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 Taxanes (paclitaxel and docetaxel) are used in the treatment of a variety of 

solid tumours, such as breast, lung, prostate and ovarian cancer. There is a large 

interindividual variation in the efficacy and adverse effects of these drugs, which might 

be explained, in part, by the extensive variability in taxanes clearance and/ or by 

alterations in the therapeutic target. However, at the moment, there are no molecular 

markers able to predict the major side-effects of these drugs and their efficacy. The 

polymorphic cytochromes P450 (CYP) are the key enzymes catalyzing taxanes 

metabolism (CY2C8 and CYP3As for paclitaxel, and CYP3As for docetaxel) and the 

therapeutic effect of taxanes is meditated through their binding to -tubulin.  

In addition to docetaxel hydroxylation, CYP3As also catalyze the hydroxylation 

of androgens to less active metabolites. Thus, CYP3A polymorphisms might modify the 

efficacy of docetaxel in prostate cancer (PC) treatment by its inactivation in the tumoral 

cells and it could influence PC risk through alteration of androgen metabolism. We 

established the expression of CYP3A4, CYP3A5, CYP3A7, and CYP3A43 in non-

tumoral and tumoral prostate samples. We found that only CYP3A5 was expressed at 

relevant levels and that its expression was influenced by CYP3A5*3 polymorphism, 

while tumoral prostate tissue lacked CYP3A5. Our data suggests that CYP3A5 might 

be important in the regulation of prostate cell growth by modulation of intra-prostatic 

androgen levels and that CYP3A5 polymorphisms could be the functional genetic 

variations associated with PC. However, it is unlikely that CYP3A5 polymorphisms 

could directly influence docetaxel efficacy in PC. 

Taxanes target -tubulin and alterations in the expression patterns of -tubulin 

isoforms have been associated with taxanes resistance, especially the over-expression 

of class III β-tubulin. The regulation of the different β-tubulin isotypes remains largely 

unknown. However, microRNAs, particularly the miR-200 family, have been suggested 

to in vitro modify taxanes sensitivity through alteration of β-tubulin III expression. We 

quantified the expression of the miR-200 family and the protein content of β-tubulin 

isotypes I, II and III in 72 samples of ovarian carcinoma from patients treated with 

paclitaxel-carboplatin. We found that miR-200 family determined the final β-tubulin III 

expression and that it was associated with response to treatment and progression-free 

survival. Thus, this family of microRNAs could constitute a biomarker of response to 

treatment for ovarian cancer patients. 

Neurotoxicity is the most relevant dose-limiting toxicity of paclitaxel. It exhibits 

substantial interindividual variability of unknown molecular basis which, at the moment, 

cannot be predicted. Thus, we aimed to identify polymorphisms associated with an 

increased risk of paclitaxel neurotoxicity. For this purpose we selected 13 relevant 

polymorphisms in genes encoding paclitaxel metabolizing enzymes and transporters 
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and genotyped them in 118 Spanish cancer patients treated with paclitaxel. We found 

an association for CYP2C8 and CYP3A5 polymorphisms with paclitaxel neurotoxicity. 

These genetic variants might be used to inform treatment selection, providing the basis 

for an individualized paclitaxel pharmacotherapy.  



Resumen 

17 

 

Los taxanos (paclitaxel y docetaxel) se usan en el tratamiento de varios tipos 

de tumores sólidos (mama, pulmón, próstata y ovario). Existen grandes diferencias 

interindividuales tanto en la eficacia como en los efectos adversos de estos fármacos 

que, en parte, podrían ser explicados por la gran variabilidad que existe en la 

eliminación de los taxanos y/o por alteraciones en su diana terapéutica. Sin embargo, 

en estos momentos no existen marcadores moleculares capaces de predecir los 

efectos secundarios de los taxanos y su eficacia. Los citocromos P450 (CYP) son los 

enzimas clave que catalizan el metabolismo de los taxanos (CYP2C8 y CYP3A para el 

paclitaxel, y CYP3A para el docetaxel) mientras que el efecto terapéutico está mediado 

por su unión a la -tubulina. 

 Además de hidroxilar el docetaxel, los CYP3A catalizan la hidroxilación de los 

andrógenos a metabolitos menos activos. Por tanto, los polimorfismos CYP3A podrían 

modificar la eficacia del docetaxel en cáncer de próstata (CP) mediante su inactivación 

en las células tumorales y podrían influir en el riesgo de CP alterando el metabolismo 

de los andrógenos. Para investigar esta hipótesis determinamos la expresión del 

CYP3A4, CYP3A5, CY3A7 y CYP3A43 en muestras de próstatas no-tumorales y 

tumorales. Descubrimos que sólo el CYP3A5 se expresaba a niveles relevantes en 

próstata y que su expresión estaba afectada por el polimorfismo CYP3A5*3, mientras 

que la expresión del CYP3A5 desaparecía en el tejido tumoral. Nuestros datos 

sugieren que el CYP3A5 podría ser importante para la regulación del crecimiento 

celular prostático mediante la modulación de los niveles intra-prostaticos de los 

androgenos y que los polimorfismos en el CYP3A5 podrían ser las variantes genéticas 

funcionales asociadas con el CP. Por otra parte, parece improbable que los 

polimorfismos del CYP3A5 influyan directamente en la eficacia del docetaxel en el CP.  

 La diana de los taxanos es la -tubulina y alteraciones en la expresión de los 

isotipos de β-tubulina se han asociado con la resistencia a taxanos, especialmente con 

la sobre-expresión del isotipo III. La regulación de los distintos isotipos es desconocida 

pero existen evidencias in vitro que sugieren que microARNs, fundamentalmente la 

familia miR-200, modifican la sensibilidad a taxanos alterando la expresión de la β-

tubulina III. Cuantificamos la expresión de la familia miR-200 y la expresión proteica de 

los isotipos I, II y III de la -tubulina en 72 muestras de pacientes de cáncer de ovario 

tratados con paclitaxel-carboplatino, y descubrimos que la familia miR-200 

determinaba la expresión final de β-tubulina III. Además, estos microARNs se 

asociaron con la respuesta al tratamiento y la supervivencia libre de recaída de las 

pacientes. Por lo tanto, esta familia de microARNs podría servir como biomarcador de 

respuesta al tratamiento en pacientes con cáncer de ovario.  
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La toxicidad limitante de dosis del paclitaxel es la neurotoxicidad, la cual 

presenta grandes diferencias interindividuales y tiene una base molecular desconocida 

que la hace impredecible. Por tanto, nos fijamos el objetivo de identificar polimorfismos 

asociados al riesgo de neurotoxicidad por paclitaxel. Para ello elegimos 13 

polimorfismos relevantes en genes que codifican los enzimas de metabolización y 

transporte del paclitaxel y los genotipamos en 118 pacientes españoles de cáncer 

tratados con este fármaco. Encontramos una asociación estadísticamente significativa 

entre polimorfismos del CYP2C8 y CYP3A5 y la neurotoxicidad del paclitaxel. Estas 

variantes genéticas podrían servir para mejorar el tratamiento con paclitaxel, 

proporcionando la base para una farmacoterapia individualizada. 
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1. Pharmacogenetics 

 
 

There are large interindividual differences in the way patients respond to 

medication. This applies to both drug efficacy and toxicity. Drug inefficacy is a major 

clinical problem; for many drugs the proportion of patients not responding to standard 

treatments ranges from 30-70% (Table 1). On the other hand, serious adverse drug 

reactions (ADRs) contribute to 7% of all hospitalizations and 100,000 deaths per year 

in USA (Eichelbaum, et al. 2006) and in United Kingdom, ADRs caused 6,5% of 

hospitalizations in 2002 (Pirmohamed, et al. 2004).  

 

Table 1. Examples of decreased drug efficacy
1
 

Disease Drug Class Non responders (%) 

Asthma β2adrenergic agonist, 5-LO, LTD4 4 - 75 

Cancer Various (breast, lung, brain) 30 - 100 

Depression SSRIs, Tricyclics, MAOs 20 - 40 

Diabetes Sulfonylurea, Biguanides, Glitazones 50 - 75 

Duodenal ulcer H2antagonists, Proton pump inhibitors 20 - 70 

Hyperlipidemia HMGCoA reductase, Resins, Niacin 30 - 75 

1
(Kalow 2001) 

 

As it is shown in the simplified diagram shown in figure 1, using standard drug 

treatments patients can be divided into four major groups according to the drug effects: 

responders without toxicity, non-responders without toxicity, responders with toxicity 

and non-responders with toxicity. A prospective identification of patients most likely to 

benefit from specific therapies would greatly improve drug therapy. However, this 

identification is still not possible for many drugs (McLeod and Evans 2001). Part of this 

variability in drug outcome can be explained by non-genetic factors, such as age, sex, 

concomitant illnesses, drug interactions etc. However, nowadays we know that 

inherited genetic differences can also have a great influence in both efficacy and 

toxicity of drug treatments (Evans and McLeod 2003; Evans and Relling 1999). These 

genetic variants include single nucleotide polymorphisms (SNPs), nucleotide deletions, 

insertions, and  gene copy number variations (CNVs) that could affect gene expression 

or function (McLeod and Evans 2001). Examples of genetic variation associated with 

drug outcome include: Cytochrome P450 2D6 (CYP2D6) for antidepressants and 

antipsychotics (Gurwitz and Weizman 2004), CYP2D6 for the oncology drug tamoxifen 
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(Dawood and Leyland-Jones 2009) and CYP2C9 for the vascular disease drug warfarin 

(Evans and Relling 2004). 

                 
 
Figure 1.  Variability of response to standard drug treatments. Patients could be divided 
into four major groups according to their response to the drug: responders without toxicity, non-
responders without toxicity, responders with toxicity and non-responders with toxicity. 

 
 

Thus, lack of drug efficacy and drug toxicity are among the major problems of 

modern medicine, and efforts to discover biomarkers predictive of drug outcome are 

critical for therapy improvement. The aim of pharmacogenetics is to individualize 

pharmacotherapy by identifying genetic variations that modify therapeutic efficacy and/ 

or adverse effects of drugs. In this way drug doses could be adjusted and/or alternative 

therapies applied according to a genetic variation, personalizing drug therapy (Dawood 

and Leyland-Jones 2009; Evans and Relling 2004). 

  

There are already several clinically accepted pharmacogenomic biomarkers, 

such as Thiopurine S-methyltransferase (TPMT) genetic variations for 6-

mercaptopurins myelotoxicity and HLA-B*5701 for Acabavir Stevens-Johnson 

syndrome, which serve as predictors of drug outcome (Ingelman-Sundberg 2008). 

Unfortunately, nowadays one-size-for-all approaches are still used for most drug 

treatments, even for drugs with narrow therapeutic indexes. 

 

 

1.1. Cancer pharmacogenetics 

In oncology the therapeutic window, separating drug toxicity from optimal 

treatment, is often narrow. The reason is that, although ideally, anticancer drugs should 
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be active exclusively on cancer cells and not cause toxicity in normal tissues, in 

general, this is not the case and anticancer drugs are usually aggressive. In addition, 

lack of efficacy can have critical consequences for the patients. Thus, 

pharmacogenetics is especially relevant in Oncology, were lack of efficacy and dose-

limiting toxicities are among the major obstacles to improve the survival of cancer 

patients (Dawood and Leyland-Jones 2009; Ingelman-Sundberg 2008). 

 

 

1.2. Germinal and somatic genetic variants and their relevance for 
pharmacokinetics and pharmacodynamics  

Pharmacokinetics (PK) and Pharmacodynamics (PD) can be considered as a 

range of continuous events starting by drug ingestion and ending with the clinical 

effect, with variability in the pharmacokinetic processes modifying the 

pharmacodynamic result. PK describes the association between time and the 

concentration of the drug and metabolites in plasma, and it is constituted by the 

processes of drug absorption, distribution, metabolism, and excretion (Dawood and 

Leyland-Jones 2009). The most relevant genes for PK are those coding the 

Cytochrome P450 (CYP) enzymes in families 1-3. It has been estimated that CYP3A4, 

CYP2D6 and CYP2C9 participate in the metabolism of 50, 25 and 15%, respectively, of 

drugs in commercial use. CYP3A4 is the most abundant hepatic CYP and it has a 

broad substrate specificity. The CYP enzymes participate in the phase I metabolism of 

drugs (Evans and Relling 1999; Shimada, et al. 1994; Wrighton and Stevens 1992) 

while for phase II metabolism, involving primarily conjugation, the most relevant 

enzymes are the uridine diphosphate glucuronosyltransferases (UGT), 

sulphotransferases (ST) and glutathione S-tranferases (GST) (Burchell 2003). Drug 

transporters mediate drug uptake and efflux, the most important genes for uptake 

include the organic anion-transporters (OAT) (Gui, et al. 2008; Smith, et al. 2005), the  

organic anion-transporting polypeptides (OATP) and organic cation transporters (OCT) 

and for efflux P-glycoprotein (P-gp) together with other multiple drug resistance 

proteins (MRD) (Chan, et al. 2004). PD comprises the effect of the drug, implying drug 

response and toxicity (Dawood and Leyland-Jones 2009). The most relevant genes for 

PD are the therapeutic drug targets, but can also include MDR1 (coding P-gp), p53, 

apoptosis genes etc (Dawood and Leyland-Jones 2009). An alteration in the PKs 

and/or PDs of a drug can lead to toxicity and/or poor drug response (Dawood 2009). 
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Heritable genetic factors (germinal variation) and tumor genomic factors 

(somatic variation) can both lead to interindividual differences in drug outcome. PK is 

mainly affected by germline polymorphisms, while PD can be frequently influenced by 

both germline and somatic variants (Figure 2).  

 

 

 

Figure 2. Germline and somatic variation can both influence drug effects.  

 

 

1.3. Candidate gene studies vs. genome wide association studies (GWAS) 

Most of the pharmacogenetic studies so far performed have been based on 

candidate gene approaches, focused on pathways and on polymorphisms in relevant 

genes with a biological relationship with the drug of interest. During recent years, our 

knowledge on drug PK and PD pathways has increased immensely and for many drugs 

we know now the implicated metabolizing enzymes, transporters and therapeutic 

targets as well as the metabolites and their therapeutic activities. Carefully planned 

candidate gene studies focused on complete pathways, instead of using just a few key 

players, is an important tool in Pharmacogenetic studies (Evans and Relling 2004). 

Thus, this strategy can uncover the underlying genetic causes for differences on 

treatment outcome for many drugs.  
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However, candidate gene studies are limited by current knowledge, while for the 

recently developed genome wide association studies (GWAS), no prior biological 

knowledge is required and all the genome is analyzed. This approach can thus further 

clarify metabolic routes, transporter functions and secondary targets that remain still 

unknown (Nelson, et al. 2009). Therefore, the combination of these strategies will be 

the best way to proceed in the pharmacogenetics field in the future.  

 

 

2. Taxanes  
 
 
2.1. Clinical use and mechanism of action  

Taxanes are administered to more than ¼ of the patients treated with 

anticancer drugs in USA. They are frequently used as first line chemotherapy in the 

treatment of breast, ovary, lung and prostate cancer usually in combination with other 

drugs. The two commonly used taxanes are docetaxel (taxotere) and paclitaxel (taxol) 

(Figure 3). 

 

Paclitaxel, an extract from the bark of the Pacific yew, Taxus brevifolia, is a 

chemotherapeutic drug widely used in the treatment of a variety of solid tumors, such 

as breast, ovarian and lung cancer (Rowinsky 1997). Docetaxel is a semi-synthetic 

derivative from extracts of the needles of the European yew tree (Taxus baccata), 

which has greater affinity for -tubulin, and a different microtubule polymerization 

pattern (Diaz and Andreu 1993; Saloustros, et al. 2008). Docetaxel is mainly used in 

the treatment of breast, lung, and metastatic prostate cancers (De Ligio, et al. 2009; 

Petrylak, et al. 2004).  

 

Taxanes stabilize cellular microtubules through -tubulin binding, which alters 

cell motility, transport and cell division, and consequently leads to cell death (Schiff, et 

al. 1979; Yvon, et al. 1999).  
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Figure 3. Chemical structure of taxanes A) paclitaxel and B) docetaxel. The differences 

among the molecules are highlighted. The positions for the hydroxylation and the enzymes 

involved are shown.  

 

 

2.2. Clinical problems of taxanes 
 
 
2.2.1. Toxicities 

The major side-effects of paclitaxel are hematologic toxicity (mainly 

neutropenia) and peripheral neuropathy, while for docetaxel the dose limiting toxicity is 

hematologic. The risk of neutropenia has been significantly reduced in recent years by 

using shorter infusion times and by the administration of granulocyte colony stimulating 

factors (Eisenhauer, et al. 1994; Rowinsky, et al. 1993a). On the other hand, paclitaxel 

A 

B 

CYP3A

5 

CYP3A

5 

CYP2C8 
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neurotoxicity cannot be prevented nor treated, it can last for months, and in severe 

cases it may cause irreversible nerve damage (Chaudhry, et al. 1994; Lipton, et al. 

1989). Neurotoxicity, which has become the dose-limiting toxicity of paclitaxel, exhibits 

substantial interindividual variability. This toxicity is dose-dependent and more frequent 

in weekly paclitaxel regimens (Argyriou, et al. 2008; Seidman, et al. 2008), in patients 

with diabetes, prior neurotoxic chemotherapy treatments and in patients with pre-

existing neuropathies (Mielke, et al. 2005; Rowinsky, et al. 1993b). Age and gender 

might also be risk factors (Akerley, et al. 2003; Mielke, et al. 2003; Mielke et al. 2005) 

and also decreased levels of plasma nerve factors might play a role in the neurotoxicity 

(Cavaletti, et al. 2004). However, a large part of the variability in the neurotoxicity 

exhibited by patients remains unexplained and is unpredictable.  

 

Interestingly, an association between paclitaxel neurotoxicity and PK 

parameters has been demonstrated (Green, et al. 2009; Mielke et al. 2005), suggesting 

an important role for drug metabolism and transport in this adverse effect (Figure 3). In 

addition, the influence of polymorphisms in paclitaxel PK-related genes on the drug 

neurotoxicity has been investigated in three previous studies using different strategies 

and producing contradictory results. One study found higher neurotoxicity for a variant 

allele of CYP2C8, (Green et al. 2009) while Sissung et al. (Sissung, et al. 2006) and 

Marsh et al. (Marsh, et al. 2007) did not find significant associations for the genes 

studied. However, two studies had less than 25 patients recruited, and the latter did not 

take into account the dose-dependency nature of paclitaxel neurotoxicity. This 

indicates that, despite the important implications on clinical practice, the impact of 

genetic variation on paclitaxel neurotoxicity is still unclear. 

 

 

2.2.2. Efficacy 

Despite all the improvements that the use of taxanes has brought to cancer 

treatment, drug resistance, both primary and acquired, is still a major problem for many 

patients and it is exhibited as lack of response or relapse. Resistance to taxanes has 

been reported in various tumour types: ovarian (Heintz, et al. 2006; Ozols, et al. 2003), 

breast (Paradiso, et al. 2005) and lung (Seve and Dumontet 2005). Different 

mechanisms have been suggested to cause the resistance, such as chromosomal 

instability (Swanton, et al. 2009), overexpression of P-gp (Horwitz, et al. 1993), over-

expression of class III β-tubulin (Mozzetti, et al. 2005) and mutations in the target of the 

drug, the β-tubulins (Giannakakou, et al. 1997), however, recent studies have 
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discarded this latter possibility (Sale, et al. 2002). Thus, the identification of resistance 

factors and critical determinants of antitumor efficacy of microtubule-stabilizing agents 

is essential to improve the therapeutic efficacy of taxanes.  

 

3. Taxane metabolism and transport 
 
 

Taxanes are administered by intravenous injection, and their elimination is 

mediated by hepatic metabolism and biliary excretion (Figure 4). A great interindividual 

variability on taxanes PK has been reported both for paclitaxel (Henningsson, et al. 

2005; Smith, et al. 2007; Somlo, et al. 2001) and for docetaxel (Baker, et al. 2009; 

Bosch, et al. 2006; Tran, et al. 2006). This variability has unknown molecular basis, but 

there are evidences suggesting that genetic variation affecting taxanes metabolism 

and/or transport could underlie these differences (Green et al. 2009; Rodriguez-

Antona, et al. 2008; Smith et al. 2007). 

 

 

3.1 Hepatic metabolism 

In the liver paclitaxel is hydroxylated at the 6  position by CYP2C8, forming the 

major metabolite, and at the C3´ position by CYP3A4/5 (Rahman, et al. 1994; 

Vaclavikova, et al. 2004) (figure 4). For docetaxel, CYP3A4/5 catalyze the 

hydroxylation in the ter-butyl side chain, subsequently, and in a minor manner, an 

unstable aldehyde can be formed that is converted to oxazolodinones (Vaclavikova et 

al. 2004)   

  

These CYP metabolizing enzymes are polymorphic. All the so far described 

genetic variants in these genes are summarized in http://www.cypalleles.ki.se/. For 

CYP2C8 there are several SNPs affecting functionality: CYP2C8*3 (R139K; K399R) 

exhibits an altered activity (Aquilante, et al. 2008; Dai, et al. 2001; Kirchheiner, et al. 

2008; Niemi, et al. 2005; Niemi, et al. 2003; Soyama, et al. 2001) and haplotypes B and 

C, represented by CYP2C8*1B (rs7909236) and rs1113129 confer an increased and 

reduced activity, respectively (Rodriguez-Antona et al. 2008).  

 

For CYP3A4 there are no common coding polymorphisms and the only SNP 

associated with altered activity in part of the studies is the promoter CYP3A4*1B allele 

(Rodriguez-Antona, et al. 2005). On the other hand, CYP3A5 is very polymorphic. Its 
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activity in Caucasians is determined by CYP3A5*3 allele through alternative splicing 

(Kuehl, et al. 2001), while other defective alleles, CYP3A5*6 and CYP3A5*7, are 

present only in Africans (Hustert, et al. 2001; Kuehl et al. 2001; Lee, et al. 2003; Lin, et 

al. 2002). 
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Figure 4. Paclitaxel hepatic metabolism. Paclitaxel enters the hepatocyte via OATP1B1 

and/or OATP1B3. In the hepatocyte, it is metabolized by CYP2C8 to 6 -hydroxypaclitaxel, 
which is the major metabolite, and by CYP3A to metabolite C3´-hydroxypaclitaxel. Paclitaxel 
and its metabolites either diffuse to plasma or are excreted to the biliar canaliculi by P-
glycoprotein.  

 

 

3.2 Metabolism in tumoral tissues 

The presence in tumoral tissues of CYPs relevant for taxanes metabolism has 

been investigated in some studies. These enzymes could not affect the PK of the drug, 

but might be important for the efficacy by altering the drug metabolism inside the 

cancer cells (e.g. by metabolizing the drug to less active molecules). For example, an 
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association between low expression of CYP3A4 in breast tumors and a better response 

to docetaxel has been reported (Miyoshi, et al. 2002), a high tumoral expression of 

CYP3A4 in peripheral T-cell lymphomas has been significantly associated with a lower 

complete remission of patients treated with the standard multiagent chemotherapy 

CHOP (Rodriguez-Antona, et al. 2007) and a high CYP3A expression in osteosarcoma 

tumours has been associated with metastasis and poor prognosis, although only 18 

patients were available to perform this analysis (Dhaini, et al. 2003).  

 

In some studies CYP3A4 or CYP3A5 expression has been detected in tumoral 

tissues, for example in prostate (Moilanen, et al. 2007; Murray, et al. 1995b; Zhang, et 

al. 2006), breast (Kapucuoglu, et al. 2003; Modugno, et al. 2003) and ovarian cancer 

samples (DeLoia, et al. 2008; Downie, et al. 2005). CYP2C8 expression has been 

reported in breast (Knupfer, et al. 2004) and ovarian cancers (DeLoia et al. 2008). 

Then again, lack of expression or very low levels of these genes have been detected in 

cancer samples in other studies: CYP3A4 in prostate (Westlind, et al. 2001) and 

ovarian cancers (DeLoia et al. 2008), CYP3A4/5 in breast (Modugno et al. 2003; 

Oyama, et al. 2005) and no CYP2C8 was detected in studies on breast cancer 

(Modugno et al. 2003). Thus, due to these controversial results, further studies are 

needed to identify the relevance of CYP2C8 and CYP3A enzyme(s) expression in 

tumoral tissues, with more homogenous tumour types as well as techniques able to 

accurately measure the expression at different levels (most of these studies were 

performed exclusively at mRNA level).  

 

 

3.3. Hepatic transport    

 Taxanes uptake into the hepatocytes is mediated by the organic anion 

transporting polypeptide (OATP) 1B3 and, to some extent, OATP1B1 (Gui et al. 2008; 

Smith et al. 2005) and efflux is mediated by P-gp (Figure 4) (Sparreboom, et al. 1997; 

Walle and Walle 1998) and also by MRP2 for docetaxel (Huisman, et al. 2005). The 

genes encoding OATP1B1/3 and P-gp are subjected to relevant genetic variation, 

which can alter drug metabolism and disposition, as it has been shown previously 

(Leschziner, et al. 2007; Rodriguez-Antona et al. 2008; Rodriguez-Antona et al. 2005; 

Smith et al. 2007). For the uptake transporters OATP1B3 and OATP1B1 three 

missense polymorphisms with reported functional consequences are known (Smith et 

al. 2007), while for ABCB1 mainly three variants (1236C>T, 2677G>T, 3435C>T) 

(Leschziner et al. 2007) have been associated with altered transport.  
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3.4. Transport in tumoral cells 

Both docetaxel and paclitaxel are substrates of P-gp together with other anti-

cancer drugs such as vinca alkaloids, anthracyclines and imatinib (Huang 2006). Over-

expression of P-gp (encoded by ABCB1 multidrug resistance gene) in tumor cells has 

been associated with resistance to taxanes in vitro (Horwitz, et al. 1986; Takano, et al. 

2009), although demonstrating its role in vivo as a clinical marker for drug response 

has been problematic and remains questioned (Chen, et al. 2009; Chevillard, et al. 

1996; Fojo and Menefee 2007). Thus, its relevance in patients remains unclear (Seve 

and Dumontet 2008). Another efflux transporters, MRP7 (Hopper-Borge, et al. 2004; 

Shen, et al. 2009) and MRP2 (Huisman 2005) have also been related to resistance to 

taxanes in vitro  but their role in vivo has not been determined.  

 

Therefore, alterations in taxanes metabolism and transport could have a critical 

importance for their toxicity and/or efficacy. Both germline and somatic variations 

altering the function of the critical proteins mediating taxanes PK could be markers of 

taxanes outcome, however, at the moment, their relevance is mainly unknown.  

 

 

4. Therapeutic target of taxanes  
 
 
 
 Taxanes are anti-mitotic drugs able to alter the microtubule dynamics by binding 

to the β-subunits of microtubules. Microtubules are composed of heterodimers of α- 

and β-tubulins (Figure 5) and are essential for diverse cellular functions, such as cell 

division, maintenance of cell shape and intracellular trafficking. The binding of 

paclitaxel or docetaxel to the β-tubulin subunit leads to the stabilization of the cellular 

microtubules, mitotic arrest and finally to cell death (Seve and Dumontet 2008). 
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Figure 5. Taxanes target β-tubulins. A) Microtubules are composed of heterodimers of α- and 
β-tubulin, which are continuously incorporated and released. B) and C) Taxanes bind to β-
tubulin in the inner surface of the microtubule structure. 

 
 
 
 

4.1. -tubulin isotypes and their expression in normal and tumoral tissues 

There are at least 8 different β-tubulin isotypes expressed in humans (Leandro-

Garcia LJ, submitted for publication). These genes are constituted by 4 exons and 3 

introns, while the non-functional pseudogenes lack most or all introns (Berrieman, et al. 

2004). The β-tubulin isotypes are well conserved across species and have related 

amino acid sequences differing primarily within the C-terminal 15-20 amino acids, a 

region of the protein that is the putative binding site for several microtubule-associated 

proteins (MAPs) (Sullivan and Cleveland 1986). 

 

Isotypes I and IVb are ubiquitous, but others are tissue-specific and the 

contribution of the different isotypes to the total β-tubulin content varies in each tissue. 

The expression pattern differs also between normal and tumoral tissue (Leandro-

Garcia LJ). These changes in the expression pattern are believed to play a part in the 

resistance to microtubule targeting drugs.  

 

The most frequent change is the tumoral overexpression of class III β-tubulin. In 

normal tissue isotype III is present only in nervous tissue, while its expression has been 

observed in several tumoral tissues such as breast, ovarian and lung. High tumoral β-

tubulin III expression has been associated with worse survival in breast (Seve and 

Dumontet 2008) head and neck (Koh, et al. 2009), and non small cell lung cancer 

(Rosell, et al. 2003; Seve, et al. 2005b), which may indicate that β-tubulin III expression  
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could be used as a prognostic predictor marker. In addition, class III tumoral over-

expression has been demonstrated in vitro to be related to taxanes resistance (Hari, et 

al. 2003; Kavallaris, et al. 1999). In fact, β-tubulin III has also been associated with 

resistance to taxanes in patients (Seve and Dumontet 2008). All together, β-tubulin III 

could act as a prognostic and a treatment predictive factor, depending on the tumor 

type and other clinical variables. 

 

Specifically, for ovarian carcinoma, which is on the main topics of this Thesis, 

high levels of classes I and IV, intermediate levels of class III and low levels of class II 

β-tubulin protein expression have been reported by Ohishi et al. (Ohishi, et al. 2007). 

An increased expression of β-tubulin III in ovarian carcinoma has also been associated 

with worse overall survival (Ferrandina, et al. 2006) and response to treatment 

(Kavallaris, et al. 1997; Mozzetti et al. 2005; Umezu, et al. 2008), although Aoki et al. 

reported a better survival for patients on taxane-based regimens with ovarian clear cell 

adenocarcinoma expressing class III (Aoki, et al. 2009). On the other hand, absence of 

β-tubulin II expression has been associated with advanced stage and short progression 

free survival (Ohishi et al. 2007).  

 

 

4.2. Regulation of β-tubulin isotypes  

The regulation of the expression of the different β-tubulin isotypes remains 

largely unknown.  The molecular mechanisms leading to the up-regulation of class III β-

tubulin in tumors are becoming the subject of increasing number of investigations. 

Hypoxia induced factor I (HIF-1) seems to play a role in the regulation of class III β-

tubulin in ovarian carcinomas (Raspaglio, et al. 2008), and epigenetic modifications 

have also been suggested to be involved in its over-expression, in ovarian tumors 

(Izutsu, et al. 2008) and in melanoma cells (Akasaka, et al. 2009). A recent study by 

Cochrane et al. suggested an important role for microRNAs (Cochrane, et al. 2009). 

 

 

4.2.1. MicroRNAs regulating β-tubulin expression 

MicroRNAs (miRNAs) are small, 20–22 nucleotide long, non-coding RNAs that 

usually act as endogenous repressors of gene activity. They bind to partially 

complementary sites, usually in the 3′ UTRs of mRNAs, producing inhibition of 

translation and some level of degradation of the target mRNA. Over 850 mature human 

miRNA sequences are represented in the Sanger database version 13.0 and they are 



Introduction 

34 

 

predicted to regulate expression of at least 30% of genes in humans. miRNAs have 

roles in important cellular processes including development, differentiation, proliferation 

and apoptosis. They can be involved in the initiation and progression of cancer and 

both losses and gains of miRNA function have been shown to contribute to cancer 

development, thus, they can function as both, tumor suppressors and oncogenes. 

miRNA expression can be deregulated in cancer by a variety of mechanisms including 

amplification, deletion, mutation, and epigenetic silencing (Croce 2009; Cho 2007).  

 

Cochrane et al. have shown in vitro that increased levels of miR-200c cause a 

decrease in class III β-tubulin expression (Cochrane et al. 2009). miR-200c is part of 

the miR-200 family which is formed by five miRNAs located in two clusters in 

chromosomes 1 and 12 in the human genome (Gregory, et al. 2008). The 200b/c/429 

miRNAs are predicted to share the same target sites based on the similarity of their 

seed sequences, while 1 nucleotide change in the seed sequence of miR-141 and miR-

200a mark some differences in their targets (Gregory et al. 2008). The miR-200c family 

is involved in the epithelial to mesenchymal transition (EMT) and they have been 

shown to regulate E-cadherin expression via suppression of zinc finger E-box binding 

homeobox proteins 1 and 2 (ZEB1 and ZEB2) (Gregory et al. 2008; Korpal, et al. 2008; 

Park, et al. 2008). High expression of miR-200c restores in vitro the sensitivity to 

microtubule targeting agents (Cochrane et al. 2009). In a recent study, a high 

expression of miR-200a, miR-200b and miR-429, all in the same cluster, was 

associated with improved ovarian cancer survival (Hu, et al. 2009), however, in another 

study high expression of the miRNAs from the miR-200 family correlated with poor 

survival (Nam, et al. 2008). Thus, further studies are needed to clarify the importance 

of microRNAs for tubulin expression and to explore their association with taxanes 

treatment outcome.  

 

In conclusion, many remarkable discoveries have been made in the recent 

years on the pharmacogenetics field: using different approaches various genetic 

variants have been associated with relevant drug-related toxicities and microRNAs 

have been shown to play a key role not only in the tumor biology but also in drug 

therapeutic responses. As for taxanes, at the present time, there are no clinical 

markers of therapy outcome and it is impossible to predict neither efficacy nor toxicity. 

Variations affecting taxanes PK and /or PD, either through genetic variations or 

alteration in the regulation of key genes, could play a critical role in therapy outcome. 

Previous investigations have attempted to approach this problem, but studies 
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conducted with non-functional SNPs, lack of characterization of full haplotypes, 

heterogenous patient populations and sometimes lack of essential gene expression 

data in the target tissue, have hindered these studies. Thus, there is a need to identify 

biomarkers of taxanes outcome. These could help to individualize therapies and would 

have a great social impact, improving and prolonging the life of a significant number of 

cancer patients. 
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1. La farmacogenética 

Las bases moleculares que determinan la toxicidad de un medicamento, o 

cualquier otro xenobiótico, tienen una gran relevancia clínica, ya que se ha estimado 

que las reacciones adversas a fármacos constituyen entre la cuarta y sexta causa de 

muerte más frecuente en los países desarrollados. Asimismo, la falta del efecto 

terapéutico hace su uso inútil. En este contexto, el fondo genético de cada individuo 

puede jugar un papel decisivo en la respuesta a un fármaco. Esta es la base de la 

Farmacogenética, que estudia las variaciones genéticas que modifican la eficacia 

terapéutica y/o toxicidad de un fármaco, ayudando a seleccionar el tratamiento 

farmacológico más seguro y eficaz para cada paciente (Eichelbaum et al. 2006; Evans 

and Relling 2004; Pirmohamed et al. 2004). Las variaciones genéticas incluyen 

polimorfismos puntuales de un nucleótido (SNP), pequeñas inserciones, deleciones o 

variaciones en el número de copia de los genes (McLeod and Evans 2001) y pueden 

ser germinales o somáticas. A pesar de los avances en la medicina molecular y el 

diseño de fármacos dirigidos a dianas celulares específicas, la eficacia clínica de la 

terapia anticancerosa está limitada de una forma importante por la incapacidad de 

predecir de una forma precisa la respuesta del tumor y los efectos tóxicos en el 

paciente a la terapia. Esta incapacidad de predecir los efectos en el paciente tiene una 

especial relevancia en los tratamientos oncológicos debido a los estrechos índices 

terapéuticos de estos medicamentos (Dawood and Leyland-Jones 2009; Ingelman-

Sundberg 2008).  

 
2. Taxanos: uso, problemas clínicos y mecanismo de acción 

Los taxanos se utilizan para el tratamiento de varios tipos de tumores sólidos 

(mama, ovario, próstata, pulmón). Los dos taxanos más comúnmente utilizados son el 

docetaxel (Diaz and Andreu 1993; Saloustros et al. 2008) y el paclitaxel (Rowinsky 

1997). Ambos comparten el mismo mecanismo de acción que consiste en su unión a 

la β-tubulina y estabilización de los microtúbulos celulares, causando una parada del 

ciclo celular y entrada en apoptosis (Schiff et al. 1979; Yvon et al. 1999). Los 

principales problemas clínicos de los taxanos incluyen: la falta de eficacia y las 

toxicidades neurológicas (paclitaxel) y hematológicas (paclitaxel y docetaxel). Mientras 

que los problemas asociados a la toxicidad hematológica han disminuido gracias al 

uso de factores de crecimiento hematopoyéticos (Eisenhauer et al. 1994; Rowinsky et 

al. 1993a), la neurotoxicidad sigue siendo inmanejable y es el efecto adverso más 

relevante del paclitaxel  (Chaudhry et al. 1994; Lipton et al. 1989). Esta neurotoxicidad, 

de base molecular desconocida, presenta grandes diferencias interindividuales. Por 

otra parte, la resistencia a taxanos se ha observado en varios tipos de tumores: ovario 
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(Heintz et al. 2006; Ozols et al. 2003), mama (Paradiso et al. 2005) y pulmón (Seve 

and Dumontet 2005). Como causa de la resistencia a taxanos se ha sugerido entre 

otros mecanismos, la inestabilidad cromosómica (Swanton et al. 2009), la sobre-

expresión de la P-glicoproteína y del isotipo III de la -tubulina (Mozzetti et al. 2005) y 

mutaciones en las -tubulinas (Giannakakou et al. 1997), si bien este último ha sido 

descartado en tumores (Sale et al. 2002). La identificación de factores predictivos, 

tanto de resistencia como de toxicidad a taxanos, es esencial para mejorar la terapia 

con estos fármacos. 

 

3. Metabolismo de taxanos 

Los taxanos se suministran de forma intravenosa y su eliminación está 

mediada por el metabolismo hepático y la excreción biliar. Existe una gran variabilidad 

interindividual en la farmacocinética del paclitaxel (Henningsson et al. 2005; Smith et 

al. 2007; Somlo et al. 2001) y docetaxel (Baker et al. 2009; Bosch et al. 2006; Tran et 

al. 2006). Esta variabilidad tiene una base molecular desconocida, pero diversos 

estudios sugieren que variaciones genéticas que afecten el metabolismo y transporte 

de los taxanos podrían ser relevantes en este proceso (Green et al. 2009; Rodriguez-

Antona et al. 2008; Smith et al. 2007). El paclitaxel entra en los hepatocitos vía 

OATP1B1/3, y se excreta al canalículo biliar mediante la P-glicoproteína. En el hígado 

el paclitaxel es metabolizado por el CYP2C8 y CYP3A4/5 (Rahman et al. 1994; 

Vaclavikova et al. 2004) y el docetaxel por el CYP3A4/5 (Vaclavikova et al. 2004). Una 

alteración en la expresión y actividad de estos enzimas y transportadores, tanto en el 

hígado como en los tejidos tumorales, podría influir en las toxicidades y eficacia de 

estos fármacos. 

 

4. β-tubulinas: expresión y regulación 

Las tubulinas forman los microtubulos celulares, que son los principales 

componentes del citoesqueleto y que permiten, entre otros procesos la división celular. 

Las β-tubulinas están codificadas por una familia multigénica que produce proteínas 

ligeramente distintas, que presentan una alta conservación evolutiva y una expresión 

específica de tejido. Las células tumorales presentan alteraciones en la expresión de 

los isotipos de β-tubulina que podrían afectar la sensibilidad a los fármacos de unión a 

microtúbulos (LJ Leandro et al). Específicamente, una sobre-expresión tumoral del 

isotipo III se ha  relacionado con una resistencia a los fármacos de unión a 

microtúbulos (Seve and Dumontet 2008). La regulación de los distintos isotipos de β-

tubulina es desconocida, pero evidencias in vitro sugieren que los microRNAs, en 

especial el miR-200c, regulan la expresión de la β-tubulina III (Cochrane et al. 2009).
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The principal purpose of this thesis was to increase our knowledge on the expression 

and regulation of taxanes metabolizing enzymes (CYPs) and their therapeutic target (β-

tubulin), as well as to identify biological markers associated with taxanes efficacy and 

toxicity. This data could provide the basis for an individualized taxane 

pharmacotherapy. To achieve this, we placed the following specific aims: 

 

 

1. To characterize in a comprehensive manner the CYP3A enzyme(s) expression in 

normal and tumoral prostate tissue to determine whether these enzymes could 

directly influence the efficacy of docetaxel treatment in prostate cancer patients. 

 

 

2. To establish the contribution of microRNAs to β-tubulin protein expression and to 

determine if they could influence the response and the survival of ovarian cancer 

patients treated with a paclitaxel-based therapy.  

 

 

3. To identify genetic markers associated with paclitaxel neurotoxicity by using a 

pharmacokinetics-based candidate gene approach and to integrate them in a single 

prediction model to assess the individual risk to develop neurotoxicity. 
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El objetivo principal de esta tesis fue incrementar nuestros conocimientos sobre la 

expresión y regulación de los enzimas que metabolizan los taxanos (los CYPs) y de su 

diana terapéutica (la β-tubulina) y utilizar estos conocimientos para identificar 

marcadores biológicos asociadas con la eficacia y toxicidad de los taxanos. Estos 

datos podrían proporcionar una base para la individualización de farmacoterapia con 

estos fármacos. Este objetivo principal se desglosa en los siguientes objetivos 

específicos: 

 

 

1. Caracterizar la expresión de los enzimas CYP3A en tejido de próstata normal y 

tumoral para determinar si estos enzimas podrían influir directamente en la eficacia 

del docetaxel en el tratamiento de pacientes con cáncer de próstata. 

 

 

2. Establecer la contribución de los microARNs a la expresión proteica de la β-

tubulina y determinar si éstos podrían influir en la respuesta y supervivencia de 

pacientes con cáncer de ovario tratados con taxanos. 

 

 

3. Identificar marcadores genéticos asociados con la neurotoxicidad de paclitaxel 

utilizando una estrategia de genes candidatos basada en la farmacocinética e 

integrarlos a un único modelo de predicción para estimar el riesgo individual de 

neurotoxicidad. 
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1. Patients and clinical data 
 
 

The cancer patient samples used in this thesis were collected through close 

collaborations with Spanish Hospitals: Universitary Hospital Vírgen de las Nieves in 

Granada, Hospital de León, Hospital La Paz and Hospital de Alcorcón in Madrid. The 

studies were approved by The Ethical Committees of the respective Hospitals, and 

informed consent was given by the patients. The three different studies in this thesis 

were carried out with different sample sets corresponding to oncology patients, mainly 

with prostate, ovarian, breast and lung cancer. The prostate samples were used to 

determine the expression pattern of cytochome P450 3A in normal and tumoral 

prostate tissue. Ovarian cancer samples were employed to study the association 

between miRNA expression, β-tubulin isoforms and response to taxanes treatment. 

And the samples from cancer patients treated with paclitaxel were used to identify 

genetic factors underlying the interindividual differences in neurotoxicity caused by 

paclitaxel. Below the specific details of each sample type are described: 

 

 

1.1. Benign prostatic hyperplasias (BPH) and prostate cancer samples  

 These samples were collected in the Department of Pathology from the 

Universitary Hospital Vírgen de las Nieves in Granada with the collaboration of the 

Tumor Bank unit, coordinated by the Spanish National Cancer Research Centre 

(CNIO). The study included 14 benign prostatic hyperplasia (BPH) tissues and ten 

matched non-tumoral/tumoral prostate tissues; both frozen and paraffin embedded 

samples were available. Twenty-five additional tumoral prostate paraffin sections were 

obtained from the Department of Pathology from the Hospital de León. The specimens 

were selected from radical prostatectomies by an expert pathologist. Hematoxylin and 

eosin-stained sections were examined by a pathologist to determine the percentage of 

cancer cells in the tumor samples. The Gleason scores of the frozen samples were 

between five and seven and T stages of T2 or T3. The paraffin samples from the 

Hospital de León had Gleason scores between six and nine, with T stage T2 or T3 in 

all cases. In addition, seven liver samples were used for RT-PCR mRNA quantification.  

 

1.2. Ovarian cancer samples 

Seventy two ovarian cancer samples were collected in the Pathology 

Department, Hospital La Paz in Madrid. All patients received a platinum/taxane-based 

chemotherapy for at least 6 cycles and underwent a baseline CT scan and exploratory 
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laparotomy for diagnosis, staging, and debulking when feasible. The patients were 

classified according to the International Federation for Gynecology and Obstetrics 

(FIGO) classification. Optimal debulking was defined as ≤ 1 cm (diameter) residual 

disease. A complete response (CR) was defined as absence of all clinical/radiographic 

evidence of disease. In addition, a second-look laparotomy (SLL) was performed on 

most of the patients having achieved a CR after planned treatment, and all of them who 

were optimally debulked. In patients that after the treatment planned achieved a CR 

and did not accept a SLL, or whether this procedure was not feasible, and also in 

patients with a partial response, a second CT scan was performed one month after the 

first evaluation to confirm the response. Follow-up data were obtained by retrospective 

chart review. Progression-free survival (PFS) was defined as the time interval between 

the start of the treatment and the first confirmed sign of disease recurrence or 

progression. Overall survival (OS) was defined as the time interval between the start of 

the treatment and the date of death or end of follow-up. Hematoxylin and eosin-stained 

tissue sections were reviewed by an experienced pathologist and the selected samples 

included at least 80% of tumor cells and no large necrotic areas. All the samples were 

paraffin embedded. Most of the specimens were from serous cystadenocarcinomas 

(79%) with a mean follow-up of 43 months. The main clinical data associated to the 

samples is presented in Table 2.  

 

Table 2. Characteristics of the 72 samples from patients with ovarian cancer. 

Characteristicsa No. % 

Age at study entry (years) Mean  SD 56.8  10.8 

Histology   

Serous cystadenocarcinoma 57 79 

Clear cell tumour 6 8 

Endometrioid tumour 4 6 

Mucinous cystadenocarcinoma 3 4 

Mixed endometrioid-clear cell 1 1 

Mixed endometrioid-serous 1 1 

FIGO stage b   

I 3 4 

II 5 7 

III 54 75 

IV 10 14 

Grade of Differentiation   

1 8 11 

2 24 33 

3 39 54 
                                       a 

All patients included in the study were Caucasian females. 
                                  b 

FIGO = International Federation of Gynecology and Obstetrics. 
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For the analysis of response to treatment and survival, we used a homogenous 

series of patients: the subgroup of serous cystadenocarcinomas samples with Figo 

Stages III or IV (IIIa (12%), IIIb (16%), IIIc (54%) and IV (16%). Concerning the 

differentiation grade of these tumors, 61, 32 and 7% had grade 3, 2 and 1, respectively. 

The mean age of the patients was 56 years. Data on treatment response is presented 

in table 3.   

 

 

 
Table 3. Response to treatment in patients with advanced (Figo stage III/IV) serous 
ovarian adenocarcinomas  

  

Characteristicsa No. % 

Response to treatment   

Complete response 38 67 

Partial response 11 19 

Stable disease 3 5 

Progressive disease 4 7 

Unknown 1 2 

Pathological Response    

Complete response 14 25 

Stable disease 10 17 

Unknown 33 58 

Debulking status   

Optimal (<1 cm) 24 42 

Suboptimal (>1 cm) 12 21 

Unknown 21 37 

Relapse    

Yes 47 83 

No 8 14 

Unknown 2 3 

Recurrence-free survivalb (months)   

Mean  SD 24.8  25.9 

Exitus     

Yes 35 61 

No 19 33 

Unknown 3 5 

Overall survivalc (months)   

Mean  SD 40.4  26.3  
 

 

a 
All patients included in the study were Caucasian females. 

b 
Recurrence-free survival (PFS) was defined as the time interval between the start of the 

treatment and the first confirmed sign of disease recurrence or progression.  
c 

Overall survival (OS) was defined as the time interval between the start of the treatment and 
the date of death or end of follow-up. 
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1.3. Samples from cancer patients treated with paclitaxel and treatment 
schedules 

 A total of 132 cancer patients treated with paclitaxel in the Oncology Unit of the 

Hospital Alcorcón were recruited between 2006 and 2008. Sixty-two cases were 

recruited in a retrospective basis (ie. paclitaxel administration started before the 

beginning of the study) and 56 prospectively from December of 2006 to March of 2008. 

Inclusion criteria were: histologically documented solid neoplasia; chemotherapy 

regimen including paclitaxel, age more than 18 years, life expectancy of ≥12 weeks; 

Eastern Cooperative Oncology Group (ECOG) performance status of 2 or less; no 

chemotherapy, hormonal therapy nor radiotherapy within 4 weeks before treatment; 

adequate contraception for women of childbearing potential; and adequate bone 

marrow, renal and hepatic function. Exclusion criteria were three or more previous 

chemotherapy regimens, hematologic malignancy and previous neuropathy caused by 

conditions such as alcoholism, diabetes mellitus or peripheral vascular disease.  

 

DNA could not be obtained for six patients and key clinical data was not 

available for four patients. Four patients had clinical conditions that interfered with 

paclitaxel neurotoxicity evaluation and were excluded from the study: one patient had 

Spanish toxic oil syndrome, another had been diagnosed with multiple sclerosis, 

presented residual grade 2 neurotoxicity from a previous chemotherapy treatment and 

the last patient had a history of alcohol abuse. In total, 118 patients were included in 

the final analysis. Patient characteristics and chemotherapy regimens are summarised 

in Table 4.  

 

Paclitaxel was supplied as a concentrated solution in a mixture of Cremophor 

EL and ethanol and was administered mainly as 1-hr intravenous infusion on weekly 

schemes and as 3-hr intravenous infusion on the first day of the 3-week cycles. 

Standard intravenous premedication consisted of dexamethasone (10 mg), 

dexclorfeniramina (5 mg), and ranitidine (20 mg), given 30 minutes before paclitaxel 

infusion.  
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Table 4. Characteristics of the 118 evaluable patients included in the study. 

Characteristics
a
 No. % 

Age at study entry (years)   

Mean  SD 60.7  11.5 

(minimum-maximum) 29-87 

Gender   

Male 42 36 

Female 76 64 

Body weight (kg)   

Mean  SD 66.2  12.8 

(minimum-maximum) 46-122 

BSA (m
2
)  

Mean  SD 1.73  0.18 

(minimum-maximum) 1.38-2.46 

Site of primary tumor   

Lung 39 33 
Breast 38 32 
Ovary 24 20 
Uterus 6 5 
Head and neck 4 3 

Other
b
 7 6 

Type of treatment   

Palliative 75 64 
Adjuvant 39 33 

Neoadjuvant 4 3 

Chemotherapy
c
   

Paclitaxel 175 + Carboplatin 63 53 
Paclitaxel 80 25 21 
Paclitaxel 150 + Gemcitabine 7 6 
Paclitaxel 90 + Bevacizumab 5 4 
Paclitaxel 80 + Carboplatin 5 4 
Paclitaxel 80 + Carboplatin + Trastuzumab 4 3 

       Paclitaxel 175 + Cisplatin 3 3 
Paclitaxel 80 + Cetuximab 2 1 

       Paclitaxel 80 + Trastuzumab 2 1 
Paclitaxel 175 + Lapatinib 1 1 

FAC/FEC followed by Paclitaxel 80 1 1 

Paclitaxel infusion time   

3h infusion 74 63 
1h infusion 41 35 
1h and 3h 2 2 

4h infusion 1 1 

Response to treatment   

Progressive disease 23 20 
Stable disease 7 6 
Partial response 37 31 
Complete response 6 5 
Unknown 6 5 

Not assessable
d
 39 33 

 

 

a 
All patients included in the study were Caucasians of European origin 

b 
Other sites of primary tumor were: bladder, urinary tract, germinal, peritoneal and head and 

neck.
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c 
Paclitaxel 80-90 mg/m² had mainly 1hr infusion and 150-175 mg/m² mainly 3hr infusion. All 

doses in mg/m² if not specified otherwise. The different treatments consisted on: paclitaxel 175 
+ carboplatin (paclitaxel 175; carboplatin AUC 6 /3 wks); paclitaxel 80 (paclitaxel 80 /weekly); 
paclitaxel 150 + gemcitabine (paclitaxel 150; gemcitabine 2500 /2 wks); paclitaxel 90 + 
bevacizumab (paclitaxel 1º, 8º, 15º d; bevacizumab 10 mg/kg 1º and 15º d /4 wks); paclitaxel 80 
+ carboplatin (paclitaxel 80 + carboplatin AUC 2 /weekly); paclitaxel 80 + carboplatin + 
trastuzumab (paclitaxel 80; carboplatin AUC 2; trastuzumab 2 mg/kg /weekly); paclitaxel 175 + 
cisplatin (paclitaxel 175; cisplatin 90 /3 wks) in one patient paclitaxel was administered ip; 
paclitaxel 80 + cetuximab (paclitaxel 80; cetuximab 250 /weekly); paclitaxel 80 + trastuzumab 
(paclitaxel 80; trastuzumab 2 mg/kg /weekly); paclitaxel 175 + lapatinib (paclitaxel 175 /3 wks; 
lapatinib1250 mg/d); FAC/FEC followed by paclitaxel 80 (FAC/FEC followed by paclitaxel 80 
/weekly). 
d 

Patients on adjuvant therapy were not assessable.  

 

 

1.3.1. Neurotoxicity assessment and inclusion of relevant clinical data 

The neurotoxicity developed by the different patients included in the study was 

evaluated with data collected from the medical records of the patients. Sensitive and 

motor neurotoxicity was graded according to the National Cancer Institute (NCI) 

Common Toxicity Criteria Version 2: sensory neuropathy grade 1 included numbness/ 

paresthesia in the feet, in grade 2 these symptoms were present in both fingers and 

feet, and grade 3 consisted of functional disabling numbness/ paresthesia. Motor 

neuropathy grade 1 was defined by weakness in feet, in grade 2 the symptoms were 

present in both extremities and patients with grade 3 had trouble walking. At the first 

day of each chemotherapy cycle an evaluation of neurologic symptoms (sensory 

symptoms such as numbness and tingling in fingers of hands and feet, difficulty feeling 

the shape of objects, and motor symptoms such as general weakness, trouble walking, 

and trouble buttoning buttons) and a physical and neurological examination was 

performed. The neurotoxicity developed and the modifications to the treatment regimen 

(dose reductions or suspensions) due to paclitaxel induced neurotoxicity are shown in 

Table 5. The accumulated dose of paclitaxel causing grade 2 neurotoxicity and the total 

accumulated dose of paclitaxel, and other relevant demographic and clinical data such 

as age, gender, body surface area (BSA), type of paclitaxel treatment, tumor 

characteristics, comorbidity factors and previous neurotoxic treatments, were included 

in an anonymous database.  
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Table 5. Neurotoxicity and treatment modifications caused by paclitaxel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

a 
Maximum neurotoxicity according to NCI Common Toxicity Criteria version 2. 

b 
Modifications of the treatment due to paclitaxel induced neurotoxicity. 

 

2. Isolation and quantification of RNA  
 
 

Total RNA was isolated from frozen tissue using TRI reagent (Molecular 

Research Center Inc., Cincinnati, OH, USA) and from paraffin-embedded tissue 

samples using miRNeasy FFPE kit (Qiagen), according to the manufacturers‟ 

instructions. One microlitre of RNA was used to measure the concentration by 

Nanodrop ND-1000 (Wilmington, DE, USA) and the RNA quality was tested through 

1% agarose gel electrophoresis.  

 

 

3. Real time quantitative PCR (qRT-PCR)  
 
 

3.1. qRT-PCR analysis of mRNAs 

One microgram of the total RNA was reverse transcribed using Superscript II 

Reverse Transcriptase (Invitrogen) and an oligo dT14 primer following the 

manufacturer‟s instructions. mRNAs were quantified by real-time PCR with the 

Sequence Detection System 7900HT (Applied Biosystems), using specific primers and 

probes (Table 6) at a final concentration of 0.9 and 0.2 mM respectively, and the 

Universal Master Mix (PE Applied Biosystems). The amplification conditions consisted 

of an initial step at 95 ºC for 10 min, followed by 50 cycles of 15 s at 95 ºC and 1 min at 

Neurotoxicity
a
 n % 

Sensory toxicity   

grade 0 43 36 

grade 1 17 14 

grade 2 44 37 

grade 3 14 12 

Motor toxicity   

grade 0 104 88 

grade 1 7 6 

grade 2 5 4 

grade 3 2 2 

Treatment modifications
b
   

No change 95 80 

Reduction  9 8 

Suspension 14 12 
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60 ºC. Standard curves were generated with serial 1/10 dilutions of cDNAs expressing 

high levels of the gene under study. Normalization was carried out with the internal 

standard -glucuronidase (GUS). Negative controls were present in all series of PCRs 

and all assays were carried out in triplicates. 

 

3.2. qRT-PCR of microRNAs 

For microRNAs qRT-PCR, 25ng of total RNA were reverse transcribed using 

the miRCURY LNA™ First-strand cDNA Kit (Exiqon) and the miRCURY LNA™ 

microRNA Primer Sets (Exiqon) corresponding to hsa-miR-141, hsa-miR-200a, hsa-

miR-200b, hsa-miR-200c, hsa-miR-429 and the control primer set 5S rRNA, according 

to the manufacturer‟s instructions. Negative controls consisting on reaction mix without 

reverse transcriptase were included for the different microRNAs studied. Real-time 

quantitative PCR was performed with the Sequence Detection System 7900HT 

(Applied Biosystems) using the miRCURY LNA™ SYBR® Green Master Mix (Exiqon) 

following the manufacturer‟s instructions. The amplification conditions consisted of an 

initial step at 95 ºC for 10 min, followed by 50 cycles of 20 s at 95 ºC and 1 min at 60 

ºC. Negative controls were included to all series of PCRs and all assays were 

performed in triplicates. The delta-delta Ct method was used for the calculation of the 

different amounts of mRNA {Livak, 2001 #326}. Normalization was carried out with the 

endogenous control 5S ribosomic RNA. 

Table 6. Primers for mRNA qRT-PCR  

Primers Taqman: Sequence: 

CYP3A4 FW  CATTCCTCATCCCAATTCTTGAAGT 

CYP3A4 RV  CCACTCGGTGCTTTTGTGTATCT 

Probe 3A4  FAM-CGAGGCGACTTTCTTTCATCCTTTTTACAGATTTT(C)-3BQ1 

CYP3A5-total FW  GCTCGCAGCCCAGTCAATA 

CYP3A5-total RV  AGGTGGTGCCTTATTGGGC 

Probe 3A5-total FAM-TGAAACCACCAGCAGTGTTCTTTCCTTCAC-3BQ1 

CYP3A5 ex2 FW GGGTCTCTGGAAATTTGACACAGAG 

CYP3A5 ex3 RV CTGTTCTGATCACGTCGGGATCT 

Probe CYP3A5*1  FAM-ATGTGGGGAACGTATGAAGGTCAACTCCCT-3BQ1 

CYP3A7 FW AAGGGCTATTGGACGTTTGACA 

CYP3A7 RV ATCCCACTGGCCCGAAAG 

Probe 3A7 FAM-TATTTATGACTGTCAACAGCCTATGCTGGCTATCA-3BQ1 

CYP3A43 FW  AATACGAACATTGCTATCTCCAGCT 

CYP3A43 RV  GCTTCTCACCAACATATCTCCACAT 

Probe 3A43  FAM-TTCACCAGTGTAAAATTCAAGGAAATGGTCCC-3BQ1 

GUS-FW  GAAAATATGTGGTTGGAGAGCTCATT 

GUS-RV CCGAGTGAAGATCCCCTTTTTA 

Probe GUS FAM-CCAGCACTCTCGTCGGTGACTGTTCA-3BQ1 
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4. Isolation and quantification of genomic DNA 
 
 

DNA was isolated from frozen tissue samples using Qiagen DNeasy tissue kit 

(Qiagen, Valencia, CA, USA) and from peripheral blood using an automatic DNA 

extraction robot (Magnapure, Roche, Mannheim, Germany), according to the 

manufacturers‟ recommended protocols. For DNA extractions from saliva we used 

Oragene DNA Self-Collection Kits (DNA Genotek Ottawa, ON, Canada).  

  

The concentration of DNA was quantified by PicoGreen (Invitrogen, Carlsbad, 

CA). For the standard curve, a series of dilutions of genomic DNA (Clontech, Mountain 

View, CA 94043 USA), giving a final DNA concentration from 5 to 160 ng/ l, were 

prepared in TE buffer (10 mM Tris, 1 mM EDTA, pH 7.5). The standards and 2 l of 

each sample were pipetted into a 96 well microplate (Falcon, BD Biosciences, San 

Jose, CA, USA) in duplicates. PicoGreen reagent was diluted in TE buffer according to 

the kit instructions and 195 l of the mix was pipetted in the wells. After 5 minutes 

incubation in dark at room temperature, the Fluorescence was read at 520 nm after 

480 nm excitation using DTX 800 Multimode Detector (Beckman Coulter, Fullerton, CA, 

USA). 

 

 

5. Genotyping and sequencing 
 

 
SNPs were genotyped using either KASPar SNP Genotyping System 

(Kbiosciences, Herts, UK) (Figure 6) or the Amplifluor SNPs Genotyping System 

(Chemicon International, Temecula, CA). The specific primers used for genotyping are 

shown in Table 7. Fifteen ng of DNA were used for the genotyping reactions, which 

were performed in duplicates. The sequence Detection System 7900HT (Applied 

Biosystems, Foster City, CA, USA) was used for fluorescence detection and allele 

assignment. Positive controls (i.e. DNAs with known genotypes) were included in all 

assays. In addition, 5% of samples representing the three different genotypes (i.e. wild 

type homozygotes, heterozygotes and variant homozygotes) were confirmed by other 

techniques and no deviation was observed between the two determinations.  

 

. 
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Figure 6. KASPar SNP Genotyping System. Genotypes were assigned by allelic 
discrimination with the Sequence Detection System 7900HT. 

 
 

 

Direct sequencing by Sanger method was performed with sequencer 3730 from 

Applied Biosystems (Foster City, CA, USA) 
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Table 7. Primers for genotyping and sequencing.  

 

Gene dbSNP Primer Allele 1 Primer Allele 2 Common primer 
Genotyping 

method 

CYP2C8 rs11572080,G>A 
GAAGGTGACCAAGTTCATGCTTGAAC
ACGGTCCTCAATGCTCT 

GAAGGTCGGAGTCAACGGATTGAAC
ACGGTCCTCAATGCTCC 

TCTCCCTCACAACCTT
GCGGAATTT 

KASPar 

CYP2C8 rs1058930, C>G 
GAAGGTGACCAAGTTCATGCTATGTT
AACAATCCTCGGGACTTTATC 

GAAGGTCGGAGTCAACGGATTATGTT
AACAATCCTCGGGACTTTATG 

CTGTTGCTAATATCTT
ACCTGCTCCATTT 

KASPar 

CYP2C8 rs1113129, G>C 
GAAGGTGACCAAGTTCATGCTTGTCT
CTTCTAACAGTATTTTCAAATAGG 

GAAGGTCGGAGTCAACGGATTGTCTC
TTCTAACAGTATTTTCAAATAGC 

YCAGCAGAAGAAAGA
ATTAGTGAGCTTTAA 

KASPar 

CYP2C8 rs7909236, G>T 
GAAGGTCGGAGTCAACGGATTCTCC
ATCATCACAGCACATTGGAAA 

GAAGGTGACCAAGTTCATGCTCCATC
ATCACAGCACATTGGAAC 

GGATTGGAGCCCAGG
TATTTTT 

Amplifluor 

CYP3A4 rs2740574, A>G 
GAAGGTGACCAAGTTCATGCTGACA
GCCATAGAGACAAGGGCAA 

GAAGGTCGGAGTCAACGGATTACAG
CCATAGAGACAAGGGCAG 

CAAGTGGAGCCATTG
GCATAAAATCTATT 

KASPar 

CYP3A5 rs776746, G>A 
GAAGGTGACCAAGTTCATGCTATCTC
TTTAAAGAGCTCTTTTGTCTTTCAA 

GAAGGTCGGAGTCAACGGATTCTCTT
TAAAGAGCTCTTTTGTCTTTCAG 

GCCACCCAAGGCTTC
ATATGATGAA 

KASPar 

ABCB1 rs2032582, G>T 
GAAGGTGACCAAGTTCATGCTATTTA
GTTTGACTCACCTTCCCAGC 

GAAGGTCGGAGTCAACGGATTATATT
TAGTTTGACTCACCTTCCCAGA 

GGACAAGCAYTGAAA
GATAAGAAAGAACTA 

KASPar 

ABCB1 rs1128503, C>T 
GAAGGTCGGAGTCAACGGATTTCCT
GGTAGATCTTGAAGGGC 

GAAGGTGACCAAGTTCATGCTGTCCT
GGTAGATCTTGAAGGGT 

CCACAGCCACTGTTT
CCAA 

Amplifluor 

ABCB1 rs1045642, C>T 
GAAGGTGACCAAGTTCATGCTGGTG
GTGTCACAGGAAGAGATC 

GAAGGTCGGAGTCAACGGATTGGTG
GTGTCACAGGAAGAGATT 

ATGTATGTTGGCCTCC
TTTGCT 

Amplifluor 

ABCB1 rs9282564, A>G 
GAAGGTGACCAAGTTCATGCTATGAA
AATGAAACAAGCTAGTTACCTTTTATT 

GAAGGTCGGAGTCAACGGATTGAAAA
TGAAACAAGCTAGTTACCTTTTATC 

GGACCGCAATGGAGG
AGCAAAGAA 

KASPar 

SLCO1B1 rs4149056, T>C 
GAAGGTGACCAAGTTCATGCTCCAC
GAAGCATATTACCCATGAACA 

GAAGGTCGGAGTCAACGGATTCACG
AAGCATATTACCCATGAACG 

AAGGAATCTGGGTCA
TACATGTGGATATA 

KASPar 

SLCO1B3 rs4149117, G>T 
GAAGGTGACCAAGTTCATGCTTATGG
GAACTGGAAGTATTTTGACAT 

GAAGGTCGGAGTCAACGGATTATGG
GAACTGGAAGTATTTTGACAG 

CACTTACTATCCCATG
AAGAAATGTGGTA 

KASPar 

SLCO1B3 rs7311358, A>G 
GAAGGTCGGAGTCAACGGATTCTCA
GATCTACATATCCAATATCCACGTAT 

GAAGGTGACCAAGTTCATGCTTTCAG
ATCTACATATCCAATATCCACGTAC 

CTTTGCACTGGGATCT
CTGTTT 

Amplifluor 

Sequencing primers: Forward primer Reverse primer   

CYP3A5 rs776746, G>A TTATAAGGTGGTCTCAGCCAAT CAGGGAGTTGACCTTCATACGTT   

 



Materials & Methods 

60 

 

6. Subcellular fractionation and protein concentration determination 
 
 

To obtain microsomal fractions, tissues were homogenized with a glass 

homogenizer in four volumes of ice-cold 50 mM Tris–HCl, pH 7.4 containing 0.25 M 

sucrose and protease inhibitors. The resulting homogenate was centrifuged at 10,000 g 

for 20 min at 4ºC, followed by centrifugation at 100,000 g for 1 h at 4 ºC. The pellet was 

washed and resuspended in 0.1 M PBS, pH 7.4 with 10% glycerol and protease 

inhibitors (Roche). Protein concentration was measured by Bio-Rad protein assay (Bio-

Rad laboratories) using bovine serum albumin (BSA) (Pierce) to create a standard 

curve with known concentrations of protein.  

 

 

7. Antibodies 
 
 
The following antibodies were used for protein detection: CYP3A5 antibody  (ab22692, 

Abcam, Cambridge, UK), cytokeratin 34bE12 (34BE12, FLEX, DAKO, Copenhagen, 

Denmark), class I β-tubulin (clone SAP.4G5, Sigma-Aldrich, St. Louis, MO, USA); class 

II β-tubulin (clone 7B9, Covance, Emeryville, CA, USA); class III β-tubulin (clone TUJ-

1, Santa Cruz Biotechnology, Heidelberg, Germany). Detection was performed with 

Envision Plus Detection System (Dako). 

 

 

8. Immunoblot analysis  
 
 

For the detection of CYP3A5, 50 g of protein were loaded in each well, 

separated by 9% SDS-PAGE using the Mini-PROTEAN III electrophoresis cell (Bio-

Rad) and transferred to polyvinylidene fluoride membranes (Immobilon-P Membrane, 

Millipore, Billerica, MA, USA). Equal loading of proteins was verified by Ponceau S 

staining with 0.1% Ponceau red in 5% acetic acid for 2 min. Ponceau S was washed 

out with PBS and the membranes were blocked with 5% non-fat dry milk in PBS for 1 h 

at room temperature. The membranes were then incubated with the primary antibody 

diluted 1:1500 following the manufacturer‟s instructions. After washing, the membranes 

were incubated with a goat anti-rabbit (DAKO) secondary antibody, and the 

corresponding horseradish peroxide signal was visualized using SuperSignal Femto 

substrate (Pierce, Rockford, IL, USA) and BiomaxLight membranes (Kodak). Protein 

content was determined from standard curves derived from samples that contained 
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known quantities of the specific protein under study. The detection limit under these 

conditions was of 0.025 pmol CYP3A5 protein/mg total microsomal protein. 

 

 

9. Tissue microarray construction 
 
 

Representative areas of the tumors were selected on hematoxylin and eosin-

stained sections and marked on individual paraffin blocks. Two tissue cores (1 mm in 

diameter) were obtained from each specimen. The tissue cores were arrayed into a 

receptor paraffin block using a tissue microarray workstation (Beecher Instruments, 

Silver Spring, MD), as described previously (Hardisson 2003). A hematoxylin and 

eosin-stained section of the array was reviewed to confirm the presence of 

morphologically representative areas of the original lesions. 

 

 

10. Immunohistochemistry (IHC) 
 
 

For the detection of CYP3A5 protein, immunohistochemical staining was 

performed by the DAKO Envision system (DAKO, Glostrup, Denmark) with a heat 

induced, antigen retrieval step. A 1:20000 and 1:1000 dilutions were used for the 

primary and secondary antibodies, respectively. Sections from the paraffin-embedded 

tissue were immersed in boiling 10 mM sodium citrate at pH 6.5 for 2 min in a pressure 

cooker and finally proteinase K was added for 10 min at room temperature. For the 

frozen tissues 5 mm sections were cut with a cryostat, dehydrated in 70% ethanol over 

night, fixed in acetone for 10 min, and stained with the same antibodies and dilutions 

used for the paraffin-embedded tissue, without antigen retrieval. Kidney samples were 

used to optimize the signal detection and the specificity of the signal was assured by 

following the same immunohistochemical staining procedure but without adding the 

primary antibody. The results were analyzed by two experienced pathologist. 

For the detection of the -tubulin isotypes I, II and III IHC was performed on 4-

μm sections of formalin-fixed, paraffin-embedded tissue microarrays. Briefly, the tissue 

sections were deparaffinized and rehydrated in water, after which antigen retrieval was 

carried out by incubation in EDTA solution, pH 8.2 at 50ºC for 45 minutes in an 

autoclave. Endogenous peroxidase and non-specific antibody reactivity was blocked 

with peroxidase blocking reagent (Dako) at room temperature for 15 minutes. The 

sections were then incubated for 60-90 minutes at 4ºC with the following antibody 
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dilutions: class I β-tubulin (dil. 1:100), class II β-tubulin (dil. 1:100), class III β-tubulin 

(dil. 1:200). Immunoreactivity was scored by estimating the percentage of tumor cells 

with cytoplasmic immunostaing. Labeling frequency was scored on a three-tiered 

system as absent, low expression (≤75%) and high expression (>75% of tumor cells 

showing immunoreactivity). 

   

 

11. Statistical analysis 
 
 

All statistical analyses were carried out using SPSS software package version 

17.0 (SPSS, Inc., Chicago, IL). Nominal two-sided P-values less than 0.05 were 

considered statistically significant.  

 

The association between the expression levels of the miR-200 microRNAs was 

determined by Pearson coefficient. An association between microRNAs expression and 

continuous demographic variables (such as age) was also studied by Pearson 

coefficient. For categorical variables (such as treatment response, pathological 

response, survival and relapse, and tumoral characteristics), since the tumoral miR-200 

family content followed a normal distribution (Kolmogorov–Smirnov test), Student t-

tests were used applying Welch correction when the standard deviations differed 

significantly between groups. Protein expression of β-tubulin II and III was used as a 

categorical binary variable (low expression or high expression) using 75% of positive 

cells as the cut-off. The response was divided into two categories: patients with 

complete response and those with partial response, stable disease and disease 

progression grouped together. Associations between the response to treatment and 

clinical variables (histology subtype, differentiation grade, tumor stage and patient´s 

age) were evaluated with the χ2 test, Fisher's exact test and Student‟s T-test when 

appropriate. To further analyse response to treatment (dichotomic clinical and 

pathological response) with respect to microRNA expression a logistic regression 

model was applied and the Odds Ratio (OR) was estimated. A multivariate logistic 

regression model was used to adjust for relevant clinicopathological variables. 

Kaplan-Meier analysis (log-rank test on 2 degrees freedom) was used to 

evaluate the effect of microRNA expression on disease outcome for both recurrence-

free and overall survival. In addition, univariable and multivariable Cox regression 

analyses were performed, the latter including T-stage, grade of differentiation and 

debulking status as covariates.  
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For the paclitaxel neurotoxicity study we estimated, based on a sample size of 

120 patients, with a prevalence of neurotoxicity of 50%, that we had over 80% power at 

an alpha level of 0.05 to detect per-allele risk ratios (RR) of at least 2 for allele 

frequencies above 5%. The power was less for protective effects (RR>0.50) associated 

with the minor allele, although remained above 80% for allele frequencies above 15%. 

Associations between genotypes and risk of paclitaxel neurotoxicity were first tested for 

individual polymorphisms using Kaplan-Meier analysis (Kaplan and Meier 1958) (log-

rank test on 2 degrees freedom), modeling the cumulative dose of paclitaxel up to the 

development of grade 2 neurotoxicity. Patients with no or minimal adverse reaction 

(grade 0/1) were censored at total cumulative dose. Associations with neurotoxicity 

were also tested in this way for age (quartiles), gender, BSA (quartiles), paclitaxel 

treatment regimen (weekly 80-90 mg/m2 versus every 3 weeks scheme 150-175 

mg/m2), previous neurotoxic treatments, comorbidity factors (diabetes mellitus, alcohol 

intake, cardiopathy, nephropathy, etc.), retrospective versus prospective cases and 

type of treatment (palliative versus adjuvant or neo-adjuvant). Associations with 

cumulative dose of paclitaxel up to the development of grade 2 neurotoxicity were also 

evaluated for each polymorphism using univariable and multivariable Cox regression 

under a log-additive model, the latter including age and treatment regimen as 

covariates, since they were found to be independently associated with neurotoxicity. 

We also evaluated a model including all SNPs for which individual associations were 

observed, in which the variants associated with increased metabolic activity acted in a 

log-additive fashion, both within and between SNPs. This was done by analyzing the 

number of such variants carried as a continuous variable.  
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1. Pacientes 

Las muestras de los pacientes de cáncer utilizados en esta tesis doctoral 

fueron recogidas gracias a una estrecha colaboración con los siguientes hospitales 

españoles: Hospital Virgen de las Nieves en Granada, Hospital La Paz, Hospital de 

León y Fundación Hospital de Alcorcón en Madrid. Los estudios fueron aprobados por 

el correspondiente comité ético de cada hospital y las muestras se recogieron tras la 

firma de un consentimiento informado. Los tres estudios que componen esta tesis se 

llevaron a cabo con pacientes oncológicos distintos: 1. Para determinar la expresión de 

los citocromos P450 3A (CYP3A) en tejido próstatico normal y tumoral, trabajamos con 

14 muestras de hiperplasia benigna de próstata (BHP), y con 10 muestras pareadas 

de próstata normal/ tumoral. 2. Para estudiar la posible asociación entre la expresión 

de microARNs (miARNs), la expresión de las isoformas I, II y III de β-tubulina y la 

respuesta al tratamiento con taxanos, se utilizaron 72 muestras de cáncer de ovario. 3. 

Para identificar variantes genéticas asociadas al riesgo de desarrollar neurotoxicidad 

por paclitaxel, se utilizaron 118 muestras de ADN de pacientes tratados con paclitaxel 

que tenían asociados los datos demográficos y clínicos más importantes en bases de 

datos codificadas. 

 

2. Técnicas relacionadas con ARN 

El ARN total se aisló del tejido congelado y del tejido parafinado mediante los 

kits comerciales TRI reagent (Invitrogen) y miRNeasy FFPE kit (Qiagen). La 

concentración de ARN se cuantificó mediante Nanodrop ND-1000. Para obtener ADN 

complementario se retrotranscribió un microgramo de ARN mediante Superscript II 

Reverse Transcriptase y oligo dT14. Las cantidades de ARN mensajero de genes 

específicos fueron cuantificadas mediante RT-PCR a tiempo real (qRT-PCR), usando 

primers y sondas específicas (Tabla 6). Para la cuantificar la expresión de los miARNs 

hsa-miR-141, hsa-miR-200a, hsa-miR-200b, hsa-miR-200c, hsa-miR-429 y del 5S 

rRNA se utilizó qRT-PCR partiendo de un total de 25 ng de ARN total siguiendo las 

instrucciones de los kits de EXIQON: miRCURY LNA™ First-strand cDNA Kit y un 

conjunto de primers de miRCURY LNA™. 

 

3. Técnicas relacionadas con ADN  

 El ADN genómico fue aislado a partir de muestras de saliva, sangre o tejido 

congelado de pacientes mediante: Oragene DNA Self-Collection Kits (DNA Genotek), 

extracción automática de ADN (Magnapure) y Qiagen DNeasy tissue kit, 

respectivamente. La concentración de ADN se cuantificó mediante Picogreen 

(Invitrogen). La genotipación de polimorfismos se llevó a cabo utilizando las técnicas:  



 

68 

 

 

Amplifluor SNPs HT Genotyping (Chemicon International) o KASPar SNP Genotyping 

System (Kbiosciences) utilizando primers específicos. Estos datos sirvieron para 

crear una segunda base de datos que recogía los datos genéticos de los pacientes. 

  

4. Técnicas relacionadas con proteína  

 50 g de proteína microsomal aislada a partir de tejido prostático fueron 

utilizados para Western blot. Las proteínas se separaron mediante electroforesis con 

el sistema SDS-PAGE, y se transfirieron a una membrana PVDF de Millipore. Tras 

las incubaciones con los anticuerpos primario y secundario se detectaron las 

proteínas de interés mediante el sistema SuperSignal Femto substrate (Pierce) y 

BiomaxLight membranes (Kodak).  

 Las técnicas de immunohistoquímica se llevaron a cabo utilizando anticuerpos 

apropiados en cortes de tejidos parafinados, utilizando el sistema de DAKO Envision 

system (DAKO). 

 

5. Análisis estadístico 

 Para el analisis estadístico se utilizó el programa de estadística SPSS versión 

17.0. Se llevaron a cabo estudios estadísticos para determinar qué variables 

biológicas se asociaban significativamente la con respuesta/ toxicidad de los 

pacientes mediante la comparación de los datos clínicos y los genotipos/ niveles de 

expresión. Mediante análisis de Kaplan-Meier y regresión de Cox se estudió la 

asociación entre la expresión de microRNAs y la respuesta a tratamiento y la 

supervivencia. La asociación entre el nivel de expresión de los microRNAs fue 

determinado por coeficiente de Pearson, igual que asociaciones con otras variables 

continuas. Para variables categóricas (como respuesta, respuesta patológica, 

características del tumor) se utilizó el test de t-Student y regresión logística. Las 

asociaciones entre los genotipos y la neurotoxicidad del paclitaxel fueron estimados 

teniendo en cuenta la dosis acumulada de paclitaxel hasta el desarrollo de 

neurotoxicidad de grado 2 y utilizando los análisis de Kaplan-Meier y la regresión de 

Cox. La regresión de Cox se llevó a cabo usando un modelo aditivo con análisis 

univariantes y multivariantes, este último incluyendo la edad y el régimen terapeútico 

como covaraibles, ya que éstas se asociaban de forma independiente con la 

neurotoxicidad.  
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1. Cytochrome P450 3A5 is highly expressed in normal prostate cells but 
absent in prostate cancer  

 
 
CYP3A enzymes metabolize testosterone and DHEA to less active compounds 

and it has been suggested that CYP3A polymorphisms could modify prostate cancer 

risk. Case-control studies aimed to study this association have obtained mostly positive 

but also contradictory results. However, the biological base for this connection remains 

uncertain, since the expression of these enzymes in the prostate is uncharacterized. 

This led us to investigate the expression of the four CYP3A genes in prostate normal 

tissue. We used quantitative RT-PCR to measure the CYP3As mRNA content in 24 

non-tumoral prostate tissues and compared it with the expression of a pool of livers, 

which is the tissue with the highest CYP3A content.  

 

 

 

 

 

Figure 7. CYP3A5 mRNA is expressed at relevant levels in prostate normal tissue. The 
mRNA content of CYP3A4, CYP3A5, CYP3A7, and CYP3A43 was measured by quantitative 
RT-PCR, as described in Materials and methods section, in 24 prostate tissues. For CYP3A5 
the primers that are used measured the total amount of CYP3A5 mRNA (correctly plus 
alternatively spliced mRNA). The amount of CYP3A mRNA was normalized with the GUS 
mRNA content in each sample. The quantification was performed using a pool of seven liver 
cDNAs and the results are expressed as percentage of the liver expression. The average 
number of PCR cycles needed to amplify each gene above the threshold (Ct) is shown in the 
insert. 
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1.1.  CYP3A5 is expressed at high levels in normal prostate tissue 

We found that CYP3A5 mRNA content in prostate was the highest (10% of 

hepatic levels), while CYP3A4, CYP3A7, and CYP3A43 mRNA content was much 

lower (0.0004, 0.05, and 0.15% of the liver levels, respectively), and that more than 

seven PCR amplification cycles separated the mRNA content of CYP3A5 from the 

other CYP3A enzymes (Figure 7). The prostate CYP3A5 mRNA content ranged from 

7.9 to 69% of the hepatic levels, depending on the liver used for comparison. For 

CYP3A4 and CYP3A7 the maximum values were below 1%, while for CYP3A43, due 

to a very low CYP3A43 content in one of the livers up to 5.4% could be observed. 

Therefore, the only CYP3A enzyme expressed at biological relevant levels in the 

prostate was CYP3A5. 

 

To determine whether CYP3A5 expression could be influenced by the localization 

within the human prostate gland (peripheral, central, and transitional zone), we 

compared the expression of the 14 BPH, which all correspond to the transitional zone, 

with 10 non-tumoral samples from the peripheral zone. However, we did not find 

significant differences in the CYP3As expression between the prostate samples, 

suggesting that CYP3A5 expression is homogeneous within the glandular regions of 

the prostate.   

 

 

1.2. CYP3A5 expression is influenced by CYP3A5*3 polymorphism 

Since CYP3A5 showed a 16-fold inter-sample variability in the 24 prostate 

cases studied, we decided to investigate whether polymorphisms in the CYP3A5 gene 

could be influencing its expression in the prostate. In the liver, CYP3A5 expression is 

influenced to a large extent by CYP3A5*3 polymorphism which, with a 90% allele 

frequency in Caucasians, creates a cryptic consensus splice site in intron 3. CYP3A5*3 

results mainly in splice variant mRNAs that contain a premature termination codon 

(amino acid 102) and only a small amount of correctly spliced CYP3A5 mRNA and 

protein is produced. Thus, to determine the influence of CYP3A5*3 in prostate, we 

performed CYP3A5 qRT-PCR analysis using liver samples with different CYP3A5 

genotypes and quantified both the correctly spliced and the total (correctly spliced plus 

alternatively spliced) CYP3A5 mRNAs: a pool of two CYP3A5*1/*3 liver cDNAs were 

used to generate the standard curve and a pool of four CYP3A5*3/*3 liver cDNAs were 

included for quantification. We found that, similarly to liver, CYP3A5*3/*3 prostate 

samples had lower CYP3A5 mRNA content than those CYP3A5*1/*3 (3.3- and 13-fold 
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lower total and correctly spliced CYP3A5 mRNA in prostate compared with 2.8- and 

10-fold difference in the liver samples respectively; Figure 8). The CYP3A5 total mRNA 

content of the prostate samples was 25% of the average amount in liver samples with 

the same CYP3A5 genotype (Figure 8A upper panel), and 15% for correctly spliced 

mRNA (Figure 8A lower panel).  

 

 

 

  

                             

 

Figure 8. CYP3A5 mRNA and protein content in human prostate. (A) The amounts of total 
and correctly spliced CYP3A5 mRNA were quantified in 24 prostate samples and two liver pools 
using specific primers: the black bars correspond to total (tot) CYP3A5 mRNA while the gray 
bars correspond to correctly spliced (cs) mRNA. The CYP3A5 genotype of the samples is 
shown below as „*1/*3‟ (five prostate samples and one pool of two livers) and „*3/*3‟, (19 
prostate samples and 1 pool of 4 livers). The liver pools are shown with dashed bars. Relative 
units (ru); liver pool (Liv pool). (B) CYP3A5 protein expression was analyzed by western blotting 
in BPH microsomes (samples 112, 113, 114, 118, and 124) using a CYP3A5-specific antibody 
and commercial CYP3A5 Supersomes were used as standards for quantification. Two 
independent experiments are shown. The CYP3A5 genotype of each prostate sample is 
indicated below. 

A 

B 
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To further characterize the expression of CYP3A5 in prostate, we performed a 

western blot analysis using a CYP3A5-specific antibody. As shown in Figure 8B, 

CYP3A5 protein was detected in only some BPH microsomal fractions. Although there 

was not a strong correlation between CYP3A5 mRNA and protein content, the 

strongest signals corresponded to CYP3A5*1/*3 samples. The amount of CYP3A5 

protein in sample 124 (with the highest expression) was of 0.15 pmol CYP3A5 per mg 

of total microsomal protein, which is much lower than CYP3A5 hepatic levels. 

However, this data should be referred to the prostate cells expressing CYP3A5. In the 

liver the hepatocytes, which represent the major part of the cells in this organ, express 

the CYP3A enzymes, but no information is available about the fraction of prostate cells 

expressing CYP3A5, thus, it was important to determine CYP3A5 localization. 

 

 

1.3. CYP3A5 is expressed exclusively in the basolateral cells of the 
prostate 

IHC was used to determine the localization of CYP3A5 in the prostate. As 

shown in Figures 9A and 9B, both in the frozen and paraffin-embeded tissues 

corresponding to the 24 non-tumoral samples analyzed, CYP3A5 staining was 

localized exclusively in the basolateral cells, specifically in the cytoplasmatic region, as 

expected for a microsomal protein. In contrast, stromal and luminal cells did not 

express CYP3A5. The prostate basolateral cell marker cytokeratin 34bE12 was used to 

confirm CYP3A5 basal localization (Figure 9F). This data implies that since CYP3A5 

protein and mRNA quantifications were performed using extracts from total prostate 

tissue (including stromal, luminal, and basolateral cells), but only the basolateral cells 

contribute to CYP3A5 expression, the actual CYP3A5 levels of the basolateral cells 

must be higher than the calculated 15–25% of hepatic mRNA levels and 0.15 pmol/mg 

microsomal protein. 
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Figure 9. CYP3A5 protein detection by immunohistochemistry in prostate non-tumoral 
and tumoral tissue. Immunohistochemical staining of CYP3A5 was performed in paraffin 
sections as described in Materials and methods section. In the non-tumoral tissue (A and B) 
CYP3A5 was localized in the prostate glands, specifically in the basolateral cells of 
CYP3A5*1/*3 (143N, A) and CYP3A5*3/*3 (169N, B) samples. Immunohistochemical staining of 
CYP3A5 in paraffin sections of tumoral prostate samples (C and D) showed that CYP3A5 was 
absent in the tumoral areas (T) and CYP3A5 signal was localized only in the surrounding 
normal tissue (N). The tumor samples analyzed were: 143T (C), 169T (D). (E) shows the same 
immunohistochemical staining procedure in 143N but without CYP3A5 antibody and (F) 
corresponds to an IHC staining using the basolateral marker cytokeratin 34bE12. Original 
magnification !20, except for A with X10 and for B with X40. 
 

 

The effect of CYP3A5*3 was not evident with the standard IHC conditions. 

However, when using lower amounts of the antibody, a difference in the intensity of the 

CYP3A5 signal could be appreciated between CYP3A5*1/*3 and CYP3A5*3/*3 

samples (Figure 10).  
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Figure 10. CYP3A5*3 affects protein expression. Immunohistochemical staining of CYP3A5 
was performed in paraffin sections corresponding to CYP3A5*1/*3 (143N, A and B) and 
CYP3A5*3/*3 (169N, C and D) genotypes. The CYP3A5 antibody dilutions used were 1/20 000 
(A and C) and 1/100 000 (B and D).  
 

 

1.4. Tumoral prostate tissue lacks CYP3A5 expression 

 We then investigated the expression of CYP3A5 in tumoral prostate tissues. We 

examined CYP3A5 protein content in ten matched non-tumoral/tumoral samples by 

IHC, finding that in all of them there was a complete lack of CYP3A5 protein in the 

tumoral areas of the tissue and that only the surrounding areas containing non-tumoral 

normal glands showed CYP3A5 staining (Fig. 9C and D). The lack of CYP3A5 

expression in the tumor is consistent with its basolateral localization, since prostate 

tumors lack basal cells. To confirm this finding, we analyzed the expression of the 

basolateral marker 34bE12 and found it absent, similarly to CYP3A5, in the prostate 

cancer regions. The lack of CYP3A5 expression in the tumoral areas was confirmed in 

25 additional prostate cancer samples.  

 

Analysis by qRT-PCR of the ten matched non-tumoral/tumoral samples 

confirmed the IHC results, and we found that CYP3A5 mRNA was significantly lower in 

the tumoral tissue (in average 61- and 19-fold difference for total and correctly spliced 

CYP3A5 mRNA respectively; Table 8). The detection of some CYP3A5 mRNA by qRT-
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PCR in the tumoral samples can be easily explained by the contribution of the 

surrounding contaminating non-tumoral tissue present in the tumoral blocks (see 

Figure 9C and D). Consequently, the CYP3A5 RT-PCR and the IHC data are in full 

agreement. 

 
 
Table 8. CYP3A5 mRNA content was decreased in the tumoral samples when compared 
to the matched non-tumoral tissue.  
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

a
 Fold decrease of CYP3A5 mRNA in the tumoral tissue when compared to matched 

non-tumoral tissue. 
b
 Correctly spliced mRNA (c.s. mRNA). 

 

 

Prostate 

Sample 

Fold decrease a 

(total mRNA) 

Fold decrease 

(c.s. mRNA b) 

002  59 15 

019  90 11 

049 248 54 

060    6  1 

074   89  8 

137     2  4 

143   34 23 

146    4  6 

148  72 63 

169   9  4 

Mean  61 19 
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miR-200 family controls β-tubulin III 
expression and is associated with treatment 

response and progression-free survival in 
ovarian carcinoma patients 
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2. miR-200 family controls β-tubulin III expression and is associated with 
treatment outcome in ovarian carcinoma patients 
 
 

Over-expression of β-tubulin III in tumor cells has been proposed to contribute 

to the lack of efficacy for the microtubule-binding drugs. However, the molecular 

mechanism(s) underlying the up-regulation of β-tubulin III are still unknown. Recently, 

in vitro studies have suggested that class III β-tubulin protein expression could be 

influenced by the microRNA miR-200c, which forms part of the miR-200 family. The 

important role that the miR-200 family plays in metastasis and the high conservation 

among β-tubulin isotype functions and genetic structure, led us to explore the 

regulation of β-tubulin isotypes by miR-200 family members. 

 

 

2.1. Predicted binding sites for miR-200b/c/429 in the 3´UTR of β-tubulins 
and immunohistochemical expression of β-tubulin isotypes I, II and III  

In silico analysis of the eight different human β-tubulin genes 

(http://www.targetscan.org/) predicted binding sites for miR-200b/c/429 in the 3‟UTR of 

class I, II and III β-tubulins, while no binding was predicted for the rest of human β-

tubulin isotypes (Figure 11). This microRNA binding site was broadly conserved among 

vertebrates for class I and III β-tubulins, but poorly conserved for class II. The in silico 

analysis did not predict miR-141 and miR-200a binding due to one nucleotide 

difference in the seed sequence (Figure 11), but there are evidences of common 

targets for the whole miR-200 family.  

 

 

 

Figure 11. Predicted miR-200b/c/429 binding sites in the 3’UTR of β-tubulin isotypes I, II 
and III. The six base pairs seed region common for miR-200b/c/429 is shown together with the 
predicted binding sites in the 3‟UTR regions of β-tubulin isotypes I, II and III. The miR-200a and 
miR-141 recognition sequence is also shown including the nucleotide change in the seed 
sequence. 
 

http://www.targetscan.org/
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We then determined the protein expression of class I, II and III β-tubulins in 72 

ovarian cancer samples by IHC analysis (Figure 12). The protein staining showed 

substantial differences for the different isotypes: β-tubulins II and III exhibited important 

inter-sample differences, while class I protein expression showed no variation among 

the cases studied. As shown in Figure 13A, all samples exhibited a very strong class I 

β-tubulin staining; class II protein was absent in 46 tumors, while 15 had low and 6 

cases a high protein expression (22 and 9% of the tumors, respectively). Class III 

protein was absent in 34 cases, while 29 had low and 8 had a high protein expression 

(41 and 11%, respectively). The expression of class II and III β-tubulins were mutually 

exclusive events, with samples exhibiting a high β-tubulin III content lacking isotype II 

expression and vice versa (Figure 13B).  

 

              

 

Figure 12. Protein expression of β-tubulin isotypes I, II and III in ovarian tumors. 

Immunohistochemical staining was performed in paraffin sections as described in Materials and 
Methods section. Isotype I exhibited a high expression in all cases analyzed with minimal 
differences among samples (A) and (B). Illustrative cases with low (C) and high (D) β-tubulin 
isotype II expression. Illustrative cases with low (E) and high (F) β-tubulin isotype III expression. 
All cases shown correspond to serous cystadenocarcinomas. 
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Figure 13. Distribution of ovarian tumors according to β-tubulin isotypes I, II and III 
protein expression. (A) All the tissues had a strong  isotype I staining, while isotypes II and III 
exhibited substantial differences in protein content among the tumors. Null, indicates lack of 
staining, Iow, indicates that less than 75% of the cells scored positive for staining and High, 
indicates that more than 75% of cells exhibiting positive staining. β-tubulin isotypes I, II and III 
correspond to light grey, dark grey and black bars, respectively. (B) Mutual exclusive protein 
expression of β-tubulin isotypes class II and III. 
 

2.2. miR-200 expression determines tumoral TUBBIII protein content 

To study whether the miR-200 family could regulate β-tubulin isotypes I, II and 

III, we measured the expression of these microRNAs in the 72 ovarian cancer samples. 

The expression levels varied among the samples: the highest expression corresponded 

to miR-200c, then, miR-200b, miR-200a and the lowest expression to miR-429 and 

miR-141, which exhibited similar expression levels (Figure 14). The expression of the 

five microRNAs correlated, with miR-141/miR-200a and miR-200a/miR-200b showing 

the highest level of correlation and miR-429 the lowest (Table 9).  

 

Table 9. Correlation between the expression of the miR-200 family members in 72 ovarian 
carcinomas. Pearson correlation coefficients are shown together with P values in brackets. 
Significant P values are shaded in light blue and extremely significant values in dark blue.  
 

  miR-141 miR-200a miR-200b miR-200c miR-429 

miR-141 
  0.554 0.400 0.441 0.232 

  (0.0000004) (0.0005) (0.0001) (0.050) 

miR-200a 
0.554   0.603 0.124 0.352 

(0.0000004)   (0.00000002) (0.30) (0.002) 

miR-200b 
0.400 0.603   0.279 0.180 

(0.0005) (0.00000002)   (0.018) (0.13) 

miR-200c 
0.441 0.124 0.279   0.124 

(0.0001) (0.30) (0.018)   (0.30) 

miR-429 
0.232 0.352 0.180 0.124   

(0.050) (0.002) (0.13) (0.30)   

A B 
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Figure 14. miR-200 family expression in ovarian tumors. The microRNA content of the five 
miR-200 members (miR200c/200b/200a/429/141) was measured by qRT-PCR, as described in 
Materials and Methods section in 72 ovarian tumors. The amount of microRNA was normalized 
with the 5S mRNA content in each sample. The quantities are expressed in relative units (ru). 
 
 

 

 

We then determined whether the miR-200 family could play a part in the 

regulation of the β-tubulin isotypes I, II and III expression. We found a statistically 

significant association between class III β-tubulin protein expression and the tumoral 

content of all miR-200 members (Figure 15). In this way, the ovarian tumors with low 

miR-200 expression exhibited high class III protein content, suggesting that the 

absence of these microRNA in the tumors results in lack of class III β-tubulin 

degradation and accumulation of high levels of the protein. The most significant 

associations corresponded to miR-141, miR-429 and miR-200c (p<0.006) among 

which miR-200c showed the highest expression. No association was found between 

protein levels of β-tubulins I and II and miR-200 family expression.  
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     Figure 15. Tumors with high β-tubulin isotype III protein content have significantly 
decreased miR-200 expression. Samples with high isotype III expression (more than 75% 
positive cells) showed a significantly lower A) miR-200c (p=0.005), B) miR-200b p=0.047), C) 
miR200a p=0.009), D) miR-429 p=0.0005) and E) miR-141 p<0.0001) expression compared to 
samples with low isotype III expression. microRNAs are shown in the figure according to 
expression levels (A-E). To express the microRNAs content as whole numbers, their expression 
was multiplied by 100 and expressed as relative units (ru)  

  
 

 

 

 

B A 

E D 

C 
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2.3. Response to taxane-based treatment and progression-free survival 
are associated with miR-200 expression 

The ovarian cancer patients included in this study were all treated with the 

same protocol (6 cycles of platinum/taxane-based chemotherapy). However, since 

clinical stage and tumor type can greatly influence treatment outcome, to study whether 

miR-200 expression could impact response to treatment, we selected a homogenous 

subgroup of patients: those with advanced stages (III and IV) and serous 

cystadenocarcinoma. In total there were 57 patients with these characteristics. We 

found a statistically significant association between miR-200c expression and response 

to treatment (p=0.0027 with t-test; OR=0.70, 95%CI=0.50-0.98, P=0.037 in multivariate 

analysis, Table 10). The patients that did not achieve a complete clinical response had 

lower miR-200c levels than patients with complete response. A significant association 

was also found between miR-200c and pathological response in the univariate analysis 

(P =0.045), although it did not reach significance in the multivariate analysis (OR=0.69, 

95%CI=0.45-1.07, P=0.094). Higher expression of miR-200c was associated with 

protection against recurrence (OR=0.86, 95% CI=0.75-0.99, P=0.030), while no 

association was observed for mortality (OR=0.89, 05% CI=0.78-1.00, P=0.128; Table 

10).  miR-200c expression did not show any association with other clinicopathological 

characteristics. No association with treatment response was found for the other miR-

200 family members. 

 

Table 10. miR-200c expression and response to treatment.  

 

 

Nº 

samples 

miR200c 

Mean (ru) 

miR200c 

95%CI (ru) 

P value
 a
 

(univariate)
 

P value
b
 

(multivariate) 

Response 

CR 

No CR (PR, SD, PD
c
) 

 

 

 

 

37 

17 

 

9.1 

4.8 

 

(6.8-11.3) 

(3.1-  6.5) 

 

 

0.0027
d
 

 

0.037 

Pathological response 

CR  

No CR  

 

14 

10 

 

8.0 

4.6 

 

(5.6-10.3) 

(2.0-  7.1) 

 

0.0450 

 

0.094 

Recurrence 

No  

Yes   

 

8 

45 

 

11.8 

7.0 

 

(3.1-20.6) 

(5.5-  8.5) 

 

0.2429
d
 

 

0.030 

Deceased 

No  

Yes  

 

 

19 

35 

 

 

9.3 

6.9 

 

(5.4-13.1) 

(5.0-  8.7) 

 

0.2487
d
 

 

0.128 

a 
 Univariate analysis using unpaired t-test.

 

b 
Multivariate analysis using logistic regression with debulking status, tumor grade and FIGO 

stage as covariables.
 

c 
Complete response (CR), partial response (PR), stable disease (SD) and progressive disease 

(PD). 
d 

Welch correction was applied when the standard deviations differed significantly between 
groups. 
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A high tumoral class III protein expression has been associated with poor 

clinical outcome in several cancers. However, in our samples set, we did not find a 

statistically significant association between high class III content and the clinical 

response and survival of the patients. No association was found neither between class 

II β-tubulin expression and clinical response. 

 

The expression of the miR-200 family did not present any association with other 

clinical or tumoral characteristics. As for disease outcome, only miR-429 expression 

showed a statistically significant association with recurrence-free and overall survival of 

the patients in a univariant analysis (Figure 16). After multivariable analysis adjusting 

for relevant clinicopathological variables (debulking status, tumor stage and histological 

grade) a tendency was observed for miR-429 with recurrence-free survival (HR=0,477, 

95%CI=0.21-1.09, p=0.080). Similarly, miR-200c and miR-141 also showed a similar 

trend (Table 11). The association with overall survival was lost for miR-429 in the 

multivariant analysis and none of the other miRNAs showed any tendency. 

 

 

 

 

 
Figure 16. Mir-429 is associated with better recurrence-free and overall survival. Kaplan-
Meier survival analysis evaluating the effect of miR-429 expression on disease outcome for A) 
recurrence-free and B) overall survival.  

A B 
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Table 11. miR-200 family expression and progression-free survival. 

  

 HR (95% CI) a P value 

miR-200c 0.45 (0.20-1.00) 0.051 

miR-200b 0.74 (0.34-1.61) 0.450 

miR-200a 0.83 (0.39-1.75) 0.612 

miR-141 0.43 (0.180-1.02) 0.054 

miR-429 0.48 (0.21-1.09) 0.080 

 
a
Hazard ratio for relapse calculated using multivariate Cox regression analysis with debulking 

status, tumor grade and FIGO stage as covariables.  
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3. Polymorphisms in Cytochromes P450 2C8 and 3A5 are associated with 
paclitaxel neurotoxicity 
 

Since there are previous evidences suggesting that genetic alterations in 

paclitaxel pharmacokinetic pathway could underlie the interindividual differences in the 

neurotoxicity exhibited by the patients treated with this drug, we followed a candidate-

gene approach aiming at the identification of polymorphisms associated with paclitaxel 

neurotoxicity. 

 
3.1. Selection of SNPs potentially influencing paclitaxel neurotoxicity and 
observed allelic frequencies in Spanish patients 

 

Six genes involved in paclitaxel metabolism and transport (CYP3A4, CYP3A5, 

CYP2C8, SLCO1B1, SLCO1B3 and ABCB1; see Figure 4 and Table 12) were selected 

for the study, and thirteen SNPs were included based on functionality and allele 

frequency in Caucasians. All the SNPs selected for the study had reported minor allele 

frequencies greater than 5% in white Europeans (Table 12).  

 

For CYP2C8 we selected four SNPs (rs11572080, rs1058930, rs1113129 and 

rs79092356). Several studies have demonstrated that CYP2C8*3 (R139K; K399R) 

exhibits an altered activity (Aquilante et al. 2008; Dai et al. 2001; Kirchheiner et al. 

2008; Niemi et al. 2005; Niemi et al. 2003; Soyama et al. 2001). CYP2C8*4 (I264M) 

has not been associated to an altered enzyme activity, (Niemi et al. 2005) but it 

encodes a common variant protein which may not have been studied thoroughly. 

CYP2C8 haplotypes B and C, (represented by rs7909236 (CYP2C8*1B) and 

rs1113129 (Rodriguez-Antona et al. 2008)), were recently shown to confer an 

increased and reduced activity, respectively. (Rodriguez-Antona et al. 2008)  

 

For CYP3A4 there are no common coding polymorphisms and the only variant 

repeatedly studied is the promoter CYP3A4*1B allele, although its effect on enzyme 

activity remains unclear (Rodriguez-Antona et al. 2005). In contrast, CYP3A5 is very 

polymorphic, and its activity in Caucasians is determined by CYP3A5*3 allele through 

alternative splicing (Kuehl et al. 2001).  

 

For the uptake transporters OATP1B1 and OATP1B3 (encoded by SLCO1B1 

and SLCO1B3 genes) we selected missense polymorphisms with reported functional 

consequences. (Smith et al. 2007) Finally, for ABCB1 we selected the three most 

studied variants (1236C>T, 2677G>T, 3435C>T) (Leschziner et al. 2007) and a 



Results part III 
 

94 

 

missense (N21D) polymorphism described in public databases but without previous 

results.  

 

Upon genotyping of the samples, the call rates were very high for the 13 

selected polymorphisms (genotypes were successfully called for between 116 and 118, 

of the 118 samples). The minor allele frequencies of the polymorphisms (Table 12) 

were similar to those previously described for Caucasians (Kimchi-Sarfaty, et al. 2007; 

Kuehl et al. 2001; Niemi et al. 2005; Rodriguez-Antona et al. 2008; Smith et al. 2007) 

and all the SNPs were in Hardy-Weinberg equilibrium. The frequency of the different 

alleles is shown in Table 12. The two SLCO1B3 SNPs analyzed (rs4149117 and 

rs7311358) were in complete linkage disequilibrium (r2=1.0).  

 

3.2. Paclitaxel neurotoxicity is influenced by treatment schedule and age  

When we compared the neurotoxicity data with demographic and treatment 

related data, as expected, we found that the weekly, more intense, 80-90 mg/m2 

paclitaxel schedule was more neurotoxic than the 150-175 mg/m2 scheme 

administered every 21 days (P=0.043) (Figure 17A). In addition, patients younger than 

50 years showed a significantly higher neurotoxicity than those older than 50 years 

(P=0.019) (Figure 17B). The estimated hazard ratio (HR) for these two factors were 

1.70 (95% CI=1.01-2.87) and 2.12 (95% CI=1.12-4.02), respectively. No evidence of 

association with neurotoxicity was found for other demographic (e.g. gender, BSA) and 

clinical factors (e.g. type of tumor, previous neurotoxicity treatments and comorbidity 

factors).  
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Figure 17. Paclitaxel neurotoxicity is influenced by treatment schedule and age. Kaplan-
Meier estimates of paclitaxel neurotoxicity modelling the cumulative dose of paclitaxel up to the 
development of grade 2 neurotoxicity. A) Paclitaxel administered in 80-90 mg/m2 schedules 
was more neurotoxic than 150/175 mg/m

2
; p(log-rank)=0.043; HR=1.70, 95% CI=1.01-2.87. B) 

Patients younger than 50 years of age showed a significantly higher neurotoxicity than those 
older than 50 years; p(log-rank)=0.019; HR=2.12, 95% CI=1.12-4.02. 

 

 

3.3. CYP2C8 Haplotype C and CYP3A5*3 are associated with protection 
while CYP2C8*3 is associated with increased risk of paclitaxel 
neurotoxicity 

Three polymorphisms showed statistically significant evidence of association 

with paclitaxel neurotoxicity risk: CYP2C8*3 (Figure 18A), CYP2C8 Haplotype C 

(Figure 18B) and CYP3A5*3 (Figure 18C) (P=0.049, 0.049 and 0.010, respectively). 

Multivariable Cox regression adjusting for treatment schedule and age, gave an 

estimated HR of 1.72 (95%CI=1.05-2.82; P=0.032) for CYP2C8*3; 0.55 (95%CI=0.34-

0.89; P=0.014) for CYP2C8 Haplotype C and 0.51 (95%CI=0.30-0.86; P=0.012) for 

CYP3A5*3 (see Table 12).  

A B 
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Table 12. Allele frequency of the genetic variants and their associated risk with paclitaxel neurotoxicity. 

 
 

dbSNP 
Common 

allele name 
Amino acid 

change 
SNP effect 

Allele 
Freq 

a
 

HR (95% CI)
b
 

P value 
Cox

 b
 

HR (95% CI)
c
 

P value 
Cox

 c
 

CYP2C8 rs11572080,G>A CYP2C8*3 R139K;(K399R) Variant protein 0.18 1.54 (0.96-2.47) 0.072 1.72 (1.05-2.82) 0.032 

CYP2C8 rs1058930, C>G CYP2C8*4 I264M Variant protein 0.07 0.68 (0.29-1.57) 0.361 0.53 (0.22-1.26) 0.150 

CYP2C8 rs1113129, G>C CYP2C8-HapC - Haplotype low act 0.25 0.59 (0.36-0.94) 0.026 0.55 (0.34-0.89) 0.014 

CYP2C8 rs7909236, G>T CYP2C8*1B - Variant promoter 0.15 0.86 (0.50-1.49) 0.593 0.86 (0.49-1.52) 0.611 

CYP3A4 rs2740574, A>G CYP3A4*1B/V - Variant Promoter 0.06 1.62 (0.76-3.43) 0.209 2.13 (0.98-4.66) 0.057 

CYP3A5 rs776746, A>G CYP3A5*3  - Splicing defect 0.92 0.55 (0.33-0.94) 0.027 0.51 (0.30-0.86) 0.012 

ABCB1 rs2032582, G>T 2677 A893S Variant protein 0.35 1.22 (0.84-1.78) 0.295 1.23 (0.84-1.79) 0.286 

ABCB1 rs1128503, C>T 1236 G412G Unknown 0.40 1.01 (0.70-1.46) 0.970 0.94 (0.65-1.35) 0.727 

ABCB1 rs1045642, C>T 3435 I1145I Unknown 0.41 0.74 (0.50-1.11) 0.142 0.71 (0.47-1.06) 0.093 

ABCB1 rs9282564, A>G - N21D Variant protein 0.05 0.62 (0.26-1.46) 0.272 0.43 (0.17-1.04) 0.061 

SLCO1B1 rs4149056, T>C - V174A Variant protein 0.15 0.91 (0.52-1.57) 0.726 0.82 (0.47-1.45) 0.504 

SLCO1B3 rs4149117
d
, G>T - S112A Variant protein 0.17 1.15 (0.68-1.94) 0.596 1.18 (0.69-2.00) 0.549 

SLCO1B3 rs7311358
d
, A>G - M233I Variant protein 0.17 1.15 (0.68-1.94) 0.596 1.18 (0.69-2.00) 0.549 

Model  
high act. 
variants 

rs11572080A 
rs1113129G 
rs776746G 

    1.51 (1.17-1.94) 0.001 1.64 (1.26-2.14) 0.0003 

 

a
 Variant allele frequency in Spanish cancer patients. 

b 
Hazard ratios, confidence intervals and P values calculated by Cox regression.  

c 
Hazard ratios, confidence intervals and P values estimated by multivariable Cox regression, including treatment schedule (80-90 mg/m

2
 versus 150-

175mg/m
2
) and age as covariates. 

d 
These two SNPs were in complete linkage disequilibrium (r

2
=1.0).  
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No evidence of association was observed for the uptake transporters 

SLCO1B1 and SLCO1B3 or the ABCB1 efflux pump (Table 12). The statistical 

analyses were repeated after normalising the cumulative paclitaxel doses by BSA, 

without any substantive changes in the results obtained. 

 

 

3.4. CYP-based single prediction model to predict paclitaxel 
neurotoxicity 

Initial in vitro studies for CYP2C8*3 suggested a lower activity, but studies in 

healthy volunteers have demonstrated an increased metabolizing capacity leading 

to higher production of hydroxylated paclitaxel metabolites. Interestingly, we found 

that CYP2C8*3 was associated with higher neurotoxicity risk. While the SNPs 

associated with protection (CYP2C8 haplotype C and CYP3A5*3) confer a reduced 

A B 

C 

Figure 18. Kaplan-Meier comparisons 
of cumulative dose of paclitaxel up to 
the development of grade 2 
neurotoxicity, by genotype at SNPs in 
CYP2C8 and CYP3A5. Patients with: A) 
CYP2C8*3 alleles had a significantly 
higher risk to encounter neurotoxicity; B) 
CYP2C8 Haplotype C alleles and C) 
CYP3A5*3 alleles were associated with 
protection against neurotoxicity.  
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activity. All the three SNPs act in an independent manner, the two SNPs in CYP2C8 

are not in linkage disequilibrium (r2=0.005) and CYP3A5*3 is located on a different 

chromosome. Thus we constructed a model including these three polymorphisms 

acting in a log-additive, per-allele fashion and estimated the HR per high-paclitaxel-

metabolizing allele to be 1.64 (95%CI=1.26-2.14, P=0.0003) after correcting by 

treatment schedule and age (Table 12 and Figure 19).  

 

 

 

Figure 19. Proposed model for paclitaxel neurotoxicity risk including the 3 identified 
polymorphisms acting in a log-additive, per-allele fashion. Patients were classified in 
three groups according to the number of risk alleles (0 to 5). The Kaplan-Meier analysis 
shows the comparisons of cumulative dose of paclitaxel up to the development of grade 2 
neurotoxicity by number of the risk alleles: rs11572080A, rs1113129G and rs776746G 

 

 

In this manner, taking into account the total nº of high-neurotoxicity risk 

alleles, individuals can be classified in seven groups depending on the number of 

risk alleles (0-6). While inheriting five or six risk alleles is infrequent in Caucasians, 

carrying zero to four alleles is relatively common (frequency 3-45%).  
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1. Bloque I: CYP3A5 se expresa en próstata a altos niveles, pero está ausente 
en el tejido tumoral  

El primer estudio de esta Tesis doctoral estuvo centrado en la determinación 

de la expresión de los cuatro enzimas CYP3A en tejidos normales y tumorales de 

próstata, y en la identificación de los mecanismos que controlan la expresión de 

estos genes. Descubrimos que de los cuatro genes CYP3A humanos, sólo el 

CYP3A5 se expresaba en niveles relevantes (mRNA y proteína) en próstata, en 

concreto en las células basolaterales. La expresión prostática del CYP3A5 

presentaba una gran variabilidad interindividual que se explicaba por el 

polimorfismo CYP3A5*3. Con respecto a los tejidos tumorales descubrimos que la 

expresión del CYP3A5 desaparecía.  

 

2. Bloque II: La familia miR-200 regula la expresión de la -tubulina III y se 
asocia con la respuesta al tratamiento y supervivencia libre de recaída de 
pacientes con cáncer de ovario tratados con paclitaxel-carboplatino 

 El segundo proyecto se centró en el estudio de la diana terapéutica de los 

taxanos, la -tubulina. Mediante la caracterización de la expresión proteica de los 

isotipos I, II y III de la -tubulina y de un estudio de expresión de microRNAs 

mediante RT-PCR cuantitativa, demostramos que la familia miR-200 regulaba la 

expresión del isotipo III. Además, en pacientes con cáncer de ovario avanzado los 

niveles de expresión del miR-200c se asociaron de forma estadísticamente 

significativa con la respuesta (P=0.0027 con t-test; HR=0.23, 95%CI=0.06-0.84, 

P=0.026 en análisis multivariante). También se encontró una asociación con la 

respuesta patólogica en análisis univariante (P=0.045), aunque la asociación no 

llegó a ser significante en un análisis multivariante (HR=0.19, 95%CI=0.03-1.31, 

P=0.092). Por otra parte, los niveles de expresión del miR-429, miR-141 y miR-200c 

mostraron una tendencia de asociación con la recaida riesgos relativos HR=0,477 

(95%CI=0.21-1.09, P=0.080), HR=0,427 (95%CI=0.18-1.02, P=0.054) y HR=0,447 

(95%CI=0.20-1.00, P=0.051),  respectivamente.  

 

3. Bloque III: Polimorfismos en los Citocromos P450 2C8 y 3A5 se asocian con 
la neurotoxidad del paclitaxel 

En el tercer proyecto nos centramos en la identificación de marcadores 

genéticos predictores de neurotoxicidad por paclitaxel utilizando una estrategia de 

genes candidatos. Para ello se genotipó una selección de polimorfismos en los 

genes implicados en la metabolización (CYP2C8, CYP3A4 y CYP3A5) y transporte 

(SLCO1B1, SLCO1B3 y P-glicoproteina) del paclitaxel en 118 pacientes tratados 
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con este fármaco y de los que se disponía de datos de toxicidad. Descubrimos que 

tres polimorfismos (uno en el gen CYP3A5 y dos en el CYP2C8) se asociaban de 

forma estadísticamente significativa con la neurotoxicidad del paclitaxel: el CYP2C8 

Haplotipo C y el CYP3A5*3 confirieron protección frente al riesgo de desarrollar 

neurotoxicidad (HR(por alelo)=0.55, 95%CI=0.34-0.89, P=0.014 y HR(por 

alelo)=0.51, 95%CI=0.30-0.86, P=0.012, respectivamente) mientras que el 

CYP2C8*3 confirió un mayor riesgo (HR(por alelo)=1.72, 95%CI=1.05-2.82, 

P=0.032). Finalmente se creó un modelo que incluía los tres polimorfismos 

actuando en un modo aditivo, dando un riesgo relativo por cada alelo de alta-

metabolización de paclitaxel de 1.64 (95%CI=1.26-2.14, P=0.0003). Los resultados 

para la P-glicoproteína no fueron concluyentes, y no se observó ninguna asociación 

para los otros genes estudiados. 
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Cytochrome P450 3A5 is highly expressed in 
normal prostate cells but absent in prostate 

cancer  
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1. CYP3A5 expression in prostate: potential relevance for prostate 
cancer risk and for docetaxel efficacy in prostate cancer patients  
 
 

Prostate cancer (PC) is the second leading cause of cancer death in men, 

and both genetic and environmental factors have been shown to be important for the 

development of this disease (Novelli, et al. 2004). More than 95% of the prostate 

tumors derive from luminal cells, which grow in an androgen-dependent manner 

through androgen receptor activation. Testosterone is essential for prostate cancer 

development (Feldman and Feldman 2001) and genetic changes affecting the 

expression/ activity of the enzymes metabolizing androgens can influence prostate 

cancer progression (Makridakis, et al. 1997; Makridakis, et al. 1999; Park, et al. 

2006; Rebbeck, et al. 2008; Vaarala, et al. 2008). For this reason, several studies 

have focused on CYP3A polymorphisms, the rationale being that, in addition to the 

prominent role of CYP3A enzymes in the metabolism of over 50% of all clinical 

drugs (Li, et al. 1995; Rodriguez-Antona and Ingelman-Sundberg 2006; Thummel 

and Wilkinson 1998), CYP3A enzymes also metabolize testosterone and 

dehydroepiandrosterone (DHEA) to less active hydroxy-metabolites (Kamdem, et al. 

2004; Miller, et al. 2004; Ohmori, et al. 1998). Thus, an alteration in the CYP3A 

prostatic activity could change the local testosterone levels and the tissue-specific 

androgen effects, which could alter prostate cells growth and lead to cancer 

development. 

 

Prostate cancer is usually treated with hormonal therapy; however, most 

cases evolve to a hormonal-resistance stage. At this point, docetaxel chemotherapy 

offers both symptomatic and survival benefits in men with metastatic hormone-

refractory prostate. However, only 48% to 50% of patients respond to docetaxel 

treatment, thus in approximately half of the cases the therapy is not effective. In 

addition, the median increase in overall survival is only few months, as docetaxel 

therapy ultimately fails to control the progression of the cancer (Petrylak, et al. 2004; 

Tannock, et al. 2004). CYP3A enzymes hydroxylate docetaxel to less active 

metabolites (Vaclavikova, et al. 2004). Thus CYP3A polymorphisms might modify 

the efficacy of docetaxel treatment by altering its inactivation in the prostate cancer 

cells.  

Despite to the relevance that CYP3A enzymes could have in the prostate, 

when this thesis started the prostatic expression of the CYP3A enzymes was mainly 

unknown.  

 



Discussion part I 

 

 

108 

 

1.1 CYP3A5 is expressed at high levels in the basolateral cells of 
normal prostate tissue and its expression is influenced by CYP3A5*3 
polymorphism 

The CYP3A subfamily comprises four members: CYP3A4, CYP3A5, 

CYP3A7 and CYP3A43, which have similar substrate specificities but are expressed 

at different levels and with different expression patterns: CYP3A7 is mainly 

expressed at fetal stages in the liver, CYP3A4 and CYP3A5 are mainly expressed in 

the adult liver and intestines and CYP3A43 has been suggested to be expressed at 

very low levels in different tissues (Lin, et al. 2002). Contradictory results have been 

reported with respect to the expression of the CYP3A enzymes in prostate tissue (Di 

Paolo, et al. 2005; Finnstrom, et al. 2001; Fujimura, et al. 2009; Koch, et al. 2002; 

Moilanen, et al. 2007; Murray, et al. 1995; Stamey, et al. 2001; Zhang, et al. 2006). 

In this work we showed that of the four human CYP3A enzymes only CYP3A5 had a 

relevant expression in prostate, with mRNA contents similar to those in liver (Figure 

7). Specifically, when comparing the CYP3A5 mRNA content of liver samples with 

prostate samples, the prostate samples showed about 20% of the hepatic levels 

(Figure 8).  

 

Among the prostate samples included in this study, there was a large 

CYP3A5 mRNA and protein variation, mainly caused by CYP3A5*3 polymorphism, 

which introduces an alternative splicing site that in the liver decreases the amount of 

full-coding transcript and ultimately causes low CYP3A5 protein expression (Kuehl, 

et al. 2001). In this work, CYP3A5*1/*3 prostate samples had 13-fold higher 

amounts of correctly spliced mRNA than CYP3A5*3/*3 samples and, although the 

number of samples analyzed was small and the correlation with mRNA levels was 

not strong, the highest CYP3A5 protein content also corresponded to CYP3A5*1/*3 

prostate samples (Figure 8B results). Moilanen et al. detected CYP3A5 protein in 

the prostate, but surprisingly CYP3A5*3/*3 samples showed similar or even higher 

CYP3A5 protein content than CYP3A5*1/*3 samples, and by IHC they found 

CYP3A5 protein both in luminal and basolateral cells and both in non-tumoral and 

tumoral prostate tissue (Moilanen et al. 2007). In contrast, in this work we found that 

CYP3A5 was exclusively expressed in the basolateral cells of the non-tumoral tissue 

and absent in the tumoral tissue (Figure 9). Our data was fully supported by the 

quantitative RT-PCR analysis we performed in the matched non-tumoral/ tumoral 

samples (Table 8). The differences between this and other studies can be explained 

by the use of antibodies with low specificity (Moilanen et al. 2007) and by assessing 
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mRNA by non-quantitative PCR methods (Finnstrom, et al. 2001; Stamey, et al. 

2001). Thus, in this study we unequivocally establish for the first time a relevant 

expression of the CYP3A enzymes in prostate tissue, specifically of CYP3A5. 

 

 

1.2. CYP3A5 and androgen metabolism 

Because CYP3A5 protein is exclusively localized in the basolateral cells, and 

these represent 2% of the total prostate cells (Liu, et al. 1997) about 7.5 pmol of 

CYP3A5/ mg microsomal basolateral protein can be estimated, which is similar to 

the 37 pmol found in CYP3A5*1/*3 livers (Liu et al. 1997; Westlind-Johnsson, et al. 

2003). Similarly, if we take into account that only the basolateral cells contribute to 

CYP3A5 mRNA expression, the CYP3A5 mRNA levels in the prostate basal cells 

would be 10-times higher than in the liver cells. The difference between the prostatic 

and hepatic CYP3A5 mRNA and protein contents could indicate a tissue-specific 

CYP3A5 post-transcriptional regulation. In any case, the high CYP3A5 prostatic 

expression suggests that CYP3A5 must play a relevant function in the prostate and, 

since the prostate is not a tissue relevant for drug metabolism, this function must be 

related to the metabolism of prostatic endogenous CYP3A5 substrates, such as 

androgens (Miller et al. 2004; Ohmori et al. 1998). In other tissues, CYP3A5 has 

also been shown to play an important endogenous function, and CYP3A5*3 has 

been shown to influence the systolic blood and pulse pressure, presumably by 

altering CYP3A5-mediated glucocorticoid metabolism (Kreutz, et al. 2005). Thus, by 

oxidation of testosterone and DHEA in the basolateral prostate cells, CYP3A5 could 

control their entrance into the luminal cells which grow in a hormone-dependent 

manner (Masai, et al. 1990). In fact, androgens up-regulate CYP3A5 expression in 

human prostate, suggesting an autoregulatory loop to control testosterone exposure 

(Moilanen et al. 2007). Consequently, polymorphism affecting CYP3A5 activity could 

alter the oxidation of androgens in the basolateral cells and ultimately luminal 

prostate cell growth, function and prostate cancer development (Parnes, et al. 2005; 

Zhenhua, et al. 2005).  

 

 

1.3. The role of CYP3A5 polymorphisms in prostate cancer development 

In line with this idea, several publications have associated CYP3A SNPs with 

prostate cancer risk and aggressiveness (Bangsi, et al. 2006; Loukola, et al. 2004; 

Paris, et al. 1999; Plummer, et al. 2003; Rebbeck, et al. 1998; Vaarala et al. 2008; 
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Zhenhua et al. 2005). However, most studies have focused on CYP3A4*1B, which 

does not result in major changes in CYP3A4 expression (Rodriguez-Antona, et al. 

2005), and which, is not expressed in the prostate (Figure 7). The CYP3A locus 

shows a high degree of linkage disequilibrium (Kuehl et al. 2001; Lee, et al. 2003), 

and approximately 80% of Caucasians carrying CYP3A4*1B are simultaneously 

CYP3A5*1 (Wojnowski, et al. 2002). In Asians, in which CYP3A4*1B is absent and, 

thus, is not a confounding factor, CYP3A5*1/*1 men had a 0.23-fold lower risk of 

developing a low-grade prostate cancer and a 0.31-fold lower risk of developing 

localized prostate cancer than CYP3A5*3/*3 men (Zhenhua et al. 2005). In Africans, 

in addition to CYP3A5*3, there are two other common functional CYP3A5 

polymorphisms which have not been taken into account in any of the association 

studies carried out so far: CYP3A5*6, which creates an alternative splicing site 

similarly to CYP3A5*3, and CYP3A5*7 which has a single nucleotide insertion 

causing a frameshift and early stop codon (with 13% and 10% allele frequency, 

respectively) (Hustert, et al. 2001; Kuehl et al. 2001; Lee et al. 2003). Therefore, the 

association studies in Africans can only be complete when all three CYP3A5 

defective alleles are considered together and compared with the wild type 

CYP3A5*1 allele. Undoubtedly, further studies are needed to confirm the 

association of CYP3A5 functional SNPs with prostate cancer. 

 

 

1.4. The efficacy of docetaxel in prostate cancer treatment is unlikely to be 
modified by CYP3A5 polymorphisms  

 The lack of CYP3A5 expression in the tumoral tissue indicates that the 

efficacy of docetaxel treatment is unlikely to depend on the CYP3A5 polymorphisms. 

Several genes have been associated with docetaxel resistance, Bcl-2 (Tolcher, et al. 

2005) and Stat1 (Patterson, et al. 2006), for instance. However, drugs targeting 

these pathways have either not been tested, or they have failed to improve 

docetaxel efficacy in clinical trials (Petrylak et al. 2004; Tannock et al. 2004; Tolcher 

et al. 2005). Thus, novel biomarkers associated with docetaxel resistance still need 

to be identified in order to enhance survival of prostate cancer patients.  

 

In conclusion, we have shown that only CYP3A5 out of the four CYP3A 

genes is expressed at high levels in the non-tumoral prostate tissue, specifically in 

the basolateral cells and that this expression does not occur in the tumors. This data 

reveals an important endogenous role of CYP3A5 in the prostate and association 
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studies between prostate cancer and CYP3A polymorphisms indicate that this 

function must be related to the metabolism of intra-prostatic androgens and 

regulation of luminal cell growth. Furthermore, this data suggests that future prostate 

cancer association studies on CYP3A genes should focus on CYP3A5 functional 

polymorphisms such as CYP3A5*3, *6 and *7 which could be directly associated 

with prostate cancer risk and aggressiveness. On the other hand, the lack of 

CYP3A5 expression in the tumoral prostate tissue suggests that this enzyme cannot 

directly affect the efficacy of docetaxel treatment in the cancer cells. 
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2. miR-200 family regulates class III β-tubulin expression and predicts 
treatment outcome in ovarian cancer  
 
 

Ovarian cancer is one of the leading causes of cancer deaths. Most ovarian 

cancers are detected at advanced stages and, despite advances in cytotoxic 

therapies, lack of response and relapse due to intrinsic or acquired resistance 

greatly reduce survival rates. Thus, there is a need to improve patient care through 

identification of biomarkers predicting treatment outcome. This study is focused on 

the new field of microRNAs because of their potential to provide novel drug 

response markers (Adam, et al. 2009; Li, et al. 2009; Yang, et al. 2008a; Yang, et al. 

2008b) and establishes miR-200 family as an important factor for paclitaxel-

carboplatin response in ovarian cancer. 

 

2.1. miR-200 expression determines class III β-tubulin content in 
ovarian tumors 

The miR-200 family has been shown to maintain the cellular epithelial 

phenotype via repression of ZEB1 and ZEB2, and to play an important role in 

tumour progression (Gregory, et al. 2008). Interestingly, by in silico tools we found 

that miR-200c/b/429 had putative binding sites in the 3‟ UTR of the β-tubulin 

isotypes I, II and III (Figure 11). Since β-tubulin is the therapeutic target of paclitaxel, 

we hypothesized that these miRNAs might influence the response of ovarian cancer 

to paclitaxel-based treatments through down-regulation of these three isotypes in 

tumoral cells. From the 5 miR-200 family members, the seed sequence of miR-141 

and miR-200a differ by only one nucleotide with that of miR-200b, miR-200c and 

miR429 and, although target prediction algorithms assume significant differences in 

the genes targeted by miR-200b/c/429 and miR-200a/141, there are evidences 

indicating a much higher degree of overlap in target genes (Park, et al. 2008). This 

data suggests that multiple members of the miR-200 family may target a large 

common subset of genes in order to enhance the efficiency of genetic regulation. 

Thus, we measured the expression of the five miR-200 family members in 72 

epithelial ovarian cancer samples, and observed, in agreement with previous 

reports, that the expression of these miRNAs correlated (Table 9) and that miR-

200c, miR-200b and miR-200a had higher expression than miR-141 and miR-429 

(Hu, et al. 2009; Park et al. 2008). 
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We analyzed by IHC the expression of class I, II and III β-tubulins, finding 

class I homogenously expressed at high levels in all samples, class II present in 

31% and III in 52% of the tumors, although a high expression (>75% of positive 

cells) was observed in only 9% and 11% of the tumours, respectively. These results 

are in agreement with those reported in a previous ovarian series (Ohishi, et al. 

2007). In our series, the different tumoral histologies did not seem to influence the 

expression of the isotypes, although most of the cases were serous 

cystoadenocarcinomas. Umezu et al. using cases representing the different 

histologies, reported higher β-tubulin III protein levels in clear cell and mucinous 

types compared to serous and endometrioid tumors (Umezu, et al. 2008). In other 

tumor types, expression of isotype III has been reported in 40, 36, 84% of head and 

neck carcinoma (Koh, et al. 2009), gastric cancer (Urano, et al. 2006) and breast 

cancer (Paradiso, et al. 2005) samples, respectively. For isotype II, lack of 

expression seems to be associated with advanced stage and short progression free 

survival in ovarian cancer (Ohishi et al. 2007). Interestingly, we found a mutual 

exclusivity for class II and III β-tubulin expression (Figure 13). This data suggests 

that, although the three isotypes had predicted binding sites for miR-200b/c/429, 

different regulation mechanisms, still unknown, were determining the final protein 

expression levels of the tumors.  

 

Tumoral over-expression of class III β-tubulin has been associated with poor 

prognosis in a variety of cancer types (Koh et al. 2009; Seve and Dumontet 2008; 

Seve, et al. 2005) including ovarian carcinomas (Ferrandina, et al. 2006). These 

findings seem to reflect, at least in part, an increased resistance of class III 

microtubules to the effect of microtubule-binding drugs (Cochrane, et al. 2009). In 

our series, we were not able to detect a significant association between β-tubulin III 

expression and treatment response, which could be due to the small number of 

samples with high class III expression. Previously, high class III protein expression 

has been associated with lack of response to taxanes in several studies including 

breast (Hasegawa, et al. 2003; Paradiso et al. 2005), lung (Rosell, et al. 2003; Seve 

et al. 2005) and ovarian (Umezu et al. 2008) tumors. In contrast, one study reported 

high β-tubulin III associated to a better overall and progression-free survival in clear 

cell ovarian cancer patients, although they did not provide information on treatment 

response (Aoki, et al. 2009). This data suggests that histological differences may 

play an important role in the association of class III β-tubulin expression and 

survival.  
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When we studied the relation of the miR-200 family with the protein 

expression of the β-tubulin isotypes, we found that low levels of miR-200 were 

associated with high levels of class III protein, demonstrating for the first time in 

tumours that β-tubulin III expression is determined by miR-200 family (Figure 15). A 

recent study, by Cochrane et al. showing that the reinstatement of miR-200c in cell 

lines decreases class III β-tubulin expression, supports this finding (Cochrane et al. 

2009). Although low expression of miR-200 is necessary for the over-expression of 

isotype III, other mechanisms must also be involved as there are tumours with low 

levels of both, miR-200 and isotype III. We did not find an association between miR-

200 and class I and II protein expression, which is compatible with the IHC findings 

and supports the notion that the regulation of these isotypes is different from that of 

class III. Thus, the predicted binding sites for miR-200b/c/429 in class I and II are 

either non-functional or alternative mechanisms determine their final protein 

expression. For class II the predicted binding site was only conserved among 

mammals, suggesting the first possibility. However, for class I the predicted binding 

site was broadly conserved among vertebrates, similarly to isotype III.  

 

2.2. The patients’ response to taxane-based treatment and progression-
free survival are associated with miR-200 expression 

As to a possible role for miR-200 on paclitaxel sensitivity, we found a significant 

association between miR-200c expression and treatment response: women with 

complete response had tumours with significantly higher miR-200c levels than those 

lacking complete response (HR=0.70, 95% CI=0.50-0.98, P=0.037). Also, higher 

expression of miR-200c was associated with protection against recurrence 

(OR=0.86 95% CI=0.75-0.99 P=0.030). This data suggests that low miR-200c 

expression leads to increased β-tubulin III expression and, thus, enhanced 

resistance to paclitaxel-based therapies. Previous in vitro studies support that miR-

200c increases sensitivity to microtubule-targeting agents (Cochrane et al. 2009). 

 

Concerning prognosis, we found that in our series that low tumoral miR-429 

was associated with poor progression-free and overall survival (Figure 16). 

Adjustment with relevant clinicopathologic variables revealed a tendency for 

progression-free survival for miR-429, miR-200c and miR-141 (Table 11), while the 

association with overall survival was lost. No trends were observed for the remaining 

microRNAs of the miR-200 family. In a recent study, low miR-200a expression was 
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associated with poor recurrence-free and overall survival in ovarian cancer patients 

(Hu et al. 2009). On the other hand, Nam et al. found that a high expression of miR-

200b/c/429 was associated with poor survival (Nam, et al. 2008). The discrepant 

results found by Nam et al. could be caused by the small number of samples 

included in the study (20 serous ovarian tumour samples).  

 

Low tumoral expression of the miR-200 family has been associated with 

tumor progression and metastasis (Baffa, et al. 2009; Gregory et al. 2008; Park et 

al. 2008), which could lead to a lower overall survival, independently of the 

treatment response. Our results suggest a possible role of miR-200 family as a 

predictive factor for paclitaxel-based response, especially miR-200c, and as a 

prognostic factor in ovarian carcinoma (Figure 20). Because all miR-200 family 

members share similar targets, but enclose differences in the recognition site, we 

propose that specific members of the family will be more important for prognosis and 

others for treatment response. In addition, the relative expression levels in the tumor 

cells could play a part in the final regulation of the target genes. Thus, low tumoral 

miR-200 family expression could act two-fold: decreasing response to microtubule-

binding drugs and increasing metastasis through increased epithelial to 

mesenchymal transition.  

 

 
Figure 20. Proposed function of miR-200 family as a prognostic factor and a marker of 
treatment failure in ovarian carcinoma. Low miR-200 expression allows higher B-tubulin 
III expression causing increased taxane resistance, which leads to lack of response and poor 
prognosis, while on the other hand low miR-200 also permits EMT and brings about 
metastasis thus leading to poor prognosis.  EMT, Epithelial to mesenchymal transition  

 

Altogether, we have demonstrated that miR-200 down-regulates class III β-

tubulin expression in ovarian tumours. Furthermore, our results suggest a possible 

role for the miR-200 family both as a prognostic factor and a marker of treatment 

failure in ovarian carcinoma. Thus, miR-200 might constitute an important biomarker 

for ovarian cancer patients and could provide the basis for future therapies restoring 

miR-200 expression in tumour cells. 
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3. Polymorphisms in CYP2C8 and CYP3A5 are associated with paclitaxel 
neurotoxicity  
 
 

This pharmacogenetic study was designed to identify genetic variants influencing 

paclitaxel induced peripheral neurotoxicity, which is the major side-effect and the dose-

limiting toxicity of paclitaxel. We studied the 13 most relevant polymorphisms, selected 

based on their functionality and allele frequency, in 6 genes essential for paclitaxel hepatic 

metabolism (CYP2C8, CYP3A4, CYP3A5) (Rahman, et al. 1994; Vaclavikova et al. 2004) 

and transport (SLCO1B1, SLCO1B3 and ABCB1) (Gui, et al. 2008; Smith, et al. 2005; 

Sparreboom, et al. 1997; Walle and Walle 1998) (Figure 4) and studied their association 

with the paclitaxel accumulated dose causing grade 2 neurotoxicity in 118 patients treated 

with this drug. We found a statistically significant association between three cytochrome 

P450 functional genetic variants and paclitaxel neurotoxicity. This data reveals a possible 

genetic predisposition to undergo paclitaxel-induced neuropathy.  

 

 

3.1. Treatment schedule and age modify paclitaxel neurotoxicity  

Because paclitaxel neurotoxicity is dose-dependent, (Mielke, et al. 2003) we 

calculated the accumulated paclitaxel dose that produced clinically relevant neurotoxicity, 

rather than just evaluating the presence or lack of neurotoxicity at the end of the 

treatment. We confirmed that the weekly 80-90 mg/m2 paclitaxel schedule, was a risk 

factor for the neurotoxicity (Argyriou, et al. 2008; Seidman, et al. 2008) and, although 

previous results concerning age are inconclusive (Akerley, et al. 2003; Argyriou, et al. 

2006; Mielke et al. 2003), we found that patients below 50 years developed greater 

neuropathy (Figure 17). 

 

 

3.2. CYP2C8 and CYP3A5 SNPs are associated with neurotoxicity 

We found a statistically significant association for three CYP polymorphisms, 

CYP2C8*3, CYP2C8 Haplotype C and CYP3A5*3 (Table 12) with paclitaxel neurotoxicity. 

Initial in vitro studies for CYP2C8*3 suggested a lower activity for this allele (Dai, et al. 

2001; Soyama, et al. 2001), but more recent studies in healthy volunteers have 

demonstrated an increased metabolizing capacity (Aquilante, et al. 2008; Kirchheiner, et 

al. 2008; Niemi, et al. 2005; Niemi, et al. 2003). In contrast, CYP2C8 haplotype C 

(Kirchheiner et al. 2008; Rodriguez-Antona, et al. 2008; Smith, et al. 2008) and CYP3A5*3 

(Kuehl et al. 2001) confer a reduced activity. Given that the polymorphisms conferring low 
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metabolizing capacity were associated with protection, while the allele with increased 

activity showed a higher neurotoxicity (Figure 18), and the effects of these polymorphisms 

were independent, we incorporated them in a single prediction model (risk alleles: 

rs11572080 A, rs1113129 G and rs776746 G; Table 12). As result of combining the three 

independent alleles, individuals can be classified in 7 groups depending on the number of 

risk alleles. While inheriting 5 and 6 risk alleles is infrequent in Caucasians, carrying 0 to 4 

is relatively common (frequency > 3%), and consequently, variation at these three loci 

could explain a substantial proportion of paclitaxel-related neurotoxicity (Figure 19). In 

addition to the discussed polymorphisms, CYP3A4*1B showed a tendency towards 

increased neurotoxicity (P=0.057). However, CYP3A4*1B is in strong linkage 

disequilibrium with the functional CYP3A5*1 allele, suggesting that this latter is the causal 

polymorphism (Kuehl et al. 2001). A recent study by Gandara et al. (Gandara, et al. 2009) 

on paclitaxel/carboplatin treated patients suggests that population-related 

pharmacogenetic factors could account for ethnic differences in patient outcomes. 

However, no differences on paclitaxel neurotoxicity could be observed between Asian and 

USA patients (Gandara et al. 2009). This could be in agreement with our results since the 

protective CYP3A5*3 allele is more frequent in Caucasians than in Asians (Gandara et al. 

2009; Kuehl et al. 2001), but CYP2C8*3 risk allele is mainly Caucasian and could thus 

counteract the protective effect (Gandara et al. 2009; Rodriguez-Antona et al. 2008). The 

frequency of CYP2C8 haplotype C in different ethnic groups is unclear (Rodriguez-Antona 

et al. 2008) but, at least in Caucasians, it seems to be associated with a lower paclitaxel-

related neurotoxicity risk. 

 

Contradictory results have been obtained regarding the impact of genetic variation 

on paclitaxel neurotoxicity (Green, et al. 2009; Marsh, et al. 2007; Sissung, et al. 2006). A 

large study by Marsh et al. (Marsh et al. 2007) did not find evidence of associations with 

neurotoxicity for important polymorphisms in paclitaxel transporters and relevant CYPs. 

On the contrary, a more recent study by Green et al. found a statistically significant 

association for CYP2C8*3 allele with increased neurotoxicity risk (Green et al. 2009), 

which is coincident with our findings. The differences among these studies could be 

caused by the different experimental designs: Green et al. included a reduced number of 

patients with neurotoxicity as the primary endpoint of the study (Green et al. 2009; 

Sissung et al. 2006), whereas Marsh et al. (Marsh et al. 2007) included a large number of 

patients, however, the cumulative effect of paclitaxel neurotoxicity was not taken into 

account. Additionally, in the study focused on ABCB1 polymorphisms by Sissung et al. 

(Sissung et al. 2006), no significant differences were found in 22 patients evaluated for 
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neurotoxicity. Some of the genetic markers analyzed in our study [e.g. CYP2C8 Haplotype 

C with relevant functionality (Rodriguez-Antona et al. 2008)] were not included in the 

previous analyses. Additionally, in the present study, the neurotoxicity was analyzed 

taking into account the dose dependency with paclitaxel (i.e. the dose accumulated 

causing neurotoxicity grade 2), rather than just evaluating the presence or lack of 

neurotoxicity at the end of the treatment. Limitations of our study include the heterogeneity 

of the patients in form of tumor types and treatment regimens, and the inclusion of part of 

the patients in a retrospective basis. Nevertheless, these factors were considered in the 

statistical analysis without substantial changes of the results. 

 

 

3.3. An alteration in paclitaxel metabolism could modify the neurotoxicity 
risk  

It is important to note that in our study polymorphisms affecting paclitaxel 

metabolism were associated with an altered risk of paclitaxel neurotoxicity. This data 

suggests that changes in paclitaxel metabolism could modify the neurotoxicity risk. If 

these findings are confirmed, external factors modifying paclitaxel metabolism (e.g. 

enzyme inhibitors) could be used to reduce the patients‟ risk of toxicity. Cell death assays 

have shown that paclitaxel hydroxy-metabolites are less active than paclitaxel (Kumar, et 

al. 1995; Sparreboom, et al. 1995), but paclitaxel cytotoxicity increases in the presence of 

non-cytotoxic concentrations of 6 -hydroxypaclitaxel (Kang, et al. 2001). However, the 

effect of these molecules in neurons, which might be damaged through an alteration of 

neurotransmitter trafficking rather than mitosis blockage (Nakata and Yorifuji 1999; Theiss 

and Meller 2000; Yang, et al. 2009), has not been described. The concentrations of the 

hydroxy-metabolites and the active paclitaxel form (unbound paclitaxel) in plasma have 

been shown to be in the same range (Monsarrat, et al. 1998; Walle, et al. 1995), but the 

concentrations in the peripheral nervous cells, where the neurotoxic damage occurs, have 

not been determined. Alternatively, the metabolites might act through indirect mechanisms 

interfering with paclitaxel effect. Further studies addressing these points such as 

pharmacokinetic analysis taking into account the identified polymorphisms are needed to 

improve our knowledge of the mechanisms underlying the neurotoxicity. 

 

In conclusion our study, with paclitaxel neurotoxicity as primary endpoint, provides 

evidence that CYP2C8 Haplotype C and CYP3A5*3 are associated with lower risk of 

paclitaxel-related neurotoxicity and CYP2C8*3 with increased risk. These results warrant 
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independent validation in a larger population before exploiting the clinical applications. If 

confirmed, these genetic variants could be used to inform treatment selection, providing 

the basis for an individualized paclitaxel pharmacotherapy. 
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1. Bloque I: CYP3A5 se expresa en próstata a altos niveles, pero está ausente en el 
tejido tumoral prostático 

Se han publicado resultados contradictorios relativos a la expresión de los CYP3A 

en próstata (Di Paolo, et al. 2005; Finnstrom et al. 2001; Fujimura, et al. 2009; Koch, et al. 

2002; Moilanen et al. 2007; Murray, et al. 1995a; Stamey et al. 2001; Zhang et al. 2006). 

En este trabajo demostramos que sólo el CYP3A5 se expresa en niveles relevantes en 

las células basolaterales de la próstata y que su expresión muestra una gran variación 

entre las muestras debido al polimorfismo CYP3A5*3, (Kuehl et al. 2001). Un resultado 

destacable fue la ausencia de expresión del CYP3A5 en el tejido tumoral prostático. Las 

diferencias con otros estudios podrían ser debidas a anticuerpos de baja especificidad 

(Moilanen et al. 2007) y el uso de PCR no cuantitativa. Ya que la CYP3A5 no se expresa 

en las células tumorales, no cabe esperar que CYP3A5*3 influya de una forma directa en 

la inactivación del docetaxel. Por otra parte, dado que este enzima cataliza la 

hidroxilacion de androgenos a metabolitos menos activos, los polimorfismos que alteren 

la expresión prostática del CYP3A5 podrían influir en el riesgo a desarrollar cáncer de 

próstata (Parnes, et al. 2005; Zhenhua, et al. 2005). La mayoría de los estudios de 

asociación realizados se han centrado en el polimorfismo CYP3A4*1B, que no causa 

cambios relevantes en la expresión del CYP3A4 (Rodriguez-Antona et al. 2005) y que no 

se expresa en la próstata. Los resultados positivos obtenidos podrían explicarse por el 

alto grado de desequilibrio de ligamiento existente en el locus CYP3A (Kuehl et al. 2001; 

Lee et al. 2003), en concreto, el 80% de los Caucásicos tienen simultáneamente los 

polimorfismos CYP3A4*1B y CYP3A5*1 (Wojnowski, et al. 2002).  

 

2. Bloque II: La familia miR-200 regula la expresión de la β-tubulina III y se asocia 
con la respuesta al tratamiento y supervivencia libre de recaida de los pacientes  

La mayoría de los carcinomas de ovario se detectan en estadios avanzados, 

siendo la falta de respuesta al tratamiento y la recaída los dos factores que reducen 

sustancialmente la supervivencia. De ahí la importancia de identificar nuevos 

biomarcadores de pronóstico y predictivos de respuesta al tratamiento. Mediante un 

análisis in sílico identificamos sitios de unión para los microRNAs de la familia miR-200 

en el 3‟ UTR de los isotipos de β-tubulina I, II y III.  Por otra parte, un análisis de IHC en 

72 muestras de cáncer ovario reveló que el isotipo I de β-tubulina se expresaba a altos 

niveles en todas las muestras, mientras que las clases II y III mostraban una importante 

variación que era mutuamente excluyente. La sobreexpresión tumoral del isotipo III se ha 

asociado anteriormente con mal pronóstico y falta de respuesta en varios tipos de 

tumores, incluyendo ovario (Ferrandina et al. 2006; Umezu et al. 2008). En nuestro 

estudio no encontramos esta asociación, probablemente debido al reducido número de 

muestras con alta expresión del isotipo III. Al comparar los resultados de la IHC con los 
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niveles de expresión de los miR-200, descubrimos que la familia miR-200 regulaba la 

expresión del isotipo III, pero no la de los isotipos I y II, sugiriendo que mecanismos 

alternativos determinan la expresión final de estos isotipos. Por otra parte, los niveles de 

expresión del miR-200c se asociaron de forma estadísticamente significativa con la 

respuesta al tratamiento (P=0.0027 con t-test; HR=0.70, 95%CI=0.50-0.98, P=0.037 en 

análisis multivariante). Esto sugiere que una baja expresión del miR-200c podría conducir 

al sobre-expresión del isotipo III y a una mayor resistencia a paclitaxel. Esta hipótesis se 

corrobora con el estudio in vitro de Cochrane et al (Cochrane et al. 2009). Los miR-141, 

miR-200c y miR-429 mostraron una tendencia de asociación con la recaída de las 

pacientes. Por lo tanto, proponemos que la familia miR-200 podría ser un marcador tanto 

de pronóstico como de respuesta a tratamiento con taxanos en cáncer de ovario.  

 

3. Bloque III: Polimorfismos en los Citocromos P450 2C8 y 3A5 se asocian con la 
neurotoxidad del paclitaxel 

En este estudio de farmacogenética estudiamos 13 polimorfismos relevantes en 

seis genes implicados en la eliminación del paclitaxel en 118 pacientes tratados con este 

fármaco y en los que se había valorado la neurotoxicidad. Confirmamos que la 

administración semanal del paclitaxel era más neurotóxica que el régimen de 21 días 

(Argyriou et al. 2008; Seidman et al. 2008), y también encontramos una mayor 

neurotoxicidad en los pacientes menores de 50 años. Al analizar el efecto de los 

polimorfismos, descubrimos que el Haplotipo C del CYP2C8 y el CYP3A5*3 conferían 

protección frente el riesgo de sufrir neurotoxicidad por paclitaxel (P=0.014 y P=0.012, 

respectivamente) mientras que el CYP2C8*3 aumentaba el riesgo (P=0.032). Estudios 

anteriores muestran resultados contradictorios para estos polimorfismos (Green et al. 

2009; Marsh et al. 2007; Sissung et al. 2006), hecho que podría deberse en parte a un 

bajo número de muestras y a no tener en cuenta la dependencia de la neurotoxicidad con 

la dosis acumulada de paclitaxel. Ya que el CYP2C8*3 posee una actividad incrementada 

(Aquilante et al. 2008; Kirchheiner et al. 2008; Niemi et al. 2005; Niemi et al. 2003), y el 

CYP2C8 haplotipo C (Rodriguez-Antona et al. 2008) y el CYP3A5*3 (Kuehl et al. 2001) 

confieren una actividad reducida, los tres polimorfismos fueron considerados 

conjuntamente en un modelo predictivo de neurotoxicidad (HR= 1.64 95%CI=1.26-2.14; 

P=0.0003). De acuerdo a este modelo los individuos se dividen en siete grupos, según el 

número de alelos de riesgo que portan, y se puede estimar su riesgo individual a 

desarrollar neurotoxicidad por paclitaxel.  
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1.  Only CYP3A5 out of the four CYP3A human genes is expressed at high 

levels in the non-tumoral prostate tissue, specifically in the basolateral cells and at 

variable levels due to the CYP3A5*3 polymorphism. 

 

2.  CYP3A5 could play an important endogenous role in the prostate and 

CYP3A polymorphisms, such as CYP3A5*3, CYP3A5*6 or CYP3A5*7, could alter the 

metabolism of intra-prostatic androgens and influence prostate cancer risk. 

 

3. Tumoral prostate tissue lacks CYP3A5 expression. This suggests that 

polymorphisms altering the activity of this enzyme cannot directly affect the efficacy of 

docetaxel treatment in prostate cancer. 

 

4.  A decreased miR-200 family expression results in up-regulation of β-tubulin 

class III in ovarian tumours. 

 

 5. miR-200c could be used as a biomarker for treatment efficacy in advanced 

ovarian cancer since it is associated with the response to paclitaxel-carboplatin treatment.  

 

6.  miR-200 family could be a prognostic factor in advanced ovarian carcinoma 

since it is associated with progression-free survival.  

 

7. CYP2C8 Haplotype C and CYP3A5*3 are associated with lower risk and 

CYP2C8*3 is associated with an increased risk of paclitaxel neurotoxicity. 

 

8.  According to these results a genetic model including the three 

polymorphisms could be applied to predict the individual risk of the patients to develop 

paclitaxel neurotoxicity, providing the basis for an individualized paclitaxel 

pharmacotherapy. 
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1. De los cuatro genes CYP3A humanos sólo el CYP3A5 se expresa a altos 

niveles en el tejido prostático no-tumoral, específicamente en las células basolaterales y 

en cantidades variables dependiendo del polimorfismo CYP3A5*3. 

 

2.  El CYP3A5 podría jugar en la próstata un importante papel endógeno y los 

polimorfismos del CYP3A, como el CYP3A5*3, CYP3A5*6 y CYP3A5*7, podrían alterar el 

metabolismo de los andrógenos intra-prostáticos e influir en el riesgo de desarrollar 

cáncer de próstata. 

 

3. El tejido tumoral prostático no expresa CYP3A5. Esto sugiere que 

polimorfismos que alteran la actividad de este enzima no pueden afectar de forma directa 

la eficacia del tratamiento del cáncer de próstata con docetaxel.  

 

4.  Una disminución en la expresión de la familia miR-200 resulta en un 

aumento de la expresión de la β-tubulina clase III en tumores de ovario.  

 

 5. El miR-200c podría utilizarse como un biomarcador de eficacia de 

tratamiento en cáncer de ovario avanzado, ya que está asociado a la respuesta al 

esquema paclitaxel-carboplatino. 

 

6.  La familia miR-200 podría ser un factor pronóstico para el carcinoma de 

ovario avanzado, ya que está asociado a la supervivencia libre de recaída. 

 

7. El haplotipo C del CYP2C8 y el CYP3A5*3 están asociados a un menor 

riesgo y el CYP2C8*3 está asociado a un mayor riesgo de desarrollar neurotoxicidad por 

paclitaxel.  

 

8.  De acuerdo a estos resultados estos tres polimorfismos se podrían incluir 

en un único modelo genético para predecir el riesgo de desarrollar neurotoxicidad por 

paclitaxel, proporcionando así la base para una farmacoterapia individualizada del 

paclitaxel. 
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