproximación, la máquina de Bayes no requiere re-entrenamiento para estimar
este parámetro. El coste de entrenar la máquina de Bayes se puede reducir aún más utilizando
una representación dispersa. Esta representación se puede encontrar utilizando un algoritmo
codicioso cuya eficiencia se puede mejorar considerando iteraciones adicionales de refinación.
Finalmente, mostramos que el algoritmo PE se puede utilizar para aproximar la distribución
posterior de un modelo Bayesiano para la clasificación de datos de microarray. El algoritmo
PE reduce significativamente el coste de entrenamiento de este modelo y es útil para identificar
genes relevantes para su posterior análisis.
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Chapter 1
Introduction

Machine learning is a branch of computer science concerned with the design and
implementation of methods to automatically induce patterns from data (Bishop, 2006;
Hastie et al., 2001). In this context, the term pattern denotes a recurrent regularity
in the data that is predictable by some rule. A successful machine learning method is
expected to induce such a rule from the data with little or no human supervision. While
machine learning is a broad research field with many different areas, this thesis focuses
on a particular subfield called supervised machine learning. In a supervised learning
setting we are given a training set D = {(x1, y1), . . . , (xn, yn)} with observations of the
attribute vector x and the corresponding target variable y. The task of interest is to
learn a predictor for y when only the vector x is observed. If y takes values from a
continuous set, e.g. R, we talk about regression problems. If y takes values from a finite
set, e.g. {−1, 1}, the problem is called classification. In classification problems, y is
referred to as the class label.

A predictor for y is a rule or hypothesis f that produces a value of this variable given
the attribute vector x, i.e. y = f(x). Let f0 be the unknown optimal rule, in terms
of prediction accuracy, that generates y from x. An estimate of f0, denoted f̂ , can be
automatically induced by fitting a model to D (Bishop, 1996; Hastie et al., 2001). This
model assumes that f0 can be well approximated by some rule contained in a restricted
space of candidate rules F . The fitting process consists in estimating some parameters θ

that identify f̂ within F . The estimation of θ is carried out so that the predictions of f̂
are accurate for the instances in D. However, the fitting process has to be implemented
carefully to ensure that the predictions of f̂ are also correct for instances that are not
in D. When this is satisfied we say that f̂ has good generalization properties.

A common difficulty in supervised machine learning is the limited number of training
instances. Furthermore, the training data may be contaminated with random noise
(Bishop, 2006). Under these circumstances, there is uncertainty in the estimation of
f0. The estimates of the model parameters can have a large variance because of the
reduced amount of data available for induction. Furthermore, we do not know which
of the regularity patterns present in the training data are intrinsic or simply appear by
chance as a result of random fluctuations. This latter issue affects the selection of the
set of candidate rules F . If the rules in F are too simple, the resulting hypothesis f̂ may
fail to capture the patterns in the data. By contrast, if the rules in F are too complex, f̂
is likely to capture random fluctuations that are not characteristic of the learning task.
Both lead to a reduction in the prediction accuracy of f̂ when evaluated on new data.

1



Chapter 1. Introduction 2

1.1 An Illustrative Example: Fitting a Polynomial Curve

To illustrate the role of uncertainty in the problem of automatic hypothesis induction
we analyze a supervised learning task similar to the one described in (Bishop, 2006).
Assume that we have a training set D = {(xi, yi) : i = 1, . . . , n}, where each xi is drawn
from a uniform distribution in the interval [0, 1] and the corresponding value of yi is
generated by a polynomial function f0 with some additive noise

yi = f0(x) + ǫi = −1.7x4 + 27x3 − 37.5x2 + 12.7x − 0.25 + ǫi . (1.1)

The noise term ǫi follows a Gaussian distribution with zero mean and standard deviation
equal to 1/4. The properties of these data are characteristic of many real-world datasets.
That is, there is an underlying regularity (the polynomial), which we wish to learn, but
the individual observations are corrupted by random noise (Bishop, 2006).

We now use the information in D to construct an estimate f̂ of f0. The first step
is to specify a model for the set of candidate rules F . Because in this case we know
the true parametric form of f0, we choose F to be the set of polynomials of degree four
with coefficients θ = (θ1, θ2, θ3, θ4, θ5)

T , where the superscript T means transpose. The
functions in F are therefore parameterized in terms of θ as

f(x;θ) =

5
∑

i=1

θix
i−1 . (1.2)

Using this representation f0 is given by f(x;θ0), where

θ0 = (−0.25, 12.7,−37.5, 27,−1.7)T . (1.3)

In actual applications the functional form of f0 is often unknown. Therefore, we are left
with the problem of choosing a set F that contains candidate rules similar to f0. Even
when the selection of F is appropriate, we need to estimate the true model parameters
θ0.

Let θ̂ be an estimate of θ0. The corresponding estimate f̂ of f0 is f(x; θ̂). The
estimation of θ0 is carried out by fitting the model parameters to the training data.
This fitting process can be implemented by minimizing with respect to θ a loss function
L(θ) that measures the average disagreement between f(xi;θ) and yi for the pairs (xi, yi)
in D (Bishop, 2006). A typical choice for the loss function L in regression is the sum
of squared differences between the predictions of the model and the corresponding true
target variables

L(θ) =
n
∑

i=1

(f(xi;θ)− yi)
2 . (1.4)

The minimizer of (1.4) is θ̂, a consistent estimate of θ0, i.e. θ̂ → θ0 as n → ∞.
However, for datasets of finite size θ̂ need not be close to θ0. The reason for these
deviations is the presence of random fluctuations in the training data and the noise
in the target variables. Figure 1.1 (left) illustrates this result for a training set D with
n = 10 instances by displaying the pairs (xi, yi), the true underlying function f0, and the
estimate f̂ that is obtained from the minimization of (1.4). While f̂ is close to f0, there
is still a small discrepancy between these two functions. The origin of this discrepancy is
that θ̂ is different from θ0. In particular, θ̂ behaves like a random variable whose value
fluctuates for different realizations of the training set (Hastie et al., 2001). Figure 1.1



Chapter 1. Introduction 3

(right) illustrates this result by displaying 100 estimates of f0 obtained for 100 different
realizations of D. This large variability in the estimation of the model parameters may
result in an estimate θ̂ that differs significantly from θ0. When this happens, f̂ can have
a poor predictive performance on new data.
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Figure 1.1: (left) Graphical representation of a training set D of size n = 10 (red dots),

the true underlying function f0 that associates each yi to each xi and the estimate f̂
that is obtained from the minimization of (1.4). (right) Graphical representation of 100
estimates of f0 obtained under 100 different realizations of D.

Note that the functional form of f0 is generally unknown. In this case, machine
learning methods consider a set M = {m1,m2, . . . ,mM} of alternative candidate mod-
els or functional representations for f0. This set can include, for example, polynomial
functions of different degrees. FromM, the learning method must then select the func-
tional representation that gives the best prediction accuracy on new data instances. The
problem is that the prediction accuracy in the training set can be a poor indicator of
how well a model performs on new data. Figure 1.2 illustrates this point by displaying
the fit of a linear model (left) and a polynomial of degree nine (right) to D. This is the
interpolating polynomial that goes through all the observed pairs (xi, yi) in D. There-
fore, its prediction error is zero on the training data. Considering only the training set it
seems that the interpolating polynomial achieves the best fit. However, when comparing
both fits with f0, it is apparent that the linear model has better generalization accuracy.
In particular, the interpolating polynomial exhibits large oscillations in regions without
observations. This behavior is known as over-fitting and is generally the consequence
of using an unnecessarily complex model to describe the training data (Bishop, 2006).
Over-fitting is an undesirable result that should be avoided. When the number of train-
ing instances increases, over-fitting typically becomes less severe because the sampling
of the space of attributes is more complete.

In summary, supervised machine learning methods face severe problems when the
amount of data available for induction is small and when the training instances are
contaminated with noise. First, the selection of an appropriate model is difficult. If
the model is too simple, it can fail to describe some of the regularities of the data. On
the other hand, if the model is too complex, it can fit spurious patterns in the training
set. This typically leads to over-fitting. Second, even assuming that the selection of the
model is correct, the estimation of the model parameters can also be problematic. In
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Figure 1.2: Graphical representation of the training set D of size n = 10 (red dots),
the true underlying function f that associates each yi to each xi and the estimates that
are obtained from fitting a linear model (left) and a polynomial of degree nine (right)
to this dataset.

particular, the empirical estimate θ̂ can have a large variance for different realizations
of the training set. The consequence of this variability is that θ̂ may differ significantly
from the actual value θ0. As a result, f̂ can have a poor generalization performance.
When the amount of data available to perform the estimations is large the severity of
these problems is reduced. However, for small datasets it is important to take them into
account to obtain reliable predictions. In the next section we describe how ensemble
methods and Bayesian machine learning can be used to address these shortcomings.

1.2 Ensemble Methods and Bayesian Machine Learning

The uncertainties about the appropriate type of model and about the correct model pa-
rameters that arise in the process of learning from a limited amount of training data con-
taminated with noise can be alleviated using two supervised machine learning paradigms:
ensemble methods and Bayesian machine learning. Instead of considering a single hy-
pothesis f̂ for prediction, these learning paradigms combine the decisions of a collection
of different hypotheses using averages. This combination process has several advantages
over standard machine learning methods. In particular, it provides a mechanism to
obtain more accurate and robust predictions.

1.2.1 Ensemble Methods

Ensemble methods generate a collection of complementary hypotheses whose predictions
are compatible with the observed data. These hypotheses are induced by fitting differ-
ent models to the training data or by fitting the same model under different training
conditions. For instance, by using randomization techniques in the learning algorithm or
by using different heuristics for the estimation of the model parameters. The prediction
of the ensemble is then computed by combining the decisions of the different elements
in the ensemble using averages or voting rules (Sharkey, 1996; Xu et al., 1992). Voting
rules are simply averages in which the target variable y is discrete (Kittler, 1998).
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Combining the decisions of a collection of complementary predictors has several sev-
eral advantages over relying on an individual hypothesis for prediction. First, the risk of
choosing an incorrect rule for making predictions is reduced because the ensemble con-
siders simultaneously alternative hypotheses (Dietterich, 2000a). Second, some ensemble
methods have proved to be very robust when the training data are contaminated with
noise (Breiman, 2001; Dietterich, 2000b; Mart́ınez-Muñoz et al., 2009; Opitz and Maclin,
1999). Ensemble methods can also be useful to reduce over-fitting. In particular, the
combination of several complex models that are prone to over-fitting is beneficial in nu-
merous problems of practical interest (Husmeier and Althoefer, 1998; Sollich and Krogh,
1996). Finally, the prediction of the ensemble is often significantly better than the in-
dividual predictions of the different members of the ensemble (Breiman, 1996a, 1998,
2001; Bühlmann, 2003; Dietterich, 2000b; Mart́ınez-Muñoz and Suárez, 2005; Opitz and
Maclin, 1999; Rodŕıguez et al., 2006).

In spite of the advantages described, the practical implementation of ensemble meth-
ods can be difficult in practice. Specifically, the number of predictors that are required
to guarantee the convergence of the prediction error of the ensemble can be very large
(Banfield et al., 2007; Latinne et al., 2001; Margineantu and Dietterich, 1997). In conse-
quence, ensembles are costly to generate. Furthermore, considerable memory resources
are necessary to store all the predictors. A more serious drawback is that the time
needed to compute the prediction of the ensemble increases linearly with the ensemble
size. Therefore, it can be significantly larger than the prediction time of a single model.
These aspects can be critical in online applications (Margineantu and Dietterich, 1997;
Prodromidis and Stolfo, 2001).

Another problem of ensemble methods is that, in general, it is difficult to determine
an appropriate size for the ensemble. In practice, the ensemble size is set to a large
number for which the predictive error of the ensemble is assumed to have converged
(Breiman, 2001; Freund and Schapire, 1996; Geurts et al., 2006; Mart́ınez-Muñoz and
Suárez, 2005). However, according to the findings of some recent investigations, the
number of predictors required to guarantee convergence strongly depends on the par-
ticular problem under analysis: While some learning problems require just a few tens
of predictors to be included in the ensemble, others require many more (Banfield et al.,
2007; Latinne et al., 2001). Over-estimating the ensemble size can result in a waste of
resources. By contrast, under-estimating this number can result in a loss of prediction
accuracy.

The first part of this thesis analyzes different ensemble pruning methods. These
techniques can be used to alleviate the large storage requirements and the large predic-
tion times of ensembles. Additionally, the problem of determining how many individual
predictors should be included in an ensemble is investigated. This question is of practical
interest because it involves a trade-off between computational resources and prediction
accuracy. The following paragraphs describe the contributions of this thesis to the field
of ensemble methods:

• The problem of extracting a subensemble with good generalization properties from
an original pool of regressors generated by bagging (Breiman, 1996a) is studied in
detail. For this purpose, we attempt to identify the subensemble whose training
error is as low as possible. This problem can be shown to be NP-hard. In con-
sequence, exact solutions become infeasible for ensembles of realistic sizes. Two



Chapter 1. Introduction 6

approximate methods are described to find near-optimal subensembles in these en-
sembles: SDP-pruning and ordered aggregation. Both methods select subensem-
bles that are smaller and have better generalization performance than the original
ensemble in the problems investigated (Hernández-Lobato et al., 2006b, 2009b).

• We analyze a probabilistic framework that can be used to infer the class label pre-
dicted by a classification ensemble after computing the predictions of only a frac-
tion of the total classifiers in the ensemble. This framework is the basis of a novel
ensemble pruning method called instance-based (IB) pruning (Hernández-Lobato
et al., 2009). IB-pruning significantly reduces the prediction time of classification
ensembles with a negligible deterioration in the generalization performance of the
ensemble.

• The previous probabilistic framework is used to determine the size of a classifica-
tion ensemble so that, with a specified confidence level, this ensemble generates the
same predictions as an ensemble of infinite size (Hernández-Lobato et al., 2009a).
The classification accuracy of this optimal ensemble of finite size is only slightly
inferior to the accuracy estimated for an ensemble of infinite size. The application
of this method to different classification problems shows that the optimal ensemble
size strongly depends on the particular problem under study: While some classi-
fication problems require a few tens of predictors in the ensemble, others require
several thousands.

1.2.2 Bayesian Machine Learning

In Bayesian machine learning probabilities are used to express an initial degree of belief in
the different candidate hypotheses (Bishop, 2006; MacKay, 2003). Assuming a particular
form for the model that generates the target variables, Bayes’ theorem can then be used
to compute a final set of posterior probabilities for these hypotheses on the basis of
the empirical evidence given by the training data. Prediction is then implemented by
computing a weighted average of the predictions of the individual hypotheses. The
weights in this average are the corresponding posterior probabilities.

Bayesian methods have several advantages over other machine learning techniques.
First, the Bayesian framework is useful for discriminating among different candidate
models. In particular, those models that are unnecessarily complex for the learning task
are automatically penalized (Bishop, 2006; MacKay, 2003). Second, if we assume that
the correct model has been selected, Bayesian methods account for the variability in
the estimation of the model parameters. Instead of computing a single point estimate
for these parameters, the Bayesian approach considers all possible parameter values and
weighs each individual value by the corresponding posterior probability. Finally, ex-
pert knowledge about the particular problem domain can be readily incorporated in the
Bayesian framework in a very intuitive manner. For this, the prior probabilities are
chosen to reflect the particular characteristics of the learning problem (Bishop, 2006;
MacKay, 2003). This prior knowledge can yield significant improvements in the perfor-
mance when the number of training instances is small.

Despite these advantages, the practical implementation of Bayesian machine learning
also poses challenging problems. Specifically, computing the posterior probabilities often
requires solving integrals in high dimensions or evaluating summations that involve an
exponential number of terms (Bishop, 2006; MacKay, 2003). In consequence, these prob-
abilities have to be approximated in most practical applications. A standard method
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for computing the approximation is Markov chain Monte Carlo (MCMC) (Neal, 1993).
This method is based on the construction of a Markov chain whose stationary distribu-
tion coincides with the posterior probabilities of the model. The approximation of the
posterior probabilities is then performed by sampling from the Markov chain designed.
A disadvantage of MCMC techniques is their high computational cost (Bishop, 2006;
MacKay, 2003). More recently, efficient deterministic methods have been proposed for
approximate Bayesian inference (Jaakkola, 2001; Minka, 2001b). These methods approx-
imate the posterior probabilities using simpler distributions for which computations are
tractable. However, the applicability of these methods is limited, and sometimes it can
be difficult to compute approximate probabilities for all the model parameters. Type-II
maximum likelihood is an alternative technique that can be used to estimate those pa-
rameters whose posterior probabilities are difficult to approximate (Bishop, 2006). An
inconvenient of this technique is that generally demands the running of the approximate
inference algorithm repeatedly (Bishop, 2006). This significantly increases the total cost
of training the Bayesian model.

The second part of this thesis proposes novel applications of the deterministic algo-
rithm expectation propagation (EP) for approximate Bayesian inference (Minka, 2001b).
EP provides a computationally efficient alternative to methods such as Markov chain
Monte Carlo (MCMC) sampling or type-II maximum likelihood estimation. The follow-
ing paragraphs describe the contributions of this thesis to the field of Bayesian machine
learning:

• The Bayes machine is introduced as an extension of the Bayes point machine
(Herbrich et al., 2001). In the Bayes machine the posterior distribution of a pa-
rameter that quantifies the level of noise in the class labels is inferred from the
data (Hernández-Lobato and Hernández-Lobato, 2008). In general, the posterior
distribution of this parameter is difficult to approximate. Existing Bayesian mod-
els use type-II maximum likelihood for its estimation. In non-Bayesian models,
this parameter is typically estimated by cross-validation. Both type-II maximum
likelihood and cross validation require re-training the model multiple times. By
contrast, in the Bayes machine the posterior distribution of this parameter is effi-
ciently approximated using EP. Experiments on benchmark classification problems
show that the Bayes machine is competitive with support vector machines (Vapnik,
1995) and Gaussian process classifiers (Kim and Ghahramani, 2006).

A disadvantage of the Bayes machine is that its computational cost is still very
high; namely O(n3) where n is the number of training instances. To reduce
this cost, a sparse representation for the Bayes machine is proposed (Hernández-
Lobato, 2008). In particular, the Bayes machine is trained using only a reduced
set of active instances that are selected by a greedy algorithm similar to the one
considered in the informative vector machine (Lawrence et al., 2003; Seeger, 2003).
Nevertheless, additional refining iterations are introduced to correct some of the
mistakes of the original approach. These extra iterations also improve the quality
of the posterior approximation. The cost of training a sparse Bayes machine is
O(nd2), where d ≤ n is the number of active instances. Experimental evalua-
tion of this sparse representation shows that it is competitive with support vector
machines and non-sparse Bayes machines.
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• A novel application of the EP algorithm to the Bayesian model for microarray data
classification proposed by Lee et al. (2003) is described in this thesis (Hernández-
Lobato et al., 2009). Bayesian inference in this model has been previously im-
plemented by MCMC sampling methods. However, in this case EP is a much
faster alternative to MCMC. The cost of EP is linear in both the number of data
instances and in the number of attributes. Experiments on a wide range of mi-
croarray datasets show that EP is competitive in terms of prediction accuracy
with MCMC and with other representative microarray classification techniques.
Additional experiments confirm that the posterior approximation provided by EP
is also useful for ranking relevant genes for subsequent analysis. Furthermore, this
ranking is stable against small perturbations of the training set.

1.3 Publications

This section lists (in chronological order) the work published during the postgraduate
period in which this thesis was written. The manuscripts are organized in different
categories. The category Related Work includes manuscripts that are related to this
thesis but that are not described in detail. The category Submitted Work refers to
manuscripts that have been submitted for publication.

Ensemble Methods

• Hernández-Lobato, D., Mart́ınez-Muñoz, G., and Suárez, A. (2009). Statistical
instance-based pruning in ensembles of independent classifiers. IEEE Transactions
Pattern Analysis Machine Intelligence, 31(2):364–369.

• Hernández-Lobato, D., Mart́ınez-Muñoz, G., and Suárez, A. (2006). Pruning
in ordered regression bagging ensembles. In International Joint Conference on
Neural Networks, pages 1266–1273. IEEE.

Bayesian Techniques

• Hernández-Lobato, D. and Hernández-Lobato, J. M. (2008). Bayes machines for
binary classification. Pattern Recognition Letters, 29(10):1466–1473.

• Hernández-Lobato, D. (2008). Sparse Bayes machines for binary classification.
In Kurková, V., Neruda, R., and Koutńık, J., editors, Proceedings of the 18th
International Conference on Artificial Neural Networks, volume 5163 of Lecture
Notes in Computer Science, pages 205–214. Springer.

Related Work

• Mart́ınez-Muñoz, G., Hernández-Lobato, D., and Suárez, A.(2009). Statistical
instance-based ensemble pruning for multi-class problems. In Alippi C., Poly-
carpou, M. M., Panayiotou C., and Ellinas, G. editors. Proceedings of the 19th
International Conference on Artificial Neural Networks, volume 5768 of Lecture
Notes in Computer Science, pages 90–99. Springer.

• Mart́ınez-Muñoz, G., Hernández-Lobato, D., and Suárez, A. (2009). An analysis
of ensemble pruning techniques based on ordered aggregation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 31:245–259.
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• Mart́ınez-Muñoz, G., Sánchez-Mart́ınez, A., Hernández-Lobato, D., and Suárez,
A. (2008). Class-switching neural network ensembles. Neurocomputing, 71(13-
15):2521–2528.

• Hernández-Lobato, D., Mart́ınez-Muñoz, G., and Suárez, A. (2007). Out of boot-
strap estimation of generalization error curves in bagging ensembles. In Yin, H.,
Tiño, P., Corchado, E., Byrne, W., and Yao, X., editors, Proceedings of the 8th In-
ternational Conference on Intelligent Data Engineering and Automated Learning,
volume 4881 of Lecture Notes in Computer Science, pages 47–56. Springer.

• Hernández-Lobato, J. M., Hernández-Lobato, D., and Suárez, A. (2007). GARCH
processes with non-parametric innovations for market risk estimation. In Mar-
ques de Sá, J., Alexandre, L. A., Duch, W., and Mandic, D. P., editors, Proceedings
of the 17th International Conference on Artificial Neural Networks, volume 4668
of Lecture Notes in Computer Science, pages 718–727. Springer.

• Mart́ınez-Muñoz, G., Hernández-Lobato, D., and Suárez, A. (2007). Selection of
decision stumps in bagging ensembles. In Marques de Sá, J., Alexandre, L. A.,
Duch, W., and Mandic, D. P., editors, Proceedings of the 17th International Con-
ference on Artificial Neural Networks, volume 4668 of Lecture Notes in Computer
Science, pages 319–328. Springer.

• Hernández-Lobato, D., Hernández-Lobato, J. M., Ruiz-Torrubiano, R., and Valle,
Á. (2006). Pruning adaptive boosting ensembles by means of a genetic algorithm.
In Corchado, E., Yin, H., Botti, V. J., and Fyfe, C., editors, Proceedings of the 7th
International Conference on Intelligent Data Engineering and Automated Learn-
ing, volume 4224 of Lecture Notes in Computer Science, pages 322–329. Springer.

• Mart́ınez-Muñoz G., Sánchez-Mart́ınez A., Hernández-Lobato D., and Suárez A.
(2006). Building ensembles of neural networks with class-switching. In Kollias,
S. D., Stafylopatis,A., Duch, W., and Oja, E. editors, Proceedings of the 16th
International Conference on Artificial Neural Networks, volume 4131 of Lecture
Notes in Computer Science, pages 178–187. Springer.

Submitted Work

• Hernández-Lobato, D., Hernández-Lobato, J. M., and Suárez, A. Expectation
propagation for microarray data classification.

• Hernández-Lobato, D., Mart́ınez-Muñoz, G., and Suárez, A. How large should
ensembles of classifiers be?

• Hernández-Lobato, D., Mart́ınez-Muñoz, G., and Suárez, A. Pruning regression
bagging ensembles.

• Hernández-Lobato, D., Mart́ınez-Muñoz, G., and Suárez, A. Inference on the
asymptotic prediction of classification ensembles.

1.4 Summary by Chapters

The organization of the remaining chapters of this thesis is as follows:
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Chapter 2 gives an introduction to ensemble methods and describes why ensembles
are useful in supervised machine learning tasks. Most ensemble methods work in
a similar way. First, the individual ensemble members are generated and second,
the predictions of these elements are combined. This chapter reviews different
techniques that can be used to implement these two phases. Additionally, it de-
scribes in detail three representative ensemble methods that have been used in our
investigations. These are bagging, random forest and boosting.

Chapter 3 addresses the problem of reducing the large storage requirements and pre-
diction costs of ensemble methods. This chapter shows that the problem of finding
the optimal subensemble from an original regression bagging ensemble is NP-hard.
Ordered aggregation and SDP-pruning are then introduced as two approximate
pruning methods that can be used to identify near optimal subensembles. Exper-
imental results show that ordered aggregation and SDP-pruning not only reduce
the size of the ensemble but also improve its generalization performance. These
improvements are a consequence of a reduction in the bias (individual error) and
the covariance of the predictors selected. Pruning classification ensembles is then
analyzed from a different perspective. Specifically, instance-based (IB) pruning is
described as an efficient procedure to speed-up classification. Additional experi-
ments illustrate the performance of this pruning method in several classification
problems.

Chapter 4 focuses on the problem of estimating the optimal size of parallel ensembles.
The statistical framework employed in IB-pruning to describe the majority voting
process is now used to estimate the size of a classification ensemble so that this
ensemble generates the same predictions as an ensemble of infinite size with a
specified confidence level. Several experiments with two representative ensemble
methods (bagging and random forest) illustrate the application of this procedure
for determining the ensemble size. These experiments confirm that the optimal
ensemble size strongly depends on the classification task considered.

Chapter 5 provides a review of Bayesian machine learning. First, it discusses how
Bayesian probabilities can be used to describe the uncertainty about the exact
value of the model parameters. Then, Bayesian model selection is introduced as
a principled approach to discriminate among different models using these proba-
bilities. Bayesian probabilities are updated using Bayes’ theorem in a procedure
called Bayesian inference which is typically intractable. Thus, this chapter also
describes different methods that can be used to perform approximate Bayesian
inference. In particular, the expectation propagation (EP) algorithm is reviewed
in detail. This algorithm will be extensively used in the remainder of this thesis.

Chapter 6 introduces the Bayes machine, a Bayesian model for binary classification.
In the Bayes machine the EP algorithm is used to approximate the posterior distri-
bution of a parameter that quantifies the level of noise in the labels of the training
data. Experiments on a simple classification problem show that this model can
learn the intrinsic noise in the class labels of the data. Additional experiments
compare the performance of Bayes machines with the performance of support vec-
tor machines and Gaussian process classifiers. Finally, this chapter proposes a
sparse representation for the Bayes machine that reduces the cost of training this
model.
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Chapter 7 shows how the EP algorithm can be used to perform approximate inference
in a Bayesian model for microarray data classification. Experiments on real-world
data compare the performance of this model trained with EP and with Markov
chain Monte Carlo sampling, with the performance of other representative mi-
croarray classification methods. Additional experiments demonstrate that EP can
be used to identify relevant genes for classification. Furthermore, the ranking of
the different genes obtained by this algorithm is stable to small perturbations of
the training set.

Chapter 8 summarizes the conclusions of this thesis and proposes some lines for future
research.
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Chapter 2
Ensemble Methods in Machine Learning

This chapter presents an overview of methods based on inducing a collection of

predictors from some labeled data and then combining their outputs to produce

a consensus response. There are several reasons that explain why combining the

decisions of different predictors instead of using a single one could be beneficial.

In particular, the aggregation process can provide a mechanism to reduce the bias

and/or the variance components of the generalization error with respect to the in-

dividual ensemble members. These methods can also reduce the risk of selecting

suboptimal values for the parameters of the model used to describe the data. Fur-

thermore, they can extend the representation capacity of a single predictor. In

practice, the algorithms used to build ensembles follow similar strategies. In a first

phase, the ensemble predictors are generated from the training data. Typically,

this phase is implemented to encourage the generation of accurate predictors that

are also diverse. In a second phase, the outputs of these predictors for a new in-

stance are combined to compute the final ensemble response. In this chapter we

review some algorithms that can be used to implement these phases. Finally, we

also describe in detail some representative ensemble methods.

2.1 Introduction

The induction of predictors from a finite amount of data, which can furthermore be
contaminated by noise, poses some difficult problems. In particular, there is some un-
certainty about the form of the model that should be used to represent the observed
data. Furthermore, it is also difficult to estimate accurate values for the model pa-
rameters from these data. Ensemble methods can be used to address these difficulties.
This learning paradigm builds a collection of different predictors whose individual re-
sponses are then combined to label test instances (Dietterich, 1998, 2000a; Hansen and
Salamon, 1990; Kuncheva, 2004; Opitz and Maclin, 1999; Sharkey, 1996; Valentini and
Masulli, 2002). The different predictors can be obtained by fitting the same model to the
observed data under different training conditions (homogeneous ensembles) (Breiman,
1996a, 2001; Bühlmann, 2003; Freund and Schapire, 1996) or by fitting different mod-
els to the same data (heterogeneous ensembles) (Bahler and Navarro, 2000; Caruana
and Niculescu-Mizil, 2004; Tsoumakas et al., 2004). Combining the outputs of several
predictors results in improved accuracy in many regression and classification problems.
Specifically, the generalization performance of the ensemble is often much better than

15
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a single individual ensemble member (Bauer and Kohavi, 1999; Breiman, 1996a; Di-
etterich, 2000b; Freund and Schapire, 1996; Friedman, 2001; Opitz and Maclin, 1999;
Webb, 2000). These improvements in performance arise from the combination of accu-
rate predictors whose errors are complementary (Dietterich, 2000a; Fumera and Roli,
2005; Hansen and Salamon, 1990; Krogh and Vedelsby, 1995; Sharkey and Sharkey, 1997;
Ueda and Nakano, 1996). Combining accurate predictors that are similar does not lead
to any substantial gain in the prediction accuracy (Tumer and Ghosh, 1996). On the
other hand, combining predictors whose accuracy is worse than random guessing can
lead to a significant deterioration of the performance of the ensemble (Hansen and Sala-
mon, 1990). In consequence, ensemble methods attempt to generate predictors that are
both accurate and that err in different data instances. This can be obtained by training
each predictor of the ensemble using a perturbed version of the training set (Breiman,
1996a; Freund and Schapire, 1996; Ho, 1998; Mart́ınez-Muñoz and Suárez, 2005) or by
introducing some type of randomness in the training process of the ensemble members
(Breiman, 2001; Geurts et al., 2006).

To reach a final ensemble decision, it is necessary to combine the individual predic-
tions of the ensemble members. In practice, different algorithms can be employed for
this purpose (Bahler and Navarro, 2000; Hashem, 1993; Kittler, 1998; Sharkey, 1996; Xu
et al., 1992). Nevertheless, in many ensemble methods the combination scheme is very
simple, e.g. (Breiman, 1996a, 2001; Geurts et al., 2006; Liu and Yao, 1999; Mart́ınez-
Muñoz and Suárez, 2005; Rodŕıguez et al., 2006). In regression problems, the average
prediction of the ensemble elements is commonly used as the ensemble output. In classi-
fication problems, majority voting is used instead. In majority voting the final ensemble
prediction is the class label that is predicted more frequently by the individual ensemble
members. Majority voting and simple averaging are two combination methods that are
very robust (Fumera and Roli, 2005; Kittler et al., 1998; Kuncheva et al., 2003; Lam and
Suen, 1997; Tumer and Ghosh, 1996; Ueda and Nakano, 1996). Besides these two simple
algorithms there are other methods that employ non-linear decision functions for output
combination or place the ensemble elements in complex tree-like structures (Gama and
Brazdil, 2000; Jordan and Jacobs, 1994; Wolpert, 1992). However, in general there is
no strong evidence supporting that more complex combination schemes exhibit better
performance.

The organization of this chapter is as follows: In Section 2.2 we motivate the use
of ensemble methods to solve supervised machine learning problems. In Section 2.3
some representative methods for generating the individual predictors of the ensemble
are reviewed. Section 2.4 discusses alternative procedures for combining the decisions
of these elements. In Section 2.5 we describe in detail three commonly used ensemble
learning algorithms. Finally, the conclusions of this chapter are summarized in in Section
2.6.

2.2 Reasons for Using Ensembles

In machine learning applications a given learning system is often found to be superior
to other models only for a specific learning task. It can be shown that no single induc-
tive learning method can achieve a generalization performance better than some other
method in all possible classification tasks (Schaffer, 1994; Wolpert, 1996). The apparent
superiority of a learning algorithm is only due to the nature of the problems investigated
and/or to the distribution of the observed data. Despite these considerations, ensemble
methods have shown an excellent performance in numerous learning tasks of practical
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interest (Hansen and Salamon, 1990; Ho et al., 1994; Perrone and Cooper, 1993; Xu
et al., 1992). In particular, the errors of the individual predictors of the ensemble can
be compensated by the decisions of the other ensemble members. This intuitive idea
is illustrated in the case of classification problems by the simple example described by
Dietterich (2000a). Consider a binary classification task. Assume that the classifiers in
an ensemble of size M make independent errors with common probability p < 1/2 and
that the outputs of these classifiers are combined by a simple majority voting. That is,
the different classifiers assign a class label to the new instance and the class label that
receives the largest number of votes is the final ensemble prediction. The overall error
of a classification ensemble containing these classifiers is given by the probability that
more than half of the classifiers simultaneously predict the erroneous class label

Errens(p,M) =

M
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M

m

)
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2
⌋
)

, (2.1)

where Ix(a, b) is the regularized incomplete beta function (Abramowitz and Stegun,
1964). Figure 2.1 displays the value of (2.1) as a function of p, for different values of the
ensemble size M . The figure shows that Errens(p,M) = p for M = 1, as expected. How-
ever, if p < 1/2 Errens(p,M) ≪ p for large M . Thus, the majority voting combination
of the different classifiers has the effect of reducing the prediction error.
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Figure 2.1: Prediction error of the ensemble as a function of M , the ensemble size,
and p, the misclassification probability of an ensemble member.

The key assumptions in the previous analysis are that the errors of the classifiers
are independent and that the individual error probabilities are p with p < 1/2. In the
case that p is larger than 1/2, a different behavior for the ensemble error is observed in
Figure 2.1. In particular, the aggregation process by majority voting has the opposite
effect. That is, it increases the classification error of a single element, Errens(p,M)≫ p
for large M . This simple example brings up an important issue in ensemble methods.
The effectiveness of the ensemble relies on both the individual accuracy of the different
ensemble members and the independence of their errors (ensemble diversity) (Dietterich,
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2000a; Hansen and Salamon, 1990; Krogh and Vedelsby, 1995; Ueda and Nakano, 1996).
Ideally, the ensemble predictors should perform better than random guessing and their
errors should be uncorrelated. Predictors with these properties are complementary.
That is, their individual errors are compensated in the ensemble aggregation process.

The previous example is illustrative of why building ensembles of predictors can be
beneficial. However, the assumption of uncorrelated errors does not hold in practice.
The classifiers usually err on the same instances (typically those located near the decision
boundary). In spite of this limitation, there are several reasons that explain why aggre-
gating many different predictors can be an effective way of improving the generalization
performance, as described by Dietterich (2000a).

The first reason is statistical. In particular, almost all learning algorithms perform
some search in the space F of possible hypotheses f̂ . The task of the learning algorithm
is to find the hypothesis in that space that best fits the observed data. If the amount
of training data is limited there may be different hypotheses in F with a similar per-
formance on the training data. Aggregating these hypotheses in an ensemble reduces
the risk of selecting the incorrect one. Figure 2.2 (top left) illustrates this situation.
The outer curve in blue represents the space F of candidate hypotheses f̂ where the
learning algorithm performs its search. The inner curve in yellow depicts the set of
all the hypotheses that perform well when evaluated on the training data. The point
labeled f0 is the target rule to approximate. The picture shows that by averaging all
these hypotheses it is possible to obtain a better estimate of f0.

The second reason is computational. As described earlier, the learning algorithm
performs a search in the space F of candidate hypotheses f̂ to find a good estimate
of f0. In this search, the algorithm can become trapped in a local minimum, which is
a suboptimal solution (Hastie et al., 2001). Aggregating many hypotheses f̂ , obtained
by repeating the search process from different starting points, may result in a better
approximation to the target predictive rule f0 than any of the single hypotheses f̂
found. This situation is illustrated in Figure 2.2 (top right).

The third reason is related to the extended representation capacity of ensembles. In
many machine learning applications the target rule f0 can not be accurately approxi-
mated by any single hypotheses in F . As an example consider a classification problem
with a non-linear decision boundary. This learning task can not be solved by a single
linear model. However, by combining the outputs of different linear models it is possible
to obtain a non-linear decision boundary. Ensemble methods can hence be used to over-
come the problem described. In particular, by aggregating the hypotheses f̂ contained
in F it is possible to expand the space of candidate hypotheses F , obtaining a more
expressive model. Figure 2.2 (bottom) displays this situation.

In addition to these reasons, extensive empirical evidence shows that combining the
predictions of the ensemble members reduces the variance component of the generaliza-
tion error (Breiman, 1996a, 1998; Geurts et al., 2006; Ueda and Nakano, 1996) and in
some cases also the bias (Breiman, 1998, 2001; Schapire et al., 1998; Wolpert, 1992).
Furthermore, some parallel classification ensembles such as bagging or random forest
are very robust to the presence of data instances in the training set contaminated with
different levels of noise (Breiman, 2001; Dietterich, 2000b; Mart́ınez-Muñoz et al., 2009;
Opitz and Maclin, 1999). Ensemble methods can also be useful to alleviate the problem
of over-fitting. In particular, combining the outputs of very complex models that are
prone to severe over-fitting seems to be beneficial in some ensemble learning algorithms
(Husmeier and Althoefer, 1998; Mart́ınez-Muñoz et al., 2009; Sollich and Krogh, 1996).
Finally, it can also be desirable to combine different predictors in some situations. For
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Figure 2.2: Graphical illustration of some fundamental reasons by which ensemble
methods might perform better than a single predictor. This picture has been adapted
from (Dietterich, 2000a).

instance, when there is access to different models, each one designed to focus on dif-
ferent parts of the learning task, or when there are several training sets, collected at
different times or in different environments (Jain et al., 2000). A representative example
of the beneficial effects of considering different models for prediction can be found in
the Netflix prize challenge. The winning solution combines nearest neighbors, restricted
Boltzmann machines, methods based on matrix factorization and other models (Koren,
2009; Piotte and Chabbert, 2009; Töscher et al., 2009).

2.3 Methods for Building the Individual Predictors

Different techniques have been proposed to build the individual predictors of the ensem-
ble. These can be grouped in the following categories, as described in (Brown et al.,
2005a; Dietterich, 2000a; Kotsiantis et al., 2006; Kuncheva, 2004; Sharkey, 1996; Valen-
tini and Masulli, 2002):

• Manipulating Training Examples:

This is the most frequently used strategy to build the ensemble members. It
consists in perturbing the initial training data by removing or adding training in-
stances or by modifying their relative weights in the training set. Diversity among
the predictors in the ensemble is obtained by training each ensemble member on
a different perturbed version of the initial training set. For this method to be
effective, the individual predictors should exhibit some instabilities. That is, small
changes in the training set should lead to changes in the predictions of the fitted
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model. Neural networks and decision trees are learning models known to have
this property (Breiman, 1998). Therefore, they are suited for building ensembles
using this mechanism. By contrast, linear models, support vector machines (Vap-
nik, 1995) and K-nearest neighbors classifiers (Hastie et al., 2001) are fairly stable
(Breiman, 1998). Using this strategy with stable models is not expected to be use-
ful. Nevertheless, there are some studies showing that if the modifications of the
training set are sufficiently large, these models also become unstable. In particu-
lar, ensembles of K-nearest neighbors (Hall and Samworth, 2005), support vector
machines (Kim et al., 2003) and linear classifiers (Skurichina and Duin, 2002) with
a good generalization capacity can also be obtained.

A method that can be used to obtain different modified versions of the training
set is bootstrap sampling (Efron and Tibshirani, 1994). Bootstrap samples are
obtained by drawing with replacement from the training set. A bootstrap sample of
the same size as the training set contains on average only 63.2% different instances.
The remaining data are repeated instances (Efron and Tibshirani, 1994). Thus,
bootstrap samples are very different one from another because, on average, they
share only 39.9% of their instances. Bagging is an example of ensemble learning
algorithm that uses bootstrap samples to build the different predictors of the
ensemble (Breiman, 1996a). Random forests is another example (Breiman, 2001).

Instead of removing data instances from the training set, other methods assign
different weights to the different instances. By modifying these weights, the in-
fluence in the training set of the corresponding data instances can be controlled.
This procedure is used in boosting ensembles to induce a collection of complemen-
tary predictors (Drucker, 1997; Freund and Schapire, 1997; Friedman, 2001; Meir
and Rätsch, 2003). In boosting, the individual ensemble members are generated
sequentially. In this sequence, the first predictor is obtained using equal train-
ing weights. Subsequent predictors are generated by modifying the weights of the
training instances. Larger weights are assigned to instances that are incorrectly
labeled by the predictor generated most recently in the sequence. By contrast, the
weights of correctly labeled instances are lowered. This mechanism has shown to
generate very diverse ensemble members (Dietterich, 2000b).

Other ensemble methods that generate diversity by manipulating the training in-
stances are subagging and bragging (Bühlmann, 2003), wagging (Bauer and Ko-
havi, 1999), multiboosting (Webb, 2000) and bag-boosting (Dettling, 2004).

• Manipulating Input Features:

This technique selectively removes some of the input features contained in the
attribute vector x of the training instances. This process needs to be implemented
carefully because removing some of the attributes can lead to a dramatic decrease
in the accuracy of the resulting predictors (Tumer and Ghosh, 1996). The random
subspace method is an example of ensemble learning algorithm that uses this
technique to generate the individual predictors (Ho, 1998). In this method each
predictor is generated using only a subset of randomly chosen features from the
initial vector of attributes x. The random subspace method generates predictors
that can be as diverse as those produced in bagging or boosting ensembles (Ho,
1998). Another example of this technique is input decimation (Tumer and Oza,
2003; Turner and Oza, 1999). In input decimation features are selected according
to their correlation with a fixed value of the target variable. Other ensemble
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methods use genetic algorithms for feature selection (Bacauskiene et al., 2009;
Kuncheva, 1993). The idea of using only a subset of the attributes for training has
also been employed in a method called attribute bagging (Bryll et al., 2003).

Instead of selecting a subset of input features, new input features can be gener-
ated. For instance, new features can be obtained by projecting the original feature
space into a transformed space using the principal component analysis (PCA). In
particular, Skurichina and Duin (2005) find that ensembles build with this method
perform better than ensembles generated with random feature selection. The PCA
projection technique is also employed in the rotation forest ensemble learning al-
gorithm (Rodŕıguez et al., 2006), a method that is competitive with both boosting
and bagging. There are other projection operators besides PCA that can be used
to generate new input features (Cherkauer, 1996; Duin and Tax, 2000; Fern and
Brodley, 2003).

• Manipulating Target Variables:

In this technique the target variable y associated to each attribute vector x in the
training set is perturbed before training each individual classifier. Error-correcting
output coding (ECOC) is an example of classification ensemble method that uses
this technique to generate the ensemble predictors (Dietterich and Bakiri, 1995).
In particular, before training the j-th ensemble member, this method randomly
partitions the set of the different class labels considered in the classification task in
two disjoint sets Aj and Bj. The training instances are then relabeled according to
their membership in one of these two sets. The j-th classifier is subsequently built
on the relabeled data. Once the ensemble has been generated, the prediction of the
class label of a test instances is computed using majority voting, where the j-th
classifier from the ensemble votes for all the class labels included in either Aj or Bj .
Experimental evaluation of this method shows that it improves the performance
of a single classification tree and a single neural network on several multi-class
problems (Dietterich and Bakiri, 1995). Additionally, Schapire (1997) has shown
that combining ECOC with boosting is also effective in multi-class problems. A
limitation of ECOC is that the number of different class labels has to be large to
obtain significant improvements. The idea of binarizing the classification task has
also been employed in (Fürnkranz, 2002), where a different predictor is generated
for each different pair of class labels.

Instead of relabeling the training instances other techniques inject random noise in
the class labels. These ideas are employed in (Breiman, 2000) to build ensembles
based on output randomization. In regression problems, Gaussian noise can be
injected in the target variable of each instance before training the predictors of
the ensemble (output smearing). In classification problems, the class labels of the
training data are modified at random (output flipping). The flipping of the class
labels is made in such a way that the proportions of the classes in the training set
are preserved. Output flipping has a parameter, the flip rate, that has to be tuned
to its optimal value. Experimental results show that both output smearing and
output flipping perform better than bagging (Breiman, 2000).

Another ensemble learning algorithm that injects noise in the class labels of the
observed data is class-switching (Mart́ınez-Muñoz et al., 2008; Mart́ınez-Muñoz
and Suárez, 2005). Unlike output flipping, class-switching does not maintain the
original class distribution in the perturbed training data. Thus, larger values for
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the flipping rate parameter are possible in this method when the class labels of the
classification problem are unbalanced. Class switching usually outperforms output
flipping in these problems (Mart́ınez-Muñoz and Suárez, 2005). In particular, in
un-balanced classification problems larger values of the flip rate are often required
to reach better prediction accuracy (Mart́ınez-Muñoz and Suárez, 2005).

• Randomizing the Learning Algorithm:

A last technique for building ensembles consists in introducing some randomization
in the learning algorithm of the ensemble members. In consequence, different
realizations of the learning algorithm will produce different classifiers, increasing
the diversity of the ensemble. This technique has to be employed carefully since
introducing randomness in the learning algorithm can sometimes lead to a decrease
in the accuracy of the individual predictors obtained.

Injecting randomness in the learning algorithm of the ensemble members can be
implemented in different ways. For instance, different neural networks can be
built using different random values for the initial weights of the synapses in the
back-propagation algorithm. Different starting points in this algorithm can lead
to different local minima, producing in consequence a diverse collection of neural
networks (Kolen and Pollack, 1991). The C4.5 learning algorithm for building
decision trees can also be randomized. Specifically, instead of choosing at each
node the best possible split according to some criterion, Dietterich and Kong (1995)
propose to choose randomly among the best s splits, with s = 20. Experimental
results show that aggregating randomized decision trees provides equivalent or
better results than bagging (Dietterich, 2000b). A similar randomizing procedure
is implemented in the random forests (RF) ensemble learning algorithm (Breiman,
2001). In this case the best splitting attribute is selected at each node among a
random subset of m input features, where m is typically set to ⌊log2(k)+1⌋ or ⌈

√
k⌉,

with k the total input features (Bernard et al., 2009; Breiman, 2001). RF is a very
powerful ensemble algorithm that outperforms bagging and boosting in numerous
learning tasks (Breiman, 2001). Further randomizations are implemented in the
extra-trees ensemble method (Geurts et al., 2006). In particular, the splits in the
internal nodes are made using random attributes and random cut-points.

In these techniques the amount of randomization injected in the learning algorithm
is specified by some parameter (e.g. m in the case of RF). Because the performance
of the ensemble algorithm actually depends on this parameter (Bernard et al., 2009;
Geurts et al., 2006), it should be tuned to get the best possible prediction accuracy.
Nonetheless, simple rules for choosing this parameter often perform well in a wide
variety of learning problems (Breiman, 2001; Geurts et al., 2006).

2.4 Methods for Combining the Ensemble Members

In this section we review some methods that have been proposed to combine the decisions
of the individual ensemble members into a final ensemble prediction. Following (Jain
et al., 2000) these methods can be grouped in the following categories:

• Parallel Combination:

In these methods the predictors of the ensemble are queried independently and
their responses are then combined. Examples of parallel combination methods in-
clude simple majority voting (also referred to as plurality voting when more than
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two class labels are possible (Auda et al., 1995)). In simple majority voting, the
different classifiers in the ensemble predict a class label. The final ensemble deci-
sion is the class label that receives the most votes. This method is employed in
bagging, random forest, subagging or class-switching ensembles (Breiman, 1996a,
2001; Bühlmann, 2003; Mart́ınez-Muñoz and Suárez, 2005). In regression prob-
lems the final prediction of the ensemble is often computed by averaging over the
predictions of the different ensemble members. Majority voting and averaging are
very robust combination methods (Fumera and Roli, 2005; Kittler et al., 1998;
Kuncheva et al., 2003; Lam and Suen, 1997; Tumer and Ghosh, 1996; Ueda and
Nakano, 1996). Instead of considering the same weight for each predictor, these
two combination methods can also assign different weights to the different pre-
dictors in the ensemble. In particular, weighted majority voting is employed in
boosting algorithms like Adaboost (Freund and Schapire, 1996). Weighted aver-
aging is often used in regression ensembles as well (Hashem, 1993; Perrone and
Cooper, 1993).

Another example of parallel combination method is found in the mixtures of ex-
perts learning paradigm (Jacobs et al., 1991). After querying the different predic-
tors (experts) of the ensemble (mixture), this method employs a gating network
to compute a linear combination of their outputs. Because the coefficients of the
linear combination actually depend on the instance that is being processed, this
method allows for the different elements in the ensemble to specialize in different
regions of the input space.

Instead of using a linear combination, there are several methods that employ non-
linear functions to generate the final ensemble prediction. In particular, the stack-
ing combination method is based on fitting a non-linear classifier using as input
data the outputs of the different ensemble members for the training set (Wolpert,
1992). This method can deduce the biases of the individual predictors of the en-
semble with respect to the different aspects of the learning task. Stacking has been
applied to regression tasks in (Breiman, 1996d) and has been further extended in
other works (Ortega et al., 2001; Todorovski and Džeroski, 2003). A review of
stacking is provided in (LeBlanc and Tibshirani, 1993).

Finally, there are other methods that can be employed to combine the outputs
of the different ensemble members, namely naive Bayes combination, multino-
mial combination, Dempster-Shafer combination, the fuzzy integral, etc. See
(Kuncheva, 2004) for a description of these methods and (Kuncheva et al., 2001)
for an empirical comparison.

• Cascade Generalization:

Cascading is a multistage method (Pudil et al., 1992) that can be used to combine
the predictions of an ensemble of classifiers (Alpaydin and Kaynak, 1998; Gama
and Brazdil, 2000). It is based on sequentially querying the different predictors of
the ensemble. This querying process is implemented by enlarging the input space
of the next predictor in the sequence with the concatenation of the outputs of the
predictors previously queried and the attribute vector x (Gama and Brazdil, 2000).
The predictors that are simpler are queried first in the sequence so that instances
that are easier to classify can be quickly identified. The predictors that are more
complex and costly to evaluate are queried later to recognize those instances that
are more difficult to classify (Alpaydin and Kaynak, 1998).
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Cascading is different from the combination methods described previously. In
parallel techniques the ensemble members only employ the attribute vector x to
output a prediction and hence, they can be queried independently. Cascading is a
multistage method where the information computed by each predictor is used by
the next predictors in the sequence to label the instance. The ensemble decision for
a test instance is the output of the last predictor from the sequence. This predictor
uses the information computed by the previous ensemble members and also the
attribute vector x. Cascading has been shown to outperform other combination
methods like stacking and is competitive with boosting (Gama and Brazdil, 2000).

• Dynamic Integration of Classifiers:

This combination method aims to solve the problem of estimating and then se-
lecting the most appropriate ensemble member to classify a given test instance
(Puuronen et al., 1999). This selection process is implemented dynamically for
each different test instance to be classified. In consequence, the attributes of the
instance are considered for the selection of the classifier. This method makes the
assumption that each ensemble member has its own competence domain in the
learning task. Thus, this domain has to be estimated first before it can be em-
ployed in the dynamic integration of the different ensemble members. Puuronen
et al. (1999) propose to estimate the competence domain of the different ensemble
members before the training phase using classification error estimates. In par-
ticular, a meta-level classifier is proposed to learn the individual errors of each
ensemble member on each new test instance. This meta-level classifier can then
be used to identify regions of the input space where the ensemble members cor-
rectly classify the data. When a new test instance is available for prediction, the
ensemble member with the lowest estimated error on the instance is selected to
make the final classification. When the method of dynamic integration of classifiers
is applied to boosting and bagging ensembles it provides better prediction accu-
racy than the standard voting methods (Tsymbal and Puuronen, 2000). Dynamic
integration has been improved in (Tsymbal et al., 2003).

• Hierarchical Combination:

This combination method consists in placing the different experts (ensemble mem-
bers) in the leaves of a hierarchical structure, similar to that of a decision tree
(Jordan and Jacobs, 1994). Additionally, gating networks are placed at the differ-
ent splitting nodes of the tree. These gating networks are employed to compute
different input-dependent probabilities that are associated with the decisions that
are made at each different splitting node. Given an unlabeled instance, the output
of the hierarchical mixture is computed by starting at the root of the tree and ran-
domly choosing a path down to a single expert whose output is then returned as
the final output of the mixture. In this process, the probability of choosing a fixed
path in the tree is given by the input-dependent probabilities of the different gating
networks located in each split in the path. Such a partitioning allows each expert
to specialize in different regions of the input space. This combination method
takes advantage of the discriminative power of different features. Furthermore,
the hierarchical architecture can be used to represent very complex data struc-
tures. Because both the experts and the tree structure are trained simultaneously,
the resulting model is very complex and hence, it is prone to severe over-fitting.
Over-fitting can be alleviated in this method by considering a Bayesian treatment
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of the tree-structure (Bishop and Svensen, 2003). A limitation of hierarchical com-
bination is that the architecture of the mixture needs to be specified beforehand.

2.5 Representative Ensemble Learning Algorithms

In this section we describe in more detail some representative ensemble learning algo-
rithms that will be used in this thesis. These are bagging (Breiman, 1996a), random
forests (Breiman, 2001) and boosting (Freund and Schapire, 1996).

2.5.1 Bagging

Bagging is a simple ensemble method in which the same type of individual predictors
are built on different bootstrap samples from the training data (Breiman, 1996a). Thus,
we begin by describing bootstrap sampling (Efron and Tibshirani, 1994). After this,
we illustrate how the bagging ensemble algorithm can obtain improved predictions by
averaging over the outputs of the ensemble members. The origin of these improve-
ments in the prediction accuracy in bagging is a reduction in the variance term of the
generalization error.

2.5.1.1 Bootstrap Sampling

Bootstrap sampling is a simple method that provides a direct computational way of
assessing uncertainty in the estimation of the parameters of a model (Efron and Tib-
shirani, 1994; Hastie et al., 2001). This technique assumes that uncertainty arises from
considering that the observed data D are a realization of a random variable. Assume
that θ are the parameters of a model and that the observed data D have been generated
by this model for some value of θ, denoted θ0, in whose estimation we are interested.
As described in Chapter 1, an estimate of θ0, denoted θ̂, can be obtained by minimizing
some loss function L that depends on D and θ

θ̂ = arg min
θ

L(θ|D) . (2.2)

Common choices for L are the sum of squared errors or the cross-entropy (Hastie et al.,
2001). Because the observed data D used to perform the estimation are viewed as
independent realizations of a random variable, θ̂0 is also a random variable that depends
on D. The bootstrap method provides a way to approximate the underlying distribution
of the estimate θ̂ without knowledge of the true distribution of D. For this purpose, this
technique builds a set of B datasets {Db, b = 1, . . . , B}. Each dataset Db is a bootstrap
sample built by drawing with replacement from D as many instances as there are in
D. These bootstrap samples can be seen as modified versions of the original dataset D.
The probability distribution of θ̂0 can be approximated by computing a set of bootstrap

replicates {θ̂(b)
0 , i = 1, . . . , B}, where each replicate θ̂

(b)
0 is obtained as in (2.2) by using

Db instead of D.
We now illustrate the bootstrap method in a simple problem that consists in inferring

the mean µ of a Gaussian distribution with unit standard deviation. Assume that for
this purpose, a set of data instances D = {x1, . . . , xn} is available and that the true
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mean, µ0, is equal to 0. To estimate µ0, we use the sample mean

µ̂ =
1

n

n
∑

i=1

xi . (2.3)

A (1− 2α)-confidence interval for µ̂0 derived from the statistical theory is

[

−z1−α

√

1/n, z1−α

√

1/n
]

, (2.4)

where z1−α is the 1− α percentile of a standard Gaussian distribution.
Similarly, the bootstrap approach can also be used to compute a rough confidence

interval for µ̂. First, a set of B bootstrap samples Db is built by drawing with replacement
from D. Next, we compute a set of B bootstrap replicates of µ̂, {µ̂(b), i = 1, . . . , B},
using the maximum likelihood estimate (2.3) and the different bootstrap samples Db,
i.e.

µ̂(b) =
1

n

n
∑

i=1

x
(b)
i , (2.5)

where x
(b)
i are the different data instances contained in Db. The (1 − 2α) confidence

interval for µ̂ can be computed using these estimates. Namely, we simply take those
estimates placed in the positions ⌊αB⌋ and ⌈B(1 − α)⌉ of the ordered sequence of the
estimates.

Assume now that n = 10, B = 1, 000, α = 2.5%, and that the dataset D is given by
the following set of Gaussian observations

{−0.636,−0.684,−0.877, 1.448, 0.424, 0.332,−1.19, 2.012,−0.242,−0.234} . (2.6)

The standard confidence interval derived from the statistical theory is

[−0.620, 0.620] . (2.7)

The confidence interval derived from a computer simulation of the bootstrap method
using 1, 000 replicates of µ̂ is

[−0.526, 0.655] . (2.8)

These confidence intervals are very close to each other. Figure 2.3 displays a histogram
for the 1, 000 bootstrap replicates of µ̂ computed using the bootstrap method and the
probability distribution of µ̂, denoted P(µ̂), derived from the statistical theory. The
picture shows that the differences between both probability distributions for µ̂ are very
small. These results indicate that the different bootstrap samples are a good approxi-
mation of independent realizations of the training set.

Under some conditions, the bootstrap method is asymptotically consistent (Efron
and Tibshirani, 1994). In particular, as the size of the observed data grows, the empirical
distribution of the observed data in D asymptotically approaches the true distribution
of the data. In consequence, the bootstrap samples become more and more accurate.
However, in general the method does not provide finite-sample guarantees. Furthermore,
it can fail when there is a poor match between the true distribution of the observed data
and the empirical distribution (Efron and Tibshirani, 1994). The main advantage of the
bootstrap approach over analytical methods is that it is very simple to implement. It
can be applied to very complex estimators for which it may be difficult to derive exact
formulas for averages, standard errors or confidence intervals (Efron and Tibshirani,
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Figure 2.3: Histogram of 1, 000 bootstrap replicates of µ̂ and probability density
function of µ̂, P(µ̂), derived from the statistical theory.

1994). The number B of bootstrap replicates to compute is often determined by the
computational resources available. Typically, a few hundred replications are sufficient.
However, if the underlying distribution of θ̂ is heavy-tailed, a very large number of
replicates might be required (Efron and Tibshirani, 1994). There is a procedure similar
to the bootstrap called subsampling, that is based on sampling without replacement
instead of with replacement (Politis et al., 1999).

2.5.1.2 Bootstrap Aggregation

Bagging is an acronym for bootstrap aggregation (Breiman, 1996a). As described in the
previous section, the bootstrap method can be used to determine the uncertainty in
the estimation of the model parameters from samples of finite size. In this section we
show that the bootstrap can be also used to improve the prediction itself, leading to the
bagging ensemble learning algorithm (Breiman, 1996a). In particular, the improvements
obtained in bagging can be explained by a reduction of the variance component of the
prediction error (Breiman, 1998).

To illustrate this point, consider a regression problem where the task of interest is
to compute a predictor for the target value y given the observed attributes x. Assume
that M independent training sets Di, with i = 1, . . . ,M are available for this purpose.
For each one of these sets, we fit the same model M times, giving predictions {f̂i(x), i =
1, . . . ,M}. To simplify the notation, the dependence of f̂i(x) on Di is assumed to be
implicit. An improved estimator of the target value y can be obtained by averaging the
outputs of these individual predictors

f̂avg(x) =
1

M

M
∑

i=1

f̂i(x) . (2.9)
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To show that this is in fact an improved estimator, consider the expected squared pre-
diction error of a single model for the pair (x, y) given by

Erri = EDi
[(f̂i(x) − y)2]

= Vari + Bias2
i , (2.10)

where

Vari = EDi

[

(f̂i(x) −EDi
[f̂i(x)])2

]

, Bias2
i =

(

EDi
[f̂i(x)]− y

)2
. (2.11)

The first term, Vari, is known as the variance term. It measures the magnitude of the
fluctuations of f̂i(x) around its expected value. The second term, bias2i , is known as the
squared bias term, and it measures the difference between the expected value of f̂i(x)
and the target value y (Hastie et al., 2001).

Following the work of Ueda and Nakano (1996), we can similarly compute the ex-
pected squared prediction error of the averaged estimator defined in (2.9)

Erravg = E{Di}M
i=1

[(f̂avg(x)− y)2]

= Varavg + Bias2
avg , (2.12)

where

Varavg = E{Di}M
i=1





(

1

M

M
∑

i=1

f̂i(x)− E{Di}M
i=1

[

1

M

M
∑

i=1

f̂i(x)

])2




=
1

M2

M
∑

i=1

EDi

[

f̂i(x)− EDi
[f̂i(x)]

]2

+
1

M2

∑

i6=j

EDi,Dj

[(

f̂i(x)− EDi
[f̂i(x)]

)(

f̂j(x)− EDj
[f̂j(x)]

)]

=
1

M2

M
∑

i=1

Vari +
1

M2

∑

i6=j

Covij

=
1

M2

M
∑

i=1

Vari +

(

1− 1

M

)

1

M(M − 1)

∑

i6=j

Covij , (2.13)

and

Bias2
avg =

(

E{Di}M
i=1

[

1

M

M
∑

i=1

f̂i(x)

]

− y

)2

=

(

1

M

M
∑

i=1

Biasi

)2

. (2.14)

In (2.13) Vari is the variance of the estimate f̂i(x) and Covij the covariance between the

estimates f̂i(x) and f̂j(x). In (2.14) Biasi is the bias of the estimate f̂i(x). Therefore,

Erravg =
1

M
Var +

(

1− 1

M

)

Cov + Bias
2
, (2.15)

where Var, Cov and Bias are respectively the average variance, covariance and bias of
the individual predictors. Since the datasets Di, with i = 1, . . . ,M , are assumed to
be independent of each other, the covariances terms Covij are zero. Additionally, if we
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assume that all the models are of the same type, e.g. neural networks with the same
architecture, all the variances and biases are also equal. In this case the decomposition
is

Erravg =
1

M
Vari + Bias2

i . (2.16)

Thus, the expected square error of the averaged estimator on the pair (x, y) becomes
lower as M increases. The variance term is reduced proportionally to the number of
predictors employed in the average. If the variance component of the squared error
is large for a single predictor, this can be an important improvement. However, this
improvement is obtained at the extra cost of combining several predictors.

In practice a single dataset D is available for training. Bagging overcomes this
limitation by using datasets generated from different bootstrap samples. That is, the
parameters of each predictor are estimated using different bootstrap samples of the ob-
served data D, as described in the previous section. A drawback of this procedure is that
it introduces correlations among the predictors which means that the independence as-
sumption is no longer valid. Furthermore, as consequence of using the bootstrap samples
for training instead of D, it is expected that the bias and the variance of the ensemble
members increase slightly with respect to the bias and the variance of a predictor trained
with all the available data. Nevertheless, the resulting aggregated estimator often has
a better generalization performance than a single predictor (Bauer and Kohavi, 1999;
Breiman, 1996a; Opitz and Maclin, 1999).

Bagging can also be used in classification problems. In this case, the ensemble
members are classifiers trained using bootstrap samples and the output of each classifier
in the ensemble is a vector whose components are all zero except one component which
takes value one. This component is used to indicate the class label predicted by the
ensemble member (Hastie et al., 2001). Therefore, the output of the bagging ensemble
is a probability vector whose components indicate the fraction of classifiers from the
ensemble that predict each different class label. The final ensemble prediction is the class
label with the largest estimated probability. This procedure is equivalent to majority
voting. Figure 2.4 displays the pseudo-code for bagging.

Input: Training set D and ensemble size M .

Output: Aggregated estimate f̂bag(x).

1. For i = 1, . . . , M

(a) Draw Di from D using bootstrap sampling.

(b) Train a new model f̂i(x) using Di.

2. Return an aggregated estimate

f̂bag(x) =
1

M

∑

i

f̂i(x) .

Figure 2.4: Algorithm that implements bagging.

We now illustrate the performance of bagging in a simple regression problem. Con-
sider the following learning task: Assume that each input vector xi is a 20-dimensional
vector generated from a multivariate Gaussian distribution with mean vector (ri, ri, . . . , ri)

T

and unit standard deviation, where ri is chosen independently for each different vector
xi with uniform probability from the interval [0, 3]. Given xi, the target variable yi
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associated to this input vector is

yi = 25
sin(ri)

ri
+ ǫi , (2.17)

where ǫi is standard Gaussian noise. Using these rules we randomly generate 100 different
training sets Di, with i = 1, . . . , 100, each containing 25 instances. We also generate a
test set, Dtest, of 1, 000 instances. For each different training set Di we build a bagging
ensemble of 100 un-pruned CART trees. A single tree is also built for comparison.
Next, the mean squared error (MSE) of the ensemble and of the single tree is evaluated
in the test set. The generalization error of these two different predictors is estimated
by averaging the different test error estimates. Finally, we carry out a bias-variance
decomposition of the generalization error, as described in (Bishop, 1996; Hastie et al.,
2001). Table 2.1 summarizes the results of this experiment. This table shows the average
MSE of each method and the average estimates of the variance and the squared bias.
In this regression problem the generalization error of the bagging ensemble is smaller
than the generalization error of the single tree. This improvement in the prediction
accuracy arises due to a reduction in the variance component of the error. In particular,
the variance of bagging is smaller than the variance of the single tree. By contrast, the
biases of these two methods are very similar, although it is slightly higher the bias of
the bagging ensemble. Because the ensemble members generated by bagging are not
independent, the variance of the ensemble is not 100 times smaller than the variance
of the single tree. As indicated by (2.13), this variance term includes the covariances
among the different ensemble members that are small but different from zero in general.

Table 2.1: Experimental results comparing the performance of bagging and a single
tree in the toy dataset.

Method MSE Bias2 Variance

Bagging 15.75 11.16 4.60
Single Tree 36.80 9.49 27.30

Besides bagging there are other parallel ensemble methods that work in a similar
way. These methods introduce some form of randomization in the process of building
the ensemble members or instead of re-sampling, they inject noise in the target variables
to generate modified versions of the original training set. Some examples are subagging
(Bühlmann, 2003), random forests (Breiman, 2001), rotation forest (Rodŕıguez et al.,
2006), output randomization (Breiman, 2000), class-switching (Mart́ınez-Muñoz and
Suárez, 2005) and extra-trees (Geurts et al., 2006).

2.5.2 Random Forests

Initially inspired by the work of Amit and Geman (1997), random forests (RF) were
introduced by Breiman (2001) as an improvement over bagging when the members of the
ensemble are decision trees. RF can be thought as a bagging algorithm where decision
trees are replaced by trees built with a randomized version of the CART algorithm
(Breiman et al., 1984). The splits of the internal nodes of these trees are made in terms
of randomly selected attributes. The purpose of introducing randomness in the selection
of the attributes for the splits is to increase the diversity among the trees generated in
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the ensemble. As in bagging, the different trees are generated in RF using different
bootstrap samples of the training data. Their outputs are then combined by simple
majority voting, in the case of classification, or by averaging, in the case of regression.

Given a dataset D, the standard tree building algorithm performs some greedy search
in the space F of different partitions of the input space to find a partition Ω̂ that
explains the observed data (Breiman et al., 1984). Besides the partition found, there
can be several other partitions that can explain the observed data equally well. This is
illustrated in Figure 2.5. In particular, Figure 2.5 (left) shows a sample training set D
from a binary classification task containing 25 data instances. This figure displays with
a solid black line the decision boundary obtained from inducing an un-pruned CART
tree from these data. The optimal decision boundary of the classification problem (a
diagonal line across the unit square) is also displayed as a reference. We note that
the partition found correctly labels the observed data D. However, there are many
partitions that obtain zero training error. Figure 2.5 (right) shows alternative partitions
that also predict the correct class label for the training instances. RF aims to take into
account these alternative partitions by considering at each splitting node a subset of m
randomly chosen features. Building decision trees using these randomly chosen features
has the effect of enlarging the space of candidate trees that can be used to describe the
observed data. In consequence, the diversity of the resulting classifiers with respect to
the ones generated in bagging is increased (Rodŕıguez et al., 2006). This increment of
the ensemble diversity is typically related to an increment in the variance of the different
predictors contained in the ensemble (Banfield et al., 2005; Domingos, 2000). Because
the differences among the ensemble members are greater, it is also expected that this
randomization mechanism reduces the average covariance between pairs of the resulting
trees. As stated in (Tumer and Ghosh, 1996; Ueda and Nakano, 1996), the combined
performance of the ensemble strongly depends on the average correlation between pairs
of predictors from the ensemble. The variance component of the generalization error
can be reduced simply by increasing the ensemble size. Thus, the performance of RF
is often better than the performance of bagging (Geurts et al., 2006; Rodŕıguez et al.,
2006). Nevertheless, RF typically demands the aggregation of more trees in the ensemble
than bagging (Banfield et al., 2007).

We now compare the performance of RF and bagging in the simple regression prob-
lem investigated in the previous section using the same experimental set-up. For each
different training set Di we build a bagging ensemble of un-pruned CART trees and a RF
ensemble using randomly generated trees with the parameter m set to 1. Both ensem-
bles are composed of 100 trees. Then, the mean squared error (MSE) of the ensembles
is evaluated in the test set. An estimate of the generalization error is obtained by av-
eraging the different test error estimates. We also carry out a bias-variance-covariance
decomposition of the generalization error of each ensemble member, as described by
Ueda and Nakano (1996). Note that this decomposition is given for the individual en-
semble members, while in the previous section the decomposition was calculated for the
bagging ensemble as a whole. Table 2.2 summarizes the results of this experiment. This
table shows the average MSE of bagging and RF in the test dataset and the average
estimates of the squared bias, variance and covariance of the different trees generated
by each ensemble method. We note that the error of RF is lower than the error of
bagging in this regression problem. In particular, the variance of the trees generated by
RF is larger than the variance of the trees generated by bagging. The opposite effect is
observed for the covariance. That is, the covariance between pairs of ensemble members
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Figure 2.5: (left) Partitioning of the feature space provided by fitting a single un-
pruned CART tree to the data displayed. The optimal decision boundary of the clas-
sification problem is displayed as a diagonal across the unit square. (right) Alternative
partitions of the feature space that also explain the observed data.

in RF is smaller than the covariance among the ensemble members in bagging. Finally,
the squared bias of these elements is similar for both ensemble methods.

Table 2.2: Experimental results comparing the performance of bagging and RF in the
toy dataset.

Ensemble Method MSE Bias
2

Var Cov

Bagging 15.75 11.15 31.82 4.32
Random Forest 12.07 10.70 34.27 1.04

RF is faster than bagging because growing random trees takes less time than growing
un-pruned CART trees (Breiman, 2001). In particular, the algorithm used to build
the individual trees in RF has only to look for splits in m randomly chosen features.
In both RF and bagging the out-of-bag (OOB) instances can be used to compute an
estimate of the generalization error efficiently (Breiman, 2001). This estimate is very
accurate if the ensemble size is sufficiently large. Otherwise, the estimate can have
an upwards bias (Breiman, 2001; Bylander, 2002). Another advantage of RF is that
it provides a mechanism to assess the importance of each predictive variable in the
input vector x (Breiman, 2001). This can be useful for identifying variables that are
relevant for the classification task. The mechanism consists in randomly permuting the
values of the i-th input variable in the OOB samples used for computing the OOB error
estimate. This process is repeated for each different input variable and the increment
in the misclassification rate, as compared to the OOB error estimate with all the input
variables intact, is recorded. The larger the increment in the misclassification rate,
the higher the predictive importance of that input variable. This mechanism has been
proved useful for carrying out feature selection in the medical domain (D́ıaz-Uriarte and
Alvarez de Andrés, 2006). RF also allows to compute a proximity measure between pairs
of data instances (Breiman, 2002). Given two training instances i and j, the proximity



Chapter 2. Ensemble Methods in Machine Learning 33

measure between these two instances is computed as the fraction of random trees where
the two instances lie in the same terminal node. This measure can be used for example
to identify hidden structures in the data (Breiman, 2002). RF typically outperforms
bagging in different learning domains and obtains error rates that are similar to the
ones of Adaboost (Breiman, 2001). However, in noisy domains RF is more robust than
Adaboost. In particular, if there is noise in the class labels of the training data the
performance of Adaboost quickly deteriorates. By contrast, the performance of RF is
fairly robust (Breiman, 2001). Typical choices for the value of m are ⌊log2(k) + 1⌋ or
⌈
√

k⌉, where k is the total number input features (Bernard et al., 2009; Breiman, 2001).

2.5.3 Boosting

Boosting is a family of ensemble learning algorithms introduced to obtain more expres-
sive learning models by combining simple predictors whose performance is required to
be slightly better than random guessing (Avnimelech and Intrator, 1999; Drucker, 1997;
Freund, 1995; Freund and Schapire, 1997; Friedman, 2001; Meir and Rätsch, 2003).
Originally, boosting algorithms were designed to solve classification problems. How-
ever, they can also be extended to address regression tasks. In this section we focus
on a representative boosting algorithm: Adaboost, introduced by Freund and Schapire
(1996).

The working principle of Adaboost is to induce a sequence of predictors by applying
the same learning algorithm to repeatedly modified versions of the training set. In
this sequence, new predictors focus on those training instances that are difficult to
classify by the previous predictors in the sequence. The decisions of all the predictors
in the sequence are then combined using weighted majority voting. Consider a binary
classification problem in which the target variable y takes values from the set Y =
{−1, 1}. Adaboost minimizes the average value of an exponential loss function (Friedman
et al., 2000; Hastie et al., 2001). For a training instance (xi, yi) this loss function is
defined as

L(yi, f̂(xi)) = exp
(

−yif̂(xi

)

. (2.18)

In this expression f̂ is the Adaboost ensemble output function which is defined as
weighted sum of the outputs of the individual ensemble members

f̂(x) =

M
∑

m=1

βmf̂m(x) , (2.19)

where the weights are restricted to be positive, i.e. βm > 0, for m = 1, . . . ,M . Figure 2.6
displays the value of (2.18) as a function of the output function f̂ . The misclassification
loss is also displayed for reference. The figure shows that the exponential loss function
of Adaboost takes large values for data instances for which yif̂(xi) is negative. On the
other hand, the values of (2.18) are small for positive values of yif̂(xi). In consequence,
this loss function encourages large positive values for yif̂(xi) and hence, large values,
either positive or negative, for f̂(xi), for correctly classified training instances. This
suggests that given a test instance x, the class label y that the Adaboost ensemble
should output is

y = sign
(

f̂(x)
)

= sign

(

M
∑

m=1

βmf̂m(x)

)

, (2.20)

where sign(z) is a function returning −1 if z ≤ 0 and 1 otherwise.
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Figure 2.6: Exponential loss of the Adaboost algorithm for yif̂(x) alongside with the
associated misclassification error.

We show now how the ensemble elements are computed sequentially in Adaboost.
For this purpose, assume that we have built up to the k − 1-th ensemble member and
that the individual predictors f̂m, with m = 1, . . . ,M , output class labels from the set
{−1, 1}. Using the exponential loss function defined before we have to solve the following
optimization problem to find the next predictor and its associated weight βk

(

f̂k, βk

)

= arg min
(f̃ ,β̃)

n
∑

i=1

exp

[

−yi

(

k−1
∑

m=1

f̂m(xi) + β̃f̃(xi)

)]

. (2.21)

This problem can be rewritten as

(

f̂k, βk

)

= arg min
(f̃ ,β̃)

n
∑

i=1

wk
i exp

[

−yiβ̃f̃(xi)
]

, (2.22)

where wk
i = exp(−yi

∑k−1
m=1 f̂k(xi)) can be seen as the weight that is assigned to each

different observation. We note that the values of these weights actually depend on the
errors of the predictors available and that they change when a newly built predictor is
incorporated into the ensemble.

As described by Hastie et al. (2001) the solution to (2.22) is obtained in two separated
steps. The solution for f̂k can be computed independently of the value of βk by finding
the predictor that minimizes a weighted training error rate

f̂k = arg min
f̃

n
∑

i=1

wk
i I

(

yi 6= f̃(xi)
)

, (2.23)

where I(z) is an indicator function that takes value one when z is satisfied and zero
otherwise. To see this, consider the following transformation of the function that is
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being optimized in (2.22)

e−β̃
∑

yi=f̃(xi)

wk
i + eβ̃

∑

yi 6=f̃(xi)

wk
i . (2.24)

This is equivalent to

(

eβ̃ − e−β̃
)

n
∑

i=1

wk
i I

(

yi = f̃(xi)
)

+ e−β̃
n
∑

i=1

wk
i . (2.25)

Because eβ̃−e−β̃ is a strictly positive function of β̃ (recall that the weights are restricted
to be positive), the optimal solution of (2.22) with respect to f̃ is given by (2.23). βk

can now be found in terms of f̂k

βk =
1

2
log

1− ǫk

ǫk
, (2.26)

where ǫk is the weighted training error rate of the predictor f̂k. That is,

ǫk =
1

∑n
i=1 wk

i

n
∑

i=1

wk
i I

(

f̂k(xi) = yi

)

. (2.27)

Finally, we note that when the predictor f̂k+1 has to be estimated at the next iteration
of Adaboost, the new weights will be given by

wk+1
i = wk

i exp
[

−βkyif̂k(xi)
]

= wk
i exp

[

αkI

(

f̂k(xi 6= yi

)]

e−βk , (2.28)

where αk = 2βk and we have used that yif̂k(xi) = 2I

(

f̂k(xi) 6= yi

)

− 1. Because the

factor e−βk in (2.28) affects all the weights independently, it can be safely ignored in the
computations.

The first predictor in Adaboost is built by fitting a single model to the training data.
Each new predictor that is incorporated into the ensemble reduces the exponential loss
over the training data. In consequence, Adaboost will eventually reach zero training
error. The pseudo-code of the Adaboost algorithm is displayed in Figure 2.7.

We now illustrate how Adaboost works in a simple classification problem. Consider
a learning task in which each input vector xi is uniformly extracted from the square
[−1, 1] × [−1, 1]. In terms of the attribute vector, the target variable is

yi =

{

1 if x2
1 + x2

2 ≥ 2
π ,

−1 otherwise .
(2.29)

Thus, the optimal decision boundary of this classification problem is a circumference of
√

2/π radius centered at the origin. To show that Adaboost can turn a simple classifier
into an accurate one, we employ Adaboost with a linear model as the base learner to
solve this problem. The model employed is logistic regression. This model assumes that
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Input: training set D of n instances and ensemble size M .

Output: Aggregated estimate f̂(x).

1. Initialize the observation weights to be uniform wi = 1/n, ∀i.
2. For k = 1, . . . , M

(a) Train a new model f̂k(x) using D and the weights wi.

(b) Compute

ǫk =
1

∑n
i=1 wi

n
∑

i=1

wiI

(

f̂k(xi) = yi

)

.

(c) Compute βk = 1/2 log ((1− ǫk)/ǫk) and αk = 2βk.

(d) Set wi ← wi exp
[

αkI

(

f̂k(xi) 6= yi

)]

, ∀i.

3. Return an aggregated estimate

f̂(x) = sign

(

M
∑

k=1

βkf̂k(x)

)

.

Figure 2.7: Algorithm that implements Adaboost. Extracted from (Hastie et al.,
2001).

the probability of yi given xi is

P(yi|xi,θ) = σ (yi (x1θ1 + x2θ2 + θ3)) , (2.30)

where σ is the sigmoid function, defined as σ(z) = 1/(1+exp(−z)), and θ = (θ1, θ2, θ3)
T

are the model parameters. Under these circumstances, the class label predicted by this
model for a given input vector x is

f̂k(x;θ) = sign (x1θ1 + x2θ2 + θ3) . (2.31)

Note that this simple model can only correctly represent linear decision boundaries.
However, Adaboost can learn the non-linear decision boundary of the previous classi-
fication task very accurately by combining several of these models. To show this, we
randomly generate a sample training set D containing n = 500 instances of this clas-
sification task. Then, an Adaboost ensemble of 1, 000 elements is built using D. The
base classifiers are trained using maximum likelihood. To set weights to the different
training instances, before training the k-th predictor we compute a modified version of
the training set Dk. This new training set is obtained by drawing with replacement
a set of n instances from D, where the probability of drawing each different instance
is proportional to the weights wi, with i = 1, . . . , n, of Adaboost. Thus, given Dk we
maximize

L(Dk;θ) =
∑

(xi,yi)∈Dk

log (P(yi|xi,θ)) , (2.32)

with respect to the model parameters θ. The predictor resulting from this optimization
process can be inaccurate. However, Adaboost only requires that this optimization
process generates a model whose weighted error on the training data is better than
random guessing.
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Figure 2.8 (left) displays the training set D used in Adaboost and the decision bound-
ary that results from building an ensemble of 1, 000 linear models using this algorithm.
Figure 2.8 (right) displays D and the decision function provided by fitting a single linear
model to this dataset. This figure shows that Adaboost generates a non-linear boundary
by combining linear models. Furthermore, the decision boundary provided matches the
actual decision boundary quite closely. By contrast, the decision boundary computed
by a single linear model is very inaccurate. This is the expected result because of the
limited expressive capacity of the base learners.
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Figure 2.8: (left) Training set D and decision boundary provided by an Adaboost
ensemble built using 1, 000 linear models. (right) Training set D and decision boundary
provided by a single linear model.

Adaboost has been shown to perform well in several benchmark classification prob-
lems (Bauer and Kohavi, 1999; Breiman, 1998; Quinlan, 1996). However, it is very sen-
sitive to noise in the class labels. Its performance reduces in noisy domains (Breiman,
2001; Dietterich, 2000b; Mart́ınez-Muñoz et al., 2009; Quinlan, 1996). This behavior
arises because the weights wi of incorrectly predicted training instances become larger
in Adaboost. This encourages the next predictor in the sequence to correctly predict
their associated class label. Typically, this is what you want Adaboost to do. However,
if these instances are actually mislabeled data, the focus on them can lead to severe
over-fitting. This problem can be alleviated in boosting algorithms by reducing the
ensemble size M , by employing a shrinkage factor (Friedman, 2001) or by using alterna-
tive functions to update the training weights (Freund, 2009; Gómez-Verdejo et al., 2008,
2006).

Because each new predictor that is incorporated to the ensemble attempts to correct
the erroneous predictions of the previous ensemble members, the performance improve-
ments of Adaboost are often related to a decrease in the bias component of the general-
ization error (Bauer and Kohavi, 1999; Breiman, 1996b; Domingos, 2000; Schapire et al.,
1998; Webb, 2000). However, most of these studies show that Adaboost is also effective
reducing the variance. In fact, the first iterations of Adaboost primarily reduce the
bias, while the later ones have been found to mainly reduce variance (Domingos, 2000).
An alternative explanation of the good performance of Adaboost is the optimization of
classification margins. The margin of an instance is defined as the difference between
the weight assigned to the correct label and the maximal weight assigned to any single
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incorrect label. In particular, Schapire et al. (1998) show that Adaboost is very aggres-
sive maximizing the margins. These authors also provide non-asymptotic upper bounds
on the generalization error of Adaboost in terms of the value of the margin. Nonetheless,
direct optimization of the margin has not proved a successful strategy (Breiman, 1999a).

The success of Adaboost in many classification tasks has inspired a collection of
alternative boosting algorithms. These algorithms differ in the method used to weigh
the training instances or the different predictors contained in the ensemble. In particu-
lar, Breiman (1998) proposes a boosting algorithm similar to Adaboost that combines
the different predictors using un-weighted voting. In this algorithm the re-weighting of
the different training instances is done in terms of a polynomial function instead of an
exponential function. In (Breiman, 1999a) the process of building a boosting ensem-
ble is reformulated as a two-player game in which one player selects instances from the
training set and the other a linear combination of predictors. Inspired by these results,
a boosting algorithm that converges to the optimal game strategy is proposed. Some
boosting algorithms to directly maximize the minimum classification margin of the train-
ing instances are described in (Rätsch et al., 2005). Rätsch et al. (2001) also introduce a
regularization term in Adaboost that alleviates over-fitting in noisy problems. Friedman
et al. (2000) show that Adaboost maximizes of a binomial log-likelihood function. A
boosting algorithm is described to optimize this function directly. Finally, Schapire and
Singer (1999) propose a version of Adaboost in which the individual predictors output
real-valued probabilities instead of class labels. The function used by this algorithm to
update the weights of the training instances can be decomposed in two factors. Gómez-
Verdejo et al. (2006) balance between these two factors with one additional parameter
to alleviate over-fitting. Additionally, Gómez-Verdejo et al. (2008) describe a procedure
that can be used to adjust this parameter dynamically.

There have been several proposals to extend boosting to regression problems. The
first of these techniques is described in (Freund and Schapire, 1997). This method as-
sumes that the target variable y takes values from the unit interval [0, 1]. The regression
problem is reduced to a binary classification task. Then, the standard boosting algo-
rithm for classification is used. Each instance (xi, yi) in the training set D is mapped
to an infinite set of binary questions, one for each y ∈ [0, 1], of the form is yi ≤ y? In
a similar manner, the output of each ensemble member f̂k approximates the function
I (y ≥ yi). Thus, f̂k tends to give a natural answer to these binary questions. Although
it is obviously infeasible to explicitly maintain an infinitely large training set, a method
for the efficient implementation of this method is described in (Freund and Schapire,
1997). Even though a theoretical framework is also given, no experiments are carried
out in (Freund and Schapire, 1997) to assess its performance. Finally, several other
contributions have been inspired on the work described above, e.g. (Avnimelech and
Intrator, 1999; Ridgeway et al., 1999).

Another boosting algorithm for regression is the one proposed by Friedman (2001).
This author proposes a general gradient boosting paradigm developed for function ap-
proximation that takes into account different cost functions. In particular, specific al-
gorithms are presented for squared and absolute errors. In (Friedman, 2001) function
estimation is viewed from the perspective of numerical optimization in function space
rather than in parameter space. Assuming that the goal is to minimize the sum of
squared errors, a boosting algorithm is implemented by fitting each new predictor to the
residual errors of the partially aggregated ensemble. The final prediction of the boosting
ensemble is computed as a sum of the individual predictions of the different ensemble
elements.
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In (Drucker, 1997) an ad hoc regression modification of Adaboost is proposed. As in
Adaboost, a weight vector w is introduced to assign different weights to the observations
in the training set. At each iteration of the algorithm, a model f̂k is fitted using a
perturbed training set Dk. This training set is obtained by drawing n samples from
the original training set according to the distribution given by w. Then, w is updated
by considering the weighted loss L of the predictor f̂k on the training set. For this
purpose, three candidate loss functions are considered, all of them lying within the
interval [0, 1]. These are linear, square law and exponential. Using L, a confidence
measure βk in the model f̂k is calculated by setting βk = L/(1 − L). Finally, the
ensemble output for an unlabeled instance is computed as the weighted median of the
outputs of the individual ensemble predictors, where each predictor is weighted by the
associated confidence measure βk. Even though the authors do not present a theoretical
justification for the modification, experiments on several regression problems illustrate
the good performance of this method.

2.6 Conclusions

In this chapter we have given an overview of ensemble methods. These methods induce
a collection of predictors from some data to then combine their outputs to produce a
final response. Ensembles have several advantages over a single predictor. In particular,
combining the decisions of a complementary set of predictors has been shown to be an
effective procedure to alleviate the problems of learning from labeled data in the presence
of a limited amount of data an noisy instances. The risk of choosing an incorrect rule for
prediction is reduced in ensemble methods because they consider multiple rules at the
same time. Furthermore, some ensemble methods have proved to be very robust when
the training data are contaminated with noise. Ensemble methods can also be useful
to reduce over-fitting. The combination of several complex models that are prone to
over-fitting seems to be beneficial instead of detrimental in some ensemble algorithms.
Finally, the prediction of the ensemble is often significantly better than the individual
predictions of the individual ensemble members.

In spite of the advantages described, the practical implementation of ensemble meth-
ods presents some difficulties. Specifically, the number of predictors that are required
to guarantee the convergence of the predictive error of the ensemble can be very large.
Thus, ensembles can demand considerable memory resources to store all the different
predictors. Additionally, the time needed to compute the prediction of the ensemble
increases linearly with the ensemble size. Thus, it can be significantly longer than the
prediction time of a single model. Another problem is that, in general, it is difficult
to determine an appropriate size for the ensemble. The ensemble size is set in practice
to a large number for which the predictive error of the ensemble is assumed to have
converged. Over-estimating the ensemble size can result in a waste of resources. By
contrast, under-estimating this number can result in a loss of prediction accuracy.

The following chapter of this thesis discusses different procedures that can be used
to alleviate these problems.





Chapter 3
Ensemble Pruning Methods

The prediction time and storage requirements of ensemble methods can be improved

by selecting a subset of complementary predictors whose combined generalization

performance is similar or better than the original ensemble. Three ensemble prun-

ing methods are investigated in this chapter. The first two are designed to extract a

near-optimal subensemble from a regression ensemble generated by bagging. Iden-

tifying the optimal subset of predictors in this type of ensembles is a difficult task

that has exponential cost in the size of the ensemble. Thus, the first strategy

constructs a relaxed version of the problem that can be solved using semidefinite

programming. The second one is based on modifying the order of aggregation of

the predictors in the ensemble. Both methods identify subensembles that are close

to the optimal ones. Experiments in several regression problems show that in the

problems investigated pruned ensembles with only 20% of the initial predictors

are more accurate than the original bagging ensembles. A bias-variance-covariance

analysis relates these improvements to a reduction in the bias and the covariance of

the selected ensemble elements. The last ensemble pruning method can be applied

to parallel classification ensembles. Instead of finding a near-optimal subensemble,

this pruning method determines for each instance to be labeled the number of clas-

sifiers that need to be queried to estimate the prediction of the complete ensemble

with a specified confidence level. Thus, for a particular test instance, the voting

process of the ensemble is halted when the probability that the predicted class

will not change when taking into account the remaining votes is above the speci-

fied confidence level. Experiments on several classification problems using bagging

and random forests confirm the validity of this dynamical instance-based ensemble

pruning method.

3.1 Introduction

An important shortcoming of ensemble methods is that they often require a large
number of predictors to guarantee the convergence of the generalization error to its
asymptotic limit (Banfield et al., 2007; Latinne et al., 2001; Margineantu and Dietterich,
1997). Therefore, these methods demand large memory resources to store the ensemble
members and take a long time to compute the prediction for an unlabeled instance. In
consequence, using ensembles in online applications or in large-scale datasets remains a
challenging task. A possible solution to these problems consists in replacing the original
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ensemble by a representative subset of predictors from the initial ensemble. This ap-
proach is known as ensemble pruning and has been shown to be very effective. Besides
needing less storage space and predicting faster, pruned subensembles can outperform
the original classification ensembles from which they are extracted (Banfield et al., 2005;
Caruana and Niculescu-Mizil, 2004; Margineantu and Dietterich, 1997; Mart́ınez-Muñoz
et al., 2007; Mart́ınez-Muñoz et al., 2009; Mart́ınez-Muñoz and Suárez, 2004; Mart́ınez-
Muñoz and Suárez, 2006, 2007; Ruta and Gabrys, 2005; Zhang et al., 2006). In practice,
the task of selecting a representative subset from a pool of initial predictors (those in-
duced in the original ensemble) using only information from the training set is a difficult
problem. On the one hand, it is computationally expensive. The search is conducted
in the space of 2M − 1 non-empty subensembles that can be extracted from an initial
ensemble of size M . On the other hand, even if the search is feasible, the selection needs
to be made in terms of an objective function estimated on the training data. Since we
are interested in generalization performance, finding the optimum in the training set
does not guarantee that the selected subensembles generalize well.

In this chapter we analyze three different ensemble pruning methods. The first
two are devised to prune regression bagging ensembles. From these, the first method
considered is SDP-pruning. SDP-pruning solves a relaxed version of the ensemble prun-
ing problem using semidefinite programming (SDP). This method is an extension to
regression ensembles of the method introduced by Zhang et al. (2006) to prune clas-
sification ensembles. The second method is ordered aggregation. Ordered aggregation
is based on modifying the order in which the predictors are incorporated into the en-
semble (Hernández-Lobato et al., 2006b). Starting with an empty subensemble, ordered
aggregation incorporates the predictor that reduces the training error of the enlarged
subensemble the most, until a stopping criterion is met. Subensembles obtained by these
two strategies need not be optimal. However, comparisons with the exact solutions ob-
tained by exhaustive search in ensembles of intermediate size show that they actually
share a large fraction of the predictors with the optimal subensembles. Experiments in
several real-world regression problems show that both strategies are effective in selecting
subensembles that have a better generalization performance than complete ensembles
built either with bagging or with the Adaboost.R2 algorithm (Drucker, 1997; Sharkey,
1999). A detailed analysis of the different components of the generalization error of the
subensembles shows that the improvements in prediction accuracy arise because both
SDP-pruning and ordered aggregation select from the original ensembles subsets of re-
gressors that simultaneously have a low bias (i.e. their individual errors tend to be low)
and small correlations (i.e. their predictions are complementary).

The last ensemble pruning method investigated in this chapter can be applied to
parallel classification ensembles whose elements are generated independently when con-
ditioned to the training data. Examples of these types of ensemble learning algorithms
include bagging (Breiman, 1996a), but also other parallel ensemble methods like ran-
dom forests (RF) (Breiman, 2001) or class-switching (Breiman, 2000; Mart́ınez-Muñoz
et al., 2008; Mart́ınez-Muñoz and Suárez, 2005). Instead of identifying a near-optimal
subensemble from the original classification ensemble, this pruning method follows a dif-
ferent approach. Specifically, the prediction of a classification ensemble whose elements
are generated independently when conditioned to the initial training data is analyzed
within a Bayesian framework. Assuming that majority voting is used for combining the
decisions of the individual classifiers, it is possible to estimate with a specified confi-
dence level the prediction of the complete ensemble by querying only a subset of the
total classifiers of the ensemble. In consequence, for a particular instance that needs to
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be classified, the voting process of the classifiers of the ensemble can be halted when the
probability that the predicted class will not change when taking into account the remain-
ing votes is above a specified confidence level. Experiments on a collection of benchmark
classification problems using representative parallel ensembles, such as bagging and ran-
dom forests, confirm the validity of the analysis and demonstrate the effectiveness of
this instance-based (IB) pruning method. IB-pruning does not reduce the storage re-
quirements, or improves the generalization performance of the original ensemble. The
objective is to speed-up the prediction process for an unlabeled instance by determining
the minimum number of classifiers that need to be queried to estimate the prediction of
the complete ensemble with a high confidence level.

The chapter is organized as follows: Section 3.2 introduces the problem of select-
ing an optimal subensemble from a given bagging regression ensemble. This problem
is shown to be NP-hard. Then, we review some ensemble pruning methods that are
representative of the research in this area. Approximate solutions to the subensem-
ble selection problem are then found by SDP-pruning or by ordered aggregation. The
effectiveness of ordered aggregation and SDP-pruning is established by comparing the
composition of the near-optimal subensembles identified by these methods and the com-
position of the optimal subensembles, obtained by exhaustive search. Then, we present
the results of a series of experiments carried out to investigate the performance of these
two ensemble pruning methods on a set of benchmark regression problems. This section
includes a bias-variance-covariance analysis of the ensemble error that elucidates the
origins of the improvements obtained. Section 3.3 analyzes the pruning of classification
ensembles from a different perspective and introduces IB-pruning. The results of exten-
sive experiments illustrate the performance of this ensemble pruning method. Finally,
Section 3.4 summarizes the results and conclusions of this chapter.

3.2 Pruning Regression Ensembles

Consider a regression problem. The goal is to learn a function that predicts the de-
pendent variable y ∈ R in terms of the attributes x ∈ X using a set of training data
D = {(x1, y1), ..., (xN , yN )}, generated from a probability distribution P(D). Bagging
works by combining the outputs of a collection of diverse predictors. Each of these
predictors is obtained by applying the same learning algorithm on a different bootstrap
sample extracted from the original training data D. Assume that f̂i(x) is the prediction
given by the i-th ensemble member, built using Di, the i-th bootstrap sample from the
training data. The prediction of the ensemble is the average of the individual predictions
of the M elements in the ensemble

M−1
M
∑

i=1

f̂i(x), i = 1, 2, . . . ,M. (3.1)

The generalization error of the ensemble is

L =

∫

(

M−1
M
∑

i=1

f̂i(x)− y

)2

P(x, y)dxdy, (3.2)

where y = f(x), f is the target function to approximate, and P(x, y) is the joint prob-
ability distribution of the space of attributes and target variables. After some algebra
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(3.2) can be expressed as

L = M−2
M
∑

i=1

M
∑

j=1

Cij , (3.3)

where

Cij =

∫

(

f̂i(x)− y)
)(

f̂j(x)− y
)

P(x, y)dxdy. (3.4)

The value Cii is the average squared error of the i-th ensemble member. The off-diagonal
terms {Cij, i 6= j} correspond to correlation-like values between the predictions of the
i-th and j-th ensemble members (Zhou et al., 2002).

Assume that a bagging ensemble composed of M different predictors has been con-
structed. Our goal is to select the subensemble composed of u predictors {s1, s2, . . . , su}
that minimizes the error

L(u) = u−2
u
∑

i=1

u
∑

j=1

Csisj
. (3.5)

Because the true error is not available in the learning problem, we implement the se-
lection of the optimal subensemble on the basis of the training error. The expression
for the training error is identical to (3.5), except that the average over P(x, y) in the
calculation of Cij is replaced by an average over the training data

C(tr)
ij =

1

N

N
∑

n=1

(

f̂i(xn)− y
)(

f̂j(xn)− y)
)

. (3.6)

Thus, the information needed for the optimization problem is contained in the matrix
C(tr), which is estimated on the training set. This estimate is expected to be close to
the true C matrix, which is calculated as an average over the actual distribution of the
data, so that minimizing the training error leads to the minimization of the generaliza-
tion error. This is not necessarily the case in actual regression problems: minimizing
the training error sometimes leads to over-fitting, and consequently, to the selection of
subensembles whose generalization performance is suboptimal. The experiments carried
out in this investigation show that, typically, the subensembles that minimize the error
on the training data tend to be smaller than the subensembles that are optimal when
the error is estimated on a test set that is independent of the training set.

Even if it were possible to accurately predict the generalization error from the train-
ing data only, finding the optimal subensemble is a computationally expensive problem
that involves comparing the performance of all the possible 2M−1 non-empty subensem-
bles that can be extracted from the original ensemble. In fact, the problem of selecting
the optimal subensemble from a given regression ensemble can be shown to be NP-hard.
The proof proceeds by finding a problem that is known to be NP-complete and then
showing that every instance of such problem can be reduced in polynomial time to the
optimal subensemble selection problem (Cormen et al., 1990; Garey and Johnson, 1990).
For this purpose, consider the Subset Sum problem (Cormen et al., 1990). This problem
consists in extracting from a given set of integers S = {n1, . . . , nM : ni ∈ Z} a subset
of elements whose sum is equal to zero. Assume that there is an algorithm A that can
find in polynomial time the subensemble of an ensemble of regressors whose combined
prediction has the lowest mean squared error (MSE) on the dataset D. If this were the
case, the Subset Sum problem would also be solvable in polynomial time. To show how
this would be accomplished, consider an ensemble of M regressors. Assume that the i-th
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regressor in the ensemble outputs the integer value ni ∈ S independently of the input.
Define a regression problem that consists in predicting the value 0 independently of the
input. The goal is then to select a non-empty subensemble {s1, s2, . . . , su}, 1 ≤ u ≤ M
whose combined prediction (u−1

∑u
i=1 nsi

, independent of the input) is as close to zero
as possible. This can be achieved by minimizing the squared prediction error

MSE ≡
(

u−1
u
∑

i=1

nsi
− 0

)2

=

(

u−1
u
∑

i=1

nsi

)2

. (3.7)

Since the MSE is a non-negative value, if a subensemble whose mean squared error is zero
exists, then algorithm A should find it in polynomial time. Finding a subensemble whose
MSE is zero is equivalent to finding a subset {ns1, ns2, . . . , nsu} ⊂ S whose elements sum
to zero

MSE ≡
(

u−1
u
∑

i=1

nsi

)2

= 0⇐⇒
u
∑

i=1

nsi
= 0 . (3.8)

Therefore, {ns1, ns2, . . . , nsu} would be a solution to the Subset Sum problem. Con-
versely, if no subset of S exists whose elements add up to zero, algorithm A would
return a subset whose mean squared error is greater than zero. Since the Subset Sum is
NP-complete, unless NP and P coincide, no algorithm with the properties of A exists.
Hence, the problem of finding the optimal subensemble of a regression bagging ensemble
is at least as hard as any NP-complete problem; i.e. it is NP-hard.

The fact that the optimal subensemble selection problem is NP-hard implies that
finding the exact solution is infeasible for large ensembles. In this investigation we pro-
pose two methods that can be used to identify near-optimal subensembles at a reduced
computational cost. The first method solves a relaxed version of the problem using
semidefinite programming (SDP). The second one is based on modifying the order of
aggregation of the predictors in the ensemble, which in standard bagging is random.
Before describing these methods we review some of the available ensemble pruning tech-
niques.

3.2.1 Related Work

The key to the improvements in the performance of the ensemble is the complementarity
of the predictions given by the individual ensemble members (Brown et al., 2005b;
Dietterich, 2000b; Krogh and Vedelsby, 1995; Tumer and Ghosh, 1996; Ueda and Nakano,
1996). Measures of accuracy or measures of diversity cannot be used in isolation to
improve the performance of the ensemble. In consequence, most of the ensemble pruning
methods attempt to extract a small subset of complementary predictors from the original
ensemble. In this section we describe some of these methods. Since the pruning of
regression ensembles is very similar to the pruning of classification ensembles, we also
review in this section pruning methods for classification ensembles.

Margineantu and Dietterich (1997) investigate whether all the classifiers generated
in a boosting ensemble are essential to obtain a good generalization performance. Using
pruning heuristics based on measures of diversity and joint classification accuracy they
show that, in the classification tasks investigated, the number of classifiers of a boosting
ensemble can be substantially reduced (up to 60-80% in some classification problems)
without a significant deterioration of the generalization accuracy of the ensemble. Simi-
lar pruning strategies are investigated in (Banfield et al., 2005; Tamon and Xiang, 2000).
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In (Banfield et al., 2005), the initial ensemble is thinned by a sequential backward se-
lection process that attempts to maximize the accuracy of the ensemble by eliminating
classifiers whose contribution to the generalization performance (estimated in terms of
measures of accuracy and/or diversity on the training set) is either detrimental or small.

Genetic algorithms (GAs) have also been proposed for the selection of a near-optimal
subensemble from a complete bagging ensemble (Zhou and Tang, 2003; Zhou et al., 2002).
In (Zhou et al., 2002) the output of the ensemble is a weighted average of the outputs of
each ensemble member. The optimal set of weights of the ensemble members is found
by minimizing a function that estimates the generalization error of the ensemble. The
minimization problem is solved by a standard GA with a floating-point encoding scheme
for the real-valued weights. Once the evolutive process has finished, the neural networks
whose optimized weights are below a specified threshold are removed from the ensemble.
The final ensemble output is the average over the predictions of the networks retained
in the ensemble. The experiments carried out in (Zhou et al., 2002) establish GAs as a
viable strategy to prune bagging ensembles. This approach has been applied to boosting
in (Hernández-Lobato et al., 2006a).

Zhang et al. (2006) design an ensemble pruning method based on Semidefinite pro-
gramming (SDP). In classification tasks the subensemble selection problem is formulated
in terms of an M×M matrix G, whose diagonal terms Gii measure the individual errors
of the ensemble members and whose off-diagonal terms Gij , i 6= j measure the number
of common errors between classifiers i and j. The goal is then to find the sub-matrix of
G, of dimensions u×u, corresponding to a subensemble of size u that minimizes the sum
of the elements in the sub-matrix of G. This is a standard 0-1 optimization problem
that is also NP-hard. The problem can be reformulated so that it has the same optimal
solution as an instance of the max-cut problem of size u (MC-u). This problem consists
in partitioning the vertices of an edge-weighted graph into two sets, one of which has
size u, so that the total weight of edges crossing the partition is maximized. The MC-
u problem is known to have a good approximate algorithm based on SDP (Goemans
and Williamson, 1995; Han et al., 2002). Therefore, a good approximate solution to
the subensemble selection problem of size u can be found by solving the corresponding
instance of the MC-u problem.

Tsoumakas et al. (2005, 2004) propose a pruning method called selective fusion that
combines the outputs of a subset of classifiers selected from an heterogeneous ensem-
ble using weighted voting. The selection of the optimal subensemble is approached as
a multiple comparisons problem, which is solved by applying statistical tests to detect
significant differences in cross-validation estimates of the prediction errors. In a separate
work, these authors propose to use reinforcement learning to identify optimal subensem-
bles (Partalas et al., 2006). More recently, Meynet and Thiran (2007) have proposed
an information theoretic measure of the ensemble performance that can be used for the
selection of a subset from an initial pool of classifiers.

Modifying the order in which the predictors are aggregated into the ensemble is in-
troduced as a possible improvement in ensemble learning by Perrone and Cooper (1993).
However, in that work predictors are ordered according to individual properties of the
ensemble members (e.g. the mean squared error of each predictor). These heuristics do
not take into account the complementarity of the predictions of the ensemble members.
The joint performance of the predictors is only considered to decide whether a candidate
neural network does not lead to a significant reduction of the error and should there-
fore be excluded from the ordered sequence. The ordered aggregation investigated in
the next section represents an improvement over (Perrone and Cooper, 1993) because it
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takes advantage of the complementarity of the predictions of the ensemble members by
incorporating at each step the predictor that reduces the error of the current subensem-
ble the most (Hernández-Lobato et al., 2006b). In (Partalas et al., 2008) this algorithm
has been compared to other pruning heuristics in the domain of water quality prediction
using ensembles of heterogeneous models.

A family of ensemble pruning methods based on modifying the order in which classi-
fiers are aggregated in bagging ensembles is presented and evaluated in (Mart́ınez-Muñoz
et al., 2007; Mart́ınez-Muñoz et al., 2009). In particular, the classifiers that are expected
to perform better when combined are aggregated first. From the subensemble Su−1 of
size u− 1, the subensemble of size Su is constructed by incorporating a single classifier
from the remaining pool of classifiers. This classifier is selected by maximizing a metric
that is expected to be correlated with the generalization performance of the ensemble.
The metrics considered include prediction accuracy, ensemble diversity, complementarity
among classifiers, margin distance, etc. The aggregation process is stopped when a fixed
number of classifiers (typically 20% of the initial number of predictors) has been included
in the ordered sequence. The results of extensive experiments show that these pruning
methods can identify near-optimal subensembles and hence, they actually improve the
generalization performance of standard bagging classification ensembles. Another inves-
tigation that evaluates different search algorithms and subensemble selection criteria for
classification ensembles is (Ruta and Gabrys, 2005).

An alternative to selecting a subset of classifiers consists in replacing the ensemble
by a single surrogate classifier that reproduces the decisions of the original ensemble.
In particular, the technique of Combined Multiple Models proposed by Domingos (1997)
builds a single classifier using a training set that, besides the original training examples,
includes synthetic examples labeled by the ensemble. A related technique is suggested
by Prodromidis and Stolfo (2001) to eliminate some of the classifiers from the ensemble.
In this method a new classification task is defined. It consists in predicting the class
label assigned by the ensemble to each one of the instances in the training set, using
the outputs of the individual classifiers as predictor variables. A CART tree is fully
grown using this auxiliary data and then pruned as described in (Breiman et al., 1984).
Finally, those classifiers whose outputs are not used in the decisions of the CART tree
are eliminated from the ensemble.

Instead of selecting a subset of complementary predictors from the ensemble, in neg-
ative correlation learning complementarities among the different ensemble members are
encouraged by simultaneously training a collection of neural networks. These networks
are trained using a cost function that includes a correlation penalty term in addition
to the prediction error (Liu and Yao, 1999). The correlation penalty term encourages
the specialization of the individual networks and cooperation among them. However,
the strength of the penalty needs to be carefully tuned for each problem. If it is too
small, the cooperation among the ensemble members will not be sufficient to produce
significant improvements in performance. If the penalty is too large, the learning pro-
cess is ineffective, i.e. the cost function is dominated by the penalty term and becomes
insensitive to prediction errors. A further difficulty of this method is that the correlation
penalty introduces a coupling among the parameters of the different ensemble members.
This coupling increases the dimensionality of the parameter space in which the search
is conducted and makes the learning process more difficult. In practice, only ensembles
of small sizes can be built by means of this technique.

In (Demir and Alpaydin, 2005), the cost in time of classifying new instances is con-
sidered in the selection process. Ensembles are pruned by maximizing a utility function
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that explicitly takes into account both accuracy and speed of classification. A different
method for ensemble pruning is to replace the ensemble by a set of classifiers using clus-
tering. The objective is to group classifiers by similarity and to retain one representative
classifier per cluster (Bakker and Heskes, 2003; Giacinto and Roli, 2001a; Giacinto et al.,
2000; Lazarevic and Obradovic, 2001). In (Chen et al., 2006), classification and regres-
sion ensembles that employ a weighted average for output combination are pruned using
a probabilistic framework. Specifically, the weights of the combination are optimized
using a regularization term that encourages sparsity. This term guarantees that some
weights are driven to zero during the optimization process. The predictors correspond-
ing to these weights can then be removed from the ensemble. Finally, Chan et al. (2007)
propose to remove from the ensemble those classifiers that have less impact on the final
ensemble output.

Several of the studies presented in this section focus on rather small ensembles. A
notable exception is the work of Caruana and Niculescu-Mizil (2004), in which an exten-
sive library of approximately 2, 000 models is compiled by inducing classifiers of different
types (support vector machines, artificial neural nets, nearest-neighbors, decision trees,
bagged decision trees, boosted decision trees, and boosted stumps), trained with dif-
ferent parameters for the learning algorithm. A subset of models is selected from this
library according to different performance metrics, e.g. accuracy, cross entropy, mean
precision, ROC area, etc.

3.2.2 Approximate Pruning Methods for Regression Ensembles

In this section we describe two approximate methods that can be used to prune regression
bagging ensembles: SDP-pruning and ordered aggregation. Additionally, we compare
the subensembles selected by these two methods with the optimal subensembles found
by exhaustive search in ensembles of intermediate size.

3.2.2.1 Ensemble Pruning via Semidefinite Programming

The method based on semidefinite programming (SDP), which was proposed by Zhang
et al. (2006) to prune classification ensembles, can be extended to prune regression en-
sembles. For this, we observe that the generalization error of the initial bagging ensemble
can be expressed in terms of the matrix C in (3.3). Thus, the subensemble selection prob-
lem consists in finding a subensemble of size u for which the sum of the elements in the
corresponding sub-matrix of C is as low as possible. An approximate solution to this
problem can be obtained using semidefinite programming. The resulting algorithm is
very similar to the one described in (Zhang et al., 2006) to prune classification ensem-
bles. The difference lies in the matrix that is used to guide the optimization process.
In (Zhang et al., 2006) it is the matrix G, whose diagonal elements measure individual
classification errors and whose off-diagonal elements measure common errors between
the different classifiers in the ensemble. In the regression case this matrix is replaced
by the matrix C, whose diagonal elements measure individual squared errors and whose
off-diagonal elements correspond to correlation-like values.

The details of the approximate algorithm based on SDP are described in (Zhang
et al., 2006). In this section we reproduce this algorithm for illustrative purposes. The
algorithm is as follows: First, the subensemble selection problem is formulated as a 0-1
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optimization problem
min
u

uT C(tr)u

s.t.
∑

i ui = u,
ui ∈ {0, 1},

(3.9)

where C(tr) is the estimate of C in the training set and the superscript T means transpose.
The binary variable ui takes the value 1 if the i-th predictor is selected and 0 if it is
not selected. Without the cardinality constraint,

∑

i ui = u, there is a trivial solution
to the problem in which none of the predictors is selected. Consider the transformation
ui = (vi + 1)/2 with vi ∈ {−1, 1}. With this change of variables, the objective function
is proportional to (v + e)T C(tr)(v + e), where e is a vector composed of ones. The
constraint

∑

i ui = u becomes (v + e)T I(v + e) = 4u, where I is the identity matrix.
Defining the matrices

H =

(

eT C(tr)e eTC(tr)

C(tr)e C(tr)

)

,

D =

(

M eT

e I

)

,

(3.10)

and extending the vector v with one additional component v0 that takes value one, (3.9)
becomes

min
v

vTHv

s.t. vTDv = 4u,
v0 = 1,
vi ∈ {−1, 1} ∀i 6= 0.

(3.11)

This problem is equivalent to

min
v

H • vvT

s.t. D • vvT = 4u,
v0 = 1,
vi ∈ {−1, 1} ∀i 6= 0 ,

(3.12)

where A •B =
∑

ij AijBij . This formulation of the problem is very similar to the max
cut problem of size u (MC-u) (Zhang et al., 2006). The goal is to construct a relaxed
version of the problem that can be efficiently solved using SDP. The constraint v0 = 1
in (3.12) can be relaxed to v0 ∈ {−1, 1} without modifying the problem because −v
is feasible for the other constraints whenever v is, and H • vvT = H • (−v)(−v)T .
Furthermore, the constraints vi ∈ {−1, 1} can be rewritten in the form diag(vvT ) = e

min
v

H • vvT

s.t. D • vvT = 4u,
diag(vvT ) = e.

(3.13)

The problem can now be written in terms of a positive semidefinite matrix V of rank
one

min
V

H •V
s.t. D •V = 4u,

diag(V) = e,
V � 0.
rank(V) = 1.

(3.14)
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This reformulation is possible because V = vvT if and only if V � 0 and rank(V) = 1.
A convex optimization problem that can be solved by SDP is obtained from (3.14) by
dropping the rank constraint

min
V

H •V
s.t. D •V = 4u,

diag(V) = e,
V � 0.

(3.15)

This SDP problem can be efficiently solved in polynomial time with a suitable optimizer,
such as the one designed in (Borchers, 1999). Following (Zhang et al., 2006), from a
solution matrix V of problem (3.15), an approximate solution vector u of problem (3.9)
can be obtained by a randomized approximate algorithm (Goemans and Williamson,
1995; Han et al., 2002). In particular, the components of u are determined by sampling
v from a Gaussian distribution with zero mean and covariance matrix V and then
applying the rule

ui =

{

1 if sign(vi) = sign(v0) ,

0 if sign(vi) 6= sign(v0) .
(3.16)

If the targeted number of predictors in the subensemble is not correctly determined by
the application of this rule, we use a greedy algorithm that incorporates or removes
elements in u, as needed, causing the least deterioration in the cost function (3.9). This
procedure is repeated ten times from which only the best solution is retained.

Even though (3.15) can be cast in a form that is similar to the MC-u problem,
the approximation bounds that hold for the relaxed version of this problem (Goemans
and Williamson, 1995; Han et al., 2002) are not applicable in the relaxed version of
subset selection. Subset selection and the MC-u problem share optimal solutions but
not optimal values. The reason is that the objective function in (3.15) does not exactly
match the objective in the MC-u problem (Zhang et al., 2006). Despite this lack of
guarantees for the quality of the approximation, the procedure described is very effective
in selecting near-optimal ensembles in classification tasks (Mart́ınez-Muñoz et al., 2009;
Zhang et al., 2006). Similarly, SDP-pruning is expected to perform well also in regression
ensembles.

The cost of selecting a subensemble of size u by solving problem (3.15) is O(M3),
where M is the size of the initial ensemble. The computation of C(tr) is O(M2 · N).
Therefore, the total cost is O(M3 + M2 ·N), where N is the size of the training set D.
Extracting all near-optimal subensembles of sizes u = 1, 2, . . . ,M , implies solving (3.15)
M times, with an overall cost O(M4 + M3 ·N).

3.2.2.2 Ordered Aggregation

Another method that can be used to tackle the subensemble selection problem is ordered
aggregation (Hernández-Lobato et al., 2006b). Modifying the order in which predictors
are aggregated has been successfully used to prune ensembles in classification tasks
(Caruana and Niculescu-Mizil, 2004; Margineantu and Dietterich, 1997; Mart́ınez-Muñoz
and Suárez, 2004; Mart́ınez-Muñoz and Suárez, 2006, 2007). In this section we propose
to apply this ensemble pruning technique to regression bagging ensembles.

From the initial pool of M predictors generated by bagging, ordered aggregation
builds a sequence of nested subensembles, in which the subensemble of size u contains
the subensemble of size u − 1. The algorithm starts with an empty subensemble that
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grows by incorporating at each iteration the predictor that reduces the training error
of the enlarged subensemble the most. In particular, the predictor selected in the u-th
iteration is the one that minimizes the expression

su = arg min
k

u−2(

u−1
∑

i=1

u−1
∑

j=1

C(tr)
sisj

+ 2

u−1
∑

i=1

C(tr)
sik

+ C(tr)
kk ) , (3.17)

where k ∈ {1, .., N}\{s1 , s2..., su−1} and the indices {s1, s2..., su−1} label the predictors
that have been incorporated in the pruned ensemble at iteration u − 1. Figure 3.1
displays the pseudo-code for ordered aggregation.

Input: Training data D = {(x1, y1), ..., (xN , yN)} and vector of predictors

R = {f̂1(·), . . . , f̂M (·)}.

Output: Ordered vector of predictors R = {f̂s1(·), . . . , f̂sM
(·)}.

1. For i = 1, . . . , M

(a) For j = 1, . . . , M

i. Cij ← N−1
∑N

n=1

[(

f̂i(xn)− yn

)(

f̂j(xn)− yn

)]

2. s← empty vector

3. For u = 1, . . . , M

(a) min← +∞
(b) For k ∈ {1, . . . , M}\{s1, . . . , su}

i. value← u−2(
∑u−1

i=1

∑u−1
j=1 Csisj

+ 2
∑u−1

i=1 Csik + Ckk)

ii. if value < min

A. su ← k

B. min← value

4. return s

Figure 3.1: Algorithm that implements ordered aggregation.

This process can be seen as an ordering of the predictors of the complete ensem-
ble because the subensemble generated at iteration u includes all the predictors of the
subensemble generated at iteration u − 1. The subensemble of size u with 1 ≤ u ≤ M
is obtained by selecting the first u predictors from the ordered sequence. Note that
subensembles identified by ordered aggregation need not be optimal. In particular, the
optimal subensemble of size u (the one with the lowest mean squared error on the train-
ing data) need not include all the predictors of the optimal ensemble of size u − 1.
Nevertheless, ordered aggregation is expected to identify near-optimal solutions of the
subensemble selection problem.

The time-complexity of this algorithm, as a function of the number of elements in
the bagging ensemble, can be readily estimated. Each of the M iterations requires the
extraction of the predictor that minimizes (3.17) from the remaining pool of predictors.
This task has a cost O(((M + 1) − u) · u), where 1 ≤ u ≤ M is the current iteration.
Therefore, the total complexity of the ordering algorithm is O(M3). Finally, because
computing C(tr) takes O(M2 ·N) steps the final cost is O(M3 + M2 ·N). In contrast to
SDP-pruning, where selecting subensembles of different sizes requires separate executions
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of the algorithm, ordered aggregation generates a sequence of near-optimal subensembles
of increasing size at no additional cost.

3.2.2.3 Comparison with Optimal Subensembles

Both SDP-pruning and ordered aggregation generate different subensembles of size u
that could be suboptimal. To determine how close they are to the optimal subensembles,
these approximate solutions are compared with the exact ones, obtained by exhaustive
search. These experiments involve building 100 different bagging ensembles of M = 32
neural networks following the experimental procedure described in Section 3.2.3. For
each ensemble, optimal subensembles of sizes u = 1, . . . ,M are identified by exhaustive
search. SDP-pruning and ordered aggregation are then used to generate near-optimal
subensembles of different sizes. The experiments are carried out in the regression prob-
lem Servo. Figure 3.2 displays the percentage of predictors that appear both in the
optimal subensemble and in the approximate one (either the one identified by ordered
aggregation or by SDP-pruning) as a function of the subensemble size 1 ≤ u ≤ 32. The
curves show that the subensembles identified by SDP-pruning are almost identical to
those obtained by exhaustive search. Ordered aggregation identifies subensembles that
share on average at least 85% of their elements with the optimal ones.
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Figure 3.2: Average fraction of common predictors between the optimal subensem-
ble and subensembles obtained by SDP-pruning (top curve), or ordered aggregation
(bottom curve) as a function of the subensemble size. The regression problem is Servo.

Next, the prediction error of these subensembles is estimated in the training set and
in an independent test set. Optimality is defined in terms of the prediction accuracy in
the training set only. Therefore, the performance of subensembles that are optimal in
the training set need not be optimal in the test set. Figure 3.3 displays the evolution of
the average train and test error of the subensembles obtained by ordered aggregation,
SDP-pruning and exhaustive search as a function of the subensemble size. The error
of the original bagging ensemble is also displayed for reference. In bagging, the error
decreases almost monotonically as more predictors are incorporated into the ensemble.
This behavior is what should be expected from the random order in the aggregation
of predictors. The error curves of the near-optimal subensembles also show an initial
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Figure 3.3: Average train (top) and test (bottom) errors of the subensembles obtained
by means of ordered aggregation, SDP-pruning and the optimal subensembles found
by the exhaustive search algorithm. Optimality is defined in terms of the error in the
training set. The regression problem is Servo.

decrease. However, this decrease is steeper than in the standard bagging ensemble. At
intermediate subensemble sizes the error curves display a fairly broad minimum. Beyond
this minimum the error increases slowly and eventually approaches the error level of the
complete bagging ensemble from below. The curves for the training error of the optimal
subensembles identified by exhaustive search are a lower bound to the error curves of
subensembles obtained by means of SDP-pruning and ordered aggregation. The training
error curve for SDP-pruning is almost identical to the one corresponding to optimal
pruning. The curves for ordered aggregation are only slightly above the optimal one.
This means that even though some of the predictors included by ordered aggregation
replace others that appear in the optimal solution, their aggregate performance is still
close to being optimal.
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We note that the features observed in the error curves for the training set are also
present in the test error curves, albeit with some differences. Similarly as in training,
the minimum in the test error curves appears at intermediate subensemble sizes. The
value of this minimum error for the pruned subensembles is also significantly lower
than the best error of a standard bagging ensemble. In contrast to the training error
curves, there are no clear differences in generalization performance among the different
subensembles. Another notable difference is that the minimum appears earlier in the
aggregation process in the training error curve than in the error curve for the test set.
This means that it is difficult to exactly estimate from the training data where the
global minimum in the test error curve is. Nevertheless, the error curves are rather flat
around the minimum, so that small errors in the estimation of the size of the ensemble
that corresponds to the minimum do not have a large impact on the generalization
performance. The features displayed by the error curves shown are representative of
most regression problems investigated in this chapter and also appear in classification
problems (Mart́ınez-Muñoz et al., 2009).

3.2.3 Experiments

To assess the performance of SDP-pruning and ordered aggregation, experiments are
carried out on 20 regression problems from the UCI-Repository (Asuncion and Newman,
2007), from the Weka Data Mining Tool (Witten and Frank, 2005) and from other
sources (Breiman, 1999b; Chambers and Hastie, 1992; Friedman, 1991; Kung, 1986; R
Development Core Team, 2005). They include synthetic and real-world problems from
different fields of application. Table 3.1 displays some characteristics of the regression
tasks considered: the number of instances, the number of attributes and the source of
the different datasets. As base models we employ feed-forward neural networks with
a single hidden layer of sigmoidal neurons and linear units in the output layer. The
networks are trained during 1,000 epochs using the quasi-Newton optimization method
BFGS (Nocedal and Wright, 1999). A weight decay strategy is used in the training
process to reduce the amount of over-fitting (Krogh and Hertz, 1992). All computations
are performed using the neural networks package (Venables and Ripley, 2002) of the R
statistics software (R Development Core Team, 2005).

For each of the real-world datasets, 10-fold cross-validation is used to estimate the
squared regression error. This 10-fold cross-validation process is repeated 10 times for
different random partitions of the data. The values reported are averages of the cross-
validation errors over these different partitions of the data. The computation of each
10-fold cross-validation estimate involves the following steps: (i) Generate a random
partition of the original data into 10 disjoint sets to carry out 10-fold cross-validation.
In each of the folds, nine sets are used for training and one for validation. The attributes
of the data instances are normalized so that they have zero mean and unit variance in
the training set. (ii) For each of the ten partitions into training and test, generate a
bagging ensemble of 100 neural networks using bootstrap sampling from the training
set. For these neural networks, different architectures (3, 5, and 7 hidden units) are
explored. For the natural logarithm of the weight decay constant ten evenly-spaced
values in the interval [−6, 2] are considered. All possible combinations of the number
of hidden units and of the values of the weight decay constant are tried to determine
which set of parameters provides the best regression fit based on a separate 10-fold cross-
validation estimate on the training data. Once the optimal combination of parameters
has been found, the neural networks are trained over 1,000 epochs. (iii) The error
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Table 3.1: Characteristics of the datasets used in the experiments.

Dataset Cases Attr. Train/Test Source

AutoPrice 159 15 10-fold-cv Weka
Bodyfat 252 14 10-fold-cv Weka
Bolts 40 7 10-fold-cv Weka
Boston 506 13 10-fold-cv UCI-Repository
Chick 578 3 10-fold-cv R mlbench package
Fires 517 13 10-fold-cv UCI-Repository
Friedman1 - 10 200 / 2,000 (Friedman, 1991)
Friedman2 - 4 200 / 2,000 ”
Friedman3 - 4 200 / 2,000 ”
Loblolly 84 2 10-fold-cv (Kung, 1986)
Ozone 330 8 10-fold-cv UCI-Repository
Peak - 20 200 / 2,000 (Breiman, 1999b)
Pollution 60 15 10-fold-cv Weka
Sensory 576 11 10-fold-cv Weka
Servo 167 4 10-fold-cv UCI-Repository
Solder 720 5 10-fold-cv (Chambers and Hastie, 1992)
Theoph 132 4 10-fold-cv R mlbench package
Tooth 60 2 10-fold-cv ”
Wisconsin 198 35 10-fold-cv UCI-Repository

of each ensemble is estimated on the corresponding unseen data and these values are
averaged over the different folds to compute the cross-validation error. (iv) A single
neural network and a boosting ensemble of 100 members are also built for comparison
using the same network configuration as in the bagging ensemble. The boosting ensemble
is generated by the Adaboost.R2 algorithm using a linear loss function (Drucker, 1997).
(v) A subensemble of 20 neural networks (i.e. u = 20) is extracted from the original
pool of classifiers generated by bagging using SDP-pruning, as described in Section
3.2.2.1. The bagging ensemble is then ordered according to the algorithm described in
Section 3.2.2.2. Then, the first 20 networks of the ordered sequence are selected and
aggregated in a pruned subensemble. (vi) The error of each pruned ensemble, the single
neural network and the Adaboost.R2 ensemble is estimated on the corresponding unseen
data. The cross-validation errors over the different partitions considered are averaged
to compute the cross-validation error estimate. For the synthetic datasets (Friedman1,
Friedman2, Friedman3, and Peak) the individual neural networks and the ensembles
are generated and ordered using the procedure described above. However, instead of
averages over 10 different 10-fold cross-validation error estimates, the values reported
are averages over 100 independent realizations of the training and test datasets.

Table 3.2 shows the results for the average mean squared error estimated on the test
set for the different regression problems. The values in the first column correspond to the
error of a single neural network. The second column displays the error of the complete
bagging ensemble. The third column displays the error of the boosting ensemble. Finally,
the fourth column displays the error of the ensemble selected by SDP-pruning and the
fifth column the corresponding error for ordered aggregation. These results show that
bagging ensembles often perform better than a single neural network and that pruning
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improves the accuracy of bagging in most of the problems investigated. In particular,
pruned subensembles that contain only 20% of the initial predictors exhibit a consistently
good generalization performance in the regression problems investigated. As a matter
of fact, because the test error curves are rather flat around the minimum, any value
between 15% and 25% percent of the original pool of predictors gives similar results.
Pruned ensembles also outperform single networks and boosting ensembles in most of
the problems investigated.

To determine whether these improvements in accuracy are statistically significant
a paired Wilcoxon-test (Wilcoxon, 1968) is performed, as suggested by Demšar (2006).
Error values that are significantly better than bagging according to the Wilcoxon test at
a significance level of 5% are highlighted in boldface. Error values that are significantly
worse than bagging are underlined. In a similar way, error values that are significantly
better than boosting are marked with the symbol ◭. Values that are significantly worse
than boosting are marked with the symbol ⊳.

An overall comparison of the performance of the different methods in the collection
of problems investigated can be made using the framework proposed by Demšar (2006).
A Friedman test on the average ranks of each algorithm in the problems investigated
rejects the hypothesis that their performance in the different problems is equivalent with
a significance level of 5%. In consequence, a Nemenyi test is used to determine whether
the differences in average rank among the different algorithms are significant. Figure 3.4
displays the results of this test. In this figure, algorithms whose differences in perfor-
mance are not statistically significant at a significance level of 5% are connected with a
solid black line. The differences in performance between algorithms whose average ranks
are further than the critical difference (CD) are statistically significant. In the collection
of regression problems investigated ensembles pruned using ordered aggregation have a
better overall performance than the corresponding complete bagging ensembles, boosting
ensembles and single neural networks. The differences in average ranks are statistically
significant. Ensembles pruned by means of SDP-pruning also perform well. However,
the differences in performance with respect to complete bagging are not statistically
significant. Subensembles selected by ordered aggregation generally have a slightly bet-
ter generalization performance than subensembles selected by SDP-pruning, despite the
fact that the latter have lower errors in the training set.

The error curves in Figure 3.5 trace the dependence of the average test error curves
for bagging, ordered aggregation and boosting as a function of the ensemble size for a
representative subset of the regression problems investigated. For SDP-pruning, because
of its high computational cost, only the average error of a single subensemble of size
u = 20 is displayed. The average test error of a single neural network is marked as
an horizontal line. The curves for bagging and ordered aggregation exhibit a similar
qualitative behavior as those depicted in Figure 3.3. The decrease of the test error
is almost monotonous as the size of a randomly ordered bagging ensemble increases.
Modifying the order of the aggregation according to the procedure described leads to an
initially steeper descent of the error curves, which, with some exceptions (e.g. Solder,
Tooth) is followed by a broad minimum and a final rise to the error level of the complete
bagging ensemble. The performance of subensembles selected by SDP-pruning is similar
to those subensembles obtained by ordered aggregation for size u = 20. However, in
some cases SDP-pruning leads to slightly higher error rates (e.g. Tooth).
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Table 3.2: Average mean squared test error for a single neural network, for complete bagging ensembles, Adaboost.R2 ensembles, and pruned
ensembles, selected by SDP-pruning or by ordered aggregation.

Problem Neural Network Bagging Adaboost.R2 Pruned Bagging

Ordered Aggregation SDP-pruning

AutoPrice 1.17 · 107±8.61 · 106
⊳ 7.37 · 106±5.88 · 106

⊳ 5.56 · 106±4.02 · 106 6.32 · 106±4.97 · 106
⊳ 6.32 · 106±4.96 · 106

⊳

Bodyfat 2.96±3.76 1.89±2.76 ◭ 2.55±2.00 2.10±2.78 ◭ 2.12±2.78 ◭

Bolts 5.31 · 101±7.70 · 101
◭ 6.56 · 101±7.69 · 101

◭ 9.72 · 101±1.33 · 102 4.50 · 101±7.01 · 101
◭ 4.57 · 101±7.17 · 101

◭

Boston 1.27 · 101±6.43 ⊳ 1.15 · 101±6.40 ⊳ 1.00 · 101±4.29 1.07 · 101±5.49 ⊳ 1.07 · 101±5.50 ⊳

Chick 5.44 · 101±3.66 · 101
⊳ 6.57 · 101±3.58 · 101

⊳ 3.89 · 101±2.74 · 101 4.88 · 101±2.60 · 101
⊳ 4.82 · 101±2.43 · 101

⊳

Fires 1.82 · 103±4.04 · 103 1.55 · 103±3.49 · 103
⊳ 1.15 · 103±2.59 · 103 1.31 · 103±3.05 · 103

⊳ 1.32 · 103±3.06 · 103
⊳

Friedman1 4.82±1.29 ◭ 4.85±4.43 · 10−1
◭ 5.05±7.61 · 10−1 4.45±4.57 · 10−1

◭ 4.45±4.61 · 10−1
◭

Friedman2 2.68 · 104±8.93 · 103
⊳ 2.19 · 104±1.55 · 103 2.17 · 104±1.34 · 103 2.06 · 104±1.47 · 103

◭ 2.06 · 104±1.45 · 103
◭

Friedman3 1.83 · 10−2±2.46 · 10−3
⊳ 1.70 · 10−2±2.12 · 10−3

◭ 1.74 · 10−2±2.24 · 10−3 1.67 · 10−2±2.17 · 10−3
◭ 1.67 · 10−2±2.16 · 10−3

◭

Loblolly 4.45±8.93 ◭ 6.39±6.36 ◭ 1.09 · 101±9.60 3.93±6.22 ◭ 3.96±6.24 ◭

Orange 2.21 · 102±1.80 · 102 1.85 · 102±1.32 · 102 1.97 · 102±1.44 · 102 1.66 · 102±1.06 · 102
◭ 1.68 · 102±1.09 · 102

◭

Ozone 1.69 · 101±4.42 ◭ 1.65 · 101±4.28 ◭ 1.86 · 101±4.83 1.65 · 101±4.37 ◭ 1.65 · 101±4.37 ◭

Peak 3.16 · 101±5.29 ⊳ 2.63 · 101±3.37 ⊳ 2.47 · 101±2.34 2.37 · 101±3.37 ◭ 2.37 · 101±3.35 ◭

Pollution 5.90 · 103±6.54 · 103 3.94 · 103±3.25 · 103 7.50 · 103±1.12 · 104 3.20 · 103±2.47 · 103
◭ 3.25 · 103±2.49 · 103

◭

Sensory 5.34 · 10−1±9.46 · 10−2
◭ 5.35 · 10−1±9.23 · 10−2

◭ 5.63 · 10−1±9.84 · 10−2 5.20 · 10−1±9.18 · 10−2
◭ 5.19 · 10−1±9.11 · 10−2

◭

Servo 3.27 · 10−1±3.28 · 10−1
⊳ 2.63 · 10−1±2.35 · 10−1

⊳ 1.70 · 10−1±1.78 · 10−1 2.05 · 10−1±1.81 · 10−1
⊳ 2.03 · 10−1±1.77 · 10−1

⊳

Solder 9.04±3.37 ◭ 8.36±3.13 ◭ 9.44±3.53 8.41±3.20 ◭ 8.43±3.23 ◭

Theoph 5.30±3.77 ⊳ 4.43±2.27 ⊳ 3.04±2.15 3.41±2.01 ⊳ 3.42±2.00 ⊳

Tooth 1.40 · 101±6.89 ◭ 1.43 · 101±7.08 ◭ 1.52 · 101±7.92 1.44 · 101±7.20 ◭ 1.44 · 101±7.22 ◭

Wisconsin 9.64 · 102±2.66 · 102 9.18 · 102±2.48 · 102
◭ 9.70 · 102±2.31 · 102 9.13 · 102±2.40 · 102

◭ 9.13 · 102±2.39 · 102
◭
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Figure 3.4: Results of a Nemenyi test on the average ranks of the different regres-
sion systems: a single neural network, bagging, boosting (Adaboost.R2) and pruned
subensembles selected by SDP-pruning or by ordered aggregation. The critical differ-
ence (CD) between average ranks is displayed at the top of the figure.

The behavior of boosting ensembles is more heterogeneous, reflecting the lack of
robustness of this method. Boosting outperforms bagging, ordered aggregation and
SDP-pruning in a few regression problems (e.g. Boston, Peak). However, boosting has a
detrimental effect in others (e.g. Tooth, Pollution, Wisconsin). A similar deterioration
of performance of boosting has been detected in noisy classification problems (Dietterich,
2000b; Mart́ınez-Muñoz and Suárez, 2007). The origin of this behavior is that boosting
tends to assign larger weights to incorrectly labeled training instances, which can confuse
the learning algorithm. Reducing the error rate of those instances leads to over-fitting
and hence, to a poor generalization performance.

3.2.3.1 Bias-variance-covariance Analysis

In this section we carry out a bias-variance-covariance decomposition to analyze the
dependence of the error on the size of the ensemble and to investigate the mechanisms
by which ensemble learning and ensemble pruning can improve the generalization per-
formance. Since the predictors that make up a bagging ensemble are generated from
bootstrap samples of the same original training data D and they use the same learning
algorithm (e.g. neural networks with a fixed architecture), they can be seen as depen-

dent realizations of a random variable drawn from a probability distribution P
(

f̂i(·)
)

.

As shown by Ueda and Nakano (1996), the mean squared error of a regression ensemble
of size u is composed of three terms: the average bias, the average variance and the
average covariance of the individual predictors of the ensemble

L(u) = u−1Var + (1− u−1)Cov + Bias
2
, (3.18)

with the definitions

Bias = u−1
u
∑

i=1

Bias(f̂i), Var = u−1
u
∑

i=1

Var(f̂i),

Cov = (u− 1)−1u−1
∑

j 6=i

Cov(f̂i, f̂j) . (3.19)
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Figure 3.5: Test error curves for standard (randomly ordered) bagging, ordered
aggregation, and for Adaboost.R2 ensembles as a function of the ensemble size for a
variety of regression problems. The error of a single neural network is displayed as an
horizontal line for reference. The average test error for a subensemble of size u = 20
selected with SDP-pruning is marked with a cross.
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In standard bagging the expected variances and biases of all predictors are equal. There-
fore, the expected squared error of a standard bagging ensemble of size u is simply

L(u) = u−1Var + (1− u−1)Cov + Bias2 , (3.20)

where Var and Bias are the expected variance and bias of a predictor drawn from the

distribution P
(

f̂i(·)
)

and Cov is their average covariance.

Given an original bagging ensemble of size M , the selection strategies used in ordered
aggregation and in SDP-pruning have the effect of modifying the distribution of the
predictors that are part of the near-optimal subensembles of size u ≤ M . Instead of
being independent of the subensemble size, this distribution changes as new predictors

are incorporated into the partial subensemble. Let P
(

f̂i(·);u
)

denote the distribution

of the predictors that are part of the near-optimal subensemble of size u. The bias-
variance-covariance error decomposition for the near-optimal subensembles of size u is

L(u) = u−1Var(u) + (1− u−1)Cov(u) + Bias(u)2 , (3.21)

where Var(u) and Bias(u) are the expected variance and bias of a predictor drawn from

the distribution P
(

f̂i(·);u
)

and Cov(u) is the average covariance between the members

of a near-optimal subensemble of size u. As a result of the selection strategies, the
values of Bias(u) and Var(u) (the average bias and variance of a predictor in a near-
optimal subensemble of size u) are expected to be lower than Bias and Var (the average
bias and variance bias and variance of a predictor in a standard bagging ensemble) at
least up to intermediate subensemble sizes. A similar behavior is expected for Cov(u).
In this manner, near-optimal subensembles achieve lower errors than standard bagging
subensembles for u = 1, 2, . . . , (M − 1). Note that when u = M , the original ensemble

of size M is recovered, P
(

f̂i(·);u
)

= P
(

f̂i(·)
)

and Cov(M) = Cov.

The lowest error that standard bagging achieves is limu→∞L(u) = Bias2 + Cov ≥ 0.
Hence, it is possible for the subensemble at iteration u to have a lower error than this
asymptotic limit if the inequality

u−1Var(u) + (1− u−1)Cov(u) + Bias(u)2 < Bias2 + Cov (3.22)

is satisfied. This inequality is fulfilled if the approximate strategy selects from the
complete ensemble a set of predictors with low bias, low variance and small correlations
as well. The experiments carried out show that the inequality is fulfilled for a large
range of subensemble sizes.

Figure 3.6 displays the value of the average test error, and the values of its com-
ponents (average squared bias, variance and covariance) as a function of ensemble size
for standard bagging, ordered aggregation and SDP-pruning in the synthetic regression
problem Peak (Breiman, 2001). The original bagging ensemble is composed of 100 neural
networks with 5 units in the hidden layer. These networks are trained on independent
bootstrap samples generated from a training set of 200 instances. The test set is in-
dependent of the training data and consists of 2, 000 elements. Errors are estimated
by averaging over 1,000 realizations of the training set. The test error curves exhibit
similar features to the curves displayed in Figure 3.5. For standard bagging, the values
of the average squared bias, variance and covariance remain approximately constant as
the number of predictors included in the ensemble varies. In contrast with standard
bagging, the average squared bias, variance and covariance typically increase with size
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Figure 3.6: From top-left to bottom-right: average test error, squared bias, variance
and covariance as a function of ensemble size for bagging, ordered aggregation and
SDP-pruning for the synthetic regression problem Peak.

of the subensembles selected using ordered aggregation and SDP-pruning. A lower co-
variance among the ensemble members was also observed in (Liu and Yao, 1999) and is
a consequence of minimizing (3.5) (Brown et al., 2005b; Liu and Yao, 1999).

According to (3.20) and (3.21), as the size of the ensemble grows, the squared bias
and the covariance become the most important terms in the error decomposition. In
standard bagging the test error of the complete bagging ensemble is approximately equal
to the sum of the squared bias and the covariance term, in agreement with the infinite-
size limit of (3.20). The improvements in performance of both ordered aggregation and
SDP-pruning are based on incorporating first predictors with a low bias that also have
small correlations.

3.3 Pruning Parallel Classification Ensembles

There is a large body of theoretical and empirical research showing that the combination
of the predictions of complementary classifiers in ensemble methods can be an effective
strategy to improve the generalization performance of a single classifier (Breiman, 1996a,
2001; Bühlmann, 2003; Dietterich, 2000b; Mart́ınez-Muñoz and Suárez, 2005; Rodŕıguez
et al., 2006). In these methods the final ensemble decision for an unlabeled instance
is typically obtained by combining the individual decisions of all the classifiers in the
ensemble. In this section we seek to reduce the number of classifiers that need to be
queried to compute this decision. Specifically, we focus on homogeneous ensembles
composed of classifiers that are generated by applying a fixed learning algorithm to
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modified versions of the training data or by applying a randomized learning algorithm
to the same training data. Furthermore, we assume that the aggregated prediction of
the ensemble is computed by simple majority voting. If the classifiers are generated
independently given the training data, we show that is possible to estimate the outcome
of this voting process with a specified confidence level by polling only a subset of the
total classifiers in the ensemble (Hernández-Lobato et al., 2009). The procedure is
based on estimating the probability distribution of the remaining class label predictions
based on the decisions made by the classifiers that have already been queried. This
process corresponds to a Polya urn model with c = 1, for which an explicit form for the
probability mass function can be given (Johnson et al., 1997). This probability mass
function can then be used to estimate the probability that the majority class will not be
modified when the remaining votes of the ensemble members are taken into account. If
there is some tolerance to disagreements between the predictions of the partially polled
ensemble and of the complete ensemble, the voting process can be stopped when this
probability exceeds the specified confidence level. The final classification is the combined
decision of the polled classifiers only.

This dynamical instance-based (IB) pruning mechanism can be used to improve
the prediction efficiency of any classification ensemble provided that its members are
generated independently when conditioned to the training data and that majority voting
is used for combining the individual classifier predictions. Examples of ensembles of this
kind be found in (Breiman, 1996a, 2001; Bühlmann, 2003; Mart́ınez-Muñoz and Suárez,
2005; Rodŕıguez et al., 2006). In this section we present results for bagging (Breiman,
1996a) and random forests (Breiman, 2001), which are two representative ensemble
learning algorithms. Experiments on a variety of classification problems show that the
rate of disagreement in the class label predictions of complete ensembles and partially
polled ensembles are in the vicinity of the specified confidence level. Furthermore, only
small differences in generalization performance are found. When IB-pruning is used only
a subset of the predictors of the ensemble need to be queried. As a consequence, the
classification process can be significantly sped-up.

The method presented in this section uses a framework similar to the statistical
description of the evolution of the prediction error in majority voting algorithms as the
number of classifiers in the ensemble increases (Esposito and Saitta, 2003; Hansen and
Salamon, 1990; Lam and Suen, 1997; Mart́ınez-Muñoz and Suárez, 2005). However,
to our knowledge, the statistical properties of the aggregation process implemented in
majority voting have not been used as a basis for ensemble pruning.

3.3.1 Related Work

Before introducing IB-pruning, in this section we review some methods that have been
proposed to dynamically select, for each instance that has to be labeled, a small subset
of predictors from the original ensemble.

Fan et al. (2002) and Wang et al. (2003) designed a procedure to speed up classifica-
tion in ensembles based on ideas similar to the ones used in IB-pruning. In these articles,
the goal is to minimize the number of classifiers needed for prediction in cost-sensitive
applications. For this purpose, the distribution of the discrepancies between the predic-
tions of the subensemble and of the complete ensemble is assumed to be Gaussian. The
parameters of this distribution are then estimated on the training data. The method
proposed by Fan et al. (2002) assumes that the individual classifiers output continuous
probabilities and therefore cannot be applied without modifications to majority voting.
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A more serious difficulty is that in the classification problems investigated in Section
3.3.3 the discrepancies between the partial and the complete ensemble class label pre-
dictions tend to be smaller for the training set than for an independent test set. This
means that, in general, the estimates on the training data are biased. On average, for
the same confidence level, fewer classifiers need to be queried for training instances than
for instances not included in the training set.

There are other instance-based (dynamic) techniques for classifier selection based on
measures of local accuracy (Giacinto and Roli, 2001b; Ho et al., 1994; Tsymbal et al.,
2003; Tsymbal and Puuronen, 2000; Woods et al., 1997). The main goal of these methods
is to improve the overall performance of the ensemble by selecting and/or giving more
weight to the classifiers that perform best in instances that are similar to the one that
is being classified. Typically, a meta-level classifier that estimates the local errors of the
base classifiers for each new instance is employed in the classifier selection process. An
evaluation of different dynamic classifier selection methods for different types of ensemble
members is provided in (Canuto et al., 2007). As in IB-pruning, these methods do not
reduce the storage needs of the ensemble. All ensemble members need to be retained in
memory to resolve potential queries.

3.3.2 Statistical Instance-Based Ensemble Pruning

Consider an ensemble of T classifiers f̂1, . . . , f̂T . Assuming that majority voting is used
to combine the decisions of these elements, the class predicted by the ensemble for an
unlabeled instance, characterized by the vector of attributes x, is

arg max
y

T
∑

i=1

I

(

f̂i(x) = y
)

, y ∈ Y , (3.23)

where f̂i(x) is the class prediction of the i-th member of the ensemble, I(z) is an indicator
function that takes value one when z is satisfied and zero otherwise, and Y = {y1, . . . , yl}
is the set of possible class labels.

This voting scheme is usually implemented by first computing the outputs of all
the classifiers in the ensemble and then finding the majority class. However, for most
instances, polling all classifiers is not necessary to determine the final prediction. If in
the first t queries (t < T ) the difference of votes between the majority class and the
second most voted class is larger than T − t then the class prediction cannot be changed
by the remaining (still unknown) votes. In particular, for binary classification problems
the querying process can be stopped when more than 50% of the ensemble members
agree in their prediction. The querying process can actually be stopped earlier if one
is willing to accept that a specified (small) fraction of the class labels predicted by the
polled subensemble are in disagreement with the predictions of the complete ensemble.
With regard to the generalization performance, the disagreement rate is an upper bound
for the differences between the error rate of the polled subensemble and of the complete
ensemble. In practice, if the changes in class labels affect both correctly labeled examples
and misclassified examples in approximately equal numbers, the differences in error rates
should be much smaller than this upper bound.

Consider a parallel ensemble in which the individual classifiers are generated by
independent applications of a fixed learning algorithm to different modified versions
of the initial training data or by independent applications of a randomized learning
algorithm to the initial training data. That is, the ensemble classifiers are generated
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independently when conditioned to these training data. Note that this is different from
assuming that the ensemble members are unconditionally independent, which is typically
not the case. Under these conditions, the classification process of an arbitrary instance
x can be described in terms of the probability vector

π(x) = {π1(x), π2(x), . . . , πl(x)},
l
∑

i=1

πi(x) = 1, (3.24)

where πi(x) ≥ 0 is the probability that instance x is assigned class label yi by an
individual classifier in the ensemble. The values of these probabilities are unknown and
depend on the ensemble learning algorithm, on the particular classification problem and
on the current instance x. The classification of this instance by an ensemble of arbitrary
size t can be seen as a sequence of t independent trials, where each trial has a fixed
number of possible outcomes in the set Y. Given π(x), the probability distribution of the
possible outcomes of these t experiments is a multinomial distribution with probability
mass function

P(t|π) =
t!

t1!t2! . . . tl!
πt1

1 πt2
2 . . . πtl

l , (3.25)

where t = {t1, t2, . . . , tl;
∑l

i=1 ti = t}, and ti is the number of classifiers that predict
class yi for the current instance x. The class predicted by the ensemble of size t for
instance x is hence yk̂t

where

k̂t = arg max
i

{ti; i = 1, 2, . . . , l} . (3.26)

To simplify the notation, the dependence on x of π is dropped from (3.25), (3.26) and
the following expressions of this section.

Under the assumption that there is no information about the prior distribution of
classes and that all possible values of the probability vector in (3.25) are equally likely,
the prior for π, P(π), is a uniform distribution. This prior can be used in Bayes’ theorem
to compute the posterior probability distribution of the probability vector π, given the
observed values of t

P(π|t) =
P(t|π)P(π)

P(t)

=
πt1

1 πt2
2 . . . πtl

l
∫

S πt1
1 πt2

2 . . . πtl
l dπ1dπ2 . . . dπl

=
Γ(
∑l

i=1 ti + l)
∏l

i=1 Γ(ti + 1)
πt1

1 πt2
2 . . . πtl

l , (3.27)

where the region of integration, S, is the space of l-dimensional probability vectors and
Γ(z) is the gamma function (Abramowitz and Stegun, 1964). The posterior for π is a
Dirichlet distribution of order l with parameters (t1 +1, t2 +1, . . . , tl +1) (Bishop, 2006).

Our goal is to determine how the prediction of an ensemble of size T can be estimated
with a certain level of confidence after only t < T of its classifiers have been queried.
Consider the vector of integers that summarizes the predictions of the complete ensemble
of size T

T ≡ {T1, T2, . . . , Tl;

l
∑

i=1

Ti = T}, (3.28)
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where Ti is the number of members in the ensemble that predict class i for the instance
to be classified. Assuming that t ≡ {t1, t2, . . . , tl;

∑l
i=1 ti = t; ti ≤ Ti, i = 1, 2, . . . , l},

the vector that stores the predictions of the first t ≤ T classifiers in the ensemble, is
known, the probability distribution for T is

P(T|t) =

∫

S
P(T − t|π)P(π|t) dπ

=
(T − t)!

∏l
i=1(Ti − ti)!

∏l
i=1(ti + 1)Ti−ti

(t + l)T−t

, (3.29)

where {Ti ≥ ti, i = 1, 2, . . . , l}, and (a)n = a(a + 1) · · · (a + n − 1) is the Pocchammer
symbol, or rising factorial, with a and n nonnegative integers (Abramowitz and Stegun,
1964). Note that T − t is independent of t given π because classifiers are built on
independent executions of the learning algorithm.

Expression (3.29) describes a Polya urn model with ti+1 balls of color i, i = 1, 2, . . . , l
and c = 1. Hence, there are a total of t + l balls of l different colors. An experiment
with repeated extractions from the urn is made. In each extraction a ball from the urn
is selected at random and then returned to the urn together with c other balls of the
same color. For c = 1 the probability of extracting T− t balls of each color after T − t
extractions is precisely (3.29) (Johnson et al., 1997).

The probability that the class labels predicted by the subensemble of size t < T and
by the complete ensemble of size T coincide is

P̃(t, T ) =
∑

T

∗ (T − t)!
∏l

i=1(Ti − ti)!

∏l
i=1(ti + 1)Ti−ti

(t + l)T−t

, (3.30)

where the asterisk indicates that the summation runs over all values of T such that
∑l

i=1 Ti = T , {Ti ≥ ti, i = 1, 2, . . . , l}, and Tk̂t
> Tj for j 6= k̂t, where yk̂t

is the
majority class after querying the first t classifiers. If we are willing to accept that the
coincidence between these two predictions is not necessarily certain, but occurs with a
high confidence level α, (3.30) can be used to determine the number of classifiers needed
to estimate the prediction of the complete ensemble. In particular, the querying process
can be halted after t⋆ classifiers have been queried, if the vector of class predictions of
the current subensemble t⋆ is such that P̃(t⋆, T ) ≥ α.

For T > l the cost of computing (3.30) is exponential in the number of different class
labels l. In consequence, for typical ensemble sizes (T ≈ 100), the evaluation becomes
costly for problems with a large number of classes. However, in binary classification
problems, expression (3.30) can be readily computed. For a fixed value of T the table
for P̃(t, T ) has

(

T+3−1
T

)

= (T + 1)(T + 2)/2 elements. Namely, the number of different
ways in which T objects can be assigned to 3 classes with repetitions allowed. The
extra class corresponds to the predictions of the classifiers that have not been queried
which are unknown at this point. For a fixed value of α, this table can be replaced
by an equivalent table of size T , where the t-th entry of this table is t⋆(t;T, α), the
minimum number of observations of the majority class label required to obtain the same
prediction as the complete ensemble with a confidence level α, when t classifiers have
been queried. Thus, when classifying an instance, polling can be stopped when tprune

classifiers have been queried and the number of classifiers that predict the majority class
is t⋆(tprune;T, α). Figure 3.7 displays the critical values t⋆(t;T, α)/t for an ensemble of
T = 101 classifiers and a confidence level α = 99%. An ensemble with an odd number
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of classifiers is used to avoid ties in the majority voting algorithm. In particular, it is
necessary that the first 6 classifiers queried agree to have a probability above 99% that
this classification is the same as the one given by the complete ensemble. The first few
values of t⋆(t;T, α)/t are

6/6, 7/7, 8/8, 8/9, 9/10, 10/11, 10/12, 11/13, . . . (3.31)

The non-monotonic behavior observed in the graph arises from the fact that both
t⋆(t;T, α) and t are integers. As the number of available observations t increases,
the value of t⋆(t;T, α) approaches from above the limit for the complete ensemble
t⋆(t = 101;T = 101, α) = 51.

0 20 40 60 80

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

t

t*
/t

Figure 3.7: Minimum value of the fraction of classifiers that need to agree in their
class predictions to guarantee that, for a binary classification problem, the majority
class after polling t classifiers is the same as the one predicted by the complete ensemble
of size T = 101, with probability α = 99%, as a function of t, the number of classifiers
whose prediction is known.

Despite the fact that the computation of (3.30) can be costly for problems with a large
number of class labels, it is a one-time computation. The calculation of P̃(t, T ) relies
solely on the statistical properties of the majority voting process. These probabilities do
not depend on the details of the classification task to be solved or on the base classifiers
considered. Given a value for T , they need to be calculated only once and then stored in
a look-up table of size

(T+l
T

)

. Then, they can be used for any classification task and any
type of ensemble of independent classifiers. Similarly, for fixed values T and α, the table
t⋆(t;T, α) is valid for any binary classification problem and ensemble and only has to be
computed once. This means that the overhead of the instance-based ensemble pruning
procedure is negligible because it requires only retrieving values stored in a precomputed
look-up table. In consequence, the pruning rates obtained in the experiments directly
translate into a speed-up of the classification process.
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3.3.3 Experiments

A series of experiments is carried out to illustrate the theoretical analysis presented in the
previous section. These experiments are also used to assess the efficiency of instance-
based pruning in reducing the expected prediction time in a collection of benchmark
classification problems.

A first batch of experiments is carried out in a simple binary classification task that
can be analyzed in detail. The problem consists in predicting which points within the
square [−1, 1]2 are also inside a circumference of diameter

√
2, centered at the origin.

The Cartesian coordinates of the points x = (x1, x2) are used as attributes for pre-
diction. Instances are sampled uniformly in the square [−1, 1]2. The class assigned to
each instance is 1 if x2

1 + x2
2 ≥ 0.5, 0 otherwise. To make the problem more realistic,

the class labels in 5% of the training instances, selected at random, are changed. A
random forest is built by learning T = 101 trees from a fixed set of 100 labeled in-
stances (Breiman, 2001). The ensemble is tested on a set of 10, 000 points located on
a regular grid within the square [−1, 1]2. For each instance, querying is stopped when
the prediction of the subensemble of polled classifiers is expected to coincide with the
prediction of the complete ensemble at a confidence level α = 99%. Figure 3.8 dis-
plays the results of these experiments, averaged over 200 independent realizations of
the training set. In the graph on top, different shades of blue are used to denote the
average fraction of trees that are needed to output a decision with the specified level of
confidence for instances in that particular region of attribute space. Lighter shades of
blue correspond to smaller subensembles. Regions where it is necessary to query all the
classifiers in the original ensemble are drawn in blue. Contour curves are also displayed
for reference. The optimal decision boundary of the classification problem is marked
as a green circumference centered at the origin. We note that data instances that are
far from the optimal decision boundary generally require querying fewer classifiers. By
contrast, the amount of disagreement among classifiers is larger for data instances close
to the decision boundary. In consequence, more queries are needed to produce a deci-
sion at the same confidence level. Nevertheless, even in this region, the classification
of most of the instances requires knowing the prediction of only a fraction of the total
ensemble members. The histogram on the bottom displays the average fraction of test
examples whose class label can be predicted by querying a given number of classifiers
in the ensemble. We note the bimodal form of the histogram, where the mode around
30 corresponds to instances close to the classification boundary. For this problem, on
average, only 15% of the original classifiers need be polled to output a decision that
coincides with the prediction of the complete ensemble with a probability above 99%.

The performance of instance-based pruning is further evaluated in a set of bench-
mark binary classification problems, including datasets from the UCI Repository (Asun-
cion and Newman, 2007), the synthetic problems Twonorm, Ringnorm and Threenorm
from (Breiman, 1996b), Task 1 from the 2008 UC San Diego Data Mining Contest (see
http://mill.ucsd.edu/), which is a binary classification problem with a very unbalanced
class distribution, and the microarray dataset described in (Hedenfalk et al., 2001),
where the goal is to determine whether a particular patient carries the BRCA1 muta-
tion or not. The Boston problem from UCI is transformed into a binary classification
task by discriminating between houses worth more than $21, 000 and the rest. In the
problem Gisette the 20 features that are correlated the most with the class label are used
for prediction. The main features of the these datasets are displayed in Table 3.3. The
results reported are averages over 100 realizations of each problem. These correspond to
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Figure 3.8: Average numbers of trees used by bagging with instance-based pruning
(α = 99%) to estimate the class labels of test instances in the square [−1, 1]2. In the
graph at the top, different shades of blue are used to indicate the fraction of trees that
are needed on average to predict an instance located in that region of attribute space.
The histogram at the bottom displays the fraction of test instances whose class can be
predicted querying a given number of classifiers in the ensemble.
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either different simulations of the data in the problems in which a method to generate
labeled instances is available (300 instances for training, 1, 000 for testing) or to random
partitions into train (2/3 of the available data) and test sets (the remaining 1/3) in the
remaining sets. In each experiment a bagging ensemble of pruned CART trees (Breiman
et al., 1984) and a random forest of 101 elements are built. The predictions of the
complete ensembles are compared with the predictions of the corresponding ensembles
pruned using instance-based (IB) pruning with α = 99%. Note that it is not necessary
to query all the classifiers to determine the class prediction of the complete ensemble for
a given instance with certainty. No further queries are required when the count for the
majority class is larger than 50% of the number of classifiers in the original ensemble.
Therefore, in an ensemble of size T = 101 polling can be stopped without loss of rele-
vant information when 51 classifiers agree in their class prediction. This corresponds to
IB-pruning with α = 100%, and provides a lower bound for the pruning rates that can
be achieved.

Table 3.3: Datasets used in the experiments.

Problem Attributes Instances

Australian 14 690
Boston 13 506
Breast 9 699
Gisette 20 6,000
Heart 13 270
Hepatitis 19 155
Ionosphere 34 351
Liver 6 345
Magic 10 19,020
Microarray 3,226 22
Mushroom 20 8,124
Pima 8 768
Ringnorm 20 -
Sonar 60 208
Spam 57 4,601
Threenorm 20 -
Tic-tac-toe 9 958
Twonorm 20 -
Task 1 20 40,000
Votes 16 435

One can ask whether it is actually necessary to use a different stopping point for
each instance or whether a fixed pruning rate is sufficient to achieve predictions that are
close to those of the complete ensemble. To elucidate this question, the results obtained
by an ensemble that queries a subset of fixed size, independently of the instance that
is being classified, are reported as well. The number of classifiers queried in fixed-rate
(FR) pruning is the ceiling of the average number of classifiers obtained by IB-pruning
with α = 99%.

Table 3.4 shows the percentage of disagreement in the test set between the class
prediction of the original complete ensembles and the pruned ones for bagging (columns
2 and 3) and for random forests (columns 4 and 5). The results are given in the format
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average ± standard deviation. For IB-pruning, the average disagreement rates are in
the vicinity of the expected value 100% − α = 1%, and generally below it. In contrast,
when a fixed ensemble size is used (i.e., in FR-Bag and FR-RF), these rates need not be
close to this target and can be rather large. The disagreement rates are in fact an upper
bound for the differences in classification error. Even when the disagreement rates are
large, similar error rates can be found if the changes in class label affect approximately
the same numbers of correctly and incorrectly classified instances.

Table 3.4: Disagreement rates in % between complete and pruned ensembles.

Bagging Random Forests
Problem IB-Bag FR-Bag IB-RF FR-RF

Australian 0.0 ± 0.0 0.4 ± 1.4 0.4 ± 0.4 4.3 ± 1.5
Boston 0.2 ± 0.4 3.0 ± 2.4 0.4 ± 0.5 4.9 ± 1.6
Breast 0.1 ± 0.2 1.2 ± 0.8 0.1 ± 0.2 1.3 ± 0.7
Gisette 0.1 ± 0.1 1.3 ± 0.4 0.1 ± 0.1 2.0 ± 0.4
Heart 0.3 ± 1.0 4.2 ± 3.1 0.6 ± 0.8 5.3 ± 2.3
Hepatitis 0.0 ± 0.2 1.2 ± 2.9 0.4 ± 0.8 5.2 ± 3.1
Ionosphere 0.1 ± 0.5 2.2 ± 2.0 0.1 ± 0.3 2.5 ± 1.4
Liver 0.7 ± 1.4 6.0 ± 4.0 1.0 ± 1.0 7.9 ± 2.8
Magic 0.1 ± 0.1 2.2 ± 0.3 0.3 ± 0.1 3.9 ± 0.3
Microarray 0.2 ± 1.8 2.1 ± 8.0 0.8 ± 3.0 6.6 ± 9.1
Mushroom 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Pima 0.3 ± 0.6 3.3 ± 2.1 0.6 ± 0.5 6.0 ± 1.7
Ringnorm 0.5 ± 0.3 5.7 ± 1.2 0.4 ± 0.2 4.9 ± 0.9
Sonar 0.2 ± 0.6 4.3 ± 3.4 0.9 ± 1.3 7.9 ± 3.2
Spam 0.1 ± 0.1 1.7 ± 0.4 0.2 ± 0.1 2.3 ± 0.4
Threenorm 1.0 ± 0.5 7.6 ± 1.5 1.0 ± 0.3 7.9 ± 1.0
Tic-tac-toe 0.1 ± 0.3 2.2 ± 0.9 0.3 ± 0.3 3.3 ± 1.2
Twonorm 0.6 ± 0.3 5.4 ± 1.0 0.4 ± 0.2 4.3 ± 0.7
Task 1 0.0 ± 0.0 1.1 ± 0.2 0.1 ± 0.0 1.9 ± 0.1
Votes 0.0 ± 0.1 0.3 ± 0.7 0.1 ± 0.2 1.5 ± 1.2

Tables 3.5 and 3.6 display the results of experiments for the error rate and size of
the pruned ensembles in bagging and random forests, respectively. Columns 2 to 4
of these tables display the test error of the complete ensembles, of ensembles pruned
with IB-pruning using α = 99% (IB-Bag in Table 3.5 and IB-RF in Table 3.6) and of
ensembles pruned with a fixed rate (FR-Bag in Table 3.5 and FR-RF in Table 3.6),
respectively. These results confirm that random forests generally outperform bagging
(Geurts et al., 2006; Rodŕıguez et al., 2006). The differences in performance with respect
to the original ensemble when instance-based pruning is used are fairly small. The error
rates for fixed-rate pruning are generally larger, especially in random forests.

The average number of trees that need to be queried to determine the complete
ensemble prediction at a confidence level α is tabulated in the fifth and sixth columns of
Tables 3.5 and 3.6. Column 5 corresponds to IB-pruned ensembles with α = 100%, which
means that these predictions coincide with those of the complete ensemble. Column 6
corresponds to instance-based pruning with α = 99% (IB-Bag and IB-FR). Since the
overhead to determine when to stop querying is negligible (one simply needs to compare
the majority class count with a critical value, stored in a precalculated look-up table),
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Table 3.5: Error rates and number of trees in pruned ensembles for bagging.

Test error Number of trees speed-up
Problem Bagging IB-Bag FR-Bag α = 100% α = 99% factor

Australian 14.5±1.9 14.5±1.9 14.5±2.0 52.5±1.1 7.0±1.5 7.7±1.0
Boston 17.1±3.0 17.1±3.0 17.1±2.9 57.4±1.5 12.4±2.3 4.8±0.8
Breast 5.0±1.5 5.0±1.5 5.1±1.6 53.9±0.5 8.6±0.8 6.3±0.5
Gisette 9.1±0.6 9.1±0.6 9.2±0.7 53.5±0.2 8.4±0.4 6.4±0.3
Heart 20.8±4.7 20.8±4.6 21.2±4.5 63.6±2.3 19.1±3.9 3.5±0.7
Hepatitis 21.2±4.4 21.3±4.4 21.1±4.6 55.2±2.0 9.1±3.0 6.5±1.5
Ionosphere 9.0±2.8 9.0±2.9 9.5±3.0 56.1±1.4 10.5±2.1 5.5±1.0
Liver 33.9±5.6 34.0±5.7 34.6±5.9 68.4±3.1 23.2±5.6 3.1±0.8
Magic 14.3±0.5 14.3±0.5 14.5±0.5 55.6±0.2 10.5±0.3 5.3±0.1
Microarray 30.2±11.3 30.2±11.4 30.0±12.0 60.0±6.4 13.2±9.4 6.0±2.4
Mushroom 0.0±0.1 0.0±0.1 0.0±0.1 51.0±0.0 6.0±0.0 8.5±0.0
Pima 25.4±2.6 25.4±2.7 25.7±2.6 58.9±1.6 13.5±2.4 4.5±0.9
Ringnorm 12.2±3.0 12.3±3.0 13.3±2.8 68.3±1.3 23.7±1.8 2.9±0.2
Sonar 25.5±4.4 25.5±4.4 25.8±4.2 65.2±3.9 19.2±5.5 3.6±1.0
Spam 7.6±0.7 7.6±0.7 7.9±0.7 54.6±0.2 9.4±0.4 5.8±0.2
Threenorm 23.9±3.4 24.1±3.3 24.9±3.2 75.1±1.6 32.9±2.9 2.3±0.2
Tic-tac-toe 2.6±1.1 2.7±1.1 3.9±1.3 57.8±0.6 11.6±1.0 5.0±0.4
Twonorm 9.8±2.9 10.0±2.9 11.3±2.7 69.0±0.6 24.2±1.2 2.9±0.1
Task 1 6.1±0.2 6.1±0.2 6.2±0.2 52.8±0.1 7.7±0.1 6.8±0.1
Votes 4.6±1.3 4.6±1.3 4.7±1.4 51.7±0.3 6.5±0.5 8.0±0.5

1 2 3

FR−BagBagging
IB−Bag

CD

Figure 3.9: Average ranks in classification performance for complete bagging, bagging
ensembles pruned using IB-pruning with α = 99% (IB-Bag), and bagging ensembles
pruned with a fixed rate (FR-Bag). The significance of the differences in average rank
of the different ensembles is determined using a Nemenyi test. The critical value for
the differences (CD) is given by the length of the segment plotted at the top.
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Table 3.6: Error rates and number of trees in pruned ensembles for random forests.

Test error Number of trees speed-up
Problem RF IB-RF FR-RF α = 100% α = 99% factor

Australian 13.2±1.9 13.3±1.9 13.7±1.7 63.1±0.9 17.4±1.6 3.7±0.3
Boston 13.4±2.2 13.4±2.2 14.0±2.5 62.6±1.0 17.9±1.7 3.5±0.3
Breast 3.2±0.9 3.2±0.9 3.9±1.1 54.3±0.5 8.9±0.7 6.1±0.4
Gisette 7.8±0.5 7.8±0.5 8.2±0.5 55.8±0.2 10.3±0.3 5.4±0.2
Heart 17.7±3.5 17.7±3.6 18.5±3.7 67.5±1.4 22.5±2.6 3.0±0.3
Hepatitis 15.9±4.3 16.0±4.3 16.2±4.2 64.0±2.2 19.6±3.6 3.4±0.6
Ionosphere 6.8±2.1 6.8±2.1 7.5±2.3 58.8±1.0 12.6±1.7 4.7±0.6
Liver 28.7±3.7 28.8±3.6 30.2±3.7 76.0±1.5 34.6±3.0 2.2±0.2
Magic 12.2±0.4 12.2±0.4 12.9±0.4 61.7±0.2 15.9±0.3 3.9±0.1
Microarray 26.8±13.6 26.5±14.1 26.9±14.4 74.6±4.8 31.1±10.7 2.7±0.9
Mushroom 0.0±0.0 0.0±0.0 0.0±0.0 51.1±0.0 6.1±0.0 8.4±0.0
Pima 24.3±2.0 24.3±2.1 25.0±2.2 69.5±0.9 25.4±1.9 2.7±0.2
Ringnorm 6.7±1.1 6.8±1.1 8.5±1.2 68.7±0.9 22.9±1.2 3.0±0.1
Sonar 18.8±4.5 19.0±4.5 19.6±4.8 74.4±1.4 32.7±3.3 2.3±0.2
Spam 5.1±0.5 5.1±0.5 5.7±0.6 57.4±0.3 11.5±0.4 5.0±0.2
Threenorm 17.2±1.5 17.3±1.5 18.9±1.6 76.9±0.7 35.4±1.3 2.2±0.1
Tic-tac-toe 2.4±0.9 2.6±0.9 4.5±1.4 64.9±0.6 18.0±1.3 3.6±0.2
Twonorm 4.4±0.8 4.5±0.8 6.4±0.8 67.2±0.4 20.9±0.7 3.2±0.1
Task 1 5.3±0.2 5.3±0.2 5.6±0.2 55.6±0.1 10.1±0.1 5.5±0.1
Votes 3.8±1.4 3.9±1.3 4.4±1.5 55.1±0.8 9.3±1.1 6.0±0.6

1 2 3

FR−RFRF
IB−RF

CD

Figure 3.10: Average ranks in classification performance for random forests (RF),
random forests pruned using IB-pruning with α = 99% (IB-RF), and random forests
pruned with a fixed rate (FR-RF). The significance of the differences in average rank
of the different ensembles is determined using a Nemenyi test. The critical value for
the differences (CD) is given by the length of the segment plotted at the top.
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the reduction in ensemble size by pruning directly entails a reduction in the time needed
to classify a given instance. Column 7 displays the factor by which the classification
time is reduced when statistical instance-based pruning is used. This speed-up factor
in classification varies between ≈ 2 and ≈ 8.5, depending on the problem considered.
Problems that are simple for classification trees, such as the mushroom problem, need
on average very few classifiers to achieve good predictions. In contrast, for threenorm,
which is a difficult task for classification trees, a large number of trees is required to reach
a decision. In general, random forests need to query more trees than bagging. This is a
consequence of the larger variability introduced by the random forests algorithm when
building the individual classifiers. In consequence, the ensemble members in random
forests tend to be more diverse than those generated in bagging and typically agree less
frequently in their predictions.

The performance of the different ensembles is compared using the statistical method-
ology proposed by Demšar (2006). A Friedman test provides evidence of statistically
significant differences in performance with a significance level of 5% both for bagging
and for random forests. Then, a Nemenyi test is carried out to compare the performance
of the different ensembles in terms of their average ranks in the classification problems
investigated. The results of this test for a significance level of 5% are displayed in Figure
3.9 for bagging and on Figure 3.10 for random forests. These figures show that ensembles
pruned using a fixed rate perform significantly worse than those obtained by instance-
based pruning. By contrast, the empirical evidence is insufficient to determine whether
the differences in performance between the complete ensembles and the corresponding
subensembles selected with instance-based pruning are statistically significant. These
results underscore the importance of determining the appropriate pruning rate for each
specific instance.

3.4 Conclusions

Ensemble methods have the drawback that they generally require the combination of a
large number of predictors to guarantee convergence of the ensemble error. Therefore,
these methods demand large memory resources to store the ensemble members. They can
also take long time to yield class predictions for unlabeled instances. A possible solution
to these problems is to use ensemble pruning methods. These techniques replace the
original ensemble by a representative subset of predictors whose combined performance
is equivalent (and sometimes better) than the performance of the complete original
ensemble.

In this chapter different ensemble pruning methods have been analyzed. The first
two methods can be used in regression ensembles: SDP-pruning and ordered aggrega-
tion. Both SDP-pruning and ordered aggregation give approximate solutions for the
problem of selecting an optimal subensemble from a regression bagging ensemble. This
is a difficult problem that is shown to be NP-hard. The approximation obtained by SDP-
pruning is based on a semidefinite programming relaxation of the original subensemble
selection problem. This method is an extension to regression ensembles of the work
of Zhang et al. (2006), focused on classification ensembles. On the other hand, or-
dered aggregation follows a greedy approach. Starting with an empty subensemble,
ordered aggregation iteratively incorporates into the current subensemble the predictor
that reduces the training error of the enlarged subensemble the most. Even though
these approximate strategies need not give optimal solutions, a detailed analysis in en-
sembles of intermediate size shows that the subensembles selected have a near-optimal



Chapter 3. Ensemble Pruning Methods 74

performance. Furthermore, they share a large fraction of predictors with the optimal
subensembles found by exhaustive search.

The error of standard bagging ensembles typically decreases monotonically as the size
of the ensemble increases. By contrast, for the subensembles selected by SDP-pruning
or ordered aggregation, the curves that trace the dependence of the subensemble error
as a function of its size show that the minimum error is attained in subensembles of
intermediate size. The features of these curves are qualitatively similar for both the
training and testing errors. However, the minimum in the test error curves appears at
larger sizes than in the curves for the training error. This minimum is generally below
the asymptotic error of the complete bagging ensemble. This means that generalization
performance of the ensemble can be improved by retaining only a subset of the predictors
generated.

An extensive empirical investigation shows that pruning a regression bagging ensem-
ble by retaining only 20% of the original networks in the ensemble, either by SDP-pruning
or ordered aggregation, generally leads to improvements in the prediction accuracy.
Pruned ensembles also have a better overall performance than a single neural network
or ensembles generated with the Adaboost.R2 algorithm, an extension of boosting for
regression (Drucker, 1997). A bias-variance-covariance decomposition of the test error
shows that the key to the improvements in generalization performance is the selection
of subsets of predictors whose bias is low and whose correlations are small.

The third ensemble pruning method analyzed in this chapter is instance-based (IB)
pruning. This method can be used to speed-up the prediction process of parallel classi-
fication ensembles that use majority voting for output combination and whose elements
are generated independently when conditioned to the training data. At each interme-
diate step of the majority voting process, IB-pruning uses Bayes’ theorem to update
an estiamte of the probability that the complete ensemble eventually predicts a given
class label. For this, the evidence available from the ouputs of the classifiers that have
already been queried is used. The voting process is stopped when the evidence that
the final ensemble prediction will coincide with the current majority class is sufficiently
large. The number of queries required to stop depends on the instance that is being
classified. For some instances for which the ensemble members tend to agree, only a
few classifiers need to be queried to gather sufficient evidence about the final prediction.
Other instances, typically those that are close to the classification boundary, require
a larger number of classifiers. Given that the time needed to determine when to stop
querying is negligible in IB-pruning, stopping this process before all classifier outputs
are computed directly translates into an improvement of the classification time.

Unlike ordered aggregation or SDP-pruning, IB-pruning is not designed to improve
the generalization performance of the original ensemble. However, an empirical investi-
gation using two parallel ensemble methods, bagging and random forests, demonstrates
that IB-pruning reduces the number of classifiers that need to be queried without a sig-
nificant deterioration in the generalization performance of the ensemble. In particular,
the average number of classifiers needed for classification is substantially reduced in all
the problems investigated. Additionaly, the generalization performance of IB-pruned
ensembles is comparable to the corresponding complete ensembles.

In the next chapter the statistical analysis of majority voting used in IB-pruning will
be used to estimate the appropiate size of parallel classification ensembles.



Chapter 4
Optimal Size of Parallel Ensembles

We propose to determine the optimal size of a parallel ensemble by estimating

the minimum number of classifiers that are required to obtain stable aggregate

predictions. Assuming that majority voting is used, a statistical description of the

convergence of the ensemble prediction to its asymptotic (infinite size) limit is given.

The analysis of the voting process shows that for most test instances the ensemble

prediction stabilizes after only a few classifiers are polled. By contrast, a small

but non-negligible fraction of these instances requires a large number of classifier

queries to reach a stable prediction. The optimal ensemble size is determined as

the minimum number of classifiers that are needed, on average, to estimate the

infinite ensemble prediction at a given confidence level, α. This approach differs from

previous proposals, which are based on determining the size for which the prediction

error stabilizes. Specifically, it does not require estimates of the generalization

performance of the ensemble, which can be unreliable. Its validity is very general

because it is based solely on the statistical convergence of majority voting. Extensive

experiments using representative parallel ensembles (bagging and random forests)

illustrate the application of the proposed framework in a wide range of classification

problems.

4.1 Introduction

The use of ensembles in classification problems has been the object of numerous in-
vestigations (Banfield et al., 2007; Breiman, 1996a, 2001; Bühlmann, 2003; Dietterich,
2000b; Mart́ınez-Muñoz and Suárez, 2005; Rodŕıguez et al., 2006). These studies show
that combining the decisions of complementary classifiers is an effective mechanism that
improves the generalization performance of a single predictor. In this chapter we pro-
pose a method to determine the optimal size of parallel ensembles composed of classifiers
of the same type. The procedure is valid for all classification tasks and for ensembles
composed of any kind of base learners: decision trees, decision stumps, neural networks,
support vector machines, etc. The only assumption is that the classifiers that make
up the ensemble are generated independently when conditioned to the training data,
and that the final prediction is made using simple majority voting. Examples of ensem-
bles of this type are bagging (Breiman, 1996a), variants of bagging (Bühlmann, 2003),

75
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random forests (Breiman, 2001), class-switching ensembles (Breiman, 2000; Mart́ınez-
Muñoz and Suárez, 2005), rotation forest (Rodŕıguez et al., 2006), extra-trees (Geurts
et al., 2006), etc.

Extensive empirical evidence shows that in many classification problems the gener-
alization error of parallel ensembles decreases monotonically as the size of the ensemble
increases (Mart́ınez-Muñoz and Suárez, 2005; Opitz and Maclin, 1999; Schapire et al.,
1998). However, the gains that can be achieved by incorporating additional classifiers
become progressively smaller as the ensemble grows. Therefore, it is reasonable to stop
aggregating classifiers when the probability of changes in the ensemble output that arise
from considering additional predictions is below a given threshold. In this work we use
the statistical description of the evolution of the class prediction by majority voting as
the number of classifiers in the ensemble increases to determine when a sufficient number
of classifiers have been included in the ensemble (Esposito and Saitta, 2003; Hansen and
Salamon, 1990; Kuncheva et al., 2003; Lam and Suen, 1997; Narasimhamurthy, 2005;
Ruta and Gabrys, 2002). This analysis shows that for most test instances only a small
number of queries are needed to obtain a class label prediction that coincides with the
asymptotic classification with a high confidence level. By contrast, a small number of
these instances require polling exceedingly large numbers of classifiers to reach a stable
prediction. Therefore, it is not possible to determine a fixed size for the ensemble so
that the finite ensemble prediction coincides with the asymptotic (infinite ensemble)
prediction for every instance with a specified probability.

Instead of enforcing convergence guarantees for every test instance, we propose to
determine the optimal ensemble size by requiring that on average, the predictions coin-
cide with the infinite ensemble classification with a probability of at least α. The value
of α is fixed by the user depending on the desired level of confidence in the stability
of the predictions. Larger values of α require larger ensembles. In general, this value
should be close to but smaller than 1, e.g. α = 99%. Thus, the optimal ensemble size is
determined as the minimum size required for convergence to the asymptotic limit with
the specified confidence level α. The differences in error between the finite and the in-
finite ensemble are bounded from above by 100%− α, which is the probability that the
predictions of the finite and of the infinite ensembles differ. In practice, these discrep-
ancies occur with approximately equal frequency in correctly and incorrectly classified
instances. Therefore, the differences in performance between the finite and the infinite
ensembles are generally much smaller than this bound.

The main contribution of this research is the use of the convergence properties of
majority voting to address the problem of determining the optimal size of the ensemble:
The aggregation of classifiers in the ensemble is stopped when the class label predicted
is not expected to change by performing further queries. Once the predictions of the
ensemble on the test instances stabilize, relevant measures of performance, such as gen-
eralization error, the confusion matrix or the margin, also become stable. The advantage
of the strategy proposed is its general validity, because it relies solely on the statistical
properties of majority voting. Specifically, to determine the convergence of the ensemble
prediction, it is not necessary to know the true class labels of the instances. In most
previous investigations the optimal ensemble size is determined by aggregating classifiers
until an estimate of the generalization error stabilizes with a specified degree of accuracy
(Banfield et al., 2007; Fumera et al., 2008; Latinne et al., 2001). Methods based on the
convergence of the error require the design of reliable estimators of the generalization
performance and could be affected by over-fitting.
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One of the earlier proposals to select the optimal ensemble size is based on estimating
minimum number of classifiers that are needed to obtain a prediction accuracy similar to
a larger ensemble (Latinne et al., 2001). In this work, the McNemar non-parametric test
is used to determine whether the differences between the predictions on a validation set of
ensembles of sizes T and t with t < T are statistically significant. The size of the optimal
ensemble is set to t⋆, which is the minimum size of a subensemble whose performance
does not significantly differ from an ensemble of T classifiers, with T sufficiently large.
In (Banfield et al., 2007), the out-of-bag data (Breiman, 1996c) are used to estimate the
generalization error. First, the dependence of the out-of-bag error estimate on the size
of the ensemble is smoothed by averaging over a sliding window of size 5. Then, the
algorithm identifies the ensemble that has the best accuracy (i.e., the lowest smoothed
value the error estimated on the out-of-bag data) among ensembles of sizes 1 to 20.
Progressively larger ensembles are processed in batches of 20, until no improvement in
accuracy is found. At this point, the algorithm returns the ensemble with the maximum
accuracy. The major advantage of this approach is that it does not require to over-
produce and then discard classifiers. Finally, the theoretical analysis of the dependence
of the generalization error on the size of the ensemble size performed in (Fumera et al.,
2008) can be used to select ensembles of optimal size. Instead of majority voting, this
analysis assumes that the individual classifiers output a probability level and that the
global prediction is obtained by a linear combination of these probabilities.

The organization of the chapter is as follows: in Section 4.2 we derive the probabilistic
framework for the estimation of the optimal ensemble size. Then, in Section 4.3 we carry
out some experiments for the validation of the proposed method. Finally, Section 4.4
summarizes the conclusions of this chapter.

4.2 Estimation of the Optimal Ensemble Size

Consider an ensemble composed of T classifiers f̂1, . . . , f̂T . As described in Section 3.3.2,
when majority voting is used to combine the decisions of the individual classifiers, the
global ensemble prediction for an unlabeled instance x is

ŷT = arg max
y

T
∑

i=1

I(f̂i(x) = y), y ∈ Y , (4.1)

where I(z) is an indicator function that takes value one when z is satisfied and zero
otherwise, and Y = {y1, . . . , yl} is the set of possible class labels.

If the individual classifiers in the ensemble are built independently when conditioned
to the training data 1, the polling process defined in (4.1) can be described as a sequence
of T independent trials, where the outcome of each trial is in the set Y. Under these
conditions, the distribution of class votes is multinomial

P(t|T,π(x)) =
T !

t1!, . . . tl!
π(x)t11 . . . π(x)tll , (4.2)

where ti is the number of classifiers that predict class label yi, t = (t1, t2, . . . , tl), with
∑l

i=1 ti = T , and π(x) is a probability vector that determines the probability that an
ensemble classifier assigns each different class label to the instance characterized by the

1Note that this is different from assuming that the classifiers are unconditionally independent, which
is not typically the case in classification ensembles.
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Figure 4.1: (left) Probability that an individual ensemble classifier predicts class y1

as a function of π1 for different values of T . (right) Histogram of 10, 000 samples from
the probability distribution of π1, denoted f(π1), for the Twonorm binary classification
problem. The estimates are obtained using a random forest (RF) composed of 10, 000
trees. This ensemble is built on a fixed training set with 300 labeled instances.

attribute vector x. Recall that the values of these probabilities are in general unknown
and they depend on the algorithm used to build the base learners, on the particular
classification problem and on the current instance x. To simplify the notation, the
dependence on x of the probability vector π and of the vector of votes t is removed from
these and the following expressions.

Given π, the probability that an ensemble of size T assigns class label yi to instance
x is the sum of (4.2) over all ensemble predictions in which class yi receives more votes
than any other class. For binary classification problems (i.e. l = 2) this probability is

P(ŷT = y1|T, π1) =
T
∑

t1=⌈T
2
⌉

(

T

t1

)

πt1
1 (1− π1)

T−t1 = Iπ1

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

, (4.3)

where Ix(a, b) is the regularized incomplete beta function (Abramowitz and Stegun,
1964).

Figure 4.1 (left) displays, for different values of the ensemble size T , the dependence
of the probability that the ensemble predicts class y1 (4.3) as a function of π1, the
probability that an individual classifier predicts class y1. Note that for T = 1, (4.3)
is simply the identity function. As T grows, (4.3) asymptotically approaches a step
function

lim
T→∞

P(ŷT = y1|T, π1) =











1 if π1 > 1/2,

1/2 if π1 = 1/2,

0 if π1 < 1/2.

(4.4)

Figure 4.1 (right) displays a histogram of 10, 000 samples from the probability den-
sity function f(π1) of the π1 probability values for the Twonorm classification problem
(Breiman, 1998). The estimations are performed using random forests (RF) of 10, 000
trees (Breiman, 2001). The individual decision trees are built using a fixed training set
of 300 instances. The estimations of π1 are made on an independent test set of 10, 000
instances. For each test instance the value of π1 is estimated as the fraction of classi-
fiers that predict class label y1. The probability density function estimated is bimodal.
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This means for some instances the classifiers tend to predict class y1 more often and
for other instances the prediction class y2 is more frequent. This bimodality should be
expected, because there are instances of both classes in approximately equal numbers.
There are also some data instances for which approximately half of the predictions are
class y1 and the rest class y2. These instances are located near the decision boundaries
of the classifiers. The corresponding values of π1 for these instances are in the vicinity of
1/2. Therefore, more classifiers need to be queried for convergence to a stable ensemble
prediction. It is important that these estimations be made on a set that is indepen-
dent of the training data: the estimate of the probability density using the training set,
ftrain(π1), is biased because classifiers tend to agree more frequently on these instances.
Therefore, a smaller fraction of training instances whose probability π1 is close to 1/2 is
expected. Furthermore, the modes of ftrain(π1) are closer to the extreme values π1 = 0
and π1 = 1. As a result of this bias, the size of the ensemble required to obtain stable
predictions is smaller for the training set than for an independent test set.

In practice, it is not possible to query an infinite number of classifiers to obtain
the asymptotic ensemble prediction. However, assuming that the value of π1 for the
instance to be classified is known or can be estimated in some way, the probability that
an ensemble of size T assigns the same class label as the infinite ensemble is

P(ŷT = ŷ∞|T, π1) = Imax{π1,1−π1}

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

. (4.5)

Using this expression we can compute T ⋆(α, π1), the minimum ensemble size whose
prediction for the instance characterized by the probability π1 coincides with the infinite
ensemble prediction with a confidence level α, by finding the minimum value of T that
satisfies the inequality

α ≤ Imax{π1,1−π1}

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

. (4.6)

It is not possible to derive an explicit exact formula for T ⋆(α, π1). Nevertheless, this
quantity can be readily calculated using numerical algorithms. If only odd values of T
are considered, the right-hand size of (4.6) grows monotonically with T . The analysis
is restricted to odd sizes to avoid ties in the ensemble prediction. Therefore, a simple
binary search can be used to compute T ⋆(α, π1), given α and π1.

For values of π1 close to 1/2 a closed-form approximation for T ⋆(α, π1) can be ob-
tained. In this regime, T ⋆(α, π1) is a large number. Therefore, the binomial distribution
in (4.3) can be approximated by a Gaussian distribution with the same mean and vari-
ance

P(ŷT = ŷ∞|T, π1) ≈ Φ

(

T/2− Tmax{π1, 1− π1}
√

Tπ1(1− π1)

)

, (4.7)

where Φ(·) is the cumulative distribution function of a standard Gaussian distribution.
With this replacement (4.6) can be approximated by

T ⋆(α, π1) ≈
Φ−1(α)2π1(1− π1)

(π1 − 1/2)2
, (4.8)

where Φ−1(·) is the quantile function of a standard Gaussian distribution. This ap-
proximation to T ⋆(α, π1) is accurate for values of π1 near 1/2. For a fixed value of α,
expression (4.8) shows that T ⋆(α, π1) becomes infinite in the limit π1 → 1/2. Therefore,
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the factor that determines the ensemble size is the presence of instances for which the
classification probability by a single ensemble member π1 is close to 1/2. For these
instances, a very large number of classifiers needs to be queried to produce a reliable
estimate of the infinite ensemble prediction at the specified confidence level (α).

Since different examples have different values of π1, this quantity is a random variable
whose probability density function is f(π1) (see the right-hand-side of Figure 4.1). Thus,
T ⋆(α, π1) is also a random variable because it depends on π1. Let P(T ⋆(α, π1) > T )
be the probability that the minimum number of queries required for convergence of the
ensemble prediction is above threshold T when π1 follows a distribution f(π1). In the
limit T →∞, this probability tends to

P(T ⋆(α, π1) > T ) ∼ f(1
2)Φ−1(α)√

T
. (4.9)

where the the density function of π1 evaluated at π1 = 1/2 is assumed to be positive
f(π1 = 1/2) > 0. To see this, let F (π1) be the cumulative distribution function of π1

(see the right-hand-side of Figure 4.1). In terms of this distribution, P(T ⋆(α, π1) > T )
can be estimated as the fraction of the instances whose value of π1 is in the interval

[

I−1
1−α

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

, I−1
α

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)]

, (4.10)

where I−1
x (a, b) is the inverse of the regularized incomplete beta function. That is,

P(T ⋆(α, π1) > T ) = F

(

I−1
α (⌊T

2
⌋+ 1, T − ⌊T

2
⌋)
)

− F

(

I−1
1−α(⌊T

2
⌋+ 1, T − ⌊T

2
⌋)
)

.

(4.11)
Taking the limit T →∞

P(T ⋆(α, π1) > T ) ≈ f(
1

2
)

(

I−1
α (⌊T

2
⌋+ 1, T − ⌊T

2
⌋)− I−1

1−α(⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

≈ f(
1

2
)

(

2I−1
α (⌊T

2
⌋+ 1, T − ⌊T

2
⌋)− 1

)

≈ f(
1

2
)





1
√

1 + T/ (Φ−1(α))2





≈ f(1
2)Φ−1(α)√

T
, (4.12)

where we have used the same approximation of the incomplete beta function as in (4.7)
and f(π1 = 1/2) > 0 has been assumed.

This is an important result showing that for a fixed value of α the asymptotic decay
of the probability is algebraic with a universal behavior ∝ T−1/2. The only dependence
on the classification problem considered and on the ensemble method used is through the
proportionality constant f(π1 = 1/2) > 0. The heavy-tailed form of P(T ⋆(α, π1) > T )
implies that the probability of encountering instances that require a very large num-
ber of classifiers to converge to the asymptotic prediction with a level of confidence
α is not negligible. Figure 4.2 illustrates this effect. The left-hand side of this figure
displays the histogram for the minimum number of classifiers required to estimate the
asymptotic class label of test instances with a confidence level of at least α = 99% for
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Figure 4.2: (left) Histogram for the values of T ⋆(α, π1) for the classification problem
Twonorm and α = 99%. (right) Empirical and theoretical estimations of the distribu-
tion P(T ⋆(α, π1) > T ) as T → ∞ displayed in double logarithmic axes. The slope of
the straight line is −1/2.

the Twonorm problem. The distribution of the probabilities π1 is estimated under the
same conditions as the experiments whose results are displayed on in Figure 4.1 (right).
The histogram shows that the right tail of the distribution has a very slow decay. The
origin of this heavy-tailedness is the presence of instances close to the decision border
(π1 ≈ 1/2), whose stable prediction requires querying a large number of classifiers. The
right-hand side of this figure displays, in double logarithmic axes, an empirical esti-
mate of P(T ⋆(α, π1) > T ) and the asymptotic approximation of P(T ⋆(α, π1) > T ) when
T →∞ given by (4.9). This figure shows that the empirical estimate and the theoretical
approximation coincide for sufficiently large values of T .

In summary, most of the data instances require querying a fairly small number of
classifiers to produce an estimate of the asymptotic prediction that is correct with a
high probability. By contrast, a small but not negligible fraction of test instances require
querying an extremely large number of classifiers for the ensemble prediction to stabilize.
The asymptotic convergence of the ensemble predictions on the test set is dominated
by these borderline instances. In consequence, it is not possible to fix a finite ensemble
size T so that the asymptotic prediction is reached for every test instance with a level
of confidence α > 0. This is a general result that applies to any binary classification
problems and any ensemble learning algorithm provided that (i) the individual classifiers
are built independently when conditioned to the training data; (ii) majority voting is
used to combine the outputs of the ensemble classifiers; and (iii) f(1/2) > 0.

As a consequence of these findings, in practice it may be more reasonable to determine
the size of the ensemble by requiring that the average confidence in the asymptotic
prediction be larger or equal to α. With this less restrictive condition, the optimal
ensemble size T ⋆(α) is the minimum value of T that satisfies

α ≤ P(ŷT = ŷ∞|T )

=

∫ 1

0
P(ŷT = ŷ∞|π1, T )f(π1)dπ1

=

∫ 1

0
Imax{π1,1−π1}

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

f(π1)dπ1 . (4.13)
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To calculate T ⋆(α) we need an estimate of the probability distribution f(π1). This
estimate can be obtained by cross-validation or using out-of-bag data (Banfield et al.,
2007; Breiman, 1996c). If a test set composed of unlabeled instances is available, it can
also be used to estimate f(π1) because the class labels are not required for this purpose.
The training data cannot be used for the estimation because, as discussed earlier, it
would lead to biased estimates of the distribution. Two different techniques are used
in this work for this estimation. The first one computes a cross-validation estimate of
f(π1). The training set is split into ten folds. Then, an ensemble of 100 classifiers
is built using nine of the folds for training. The values of π1 are estimated for each
instance in the fold that has not been used for training. The process is repeated 10
times, interchanging the roles of the folds. As a result of this process, estimates of π1 for
every instance in the training set are obtained. The second strategy employs unlabeled
test data to estimate f(π1). An ensemble of 100 classifiers is built using the training
set. Then, the values of π1 associated with each instance in the test set are computed.
In both methods the integral in (4.13) is approximated by an average over the instances
considered

1

N

N
∑

i=1

I
max{π̂

(i)
1 ,1−π̂

(i)
1 }

(

⌊T
2
⌋+ 1, T − ⌊T

2
⌋
)

, (4.14)

where N is the number of instances (N = Ntrain in the cross-validation estimate and

N = Ntest in the test estimate ) and {π̂(i)
1 }ni=1 are the estimates of the values of π1 for

the instances in the training set, in the case of the cross validation estimate, and for
the instances in the test set, when the test set is employed for the estimation. Once
the value of the integral on the right-hand side of (4.13) has been approximated by
(4.14), T ⋆(α) can be obtained using numerical techniques. Specifically, since (4.14)
grows monotonically with increasing values of T , assuming T odd, binary search can be
used to find T ⋆(α).

The rate of disagreement between the finite ensemble of size T ⋆(α) and the infinite-
size ensemble should be ≈ 1−α. Since the disagreement rate is the fraction of instances
for which the predictions of these two ensembles differ, this value should be an upper
bound of the the differences between the generalization error rates of these two ensem-
bles. In practice, if the changes in class label predictions affect approximately the same
numbers of correctly and incorrectly classified instances the differences in error rate
should actually be smaller than this upper bound. This observation is confirmed by the
experiments presented in the following section.

4.3 Experiments

In this section we illustrate the application of the proposed framework to determine the
optimal size of parallel classification ensembles. For this purpose experiments are carried
out in several binary classification problems from the UCI repository (Asuncion and
Newman, 2007) and from the mlbench package of the R statistics software (Leisch and
Dimitriadou, 2007; R Development Core Team, 2005). Table 4.1 displays the number
of attributes and instances for each problem. Non-binary classification problems are
binarized as follows: in Abalone we discriminate between adult and infant ; in Balance we
discriminate between class label L and class label R; in Boston we discriminate between
houses worth more that $21, 000 and houses worth less than this quantity; in DNA we
discriminate between class label IE and class label EI ; finally, in Yeast we discriminate
between class label cytosolic and the other class labels. For the synthetic classification
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problems (i.e. Twonorm, Ringnorm and Circle) we use 100 training and test sets of 300
instances and 1, 000 instances respectively. For the non-synthetic classification problems
we randomly split 100 times each dataset into a training and a test set using 2/3 and 1/3
of the total available data, respectively. To build the classification ensembles we use two
representative ensemble learning algorithms: bagging (Breiman, 1996a) with un-pruned
CART trees (Breiman et al., 1984) and random forests (RF) (Breiman, 2001).

Table 4.1: Datasets used in the experiments.

Problem Attributes Instances

Abalone 8 4,177
Australian 14 690
Balance 4 576
Boston 13 506
Breast 9 699
Circle 2 -
DNA 180 1,532
German 20 1,000
Ionosphere 34 351
Pima 8 768
Ringnorm 20 -
Spam 57 4,601
Tic-tac-toe 9 958
Twonorm 20 -
Vehicle 18 846
Votes 16 435
Yeast 8 1,484

For each problem, ensemble method, and train and test partition, we estimate the
size T ⋆(α) of the classification ensemble for α = 99% using the procedure described in
the previous section. We also compare two strategies for estimating T ⋆(α) that differ in
how the distribution f(π1) is approximated: either using ten-fold cross validation on the
training set or using the unlabeled instances from the test set. Once the estimate of f(π1)
has been computed, a binary search procedure is used to find T ⋆(α), the minimum value
of T that fulfills (4.14). We refer to these as optimal ensembles, based on the fact that
they are the smallest ensembles such that on average the ensemble prediction coincides
with the asymptotic prediction with a confidence level α. To determine whether, on
average, the differences between this ensemble and the asymptotic one are close to
100% − α, we compare the optimal ensemble predictions with an ensemble of 10, 000
trees, which is used as a proxy of the infinite ensemble. We also estimate the error
rate of the different ensembles on the test set. The differences in error rates should be
smaller 100%−α, which is the average fraction of instances for which the assigned class
label changes. The results presented are averages over the the different realizations of
the training and test data.

Table 4.2 displays for each problem and ensemble method (bagging and RF) the
average disagreement rates between the predictions of the optimal ensembles and of
the asymptotic ensemble. In this table the suffix CV indicates that the value of T ⋆(α)
is estimated using cross-validation. The suffix Test indicates that the value of T has
been estimated using the test set. These results show that the optimal ensembles have
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Table 4.2: Average disagreement rates in % between the test predictions of the optimal
and the asymptotic ensemble for bagging and RF.

Problem RF-CV RF-Test Bagging-CV Bagging-Test

Abalone 1.0±0.3 1.0±0.3 1.0±0.3 1.0±0.3
Australian 1.0±0.7 1.0±0.7 0.9±0.6 1.0±0.6
Balance 1.2±0.8 1.1±0.8 1.1±0.8 1.0±0.8
Boston 0.9±0.8 1.2±0.8 1.0±0.8 1.2±0.7
Breast 1.0±0.7 1.1±0.6 0.9±0.7 1.0±0.5
Circle 1.0±0.5 1.0±0.4 1.0±0.5 1.0±0.3
DNA 1.0±0.4 1.0±0.4 0.9±0.5 0.9±0.4
German 1.0±0.5 1.1±0.6 1.1±0.6 1.0±0.6
Ionosphere 0.8±0.9 0.8±0.8 1.1±1.0 1.0±0.9
Pima 1.0±0.6 1.2±0.7 1.1±0.7 1.1±0.7
Ringnorm 0.9±0.4 1.0±0.3 1.0±0.5 0.9±0.3
Spam 1.0±0.2 1.0±0.2 1.0±0.3 1.0±0.2
Tic-tac-toe 0.8±0.6 0.9±0.5 0.7±0.5 0.8±0.5
Twonorm 1.0±0.5 0.9±0.3 1.0±0.5 1.0±0.4
Vehicle 1.0±0.7 1.0±0.6 0.9±0.5 1.0±0.6
Votes 0.8±0.8 0.9±0.8 1.0±1.0 1.0±1.0
Yeast 1.1±0.5 1.1±0.5 0.9±0.5 1.1±0.5

disagreement rates that are generally around the 100% − α = 1% threshold level set in
the experiments, which confirms the validity of the probabilistic framework introduced
in this research.

Tables 4.3 and 4.4 display for each problem and for bagging and RF, respectively,
the asymptotic ensemble test error (Bagging∞ and RF∞) and the average test error
for optimal ensembles (Bagging-CV, Bagging-Test, RF-CV and RF-Test), averaged over
the 100 realizations of the classification problems considered. The standard deviations
of these values are given after the ± symbol. As in the previous table, the procedure
employed for the estimation of the size of the minimal ensemble is indicated by a suffix
attached to the ensemble method (CV for cross-validation and Test for the method that
uses the test set). To determine whether the differences in error rate are statistically
significant we perform a Wilcoxon rank test (Wilcoxon, 1968). Error rates that are
significantly larger than the corresponding asymptotic ensemble level (a p-value below
5% is obtained in the Wilcoxon test) are highlighted in boldface. The median of the
number of trees used in these ensembles for the different realizations of the classification
problems are also displayed. The interquartile interval is shown between parentheses.
These measures are used instead of the mean and the standard deviation because they
are more robust estimates of the center and dispersion of the optimal ensemble sizes.
The values obtained for T ⋆(α) when f(π1) is estimated using cross-validation or using
the test sets are fairly similar.

Regarding the generalization performance, these results confirm that RF typically
obtains lower error rates than bagging (Breiman, 2001). The lowest errors correspond
to the asymptotic ensembles, as expected. The error rates of the optimal ensembles are
only slightly higher and in many cases the differences are not statistically significant.
In all cases the increases in error rate are much lower than the upper bound given by
100% − α, the fraction of instances whose class label assignment can change.
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Table 4.3: Average and standard deviation of the test errors for the infinite-size and for the optimal RF ensembles. Median and interquartile
interval (between parentheses) of the number of trees for optimal RF ensembles.

Problem RF∞ RF-CV RF-Test # Tree RF-CV # Tree RF-Test

Abalone 16.6±0.8 16.6±0.8 16.6±0.8 442 (403, 510) 455 (363, 578)
Australian 13.1±1.9 13.2±2.0 13.2±2.1 286 (206, 390) 334 (204, 567)
Balance 6.4±1.9 6.4±1.9 6.5±1.8 361 (238, 600) 433 (281, 672)
Boston 13.5±2.3 13.3±2.3 13.6±2.3 520 (352, 900) 484 (276, 943)
Breast 3.2±0.9 3.4±1.1 3.6±1.0 21 (17, 27) 21 (13, 31)
Circle 5.3±1.2 5.4±1.2 5.4±1.2 57 (37, 98) 62 (48, 84)
DNA 3.3±0.7 3.5±0.8 3.5±0.7 135 (120, 177) 134 (104, 184)
German 24.1±1.8 24.2±1.8 24.2±1.8 2213 (1526, 3164) 1811 (1318, 2868)
Ionosphere 6.7±2.0 6.8±2.3 6.8±2.2 85 (53, 129) 67 (42, 114)
Pima 24.0±2.1 23.8±2.0 24.0±2.1 1494 (1072, 2500) 1195 (810, 1919)
Ringnorm 6.2±1.1 6.2±1.1 6.3±1.1 724 (502, 1139) 639 (528, 784)
Spam 5.0±0.6 5.1±0.6 5.1±0.5 65 (57, 69) 61 (53, 72)
Tic-tac-toe 2.0±0.9 2.2±0.9 2.4±0.9 260 (188, 348) 168 (124, 263)
Twonorm 3.8±0.6 3.9±0.6 3.9±0.7 403 (270, 608) 398 (311, 532)
Vehicle 5.0±1.3 5.1±1.4 5.0±1.3 129 (97, 173) 138 (90, 196)
Votes 3.8±1.5 4.1±1.5 4.1±1.5 25 (18, 39) 20 (13, 31)
Yeast 24.5±1.5 24.5±1.5 24.4±1.5 1690 (1291, 2200) 1565 (1122, 2059)
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Table 4.4: Average and standard deviation of the test errors for the infinite-size and for the optimal bagging ensembles. Median and interquartile
interval (between parentheses) of the number of trees for optimal bagging ensembles.

Problem Bagging∞ Bagging-CV Bagging-Test # Tree Bagging-CV # Tree Bagging-Test

Abalone 17.1±0.8 17.1±0.8 17.1±0.8 425 (356, 502) 403 (344, 512)
Australian 13.2±1.7 13.4±1.7 13.2±1.8 237 (161, 316) 218 (146, 328)
Balance 7.9±2.0 7.9±2.0 7.9±2.1 270 (168, 414) 321 (173, 462)
Boston 14.5±2.3 14.7±2.3 14.5±2.3 411 (269, 587) 362 (211, 696)
Breast 4.0±1.1 4.1±1.2 4.2±1.1 23 (17, 31) 21 (15, 36)
Circle 6.0±1.4 6.1±1.4 6.1±1.4 50 (31, 75) 45 (33, 65)
DNA 4.1±0.9 4.3±1.0 4.3±0.9 25 (19, 31) 21 (17, 27)
German 24.2±2.0 24.2±2.0 24.1±1.9 2006 (1438, 3219) 2107 (1196, 3768)
Ionosphere 7.9±2.2 7.9±2.3 8.0±2.1 84 (54, 142) 92 (42, 156)
Pima 24.4±2.2 24.4±2.2 24.3±2.2 1215 (856, 1716) 1287 (706, 2038)
Ringnorm 8.9±2.0 8.9±2.0 9.0±2.0 985 (613, 1590) 810 (608, 1084)
Spam 5.9±0.6 6.1±0.6 6.0±0.6 47 (43, 55) 47 (39, 55)
Tic-tac-toe 2.0±0.8 2.2±0.9 2.3±0.8 51 (42, 60) 35 (27, 50)
Twonorm 6.2±1.4 6.3±1.5 6.3±1.4 658 (456, 1040) 593 (452, 738)
Vehicle 6.0±1.6 6.1±1.7 6.1±1.6 127 (97, 174) 126 (86, 208)
Votes 4.6±1.7 4.6±1.9 4.8±1.7 21 (15, 33) 25 (13, 44)
Yeast 25.2±1.7 25.3±1.7 25.3±1.6 1890 (1455, 2317) 1639 (1112, 2568)
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These results show that different classification problems require ensembles of very
different sizes. Some classification problems need ensembles of less than 100 trees to
reach a stable prediction with a confidence level α = 99% (e.g. votes, ionosphere and
breast). For others, the appropriate number of trees to combine is in the thousands
(e.g. german, pima, yeast). This conclusion advices against using the same number
of classifiers irrespective of the problem considered, which is the dominant approach
in most of the existing literature on ensembles. Furthermore, the ensembles used in
previous studies are rarely above 200 classifiers, which is probably too small for some
problems.

4.4 Conclusions

In this chapter we have addressed the question of how to determine the size of parallel
classification ensembles. The proposed method is based on estimating the number of
classifiers that are necessary to yield a prediction that, on average, coincides with a hy-
pothetical ensemble of infinite size at a high confidence level α. In contrast to previous
proposals, this method is not based on the availability of accurate estimates of the gen-
eralization error. Instead, it relies on the analysis of the convergence of the prediction of
parallel classification ensembles as a function of ensemble size in the asymptotic regime,
when the number of classifiers in the ensemble tends to infinity. The framework is valid
for any classification problem and any parallel ensemble provided that the individual
classifiers are generated independently when conditioned to the training data and that
their predictions are combined by a simple majority voting.

The analysis performed shows that it is not possible to fix a size for the ensemble so
that the prediction of such an ensemble coincides with the asymptotic ensemble predic-
tion for every potential test instance with a fixed confidence level α > 0. While most
of the instances require only a few classifiers to reach the infinite ensemble prediction
with a high confidence, the predictions of a small but not negligible fraction of instances
require an extremely large number of queries to converge. Thus, instead of requiring
convergence for every instance, we propose to determine the optimal ensemble size by
requiring that, on average, the finite and the infinite ensemble predictions coincide with
a high probability α.

The validity of the probabilistic framework developed and the usefulness of the
method is illustrated in two representative parallel ensemble learning algorithms (bag-
ging and RF) for different classification problems. The experiments show that the predic-
tions of the finite classification ensembles constructed tend to agree with the asymptotic
ones with a probability close to α, the target confidence level used to determine the
ensemble size. Because the differences in error are bound from above by 100% − α, the
prediction accuracy of the optimal ensembles is only slightly lower than the correspond-
ing infinite-size ensembles.

An important conclusion of this investigation, which agrees with the results of (Ban-
field et al., 2007), is the need to adapt the ensemble size to the particular classification
problem considered. Some problems require ensembles of only a few tens classifiers to
obtain, on average, a confidence level α on the asymptotic ensemble prediction. Others
require thousands of classifiers for the ensemble prediction to stabilize.

Finally, unlike previous proposals, the method designed in this investigation does
not require labeled data to estimate an adequate value for the size of the ensemble.
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Chapter 5
Bayesian Machine Learning

The uncertainties about the type of model and about the model parameters that

arise in automatic induction problems can be described using a Bayesian frame-

work. Assuming a particular form for the model, Bayesian machine learning uses

probabilities to quantify different degrees of belief in the values that the model

parameters can take. Starting from a prior distribution that represents our initial

beliefs, Bayes’ theorem is used to compute a posterior distribution for these pa-

rameters. This posterior distribution describes how these beliefs should be updated

after the training data are observed. The prediction of a Bayesian model for a test

instance is computed in terms of the predictive distribution. This distribution is

obtained by averaging the product of the posterior distribution of the model pa-

rameters and a likelihood function evaluated in the test instance. Besides being

used to model the uncertainty about the actual values of the model parameters,

Bayesian probabilities can also be employed to assign degrees of belief to different

models. Because these probabilities automatically penalize unnecessarily complex

models, they provide a robust method to perform model selection. A difficulty of

Bayesian machine learning is that carrying out exact Bayesian inference is often

intractable. In practice, approximate methods have to be employed. In this chap-

ter we review some of these methods. A first group of methods approximate the

posterior distribution by a simple distribution for which the required computations

are tractable. A second group includes stochastic algorithms that generate samples

from the posterior distribution. These samples can be used to approximate the

exact posterior.

5.1 Introduction

The amount of labeled data available for induction is limited in many supervised
machine learning problems. Furthermore, these data can be contaminated by noise.
Under these circumstances there is uncertainty in the selection of an appropriate model
to describe the observed data and in the selection of the model parameters. This un-
certainty becomes smaller as the amount of data available to perform the estimations
increases. However, for small datasets it is important to take it into account to get reli-
able estimates. To address these types of problems we need a mechanism to represent,
manipulate and update uncertainty when new observations are available. The Bayesian
interpretation of probabilities provides a suitable framework that can be used for this
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purpose. This interpretation is different from the frequentist/traditional view. In the
frequentist interpretation, probabilities are described in terms of the frequencies of ran-
dom repeatable events, where an event is defined as a particular subset of the possible
outcomes of a random experiment. The probability of an event is the limit of its rela-
tive frequency in a very large (infinite) number of trials. By contrast, in the Bayesian
interpretation, probabilities are used to describe degrees of belief in events that do not
necessarily involve random variables (Bishop, 2006; MacKay, 2003). Such an event can
be, for example, the sea level rising one meter by the end of the century. The use
of probabilities to represent uncertainty can be supported by the fact that degrees of
belief can be mapped onto probabilities provided that they satisfy simple consistency
rules known as the Cox axioms (Cox, 1946). Nevertheless, the Bayesian interpretation
of probability is subjective, since the final beliefs obtained depend on the assumptions
made (MacKay, 2003). These assumptions are expressed in the form of a prior distribu-
tion that represents our initial uncertainty about the quantities of interest. Once new
evidence has been observed, we update this prior distribution using Bayes’ theorem in
a procedure called Bayesian inference. Bayes’ theorem can be used to go from an ini-
tial prior distribution to a posterior distribution that reflects this additional knowledge
(typically expressed in the form of new observations) about the quantities of interest
(Bishop, 2006; MacKay, 2003).

In supervised machine learning Bayes’ theorem is used to compute a posterior prob-
ability distribution for the model parameters that reflects our beliefs in their values after
having observed the training data (Bishop, 2006; MacKay, 2003). Given the attributes
of an unlabeled instance, this posterior probability is used to infer a probability distri-
bution for the unknown target variable y. This distribution is obtained by computing
an average with respect to the posterior distribution and it can be used to quantify
uncertainty in the predictions of the model. Bayesian probabilities can also be used
to describe the uncertainty in the selection of an adequate model to represent the ob-
served data. Because these probabilities automatically penalize unnecessarily complex
models, they provide a robust mechanism to perform model selection (MacKay, 2003).
A Bayesian approach to supervised machine learning is also useful to incorporate prior
information about the learning task that can compensate the limited amount of data
available. This information is generally expressed in terms of a prior distribution for the
model parameters.

A difficulty of Bayesian machine learning is that using Bayes’ theorem to compute the
posterior distribution is often infeasible. The application of Bayes’ theorem requires com-
puting integrals or summations that are too complex to be solved analytically. Thus, in
practical situations approximate techniques have to be employed (Bishop, 2006; MacKay,
2003). These techniques approximate the posterior distribution by a simple distribu-
tion for which the required computations are tractable or by samples generated from a
Markov chain whose stationary distribution coincides with the posterior distribution of
the model parameters.

The organization of the chapter is as follows: Section 5.2 gives an overview of
Bayesian machine learning. Section 5.3 describes Bayesian model selection, a robust
method to discriminate among different models. Type-II maximum likelihood is re-
viewed in Section 5.4. This is a technique that can be used to estimate those parameters
for which an explicit posterior distribution is not available. Section 5.5 reviews some
methods for approximate Bayesian inference. These are grouped in two categories:
deterministic methods and sampling techniques. Finally, Section 5.6 summarizes the
conclusions of this chapter. Most of the material described in this chapter has been
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extracted from (Bishop, 2006) and (MacKay, 2003). This material is included for the
purpose of reference in the following chapters of this thesis.

5.2 Bayesian Machine Learning

In the field of machine learning, Bayesian probabilities can be used to account for the
lack of knowledge of the correct model or for the uncertainty in the model parameters.
Consider a given model with parameters θ. Assuming some prior distribution for these
parameters, P(θ), and given a training set D, Bayes’ theorem can be used to compute
a posterior probability distribution for θ given D

P(θ|D) =
P(D|θ)P(θ)

P(D)
, (5.1)

where P(D|θ) is the likelihood function of the model parameters θ for the observed
data D. This function expresses how probable the observed data are for different values
of θ. Note that P(D|θ) is not a probability distribution for θ. Therefore, its integral
with respect to θ is in general different from one. The distribution P(θ) is the prior
distribution for the model parameters θ. This distribution reflects our prior beliefs in
the values of the model parameters before observing the training data D. Finally, P(D)
is a normalization constant that ensures that the posterior distribution integrates to
one.

Note that this is very different from a frequentist approach to machine learning
(Hastie et al., 2001). In a frequentist setting, the model parameters θ are assumed to be
fixed, and their values are determined using some estimator. Error bars on this estimate
are obtained by considering the distribution of the observed data D. By contrast, in the
Bayesian approach there is only a single dataset D that is fixed, and the uncertainty
in the model parameters is calculated using the posterior distribution. However, even
though we have computed a probability distribution for θ in (5.1), this does not imply
that θ is random. The posterior probability distribution is used here to express our
beliefs in the possible values of θ after having observed the data. Besides being used
to compute a posterior distribution for the model parameters, Bayes’ theorem can also
be used to compute a posterior distribution for other values that are not observed. For
example, these can be latent variables that are introduced in the model to simplify the
computations (Bishop, 2006; MacKay, 2003).

We now illustrate Bayesian machine learning with a simple problem. Consider a
dataset D composed of n independent observations {x1, . . . , xn} from a Gaussian dis-
tribution with unknown mean µ and unit variance. Assuming that the prior values for
µ are given by a standard Gaussian distribution, Bayes’ theorem can be used to make
inference about µ after having observed D

P(µ|D) =
P(D|µ)P(µ)

P(D)

=

∏n
i=1N (xi|µ, 1)N (µ|0, 1)

∫
∏n

i=1N (xi|µ, 1)N (µ|0, 1)dµ

= N
(

µ|
(

1

n + 1

n
∑

i=1

xi

)

, (n + 1)−1

)

, (5.2)
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where we have used (A.42) to compute (5.2). Thus, the posterior distribution for µ
is a Gaussian distribution with mean (n + 1)−1

∑n
i=1 xi and variance (n + 1)−1. The

assumption of a standard Gaussian distribution for the prior for µ illustrates our belief,
before making any empirical observation, that µ should be close to zero.

Expression (5.2) shows that as the number of data points n increases, the mean of
the posterior distribution for µ approaches the sample mean. Similarly, the variance of
the posterior distribution approaches zero. Note that in the particular case of n equal to
zero, we have a standard Gaussian distribution for µ. This is just the prior distribution
for µ. These results are illustrated in Figure 5.1, where the posterior distribution for µ is
displayed for different values of n. In this case, the data are generated form a Gaussian
distribution with unit variance and mean µ0 = −1. The picture shows that as more data
are observed, the posterior distribution for µ becomes more and more peaked around
true value of µ. However, for small values of n, the uncertainty about the true value
of µ is still very large as many different values of µ could have generated the observed
data. This uncertainty leads to a large variance in the posterior distribution for µ.
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Figure 5.1: Posterior probability distribution for µ for different sample sizes n. The
data are generated from a Gaussian distribution with unit variance and mean equal to
−1. Note that the posterior distribution is more and more peaked around −1 as the
sample size n increases.

From a frequentist perspective we can also compute a confidence interval for µ0.
Within this approach, µ0 is estimated by the sample mean

µ̂ =
1

n

n
∑

i=1

xi . (5.3)

Then, error bars can be computed for this estimate, and from these, a confidence interval
for µ0 is given with probability (1− 2α) by

[

µ̂− z1−α

√

1/n, µ̂ + z1−α

√

1/n
]

. (5.4)

We note that as n → +∞ both perspectives give similar results because the posterior
distribution (5.2) approaches a delta function centered at the sample mean.
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In a Bayesian approach, once the posterior distribution for µ has been computed, we
can calculate a predictive distribution for a new instance xnew that takes into account
the uncertainty in the estimation of this parameter

P(xnew|D) =

∫

P(xnew|µ)P(µ|D)dµ

=

∫

N (xnew|µ, 1)N
(

µ|
(

1

n + 1

n
∑

i=1

xi

)

, (n + 1)−1

)

dµ

= N
(

xnew|
(

1

n + 1

n
∑

i=1

xi

)

, (n + 1)−1 + 1

)

. (5.5)

To compute (5.5) we have used (A.42). Interestingly, the variance of the predictive
distribution is larger than the variance of the actual generating model, which is 1. This
is a consequence of the uncertainty in the value of the µ parameter, which is described by
a distribution instead of a single point estimate. This posterior distribution accounts for
the fact that the observed data could have been generated from a Gaussian distribution
with different values of µ. The predictive distribution is consistent in the sense that
when n → +∞, (5.5) tends to the actual generating model. Finally, we note that (5.5)
is computed by eliminating the dependence of the model on the particular values of the
parameters (µ in this case). This is a standard procedure in Bayesian machine learning.
Predictive distributions are computed by marginalizing over the model parameters in
the product of a likelihood function for the test instance and the posterior distribution
for the model parameters.

The frequentist approach for predicting the value of a new instance xnew consists
in replacing the unknown parameter µ with the estimate µ̂ (Hastie et al., 2001). In
consequence, the expected value for xnew is just the sample mean µ̂. A confidence
interval for xnew can then be computed with probability 1− 2α using

[µ̂− z1−α, µ̂ + z1−α] . (5.6)

Unlike in the Bayesian approach, this confidence interval does not take into account the
uncertainty about the true value of µ. However, we note again that as n → +∞ the
confidence intervals for xnew obtained by the two different perspectives converge to the
same limit.

An advantage of the Bayesian viewpoint over the frequentist one is that the inclu-
sion of prior knowledge about the model parameters arises quite naturally. This prior
knowledge can compensate the limited amount of data available to perform the esti-
mations. Nevertheless, a common criticism is that prior distributions are often chosen
for computational convenience rather than as a reflection of any specific prior beliefs
(Bishop, 2006). Furthermore, the dependence of the conclusions on the choice of the
prior is seen as a source of difficulty by many researchers. The practical application
of Bayesian machine learning also faces the difficulty of performing the required com-
putations. In particular, the exact marginalization of all the parameters of the model
to compute the posterior distribution or the predictive distribution is often infeasible.
Thus, approximate techniques are employed in practice. A standard method to approx-
imate the posterior distribution is by using a finite number of samples generated from
a Markov chain whose stationary distribution coincides with the posterior distribution
of the model. More recently, efficient deterministic approximation algorithms such as
variational inference (Jaakkola, 2001) and expectation propagation (EP) (Minka, 2001b)
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have been developed. In this thesis, EP is systematically employed in different contexts
to carry out approximate Bayesian inference.

5.3 Bayesian Model Selection

The Bayesian principle of model selection uses probabilities to describe the uncertainty
in the selection of the model (Bishop, 2006; MacKay, 2003). Consider a set of candidate
models for the learning task M = {m1, . . . ,ml}. Assume that our initial uncertainty is
expressed through a prior probability function P(mi), with i = 1, . . . , l. We can evaluate
the posterior distribution of each model given D

P(mi|D) =
P(D|mi)P(mi)

P(D)
, (5.7)

where P(D) is a normalization constant that guarantees that {P(mi|D), i = 1, . . . , l}
adds up to one. Assume that our prior belief is that all models are equally likely. In this
situation, the term that dominates (5.7) is P(D|mi), which determines the probability
of the observed data given the model mi. This term is also known as the model evidence
for the observed data.

Ideally, in a full Bayesian approach we should compute the predictive distribution
for a new instance by averaging over all the different models using the posterior in (5.7)

P(ynew|xnew,D) =

l
∑

i=1

P(ynew|xnew,mi,D)P(mi|D) . (5.8)

Nevertheless, computing this last summation can be costly. Thus, it is often considered
an approximation to this average, based on selecting the single most probable model
alone to make predictions. That is, the model whose associated value P(D|mi) is maxi-
mum, as we are considering a uniform prior P(mi).

Note that the value of P(D|mi) is simply the normalization constant that appears
in Bayes’ theorem in the previous section. For a model with parameters θ this constant
is

P(D|mi) =

∫

P(D|mi,θ)P(θ|mi)dθ , (5.9)

which can be seen as the probability that the observed data D has been generated by
mi when the model parameters are sampled at random from the prior distribution.

For the sake of simplicity, consider that the model has only one parameter θ. Assume
that the posterior distribution for θ is sharply peaked around the most probable value
θ̂ and that the prior for θ is roughly flat. Under these conditions, P(D|mi) can be
approximated as

P(D|mi) ≈ P(D|mi, θ̂)
∆posterior

∆prior
, (5.10)

where ∆posterior is the width of the posterior, ∆prior is the width of the prior and
∆posterior < ∆prior. (MacKay, 2003). Taking logarithms we get

log(P(D|mi)) ≈ log(P(D|mi, θ̂)) + log

(

∆posterior

∆prior

)

. (5.11)



Chapter 5. Bayesian Machine Learning 97

The right-hand side of this last expression shows a trade-off between how well the model
explains the observed data, measured by P(D|mi, θ̂), and the model complexity, mea-
sured by log (∆posterior/∆prior). This last term is negative, and its magnitude increases
as the ratio ∆posterior/∆prior becomes smaller. If the expressive capacity of the model is
large, ∆posterior is much smaller than ∆prior. In consequence, the penalty of this term in
P(D|mi) is large. The optimal model complexity is determined by a trade-off between
these two competing terms. Thus, P(D|mi) automatically penalizes models that are
unnecessarily complex to explain the observed data.

To further illustrate Bayesian model selection, consider its application in the prob-
lem described in the previous section about how to estimate the mean of a Gaussian
distribution with known variance. For simplicity, let us assume that the possible ob-
served data D consist only of one single instance x. We want to discriminate between
two models, m1 and m2, that only differ in the width of the prior distribution for µ. Let
ν1 = 1 be the variance of the prior of first model and ν2 = 50 the variance of the prior
of the second one. Thus, m1 is a simple model with a limited expressive capacity. By
contrast, the larger variance of the prior for µ in m2 allows to explain a wider variety
of datasets. This corresponds to a more complex model. The model evidence for an
observed dataset D = {x} is

P(D|mi) =

∫

N (x|µ, 1)N (µ|0, νi)dµ

= N (x|0, νi + 1) . (5.12)

Figure 5.2 displays the value of P(D|mi) for each model and for different values of the
observed data D. The figure shows that model m1 provides larger values for P(D|mi)
in the vicinity of zero as a consequence of the prominent peak in the prior for µ at zero.
This means that m1 is preferred when the observed data are in this region. On the other
hand, because of the flat prior, model m2 provides larger values for P(D|mi) when D is
far away from the origin. Thus, m2 is preferred in this case. We note that even though
the second model can also explain datasets in the vicinity of zero, the first model is
preferred in that region because it is simpler. In regions far away from zero, m1 fails to
explain the observed data because its expressive capacity is too low. Model m2 has a
larger expressive capacity and hence, it is preferred in these regions.

5.4 Type-II Maximum Likelihood Estimation

In many Bayesian models there can be some parameters ϑ for which it is not possible to
compute a posterior distribution. For example, because we can not integrate analytically
over all the parameters of the model. In this situation, we can set these parameters to
specific values determined by type-II maximum likelihood estimation (Bishop, 2006).
This procedure approximates the posterior distribution of these parameters P(ϑ|D) by
a delta function centered at the most probable value ϑ̂. Note that this is equivalent to
selecting a single value of ϑ equal to ϑ̂. Consider a Bayesian model with parameters ϑ,
for which marginalization is not possible, and parameters θ, for which marginalization
is possible. From Bayes’ theorem we have

P(ϑ|D) ∝ P(D|ϑ)P(ϑ) , (5.13)



Chapter 5. Bayesian Machine Learning 98

−20 −10 0 10 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

D

P(
D
|m

i)
Model m1
Model m2

Figure 5.2: Model evidence P(D|mi) for the two different models considered, m1

and m2, and for different values of the observed data D.

where P(ϑ) is some prior distribution for ϑ and

P(D|ϑ) =

∫

P(D|ϑ,θ)P(θ)dθ . (5.14)

Assuming that the prior distribution P(ϑ) is approximately flat, we can find ϑ̂ by
maximizing P(D|ϑ) with respect to ϑ.

In many practical applications the analytical evaluation of P(D|ϑ) is not possible
and its value has to be approximated by some algorithm. In this situation, maximizing
P(D|ϑ) with respect to ϑ requires running this algorithm repeatedly.

5.5 Approximate Bayesian Inference

The principal task in the application of Bayesian inference is the computation of the
posterior distribution of the model parameters θ given the observed data D

P(θ|D) =
P(D|θ)P(θ)

P(D)
. (5.15)

This posterior distribution is then used to compute the predictive distribution, which
is required for making predictions. In particular, in supervised machine learning we are
interested in computing

P(D) =

∫

P(D|θ)P(θ)dθ , (5.16)

P(ynew|xnew,D) =

∫

P(ynew|xnew,θ)P(θ|D)dθ , (5.17)

where (5.16) is the normalization constant of the posterior distribution, P(θ|D), and
(5.17) is the predictive distribution for an unseen instance. Besides being required for
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computing P(θ|D), (5.16) is also useful for model selection or for type-II maximum
likelihood estimation. Typically, computing (5.16) and (5.17) is intractable. The in-
tractability of (5.16) arises because the dimensionality of the model parameters θ can
be very large, or because the combination of the likelihood function with the prior dis-
tribution results in a very complicated function of θ for which integration in closed form
is not possible (Bishop, 2006). If (5.16) is intractable, the computation of (5.17) is also
intractable as it requires knowing the posterior distribution. Thus, in many practical
situations we have to resort to approximation techniques to compute these integrals.

If analytical integration is not possible, different techniques, either deterministic or
stochastic, can be used to approximate (5.16) and (5.17) (Bishop, 2006; MacKay, 2003).
In particular, numerical quadrature can be used for this purpose (Press et al., 1992).
The disadvantage is that the computation cost grows exponentially with the dimension
of the vector θ. Thus, numerical quadrature can only be used in very simple inference
problems with a small number of parameters. Another deterministic approximation is to
replace the exact posterior distribution by a simple distribution for which expectations
can be easily computed. Typical choices are parametric families of distributions such
as the Gaussian family. The parameters of the approximation are estimated within the
parametric family considered in such a way that the resulting distribution is as close as
possible to the exact posterior (Bishop, 2006; MacKay, 2003). Given an approximate
posterior distribution Q(θ), the predictive distribution for xnew is

P(ynew|xnew,D) ≈
∫

P(ynew|xnew,θ)Q(θ)dθ , (5.18)

and the normalization constant of Q can be used to approximate (5.16). These deter-
ministic techniques are very efficient, but their accuracy is limited by the quality of the
approximation of P(θ|D) by Q(θ).

Stochastic techniques based on Markov chain Monte Carlo (MCMC) approximate
the posterior distribution by a set of samples S = {θ1,θ2, . . . ,θm} from the posterior
distribution (Bishop, 2006; MacKay, 2003). Using these samples, the value of (5.17) can
be approximated using the law of large numbers

P(ynew|xnew,D) ≈ 1

m

m
∑

i=1

P(ynew|xnew,θi) . (5.19)

These samples are typically generated by running a Markov chain whose stationary
distribution coincides with the posterior distribution P(θ|D). Interestingly, it is possible
to build such a Markov chain without knowing the exact value of of P(D). However,
unlike the deterministic methods described above, sampling methods do not provide a
direct way to approximate P(D). For this purpose, importance sampling can be used
(Bishop, 2006; MacKay, 2003). In particular,

P(D) =

∫

P(D|θ)P(θ)dθ =

∫

Q(θ)
P(D|θ)P(θ)

Q(θ)
dθ ≈

∑

θ∈SQ

P(D|θ)P(θ)

Q(θ)
, (5.20)

where Q is a known arbitrary distribution with the same support as the posterior dis-
tribution and SQ is a set of independent samples generated from Q. A limitation of
this method is that (5.20) can have a large variance if Q is very different from P(θ|D)
(Bishop, 2006). Sampling methods converge to the exact values as the number of sam-
ples generated increases. However, they can be computationally demanding. In practice
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obtaining independent samples from the posterior distribution often requires running
very long chains.

5.5.1 Deterministic Methods

In this section we describe a series of deterministic methods that can be used to per-
form approximate Bayesian inference. In general, the methods described in this section
approximate the joint distribution of the data and the model parameters P(D,θ) by a
simple function for which integrals can be evaluated analytically.

5.5.1.1 The Laplace Approximation

This is a simple approximate inference method in which the posterior distribution of
the model parameters is replaced by a Gaussian distribution Q (Bishop, 2006; MacKay,
2003). To illustrate how it works, assume first that the model has a single continuous
parameter θ. Consider the joint probability function of the observed data D and θ,
P(θ,D). This probability function can be computed as the product of the likelihood
and the prior, i.e. P(θ,D) = P(D|θ)P(θ). Normalized with respect to θ it becomes
the posterior distribution of the model parameter P(θ|D). The normalizing constant is
the model evidence P(D). Thus, using a Gaussian distribution Q, we are interested in
approximating

P(θ|D) ∝ P(θ,D) , (5.21)

where the normalization constant P(D) =
∫

P(θ,D)dθ is unknown. For simplicity,
consider the notation P̃(θ) = P(θ,D). To find the parameters of Q, the Laplace method
assumes that P(θ|D) has a mode at some point θ0. This mode can be found using
any optimization technique (Press et al., 1992). In particular, since P(θ|D) and P̃(θ0)
only differ by a normalization constant, we have to find θ0 such that dP̃(θ0)/dθ0 = 0.
Consider a Taylor expansion of the logarithm of P̃ around θ0

log P̃(θ) = log P̃(θ0)−
1

2
A(θ − θ0)

2 + . . . , (5.22)

where

A = − d2

dθ2
log P̃(θ)

∣

∣

∣

∣

θ=θ0

. (5.23)

Note that the first term of the Taylor expansion does not appear in (5.22) because
dP̃(θ0)/dθ0 = 0. Considering only up the second order term in (5.22)

P̃(θ) ≈ P̃(θ0) exp

(

−A

2
(θ − θ0)

2

)

= Q̃(θ) , (5.24)

which is an unnormalized Gaussian distribution (see Appendix A.3). The normalization
constant of Q̃, ZQ, can be computed using the formula for the normalization constant
of the Gaussian distribution

ZQ =

(

2π

A

)1/2

P̃(θ0) , (5.25)
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and in consequence, the final approximation of the posterior distribution is a Gaussian
with mean θ0 and variance A−1

Q(θ) =

(

A

2π

)1/2

exp

(

−A

2
(θ − θ0)

2

)

. (5.26)

Note that this approximation is only well defined if A > 0, or similarly, if θ0 is a
maximum of P̃ . Finally, the normalization constant ZQ can be used to approximate
P(D), the normalization constant of P̃(θ).

The previous approximation can be extended to a multivariate posterior distribution
P(θ|D). As in the single variable case, use the notation P̃(θ) = P(θ,D) and assume
that P̃ has a maximum at some point θ0. Again, expanding the logarithm of P̃ around
θ0 we get

log P̃(θ) = log P̃(θ0)−
1

2
(θ − θ0)

TA(θ − θ0) + . . . , (5.27)

where in this case A is the Hessian matrix of P̃ evaluated at θ0. Namely,

A = −∇∇ log P̃(θ)
∣

∣

∣

θ=θ0

, (5.28)

where ∇ is the gradient operator. Truncating the Taylor expansion in (5.27) at second
order

P̃(θ) ≈ P̃(θ0) exp

(

−1

2
(θ − θ0)

T A(θ − θ0)

)

= Q̃(θ) , (5.29)

which is an unnormalized multivariate Gaussian distribution (see Appendix A.3). As in
the univariate case, the normalization constant ZQ of Q̃(θ) can be computed using the
formula for the normalization constant of a multivariate Gaussian distribution

ZQ = P̃(θ0)

(

(2π)d

|A|

)1/2

. (5.30)

In consequence, the final approximation of P(θ|D) is

Q(θ) =

( |A|
(2π)d

)1/2

exp

(

−1

2
(θ − θ0)

T A(θ − θ0)

)

, (5.31)

a multivariate Gaussian distribution with mean vector θ0 and covariance matrix A−1.
In this case the restriction is that the matrix A has to be positive definite for the approx-
imation to be valid. Again, the normalization constant ZQ can be used to approximate
P(D).

In the Laplace approximation the mode of the posterior distribution P(θ|D) is typi-
cally found by numerical optimization. Once this maximum has been found, the Hessian
matrix A needs to be computed. This can be implemented exactly or using approxi-
mation techniques (Bishop, 1996). The most expensive task consists in inverting the
Hessian, which has a cost that is cubic in the dimension of the vector θ. The Laplace
approximation has problems when the distribution to be approximated is multi-modal
(Bishop, 2006). In this situation, there will be different approximations, one for each
different mode. As a result of the central limit theorem, it is expected that the posterior
distribution of the model parameters approaches a Gaussian distribution as the num-
ber of training instances increases. Thus, the approximation obtained by the Laplace



Chapter 5. Bayesian Machine Learning 102

method should be accurate when the training data are abundant. One of the disadvan-
tages of the Laplace approximation is that it can not be applied to approximate discrete
distributions. Furthermore, it is basis dependent (Bishop, 2006; MacKay, 2003). This
means that if the vector θ is transformed by a non-linear function u(θ), the approxi-
mation obtained in this transformed space and also the normalization constant ZQ will
be different. Nevertheless, the most important limitation of the Laplace approximation
is that it is based solely on the shape of the exact posterior distribution in the vicinity
of the mode. Thus, it can fail to capture important global properties of the posterior
distribution, such as the variance.

5.5.1.2 Variational Inference

Variational inference approximates the posterior distribution of the model P(θ|D) using
a simple distribution Q(θ) for which the required computations are tractable (Bishop,
2006; Jaakkola, 2001; MacKay, 2003). In variational inference the approximation prob-
lem is transformed into an optimization problem. For this purpose, the following de-
composition of the logarithm of the marginal likelihood of the observed data is used

logP(D) = L(Q) + KL (Q||P) , (5.32)

where Q is some parametric distribution that will be used to approximate P(θ|D) and
where we have defined

L(Q) =

∫

Q(θ) log

(P(D,θ)

Q(θ)

)

dθ , (5.33)

KL (Q||P) =

∫

Q(θ) log

( Q(θ)

P(θ|D)

)

dθ . (5.34)

KL (Q||P) is the Kullback-Leibler (KL) divergence between the probability distributions
Q(θ) and P(θ|D). This divergence takes only non-negative values, being equal to zero
if and only if the two probability distributions coincide. In consequence, from the de-
composition in (5.32) it follows that L(Q) ≤ logP(D). Thus, L(Q) is a lower bound
on logP(D). Note that L(Q) and KL (Q||P) have to add up to logP(D). Figure 5.3
illustrates this decomposition.

We can now approximate the posterior distribution P(θ|D) by optimizing the lower
bound L(Q) with respect to Q. This is equivalent to minimizing the KL divergence
between these two probability distributions, as described by (5.32). If the form of Q
is not restricted, the solution to the optimization problem is P(θ|D). In practice, Q is
restricted to have a simple parametric form.

Another possibility is to assume that the posterior approximation Q factorizes with
respect to some disjoint groups of parameters θi, i = 1, . . . , k. In this situation we can
express Q as

Q(θ) =

k
∏

i=1

Qi(θi) . (5.35)

This factorized form of the approximation is known as variational mean field (Jaakkola,
2001). We can now optimize the lower bound L(Q) with respect to each term Qi in
(5.35). For this purpose, we substitute (5.35) in (5.33) and extract the dependence of



Chapter 5. Bayesian Machine Learning 103

L(Q)

KL (Q||P)

logP(D)

Figure 5.3: Decomposition of logP(D) into the two terms L(Q) and KL (Q||P).
Adapted from (Bishop, 2006).

the lower bound with respect to an arbitrary factor Qj

L(Q) =

∫ k
∏

i=1

Qi(θi)

[

logP(D,θ) −
k
∑

i=1

logQi(θi)

]

dθ

=

∫

Qj(θj)



logP(D,θ)
∏

i6=j

Q(θi)dθi



 dθj −
∫

Qj(θj) logQj(θj)dθj

−
∑

i6=j

∫

Qi(θi) logQi(θi)dθi

=

∫

Qj(θj) log P̂(D,θj)dθj −
∫

Qj(θj) logQj(θj)dθj + C , (5.36)

where C is a constant value independent of Qj that summarizes the entropies of the
terms

∏

i6=j Qi plus the logarithm of the normalization constant of P̂(D,θj), defined as

log P̂(D,θj) =

∫

logP(D,θ)
∏

i6=j

Qi(θi)dθi + Ĉ

= Ei6=j [logP(D,θ)] + Ĉ , (5.37)

where Ĉ is the negative of the logarithm of the normalization constant of P̂(D,θj). To
maximize L(Q) with respect to Q, we follow a component wise procedure in which we
optimize with respect to Qj keeping Qi, with i 6= j fixed. This can be easily done if we
note that (5.36) is the negative value of the KL divergence between Qj and P̂ plus some
constant terms. Thus, L(Q) is maximized with respect to Qj by setting Qj = P̂

logQj(θj) = Ei6=j [logP(D,θ)] + Ĉ , (5.38)

That is, the optimal value for Qj is obtained by taking the logarithm of the joint prob-
ability distribution P(D,θ) and then computing the expected values with respect the
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other factors Qi, with i 6= j. By taking the exponential at both sides we find that

Qj(θj) =
1

ZQj

exp (Ei6=j [logP(D,θ)]) , (5.39)

where ZQj
is a normalization constant. By successively updating each term Qj in this

way we can iteratively maximize the lower bound L(Q). Unfortunately, even though the
optimization of L(Q) with respect to Qj is convex, the lower bound is not jointly convex
with respect to Q. This means that the global optimization process can end up in a
local maximum. This maximum depends on the initial parameters of the factors Qi and
the order in which the updates are carried out (Jaakkola, 2001). Once the algorithm
has converged, the lower bound L(Q) can be used to approximate the logarithm of the
model evidence logP(D), which can be useful for model comparison.

The technique presented in this section is suited to approximate distributions that
simplify when taking the logarithm. In particular, we must be able to compute the
expectations under the approximate distribution of the logarithm of the unnormalized
distribution. Otherwise, the evaluation of the lower bound is not possible. When this is
the case, it might still be possible to compute a less stringent lower bound on logP(D)
by lower bounding some of the terms that do not simplify. This can be achieved by
parameterizing these lower bounds and then optimizing these parameters to make the
bounds tighter (Jaakkola and Jordan, 2000). Variational inference is independent of
the parameterization used. This is so because the KL divergence is invariant with
respect to arbitrary transformations of the parameters. Thus, this method avoids the
problem of basis dependence of the Laplace approximation (MacKay, 2003). Typically,
the approximate distributions obtained by variational inference tend to be more compact
that the actual distributions. This is a consequence of minimizing KL(Q|P) instead of
KL(P|Q) (Bishop, 2006). In particular, KL(Q|P) takes large values in regions of the
space of parameters in which P is close to zero and Q is not. The opposite effect is
observed in the minimization of KL(P|Q). In this case, the resulting approximation
Q tends to have non-zero density values where P is close to zero (MacKay, 2003).
Thus, in a multi-modal setting the approximate distribution Q that is obtained from
minimizing the lower bound is typically placed under one of the modes, like the Laplace
approximation (Bishop, 2006). Variational inference has proven useful in a wide range
of applications (Attias, 2000; Bishop and Svensen, 2003; Bishop et al., 2002; Blei and
Jordan, 2006; Gibbs and MacKay, 2000; Jaakkola and Jordan, 2000; Lawrence, 2000)
and often performs better and even faster than the Laplace method or Monte Carlo
sampling approaches (Minka, 2001b).

5.5.1.3 Expectation Propagation

Expectation propagation (EP) (Minka, 2001a,b) approximates the posterior distribution
of the model parameters using a simpler distribution Q. Assume that P is a target
distribution. EP minimizes the Kullback-Leibler (KL) divergence between P and Q

KL(P||Q) =

∫

P(θ) log

(P(θ)

Q(θ)

)

dθ . (5.40)

Expression (5.40) takes only non-negative values, and is equal to zero if and only if the
two probability distributions Q and P coincide.
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Assume that the probability distribution Q belongs to the exponential family F of
probability distributions, i.e. Q can be written as

Q(θ) = exp
(

ηTu(θ)− g(η)
)

, (5.41)

where the superscript T means transpose, η is a vector of natural parameters, u(θ) is
some vector function of θ known as the sufficient statistics and g(η) is a log partition
function that guarantees that Q integrates to one. Note that because of the exponential
form of (5.41) the family is closed under product and division. As a function of η, the
KL divergence (5.40) is

KL (P||Q) = g(η)− ηT
EP [u(θ)] + C , (5.42)

where C is an constant value independent of the natural parameters η. In this situation,
minimizing KL (P||Q) with respect to the parameters of Q is equivalent to setting the
gradient of (5.42) with respect to η to zero

KL (P||Q)

∂η
= 0⇐⇒ ∂g(η)

∂η
= EP [u(θ)] . (5.43)

It is easy to show that the gradient of g(η) is also given by the expectation of u(θ) under
the distribution Q. In consequence, (5.43) is equivalent to

EQ [u(θ)] = EP [u(θ)] . (5.44)

Hence, the optimal Q can be obtained by matching the expected sufficient statistics
under Q and P. This result is systematically used in the EP algorithm to carry out
approximate inference in an efficient way.

We now proceed to describe the EP algorithm in its general form. For many prob-
abilistic models, the joint probability function of a set of i.i.d. data instances, D, and
the model parameters, θ, can be written as a product of several terms. That is,

P(D,θ) =
∏

i

ti(θ) . (5.45)

There are many ways to achieve this factorized form. As an example, consider a linear
ridge regression model with n observed data instances. We can associate one term ti(θ)
with each factor P(yi|xi,θ) of the likelihood and one additional term tn+1(θ) with the
prior for θ, P(θ). In principle, we are interested in computing a posterior distribution
P(θ|D) for making predictions and the model evidence P(D) for model comparison.
These quantities are computed from (5.45) as follows

P(θ|D) =
1

P(D)

∏

i

ti(θ) , (5.46)

P(D) =

∫

∏

i

ti(θ)dθ . (5.47)

EP approximates the joint distribution of D and θ by a product of simple terms

P(D,θ) ≈
∏

i

t̃i(θ) , (5.48)
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where each term t̃i in the approximation corresponds to one term ti in the true joint
distribution and the approximate terms t̃i are constrained to have a similar form. In
particular, they all have to belong to the same family of exponential distributions, al-
though they do not have to be normalized. The posterior distribution for θ is then
approximated by a simple distribution Q that is computed as follows

Q(θ) =
1

Z

∏

i

t̃i(θ) , (5.49)

where

Z =

∫

∏

i

t̃i(θ)dθ (5.50)

is a normalization constant that guarantees that Q integrates to one. Because of the clo-
sure property of the exponential family, Q has a form that is similar to the approximate
terms t̃i. As an example, consider that the approximate terms t̃i have a Gaussian form,
then, the posterior approximation Q will also be Gaussian. In practice, the form of Q
is selected first and the approximate terms t̃i are constrained to have the same form as
Q, although they do not have to be normalized.

Ideally, the EP algorithm should determine the approximate terms t̃i by minimizing
the KL divergence between the true posterior P(θ|D) and the approximation Q. How-
ever, this is intractable because as described by (5.44) it involves computing an average
over P(θ|D), which is infeasible. As an approximation, EP performs a sequential opti-
mization by minimizing the KL divergence between the pairs of terms ti and t̃i. Until
convergence of the approximate terms t̃i, at each step of the algorithm EP updates the
term t̃i so that the product

t̃i(θ)
∏

j 6=i

t̃j(θ) (5.51)

is as close as possible to the product

ti(θ)
∏

j 6=i

t̃j(θ) (5.52)

in terms of the KL divergence. This procedure ensures that the approximate term t̃i
is accurate in regions of high posterior probability as defined by the remaining terms
(Minka, 2001b).

The EP algorithm involves the following steps:

1. Initialize all the approximate terms t̃i and Q to be uniform.

2. Repeat until all t̃i converge:

(a) Select an approximate term t̃i to update and remove t̃i from Q by dividing
and normalizing:

Q\i(θ) ∝ Q(θ)

t̃i(θ)
. (5.53)

(b) Compute an updated posterior distribution P̂:

P̂(θ) =
1

Zi
ti(θ)Q\i(θ) , (5.54)
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where Zi is a normalization constant needed to ensure that P̂ integrates to
one.

(c) Update the posterior approximation Q:

Qnew = arg min
Q

KL
(

P̂||Q
)

. (5.55)

(d) Update t̃i by setting

t̃i(θ) = Zi
Qnew(θ)

Q\i(θ)
. (5.56)

3. Evaluate the approximation to the model evidence:

P(D) ≈
∫

∏

i

t̃i(θ)dθ . (5.57)

In the case of a Gaussian distribution, the first step of the algorithm is implemented
by setting the mean and the variance of all the approximate terms t̃i and the posterior
approximation Q equal to zero and +∞, respectively. Step 2-(a) can be carried out by
computing

∏

j 6=i t̃j and normalizing. However, division is usually faster. Note that Q\i

has the same form as Q as a consequence of the closure property of the exponential
family. Furthermore, because Q is in the exponential family, the optimization problem
of step 2-(c) is performed by matching the sufficient statistics of P̂ and Q, as described
by (5.44). Thus, the algorithm only requires these integrals to be tractable. Step 2-(d)
guarantees that t̃iQ\i integrates to the same value as tiQ\i and also that Qnew is obtained
when we compute the product

∏

i t̃i and normalize. The approximate terms t̃i are often
selected so that they have the same form as the prior for θ, P(θ). In this situation, the
update of the approximate term t̃n+1 corresponding to the prior for θ is not required
because the optimal update is always to set t̃n+1 equal to P(θ). Furthermore, if the
posterior approximation Q is initialized to the prior, the term tn+1 can be ignored in
the main loop of the EP algorithm (Minka, 2001b).

The EP algorithm is not guaranteed to converge, although extensive empirical eval-
uation has shown that most of the times it is convergent (Minka, 2001b). Furthermore,
if the approximation Q is in the exponential family and the algorithm does converge,
the resulting solution is a minimum of a particular energy function (Minka, 2001a),
although each iteration of EP does not necessarily decrease the value of this energy
function. To guarantee convergence, there is a generalized version of EP based on a
double loop algorithm (Heskes and Zoeter, 2002). EP has demonstrated to have an
excellent performance when compared to other approximate inference techniques such
as Monte Carlo methods, variational inference and the Laplace approximation (Minka,
2001b). Nevertheless, because of the moment matching procedure of the algorithm, EP
can lead to poor approximations when the posterior is multi-modal and the form as-
sumed for Q is uni-modal (Bishop, 2006). The typical scenario for such poor behavior
is a bimodal posterior distribution that is approximated by a Gaussian distribution. EP
places the mean of the Gaussian between the two modes of the true posterior, where the
probability can be rather low.

We now illustrate the EP algorithm with a simple problem. Consider a model with
a single parameter θ. Assume that the joint probability function for the observed data



Chapter 5. Bayesian Machine Learning 108

and the model parameter P(D, θ) is

P(D, θ) = Φ(5θ) exp(−1

2
θ2) , (5.58)

where Φ(·) is the cumulative probability function of a standard Gaussian distribution.
To use EP for approximating the posterior distribution of the model parameter P(θ|D),
we factorize (5.58) as the product of two terms, t1(θ) = Φ(5θ) and t2(θ) = exp(−θ2/2).
Next, we restrict the approximation Q to be a simple distribution from the exponential
family. In particular, we assume Q is a Gaussian distribution with mean µ and variance
ν

Q(θ) = N (θ|µ, ν) . (5.59)

Because the Gaussian distribution belongs to the exponential family (see Appendix A.3),
the approximate terms t̃1 and t̃2 will also have a Gaussian form, although they do not
have to integrate to one

t̃i(θ) = si exp(− 1

2vi
(θ −mi)

2) , (5.60)

where si, mi and vi are free parameters. We now derive the EP update equations for
this problem. The first step of the EP algorithm consists in initializing Q and all the
t̃i terms to be uniform. This is achieved by setting the mean and the variance of all
t̃i and Q to zero and infinity, respectively. The next step is computing Q\i from Q.
Recall that Q\i has the same form as Q (i.e. a Gaussian distribution) because of the
closure property of the exponential family. Let µ\i and ν\i be the parameters of Q\i.
As described by (5.53), Q\i is the quotient between two Gaussian distributions, i.e. the
posterior approximation Q and t̃i, although t̃i is not normalized. Using (A.46) we find
that

ν\i =
(

ν−1 − v−1
i

)−1
, µ\i = ν\i

(

ν−1µ− v−1
i mi

)

. (5.61)

The next step consists in computing Zi, the normalization constant of P̂(θ), as defined
in (5.54), for i = 1, 2. This constant depends on the term ti that is being processed. In
particular,

Zi =











∫

Φ(5θ)N (θ|µ\i, ν\i)dθ = Φ

(

µ\i√
5−2+ν\i

)

if i = 1 ,

∫

exp(−1
2θ2)N (θ|µ\i, ν\i)dθ = 1√

ν\i+1
exp

(

−1
2

(µ\i)2

ν\i+1

)

if i = 2 .
(5.62)

To compute Qnew we have to match the sufficient statistics between Q and P̂(θ). Specif-
ically, because Q is Gaussian, we have to match the mean and variance between these
two distributions (see Appendix A.3). The mean and the variance of P̂(θ) can be com-

puted from Zi using (A.40) and (A.41), respectively. Assume that z = µ\i/
√

5−2 + ν\i

and that α = N (z|0, 1)/(Φ(z)
√

5−2 + ν\i), the parameters of Qnew are in the case of t1

µnew = µ\i + ν\iα , (5.63)

νnew = ν\i − α(ν\i)2

(

α +
µ\i

5−2 + ν\i

)

, (5.64)
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and in the case of t2

µnew =
µ\i

ν\i + 1
, (5.65)

νnew =
ν\i

ν\i + 1
. (5.66)

Once we have an updated posterior distribution Qnew, the last step of the algorithm is
to update the corresponding approximate term t̃i using (5.56). Because t̃i is computed
as the quotient between the Gaussian distributions Qnew and Q\i, we can use (A.46) to
find that

vi =
(

(νnew)−1 − (ν\i)−1
)−1

, (5.67)

mi = vi

(

(νnew)−1µnew − (ν\i)−1µ\i
)

, (5.68)

si = Zi

√

ν\i

νnew
exp

(

−1

2

(

(µnew)2

νnew
− (µ\i)2

ν\i
− m2

i

vi

))

. (5.69)

Using these update rules we can iterate the EP algorithm until convergence of the
approximate terms t̃i. Figure 5.4 displays the posterior approximation Q that is obtained
by the EP algorithm in this simple problem. The exact posterior distribution P(θ|D) is
also displayed in the picture as a reference. We note that, as in variational inference, the
resulting Gaussian distribution need not be placed at the mode of the true posterior.
Once EP has converged, we can compute (5.57) to approximate P(D). For this task
we have to integrate the product of the approximate terms t̃i, which is the product of
several Gaussian functions and hence, is also Gaussian. In particular, (A.42) can be
used to give

P(D) ≈
∫

t̃1(θ)t̃2(θ)dθ = s1s2

√
2πν exp

(

−1

2

(

m2
1

v1
+

m2
2

v2
− µ2

ν

))

. (5.70)

In this problem the exact value of P(D) is 1.253, which is the same value estimated by
EP in (5.70).

5.5.2 Sampling Methods

Most of the methods described in this section employ Markov chains whose stationary
distribution is the posterior distribution of the model parameters given the observed
data P(θ|D) (Bishop, 2006; MacKay, 2003). Thus, before describing these techniques
in detail, we first introduce Markov chains. Define S to be a set of states and let
z(n) ∈ S be a random variable that represents a fixed state at stage n. The sequence
z(1), z(2), z(3), . . . is a Markov chain of first order if

P(z(n)|z1, . . . , z
(n−1)) = P(z(n)|z(n−1)) (5.71)

holds for all n ≥ 2. The Markov chain is hence fully determined by the initial proba-
bility distribution P(z(1)) and the conditional transition probabilities P(z(n)|z(n−1)). A
Markov chain is said to be homogeneous if the transition probabilities do not depend
on n, i.e. they only depend on the current state and the new state. The marginal
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Figure 5.4: Exact posterior distribution P(θ|D) obtained by normalizing P(D, θ)
alongside with the approximation Q obtained by the EP algorithm.

probability at stage n is

P(z(n)) =
∑

z(n−1)

P(z(n)|z(n−1))P(z(n−1)) . (5.72)

Let S be the space of sates of a Markov chain and P⋆(z), with z ∈ S, a probability
distribution over S. P⋆(z) is the stationary distribution of the Markov chain if

P⋆(z) =
∑

z′∈S

P⋆(z′)P(z|z′) . (5.73)

A condition that ensures that a probability distribution is the stationary distribution is
the detailed balance property

P⋆(z)P(z′|z) = P⋆(z′)P(z|z′) . (5.74)

This can be proved by marginalizing z′ in (5.74). However, note that there can be
stationary distributions that do not satisfy (5.74).

Finally, if a Markov chain is homogeneous then it can be proved that a stationary
distribution exists and that

1

n

n
∑

i=1

I

(

z(i) = z
)

→ P⋆(z) as n→∞ a.s. , (5.75)

where I(z) is an indicator function that takes value one when z is satisfied and zero
otherwise, under weak restrictions on the stationary distribution. A similar analysis is
possible for a continuous space of states S. See (Neal, 1993) for further details.

The techniques described below employ Markov chains to sample from probability
distributions. For this purpose, they build a Markov chain whose stationary distribu-
tion is the distribution we are interested in sampling from. Then, expectations under
the stationary distribution are approximated by averages computed over the samples
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generated from the Markov chain. Typically, the first samples generated from the chain
are discarded to give time to the chain to reach the stationary regime. As then num-
ber of samples generated from the Markov chain increase, these methods become exact.
However, with the computational resources that are commonly available, it is only fea-
sible to draw a few thousand samples from the chain. In consequence, the sampling
algorithms described below can only provide approximate solutions. A more serious
difficulty is that the samples obtained are correlated, which means that the variance of
the estimates obtained by computing the averages can be rather large.

5.5.2.1 Metropolis-Hastings

The Metropolis-Hastings algorithm can be used to approximately sample from from an
unnormalized probability distribution P̃(z) (Bishop, 2006; MacKay, 2003). For this pur-
pose, this algorithm introduces an arbitrary proposal probability distribution Q(z|z′),
which needs not be similar to the normalized version of P̃(z). A typical choice for this
probability density is a Gaussian distribution with mean equal to z′. The Metropolis-
Hastings algorithm builds a Markov chain whose stationary distribution is the normal-
ized version of P̃(z),

P(z) =
1

Z
P̃(z) , (5.76)

where Z is the normalization constant. Let n be the current stage of the Markov chain
and let z(n) be the current state. A candidate state z⋆ is generated from Q conditioned
to z(n), i.e. z⋆ ∼ Q(z|z(n)). This candidate state is accepted with probability

A(z⋆|z(n)) = min

(

1,
P(z⋆)Q(z(n)|z⋆)

P(z(n))Q(z⋆|z(n))

)

. (5.77)

If the new state is accepted we set z(n+1) = z⋆, otherwise we set z(n+1) = z(n). Note
that a rejection causes the current state to be repeated in the chain. To compute (5.77)
the normalization constant of P̃ is not required since it cancels out when evaluating the
quotient. Furthermore, if the proposal density Q is a simple symmetrical density such as
the Gaussian distribution, the ratio Q(z(n)|z⋆)/Q(z⋆|zn) is one and can also be ignored.

We now show that if a Markov chain is generated as described, the distribution P(z)
is the stationary distribution of the chain. For this purpose we employ the transition
probabilities of the Markov chain, which are given by (5.77) times the probability of
generating the new state using the proposal distribution Q, and show that P(z) satisfies
the detailed balance property of the stationary distribution, i.e.

P(z)Q(z|z′)A(z|z′) = min
(

P(z)Q(z|z′),P(z′)Q(z′|z)
)

= min
(

P(z′)Q(z′|z),P(z)Q(z|z′)
)

= P(z′)Q(z′|z)A(z′|z) . (5.78)

The Metropolis-Hastings algorithm is a widely used method for sampling from un-
normalized probability distributions in high dimensional spaces. Note that for the ac-
ceptance ratio of the algorithm to be large, the value of P̃ evaluated in the new candidate
state z⋆ should be similar or larger than the value of P̃ evaluated in the current state
z(n). In consequence, the variance of the candidate distribution Q that generates new
states should be relatively small. Otherwise, it is likely that the new candidate state z⋆

ends in a region of the state space with very low probability (Bishop, 2006; MacKay,
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2003). However, if the variance of Q is small, the exploration is made in very small
steps, taking very long time to explore the whole state space. Furthermore, the different
samples obtained from the chain will be very correlated as the different states obtained
will be very similar. Thus, in this algorithm there is an important trade-off between the
acceptance ratio and the set of different states that is explored. This trade-off becomes
more serious in very high dimensions. In particular, when the dimension is high the
Markov chain has to be run for very long periods of time to obtain a few independent
samples from the stationary distribution (Bishop, 2006; MacKay, 2003).

5.5.2.2 Gibbs Sampling

Gibbs sampling is a simple Markov chain Monte Carlo method that can be seen as
a special case of the Metropolis-Hastings algorithm (Bishop, 2006; MacKay, 2003).
Gibbs sampling can be applied to sample from distributions with at last two compo-
nents in z. Consider that we are interested in sampling from the distribution P(z) =
P(z1, z2, . . . , zm), where m ≥ 2 is the dimension of the vector z. We shall assume that
P(z) is too complicated to sample from it directly. However, the conditional distribu-
tions P(zi|{zj}j 6=i) are simpler and hence, we can sample from them. Gibbs sampling
builds a Markov chain whose stationary distribution is P(z) by sampling from these con-
ditional distributions. Given z(n), z(n+1) is generated in Gibbs sampling by replacing
the value of one of the components in z(n) by a new value drawn from the distribution
of that component conditioned to the values of the remaining components. This proce-
dure is then repeated to generate subsequent samples from the chain by cycling over the
components in some particular order or by choosing the variable to be updated at each
step at random. Figure 5.5 displays the pseudo-code for the Gibbs sampling algorithm.

Input: dimension of the vector z, m, number of samples N and marginal
distributions for z.

Output: Samples from the Markov chain z(1), z(2), . . . , z(N).

1. Compute the initial state of the chain z(1).

2. For i = 1, . . . , N

• Sample z
(i+1)
1 ∼ P(z1|z(i)

2 , z
(i)
3 , . . . , z

(i)
m ).

• Sample z
(i+1)
2 ∼ P(z1|z(i)

1 , z
(i)
3 , . . . , z

(i)
m ).

• Sample z
(i+1)
3 ∼ P(z1|z(i)

1 , z
(i)
2 , z

(i)
4 , . . . , z

(i)
m ).

•
...

• Sample z
(i+1)
m ∼ P(z1|z(i)

1 , z
(i)
2 , . . . , z

(i)
m−1).

3. Return samples from the chain {z(n), n = 1, . . . , N}.

Figure 5.5: Algorithm that implements Gibbs sampling. Extracted from (Bishop,
2006).

The Gibbs sampling algorithm is a particular case of the Metropolis-Hastings al-
gorithm in which the acceptance probability of a new candidate state is always one
(Bishop, 2006; MacKay, 2003). In particular, consider a sampling step involving the
k-th component zk in which the remaining components, summarized in the vector z\k,
remain unchanged. In this situation, the transition probability from the current state
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z, to a new candidate state z⋆ is Q(z⋆|z) = P(zk|z\k). Because the components j 6= k
remain unchanged, we have that z⋆

\k = z\k. Furthermore, P(z) = P(zk|z\k)P(z\k). In
consequence, the acceptance probability of an equivalent Metropolis-Hastings step is

A(z⋆, z) = min

(

1,
P(z⋆)Q(z|z⋆)

P(z)Q(z⋆ |z)

)

= min

(

1,
P(z⋆

k|z⋆
\k)P(z⋆

\k)P(zk|z⋆
\k)

P(zk|z\k)P(z\k)P(z⋆
k |z\k)

)

= 1 . (5.79)

This means that the steps of the Gibbs sampling algorithm are always accepted.
Because Gibbs sampling is in fact a particular case of the Metropolis-Hastings, it

suffers from the same shortcomings. In particular, the Markov chain explores the space
of states by a random walk which can take long time to explore the whole state space.
The advantage of Gibbs sampling is that the acceptance ratio is always one. Thus, there
are no consecutive repeated states in the chain. The random walk behavior of Gibbs
sampling can be alleviated by a technique called over-relaxation (Adler, 1981). This
technique applies to problems with Gaussian conditional distributions and is based on
encouraging a directed motion through the space of states when the variables are highly
correlated. The feasibility of the Gibbs sampling algorithm depends on whether the
conditional distributions can be efficiently computed. In practice, there are many infer-
ence problems in which the joint probability distribution is intractable, but conditionals
are easy to compute. Gibbs sampling can be useful in these problems. Finally, because
Gibbs sampling only considers one variable each time, there are strong correlations be-
tween consecutive samples from the Markov chain. These correlations can be reduced
by considering groups of variables in each step of the algorithm (Bishop, 2006; MacKay,
2003).

5.5.2.3 Hamilton Monte Carlo

This is an improved sampling technique that aims to solve the slow random walk behavior
of the Metropolis-Hastings algorithm (Bishop, 2006; MacKay, 2003). Hamilton Monte
Carlo makes use of gradient information to direct the exploration to locations where the
sampled distribution has high probability so that the rejection rate of the Metropolis-
Hastings algorithm is reduced. This sampling algorithm can be applied to continuous
distributions for which the gradient of the logarithm of the probability can be efficiently
evaluated.

In Hamilton Monte Carlo, the state vector z is extended to incorporate some mo-
mentum variables p, one for each component in z. Unlike the Metropolis-Hastings
algorithm, Hamilton Monte Carlo generates new candidate states alternatively. First, a
new momentum variable is generated randomly. Then, both the sate vector z and the
momentum variables p are updated using simulated Hamiltonian dynamics, in analogy
with a dynamical system. Assume that P(z) is the probability distribution we are in-
terested in sampling from. We can always write P(z) in terms of an energy function
E(z)

P(z) =
1

ZE
exp (−E(z)) , (5.80)

where ZE is just a normalization constant and E(z) is interpreted as the potential energy
of the system in state z (Bishop, 2006). To describe this dynamical system, we also
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incorporate a kinetic energy term that depends on the momentum variables p

K(p) =
1

2
pTp , (5.81)

where T indicates transpose. The total energy of the dynamical system is the sum of
these two components

H(z,p) = E(z) + K(p) . (5.82)

The total energy H(z,p) is also know as the Hamiltonian function (Bishop, 2006;
MacKay, 2003), by analogy to the Hamiltonian function in mechanics. This energy
function can be used to describe the probability of the system being at a given configu-
ration. In particular, the joint probability of the system being at state z with momentum
variables p is

P(z,p) =
1

ZH
exp (−H(z,p))

=
1

ZH
exp (−E(z) −K(p)) . (5.83)

This probability distribution factorizes with respect to z and p. In consequence, to
obtain samples from P(z) we can sample from (5.83) and then discard the momentum
variables. Furthermore, the conditional distribution of the momentum variables p given
a state vector z is simply a standard Gaussian distribution

P(p|z) = exp

(

−1

2
pTp

)

. (5.84)

This dynamical system can be used to describe the evolution of the state variables
z and the momentum variables p in continuous time t using the Hamilton equations

dz

dt
≡ ∂H

∂p
= p , (5.85)

dp

dt
≡ −∂H

∂z
= −∂E

∂z
. (5.86)

Note that in the evolution of the dynamical system, the value of (5.82) remains constant
(Bishop, 2006)

dH

dt
=
∑

i

(

∂H

∂zi

dzi

dt
+

∂H

∂pi

dpi

dt

)

=
∑

i

(

∂H

∂zi

∂H

∂pi
− ∂H

∂pi

∂H

∂zi

)

= 0 . (5.87)

However, even though (5.82) is invariant, the values of z and p will vary with time.
Thus, by integrating the Hamiltonian dynamics described by (5.85) and (5.86) over a
finite amount of time it is possible to make large changes in z, which is distributed
according to P(z).

The Hamilton Monte Carlo algorithm works by first picking a random value for the
momentum variables p. This is typically implemented by drawing p from the conditional
Gaussian probability (5.84). Note that this step is always accepted according to the
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Metropolis-Hastings acceptance rule because it is equivalent to a Gibbs sampling step.
Then, the mechanics of the dynamical system are simulated for a finite amount of time
using approximate techniques for integrating the differential equations (5.85) and (5.86).
This step produces large changes in z and p, giving a candidate configuration (z⋆,p⋆).
If the integration of (5.85) and (5.86) were perfect, the acceptance probability of the
Metropolis-Hastings algorithm for this step should always be one, because (5.82) is
invariant under the simulated mechanics. However, in practice, due to numerical errors
the value of H evaluated at the initial configuration can be different from the value
of H evaluated at the candidate configuration. In consequence, we use the Metropolis-
Hastings acceptance rule and accept the new configuration of the system with probability

A((z⋆,p⋆), (z,p)) = min

(

1,
P(z⋆,p⋆)

P(z,p)

)

= min (1, exp (−∆H)) , (5.88)

where ∆H measures the change in (5.82). Note that in this last expression there is no
proposal distribution Q. This is because the dynamics of the system are reversible. By
choosing randomly whether to integrate the dynamics forward or backward in time at
the beginning of each step, the transition probabilities given by Q are symmetric and
hence, they do not appear in (5.88) (Bishop, 2006). Figure 5.6 displays the pseudo-code
of the Hamilton Monte Carlo algorithm.

Input: number of samples N , number of steps T , step size ǫ, H(z,p) and
−∂E(z)/∂z.

Output: Samples from the Markov chain (z(1),p(1)), . . . , (z(N),p(N)).

1. Compute the initial state of the chain (z(1),p(1))

2. For i = 1, 2, . . . , N

• Draw p from N (0|0, I).

• p(i+1) ← p.

• H′ ← H(z(i),p(i+1))

• z(i+1) ← z(i).

• Switch randomly the sign of ǫ.

• For t = 1, 2, . . . , T

– p(i+1) ← p(i+1) − ǫ 1
2

[

∂E(z)
∂z

]

z=z
(i+1)

.

– z(i+1) ← z(i+1) + ǫp.

– p(i+1) ← p(i+1) − ǫ 1
2

[

∂E(z)
∂z

]

z=z
(i+1)

.

• ∆H ← H(z(i+1),p(i+1))−H′.

• Pick u uniformly from the interval [0, 1].

• if u > min(1, exp(−∆H)) then (z(i+1),p(i+1))← (z(i),p).

3. Return samples from the chain (z(1),p(1)), . . . , (z(N),p(N)).

Figure 5.6: Algorithm that implements the Hamilton Monte Carlo algorithm. Ex-
tracted from (Bishop, 2006).



Chapter 5. Bayesian Machine Learning 116

5.6 Conclusions

In this chapter we have given an overview of Bayesian machine learning. This paradigm
provides a principled approach to deal with the uncertainties about the selection of
the model and the model parameters in automatic induction problems. In particular,
when the amount of data available for induction is reduced and the training instances
are contaminated by noise, a Bayesian approach has several advantages over standard
learning methods. First, the posterior probabilities of the model given the observed
data can be used to discriminate among different candidate models. These probabilities
automatically penalize models that are unnecessarily complex to solve the learning task.
Second, assuming that the correct model has been selected, the posterior probability
of the model parameters can be used to account for different values of the parameters,
each one weighed by the corresponding value of the posterior distribution. Predictions
are then computed in terms of a predictive distribution that considers all these different
values for the model parameters. Finally, in this learning paradigm expert knowledge
about the learning task can be incorporated in the model by specifying some prior
distribution for the model parameters. This prior knowledge can compensate for the
limited amount of data available.

Despite these advantages, the practical implementation of Bayesian machine learning
is difficult. In particular, the computation of the posterior distribution often requires
solving difficult integrals or evaluating summations that involve an exponential number
of terms. Thus, this distribution has to be approximated in practice. A standard method
for computing this approximation is Markov chain Monte Carlo (MCMC) (Neal, 1993),
in which the posterior distribution is approximated by samples from Markov chain. The
problem is that MCMC techniques can be very slow because generating independent
samples from the posterior distribution requires running the Markov chain for a long
period of time. An alternative to MCMC is to use deterministic methods that approx-
imate the posterior distribution by a simple distribution for which computations are
tractable. Sometimes it can be difficult to compute an approximate posterior distribu-
tion for all the parameters of the model. Under these circumstances, a technique called
type-II maximum likelihood can be used to estimate these parameters. However, type-
II maximum likelihood demands the running of the approximate inference algorithm
multiple times, increasing the total cost of training the Bayesian model.

The following chapters of this thesis describe how the expectation propagation (EP)
algorithm can be used to alleviate some of these problems. Specifically, the EP algorithm
can be used in Bayesian models as an efficient alternative to MCMC sampling or type-II
maximum likelihood estimation to approximate the posterior distribution.



Chapter 6
Bayes Machines for Binary Classification

In this chapter we propose a Bayesian approach to binary classification based on

an extension of Bayes point machines. This extension is carried out by taking into

account all the hyper-planes that are consistent with the training data, considering

the possibility of mislabeled instances. Using Bayes’ theorem, a posterior distri-

bution for the model parameters and a predictive distribution for unseen data are

computed. The most compelling feature of the proposed model is that the level of

noise in the class labels of the training data can be learned at no additional cost.

All the computations are carried out using the approximate inference algorithm

expectation propagation (EP). This algorithm is written in terms of inner products

so that feature expansion using the kernel trick is straightforward. Experimental

results show that the proposed model outperforms support vector machines and is

competitive with other Bayesian classification algorithms based on Gaussian pro-

cesses in several of the classification problems studied. The training and prediction

time of this model can be reduced using a sparse representation. For this pur-

pose, the sparse representation proposed in the informative vector machine (IVM)

is used. However, some modifications are made to provide a better approximation

to the posterior distribution. Specifically, we introduce in the training algorithm

additional refining iterations over the set of active instances included in the model.

These refining iterations can be thought as a back-fitting algorithm that tries to fix

some of the mistakes that result from the greedy approach of the IVM. Experiments

comparing the performance of this sparse representation with the performances of

the complete (non-sparse) machine and the support vector machine confirm that it

is competitive with these two classifiers.

6.1 Introduction

Kernel classifiers have shown an excellent performance on numerous classification
problems (Gibbs and MacKay, 2000; Herbrich et al., 2001; Kim and Ghahramani, 2006;
Minka, 2001b; Vapnik, 1995). In consequence, they have received a lot of attention
from the machine learning community. Examples of these type of classifiers are support
vector machines (SVMs), Bayes point machines (BPMs), and Gaussian process classi-
fiers (GPCs). The SVM was devised as a classifier that maximizes the margin, which is
defined as the minimum distance between data points and the decision boundary (Vap-
nik, 1995). Inspired by results from the statistical/PAC learning theory, SVMs have

117
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proved quite successful on many learning applications and hence, they have become a
standard tool for automatic induction. On the other hand, GPCs were developed within
a Bayesian framework. They are kernel classifiers derived from Gaussian process (GP)
priors over latent functions. GPs were originally introduced for regression problems.
However, they can be readily adapted to address classification tasks by using a latent
function whose value at a certain input location is monotonically related to the class-
posterior probability at that particular location. A GP can be used as a prior for the
latent function and probabilities can be obtained from it by applying a monotonic func-
tion bounded in the interval [0, 1] (Bishop, 2006; Kuss and Rasmussen, 2005; Williams
and Barber, 1998). Typically, exact inference in GPCs is not tractable and therefore,
approximation techniques have to be employed (Barber and Williams, 1997; Gibbs and
MacKay, 2000; Kuss and Rasmussen, 2005; Opper and Winther, 2000b). Finally, the
BPM is a kernel classifier that tries to find the single parameter combination that mimics
best the Bayes optimal classification strategy (Herbrich et al., 2001). This parameter
combination is known as the Bayes point. Because computing the Bayes point is typi-
cally infeasible, Herbrich et al. (2001) propose to approximate it by the center of mass
in version space. The version space is defined as the set of all hypotheses space that
are consistent with the data in feature space. Computing the Bayes point using this
definition is also difficult and hence, approximate algorithms are employed (Herbrich
et al., 2001; Minka, 2001b). When expectation propagation is used to approximate the
Bayes point, the decision boundary of the resulting classifier is equal to the decision
boundary of the GPC (Minka, 2001b). Finally, Herbrich et al. (2001) show that in the
noise free scenario, the SVM can be seen as a particular case of the BPM that tries to
find the center of the largest ball still inscribable in version space. Because both the
SVM and the BPM only consider a single value for the model parameters, they output
single class label. By contrast, GPCs output class probabilities.

In this chapter we propose a classification model devised to improve BPMs in two
ways (Hernández-Lobato and Hernández-Lobato, 2008). First, we take into account the
whole version space instead of only its center of mass. Second, we consider the possibility
of mislabeled data in the training set. The proposed model is formulated in a Bayesian
framework and Bayes’ theorem is used to compute a posterior distribution for all the
parameters of the model, including a parameter that quantifies the level of noise. Using
this posterior distribution we can compute a predictive distribution for new instances.
This predictive distribution provides a mechanism to take into account uncertainty in
the predictions. Because exact Bayesian inference in this model is infeasible, we use
expectation propagation (EP) to approximate the posterior distribution of the model
parameters (Minka, 2001b). The most attractive feature of this model is the ability to
learn the intrinsic noise in the class labeling of the training data with no additional cost.
This is not possible in SVMs, BPMs or GPCs, which have to resort to costly methods.

In SVMs and GPCs noise is typically handled by means of an additional parameter
that must be carefully tuned to obtain good generalization properties. In the case of
SVMs this parameter is often found by cross-validation. That is, several SVMs are
built for different values of the noise parameter and the performance of each machine
is measured on a validation set. Finally, the value of the noise parameter that leads
to the SVM with the best performance is chosen. In the case of BPMs and GPCs a
similar procedure is carried out. However, instead of using a dataset for validation,
they follow a type-II maximum likelihood approach (Bishop, 2006) and maximize the
the marginal likelihood of the data, where the model parameters have been integrated
out (Bishop, 2006; Kim and Ghahramani, 2006; MacKay, 2003; Minka, 2001b). The
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advantage is that all the available data can be used for training the model, unlike in
the SVM. Other techniques devised for GPCs make use of a Markov chain Monte Carlo
(MCMC) algorithm to sample from a posterior distribution for the noise parameter
(Barber and Williams, 1997; Neal, 1997). Nevertheless, obtaining independent samples
in these algorithms is a difficult task. In particular, the Markov chain has to be run for
a considerable time, resulting in a large computational cost. Thus, sampling techniques
are usually limited to small classification problems (MacKay, 2003).

The major drawback of SVMs, BPMs and GPCs is that they require multiple exe-
cutions of the underlying learning algorithm to estimate the appropriate values of the
hyper-parameters that quantify the level of noise. This increases the computational cost
of training the final models. The method proposed in this chapter can learn the level of
noise in the training set in a single application of the learning algorithm.

The computational cost of training the proposed model is determined by the cost of
EP which is O(n3), where n is the number of training instances. This cubic dependence
in the training set becomes a problem if we want to use this model in large classification
problems. This limitation can be alleviated by obtaining a sparse representation for this
model. This sparse representation is based on an approach similar to the informative
vector machine (IVM) (Lawrence et al., 2003; Seeger, 2003). It consists in maintain-
ing a set I of active instances. Instances that are not included in I are ignored by
the model. Because finding the best active set is a difficult task, the IVM employs a
greedy algorithm for this purpose. In this chapter we improve this greedy algorithm
by performing additional refining iterations that provide a better approximation to the
posterior distribution.

The chapter is organized as follows. In Section 6.2 we introduce the proposed binary
classification model that extends BPMs. The EP algorithm is used in Section 6.2.1
for making approximate inference in this model. Then, in Section 6.2.2 we carry out
experiments using several binary classification problems to assess the performance of the
proposed model. Experimental comparison with other kernel classifiers such as SVMs
and GPCs is also provided in this section. Later, in Section 6.3.1 we introduce the
training algorithm that provides a sparse representation for the proposed model and
in Section 6.3.2 we carry out experiments to assess the accuracy of the sparse models
obtained by this algorithm. Finally, the conclusions of this chapter are summarized in
Section 6.4.

6.2 Bayes Machines

The Bayes machine (BM) is a Bayesian approach to linear binary classification. A linear
classifier assigns the class label (−1 or 1) for the instances characterized by the vector of
attributes x using the rule y = sign(wTx), for some parameter w that defines a hyper-
plane w in R

d, where d is the dimensionality of the data. The hyper-plane w is required
to contain the origin. This can be readily achieved by extending the vector of attributes
with one additional component that takes value 1. Given a set of n d-dimensional input
examples X = {x1, . . . ,xn} and corresponding target class labels y = {y1, . . . , yn},
yi ∈ {−1, 1}, the likelihood for w (Herbrich et al., 2001) is

P(y|w,X) =

N
∏

i=1

P(yi|xi,w) =

N
∏

i=1

Θ(yiw
Txi) , (6.1)
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where the function Θ is the step function given by

Θ(y) =

{

1 if y > 0

0 if y ≤ 0
, (6.2)

and the superscript T means transposed. Note that we are not seeking to model the
distribution of the input variables. For this reason, X will always appear in the set of
conditioning variables. To simplify the notation, from now on, we drop the explicit X
from all the expressions. For instance, P(y|w,X) will be simply written as P(y|w).

We note that the likelihood function (6.1) is one if the hyper-plane w is a perfect
separator of the data and zero otherwise. Thus, assuming a uniform prior for w the pos-
terior distribution for w is uniform over all the hyper-planes that correctly separate the
training data. This means that the approach followed by the BPM, which only considers
one single value for w in version space, will actually produce a decision boundary that,
while being similar to the Bayesian average, fails to take into account the uncertainty
that arises form the fact that many other hypotheses are equally likely.

We can extend the model given by (6.1) to take into account labeling errors. Fol-
lowing Opper and Winther (2000a)

P(y|x,w, ǫ) = ǫ(1−Θ(ywTx)) + (1− ǫ)Θ(ywTx) (6.3)

= ǫ + (1− 2ǫ)Θ(ywTx) , (6.4)

where ǫ is the labeling error rate. For a fixed hyper-plane w, the likelihood for ǫ given
y is

P(y|w, ǫ) = ǫr(1− ǫ)n−r , (6.5)

where r is the number of errors in the training set. This likelihood is maximum for
ǫ = r/n which is precisely the error rate of the hyper-plane w. Thus, the model only
takes into account the number of errors, not how large these errors are. Assuming this
likelihood function, outliers do not produce distortions in the resulting classifier because
the model does not care about how far the errors are from the decision boundary.
An alternative approach to introduce labeling errors in the model which is sensitive
to outliers is to penalize errors far from the decision boundary (Bishop, 2006; Minka,
2001b; Opper and Winther, 2000a). This can be achieved by substituting the step
function in (6.1) by a smooth activation function, such as the cumulative probability
function of a standard Gaussian distribution. Another choice is the sigmoid function
whose tails fall like exp(−x) instead of exp(−x2), and is therefore less affected by outliers.
Nevertheless, we believe that the likelihood function given in (6.4) is more robust than
these alternatives.

To complete the Bayesian formulation of the model we need to select a prior distri-
bution for the model parameters w and ǫ. We will assume a factorizing prior

P(w, ǫ) = P(w)P(ǫ) . (6.6)

The next step is to choose a parametric family of distributions for P(w) and P(ǫ).
These distributions should be uniform for both w and ǫ so that no particular value of
the parameters is favored over other values. As discussed in (Minka, 2001b), a spherical
Gaussian distribution

P(w) = N (w|0, I) (6.7)
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is a uniform prior for w because it assumes that all directions of the hyper-plane w are
equally likely. In the case of the prior over the noise parameter ǫ, we assume that it
follows a beta distribution (see Appendix A.2)

P(ǫ) = Beta(ǫ|a0, b0) . (6.8)

In this case, a uniform distribution for ǫ is obtained by setting a0 = 1 and b0 = 1.
However, using this prior actually prevents the machine from learning anything at all.
In particular, under a uniform prior for ǫ the data instances have equal probability of
being correctly or incorrectly labeled. To extract some knowledge from the training data
we have to trust the data to a certain extent. That is, we have to make the assumption
that most of the data are correctly labeled. A uniform prior for ǫ does not reflect this.
In consequence, we consider an alternative prior distribution by setting a0 = 1 and
b0 = 10. These parameter values lead to a prior for ǫ whose average value is close to
zero, providing at the same time a sufficiently large variance so that larger values for ǫ
are also possible. The performance of the BM is not very sensitive to the values of these
parameters provided that the resulting prior distribution has the properties described.

The posterior distribution of the model parameters ǫ and w given the observed class
labels y can be computed using Bayes’ theorem

P(ǫ,w|y) =
P(y|w, ǫ)P(ǫ,w)

P(y)
, (6.9)

where the denominator in (6.9) is a normalization constant which is known as the evi-
dence of the observed labels y given the current model. In a Bayesian framework, this
constant can be used to discriminate among different models (Bishop, 2006; MacKay,
2003).

A new instance xnew is classified by means of the predictive distribution for its class
label ynew given the data. This distribution is obtained by computing the expected value
of the likelihood of the model parameters for that instance over the posterior distribution

P(ynew|xnew,y) =

∫

P(ynew|xnew,w, ǫ)P(w, ǫ|y) dwdǫ . (6.10)

The model, as described by the previous definitions, only takes into account hypothe-
ses based on hyper-planes and hence, it can handle only linearly separable classification
problems. One way to achieve linear separation in non-linear classification problems is
to progressively enlarge the set of features until the data are linearly separable in the
expanded feature space. Solving the classification problem in this extended space using
a linear model has the effect of producing a non-linear decision boundary in the original
measurement space. This form of feature expansion can be efficiently implemented using
kernels (Aizerman et al., 1964).

Because the prior for w is assumed to be Gaussian, the BM can be understood
within the framework of Gaussian processes. In particular, the product wTx follows a
Gaussian distribution and, in consequence, can be described by an arbitrary function
f(x) whose prior is assumed to be a Gaussian process, meaning that any set of points
sampled from f has a multivariate Gaussian distribution. However, unlike GPCs based
on similar definitions (Kim and Ghahramani, 2006; Opper and Winther, 2000b), the
BM proposed in this chapter can learn a posterior distribution that includes the noise
parameter ǫ with no additional costs.
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In general, neither (6.10) nor (6.9) are tractable. Therefore, approximate algorithms
have to be employed to make Bayesian inference. For this purpose we use the EP
algorithm (Minka, 2001b).

6.2.1 Expectation Propagation for Bayes Machines

In this section we describe how EP can be used for making approximate inference in
the BM. The algorithm presented here is an extension of previous implementations of
EP (Lawrence et al., 2003; Minka, 2001b; Opper and Winther, 2000b). In particular,
Minka (2001b) describes the EP algorithm for computing the posterior approximation
over the parameter w. In this section we extend the derivations of Minka (2001b) to
take into account the posterior distribution over the noise parameter ǫ. The final EP
algorithm presented in this section is written in terms of inner products so that the
use of kernels for feature expansion is straightforward. This allows the BM to handle
non-linear decision boundaries. From now on, we assume that all xi are scaled by their
corresponding label yi in order to improve the readability of the different expressions.

To apply the EP algorithm to the proposed model, we write the joint distribution
of the observed class labels and the model parameters as the product of n + 1 terms ti,
i = 1, . . . , n + 1, where the first n terms correspond to the likelihood and the last term
to the prior. Each of these terms is approximated by a corresponding term t̃i that is
restricted to belong to the exponential family of probability distributions

P(y,w, ǫ) =

n
∏

i=1

P(yi|xi,w, ǫ)P(w, ǫ) =

n+1
∏

i=1

ti(w, ǫ) ≈
n+1
∏

i=1

t̃i(w, ǫ) . (6.11)

Assume that the posterior approximation of (6.9), Q, is the product of two distribu-
tions from the exponential family

Q(w, ǫ) = N (w|mw,Vw)Beta(ǫ|aǫ, bǫ) , (6.12)

where N (w|mw,Vw) denotes a Gaussian distribution with mean vector mw and co-
variance matrix Vw and Beta(ǫ|aǫ, bǫ) denotes a beta distribution with parameters aǫ

and bǫ. The choice of a beta distribution to model the noise makes Bayesian inference
simpler because the likelihood (6.5) has a binomial form. Note that (6.12) belongs to
the exponential family because it is the product of two distributions that also belong
to that family. Thus, the approximate terms t̃i, with i = 1, . . . , n + 1, are restricted to
have the same form as (6.12), although they do not have to be normalized

t̃i(w, ǫ) = si exp

(

−1

2
(w −mi)

T V−1
i (w −mi)

)

ǫai−1(1− ǫ)bi−1 . (6.13)

The value of si is determined by requiring that t̃i
∏

j 6=i t̃j integrates to the same value

as ti
∏

j 6=i t̃j and mi, Vi, aǫ and bǫ are free parameters. Note that (6.13) has the same
form as the prior for w and ǫ (6.6). In consequence, we only describe the EP updates
of the approximate terms t̃i, with i = 1, . . . , n, corresponding to the likelihood terms.
The EP update of the approximate term t̃n+1 corresponding to the prior for w and
ǫ is straightforward and consists in setting t̃n+1 equal to (6.6) using (6.7) and (6.8).
Furthermore, if Q is initialized to (6.6) the term tn+1 can be ignored in the main loop
of the EP algorithm (see Section 5.5.1.3).
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The first step of the EP algorithm initializes all approximate terms t̃i corresponding
to the likelihood to be uniform. In the case of the Gaussian part of t̃i, this is obtained
by setting the mean equal to zero and the covariance matrix equal to a diagonal matrix
with infinities in the diagonal. In the case of the beta part, the parameters ai and bi

are both set to one. The approximate term t̃n+1 corresponding to the prior for w and ǫ
is initialized to (6.6) and it is never modified. Finally, the posterior approximation Q is
initialized to the prior (6.6).

The next step of the EP algorithm is to remove an approximate term t̃i from Q to
compute Q\i. Recall that Q\i has the same form as Q because of the closure property
of the exponential family

Q\i(w, ǫ) = N (w|mw
\i,Vw

\i)Beta(ǫ|a\iǫ , b\iǫ ) . (6.14)

The parameters m
\i
w, V

\i
w a

\i
ǫ and b

\i
ǫ of Q\i are found by computing the ratio between

Q and t̃i and normalizing

V
\i
w =

(

V−1
w −V−1

i

)−1
, (6.15)

m
\i
w = V

\i
w

(

V−1
w mw −V−1

i mi

)

, (6.16)

a\iǫ = aǫ − ai + 1 , (6.17)

b\iǫ = bǫ − bi + 1 , (6.18)

where we have used (A.46) for the computation of (6.15) and (6.16), and (A.30) for the
computation of (6.17) and (6.18).

The next step of the algorithm consists in computing an updated posterior distribu-
tion P̂ defined as

P̂(w, ǫ) =
1

Zi
ti(w, ǫ)Q\i(w, ǫ) , (6.19)

where Zi is just a normalization constant. In the case of the likelihood terms this
constant is

Zi =

∫

ti(w, ǫ)Q\i(w, ǫ)dwdǫ

=

∫

(

ǫ + (1− 2ǫ)Θ(wT xi)
)

N (w|mw
\i,Vw

\i)Beta(ǫ|a\iǫ , b\iǫ )dwdǫ

= ǫ\i + (1− 2ǫ\i)Φ(zi) , (6.20)

where

ǫ\i =
aǫ

\i

(a
\i
ǫ + b

\i
ǫ )

, zi =
(m

\i
w)Txi

√

xT
i Vw

\ixi

(6.21)

and Φ(·) is the cumulative probability function of a standard Gaussian distribution.
Once P̂ has been normalized, we have to minimize the Kullback-Liebler (KL) diver-

gence between P̂ and Q to find the parameters of the updated posterior approximation
Qnew. Because Q is in the exponential family and factorizes with respect to w and ǫ, the
parameters of Qnew are found by matching the expected values of the sufficient statistics
of each marginal distribution of the posterior approximation with the expected values
of these sufficient statistics under the distribution P̂. In particular, from the minimiza-
tion of the KL divergence we get the following expectation constraints for the updated
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posterior approximation Qnew

EQnew [w] = EP̂ [w] , (6.22)

EQnew [wwT ] = EP̂ [wwT ] , (6.23)

EQnew [log(ǫ)] = EP̂ [log(ǫ)] , (6.24)

EQnew [log(1− ǫ)] = EP̂ [log(1− ǫ)] . (6.25)

See Appendix A.2 and Appendix A.3 for further information about the sufficient statis-
tics of the Gaussian distribution and the beta distribution. To match constraints (6.22)
and (6.23) we can use (A.40) and (A.41), respectively. This gives the following equations
for the parameters of Qnew

mnew
w = m

\i
w + V

\i
wαixi , (6.26)

Vnew
w = V

\i
w − (V

\i
wxi)

(

αix
T
i mnew

w

xT
i V

\i
wxi

)

(V
\i
wxi)

T , (6.27)

where

αi =
1

√

xT
i V

\i
wxi

(1− 2ǫ\i)N (zi|0, 1)
ǫ\i + (1− 2ǫ\i)Φ(zi)

. (6.28)

Using (A.21), (A.22), (A.25) and (A.26), constraints (6.24) and (6.25) can be shown to
be equivalent to

Ψ(anew
ǫ )−Ψ(anew

ǫ + bnew
ǫ ) = Ψ(a\iǫ )−Ψ(a\iǫ + b\iǫ ) +

(1− ǫ\i)(1 − 2Φ(zi))

Φ(zi)b
\i
ǫ + (1− Φ(zi))a

\i
ǫ

, (6.29)

Ψ(bnew
ǫ )−Ψ(anew

ǫ + bnew
ǫ ) = Ψ(b\iǫ )−Ψ(a\iǫ + b\iǫ ) +

ǫ\i(1− 2Φ(zi))

Φ(zi)b
\i
ǫ + (1− Φ(zi))a

\i
ǫ

, (6.30)

where Ψ(x) = d log(Γ(x))/dx and Γ(x) is the gamma function (Abramowitz and Ste-
gun, 1964). Because the Ψ function is non-linear, the parameters anew

ǫ and bnew
ǫ of the

updated posterior approximation Qnew have to be found by numerical methods. Solving
the set of non-linear set of equations (6.24) and (6.25) in each iteration of EP would
significantly increase the computational time needed for training the BM. Thus, an al-
ternative method is used in practice. Instead of propagating the expectations of log(ǫ)
and log(1−ǫ), we propagate the expectations of ǫ (mean) and ǫ2 (variance), as suggested
by Cowell et al. (1996). This leads to the following simplified update equations for the
parameters anew

ǫ and bnew
ǫ of Qnew

anew
ǫ =

EP̂ [ǫ]− EP̂ [ǫ2]

EP̂ [ǫ2]− EP̂ [ǫ]2
EP̂ [ǫ] , (6.31)

bnew
ǫ =

EP̂ [ǫ]− EP̂ [ǫ2]

EP̂ [ǫ2]− EP̂ [ǫ]2
(

1− EP̂ [ǫ]
)

, (6.32)
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where we have used (A.19) and (A.20), and where

EP̂ [ǫ] =
1

Zi

[

Φ(zi)(1− ǫ\i)
a
\i
ǫ

a
\i
ǫ + b

\i
ǫ + 1

+ (1− Φ(zi))ǫ
\i a

\i
ǫ + 1

a
\i
ǫ + b

\i
ǫ + 1

]

, (6.33)

EP̂ [ǫ2] =
1

Zi

[

Φ(zi)(1− ǫ\i)
a
\i
ǫ (a

\i
ǫ + 1)

(a
\i
ǫ + b

\i
ǫ + 1)(a

\i
ǫ + b

\i
ǫ + 2)

+(1− Φ(zi))ǫ
\i (a

\i
ǫ + 1)(a

\i
ǫ + 2)

(a
\i
ǫ + b

\i
ǫ + 1)(a

\i
ǫ + b

\i
ǫ + 2)

]

. (6.34)

Note that these update equations do not minimize the KL-divergence between P̂ and
Q. However, we expect them to provide a good approximation as EP has shown similar
results when using these update rules instead of the optimal ones in a related problem
on weight estimation in mixtures of Gaussians (Minka, 2001b).

The next step of the EP algorithm consists in updating the corresponding approxi-
mate term t̃i by setting t̃i = ZiQnew/Q\i

Vi =
(

(Vnew
w )−1 − (V

\i
w)−1

)−1
, (6.35)

mi = Vi

(

(Vnew
w )−1mnew

w − (V
\i
w)−1m

\i
w

)

, (6.36)

ai = anew
ǫ − a\iǫ + 1 , (6.37)

bi = bnew
ǫ − b\iǫ + 1 , (6.38)

si = Zi
β(a

\i
ǫ , b

\i
ǫ )

β(anew
ǫ , bnew

ǫ )

√

|V\i
w|

|Vnew
w | exp

(

−1

2

(

(mnew
w )T (Vnew

w )−1mnew
w −

(m
\i
w)T (V

\i
w)−1m

\i
w −mT

i V−1
i mi

))

, (6.39)

where β(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function (Abramowitz and Stegun, 1964).
We have used (A.46) for the computation of (6.35) and (6.36), and (A.30) for the com-
putation of (6.37) and (6.38).

Once EP has converged, we can approximate the model evidence by

P(y) ≈
∫ n+1
∏

i=1

t̃i(w, ǫ)dwdǫ =
√

|Vw|
β(aǫ, bǫ)

β(a0, b0)
exp

(

B

2

) n
∏

i=1

si , (6.40)

where (A.27) and (A.42) have been used, and where

B = mT
wV−1

w mw −
n
∑

i=1

mT
i V−1

i mi . (6.41)

Furthermore, in the computation of (6.40) we have also used that the approximate term
corresponding to the prior, t̃n+1, is initialized to (6.6) and never modified.

The EP algorithm for training the BM can be significantly sped-up by taking into
account the special form of the matrix V−1

i (Minka, 2001b). In particular, using (6.27)
and the Woodbury formula (B.1) gives

V−1
i = (Vnew

w )−1 − (V
\i
w)−1 = v−1

i xix
T
i (6.42)
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where

vi = xT
i V

\i
wxi

(

1

αixT
i mnew

w

− 1

)

. (6.43)

According to (6.42), the matrix V−1
i has only one eigenvector in the direction of xi and

one eigenvalue. In consequence, V−1
i can not be inverted to compute Vi. This is a

problem when computing the exact value of mi in (6.36), since Vi cannot be evaluated.
However, it can be shown that (see Appendix B.2)

mi = m
\i
w + αiV

\i
wxi + αiviζ + Kξ , (6.44)

where ζ is a vector such that xT
i ζ = 1, ξ is a vector such that xT

i ξ = 0 and K is any
arbitrary constant.

The special form of V−1
i given in (6.42) allows to write the approximate terms t̃i as

the unnormalized product of a univariate Gaussian distribution and a beta distribution.
In particular, by substituting (6.42) into (6.13) we get

t̃i(w, ǫ) = si exp

(

1

2vi

(

wTxi −mi

)2
)

ǫai−1(1− ǫ)bi−1 , (6.45)

where
mi = xT

i mi . (6.46)

This representation has the advantage of significantly reducing the storage requirements
for the approximate terms t̃i corresponding to the likelihood. The computational cost
of updating these terms is also reduced as well.

When (6.45) is used instead of (6.13) to represent the approximate terms correspond-
ing to the likelihood, (6.15) and (6.16) become

V
\i
w =

(

V−1
w − v−1

i xix
T
i

)−1

= V−1
w + (V−1

w xi)
(

vi − xT
i Vwxi

)−1
(V−1

w xi)
T , (6.47)

m
\i
w = mw + V

\i
wV−1

i (mw −mi)

= mw + (V
\i
wxi)v

−1
i (xT

i mw −mi) . (6.48)

To compute (6.47) we have used (6.42) and the Woodbury formula (B.1). To compute

(6.48) we have used (6.42) and V−1
w = (V

\i
w)−1 +V−1

i , which can be derived from (6.15).
Similarly, (6.35), (6.36) and (6.39) become

vi = xT
i V

\i
wxi

(

1

αix
T
i mnew

w

− 1

)

, (6.49)

mi = xT
i m

\i
w + αi(vi + xT

i V
\i
wxi) , (6.50)

si = Zi
β(a

\i
ǫ , b

\i
ǫ )

β(aǫ, bǫ)

√

1 + v−1
i xT

i V
\i
wxi exp

(

1

2

αix
T
i V

\i
wxi

xT
i mnew

w

)

, (6.51)

where (6.46) and (6.44) have been used to compute (6.50). The derivation of (6.51) is
given in Appendix B.3. Finally, the value of B in (6.40) is

B = mT
wV−1

w mw −
n
∑

i=1

m2
i

vi
. (6.52)
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Consider the parameters of the posterior approximation Q. From the definition of
Q as the normalized product of all the approximate terms t̃i, these parameters are

Vw =

(

I +
n
∑

i=1

v−1
i xix

T
i

)−1

=
(

I + XΛ−1XT
)−1

, (6.53)

mw = Vw

n
∑

i=1

miv
−1
i xi , (6.54)

aǫ =

n+1
∑

i=1

ai − n , (6.55)

bǫ =

n+1
∑

i=1

bi − n , (6.56)

where I is the identity matrix and Λ = diag(v1, . . . , vn). We have used (A.42) for the
computation of (6.53) and (6.54), and (A.27) for the computation of (6.55) and (6.56).

The EP algorithm can be reformulated in terms of inner products (Minka, 2001b).
This is useful to apply the kernel tick for feature expansion. When expressed in terms of
inner products, the EP algorithm no longer requires the parameters of the posterior ap-
proximation mw and Vw to be stored in memory. Instead, all the steps of the algorithm
can be written in terms of the quantities

A = XTVwX , (6.57)

h = XTmw , (6.58)

which are updated after each iteration. To describe EP in terms of inner products, let
us define

λ
\i
i = xT

i V
\i
wxi , (6.59)

Cij = xT
i xj , (6.60)

Λ = diag(v1, . . . , vn) , (6.61)

hi = xT
i mw , (6.62)

h
\i
i = xT

i m
\i
w . (6.63)

In terms of these quantities, the algorithm is:

1. Initialize all t̃i, with i = 1, . . . , n, to be uniform and Q to the prior (6.6) by setting

vi = +∞ , mi = 0 , si = 1 , ai = bi = 1 , hi = 0 , A = C . (6.64)

2. Repeat until all t̃i converge:
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(a) Choose a t̃i to refine and remove t̃i from Q to get Q\i.

h
\i
i = hi +

Aii

vi −Aii
(hi −mi) , (6.65)

λ
\i
i = Aii +

A2
ii

vi −Aii
, (6.66)

a\iǫ = aǫ − ai + 1 , (6.67)

b\iǫ = bǫ − bi + 1 . (6.68)

The derivation of (6.65) and (6.66) is presented in Appendix B.4.

(b) Update part of the posterior approximation:

ǫ\i =
a
\i
ǫ

a
\i
ǫ + b

\i
ǫ

, (6.69)

zi =
h
\i
i

√

λ
\i
i

, (6.70)

Zi = ǫ\i + (1− 2ǫ\i)Φ(zi) , (6.71)

αi =
1

√

λ
\i
i

(1− 2ǫ\i)N (zi|0, 1)
ǫ\i + (1− 2ǫ\i)Φ(zi)

, (6.72)

hnew
i = xT

i mnew
w = h

\i
i + λ

\i
i αi , (6.73)

where we have used (6.26) for the computation of (6.73). Then, anew
ǫ and

bnew
ǫ are obtained as in (6.31) and (6.32).

(c) Find the corresponding approximate term t̃i:

ai = anew
ǫ − a\iǫ + 1 , (6.74)

bi = bnew
ǫ − b\iǫ + 1 , (6.75)

vi = λ
\i
i

(

1

αihnew
i

− 1

)

, (6.76)

mi = h
\i
i + (vi + λ

\i
i )αi = hnew

i + viαi , (6.77)

si = Zi
β(a

\i
ǫ , b

\i
ǫ )

β(anew
ǫ , bnew

ǫ )

√

1 + v−1
i λ

\i
i exp

(

λ
\i
i αi

2hnew
i

)

, (6.78)

where we have used (6.49), (6.50) and (6.51) for the computation of (6.76),
(6.77) and (6.78), respectively.

(d) Update the matrix A and the vector h:

Anew = A− A·,iAi,·

κ−1 + Aii
, (6.79)

hnew = Anew(Λnew)−1mnew , (6.80)

where

κ =

(

1

vnew
i

− 1

vold
i

)

, (6.81)
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and Λnew and mnew are the matrix Λ and the vector m after the approximate
term t̃i has been updated. In (6.79) Ai,· denotes the i-th row of the matrix
A and A·,i denotes the i-th column. Finally, in (6.81) vnew

i is the new value
for the parameter vi of the approximate term and vold

i is the previous value.
The derivation of (6.79) and (6.80) is given in Appendix B.5.

3. Once EP has converged, compute the normalizing constant:

P(y) ≈
√

|Λ|

|C + Λ|
β(aǫ, bǫ)

β(a0, b0)
exp

(

B

2

) n
∏

i=1

si , (6.82)

where

B =
n
∑

i=1

n
∑

j=1

Aij
mimj

vivj
−

n
∑

i=1

m2
i

vi
. (6.83)

To arrive at (6.82) we have used (6.40), (6.52), (6.54) and (6.57). Finally, the value
of |Vw| is derived in Appendix B.6.

Because (6.79) can be computed in O(n2) operations using the Woodbury formula,
the total cost of the EP algorithm assuming a constant number of iterations is O(n3),
where n is the size of the training set. After convergence, the posterior approximation
Q can be used to approximate the predictive distribution (6.10) for a new instance xnew

P(ynew|xnew,y) ≈
∫

P(ynew|xnew,w, ǫ)Q(w, ǫ)dwdǫ = ǫ + (1− 2ǫ)Φ(z) , (6.84)

where ǫ = aǫ/(aǫ + bǫ) and z can be computed by means of the Woodbury formula

z =
mT

wxnew
√

(xnew)T Vwxnew

=

∑n
i=1 αix

T
newxi

√

(xnew)Txnew − (xnew)T XKXTxnew

, (6.85)

with K = Λ−1(Λ − A)Λ−1. The derivation of (6.85) is presented in Appendix B.7.
Unlike standard GPCs, computing (6.84) does not need any direct matrix inversion.
The inversion of Λ is straightforward because it is a diagonal matrix. The inner product
matrix (Gram matrix) C between vectors can be written in terms of an arbitrary kernel
function C(xi,xj). However, in that case we need to keep yi and xi separated as follows

Cij = yiyjC(xi,xj) . (6.86)

Employing a non-linear kernel function to compute C effectively expands the feature
space, so that the BM has the capacity of producing non-linear decision boundaries.
Finally, the approximate evidence (6.82) can be used to determine which kernel is more
suited to the training data.

As described in Chapter 5, besides EP there are other methods that could have been
employed to carry out approximate inference in this model. An alternative approach is
the Laplace approximation, which is based on placing a Gaussian at the peak of the pos-
terior distribution (Barber and Williams, 1997; Kuss and Rasmussen, 2005). However,
this technique is not really suited to the model assumed because when conditioned to ǫ,
the w component of the posterior distribution in (6.9) is a Gaussian distribution mod-
ulated by a piecewise constant function (Minka et al., 2009). Thus, it is unlikely that
the gradient of the posterior distribution can be used to find regions of high posterior
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probability. For this same reason, the Hamilton Monte Carlo algorithm (Bishop, 2006;
MacKay, 2003) is not expected to be useful in this model. Another alternative is to use
variational inference (Gibbs and MacKay, 2000). This method consists in optimizing a
lower bound on the data log likelihood which is often computed by means of Jensen’s in-
equality (Jaakkola, 2001). However, computing this lower bound can be difficult in this
model. Specifically, even though the numerator of the posterior distribution and par-
ticularly the likelihood function (6.4) simplify when taking logarithms, the lower bound
can be undefined for ǫ = 0, since the likelihood function is zero for different values of w.

Finally, we would like to remark that even though it is based on similar concepts, we
believe that the approach followed to train the BM is more robust than the EM-EP algo-
rithm used by Kim and Ghahramani (2006) for training GPCs. The BM approximates a
posterior distribution for the noise parameter ǫ while the EM-EP algorithm maximizes
the marginal likelihood of the data with respect to this parameter. Furthermore, in
order to perform this maximization, an approximation is made so that the contribution
to a lower bound on the marginal likelihood can be evaluated.

6.2.2 Experiments

In this section we assess the performance of the BM in several classification problems.
First, we analyze in detail a simple problem to determine whether the BM can learn
the intrinsic noise in the class labeling of the data. We generate a simple 2-class 2-
dimensional dataset whose input features x1 and x2 are uniform random numbers be-
tween −1 and 1. The class assigned to each instance, either +1 or −1, is determined
by the decision rule x2

1 + x2
2 ≥ 1/2. Hence, the decision boundary of this problem is

a circumference of radius
√

1/2 centered at the origin. Each training set is composed
of 100 points. Labeling errors are introduced to a fraction of randomly selected train-
ing instances. In particular, in this classification problem we flip the labels of 0%, 5%,
10% and 20% of the training data. Finally, each test set is composed of 1, 000 noiseless
points. We generate 50 training and test sets for each one of the noise values described
before. For each training and test set combination, a BM is built on the training set
and evaluated on the test set. In a similar way, a BM that assumes no labeling errors
(the prior over the noise parameter ǫ is fixed to be a delta function centered at zero, i.e.
b0 = +∞) is also built and evaluated. In both cases a Gaussian kernel is used for feature
expansion. The parameter of this kernel is determined by a grid search procedure that
will be described later on in this section.

Table 6.1 displays for each value of the noise injected the test error of each method
averaged over the 50 realizations of each classification problem. The second column
displays the error rate for the BM that learns the intrinsic noise in the class labeling.
The third column displays the error rate for the BM model with ǫ = 0 (BMǫ=0). Finally,
the last column displays the expected value of the ǫ parameter given by the posterior
approximation of the BM. We note that when there is no noise in the training set the BM
obtains an error rate similar to the one provided by the BM that assumes no labeling
errors. This is a very interesting result because in this situation assuming ǫ = 0 is
optimal. Furthermore, these experiments show that as the noise level induced in the
class labeling of the training set increases, the error of BMǫ=0 becomes larger than the
error of the standard BM in which the possibility of mislabeled training instances is
considered. The table also shows that the expected value of ǫ in the BM model increases
with the noise level of the training set. Thus, these results confirm that the BM is able
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to capture the intrinsic noise in the class labeling by means of the posterior distribution
of the ǫ parameter.

Table 6.1: Classification error in the simple problem for each noise value of a BM
and a BM that assumes no labeling error (ǫ = 0). The expected value in % of the ǫ
parameter of the BM is also displayed in the last column of this table.

Noise BM BMǫ=0 E[ǫ] (in %)

0% 2.8±1.0 2.8±1.0 1.0±0.1
5% 4.3±2.3 9.8±2.0 5.0±0.8
10% 5.7±2.7 14.6±2.9 8.8±1.3
20% 13.4±5.5 24.3±3.2 15.5±3.0

Figure 6.1 (top) shows a realization of the training set for the problem described
before and the decision boundary obtained by a BM that assumes no labeling noise.
The optimal decision boundary is displayed as a green circumference. This model cannot
account for outliers properly. The presence of outliers in the data has a strong influence
in the decision boundary obtained, leading to small regions in which the incorrect class
is predicted. On the other hand, Figure 6.1 (bottom) shows the training set and the
decision boundary generated by a BM that models the noise as described in the previous
sections. In this case, the figure shows that that the decision boundary of the BM agrees
quite well with the optimal one (green circumference).

The performance of BMs trained with the proposed algorithm is investigated more
extensively in real and synthetic classification problems. The detailed information of
each dataset is displayed in Table 6.2. Most of these classification problems are taken
from the UCI Repository (Asuncion and Newman, 2007). The Boston Housing problem
is transformed into a binary classification problem by discriminating between houses
worth more than $21, 000 and houses worth less than this threshold. In this problem,
the Charles River binary attribute (= 1 if the tract bounds the river; 0 otherwise) is
removed, so that only 12 attributes are considered. In the Ionosphere problem a non-
informative attribute (all values are equal to zero) is also removed. The Digits problem
is transformed into a binary classification problem by considering only two possible
digits, three and five. Instances containing missing values are removed in the Breast
Cancer problem. The Crabs problem is described in (Ripley, 1996)1. The Twonorm
and Threenorm problems are the synthetic classification problems described in (Breiman,
1996b). In general, the training sets are small because the cost of the learning algorithms
compared in the experiments is rather high. They all have a cubic dependence O(n3)
on the number of training instances n.

We also compare the performance of the BM with other other popular kernel classi-
fiers: SVMs (Vapnik, 1995) and GPCs based on the EM-EP algorithm, as described in
(Kim and Ghahramani, 2006). We do not compare with BPMs because if EP is used to
approximate the Bayes point the resulting classifier is equal to the GPC (Minka, 2001b).
Because the kernel function has a strong influence in the final decision boundary of these
models, we use a Gaussian kernel function in all the experiments

C(xi,xj) = exp
(

−γ|xi − xj|2
)

, (6.87)

1The problem is available online at http://www.stats.ox.ac.uk/pub/PRNN
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Figure 6.1: (top) Training set and decision boundary of a BM that makes the
assumption of zero noise (ǫ = 0). (bottom) Training set and decision boundary of a
BM that is able to learn the noise intrinsic in the data. Optimal decision boundary is a√

0.5 radius circumference centered at the point (0, 0). Five outliers have been injected
in the training set. Contour curves describe the predictive distribution of each model.
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Table 6.2: Description of the classification problems used in the experiments.

Problem Attributes Train Test Classes

Australian 14 100 590 2
Boston 12 100 406 2
Breast 9 100 583 2
Crabs 7 66 134 2
Digits 64 70 695 2
German 20 100 900 2
Heart 13 90 180 2
Ionosphere 33 117 234 2
New-Thyroid 6 100 115 2
Magic 10 100 18,920 2
Pima 8 100 668 2
Sonar 60 69 139 2
Spam 58 100 4,501 2
Threenorm 20 100 1,000 2
Twonorm 20 100 1,000 2

where γ is a parameter that has to be tuned in some way. In the SVM this parameter
is tuned carrying out a grid search using 10-fold cross validation on the training set to
evaluate the performance for each value of γ considered. The natural logarithm of the
values of the knots in the grid are ten evenly distributed points in the interval [−3, 3]. For
the problems Boston, Crabs, Digits, German, Magic and Spam a wider interval [−6, 6]
is considered. In the case of the BM the same grid search is carried out, but instead of
the average error over the left-out data, the evidence given by (6.82) is used to select
the value of γ. The GPC selects automatically this parameter and the noise parameter
ǫ by maximizing the log-evidence of the data using an expectation maximization (EM)
algorithm (Kim and Ghahramani, 2006). In this method, the initial values of γ and ǫ
are fixed to 1 and 0.01 respectively. In the SVM the cost parameter C is automatically
determined by an additional nested grid search in which the performance of the different
values of C are evaluated by 10-fold cross validation. The grid of values employed are the
same as the ones described in first place. Unlike the SVM and the GPC, the BM learns
a posterior distribution over the noise parameter ǫ with no additional cost. Because the
approach followed by (Kim and Ghahramani, 2006) needs to invert the Gram matrix
C, in this method we add a small constant (10−3) to the diagonal terms of C given by
(6.87) when i = j. This guarantees that the inverse C−1 actually exists and that the
EM-EP algorithm can be carried out. The addition of this constant to the diagonal of
C is equivalent to adding a small amount of Gaussian noise to the latent function of the
GPC (MacKay, 2003).

To get reliable results, each dataset is randomly split 50 times into training and test
partitions according to the sizes given by Table 6.2. In each partition, the features are
normalized so that they have zero mean and unit standard deviation in the training set.
Then, each kernel classifier is built on the training set and validated on the test set.
The prediction errors reported are averages over the different train and test partitions.
These values are displayed in Table 6.3. The lowest error for each problem is highlighted
in boldface. We note that the BM obtains the lowest error in eleven of the fifteen
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classification problems whereas the GPC obtains the best error in three of the problems
and the SVM only in one.

Table 6.3: Average error in % and standard deviation for each problem and method.
For each classification problem, it is highlighted in bold face the best error value.

Problem BM SVM GPC

Australian 15.1±1.3 15.8±2.4 15.5±1.6
Boston 14.8±1.8 16.4±1.9 14.7±1.8
Breast 3.3±0.5 3.5±0.5 3.5±0.7
Crabs 0.9±0.9 1.0±1.1 1.3±1.3
Digits 1.6±0.6 1.9±0.9 1.6±0.6
German 27.7±1.8 29.0±2.0 28.3±1.9
Heart 18.1±2.1 18.9±2.8 19.2±2.2
Ionosphere 11.1±2.0 6.4±1.7 10.3±1.7
Magic 21.1±2.5 21.1±2.0 21.4±2.4
New-thyroid 4.6±1.9 5.1±1.6 4.5±1.9
Pima 27.0±2.0 27.2±2.5 27.6±2.3
Sonar 19.3±3.8 24.6±4.6 20.0±3.0
Spam 12.1±1.5 14.7±2.3 12.7±1.9
Threenorm 15.6±1.6 16.2±1.8 16.6±1.9
Twonorm 3.0±0.5 3.2±0.7 3.4±0.7

1 2 3

SVMBM
GPC

CD

Figure 6.2: Graphical representation of a Nemenyi test comparing the overall perfor-
mance of the BM, the SVM and the GPC. The average rank of each different method
is displayed. The critical difference (CD) between these ranks appears at the top as a
solid segment. Groups of classifiers that are not significantly different with a confidence
level of 5% are conected.

To compare overall results we use the framework proposed by Demšar (2006). We
carry out a Friedman average rank test to determine whether the differences in per-
formance of the models investigated are statistically significant in the set of problems
considered. The results of the test is that the null-hypothesis, which states that the
performance of all models is equivalent, can be discarded with a p-value below 5%. As
a result, we apply a Nemenyi test to determine whether the differences in average rank
among the different models being compared are statistically significant. Figure 6.2.2 dis-
plays the result of this statistical test. The figure shows the average rank of each model
on the set of fifteen problems investigated. Classifiers that are not statistically different
with a significance level of 5% are connected with a solid black line. The results of this
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test show that BMs perform better than SVMs and GPCs on this set of classification
problems. The average rank of the GPC is better than the average rank of the SVM.
However, this difference is not statistically significant.

The computational cost of BMs and GPCs isO(n3), where n is the size of the training
set. On the other hand, the cost of SVMs is at worst O(n2) because we employed the
SMO-type training algorithm provided in the LIBSVM (Chang and Lin, 2001). However,
the grid search used to determine the parameters of γ and C in this method requires
training several SVMs with the corresponding additional cost. Training the GPC is also
very expensive because the convergence of EM-EP is rather slow. In the implementation
made, the algorithm is halted after 100 iterations if it has not converged.

6.3 Sparse Bayes Machines

As described in the previous section, the Bayes machine (BM) is a kernel classifier for
binary classification problems. The BM extends the Bayes point machine (Herbrich
et al., 2001) by taking into account all hypotheses that are consistent with the training
data in feature space, considering the possibility of mislabeled data. To make inference,
Bayes’ theorem is employed to compute a posterior distribution for the model parame-
ters. This posterior distribution includes a parameter that quantifies the level of noise in
the class labels of the training data. Exact inference in the BM is infeasible and hence,
approximate techniques have to be employed. In the previous section, approximate in-
ference is carried out using the expectation propagation (EP) algorithm (Minka, 2001b).
EP can be employed to approximate the posterior distribution extended with the noise
level parameter without increasing the computational complexity of the algorithm. In
consequence, the BM can learn this parameter without any significant increment in
the training cost, unlike support vector machines (SVMs) (Vapnik, 1995) or Gaussian
process classifiers (GPCs) (Kim and Ghahramani, 2006). These methods also intro-
duce a parameter to model noisy labels. However, this parameter has to be tuned by
cross-validation or by type-II maximum likelihood estimation, which involve repeatedly
running the training algorithm. BMs trained using the EP algorithm provide competi-
tive results, in terms of prediction accuracy, when compared to these kernel classifiers.
The cost of the EP algorithm is O(n3), where n is the number of training instances. This
cubic dependence in the size of the training set becomes a major drawback when large
scale classification problems are considered. In this section we propose to overcome this
limitation by obtaining a sparse representation for the BM (Hernández-Lobato, 2008).
This sparse representation is based on the approach used in the informative vector ma-
chine (IVM) (Lawrence et al., 2003; Seeger, 2003), which can be used to train sparse
GPCs.

Besides the IVM, another approach for obtaining sparse GPCs is proposed in (Csató
and Opper, 2002). As in the IVM, this method employes assumed density filtering
(ADF) (Minka, 2001b; Opper, 1998) to implement approximate Bayesian inference and
hence, it can be considered as an online approach. In particular, sparseness is intro-
duced by using a suitable approximation to the posterior distribution of the GPC. This
posterior distribution is described in terms of a linear combination of kernel functions.
In standard GPCs, every time a new data instance is observed the coefficients of this
linear combination are updated and a new kernel function is incorporated. If a certain
measure of the approximation error is not exceeded, Csató and Opper (2002) propose
to perform this update without increasing the number of kernel functions included in
the representation of the posterior distribution of the GPC. For this purpose, the new
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kernel function is approximated as a linear combination of the previous kernel functions
included in the model. This approach has been extended in (Csató et al., 2001) where
an expectation-propagation type algorithm that performs multiple sweeps through the
training data is proposed. Even though the robustness of this method has been demon-
strated on a range of experiments (Csató and Opper, 2002), we believe that the approach
followed by the IVM is more intuitive and hence, we focus on it.

In the IVM a sparse GPC is built using only a reduced set of active instances I, of
size d < n, which is extracted from the training set. The active set is computed in such a
way that the posterior approximation obtained by using these instances only is as close
as possible to the one that is obtained when all the available training instances are used.
In particular, the IVM determines the active set using a greedy algorithm. Starting
from an empty active set, instances are iteratively included in I by using the Kullback-
Liebler (KL) divergence as a measure of dissimilarity between the current posterior
distribution and an updated one that includes on more instance. The algorithm stops
when d < n instances have been included in the active set. A disadvatage of this greedy
approach is that the algorithm can include some instances at the beginning that should
not be included and vice-versa. To mitigate this problem, in this section we perform
additional refining iterations in the greedy selection procedure. The purpose of these
extra iterations is twofold. First, they allow to exlude from the active set instances that
had been included in earlier iterations of the algorithm. Thus, we expect them to correct
some of the suboptimal selections made by the greedy algorithm. Second, the additional
preprocessing of the elements included in I improves the accuracy of the approximation
to the posterior distribution. The proposed algorithm works in a similar way as the EP
algorithm, which corrects some of the mistakes of the ADF approach (Minka, 2001b).

If efficient matrix factorizations based on the Cholesky decomposition are employed
in the training algorithm, the cost of learning this sparse representation is reduced to
O(nd2). This is a great improvement if the size of the active set, d, is much smaller
than n. The cost of classifying new instances is also reduced from O(n2) to O(d2) when
this representation in used. Unlike in the SVM, one of the advantages of the proposed
approach is that the size of the active set, d, can be controlled by the user. This can
be useful for intance to identify those instances that are more relevant for classifica-
tion. However, setting the value of sparsity parameter d to get a good generalization
performance can be difficult. Finally, even though the final model obtained by using
this sparse representation actually depends only on a reduced subset of the total data,
experiments carried out on the MNIST handwritten digits dataset (LeCun et al., 1998)
confirm that its preformance is comparable to the standard BM. Additionally, these
experiments show that this sparse representation can outperform the SVM in terms of
prediction accuracy in the classification problems investigated

6.3.1 A Sparse Representation for the Bayes Machine

In this section we describe an algorithm to train a sparse BM (SBM). For this purpose,
we follow a procedure that is simular to the one used in the IVM (Lawrence et al., 2003;
Seeger, 2003). However, we introduce some modifications to obtain a better approxima-
tion to the posterior distribution of the model parameters.

The simplest way to obtain a sparse representation for the BM is to set vi = +∞,
ai = 1 and bi = 1 in some of the approximate terms t̃i, with i = 1, . . . , n, corresponding
to the likelihood. With these values for the parameters, the corresponding terms t̃i
in the approximation are uniform. Therefore, they do not contribute to the posterior
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approximation computed by EP. In particular, assume that we want to build our model
using only a subset S of the total observed data. Furthermore, assume that the active
set I ⊂ {1, . . . , n} is a set with the indices of the data instances in S and that J =
{1, . . . , n} \ I is a set containing the indices of the remaining observed instances. If we
set vj = +∞ and aj = bj = 1, ∀j ∈ J

Q(w, ǫ) =
1

Z

n+1
∏

i=1

t̃i(w, ǫ) =
1

Z ′
t̃n+1(w, ǫ)

∏

i∈I

t̃i(w, ǫ) , (6.88)

where

Z =

∫ n+1
∏

i=1

t̃i(w, ǫ)dwdǫ , Z ′ =

∫

t̃n+1(w, ǫ)
∏

i∈I

t̃i(w, ǫ)dwdǫ . (6.89)

In (6.88) we have used the relation

t̃i(w, ǫ)t̃j(w, ǫ) ∝ t̃i(w, ǫ) , ∀i ∈ I and ∀j ∈ J , (6.90)

which can be derived using (A.27), (A.42) and the special form of the approximate terms
t̃i, defined in (6.45) as the unnormalized product of a Gaussian distribution and a beta
distribution. In consequence, setting vj = +∞, aj = 1 and bj = 1 ∀j ∈ J has the same
effect in the EP algorithm as removing from the training set those instances associated
to the approximate terms t̃j, j ∈ J . Thus, from this point on, we maintain an active
set of instances I ⊂ {1, . . . , n}, |I| = d < n so that ∀j ∈ J = {1, . . . , n} \ I, vj = +∞
and aj = bj = 1. The instances whose indices are not included in I are automatically
discarded by the model and hence, they do not contribute to the computation of the
posterior approximation.

The difficult part of this approach is how to select I so that the posterior approxima-
tion that is obtained is as similar as possible to the one that results from considering all
the training instances. For this purpose, we implement the greedy algorithm proposed
in (Lawrence et al., 2003), albeit with some refinements. The algorithm is as follows: (i)
As in the standard EP algorithm, the posterior approximation Q and the approximate
term t̃n+1 are initialized to the prior (6.6). The approximate terms t̃i corresponding
to the likelihood are initialized to be uniform by setting vi = +∞, ai = 1 and bi = 1
∀i ∈ {1, . . . , n}. (ii) The active set I is initialized to a random set of d elements extracted
from {1, . . . , n}. (iii) Until convergence of the active set I and the approximate terms t̃i,
with i = 1, . . . , n, we iterate over all the elements of I. (iv) For each i ∈ I, we update I
by setting I = I \ {i}. The corresponding approximate term t̃i is set uniform by fixing
vi = +∞ and ai = bi = 1. Finally, the posterior approximation Q is updated to Q\i as
in the standard EP algorithm. (v) We select a candidate instance j ∈ J = {1, . . . , n}\I
to be included in the active set I. Note that after the first removal i ∈ J , so it is
possible that the instance that has been removed could be selected and included again
in I. As suggested by Seeger (2003), we select the instance in J that maximizes the
KL-divergence between Qnew

j and the current posterior approximation Q\i, where Qnew
j

is the distribution that results from processing the corresponding exact term tj

Qnew
j = arg min

Q
KL
(

P̂j ||Q
)

, (6.91)
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where

P̂j(w, ǫ) =
1

Zj
tj(w, ǫ)Q\i(w, ǫ) (6.92)

and

Zj =

∫

tj(w, ǫ)Q\i(w, ǫ)dwdǫ . (6.93)

The score ∆j associated to each candidate instance j ∈ J is

∆j = KL
(

Qnew
j ||Q\i

)

. (6.94)

Expression (6.94) measures the change in the posterior approximation when Q\i is up-
dated to Qnew

j . The instance that maximizes (6.94) is the one that has the largest impact
in the update of the approximation to the posterior distribution. In consequence, such
an instance brings the approximation closer to the actual posterior distribution. (vi)
Once a candidate instance j has been selected from J , we update the active set and
the posterior approximation by setting I = I ∪ {j} and Q = Qnew

j . Then, we set the

approximate term t̃j to be ZjQnew
j /Q\i, as in the standard EP algorithm. (vii) After

convergence, the model evidence is computed using only those instances included in I

P(y) ≈
∫

t̃n+1(w, ǫ)
∏

i∈I

t̃i(w, ǫ)dwdǫ . (6.95)

Figure 6.3 displays the pseudo-code of the proposed algorithm for training SBMs.

Input: instances (x1, y1), . . . (xn, yn) and d.

Output: posterior approximation Q and active set I.

1. Initialize Q to the prior distribution and the terms t̃i to be uniform.

2. Initialize the active set I to d randomly chosen instances.

3. Repeat until I and all the terms t̃i converge:

(a) For each i ∈ I:
i. Update I to I \ {i}.
ii. Set t̃i to be uniform and compute Q\i as in EP.

iii. For each j ∈ J = {1, . . . , n} \ I:
A. Compute an updated posterior distribution Qnew

j .

B. Compute the KL-divergence between Qnew
j and Q\i.

iv. Select the j with the largest score.

v. Using EP update t̃j and set Q to Qnew
j .

vi. Update I to I ∪ {j}.

4. Return Q, I and the approximation to P(y).

Figure 6.3: Pseudo-code of the training algorithm for the SBM. Q\i is the posterior
approximation after the term t̃i is removed and Qnew

j is the same approximation after
the exact term tj is processed by the EP algorithm.

Performing a single iteration of this algorithm over the active set I is equivalent to the
approach followed by the IVM. However, we expect that additional refining iterations will
significantly improve the posterior approximation and will correct some of the mistakes
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that result from this greedy approach. Even though the convergence of the proposed
algorithm is not guaranteed, we expect it to work in a similar way as the EP algorithm.
In fact, experimental results seem to confirm this expectation. Note that the mechanism
for introducing and eliminating instances from the active set is similar to the exchange
movements proposed in (Seeger, 2003). However, these had not been implemented in
practice as they actually increase the computational cost of the IVM. The algorithm
described is also different from computing the active set I at the first iteration of the
algorithm and then running EP to refine the approximate terms t̃i corresponding to
the instances included in I. The difference lies in the fact that the proposed algorithm
allows I to change during the subsequent refining iterations.

We now describe in terms of inner products the main steps of the algorithm presented
in Figure 6.3. In general, the steps of this algorithm are very similar to the steps of
the standard EP algorithm written in terms of inner products and hence, they can
be implemented using the matrix A and the vector h defined in (6.57) and (6.58),
respectively. To describe these steps, let

λ
\i
j = xT

j V
\i
wxj , (6.96)

h
\i
j = xT

j m
\i
w , (6.97)

where m
\i
w and V

\i
w are the mean and covariance parameters of of the Gaussian part of

the posterior approximation Q\i, respectively. The first step of the algorithm removes
t̃i from Q to get Q\i and sets t̃i to be uniform. This is performed as in the standard EP
algorithm by computing

λ
\i
j = Ajj + A2

ji/(vi −Aii) , ∀j ∈ J , (6.98)

h
\i
j = hj +

Aji

vi −Aii
(hi −mi) , ∀j ∈ J , (6.99)

a\iǫ = aǫ − ai + 1 , (6.100)

b\iǫ = bǫ − bi + 1 , (6.101)

and by setting ai = bi = 1, mi = 0 and vi = +∞. A detailed derivation of (6.98)
and (6.99) is given in Appendix B.4. Next, we compute an updated posterior distribu-
tion Qnew

j for each candidate instance j ∈ J . Because of the closure property of the
exponential family, the form of Qnew

j is similar to the form of Q in the standard EP
algorithm

Qnew
j (w, ǫ) = N (w|mnew

w (j),Vnew
w (j))Beta(ǫ|anew

ǫ (j), bnew
ǫ (j)) , (6.102)

where mnew
w (j), Vnew

w (j), anew
ǫ (j) and bnew

ǫ (j) are the parameters of the approximation.
Computing each Qnew

j is almost the same as computing Qnew in the standard Bayes
machine, when EP is written in terms of inner products. However, instead of computing
a single updated posterior distributionQnew, we compute one for each candidate instance
j ∈ J by setting

ǫ\i =
a
\i
ǫ

a
\i
ǫ + b

\i
ǫ

, (6.103)
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zj =
h
\i
j

√

λ
\i
j

, ∀j ∈ J , (6.104)

Zj = ǫ\i + (1− 2ǫ\i)Φ(zj) , ∀j ∈ J , (6.105)

αj =
1

√

λ
\i
j

(1− 2ǫ\i)N (zj |0, 1)
ǫ\i + (1− 2ǫ\i)Φ(zj)

, ∀j ∈ J , (6.106)

hnew
j = xT

j mnew
w (j) = h

\i
j + λ

\i
j αj , ∀j ∈ J . (6.107)

The parameters anew
ǫ (j) and bnew

ǫ (j) of Qnew
j are also computed as in the standard EP

algorithm using (6.31) and (6.32), where

EP̂j
[ǫ] =

1

Zj

[

Φ(zj)(1− ǫ\i)
a
\i
ǫ

a
\i
ǫ + b

\i
ǫ + 1

+ (1− Φ(zj))ǫ
\i a

\i
ǫ + 1

a
\i
ǫ + b

\i
ǫ + 1

]

, (6.108)
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. (6.109)

Candidate instances are then ranked according to ∆j, which is defined as the KL-
divergence between Qnew

j and Q\i

∆j = KL
(

Qnew
j |Q\i

)

= −1

2
log(1− αjh

new
j )− 1

2
αjh

new
j +

1

2
α2

jλ
\i
j

+ log

(

β(a
\i
ǫ , b

\i
ǫ )

β(anew
ǫ (j), bnew

ǫ (j))

)

−
(

a\iǫ − anew
ǫ (j)

)

Ψ(anew
ǫ (j))

−
(

b\iǫ − bnew
ǫ (j)

)

Ψ(bnew
ǫ (j))

+
(

a\iǫ − anew
ǫ (j) + b\iǫ − bnew

ǫ (j)
)

Ψ(anew
ǫ (j) + bnew

ǫ (j)) , (6.110)

where Ψ is the digamma function and β is the beta function (Abramowitz and Stegun,
1964). The derivation of (6.110) is given in Appendix B.8. After selecting the j ∈ J with
the largest impact in the approximation, as measured by ∆j, we update the approximate
term t̃j as in the standard EP algorithm

aj = anew
ǫ (j) − a\iǫ + 1 , (6.111)

bj = bnew
ǫ (j) − b\iǫ + 1 , (6.112)

vj = λ
\i
j

(

1

αjh
new
j

− 1

)

, (6.113)

mj = h
\i
j + (vj + λ

\i
j )αj = hnew

j + vjαj , (6.114)

sj = Zj
β(a

\i
ǫ , b

\i
ǫ )
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ǫ (j), bnew

ǫ (j))

√

1 + v−1
j λ

\i
j exp

(

λ
\i
j αj

2hnew
j

)

. (6.115)
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Once t̃j has been updated, the posterior approximation Q is set to Qnew
j . In particular,

we update aǫ = anew
ǫ (j), bǫ = bnew

ǫ (j) and the matrix A and the vector h using (6.79)
and (6.80), as in the standard EP algorithm. In principle, updating A and h requires
O(n2) operations. To speed up this process, we consider the decomposition of the matrix
A proposed by Lawrence et al. (2003). This decomposition can be obtained using the
Woodbury formula (B.1) and (B.12)

A = C−MTM , (6.116)

M = L−1Λ
−1/2
I CI,· ∈ R

d,n , (6.117)

where L is the lower-triangular Cholesky factor of

B = I + Λ
−1/2
I CIΛ

−1/2
I ∈ R

d,d (6.118)

and I is the identity matrix. In (6.117) CI,· denotes the sub-matrix of C given by
considering only the rows whose indices are included in I and all the columns. Similarly,
in (6.118) CI denotes the sub-matrix of C given by considering only the rows and
columns whose indices are included in I. The same notation is used for the other
matrix Λ

−1/2
I . Note that in (6.116) we have used the fact that the approximate terms

corresponding to the instances that are not included in I are set to be uniform, i.e.

vj = +∞ ∀j ∈ J . Furthermore, it is possible that the matrix Λ
−1/2
I in (6.118) is

undefined because some of the parameters vi of the approximate terms t̃i can be negative
in the EP algorithm (Minka, 2001b). This problem can be overcome by using complex
numbers in the implementation of the training algorithm of the SBM. The advantage of
using (6.116) to represent the matrix A is that the update of the matrix M requires only
O(nd) steps. From this matrix any column of A can be retrieved in O(nd) steps. These
columns are required, for example, to compute (6.98) and (6.99). Finally, the vector h
can also be updated in O(nd) steps when (6.116) is used.

We now describe how to update the matrix A using the representation provided
in (6.116). Specifically, when an instance i from the active set is replaced by a new
candidate instance j ∈ J , the matrix A is updated in terms of the matrix M. However,
the update of M requires first the update of the Cholesky factor L, which depends on
the changes in the matrix B. Assume that l is the position of the element i in I. As
described in (Seeger, 2003), the new matrix B is

Bnew = B +
(

δ̃l + υ̃
)(

δ̃l + υ̃
)T
− υ̃υ̃T , (6.119)

where δ̃l = η1/2δl, υ̃ = η−1/2υ, η = v−1
j Cjj + v−1

i Cii − 2v
−1/2
j v

−1/2
i Cij > 0, υ =

Λ
−1/2
I (v

−1/2
j CI,j − v

−1/2
i CI,i) and δl is a vector whose components are all zeros except

the l-th component, which takes value one. The derivation of (6.119) is given in Appendix
B.9. This update rule is in fact two rank-one updates. In consequence, the Cholesky
factor L can be updated in O(d2) steps because for each rank-one update, Lnew = LL̃,
where L̃ has a special form that allows for the use of a fast multiplication algorithm (Gill
et al., 1974). The structure of the Cholesky factor L̃ is discussed in Appendix B.11.

Once the Cholesky factor L has been updated, we can update the matrix M. The
update rule of the matrix M that appears in the Appendix of (Seeger, 2003) is not
complete because it does not take into account the changes in CI after the update of I.
To derive a more accurate update equation for M consider the updated Cholesky factor
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Lnew = LL̃1L̃2 that results from the two rank-one updates of the matrix B. The update
rule for the matrix M is

Mnew = L̃−1
2 L̃−1

1 M′ , (6.120)

where
M′ = M +

(

L−1δl

)

(

v
−1/2
j Cj,· − v

−1/2
i Ci,·

)

. (6.121)

The derivation of (6.120) is given in Appendix B.10. The evaluation of (6.120) can be
made in O(nd) steps because a multiplication by the factor L̃−1 can be easily computed
in terms of the standard factor L̃. Appendix B.12 presents the details of this operation.
However, to compute (6.120) we need L−1. Thus, we also have to store this matrix in
memory and update it as follows L−1

new = L̃−1L−1 after each rank-one update of B.
The vector h can similarly be updated in O(nd) steps using the representation of A

given in (6.116) (Seeger, 2003)

hnew = h + A·,{ji}∆
1/2P−1

(

∆−1/2γ −∆1/2h{ji}

)

, (6.122)

where

P = I + ∆1/2A{ji}∆
1/2 , ∆ = diag(v−1

j , v−1
i ) , γ = (v−1

j mj , v
−1
i mi)

T . (6.123)

In (6.122) ∆ is a 2 × 2 diagonal matrix that denotes the changes in Λ−1 and γ is a
vector denoting the changes in Λ−1m. The two rows of the matrix A that are required
for evaluating (6.122) can be computed in O(nd) steps using (6.116) and the matrix M.
Furthermore, computing the inverse of P is inexpensive because it is a 2 × 2 matrix.
The derivation of (6.122) is given in Appendix B.13.

In summary, when (6.116) is used to represent the matrix A the preprocessing of an
instance in the active set I in the training algorithm of the SBM has a total cost of O(nd)
steps. Under the assumption that the elements of the kernel matrix C can be computed
when required, an iteration of the whole algorithm takes O(nd2) steps because |I| = d
(otherwise we have to compute first the matrix C, an operation that has a cost O(n2)).
In practice, this algorithm converges after only a few iterations, like the standard EP
algorithm. In consequence, the total cost of the algorithm is O(nd2). The memory
requirements are dominated by the matrix M which demands O(nd) storage space.

Once training has been completed, the marginal likelihood of the training data (6.95)
can be used for kernel selection. The evaluation of (6.95) can be done as in the standard
BM (see (6.82))

P(y) ≈
√

|ΛI |
|CI + ΛI |

β(aǫ, bǫ)

β(a0, b0)
exp(

B

2
)
∏

i∈I

si , (6.124)

where

B =
∑

i,j∈I

Aij
mimj

vivj
−
∑

i∈I

m2
i

vi
. (6.125)

The predictive distribution for new instances is obtained in a similar way

P(ynew|xnew,y) ≈
∫

P(ynew|xnew,w, ǫ)N (w|mw,Vw)Beta(ǫ|aǫ, bǫ)dwdǫ

= ǫ + (1− 2ǫ)Φ(z) , (6.126)
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where ǫ = aǫ/(aǫ + bǫ) and

z =
mT

wxnew
√

(xnew)T Vwxnew

=

∑

i∈I αixnewxT
i

√

(xnew)Txnew − (xnew)T X·,IKXT
·,Ixnew

, (6.127)

with K = Λ−1
I (ΛI −AI)Λ−1

I .

6.3.2 Experiments

In this section the performance of the SBM is assessed in experiments on several clas-
sification problems. First, a simple problem is analyzed to visualize the selection of
instances in the SBM. We generate 100 instances from a simple 2-class 2-dimensional
dataset whose input features x1 and x2 are independently obtained from two Gaus-
sian distributions with unit covariance matrix and mean vectors µ1 = (1, 1)T and
µ2 = (−1,−1)T , respectively. The class label of each instance, either 1 or −1, is assigned
according to the Gaussian distribution from which the instance has been generated. This
means that the optimal decision boundary of the problem is the hyper-plane defined by
the vector w = (1, 1, 0)T . Two SBMs are built using these training data. The first
machine uses a linear kernel function, and the second one the Gaussian kernel given by

C(xi,xj) = exp
(

−γ|xi − xj|2
)

, (6.128)

with γ = 0.1. This kernel allows for non-linear decision boundaries. The sparsity
parameter d of the SBM is fixed to 20 in both cases. Thus, we retain 20% of the
initial training instances. In the case of the linear kernel, after sixteen iterations the
algorithm converges to a stable configuration. However, the active set I converges after
the first three iterations. In the case of the Gaussian kernel, the algorithm requires nine
iterations to converge. The active set converges again after the first three iterations of
the algorithm. Figure 6.4 displays the decision boundary of the resulting SBMs. The
instances that are selected after the training algorithm ends are highlighted with green
circumferences. As expected, when the linear kernel is used only the instances located
near the decision boundary are included in the model. By contrast, when the Gaussian
kernel is used, the instances that surround each cluster of points are included in the
model. These instances are representative of the limits of each cluster. They carry
useful information about the classification task when a non-linear decision boundary is
employed. The instances located inside the clusters do not carry this information and
are therefore discarded.

The performance of SBMs is assessed by additional experiments in the MNIST hand-
written digits dataset (LeCun et al., 1998). In particular, we compare the prediction
performance of SBMs with standard BMs, SBMs that follow the approach of the IVM
(Lawrence et al., 2003; Seeger, 2003) and SVMs (Vapnik, 1995). Recall that the training
algorithm of the IVM is a special case of the training algorithm of the SBM where the
algorithm displayed in Figure 6.3 stops after the first iteration. The purpose of com-
paring with this last model is to determine whether the additional refining iterations
proposed in this chapter are beneficial or not.

The experimental procedure is as follows: For each digit i different from 9, we
consider binary tasks that consist in discriminating instances of the digit i from instances
of the digit 9. The bitmaps of size 28×28 pixels are down-sampled to size 14×14 pixels
so that only 196 attributes are considered. For each of these classification problems,
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Figure 6.4: Training set and decision boundary of a SBM trained with a linear
kernel (top) and with a Gaussian kernel (bottom) on the simple problem. Contour
curves describe the predictive distribution of each model. Patterns included in the
models are those that are highlighted with green circumferences. The parameter d is
set to 20% of the number of available instances.
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we randomly extract from the MNIST training set of 60, 000 instances 500 instances
associated to the digit i, and 500 instances associated to the digit 9. Then, each one
of these datasets of 1, 000 instances is randomly split 50 times into a training set of
100 instances and a test set of 900 instances. The reason for using small training sets
is that we also compare results with standard BMs, whose training time scales like
O(n3), where n is in the number of training instances. The data attributes are then
normalized to have zero mean and unit standard deviation on the training set. The
different classifiers are built using the training set and then evaluated on the test set.
Because the SBM can not determine the value of the sparsity parameter d automatically,
for each classification task we initialized this parameter with the average number of
support vectors identified by the SVM. In all methods the same kernel is used; namely,
the Gaussian kernel described in (6.128). The γ parameter of this kernel is estimated in
all methods by a grid search in which the natural logarithm of the values of the knots
in the grid are ten equally spaced points in the interval [−10,−4]. In the case of the
SVM, a 10-fold cross-validation procedure on the training set is used to estimate which
parameter value performs best. In the other methods, the marginal likelihood of the
training data is used for this purpose. The cost parameter C of the SVM is determined
in a nested grid search that uses 10-fold cross validation to discriminate among different
values of this parameter. In this case, the natural logarithm of the values of the knots in
the grid are ten equally spaced points in the interval [−3, 3]. Finally, we note that the
prediction rule of the BM and the SBM requires convergence of the training algorithm
(see Appendix B.7 for further details). Thus, the prediction rule of the SBM without the
additional refining iterations is computed differently. This prediction rule is described
in Appendix B.7.

Table 6.4: Error values of each method and average number of support vectors.

Problem BM SBM SBMIVM SVM # SV

0 vs 9 1.5 ±0.6 1.5±0.6 1.7±0.7 3.2±1.1 54.2±16.4
1 vs 9 1.9 ±0.9 2.0±1.0 2.5±1.3 3.5±1.3 56.1±17.9
2 vs 9 2.5±0.6 2.5 ±0.6 2.5±0.6 4.5±1.6 59.3±16.2
3 vs 9 3.5 ±1.0 3.5±1.0 4.0±1.2 6.1±1.6 54.4±15.8
4 vs 9 8.3±1.6 8.2 ±1.6 9.0±1.6 11.6±2.1 61.9±13.9
5 vs 9 4.1±0.9 4.0 ±0.9 4.5±1.1 6.8±2.1 59.2±12.8
6 vs 9 1.3 ±0.8 1.3±0.8 1.8±0.9 4.2±2.0 72.0±17.3
7 vs 9 9.1±1.5 9.1 ±1.5 9.5±1.5 10.6±2.0 56.1±13.1
8 vs 9 4.1 ±0.8 4.2±0.9 4.4±0.8 6.4±2.0 59.7±13.2

Table 6.4 displays the average classification error of each method and the average
number of support vectors identified by the SVM in the problems investigated. The
lowest error value for each problem is highlighted in bold face. These results show that
the BM obtains the best performance in five of the nine classification tasks investigated.
On the other hand, the SBM obtains the best performance in the remaining four tasks.
The error rates of the SBM without the additional refining iterations (fourth column
of the table) are larger than the ones of the BM and the complete SBM. These results
confirm that the additional refining iterations proposed have a beneficial effect in the
quality of the approximation. Finally, the SVM has the highest error rates. The average
number of support vectors computed by this method (last column of the table) varies
between ≈ 54% and ≈ 72% of the number of initial instances in the training set.
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The testing framework described in the previous section is also used here to compare
the performance of the classifiers investigated. A Friedman average rank test rejects the
hypothesis that all methods have an equivalent performance in this set of problems (a
p-value below 5% is obtained). We then apply a Nemenyi test to determine wherther the
differences in average rank among the classifiers investigated are significant. A signifi-
cance level of 10% is employed for this purpose. The differences in performance between
the SBM and the SBM without the additional refining iterations are not significant when
the level is set to 5%. Figure 6.5 displays the result of this test, as suggested by Demšar
(2006). When the difference between the average ranks of two classifiers is not signifi-
cant they are linked with a solid black segment. The critical difference (CD) between
average ranks is displayed at the top. The figure shows that there is statistical evidence
supporting that both the BM and the SBM perform better than the SVM and the SBM
without the additional refining iterations over the set of classification problems investi-
gated. The differences between the performance of the BM and the SBM, and between
the performance of the SVM and the SBM without the additional refining iterations,
are not statistically significant.

1 2 3 4

SVM
SBM_IVM

BM
SBM

CD

Figure 6.5: Graphical result of a Nemenyi test comparing the average rank of each
method. The critical difference (CD) between average ranks is displayed at the top.

6.4 Conclusions

In this chapter we have proposed a Bayesian probabilistic model for binary classification
that is an extension of the Bayes point machine (BPM) (Herbrich et al., 2001). This
extension is performed in two ways. First, we take into account the whole version space,
not only its center of mass. Second, the model considers the possibility of mislabeled
instances in the training set. We call this model the Bayes machine (BM) and follow
a Bayesian approach to compute a posterior distribution for all the parameters in the
model, including a parameter ǫ that quantifies the noise in the labels of the training
data. Exact inference in the BM is not tractable and hence, approximation techniques
have to be used. In this work we use the approximate inference algorithm expectation
propagation (EP) to train the BM (Minka, 2001b). Unlike Gaussian process classifiers
(GPCs) (Barber and Williams, 1997; Gibbs and MacKay, 2000; Kuss and Rasmussen,
2005; Opper and Winther, 2000b) or support vector machines (SVMs) (Vapnik, 1995),
the BM learns the noise parameter directly from the traning data without any additional
cost. This is the most compelling feature of the proposed model. Additionally, the BM
induces an approximate predictive distribution that takes into account the uncertainty in
the model parameters, unlike the SVM or the BPM, which yield a single point estimate.

The effectiveness of the proposed model for learning the intrinsic level of noise in the
class labels of the training data is illustrated in a simple classification problem. These
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experiments show that for increasing values of the noise level injected in the training
data the average value of the error rate estimated in the posterior distribution of the BM
also increases. The performance of the BM is investigated in fifteen synthetic and real-
world classification problems. In these experiments, the prediction accuracy of the BM
is compared with the SVM (Vapnik, 1995) and the GPC based on the EM-EP algorithm
of Kim and Ghahramani (2006). The BM performs better than these classifiers in the set
of problems considered. These improvements in performance are statistically significant
according to the Nemenyi test.

The cost of training a BM for binary classification is O(n3), where n is the number
of training instances. This is the same computational cost of training the GPC using
EP (Kim and Ghahramani, 2006; Minka, 2001b; Opper and Winther, 2000b). If other
techniques are used to perform approximate inference in GPCs (Gibbs and MacKay,
2000; Kuss and Rasmussen, 2005), the cost only differs in a proportionality constant.
In fact, all GPCs require a matrix inversion that demands O(n3) steps. On the other
hand, the SVM scales better with the number available training instances as its training
cost is at worst O(n2) when using a SMO-type algorithm. This means that the BM can
only be applied to binary classification problems with few training instances.

To reduce the cost of training the BM without significantly deteriorating its perfor-
mance, we have proposed a sparse representation for the BM called the sparse Bayes
machine (SBM). The approach followed is based on the IVM (Lawrence et al., 2003;
Seeger, 2003). However, we have introduced some modifications that provide a better
approximation to the posterior distribution. Specifically, we have included additional
refining iterations to the training algorithm of the IVM. Two types of improvements are
obtained from the additional iterations. First, the active set of selected instances I can
be updated during these iterations. These updates correct some of the errors made in
the greedy selection of active instances. Second, the extra processing of these instances
improves the posterior approximation. These additional iterations can be thought as
a backfitting algorithm that tries to fix some of the errors that result from the greedy
selection of instances. As a matter of fact, they actually work in a similar way as the EP
algorithm, which improves the approximation obtained by ADF (Minka, 2001b). The
main advantage of using the proposed sparse representation is that the training cost of
the BM is reduced to O(d2n), where n is the number of training instances available and
d is some sparsity parameter that has to be fixed in some way. If d is much smaller
than n this is an important improvement over the training cost of the BM, which is
O(n3). The time needed for prediction is also improved in a similar way. Specifically,
the cost is reduced from O(n2), in the standard BM, to O(d2), in the SBM. A series of
experiments carried out over the MNIST dataset of hand-written digits (LeCun et al.,
1998) is performed to compare the performance of the SBM with the standard BM, the
SBM without the additional refining iterations and the SVM (Vapnik, 1995). These
experiments show that the SBM outperfoms both the SVM and the SBM without the
additional refining iterations. Furthermore, they show that the SBM is comparable to
the standard BM in terms of prediction error, even though only a subset of the total
available instances are used for prediction. In consequence, these experiments confirm
that implementing additional refining iterations in the algorithm of the SBM is benefi-
cial. A disadvatage of the proposed approach is that the sparsity parameter d has to be
fixed in some way. In general, this is a difficult task.





Chapter 7
A Bayesian Model for Microarray Data

Classification

Microarray experiments are a promising tool for disease treatment and early diag-

nosis. However, the datasets obtained in these experiments typically have a small

number of instances and a large number of covariates, most of which are irrelevant

for discrimination. These characteristics make them difficult problems for standard

classification algorithms. In particular, the predictors induced from these datasets

can be rather unstable. Bayesian models can be useful to overcome this problem

because they compute a posterior probability distribution for the model coefficients

instead of a single point estimate. Using this posterior distribution, these models

consider different values for the model coefficients, leading to more robust estimates

of the quantities of interest. However, exact Bayesian inference is often infeasible. In

practice, some form of approximation has to be made. In this chapter we consider

a Bayesian model for microarray data classification based on a prior distribution

that favors sparsity in the model coefficients. Expectation propagation (EP) is then

used to perform approximate inference. EP is a practicable alternative to more

computationally demanding methods such as Markov Chain Monte Carlo (MCMC)

sampling. The model considered is evaluated on fifteen microarray datasets and

compared with other robust classification algorithms. These experiments show that

the model trained with EP performs well on the datasets investigated and can also

be used to identify relevant genes for subsequent analysis.

7.1 Introduction

Microarray chips based on c-DNA hybridization technology generate large amounts
of data by simultaneously measuring the expression level of several thousands of genes.
However, biomedical experiments based on this technology are very expensive and hence,
they are available only for a small number of subjects, e.g. (Bourquin et al., 2006; Ra-
maswamy et al., 2003). The reduced number of samples and the large dimensionality of
the attributes measured make the analysis of microarray data a very challenging task
that requires specialized statistical algorithms. A common application of microarray
experiments is to diagnose some disease on the basis of the gene expression level mea-
sured for each individual (Dudoit and Fridlyand, 2003). Previous research in this field

149
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has shown that only a reduced number of genes are actually relevant for classification
(Dudoit et al., 2002; Guyon et al., 2002; Lee et al., 2005; Tibshirani et al., 2002). In
consequence, most microarray classification algorithms perform a selection process to
identify a set of possibly correlated genes which are relevant for the classification task
considered. This feature selection mechanism is usually implemented by assuming a
linear labeling function and by enforcing sparsity in the estimates of the model coef-
ficients. Specifically, several model coefficients are driven to zero during learning and
therefore do not contribute to the classification process. Zeroed coefficients are often
determined by either cross-validation error minimization (D́ıaz-Uriarte and Alvarez de
Andrés, 2006; Guyon et al., 2002; Tibshirani et al., 2002) or by maximum posterior esti-
mation (MAP) with a prior distribution that favors sparse models (Cawley and Talbot,
2006; Krishnapuram et al., 2004; Li et al., 2002). Irrespective of the method used, the
selection process can be unreliable because of the limited data available in microarray
experiments (Dougherty, 2001). In particular, Li et al. (2002) and Cawley and Talbot
(2006) find that the selected features can change substantially even when the training
dataset is only slightly modified. Bayesian models with prior distributions that encour-
age sparsity can be useful to overcome this problem because they compute posterior
probability distributions for the model coefficients instead of a single point estimate
(Bishop, 2006; MacKay, 2003). Unlike approaches in which the posterior probability is
maximized, these models do not generate sparse solutions. If only a finite amount of data
is available, the values of the model coefficients are uncertain and, in consequence, the
posterior probability of a coefficient being exactly zero is zero. Nevertheless, Bayesian
models with prior distributions that encourage sparsity can be used to separate the
model coefficients into two sets: a large set of coefficients whose value is close to zero
with high posterior probability and a small set of coefficients whose posterior probability
of being different from zero is large (Seeger, 2008). Additionally, Bayesian models can
be used to incorporate prior knowledge into the classification task. This prior knowledge
can compensate for the limited amount of data available.

In this chapter we consider a Bayesian model for microarray data classification based
on the spike and slab sparse prior distribution (George and McCulloch, 1997). This prior
introduces a binary latent variable for each gene to indicate whether the expression level
of that particular gene will be used for classification or not. Bayes’ theorem is then
used to compute an estimate of the probability that each one of these variables is active.
This estimate can be used to discriminate among different subsets of genes (i.e. those
with a high probability of being excluded and those whose associated coefficients in the
model are different from zero with a high probability) and hence, it can be useful for
identifying relevant genes. Because exact inference in this model is infeasible, approxi-
mation techniques need to be used. Sparse prior distributions often lead to complicated
posteriors that can have a large number of modes (Seeger, 2008). This, combined with
the large dimensionality of microarray data, makes approximate inference a very difficult
task. MCMC sampling techniques are typically used to address this problem, e.g. (Bae
and Mallick, 2004; Lee et al., 2003; Zhou et al., 2004). These techniques are based on
sampling from the posterior distribution by running a Markov chain whose stationary
distribution coincides with the posterior distribution of the model. The samples are then
used to compute probability estimates or to approximate the predictive distribution of
the model for new instances. A difficulty with this approach is that obtaining indepen-
dent samples demands running very long Markov chains. This significantly increases the
training cost of the Bayesian model.
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In this chapter we propose to use expectation propagation (EP) (Minka, 2001b),
which is an efficient approximate inference algorithm. EP approximates the posterior
distribution of the model using a simple distribution that is computed as the prod-
uct of several terms that belong to the exponential family of probability distributions.
These terms are iteratively updated until convergence by a series of rules obtained from
matching the expected values of the sufficient statistics. A drawback of EP is that poor
approximations can be obtained when the posterior distribution is multi-modal (Bishop,
2006). The typical scenario for such poor behavior is a bimodal posterior distribution
that is approximated by a Gaussian. EP places the mean of the Gaussian between the
two modes of the true posterior, where the probability can be rather low. In spite of
this limitation, experimental evaluation of EP applied to the considered model on a set
of fifteen microarray datasets shows that it does not seem to be affected by this prob-
lem. The overall performance of EP is comparable with other microarray classification
techniques. Furthermore, genes whose coefficients have a high a probability of being
different from zero in the posterior approximation are good candidates for subsequent
analysis.

The chapter is organized as follows: Section 7.2 introduces the Bayesian model for
microarray data classification based on a sparse prior distribution. Section 7.3 describes
how the EP algorithm can be used to make approximate inference in this model. Section
7.4 presents experimental results on several microarray datasets. These experiments are
carried out to evaluate the performance of the proposed method and compare it with
other classifiers. Finally, Section 7.5 summarizes the conclusions of this investigation.

7.2 A Spike and Slab Model for Microarray Classification

The starting point of this analysis is the Bayesian model for microarray data classi-
fication of Lee et al. (2003). The goal of this model is to learn a decision function
that discriminates, based on gene expression measurements, between tissues belonging
to different classes (e.g. tumor and normal samples). For this purpose, a set of n d-
dimensional input examples X = {x1, . . . ,xn} and the corresponding target class labels
y = {y1, . . . , yn}, yi ∈ {−1, 1} is available. Typically, the number of observations n is
small and the number of genes d is large. The model proposed in (Lee et al., 2003)
assumes that there is a monotonic relation between the probability of the target value
yi and the value of a linear combination of the gene expression measurements in xi. In
particular, the classification rule of this model is

yi =

{

1 if wTxi + ǫi ≥ 0

−1 otherwise,
(7.1)

where w are the model coefficients, ǫi follows a standard Gaussian distribution and the
superscript T means transpose. The classification rule (7.1) is obtained from the assump-
tion that the gene expression measurements xi are contaminated by some d-dimensional
Gaussian noise vector ξi such that wT ξi has a standard Gaussian distribution. An
alternative to (7.1) results from assuming that the noise term ǫi follows the logistic dis-
tribution (Krishnapuram et al., 2004), which is less sensitive to outliers. This functional
form for the noise distribution has not been considered here because it makes Bayesian
inference harder (Bishop, 2006). The hyper-plane defined by w is required to contain
the origin. This can be readily achieved by including an additional attribute in xi that is
constant and equal to one. In this model the likelihood function for a vector of weights
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w given y and X is

P(y|w,X) =

n
∏

i=1

P(yi|xi,w) =

n
∏

i=1

Φ(yiw
Txi), (7.2)

where Φ(·) is the cumulative probability function of a standard Gaussian distribution.
For notational convenience, X will not appear in the subsequent expressions, where it
is understood that it is always included in the set of conditioning variables. To further
simplify the notation, we also assume that each xi vector is scaled by the corresponding
class label yi.

To complete the Bayesian model we assume a prior distribution for w. Because in
microarray datasets only a small subset of the genes are actually relevant for discrimina-
tion, it seems natural to make use of a prior distribution for w that encourages sparsity.
In particular, we employ the spike and slab prior introduced by George and McCulloch
(1997) and later used by Lee et al. (2003) to make Bayesian inference in microarray
classification problems. In this prior all components of the vector w are assumed to
be independent. Binary latent variables γi are introduced to reflect whether the the
expression level of the i-th gene is used for classification (γi = 1) or not (γi = 0). Given
γ, the prior for w is

P(w|γ) =

d
∏

i=1

N (wi|0, σ2
1)γiN (wi|0, σ2

0)
1−γi , (7.3)

where N (wi|0, σ2
1) denotes a Gaussian density with zero mean and σ2

1 variance evaluated
at wi. In order to enforce sparsity, the standard deviation of the slab σ1 is set to 1 and the
distribution of spike is assumed to be a delta function centered at the origin (σ0 → 0+).
Finally, independent Bernoulli priors are assumed for the components of γ

P(γ) =
d
∏

i=1

ργi

0 (1− ρ0)
1−γi . (7.4)

This prior assumes that each gene contributes independently to the classification process
with probability equal to ρ0.

The joint posterior distribution for γ and w is computed using Bayes’ theorem

P(γ,w|y) =
P(y|w)P(w|γ)P(γ)

P(y)
, (7.5)

where P(y) is a normalization constant that can be used to perform model selection
(Bishop, 2006; MacKay, 2003).

In this model, a new instance xnew is classified using the predictive distribution for
its target class ynew ∈ {1,−1}

P(ynew|xnew,y) =

∫

P(ynew|xnew,w)P(γ,w|y)dγdw. (7.6)

This probabilistic output is useful to quantify the uncertainty in the prediction. Finally,
the genes with the highest contribution to the classification process can be identified



Chapter 7. A Bayesian Model for Microarray Data Classification 153

using the posterior distribution of γ

P(γ|y) =

∫

P(γ,w|y)dw. (7.7)

Unfortunately, the exact evaluation of (7.5), (7.6) and (7.7) is too costly to be practi-
cable and one has to resort to approximation techniques. Lee et al. (2003) have proposed
an approach based on MCMC sampling. However, this algorithm requires rather long
simulations of the Markov chain. Inspired by the success of EP (Minka, 2001b) in a re-
lated problem involving time-dependent gene expression data (Hernández-Lobato et al.,
2008), we propose to apply this efficient algorithm to perform approximate inference in
the Bayesian model introduced in this section.

7.3 EP for the Spike and Slab Model

In this section we describe the application of the EP algorithm to the Bayesian model for
microarray data analysis introduced in the previous section. We begin by factorizing the
joint distribution of the observed class labels and the model parameters as the product
of n+d+1 terms ti. Namely, n terms for the likelihood, d terms for the prior for w given
γ and one term for the prior for γ. Each of these terms is approximated by a simple
term t̃i that is restricted to belong to the exponential family of probability distributions

P(y,w,γ) =

[

n
∏

i=1

P(yi|w)

] [

d
∏

i=1

P(wi|γi)

]

P(γ) =

n+d+1
∏

i=1

ti(w,γ) ≈
n+d+1
∏

i=1

t̃i(w,γ) .

(7.8)
Next, we assume that the posterior approximation of (7.5), Q, is the product of d
Bernoulli distributions and a factorized Gaussian distribution

Q(w,γ) =

d
∏

j=1

ρ
γj

j (1− ρj)
1−γjN (wj |µj, νj) , (7.9)

where the d-dimensional vectors ρ, µ and ν are the parameters of the posterior approx-
imation. Note that (7.9) belongs to the exponential family because it is the product of
distributions that also belong to this family. In this approximation, the vectors γ and w
and their components are assumed to be independent. The purpose of this independence
assumption is to obtain a faster EP algorithm. Approximations that model correlations
between γ and w and their components can be more accurate, but also increase the
computational cost of EP. Thus, the approximate terms t̃i have a similar form as (7.9),
although they do not have to be normalized

t̃i(γ,w) = si

d
∏

j=1

p
γj

ij (1− pij)
1−γj exp

(

− 1

2vij
(wj −mij)

2

)

, (7.10)

where si is a constant that ensures that the integral of t̃i
∏

j 6=i t̃j is the same as the

integral of ti
∏

j 6=i t̃j and the d-dimensional vectors pi, mi and vi are free parameters.
Note that (7.10) has the same form (except for the Gaussian part) as the prior for γ

given in (7.4). In consequence, the optimal update of the approximate term t̃n+d+1

corresponding to the prior for γ is to set sn+d+1 = 1, p(n+d+1)j = ρ0, m(n+d+1)j = 0
and v(n+d+1)j = +∞ for j = 1, . . . , d. Furthermore, if Q is initialized to t̃n+d+1 then
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the preprocessing of the exact term tn+d+1 is not needed in the main loop of the EP
algorithm (see Section 5.5.1.3). This is obtained by setting ρj = ρ0, µj = 0 and νj = +∞
for j = 1, . . . , d.

The first step of the EP algorithm consists in initializing all the approximate terms
t̃i corresponding to the likelihood and the prior for w to be uniform. In the case of the
Bernoulli part of t̃i this is obtained by setting all the probability values to 1/2. In the
case of the Gaussian part, the means have to be set to zero and the variances to infinity.
Then, the approximate term t̃n+d+1 corresponding to the prior for γ and the posterior
approximation Q are initialized to (7.4), as described before.

The next step of the EP algorithm is to remove an approximate term t̃i from Q
to compute Q\i. Q\i has the same form as Q because of the closure property of the
exponential family

Q\i(w,γ) =

d
∏

j=1

(ρ
\i
j )γj (1− ρ

\i
j )1−γjN (wj |µ\i

j , ν
\i
j ) . (7.11)

The parameters ρ\i, µ\i and ν\i of Q\i are found by computing the quotient Q/t̃i and
normalizing

ν\i = (ν−1 − v−1
i )−1 , (7.12)

µ\i = ν\i ◦
(

ν−1 ◦ µ− v−1
i ◦mi

)

, (7.13)

ρ\i =
ρ ◦ p−1

i

ρ ◦ p−1
i + (1− ρ) ◦ (1− pi)−1

, (7.14)

where the operator ◦ indicates the Hadamard (element-wise) product and the inverse of
a vector is defined as a new vector whose components are the inverse of the components
of the original vector. For the computation of (7.12) and (7.13) we have used (A.46),
and for the computation of (7.14) we have used (A.10).

The next step of the algorithm consists in computing an updated posterior distribu-
tion P̂

P̂(w,γ) =
1

Zi
ti(w,γ)Q\i(w,γ) , (7.15)

where Zi is just a normalization constant. In the case of the likelihood terms ti, with
i = 1, . . . , n, this constant is

Zi =
∑

γ

∫

ti(w,γ)Q\i(w,γ)dw

=
∑

γ

∫

Φ(wTxi)
d
∏

j=1

(ρ
\i
j )γj (1− ρ

\i
j )1−γjN (wj |µ\i

j , ν
\i
j )dw

= Φ(zi) , (7.16)

where

zi =
xT

i µ\i

√

xT
i (ν\i ◦ xi) + 1

. (7.17)



Chapter 7. A Bayesian Model for Microarray Data Classification 155

In the case of the terms tn+i, with i = 1, . . . , d, corresponding to the prior for w given
γ, this constant is

Zn+i =
∑

γ

∫

tn+i(w,γ)Q\n+i(w,γ)dw

=
∑

γ

∫

N (wi|0, σ2
1)

γiN (wi|0, σ2
0)1−γi

d
∏

j=1

(ρ
\n+i
j )γj (1− ρ

\n+i
j )1−γjN (wj |µ\n+i

j , ν
\n+i
j )dw

= ρ
\n+i
i G1 + (1− ρ

\n+i
i )G0 , (7.18)

where

G0 = N (0|µ\n+i
i , ν

\n+i
i + σ2

0) , G1 = N (0|µ\n+i
i , ν

\n+i
i + σ2

1) . (7.19)

Once P̂ has been normalized, we have to minimize the Kullback-Liebler (KL) diver-
gence between P̂ and Q to find the parameters of the updated posterior approximation
Qnew. Since Q belongs to the exponential family of probability distributions and fac-
torizes with respect to w, γ and each component of these vectors, the parameters of
Qnew are found by matching the sufficient statistics of each marginal distribution. In
particular, from the minimization of the KL-divergence we get the following expectation
constraints

EQnew [w] = EP̂ [w] , (7.20)

EQnew [w ◦w] = EP̂ [w ◦w] , (7.21)

EQnew [γ] = EP̂ [γ] . (7.22)

The expression of the sufficient statistics of the Bernoulli and the Gaussian distribution
are given in Appendix A.1 and Appendix A.3, respectively. To match constraints (7.20)
and (7.21) we can use (A.40) and (A.41), respectively. Constraint (7.22) can be matched
using (A.6). In the case of the likelihood terms ti, with i = 1, . . . , n, this gives the
following parameters for Qnew

µnew = µ\i + αiν
\i ◦ xi , (7.23)

νnew = ν\i − αi(x
T
i µnew + αi)

xT
i (ν\i ◦ xi) + 1

(

ν\i ◦ xi

)

◦
(

ν\i ◦ xi

)

, (7.24)

ρnew = ρ\i , (7.25)

where

αi =
1

√

xT
i (ν\i ◦ xi) + 1

N (zi|0, 1)
Φ(zi)

, zi =
xT

i µ\i

√

xT
i (ν\i ◦ xi) + 1

. (7.26)
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In the case of the terms tn+i, with i = 1, . . . , d, corresponding to the prior for w given
γ, the parameters of Qnew are

µnew = µ\n+i + δic1ν
\n+i
i , (7.27)

νnew = ν\n+i − δic3(ν
\n+i
i )2 , (7.28)

ρnew = ρ\n+i + δi
G1 − G0

Zn+i
ρ
\n+i
i (1− ρ

\n+i
i ) , (7.29)

where

c1 =
1

Zn+i

(

ρ
\n+i
i G1

−µ
\n+i
i

ν
\n+i
i + σ2

1

+ (1− ρ
\n+i
i )G0

−µ
\n+i
i

ν
\n+i
i + σ2

0

)

, (7.30)

c2 =
1

Zn+i

1

2

(

ρ
\n+i
i G1

(

(µ
\n+i
i )2

(ν
\n+i
i + σ2

1)
2
− 1

ν
\n+i
i + σ2

1

)

+

(1− ρ
\n+i
i )G0

(

(µ
\n+i
i )2

(ν
\n+i
i + σ2

0)
2
− 1

ν
\n+i
i + σ2

0

))

, (7.31)

c3 = c2
1 − 2c2 (7.32)

(7.33)

and δi is a d-dimensional vector with all components equal to zero except component i
which takes value one

The next step of the EP algorithm consists in updating the corresponding approxi-
mate term t̃i by setting t̃i = ZiQnew/Q\i. This process is slightly different depending on
the approximate term being processed. For the approximate terms t̃i, with i = 1, . . . , n,
corresponding to the likelihood, both Qnew and Q\i have the same marginal distribution
over γ. This is so because (7.25) does not change the parameter ρ of the posterior
approximation, i.e. ρnew = ρ\i. In consequence, when t̃i is computed as ZiQnew/Q\i

both distributions over γ cancel and we can write

t̃i(w,γ) = si

d
∏

j=1

exp

(

− 1

2vij
(wj −mij)

2

)

. (7.34)

The parameters si, mi and vi of t̃i are updated according to

vi =
(

(νnew)−1 − (ν\i)−1
)−1

=
xT

i (ν\i ◦ xi) + 1

αi(x
T
i µnew + αi)

x−1
i ◦ x−1

i − ν\i , (7.35)

mi = vi

(

(νnew)−1µnew − (ν\i)−1µ\i
)

= µ\i + αi

(

vi + ν\i
)

◦ xi , (7.36)

si = Zi

d
∏

j=1

√

1 + v−1
ij ν

\i
j exp

(

d

2

αix
T
i (ν\i ◦ xi) + αi

xT
i µnew + αi

)

, (7.37)

where d is the dimensionality of the data vectors. For the computation of (7.35) we have
used (A.46), (7.24) and the Woodbury formula (B.1). For the computation of (7.36)
we have we have used (A.46), (νnew)−1 = v−1

i + (ν\i)−1, which can be derived from
(7.35), and (7.23). The derivation of (7.37) is given in Appendix C.1. Using (7.34)
instead of (7.10) to represent the approximate terms corresponding to the likelihood
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has the advantage of reducing the storage space because these terms no longer include
a product of Bernoulli distributions. However, when this representation is used (7.14)
is no longer valid to compute the value of ρ\i, for i = 1, . . . , n. For these terms, this
equation has to be replaced by

ρ\i = ρ . (7.38)

For the approximate terms t̃n+i, with i = 1, . . . , d, corresponding to the prior for w
given γ, the parameters of the posterior approximation Qnew computed by (7.27), (7.28)
and (7.29) only differ from the parameters of Q\n+i in the i-th component of each
parameter vector. In consequence, these approximate terms also have a simpler form
when computed as t̃n+i = Zn+iQnew/Q\n+i. In particular,

t̃n+i(w,γ) = sn+ip
γi

n+i(1− pn+i)
1−γi exp

(

− 1

2vn+i
(wi −mn+i)

2

)

, (7.39)

where sn+i, pn+i, mn+i and vn+i are free parameters. The update equations for the
parameters of t̃n+i, with i = 1, . . . , d, are

vn+i =
(

(νnew
i )−1 − (ν

\n+i
i )−1

)−1
= c−1

3 − ν
\n+i
i , (7.40)

mn+i = vn+i

(

(νnew
i )−1µnew

i − (ν
\n+i
i )−1µ

\n+i
i

)

= µ
\n+i
i + c1

(

vn+i + ν
\n+i
i

)

, (7.41)

pn+i =
ρnew

i /ρ
\n+i
i

ρnew
i /ρ

\n+i
i + (1− ρnew

i )/(1 − ρ
\n+i
i )

=
G1

G1 + G0
, (7.42)

sn+i = (G1 + G0)

√

1 + ν
\n+i
i v−1

n+i exp

(

1

2

c2
1

c3

)

. (7.43)

For the computation of (7.40) we have used (A.46) and (7.28). For the computation of

(7.41) we have used (A.46), (νnew
i )−1 = (ν

\n+i
i )−1 + v−1

n+i, which can be derived from
(7.40), and (7.27). Finally, for the computation of (7.42) we have used (A.10), (7.29)
and (7.18). The derivation of (7.43) is given in Appendix C.2. Using (7.39) instead of
(7.10) to represent the approximate terms t̃n+i, with i = 1, . . . , d, reduces the storage
space and also increases the speed of the EP algorithm. Specifically, we only need to
store four parameters for each approximate term t̃n+i. These terms can be updated in
constant time. However, when (7.39) is used instead of (7.10), equations (7.12), (7.13)
and (7.14) can not be used to compute the parameters of Q\n+i, with i = 1, . . . , d. These
equations have to be replaced by

ν
\n+i
i =

(

ν−1
i − v−1

n+i

)−1
, (7.44)

µ
\n+i
i = ν\n+i

(

ν−1
i µi − v−1

n+imn+i

)

, (7.45)

ρ
\n+i
i =

ρi/pn+i

ρi/pn+i + (1− ρi)/(1 − pn+i)
, (7.46)

where have used (A.46) for the computation of (7.44) and (7.45), and (A.10) for the

computation of (7.46). Note that we only need ν
\n+i
i , µ

\n+i
i and ρ

\n+i
i to process the

exact terms tn+i, with i = 1, . . . , d, corresponding to the prior for w given γ. The

remaining parameters of Q\n+i, i.e. ν
\n+i
j , µ

\n+i
j and ρ

\n+i
j , with j 6= i, are not required.
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Once that EP has converged, we can approximate the model evidence by

P(y) ≈
∑

γ

∫ n+d+1
∏

i=1

t̃i(w,γ)dw =
√

(2π)d exp

(

B

2

)

[

d
∏

i=1

√
νiCi

][

n+d
∏

i=1

si

]

, (7.47)

where we have used (A.7) and (A.42), and where

Ci = pn+iρ0 + (1− pn+i)(1 − ρ0) , (7.48)

B = µT
(

ν−1 ◦ µ
)

−
n
∑

i=1

mT
i

(

v−1
i ◦mi

)

−
d
∑

i=1

m2
n+iv

−1
n+i . (7.49)

Furthermore, in the computation of (7.47) we have also used that t̃n+d+1 is initialized
to the prior distribution for γ and never modified.

The optimal classification rule for an arbitrary instance xnew can be approximated
using (7.9)

P(ynew|xnew,y) ≈
∑

γ

∫

P(ynew|xnew,w)Q(w,γ)dw

≈
∫

Φ
(

ynewwTxnew

)

d
∏

j=1

N (wj |µj, νj)dw

≈ Φ

(

ynew(xnew)T µ
√

(xnew)T (ν ◦ xnew) + 1

)

. (7.50)

Finally, to identify the genes that contribute the most to the classification process, the
EP approximation of (7.7) can be used

P(γ|y) ≈
d
∏

j=1

ργi

j (1− ρj)
1−γj . (7.51)

In this expression ρj is an approximation to the posterior probability of the expression
level of gene j being used for classification. These probability values can be used for
feature ranking.

Note that the update of the terms t̃i, with i = 1, . . . , n corresponding to the likelihood
takes O(nd) steps. However, the terms t̃n+i, with i = 1, . . . , d, corresponding to the prior
for w given γ, can be updated in only O(d) steps because of the factorized form of the
approximation. In consequence, the total cost of one iteration of EP is O(nd). By
contrast, if efficient matrix factorizations are employed (George and McCulloch, 1997),
the cost of the MCMC sampling algorithm proposed by Lee et al. (2003) is on average
O(ρ2

0d
3k), where k is the number of samples generated from the Markov chain. Because

the samples generated are not independent, this number is typically set very large, e.g.
several thousands, which is the same order as d.

7.4 Experiments

The performance of the Bayesian model trained with EP is investigated in fifteen pub-
licly available microarray classification problems. The characteristics and the sources of



Chapter 7. A Bayesian Model for Microarray Data Classification 159

the datasets are shown in Table 7.1. Non-binary classification problems are binarized
as follows: in Lymphoma we discriminate between 42 samples of diffuse large B-cell
lymphoma and 20 samples of follicular lymphoma and chronic lymphocytic leukemia; in
SRBCT we discriminate between 23 Ewing family of tumors and 20 rhabdomyosarco-
mas; in Metastasis we discriminate between patients that developed metastasis within
5 years and those who did not; finally, in Brain A we discriminate between 10 malig-
nant gliomas and 10 atypical teratoid/rhabdoid tumors. The datasets are preprocessed
as follows: Adenocarcinoma and Metastasis are preprocessed as in (D́ıaz-Uriarte and
Alvarez de Andrés, 2006); Colon is preprocessed as in (Guyon et al., 2002); Breast ER,
Breast LN, Brain A, Leukemia, Lymphoma, Prostate and SRBCT are preprocessed as
in (Dettling and Bühlmann, 2002); Mutation is log-transformed and normalized across
genes and samples 1; Brain B, Brain C and Down Syndrome are preprocessed follow-
ing a protocol equal to the one described in the supplementary material of (Pomeroy
et al., 2002). These datasets are thresholded, filtered by variation, log-transformed and
normalized across genes and then across samples. The floor of the threshold step is set
to 20 for Brain B and Down Syndrome and to 100 for Brain C. The ceiling is set to
16, 000 in these three datasets. Filtering by variation is performed by removing those
genes with max/min ≤ 5 or (max−min) ≤ 500. Finally, the Ovarian dataset does not
require any further preprocessing (Li et al., 2002).

Table 7.1: Main characteristics of the microarray datasets used.

Dataset Genes Patients Original Paper

Adenocarcinoma 9,868 76 (Ramaswamy et al., 2003)
Brain A 5,597 20 (Pomeroy et al., 2002)
Brain B 2,275 34 ”
Brain C 4,452 60 ”
Breast ER 5,313 49 (West et al., 2001)
Breast LN 5,313 49 ”
Colon 2,000 62 (Alon et al., 1999)
Down Syndrome 4,656 63 (Bourquin et al., 2006)
Leukemia 3,571 72 (Golub et al., 1999)
Lymphoma 4,026 62 (Alizadeh et al., 2000)
Metastasis 4,869 77 (van ’t Veer et al., 2002)
Mutation 3,226 22 (Hedenfalk et al., 2001)
Ovarian 1,536 54 (Schummer et al., 1999)
Prostate 6,033 102 (Singh et al., 2002)
SRBCT 2,308 43 (Khan et al., 2001)

The generalization performance of the Bayesian model trained with EP is compared
with a range of classification systems: (a) a Bayesian model trained with EP that uses
a standard Gaussian prior (i.e. ρ = 1). This model is included to determine whether
the use of a spike and slab prior, which favors sparse models, is beneficial; (b) the
Bayesian model with the MCMC sampling approach proposed by Lee et al. (2003). This
method has been included to determine whether the EP algorithm, which can fail when
the posterior distribution is multi-modal (Bishop, 2006), is sufficiently accurate; (c)
three methods that have shown a good performance in several reviews of classification

1This normalization process is implemented by subtracting the mean value and dividing by the
standard deviation.
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methods applied to microarray data (Dettling, 2004; Dudoit et al., 2002; Lee et al., 2005)
but which do not include any gene selection procedure: the support vector machine
(SVM) with a linear kernel (Vapnik, 1995), the k-nearest neighbor classifier (KNN)
(Hastie et al., 2001) and the diagonal linear discriminant analysis (DLDA) (Dudoit
et al., 2002); (d) four methods that involve variable selection: the recursive feature
elimination (RFE) algorithm introduced in (Guyon et al., 2002), the automatic relevance
determination algorithm based on the relevance vector machine (RVM) (Li et al., 2002),
the nearest shrunken centroids (NSC) method analyzed in (Tibshirani et al., 2002), and
the random forests (RF) classifier investigated in (D́ıaz-Uriarte and Alvarez de Andrés,
2006). We do not compare with the Bayes machine described in Chapter 6 because
this model is not expected to perform well in microarray classification problems. The
Bayes machine assumes noise in the class labels of the training data. By contrast, in
microarray experiments the class labels are free of noise and this appears only in the
gene expression measurements.

In each experiment the data are randomly partitioned into two disjoint sets. The test
sets need to be sufficiently large, so that significant differences in performance among
the classifiers investigated can actually be observed. Following (Dudoit et al., 2002),
two thirds of the instances available are used for training and the remaining one third
for testing. To reduce the variability of the results, this splitting process is repeated
50 times and the test error estimates are averaged over the different realizations of
the problem. The gene expression levels are normalized so that they have zero mean
and unit standard deviation on the training set. The hyper-parameters of the different
methods are obtained by cross-validation using exclusively the training set, which avoids
any selection bias (Ambroise and McLachlan, 2002). In the RFE algorithm, half of the
variables are removed at each step until 500 variables remain. Then, variables are
removed one at a time. The C parameter of the SVM is fixed to 100 as suggested
by Guyon et al. (2002). In the k-NN classifier the Euclidean distance is used and the
parameter k is selected from the range of odd values k = 1, 3, . . . , 19. In the RF approach
we use the default settings, i.e. s.e. = 1, mtryFactor = 1 and ntree = 5, 000 and employ
the out-of-bag error for variable elimination, as indicated by D́ıaz-Uriarte and Alvarez de
Andrés (2006). In the RVM algorithm we use the regression likelihood function and fix
σ = 1 as suggested by Li et al. (2002). In the EP algorithm, the parameter ρ0 of the
prior for γ is fixed so that, on average, 32 components of the vector are set to one,
similarly as in (Lee et al., 2003). The hyper-parameters σ2

0 and σ2
1 of the spike and

slab prior are set to zero and one respectively. The same values of the priors and the
parameters are used in the MCMC method. The Markov chain is implemented with
Gibbs sampling (Lee et al., 2003). A fast updating algorithm based on efficient matrix
factorizations (Gill et al., 1974) is used as suggested by George and McCulloch (1997).
The posterior distribution is approximated using 5, 000 samples after a burn-in period of
1, 000 samples. This number of samples is limited due to the large cost of the sampling
algorithm. In the NSC method we use the default settings and employ an unbalanced
cross validation procedure (default is balanced) to find the optimal threshold values.

Table 7.2 reports the estimated prediction error of the methods investigated on the
different datasets. The last two rows of this table display the average test error and
average rank of the classifiers. For each problem, the method that has the lowest error
is highlighted in boldface. The overall performance of the Bayesian model with spike
and slab priors trained using EP is fairly good. This method obtains the lowest average
prediction error and the lowest average rank in the datasets investigated. Using the
spike and slab prior instead of a standard Gaussian prior improves the performance of
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the method. In most problems EP also outperforms the method based on Gibbs sampling
(Lee et al., 2003). This indicates that EP provides a sufficiently accurate approximation
to the posterior probability at a reduced computational cost. This is an unexpected
result because EP may have difficulties when the posterior distribution is multi-modal,
as one would expect to obtain when a spike and slab prior is used (Seeger, 2008). The
good performance of EP may indicate that there is a dominant mode in the posterior
distribution of the problems investigated. Among the other benchmark classifiers, the
SVM with a linear kernel has a good overall accuracy and obtains the best results in
several problems. The predictors obtained by k-NN and DLDA are clearly inferior to
those of the SVM. However these predictors obtain a remarkably high accuracy in a
few datasets. Finally, RFE and NSC have the best performance among the remaining
feature selection techniques. However, RFE is worse than the SVM in several problems.
This is in agreement with the findings of Ambroise and McLachlan (2002).

7.4.1 Identification of Relevant Genes

The EP algorithm is also useful to identify relevant genes for subsequent analysis. To
illustrate this point, we use EP to train a Bayesian model assuming spike and slab priors
on the Leukemia dataset using all the instances available. In particular, we analyze the
parameter vector ρ of the posterior approximation Q obtained in the EP algorithm.
Recall that the different components of this vector can be interpreted as an estimate of
the posterior probability of each individual gene being used for classification. Figure 7.1
displays the different components of ρ and the prior probability level ρ0 of each compo-
nent. This prior probability is displayed as a discontinuous horizontal line. The figure
shows that most of the components of this vector have low probability values that are
close to the prior level ρ0. Nevertheless, there is also a small subset of the components
with significantly larger values. The genes associated to these components are the most
relevant ones for classification, as estimated by the Bayesian model. We further inves-
tigate these genes and select the 16 genes that are ranked at the top according to the
probability vector ρ. Figure 7.2 displays a heat map of these genes for each patient in the
dataset. The columns of the map correspond to different patients. The rows represent
the selected genes. The ID of the genes is indicated on the right-hand-side of the table.
The probability of the corresponding gene appears on the left-hand side of the table.
Each cell in the map represents the expression of one gene in one patient and its color
depicts the intensity (normalized expression level) from blue (large negative) to yellow
(large positive). Patients are grouped according to the assigned class. Genes are ordered
according to their average level of expression in the majority class. In particular, upper
rows correspond to high average normalized expression levels in the majority class. This
ordering of patients and genes uncovers a clear clustering pattern. There is a first group
of genes (M31523 to D42043) whose normalized expression levels are consistently high
for AML patients and low for ALL patients. The remaining genes exhibit the opposite
pattern. The relevance of these genes for discriminating between the two class labels is
apparent in this graph. Further evidence of the relevance of these genes comes from the
literature: The M27891 and M84526 genes are listed among the top ranked features
in (Bø and Jonassen, 2002; Lee et al., 2003) and are deemed useful for classification in
(Golub et al., 1999; Krishnapuram et al., 2004); M23197 appears as a relevant gene in
(Golub et al., 1999; Lee et al., 2003; Li et al., 2002; Wang et al., 2005); HG1612 is also



C
h
ap

ter
7.

A
B
a
yesia

n
M

od
el

fo
r

M
icroa

rra
y

D
a
ta

C
la

ssifi
ca

tio
n

162

Table 7.2: Misclassification error of each method for each microarray dataset and average error and average rank of each method over all the
datasets.

Dataset EPρ=1 EP MCMC SVM KNN DLDA RFE RVM NSC RF

Adenocarcinoma 38.0±10.1 15.2±5.5 15.0±6.0 13.8±6.0 17.0±4.7 30.6±8.0 19.2±6.6 22.5±8.1 16.2±5.5 18.7±7.0
Brain A 5.4±9.5 4.9±9.4 4.9±9.4 2.3±5.3 0.6±2.8 6.9±10.1 5.7±10.4 14.6±15.7 18.3±21.4 18.0±14.4
Brain B 28.4±15.7 21.3±15.7 24.7±14.7 15.1±10.0 24.4±13.4 17.5±12.2 20.0±11.8 24.2±12.8 18.4±12.9 23.8±12.4
Brain C 39.9±10.0 37.7±10.7 39.2±10.5 33.8±8.8 40.0±8.0 38.6±8.9 38.3±9.2 45.1±9.1 38.5±8.3 42.4±11.1
Breast ER 12.2±7.4 12.1±7.3 12.4±7.4 12.5±8.1 18.9±9.6 13.6±8.3 17.1±9.8 16.4±10.4 15.6±10.2 20.2±9.2
Breast LN 38.5±12.1 33.4±10.8 35.6±12.6 41.1±11.3 44.0±10.2 39.4±11.9 33.6±12.3 27.0±9.7 30.4±16.0 34.9±12.0
Colon 17.3±7.3 16.3±7.2 17.2±7.6 17.6±8.5 28.8±10.4 16.4±7.3 19.0±7.7 18.8±7.5 13.9±7.3 23.4±8.7
Down Syndrome 9.3±7.0 8.2±7.2 8.4±6.8 6.1±5.2 15.3±7.4 11.3±6.7 5.6±5.1 7.9±4.7 5.5±6.1 6.8±5.9
Leukemia 6.0±4.8 4.2±3.5 5.4±4.2 2.0±2.4 5.7±4.0 2.8±3.2 3.2±3.8 6.1±4.7 3.9±4.4 5.8±5.3
Lymphoma 4.2±3.3 4.0±3.4 4.2±3.3 0.5±1.4 2.0±2.6 1.6±2.5 2.8±3.2 3.0±2.7 3.3±3.6 5.6±5.5
Metastasis 36.2±7.4 36.0±7.4 36.4±7.6 38.8±9.1 42.2±8.0 35.6±8.2 38.3±10.0 38.5±8.0 38.2±8.8 38.5±8.5
Mutation 13.7±12.6 12.0±12.4 12.9±12.3 24.0±13.7 24.0±12.1 23.1±13.5 23.1±15.0 32.6±16.3 27.4±18.4 38.3±14.6
Ovarian 9.7±5.8 9.3±5.7 9.8±6.2 9.7±4.2 15.8±7.8 9.9±5.6 12.3±7.0 12.4±7.2 11.0±5.8 12.1±7.9
Prostate 9.0±4.4 9.2±6.1 7.8±4.2 9.4±4.0 20.0±7.1 37.6±12.4 8.8±4.6 10.4±4.9 10.8±5.2 8.9±4.7
SRBCT 4.7±5.7 4.0±5.0 3.9±5.0 3.9±5.2 21.6±9.4 7.7±7.2 3.1±4.1 5.4±6.0 3.7±5.8 8.4±6.6

Avg. Error 18.2±13.8 15.2±11.7 15.8±12.3 15.4±13.4 21.3±13.4 19.5±13.6 16.7±12.4 19.0±12.6 17.0±11.8 20.4±12.9

Avg. Rank 6.0±2.7 3.4±2.0 4.6±2.4 3.8±2.9 7.8±2.8 5.4±3.0 4.7±2.4 7.1±2.3 4.7±2.7 7.5±2.3
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selected for further analysis in (Bø and Jonassen, 2002; Guyon et al., 2002; Krishnapuram
et al., 2004; Lee et al., 2003); U46499 appears as an important gene in (Bø and Jonassen,
2002; Lee et al., 2003; Li et al., 2002; Wang et al., 2005); X95735 is ranked first in (Guyon
et al., 2002; Wang et al., 2005), fourth in (Lee et al., 2003), and is listed as useful for
classification in (Golub et al., 1999; Li et al., 2002).
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Figure 7.1: Values of the different components of the probability vector ρ computed
by the EP algorithm in the Leukemia dataset. The prior level ρ0 for each component
of this vector is displayed as a discontinuous horizontal line.

7.4.2 Stability of the Gene Ranking

Finally, we carry out one additional experiment involving a representative subset of four
microarray datasets, i.e. Leukemia, SRBCT, Mutation and Down Syndrome, to compare
the stability of the gene ranking provided by EP with the stability of the rankings
provided by other methods. In particular, we compare with the rankings provided by
the RFE method (Guyon et al., 2002), the RF classifier of D́ıaz-Uriarte and Alvarez de
Andrés (2006) and the MCMC sampling approach (Lee et al., 2003). This experiment
consists in randomly extracting two thirds of the instances available in each microarray
dataset to train the different classifiers. This process is repeated 50 times and the
rankings provided by each different method for each realization of the training set are
computed and stored. Then, a stability measure is evaluated for each method using the
different rankings computed. The Kuncheva stability index is employed for this purpose
(Kuncheva, 2007). This index measures to which extent T different sets S1,S2, . . . ,ST

of k selected genes share common elements. Assume that Sk
i is the subset of the first k

genes extracted from the ranking provided by one of these classifiers when it is evaluated
in the i-th training set. The Kuncheva index for the sets Ak = {Sk

i : i = 1, . . . , T} is

IS(Ak) =
2

T (T − 1)

T−1
∑

i=1

T
∑

j=i+1

|Sk
i ∩ Sk

j | − k2

d

k − k2

d

, (7.52)
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Figure 7.2: Normalized expression level of the 16 top ranked genes in the Leukemia
dataset using the EP algorithm. Each row shows the expression level of a gene for each
patient. Patients are grouped according to their class (AML and ALL) and genes are
sorted according to the mean expression level within the majority class.

where d is the total number of different features, K is equal to the different number of
training sets (i.e. K = 50) and the ratio k2/d is the expected number of common genes
between Sk

i and Sk
j just by chance. This index satisfies −1 < IS(Ak) ≤ 1 and the closer

to one its value is, the larger are the number of commonly selected genes in the different
sets. A value of the index close to zero indicates that the sets share common genes at
the level expected by chance. For each microarray dataset, Figure 7.3 displays the value
of the Kuncheva stability index, IS(Ak), for different values of k and for the different
classifiers investigated in this experiment. The figure shows that the Bayesian model
trained with EP is among the ranking methods that provide the largest values of IS(Ak).
The other method that obtains the largest values for the stability index is RF, which
is an ensemble method based on averaging the predictions of several classifiers obtained
under different training conditions. Nevertheless, because RF employs the out-of-bag
error estimate to perform the ranking (D́ıaz-Uriarte and Alvarez de Andrés, 2006), the
stability of this method is severely impaired in datasets with a small number of training
instances, such as Mutation. In this dataset the out-of-bag error estimate can be very
similar when different genes are removed, leading to an unreliable ranking. Finally,
the two methods that show the lowest values of IS(Ak) are the RFE method and the
method based on MCMC sampling. The lower stability of the MCMC algorithm when
compared to the EP approach can be explained because it is an stochastic method where
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the probability vector ρ is estimated by computing an average over different samples
of γ generated from a Markov chain whose stationary distribution coincides with the
posterior distribution of the model (Lee et al., 2003). In particular, because the samples
generated from this Markov chain are not independent, the variance of this estimate can
be large.
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Figure 7.3: Kuncheva stability index for each microarray dataset and ranking method
as a function of k, i.e. the number of genes extracted from each ranking.

7.5 Conclusions

In this chapter a Bayesian approach based on the use of the spike and slab prior dis-
tribution (George and McCulloch, 1997) is used to address the problem of microarray
data classification. Assuming a linear relation between the gene expression levels and
the target value, this prior distribution encourages sparsity in the model coefficients by
introducing a binary latent variable γi ∈ {0, 1} for each different gene. The value of this
variable indicates whether the i-th gene contributes to the classification process (γi = 1)
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or not (γi = 0). Exact Bayesian inference in such a model is infeasible. In consequence,
approximate techniques have to be employed. Because sparse prior distributions of-
ten lead to posterior distributions that are multi-modal, spreading the probability mass
among the different modes, accurate approximate inference can be a difficult problem
(Seeger, 2008). Here, we make use of the efficient approximate inference algorithm EP
(Minka, 2001b). EP approximates the posterior distribution by a product of simple
terms that belong to the exponential family of probability distributions, although they
do not have to be normalized. These terms are iteratively updated until convergence
by rules obtained from solving moment matching constraints. Because the posterior ap-
proximation factorizes, the algorithm can be run in O(nd) steps, where n is the number
of instances and d is the number of attributes (genes) per instance. This cost is typically
much lower than the cost of alternative approximate inference algorithms like MCMC
sampling (Bae and Mallick, 2004; Lee et al., 2003; Zhou et al., 2004). Experimental eval-
uation on a set of fifteen microarray datasets confirms that EP is competitive with other
microarray classification techniques. This means that the posterior approximation ob-
tained by EP is sufficiently accurate to provide state-of-the-art performance at a reduced
computational cost. The EP algorithm is also useful for the identification of genes that
are relevant for classification. A detailed investigation on the Leukemia dataset (Golub
et al., 1999) shows that genes with the highest rank in the posterior approximation have
expression levels that are either high for AML patients and low for ALL patients or
the other way round. In consequence, these genes are good candidates for subsequent
analysis. Furthermore, most of these genes appear labeled in several works as relevant
for the classification process of this microarray dataset (Bø and Jonassen, 2002; Golub
et al., 1999; Guyon et al., 2002; Krishnapuram et al., 2004; Lee et al., 2003; Li et al.,
2002; Wang et al., 2005). Finally, additional experiments confirm the stability of the
ranking computed by the EP algorithm in this Bayesian model when the training set is
slightly modified.



Chapter 8
Conclusions and Future Work

Supervised machine learning methods face severe difficulties when the amount of
available data is limited and the training instances are contaminated with noise. In
particular, the selection of a learning model to describe the observed data is problematic.
If the model is too simple, it can fail to describe some of the intrinsic regularities of the
data. By contrast, if the model is too complex, it can fit spurious patterns of the training
set producing over-fitting. Another problem that arises under these conditions is that
the estimators of the model parameters can have large variance. The consequence of this
variability is that the resulting estimates may differ significantly from the optimal values.
If the amount of data available for induction is large, the severity of these problems is
reduced. However, for small datasets it is important to take them into account to obtain
reliable predictions.

An effective approach that can be used to alleviate these problems comes from con-
sidering simultaneously different models or different values for the model parameters.
Given an unlabeled instance, a final decision can then be obtained by averaging the
individual responses of the resulting predictors. The combination of the responses of
predictors that provide complementary views on the training data has several advan-
tages over machine learning methods based on using a single predictor. In particular, it
offers a mechanism to obtain more robust and accurate decisions.

Ensemble methods are a supervised machine learning paradigm that can be used to
combine the decisions of different predictors. Therefore, they can be useful to allevi-
ate the problems previously described. Nevertheless, the practical implementation of
ensemble methods presents some complications. Specifically, these methods have large
storage requirements. The predictors of the ensemble need to be kept in memory so that
they are readily accessible. Furthermore, computing the final ensemble decision requires
querying every predictor in the ensemble. This increases the final prediction cost. It is
also generally difficult to estimate an adequate value for the ensemble size.

The memory requirements and prediction times of ensembles can be improved by
using pruning methods. These methods replace the original ensemble by a subensemble
with good generalization properties. Because this subensemble is smaller, it requires less
storage space than the original ensemble and also has better prediction times. An effec-
tive approach to finding subensembles with good generalization properties is to select
the subset of predictors with the minimum training error. Nevertheless, the problem of
extracting this subensemble is NP-hard. Thus, optimal subensembles defined in these
terms can be found in practice only in ensembles of intermediate size. In ensembles of
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larger size two approximate methods can be used: ordered aggregation and SDP-pruning.
The subensembles identified by these methods need not be optimal. Nevertheless, they
share a large fraction of predictors with the optimal subensembles. Furthermore, se-
lected subensembles with only 20% of the initial predictors, besides being smaller than
the original ensemble, have better generalization properties than this ensemble. A bias-
variance-covariance analysis relate these improvements to the selection of predictors with
low bias and small correlations.

Instead of selecting a subensemble with good generalization properties, an alternative
pruning method can be used to improve the prediction time of classification ensembles.
This method makes inference about the final ensemble prediction after querying only a
subset of the classifiers in the ensemble. For this purpose, we introduce a probabilistic
framework to describe the majority voting process. This framework is the basis of a
novel ensemble pruning method called instance-based (IB) pruning. IB-pruning stops
the voting process when there is enough evidence to infer that the majority class label
will not be modified by the predictions of the remaining ensemble members. IB-pruning
significantly reduces the prediction time of classification ensembles with a negligible
deterioration in the generalization performance. Furthermore, IB-pruning tends to give
conservative pruning rates: The disagreement rates between the predictions of IB-pruned
ensembles and complete ensembles are often below the confidence level specified in the
experiments.

The probabilistic framework employed in IB-pruning also provides an effective method
to estimate an appropriate size for the ensemble. Specifically, this framework can be
employed to infer the size of a classification ensemble so that the resulting ensemble
predicts the same class label as an ensemble of infinite size with a specified confidence
level. For high confidence levels, the differences between the predictions of this opti-
mal finite ensemble and the predictions of an ensemble of infinite size are very small.
Furthermore, the optimal ensemble size is strongly problem dependent: While some
classification problems require a few tens of classifiers in the ensemble, others require
several thousands. In contrast to other procedures described in the literature, the prob-
abilistic framework considered does not require labeled data to determine the optimal
ensemble size.

Besides ensemble methods, another paradigm that can be used to consider differ-
ent models or different values for the model parameters is Bayesian machine learning.
Therefore, it can also be useful to alleviate the problems associated to learning from
small training sets which can be furthermore contaminated by random noise. The prac-
tical implementation of this learning paradigm also poses some difficult problems. In
particular, Bayesian approaches require the evaluation of a posterior distribution that
is obtained in terms of complicated integrals in very high dimensions or summations
that involve an exponential number of elements. In practice, these calculations are in-
tractable and the posterior distribution has to be approximated using methods such as
Markov chain Monte Carlo (MCMC) or type-II maximum likelihood estimation which
can be computationally expensive.

The computational efficiency of Bayesian models can be significantly improved using
the approximate inference algorithm expectation propagation (EP). This algorithm ap-
proximates the posterior distribution of the model using a simple distribution for which
the required computations are tractable. In this thesis we have introduced a Bayesian
model for binary classification: the Bayes machine. In this model EP is used to ap-
proximate the posterior distribution of a parameter that quantifies the level of noise in
the labels of the training data. This parameter is difficult to estimate and in previous
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studies type-II maximum likelihood is frequently employed for this purpose. Type-II
maximum likelihood requires re-training the model multiple times. By contrast, when
the EP algorithm is used to compute the approximation, the Bayes machine does not
require any re-training for this estimation. In terms of prediction accuracy the Bayes ma-
chine is competitive with support vector machines (Vapnik, 1995) and Gaussian process
classifiers (Kim and Ghahramani, 2006). Unlike the Bayes machine, these classifiers use
type-II maximum likelihood or cross-validation for the estimation of the noise parameter
and hence, they have to be re-trained multiple times.

A disadvantage of the Bayes machine is that its training cost is O(n3), where n is
the number of training instances. Thus, the practical use of this model is limited to
small training sets containing only a few hundred instances. The computational cost of
the Bayes machine can be reduced by training the model using only a reduced set of d
instances called the active set (Lawrence et al., 2003). The active set can be computed
using the greedy algorithm proposed in (Lawrence et al., 2003; Seeger, 2003). This
algorithm is improved in this thesis by considering additional refining iterations. These
extra iterations correct some of the mistakes of the original greedy approach and also
improve the posterior approximation. The resulting classifier, called the sparse Bayes
machine, has a training cost that scales like O(d2n). When d≪ n this is an important
improvement in the time-complexity of the algorithm. Additionally, experiments on
several classification problems confirm that the sparse Bayes machine is competitive in
terms of prediction accuracy with the standard Bayes machine and the support vector
machine.

Another model in which the EP algorithm can be used to carry out approximate
inference is the Bayesian model for microarray data classification proposed by Lee et al.
(2003). In this model approximate inference has been traditionally implemented using
MCMC sampling methods. When EP is used instead of these methods, the cost of
training the model is significantly reduced. In particular, the cost of the EP algorithm
is O(nd), where n is the number of training instances and d is the number of attributes.
By contrast, the cost of MCMC sampling methods is on average O(ρ2

0d
3k), where ρ0 is

some small constant and k is of the same order as d. In addition to this speed-up of
the training process, the EP algorithm is competitive in terms of prediction accuracy
with MCMC and with other state-of-the-art microarray classification techniques. The
posterior approximation given by EP is also useful to rank relevant genes for subsequent
analysis and this ranking is stable when the training set is slightly modified.

8.1 Future Work

In this section we give some directions for future research on the topics analyzed in this
thesis.

• Ensemble pruning methods: Future work on pruning regression bagging en-
sembles includes research on alternative measures to the training error for the iden-
tification of subensembles with good generalization properties. For example, the
ensemble ambiguity described in (Krogh and Vedelsby, 1995) or the de-correlation
function proposed by Rosen (1996). Additionally, it would be interesting to inves-
tigate whether ordered aggregation and SDP-pruning are valid for pruning ensem-
bles generated by other methods different from bagging, e.g. negative-correlation
learning (Liu and Yao, 1999) or boosting (Drucker, 1997; Friedman, 2001).



Chapter 8. Conclusions and Future Work 170

A limitation of IB-pruning is that it is restricted to classification ensembles whose
elements are generated independently when conditioned to the training data. This
method should be extended to address classification ensembles that do not sat-
isfy this restriction. For example, ensembles generated by Adaboost (Freund and
Schapire, 1997) or heterogeneous ensembles. Another interesting research work
can be the development of IB-pruning methods for regression ensembles.

• Ensemble size: One disadvantage of the statistical method proposed in this thesis
for the estimation of the optimal ensemble size is that it requires to over-produce
and then discard classifiers. Future research on this topic can focus on trying
to alleviate this problem. Possible solutions include using out-of-bag samples to
perform the estimations (Banfield et al., 2007; Breiman, 1996c, 2001; Hernández-
Lobato et al., 2007). Additionally, it can be interesting to combine this method for
setting the ensemble size with IB-pruning to get improved classification ensembles.

• Applications of the EP algorithm: All the Bayesian models considered in this
thesis are restricted to binary classification problems. Thus, the extension of these
models to multi-class problems can be considered for future research work. EP can
then be used to perform approximate Bayesian inference following the proposal of
Kim and Ghahramani (2006). However, possible difficulties include dealing with
multi-variate Gaussian integrals and a much larger computational cost. A more
challenging problem is to use EP to approximate a posterior distribution for the
kernel parameters of the Bayes machine and the sparse Bayes machine.

The prior distribution for γ considered in the Bayesian model for microarray data
classification of Lee et al. (2003) is rather simple. It may be possible to extend
this model to consider prior distributions with dependences among the different
components of γ (Li and Li, 2008; Zhu et al., 2009). This prior information can be
extracted for example from gene regulatory networks (Gardner and Faith, 2005)
or from additional unlabeled data.

One of the problems of EP is that it is not guaranteed to converge. A possible
way of overcoming this limitation is, for example, by making use of double-loop
algorithms (Heskes and Zoeter, 2002; Opper and Winther, 2005).



Chapter 9
Conclusiones

Los métodos de aprendizaje automático supervisado tienen que enfrentarse a varios
problemas cuando el número de datos de entrenamiento es reducido y éstos se encuen-
tran contaminados por ruido. En particular, la selección de un modelo de aprendizaje
no es fácil. Si el modelo es demasiado simple puede que éste no tenga la suficiente ca-
pacidad de representación para describir algunas de las regularidades de los datos. Por
el contrario, si el modelo es demasiado complejo puede que llegue a aprender patrones
espurios del conjunto de entrenamiento produciendo sobreajuste. Otro problema que
surge en estas circunstancias es que la varianza de los estimadores de los parámetros del
modelo puede ser elevada. La consecuencia de esta variabilidad es que las estimaciones
resultantes pueden diferir significativamente de los valores óptimos. Si el número de
datos disponibles para realizar las estimaciones es grande, la severidad de estos proble-
mas se reduce. Sin embargo, para conjuntos con pocos datos es importante tenerlos en
cuenta para obtener predicciones fiables.

Una estrategia efectiva para hacer frente a estos problemas consiste en considerar
simultáneamente diferentes modelos o diferentes valores para los parámetros de del mo-
delo. Dado un dato sin etiquetar, la decisión final se puede obtener promediando sobre
las respuestas individuales de los predictores resultantes. La combinación de las respues-
tas de predictores que proporcionan puntos de vista complementarios sobre los datos de
entrenamiento presenta ciertas ventajas frente a los métodos de aprendizaje automático
que consideran un solo predictor. En particular, ofrece un mecanismo para obtener
decisiones más robustas y certeras.

Los métodos basados en conjuntos son un paradigma del aprendizaje automático
supervisado que puede ser usado para combinar las decisiones de varios predictores. Por
lo tanto, estos métodos pueden ser útiles para aliviar los problemas descritos previa-
mente. Sin embargo, la implementación práctica de los métodos basados en conjuntos
presenta ciertas complicaciones. Espećıficamente, los requisitos de almacenamiento de
estos métodos son elevados. Los elementos del conjunto necesitan ser almacenados en
memoria para ser accesibles rápidamente. Además, el cálculo de la decisión final del con-
junto requiere obtener la predicción de todos y cada uno de los elementos del conjunto.
Esto incrementa el coste de predicción. En general, también resulta dif́ıcil estimar un
valor adecuado para el tamaño del conjunto.

Los requisitos de memoria y el tiempo de predicción de los métodos basados en
conjuntos se pueden mejorar utilizando métodos de poda. Estos métodos reemplazan el
conjunto original por un subconjunto con buenas propiedades de generalización. Debido
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a que el subconjunto resultante tiene un tamaño menor, éste requiere menos espacio de
almacenamiento y tiene además mejores tiempos de predicción que el conjunto original.
Un enfoque efectivo para encontrar subconjuntos con buenas propiedades de genera-
lización consiste en seleccionar el subconjunto con el mı́nimo error sobre los datos de
entrenamiento. Sin embargo, encontrar este subconjunto es un problema NP-dif́ıcil. Por
ello, los subconjuntos óptimos definidos en estos términos sólo pueden ser encontrados en
conjuntos de tamaño intermedio. En conjuntos de mayor tamaño se pueden usar métodos
aproximados: agregación ordenada y poda SDP. Los subconjuntos identificados por estos
métodos no son necesariamente óptimos. Sin embargo, comparten una gran fracción de
elementos con los subconjuntos óptimos. Además, subconjuntos compuestos únicamente
con por un 20% de los elementos originales, aparte de ser más pequeños que el conjunto
original, tienen mejores propiedades de generalización. Una descomposición del error de
generalización en términos de sesgo, varianza y covarianza muestra que estas mejoras
son consecuencia de la selección de predictores poco correlacionados (baja covarianza)
y con poco sesgo.

En lugar de seleccionar un subconjunto con buenas propiedades de generalización,
se puede usar un método de poda alternativo para mejorar el tiempo de predicción
en los conjuntos de clasificadores. Este método consiste en hacer inferencia sobre la
predicción final del conjunto tras preguntar a un subconjunto del total de clasificadores
del conjunto. Para ello, introducimos un marco probabiĺıstico que describe el proceso
de voto por mayoŕıa. Este marco probabiĺıstico es la base de un nuevo método de poda
basada en instancia (poda BI). La poda BI detiene el el proceso de votación cuando
hay suficiente evidencia para inferir que la clase mayoritaria no será modificada por las
restantes predicciones de los elementos del conjunto. La poda BI reduce ampliamente el
tiempo de predicción de los conjuntos de clasificadores a costa de un pequeño deterioro
del error de generalización. Además, la poda BI tiende a proporcionar tasas de poda
conservadoras: la tasa de desacuerdo entre las predicciones de los conjuntos podados
y los conjuntos completos se encuentra generalmente por debajo del nivel de confianza
especificado en los experimentos.

El marco probabiĺıstico empleado en la poda BI también proporciona un método
eficaz para estimar un tamaño adecuado para el conjunto. En particular, este marco
probabiĺıstico se puede emplear para inferir el tamaño de un conjunto de clasificadores
tal que el conjunto resultante prediga con un nivel de confianza especificado la misma
etiqueta de clase que un conjunto de tamaño infinito. Para niveles de confianza eleva-
dos, las diferencias entre las predicciones de este conjunto óptimo de tamaño finito y las
predicciones de un conjunto de tamaño infinito son muy pequeñas. Además, el tamaño
óptimo del conjunto resulta ser muy distinto dependiendo del problema considerado.
Mientras que algunos problemas de clasificación requieren conjuntos con sólo unos cuan-
tos clasificadores, otros requieren conjuntos con varios miles. Al contrario que otros
métodos descritos en la literatura, el marco probabiĺıstico considerado en esta tesis no
requiere disponer de datos etiquetados para determinar el tamaño óptimo del conjunto.

Otro paradigma que puede ser utilizado para considerar varios modelos o varios
valores para los parámetros del modelo es el aprendizaje automático Bayesiano. Por lo
tanto, los métodos Bayesianos también puede ser utilizados para aliviar los problemas
que surgen del aprendizaje a partir de conjuntos de entrenamiento reducidos que pueden
estar contaminados por ruido aleatorio. La implementación del los métodos Bayesianos
también presenta ciertos problemas de tipo práctico. Concretamente, este paradigma
requiere la evaluación de una distribución posterior que se obtiene mediante complicadas
integrales multidimensionales o mediante sumas que involucran un número exponencial
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de términos. En la práctica, estos cálculos son intratables y la distribución posterior ha
de ser aproximada utilizando métodos tales como las cadenas de Markov o la máxima
verosimilitud de tipo II. Estos métodos pueden resultar costosos computacionalmente.

La eficiencia computacional de los modelos Bayesianos se puede mejorar significativa-
mente utilizando el algoritmo de propagación de esperanzas (PE). Este algoritmo aproxi-
ma la distribución posterior del modelo mediante una distribución sencilla para la que los
cálculos requeridos son tratables. En esta tesis se ha introducido un modelo Bayesiano
para la clasificación binaria: la máquina de Bayes. En este modelo el algoritmo PE se
puede utilizar para aproximar la distribución posterior de un parámetro que cuantifica el
nivel de ruido en las etiquetas de clase de los datos de entrenamiento. Este parámetro es
dif́ıcil de estimar y en métodos propuestos con anterioridad la máxima verosimilitud de
tipo II se utiliza frecuentemente para este propósito. La máxima verosimilitud de tipo II
tiene el inconveniente de que necesita re-entrenar el modelo múltiples veces para estimar
dicho parámetro. Por el contrario, cuando el algoritmo PE se utiliza para calcular la
aproximación, la máquina de Bayes no necesita volver a ser entrenada. En términos de
error de generalización la máquina de Bayes es competitiva con las máquinas de vectores
soporte (Vapnik, 1995) y los procesos Gaussianos para clasificación (Kim and Ghahra-
mani, 2006). A diferencia de la máquina de Bayes, estos clasificadores usan máxima
verosimilitud de tipo II o validación cruzada para estimar el parámetro del ruido y por
lo tanto necesitan ser entrenados de manera repetida.

Una desventaja de la máquina de Bayes es que su coste computacional es O(n3),
donde n es el número de datos de entrenamiento. Por esta razón, el uso práctico de este
modelo esta limitado a conjuntos de entrenamiento pequeños que contengan sólo algunos
cientos de datos. El coste computacional de la máquina de Bayes se puede reducir entre-
nando el modelo usando solamente un conjunto reducido de d datos llamado el conjunto
activo (Lawrence et al., 2003). El conjunto activo se puede calcular usando el algoritmo
codicioso propuesto en (Lawrence et al., 2003; Seeger, 2003). Este algoritmo es mejorado
en esta tesis mediante la consideración de iteraciones de refinamiento adicionales. Estas
iteraciones adicionales corrigen algunos de los errores del enfoque codicioso original y
además mejoran la aproximación a la distribución posterior. El clasificador resultante,
llamado máquina de Bayes dispersa, tiene un coste de entrenamiento O(d2n). Cuando
d≪ n esta es una mejora importante en la complejidad del algoritmo. Los resultados de
experimentos en varios problemas de clasificación confirman que la máquina de Bayes
dispersa es competitiva en términos de error de generalización con la máquina de Bayes
estándar y con la máquina de vectores soporte.

Otro modelo en el que el algoritmo PE se puede utilizar para llevar a cabo inferencia
aproximada es el modelo Bayesiano para la clasificación de datos de microarray propuesto
por Lee et al. (2003). En este modelo la inferencia aproximada se ha implementado
tradicionalmente utilizando métodos Monte Carlo basados en la simulación de cadenas
de Markov. Cuando se utiliza el algoritmo PE en lugar de estos métodos el coste
de entrenamiento del modelo se reduce significativamente. En particular, el coste del
algoritmo PE es O(nd), donde n es el número de datos de entrenamiento y d es el
número de atributos. Por el contrario, el coste de los métodos Monte Carlo es en
promedio O(ρ2

0d
3k), donde ρ0 es una constante pequeña y k es del mismo orden que

d. Además de esta mejora en el tiempo de entrenamiento, el algoritmo PE es compe-
titivo en términos de error de generalización con los métodos Monte Carlo y con otras
técnicas representativas para la clasificación de datos de microarray. La aproximación
a la distribución posterior facilitada por el algoritmo PE es también útil para calcular
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una ordenación de genes relevantes para su posterior análisis. Esta ordenación es estable
cuando los datos de entrenamiento son ligeramente modificados.



Appendix A
Probability Distributions

A.1 Bernoulli

This is the distribution of a single binary variable x ∈ {0, 1}. It is governed by a single
continuous parameter p ∈ [0, 1] that represents the probability of x = 1. The probability
mass function of a Bernoulli random variable is

Bern(x|p) = px(1− p)1−x . (A.1)

The Bernoulli distribution belongs to the exponential family of probability distributions
as (A.1) can also be written as

Bern(x|p) = exp(ηu(x)− g(η)) , (A.2)

with the definitions

g(η) = log (1 + exp(η)) , u(x) = x , η = log

(

p

1− p

)

. (A.3)

The mean and variance of x are respectively p and p(1 − p). The natural moment is
given by the expectation of u(x). This expectation is equal to dg(η)/dη. In consequence,

E[x] =
1

1 + exp(−η)
= p . (A.4)

Let t(x) be an arbitrary function of x and let

Z =
∑

x

t(x)Bern(x|p) , P̂(x) =
1

Z
t(x)Bern(x|p) . (A.5)

Then, we have that

EP̂ [x] =
∂ log Z

∂p
p(1− p) + p . (A.6)

Because of the closure property of the exponential family of probability distributions,
the product of two Bernoulli distributions is another Bernoulli distribution, although no

175



Appendix A. Probability Distributions 176

longer normalized. In particular,

Bern(x|p1)Bern(x|p2) ∝ Bern(x|p) , (A.7)

where
p =

p1p2

p1p2 + (1− p1)(1− p2)
(A.8)

and the normalization constant z of the product is

z = p1p2 + (1− p1)(1− p2) . (A.9)

Similarly, the quotient of two Bernoulli distributions is another Bernoulli distribution,
although no longer normalized

Bern(x|p1)/Bern(x|p2) ∝ Bern(x|p) , (A.10)

where

p =
p1/p2

p1/p2 + (1− p1)/(1 − p2)
(A.11)

and the normalization constant z is in this case

z = p1/p2 + (1− p1)/(1 − p2) . (A.12)

A.2 Beta

This is the distribution of a continuous variable x ∈ [0, 1]. It is governed by two param-
eters a and b that are constrained by a > 0 and b > 0 to ensure that the distribution
can be normalized. The probability density function of a beta random variable is

Beta(x|a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1 , (A.13)

where Γ(x) is the gamma function (Abramowitz and Stegun, 1964). The cumulative
probability function is

∫ z

0

Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1dx = Iz(a, b) , (A.14)

where Iz(a, b) is the regularized incomplete beta function (Abramowitz and Stegun,
1964). The beta distribution belongs to the exponential family of probability distribution
as (A.13) can also be written as

Beta(x|a, b) = exp(ηTu(x)− g(η)) , (A.15)

where

g(η) = log
(

Γ(ηT δa + 1)
)

+ log
(

Γ(ηT δb + 1)
)

− log
(

Γ(ηT1 + 2)
)

, (A.16)

u(x) = (log(x), log(1− x))T , (A.17)

η = (a− 1, b − 1)T , (A.18)
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δa = (1, 0)T , δb = (0, 1)T and the superscript T means transpose. The first and second
moments of x are given by

E[x] =
a

a + b
, (A.19)

E[x2] =
a(a + 1)

(a + b)(a + b + 1)
. (A.20)

The natural moments are given by the expectation of u(x) under (A.13). This expecta-
tion is equal to ∂g(η)/∂η. In consequence,

E[log(x)] = Ψ(a)−Ψ(a + b) , (A.21)

E[log(1− x)] = Ψ(b)−Ψ(a + b) , (A.22)

where Ψ is the digamma function defined as Ψ(x) = d log(Γ(x))/dx (Abramowitz and
Stegun, 1964).

Let x bet distributed according to Beta(x|a, b) and y according to Beta(x|a′, b′).
Then, the Kullback-Leibler divergence between these two distributions is

KL (x, y) = log

(

β(a′, b′)

β(a, b)

)

− (a′ − a)Ψ(a)

− (b′ − b)Ψ(b) + (a′ − a + b′ − b)Ψ(a + b) , (A.23)

where β(a, b) is the beta function defined as Γ(a)Γ(b)/Γ(a+b) (Abramowitz and Stegun,
1964).

Let t(x) be an arbitrary function of x and let

Z =

∫

t(x)Beta(x|a, b)dx , P̂(x) =
1

Z
t(x)Beta(x|a, b) . (A.24)

Then, we have that

EP̂ [log(x)] = Ψ(a)−Ψ(a + b) +
∂ log(Z)

∂a
, (A.25)

EP̂ [log(1− x)] = Ψ(b)−Ψ(a + b) +
∂ log(Z)

∂b
. (A.26)

Because of the closure property of the exponential family of probability distributions,
the product of two beta distributions is another beta distribution, although no longer
normalized. In particular,

Beta(x|a1, b1)Beta(x|a2, b2) ∝ Beta(x|a, b) , (A.27)

where

a = a1 + a2 − 1 , b = b1 + b2 − 1 . (A.28)

The normalization constant z of the product is

z =
β(a1 + a2 − 1, b1 + b2 − 1)

β(a1, b1)β(a2, b2)
. (A.29)
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where β(a, b) = Γ(a)Γ(b)/Γ(a + b). Similarly, the quotient of two beta distributions is
another beta distribution. Namely,

Beta(x|a1, b1)/Beta(x|a2, b2) ∝ Beta(x|a, b) , (A.30)

where

a = a1 − a1 + 1 , b = b1 − b2 + 1 , (A.31)

and the normalization constant z is in this case

z =
β(a1 − a2 + 1, b1 − b2 + 1)β(a2, b2)

β(a1, b1)
. (A.32)

A.3 Gaussian

This is the distribution of a continuous d-dimensional vector x ∈ R
d. It is governed by a

d-dimensional mean vector µ and a d× d covariance matrix Σ that must be symmetric
and positive-definite. The probability density function of x is given by

N (x|µ,Σ) =
1

√

(2π)d|Σ|
exp

{

−1

2
(x− µ)T Σ−1 (x− µ)

}

, (A.33)

where the superscript T means transpose. The Gaussian distribution belongs to the
exponential family of probability distributions as (A.33) can also be written as

N (x|µ,Σ) = exp(ηTu(x)− g(η)) , (A.34)

where

u(x) = (x1, . . . , xd, η = −1

2

(

−2µTΣ−1 ,

x2
1, x1x2, . . . , x1xd, Σ−1

11 ,Σ−1
12 , . . . ,Σ−1

1d ,

x1x2, x
2
2, . . . , x2xd, Σ−1

21 ,Σ−1
22 , . . . ,Σ−1

1d ,

...
...

xdx1, xdx2, . . . , x
2
d

)T
, Σ−1

d1 ,Σ−1
d2 , . . . ,Σ−1

dd

)T
(A.35)

and g(η) = 1
2µT Σ−1µ + d

2 log(2π) + 1
2 log(|Σ|). The natural moments are given by the

expectation of u(x) under (A.33). In particular,

E[x] = µ , (A.36)

E[xxT ] = Σ + µµT . (A.37)

Let x bet distributed according to N (x|µ,Σ) and y according to N (y|µ′,Σ′). Then,
the Kullback-Leibler divergence between these two distributions is

KL (x,y) =
1

2

( |Σ′|
|Σ|

)

+ trace
(

Σ′−1Σ− I
)

+ (µ′ − µ)T Σ′−1(µ′ − µ) . (A.38)
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Let t(x) be an arbitrary function of x and let

Z =

∫

t(x)N (x|µ,Σ)dx , P̂(x) =
1

Z
t(x)N (x|µ,Σ) . (A.39)

Then, we have that

EP̂ [x] = µ + Σ
∂ log(Z)

∂µ
, (A.40)

EP̂ [xxT ]− EP̂ [x]EP̂ [x]T = Σ−Σ

(

∂ log(Z)

∂µ

(

∂ log(Z)

∂µ

)T

− 2
∂ log(Z)

∂Σ

)

Σ . (A.41)

Because of the closure property of the exponential family of probability distribu-
tions, the product of two Gaussians is another Gaussian function, although no longer
normalized. In particular,

N (x|µ1,Σ1)N (x|µ2,Σ2) ∝ N (x|µ,Σ) , (A.42)

where

Σ =
(

Σ−1
1 + Σ−1

2

)−1
, (A.43)

µ = Σ
(

Σ−1
1 µ1 + Σ−1

2 µ2

)

. (A.44)

The normalization constant z of the product is given by

z =

√

|Σ|
(2π)d|Σ1||Σ2|

exp

{

−1

2

(

µT
1 Σ−1

1 µ1 + µT
2 Σ−1

2 µ2 − µTΣ−1µ
)

}

, (A.45)

where d is the dimensionality of the data. Similarly, the quotient of two Gaussians is
also Gaussian. Namely,

N (x|µ1,Σ1)/N (x|µ2,Σ2) ∝ N (x|µ,Σ) , (A.46)

where

Σ =
(

Σ−1
1 −Σ−1

2

)−1
, (A.47)

µ = Σ
(

Σ−1
1 µ1 −Σ−1

2 µ2

)

. (A.48)

In this case, the normalization constant z is given by

z =

√

(2π)d|Σ||Σ2|
|Σ1|

exp

{

−1

2

(

µT
1 Σ−1

1 µ1 − µT
2 Σ−1

2 µ2 − µTΣ−1µ
)

}

. (A.49)
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B.1 Woodbury Formula

Let A be a square n× n invertible matrix and U and V two n× k matrices with k ≤ n
and β an arbitrary scalar. Then,

(

A + βUVT
)−1

= A−1 − βA−1U
(

I + βVT A−1U
)−1

VTA−1 , (B.1)

where I is the identity matrix.

B.2 Special form of the vector mi

Recall that t̃i = ZiQnew/Q\i. In this section we show that there are many candidate
vectors mi that can be used as the mean parameter of the approximate term t̃i defined
in (6.13). Because of (A.46), these vectors satisfy

V−1
i mi = (Vnew

w )−1mnew
w − (V

\i
w)−1m

\i
w

V−1
i mi =

(

(V
\i
w)−1 + V−1

i

)(

m
\i
w + αiV

\i
wxi

)

− (V
\i
w)−1m
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w

v−1
i xix

T
i mi = αixi + v−1

i xix
T
i m

\i
w + αiv

−1
i xix

T
i V

\i
wxi

mi = m
\i
w + αiV

\i
wxi + αiviζ + Kξ , (B.2)

where we have used (6.26), (Vnew
w )−1 = (V

\i
w)−1 + V−1

i , which can be derived from
(6.35), and (6.42). In (B.2) ζ is any vector such that xT

i ζ = 1, ξ is any vector such that
xT

i ξ = 0 and K is any arbitrary constant.

B.3 Derivation of si

In this section we show how to evaluate si, as defined in (6.39), using the representation

of t̃i given in (6.45). Because (Vnew
w )−1 = (V

\i
w)−1 + V−1

i , which can be derived from
(6.35), we have that

∣
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∣V
\i
w

∣

∣

∣
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w | =
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I + V−1
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∣
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wxi , (B.3)
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where I is the identity matrix and where we have used that |I + ABT | = |I + ATB|
(Bishop, 2006). Next, we compute
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, (B.4)

where we have used that (Vnew
w )−1 = (V

\i
w)−1 + V−1

i , (6.26) and (6.42). Furthermore,

miV
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where we have used (B.2) and (6.42). With these values, i.e. (B.4) and (B.5), we have
that

(mnew
w )T (Vnew

w )−1mnew
w − (m

\i
w)T (V

\i
w)−1m
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w −miV
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wxi

xT
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, (B.6)

where we have used the definition of vi given in (6.43). In consequence,

si = Zi
β(a

\i
ǫ , b

\i
ǫ )

β(anew
ǫ , bnew

ǫ )

√
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i V
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wxi exp
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wxi

xT
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)

. (B.7)

B.4 Derivation of λ
\i
j and h

\i
j

In this section we derive the values of λ
\i
j and h

\i
j , defined as

λ
\i
j = xT

j V
\i
wxj , (B.8)

h
\i
j = xT

j m
\i
w . (B.9)

The standard BM only requires the computation of λ
\i
j and h

\i
j with j = i. However,

in the sparse representation of the BM λ
\i
j and h

\i
j are required for j 6= i. Thus, in this
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section we derive the general expressions for (B.8) and (B.9). From these, λ
\i
i and h

\i
i

can be computed by setting j = i

λ
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\i
wxj
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, (B.10)

where we have used (6.47), the Woodbury formula (B.1) and (6.57). Furthermore,
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)
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Aji

vi −Aii
(hi −mi) , (B.11)

where we have used (6.47), (6.48), the Woodbury formula (B.1) and (6.58).

B.5 Update of the matrix A and the vector h in the BM

In this section we show how to update the matrix A and the vector h after each iteration
of the EP algorithm in the BM. From the definition of the matrix A in (6.57)

A = XTVwX

= XT
(

I + XΛ−1XT
)−1

X

= XT
(

I−
(

I + XΛ−1XT
)−1

XΛ−1XT
)

X

=
(

C−XT
(
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)−1

XΛ−1C
)

= Λ
(

Λ−1 −Λ−1XT
(

I + XΛ−1XT
)−1

XΛ−1
)

C

= Λ (C + Λ)−1 C

=
(

C−1 + Λ−1
)−1

, (B.12)

where we have used (6.53) and the Woodbury formula (B.1). We can compute the new
matrix Anew using (B.12) directly. However, this requires computing the inverse of an
n×n matrix which has cost O(n3). In practice, it is better to use an alternative way to
compute Anew. Because in EP only one component of the diagonal matrix Λ changes
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each time after the preprocessing of one approximate term t̃i, the new matrix is

Anew =
(

C−1 + Λ−1 + κδiδ
T
i

)−1
= A− A·,iAi,·

κ−1 + Aii
, (B.13)

where we have used the Woodbury formula (B.1) and

κ =

(

1

vnew
i

− 1

vold
i

)

. (B.14)

In (B.13) δi denotes an n-dimensional vector whose components are all zero except
component i that takes value 1, Ai,· denotes the i-th row of the matrix A and A·,i

denotes the i-th column. Finally, in (B.14) vnew
i is the new value for the parameter vi

of the approximate term and vold
i is the previous value.

Next, from the definition of the vector h in (6.58)

h = XTmw = XTVwXΛ−1m = AΛ−1m , (B.15)

where we have used (6.54) and (6.57). Finally,

hnew = Anew(Λnew)−1mnew , (B.16)

where Λnew and mnew are the matrix Λ and the vector m after the approximate term
t̃i has been updated.

B.6 Derivation of |Vw|
In this section we compute the value of |Vw|.

|Vw| =
∣

∣I + XTΛ−1X
∣

∣
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=
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=
|Λ|

|I + CΛ−1| , (B.17)

where we have used (6.53) and the fact that |I + ABT | = |I + ATB| (Bishop, 2006).

B.7 Predictive Distribution of the BM

In this section we derive the value of z in predictive distribution of the BM defined
in (6.84). We note that at convergence of the EP algorithm (6.77) is no longer an
update rule and becomes an equality for all i = 1, . . . , n. Furthermore, in this situation
hnew

i = hi because mnew
w = mw. In consequence,

n
∑

i=1

mixi

vi
=

n
∑
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xihi

vi
+

n
∑

i=1

αixi
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where we have used (6.53) and (6.54). To compute the value of the denominator in z
we describe the matrix Vw as follows using (6.53) and the Woodbury formula (B.1)

Vw =
(
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where we have also used that
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To derive (B.20) we have used (B.12).
The value of z can also be computed without the convergence assumption in the EP

algorithm. For this purpose, consider the following relation derived from (6.54)
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where we have used (B.19) and (B.12).
Thus, we can easily compute xT

newmw in terms of inner products for an arbitrary
instance xnew using either (B.18) or (B.21). However, if the EP algorithm has converged,
it is better to use (B.18) because it is faster.
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B.8 KL-divergence between Qnew
j and Q\i

In this section we derive the KL-divergence between Qnew
j and Q\i, which is used for

ranking candidate patterns in the training algorithm of the SBM. Note that because
both distributions factorize with respect to to the model parameters ǫ and w, the KL-
divergence is the sum of the KL-divergences between the marginal distributions. Using
the definition of Qnew

j given in (6.102), the definition of Q\i given in (6.14), and (A.38),
the KL-divergence with respect to the marginal over w is
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where I is the identity matrix and we have also used that (Vnew
w (j))−1 = (V

\i
w)−1 +

v−1
j xjx

T
j , which can be derived from (6.35) and (6.42), and that mnew

w (j) = m
\i
w +

αjV
\i
wxj, which can be derived from (6.53). Furthermore, we have used the definition of

vj given in (6.113), the Woodbury formula (B.1) and the fact that |I+ABT | = |I+ATB|
(Bishop, 2006). Finally, the KL divergence with respect to the marginal over ǫ can be
computed using (A.23), the definition of Qnew

j given in (6.102) and the definition of Q\i

given in (6.14)
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= log
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where Ψ is the digamma function defined as Ψ(x) = d log(Γ(x))/dx and β(a, b) is the
beta function (Abramowitz and Stegun, 1964).



Appendix B. Appendix for Chapter 6 187

B.9 Update of the matrix B

In this section we show how the matrix B, which is defined as

B = I + Λ
−1/2
I CIΛ

−1/2
I ∈ R

d,d , (B.24)

is updated in the training algorithm of the SBM. All the derivations of this section have
been extracted from the Appendix of (Seeger, 2003).

Assume that the element i is removed from the active set I, and that j is the
element that is included in I. Furthermore, assume that l was the position of i in

I. Then, we have to replace Λ
−1/2
I by Λ

−1/2
I + (v

−1/2
j − v

−1/2
i )δlδ

T
l , where δl ∈ R

d

is a vector with all components zero except component l-th that takes value one. In
addition, since CI = II,·CI·,I, after the change in the active set I we have to replace
I·,I by I·,I + (δj − δj)δ

T
l , where δi ∈ R

n and δj ∈ R
n. In consequence,

Bnew = I + QTCQ , (B.25)

where
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l . (B.26)

In (B.26) we have used that I·,Iδl = δi and that δT
l Λ

−1/2
I = v

−1/2
i δT

l . Now, if we set

υ = Λ
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I II,·C

(
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(B.25) becomes
Bnew = B + δlυ

T + υδT
l + ηδlδ

T
l , (B.28)

where
η = v−1

j Cjj + v−1
i Cii − 2v

−1/2
j v

−1/2
i Cij > 0 . (B.29)

Therefore,

Bnew = B +
(

δ̃l + υ̃
)(

δ̃l + υ̃
)T
− υ̃υ̃T , (B.30)

where δ̃l = η1/2δl and υ̃ = η−1/2υ.

B.10 Update of the matrix M

In this section we show how to update the matrix M, which is defined as

M = L−1Λ
−1/2
I CI,· ∈ R

d,n , (B.31)

after each iteration of the training algorithm of the SBM. The update of the matrix M
is described in the Appendix of (Seeger, 2003). However, the rule suggested does not
consider the changes in CI,·. In this section we derive a more accurate update rule.

The update of M can be performed in two steps. First, assume that the element
i is removed from the active set I, and that j is the element that is included in I.
Furthermore, assume that l was the position of i in I. Then, we have to replace Λ

−1/2
I
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by Λ
−1/2
I + (v
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j − v

−1/2
i )δlδ

T
l , where δl ∈ R

d is a vector with all components zero
except component l-th that takes value one. Similarly, CI,· has to be replaced by
CI,·+δl (Cj,· −Ci,·). Second, from Appendix B.9 we know that the update of B involves
two rank-one updates. After a single rank-one update of B the new Cholesky factor of
B is Lnew = LL̃, where L̃ has a special form that allows the use of a fast multiplication
algorithm. See Appendix B.11 for further details. Thus, after two rank-one updates the
new Cholesky factor is Lnew = LL̃1L̃2, where both L̃1 and L̃2 have a special form. In
consequence, the update of the matrix M involves computing first
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, (B.32)

where we have used that Λ
−1/2
I δl = v

−1/2
i δl and that δT

l CI,· = Ci,·. Note that (B.32)
can be computed in O(nd) steps. Once the matrix M′ has been computed, we can
update M

Mnew = L̃−1
2 L̃−1

1 M′ , (B.33)

where the multiplications by the factors L̃−1
2 and L̃−1

1 can be computed in terms of L̃2

and L̃1 in O(nd) steps. See Appendix B.12 for further details.

B.11 Structure of the Cholesky factor L̃

In this section we show that L̃ has a special structure that allows the use of a fast
multiplication algorithm. Let B = LLT be a simetric positive definite matrix of size
d × d, where L is a lower triangular matrix known as the Cholesky factor of B. After
performing a rank-one update of B

Bnew = B + αvvT

= L
(

I + αppT
)

LT

= LL̃L̃TLT , (B.34)

where Lp = v, p is obtained by forward substitution (Gill et al., 1974) and L̃ is the
Cholesky factor of I + αppT . Thus, the updated Cholesky factor of Bnew is LL̃.

It turns out that L̃ has a special structure and hence, only depends on O(d) param-
eters (Gill et al., 1974)

L̃ =















d̃1 0 0 . . . 0

d̃1p2β1 d̃2 0 . . . 0

d̃1p3β1 d̃2p3β2 d̃3 . . . 0
...

...
...

. . .
...

d̃1pdβ1 d̃2pdβ2 d̃3pdβ3 . . . d̃d















, (B.35)
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where the values of the vectors d̃ and β are computed using the following recurrence
relations for i = 1, . . . , d

d̃i =
√

1 + αip2
i , βi = αipi/d̃

2
i , αi+1 = αi/d̃

2
i , (B.36)

where α1 = α. See (Gill et al., 1974) for further details. Thus, we can make use of
this special structure to derive a fast multiplication algorithm to compute LL̃. This
algorithm is displayed in Figure B.1.

Input: matrix L of size d× d, p, β and d̃.

Output: Lnew = LL̃.

1. Lnew ← L

2. For i = 1, . . . , d

(a) σ ← ρ← 0

(b) For j = i, . . . , 1

i. σ ← σ + ρ

ii. ρ← pjL
new
ij

iii. Lnew
ij ←

(

Lnew
ij + σβj

)

d̃j

3. Return Lnew.

Figure B.1: Algorithm that computes the updated Cholesky factor LL̃.

B.12 Multiplication by L̃−1

In this section we show that a multiplication by L̃−1 can be expressed in terms of a
multiplication by the standard factor L̃. From Appendix B.11 we know that L̃L̃T =
I + αppT . Thus,

L̃−1 = L̃T
(

I + αppT
)−1

= L̃T

(

I− α

1 + αpT p
ppT

)

, (B.37)

where we have used the Woodbury formula (B.1). In consequence, computing L̃−1L−1

takes O(d2) steps, where d is the number of rows and columns of L. Similarly, if M is
an arbitrary matrix of size d× n, the product L̃−1M can be computed in O(nd) steps.
Figure B.2 displays the algorithm that computes the product L̃TM.

B.13 Update of the vector h in the SBM

In this section we show how to update in the training algorithm of the SBM the vector
h, which is is defined in (B.15) as

h = AΛ−1m . (B.38)
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Input: matrix M of size d× n, p, β and d̃.

Output: M′ = L̃T M.

1. M′ ←M

2. For j = 1, . . . , n

(a) σ ← ρ← 0

(b) For i = d, . . . , 1

i. σ ← σ + ρ

ii. ρ← piM
′
ij

iii. M ′
ij ←

(

M ′
ij + σβi

)

d̃i

3. Return M′.

Figure B.2: Algorithm that computes the product L̃T M.

All the derivations of this section have been extracted from the Appendix of (Seeger,
2003).

Assume that the element i is removed from the active set I, and that j is the element
that is included in I. Furthermore, assume that l was the position of i in I. Consider
the 2× 2 diagonal matrix ∆ = diag(v−1

j ,−v−1
i ) that denotes the changes in Λ−1. From

the definition of the matrix A given in (B.12)

Anew =
(

C−1 + Λ−1 + I·,{ji}∆I{ji},·
)−1

= A−AI·,{ji}∆
1/2P−1∆1/2I{ji},·A

= A−A·,{ji}∆
1/2P−1∆1/2A{ji},· , (B.39)

where

P = I + ∆1/2I{ji},·AI·,{ji}∆
1/2

= I + ∆1/2A{ji}∆
1/2 . (B.40)

In the computation of (B.39) we have used the Woodbury formula (B.1). Now, consider
the vector γ = (v−1

j mj,−v−1
i mi)

T that denotes the changes in Λ−1m. Using (B.38) and
(B.39)

hnew = Anew
(

Λ−1m + I·,{ji}γ
)

= h + AI{ji},·γ −A·,{ji}∆
1/2P−1∆1/2h{ji}

−A·,{ji}∆
1/2P−1∆1/2A{ji},·I·,{ji}γ

= h−A·,{ji}∆
1/2P−1∆1/2h{ji} + AnewI·,{ji}γ

= h−A·,{ji}∆
1/2P−1∆1/2h{ji} + A·,{ji}∆

1/2P−1∆−1/2γ

= h + A·,{ji}∆
1/2P−1

(

∆−1/2γ −∆1/2h{ji}

)

, (B.41)
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where we have used that

AnewI·,{ji} = A·,{ji} −A·,{ji}∆
1/2P−1∆1/2A{ji}

= A·,{ji}∆
1/2P−1

(

P∆−1/2 −∆1/2A{ji}

)

= A·,{ji}∆
1/2P−1

(

∆−1/2 + ∆1/2A{ji} −∆1/2A{ji}

)

= A·,{ji}∆
1/2P−1∆−1/2 . (B.42)

For the derivation of (B.42) we have used (B.40).
In consequence, the new vector hnew can be computed in O(nd) steps because any

column of the matrix A can be computed inO(nd) steps using the decomposition (6.116).
Furthermore, the inversion process of P is inexpensive because it is a 2× 2 matrix.





Appendix C
Appendix for Chapter 7

C.1 Derivation of si

In this section we show how to compute the value of si, as defined in (7.37). From the
definition of t̃i = ZiQnew/Q\i and using (A.46)

si = Zi

√

√

√

√

d
∏

j=1

ν
\i
j

νnew
j

exp

(

−1

2

(

(µnew)T ((νnew)−1 ◦ µnew)− (µ\i)T (ν\i ◦ µ\i)

−mT
i (v−1

i ◦mi)
))

, (C.1)

where the operator ◦ indicates the Hadamard (element-wise) product and the inverse of
a vector is defined as a new vector whose components are the inverse of the components
of the original vector. Because (νnew)−1 = (ν\i)−1 + v−1

i , which can be derived from
(7.35), is easy to show that

√

√

√

√

d
∏

j=1

ν
\i
j

νnew
j

=

d
∏

j=1

√

1 + v−1
ij ν

\i
j . (C.2)

Next, we compute

(µnew)T ((νnew)−1 ◦ µnew) =
(

µ\i + αiν
\i ◦ xi

)T ((

(ν\i)−1 + v−1
i

)

◦
(

µ\i + αiν
\i ◦ xi

))

= (µ\i)T
(

(ν\i)−1 ◦ µ\i
)

+ 2αi(µ
\i)T xi + α2

i x
T
i

(

ν\i ◦ xi

)

+

α2
i (ν

\i ◦ xi)
T
(

v−1
i ◦

(

ν\i ◦ xi

))

+ (µ\i)T
(

v−1
i ◦ µ\i

)

+

2αi(ν
\i ◦ xi)

T
(

v−1
i ◦ µ\i

)

, (C.3)
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where we have used (7.23) and again that (νnew)−1 = (ν\i)−1 + v−1
i . Furthermore,

mT
i (v−1

i ◦mi) =
(

µ\i + αi(vi + ν\i) ◦ xi

)T (

v−1
i ◦

(

µ\i + αi(vi + ν\i) ◦ xi

))

= (µ\i)T
(

v−1
i ◦ µ\i

)

+ α2
i x

T
i (vi ◦ xi) + α2

i (ν
\i ◦ xi)

T
(

v−1
i ◦

(

ν\i ◦ xi

))

+ 2αi(µ
\i)T xi + 2αi(µ

\i)T
(

v−1
i ◦

(

ν\i ◦ xi

))

+

2α2
i x

T
i

(

ν\i ◦ xi

)

. (C.4)

where we have used (7.36). With these values, i.e. (C.3) and (C.4) we have that

(µnew)T ((νnew)−1 ◦ µnew)− (µ\i)T (ν\i ◦ µ\i)

−mT
i (v−1

i ◦mi) = −α2
i x

T
i (vi ◦ xi)

− α2
i x

T
i

(

ν\i ◦ xi

)

= −α2
i x

T
i

(

(vi + ν\i) ◦ xi

)

= −d
αix

T
i (ν\i ◦ xi) + αi

xT
i µnew + αi

, (C.5)

where we have used (7.35) and d is the data dimensionality. Finally,

si = Zi

d
∏

j=1

√

1 + v−1
ij ν

\i
j exp

(

d

2

αix
T
i (ν\i ◦ xi) + αi

xT
i µnew + αi

)

, (C.6)

C.2 Derivation of sn+i

In this section we show how to compute the value of sn+i, as defined in (7.43). From
the definition of t̃i = ZiQnew/Q\i and using (A.10) and (A.46)

sn+i = Zn+i

(

ρnew
i /ρ

\n+i
i + (1− ρnew

i )/(1 − ρ
\n+i
i )

)

√

ν
\n+i
i

νnew
i

exp

(

−1

2

(

(µnew
i )2(νnew

i )−1 − (µ
\n+i
i )2(ν

\n+i
i )−1 −m2

n+iv
−1
n+i

)

)

. (C.7)

Because (νnew
i )−1 = (ν

\n+i
i )−1 + v−1

n+i, which can be derived from (7.40), is easy to show
that

√

ν
\n+i
i

νnew
i

=

√

1 + ν
\n+i
i v−1

n+i . (C.8)

In addition,

ρnew
i /ρ

\n+i
i + (1− ρnew

i )/(1 − ρ
\n+i
i ) = 1 +

G1 − G0

Zn+i
(1− ρ

\n+i
i ) + 1− G1 − G0

Zn+i
ρ
\n+i
i

=
G1 + G0

Zn+i
, (C.9)
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where we have used (7.29) and (7.18). Next, we compute

(µnew
i )2(νnew

i )−1 =
(

µ
\n+i
i + c1ν

\n+i
i

)2 (

(ν
\n+i
i )−1 + v−1

n+i

)

= (µ
\n+i
i )2(ν

\n+i
i )−1 + 2µ

\n+i
i c1 + c2

1ν
\n+i
i +

(µ
\n+i
i )2v−1

n+i + 2c1µ
\n+i
i ν

\n+i
i v−1

n+i + c2
1(ν

\n+i
i )2v−1

n+i , (C.10)

where we have used (7.27) and that (νi
new)−1 = (ν

\n+i
i )−1 + v−1

n+i. Furthermore,

m2
n+iv

−1
n+i =

(

µ
\n+i
i + c1(vn+i + ν

\n+i
i )

)2
v−1
n+i

= (µ
\n+i
i )2v−1

n+i + 2c1µ
\n+i
i + 2c1µ

\n+i
i ν

\n+i
i v−1

n+i+

c2
1vn+i + 2c2

1ν
\n+i
i + c2

1(ν
\n+i
i )2v−1

n+i , (C.11)

where we have used (7.41). With these values, i.e. (C.10) and (C.11) we have that

(µnew
i )2(νnew

i )−1 − (µ
\n+i
i )2(ν

\n+i
i )−1 −m2

n+iv
−1
n+i = −c2

1ν
\n+i
i − c2

1vn+i

= −c2
1

c3
, (C.12)

where we have used (7.40). Finally,

sn+i = (G1 + G0)

√

1 + ν
\n+i
i v−1

n+i exp

(

1

2

c2
1

c3

)

. (C.13)
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Dettling, M. and Bühlmann, P. (2002). Supervised clustering of genes. Genome Biology,
3:1–15.

D́ıaz-Uriarte, R. and Alvarez de Andrés, S. (2006). Gene selection and classification of
microarray data using random forest. BMC Bioinformatics, 7(1):3.

Dietterich, T. G. (1998). Machine-learning research: Four current directions. The AI
Magazine, 18(4):97–136.

Dietterich, T. G. (2000a). Ensemble methods in machine learning. In Kittler, J. and Roli,
F., editors, Proceedings of the First International Workshop on Multiple Classifier
Systems, volume 1857 of Lecture Notes in Computer Science, pages 1–15. Springer.

Dietterich, T. G. (2000b). An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning,
40(2):139–157.

Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2:263–286.

Dietterich, T. G. and Kong, E. (1995). Machine learning bias, statistical bias, and statis-
tical variance of decision tree algorithms. Technical report, Oregon State University,
Covallis, OR.

Domingos, P. (1997). Knowledge acquisition from examples via multiple models. In
Fisher, D. H., editor, Proceedings of the Fourteenth International Conference on Ma-
chine Learning, pages 98–106, Nashville, TN. Morgan Kaufmann.

Domingos, P. (2000). A unified bias-variance decomposition and its applications. In Lan-
gley, P., editor, Proceedings of the Seventeenth International Conference on Machine
Learning, pages 231–238. Morgan Kaufmann, San Francisco, CA.

Dougherty, E. R. (2001). Small sample issues for microarray-based classification. Com-
parative and Functional Genomics, 2(1):28–34.

Drucker, H. (1997). Improving regressors using boosting techniques. In Fisher, D. H.,
editor, Proceedings of the Fourteenth International Conference on Machine Learning,
Nashville, Tennessee. Morgan Kaufmann.

Dudoit, S. and Fridlyand, J. (2003). Statistical Analysis of Gene Expression Microarray
Data, chapter 3. CRC Press.



Bibliography 202

Dudoit, S., Fridlyand, J., and Speed, T. P. (2002). Comparison of discrimination meth-
ods for the classification of tumors using gene expression data. Journal of the American
Statistical Association, 97:77–87.

Duin, R. P. W. and Tax, D. M. J. (2000). Experiments with classifier combining rules.
In Kittler, J. and Roli, F., editors, Proceedings of the First International Workshop
on Multiple Classifiers Systems, volume 1857 of Lecture Notes in Computer Science,
pages 16–29, London, UK. Springer.

Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. Chapman &
Hall/CRC.

Esposito, R. and Saitta, L. (2003). Monte Carlo theory as an explanation of bagging and
boosting. In Proceeding of the Eighteenth International Joint Conference on Artificial
Intelligence, pages 499–504. Morgan Kaufmann.

Fan, W., Chu, F., Wang, H., and Yu, P. S. (2002). Pruning and dynamic scheduling of
cost-sensitive ensembles. In Eighteenth National Conference on Artificial Intelligence,
pages 146–151, Menlo Park, CA, USA. American Association for Artificial Intelligence.

Fern, X. Z. and Brodley, C. E. (2003). Random projection for high dimensional data
clustering: A cluster ensemble approach. In Fawcett, T. and Mishra, N., editors,
Proceedings of the Twentieth International Conference on Machine Learning, pages
186–193, Washington, DC, USA. AAAI Press.

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285.

Freund, Y. (2009). A more robust boosting algorithm. Unpublished. Available online
at: http://www.citebase.org/abstract?id=oai:arXiv.org:0905.2138.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In
International Conference on Machine Learning, pages 148–156.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A
statistical view of boosting. The Annals of Statistics, 28(2):337–374.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statis-
tics, 19(1):1–67.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5):1189–1232.

Fumera, G., Fabio, R., and Alessandra, S. (2008). A theoretical analysis of bagging as a
linear combination of classifiers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(7):1293–1299.

Fumera, G. and Roli, F. (2005). A theoretical and experimental analysis of linear
combiners for multiple classifier systems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(6):942–956.

http://www.citebase.org/abstract?id=oai:arXiv.org:0905.2138


Bibliography 203

Fürnkranz, J. (2002). Round robin classification. Journal of Machine Learning Research,
2:721–747.

Gama, J. and Brazdil, P. (2000). Cascade generalization. Machine Learning, 41(3):315–
343.

Gardner, T. S. and Faith, J. J. (2005). Reverse-engineering transcription control net-
works. Physics of Life Reviews, 2(1):65–88.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection.
Statistica Sinica, 7(2):339–373.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning, 36(1):3–42.

Giacinto, G. and Roli, F. (2001a). An approach to the automatic design of multiple
classifier systems. Pattern Recognition Letters, 22(1):25–33.

Giacinto, G. and Roli, F. (2001b). Dynamic classifier selection based on multiple classifier
behaviour. Pattern Recognition, 34(9):1879–1881.

Giacinto, G., Roli, F., and Fumera, G. (2000). Design of effective multiple classifier
systems by clustering of classifiers. In Proceedings of the 15th International Confer-
ence on Pattern Recognition, volume 4, pages 2160–2163, Barcelona, Spain. IEEE
Computer Society.

Gibbs, M. N. and MacKay, D. J. C. (2000). Variational Gaussian process classifiers.
IEEE Transactions on Neural Networks, 11(6):1458–1464.

Gill, P. E., Golub, G. H., Murray, W., and Saunders, M. A. (1974). Methods for
modifying matrix factorizations. Mathematics of Computation, 28(126):505–535.

Goemans, M. X. and Williamson, D. P. (1995). Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of
the ACM, 42(6):1115–1145.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P.,
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., and Bloomfield, C. D.
(1999). Molecular classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science, 286(5439):531–537.
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