
UNIVERSIDAD AUTÓNOMA DE MADRID
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Dr. Jorge E. López de Vergara Méndez

Madrid, March 2010





DOCTORAL THESIS: Characterizing the spatial and temporal
diversity of Internet traffic:
A capacity planning application
to the RedIRIS network
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Abstract

Both Internet service providers and the research community have understood the

importance of traffic measurements. On the one hand, the research community

uses these measurements to characterize the network traffic in order to improve the

understanding of the Internet dynamics. On the other hand, operators use them

to ensure the Quality of Service, detect problems in their networks, invoice clients,

and perform capacity planning, among other applications. In the development of

all these tasks, network operators must handle representative information about

the traffic volumes traversing their network. This entails the following issues:

First, the representativeness and generality of the traffic measurements still re-

mains an open issue. It has been a general belief that certain internetwork traffic

statistics show a similar behavior in networks with similar features, and the con-

clusions derived from the measurements of a given network can be extrapolated

to a similar scenario. This work makes no starting assumption concerning this

issue and undertakes a “spatial” analysis of network measurements. Our experi-

ments, using measurements from the Spanish academic network, RedIRIS, show

that although the frequency statistics of IP addresses and port numbers follow a

Zipf distribution (as expected) the distributions’ characteristic parameter values

vary significantly in a spatial dimension, that is, across the individual networks.

Moreover, we model the distribution of the geolocation of Internet connec-

tions in an extensive set of campus networks using a Zipf-Mandelbrot law, and we

further apply Analysis of Variance (ANOVA) to the measurements. Then, by com-

paring the distributions’ characteristic parameter values and analyzing ANOVA

results, we found that again the behavior between such campuses is far from being

homogeneous.

In practical terms, this means that network designers, analysts, and operators
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iv Summary

should not assume that the statistics for applications usage for one network may

accurately characterize other networks, even when those networks have similar

user bases and environments. Furthermore, we show that experiment durations of

more than 30 days are necessary for the traffic processes to display stationarity.

Second, the amount of traffic measurements available over which to perform

any analysis, processing and storage is usually overwhelming. For this reason, the

research community has paid attention to find an effective mechanism to reduce

(or subsample) such huge amount of data, with minimum loss of information.

In this light, this thesis proposes a new method that enables to subsample net-

work measurements optimally using Multiresolution Analysis with wavelets: The

“queueing equivalent” thresholding method.

Additionally, this thesis addresses the characterization of the Internet’s traffic

busy hour given that this metric is usually adopted by the operators for capacity

planning. The results of analyzing six months worth of Netflow data and MRTG

logs collected from RedIRIS, show that the traffic volume marginal distribution

during the busy hour is Gaussian, and further show that there is no correlation

in the busy-hour traffic volume over different working days. This implies that the

traffic volumes in the busy hour can be modeled by a white Gaussian process,

which can be used to derive the capacity required such that the traffic volume is

met with certain probability.

Finally, we go one step further and examine the influence of the networks’

intrinsic features, mainly population size and access link capacity, on the Inter-

net busy-hour traffic. Well-known statistical methodologies, such as ANOVA and

Analysis of Covariance, show that the network size in terms of number of users

justifies most of the busy-hour traffic information. We further provide a linear-

regression model that adjusts the amount of traffic that each network user con-

tributes to the busy-hour traffic mean and variance values, with a straightforward

application to the problem of link capacity planning of IP networks.

Keywords: Internet Measurements; University Networks; RedIRIS; Network

capacity planning; Netflow; Spatial and Temporal Diversity; Heavy-hitters; Time-

Series subsampling; Queueing equivalent thresholding method; Multiresolution
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Analysis with wavelets; Internet traffic busy hour; ANOVA; ANCOVA; Intrinsic

features; Zipf; Zipf Mandelbrot; Geolocation .



Resumen

Tanto los proveedores de servicio de Internet como la comunidad cient́ıfica han

comprendido la importancia de las medidas de tráfico de las redes de datos. Por

un lado, la comunidad cient́ıfica usa estas medidas para caracterizar Internet con-

tribuyendo al mejor conocimiento de su dinámica. Por otro lado, los operadores

de red las usan para asegurar la calidad de servicio de sus clientes, detectar pro-

blemas, facturar a los clientes y para dimensionar correctamente sus redes, entre

otras aplicaciones. Al llevar a la práctica estas tareas, los operadores de red deben

capturar información representativa del volumen de tráfico que atraviesa sus redes.

Esto conlleva las siguientes complicaciones:

Primero, la representatividad y generalidad de las medidas de red es un proble-

ma por resolver. T́ıpicamente se ha considerado que ciertas estad́ısticas del uso de

Internet muestran un comportamiento equivalente entre redes con caracteŕısticas

similares, y que las conclusiones derivadas de estas medidas pod́ıan ser extrapo-

ladas a escenarios semejantes. Este trabajo no asume esta premisa y analiza la

diversidad “espacial” de las medidas de red. Nuestros experimentos, usando me-

didas de la red académica española, RedIRIS, muestran que, aunque la frecuencia

de uso de las direcciones IP y puertos siguen una distribución Zipf (como era es-

perado), el parámetro caracteŕıstico de esta distribución vaŕıa significativamente

en la dimensión espacial, esto es, entre un grupo significativo de redes aun cuando

la población y caracteŕısticas de estas redes son similares.

Del mismo modo, modelamos la distribución de probabilidad de la localización

geográfica a donde se conectan un conjunto de redes universitarias mediante una

distribución Zipf-Mandelbrot y, posteriormente, aplicamos Análisis de Varianza

(ADEVA) a los datos. Entonces, al comparar las parámetros de este modelo y

analizar los resultados de ADEVA, encontramos que, de nuevo, el comportamiento
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de las redes universitarias está lejos de ser homogéneo.

En la práctica, esto significa que los diseñadores de red, analistas y opera-

dores no debeŕıan asumir que las estad́ısticas de uso de aplicaciones de una red

en particular pueden caracterizar otras redes aunque tengan similar población e

infraestructura. Además se muestra que la duración de los experimentos debe ser

como mı́nimo de 30 d́ıas para que ciertas estad́ısticas muestren un comportamiento

estacionario.

Segundo, la cantidad de medidas de tráfico disponibles sobre las que desarrollar

cualquier análisis, procesado o almacenamiento es frecuentemente desbordante.

Por esta razón, la comunidad cient́ıfica ha prestado especial atención a la búsqueda

de mecanismos para reducir o submuestrear tal cantidad de datos, minimizando

la perdida de información. Este trabajo propone un nuevo método que permite

submuestrear medidas de red óptimamente usando Análisis Multiresolución con

wavelets: “The queueing equivalent thresholding method”.

Esta tesis también analiza la caracterización de la hora cargada de Internet de-

bido a que esta medida es t́ıpicamente usada por los operadores para dimensionar

los enlaces de sus redes. Los resultados de analizar seis meses de datos Netflow y

MRTG de RedIRIS, muestran que la distribución de tráfico, en cuanto a volumen,

durante la hora cargada es Gaussiana, y que, además, no existe correlación entre

los diferentes d́ıas laborables de la semana. Esto implica que el tráfico puede ser

modelado como un proceso blanco Gaussiano, el cual puede ser usado para estimar

la capacidad requerida tal que el volumen de tráfico generado por los usuarios no

exceda con cierta probabilidad esta capacidad.

Finalmente, examinamos la influencia de las caracteŕısticas inherentes de las

redes, principalmente la población y la capacidad de los accesos, en el tráfico de

Internet durante la hora cargada. Metodoloǵıas bien conocidas como ADEVA y el

Analisis de Covarianza, muestran que el tamaño de la red en términos de usuarios

explica convenientemente la dinámica de la hora cargada. Con esto, proponemos

un modelo de regresión lineal que predice el volumen de tráfico que genera una

red durante la hora cargada. Esta propuesta tiene aplicación directa al problema

de asignación de capacidad a las redes IP.
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I would also like to thank Vı́ctor López for our fruitful discussions about all

the topics of this thesis.

In the same way, let me thank my colleagues from the High Performance Com-

puting and Networking research group: Sergio López, Iván González, Francisco
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Chapter 1

Introduction

This chapter provides an overview of this Ph.D. thesis, presents its

objectives and hypotheses, and, finally, outlines its structure.

1.1 Overview and motivation

Network traffic measurements collected across the Internet provide very mean-

ingful information for researchers, service providers, and other members of the

Internet community [CK06, FK03, BC02].

On the one hand, network operators may benefit from such information in

their goal of ensuring the appropriate Quality of Service (QoS) to their customers.

Indeed, the ever-increasing user demands and wide variety of application require-

ments are forcing Internet Service Providers (ISP) to develop network capacity

plans very carefully, not only to maintain the QoS provided, but also to reduce

the need for investment. ISPs have not underestimated the benefits of traffic mea-

surements, and have traditionally applied their potential to other related fields,

namely the performance evaluation of networks, the detection of anomalies and

Denial of Service (DoS) attacks, and even the generation of the costumers’ invoices.

On the other hand, the research community has also found essential the use of

real network measurements to improve the understanding of the Internet dynam-

ics, and further apply this knowledge to the development of network models, with

direct application to network operators’ needs mentioned above.

However, the collection of representative traffic measurements is not a straight-

1
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forward process. In light of this, the authors in [FP01] provide a detailed ex-

planation of the problems that can be found on the simulation of the Internet,

some of which also arise in the process of measuring networks. Examples of such

problems include the large size and the heterogeneous nature of the Internet, the

ever-increasing number of new applications being introduced to the network, the

fast and unpredictable way the Internet changes, the size and date of the sample

collected, and the handling of outliers in the measuring process. In addition, new

problems are constantly emerging. For instance, the authors in [JTO09] explain

the current legal limitations that the research community is finding to share actual

traffic measurements or even to carry out new traffic measurement campaigns.

In this thesis, we pinpoint two additional difficulties: First, the “spatial diver-

sity” of measurements, that is, whether the information obtained from measure-

ments collected at diverse locations with similar features differs significantly or

not; and secondly, the time required to capture stationarity, the “temporal diver-

sity”, that is, the amount of measuring time needed to bring a sampled distribution

which persists over time. Specifically, we have analyzed three important charac-

teristics of the Internet, (i) the popularity of IP addresses, (ii) the popularity of

port numbers, and (iii) the geolocation of the Internet connections.

To this end, this thesis has had access to traffic measurements of RedIRIS, the

Spanish National Research and Education Network (NREN). RedIRIS connects

more than 300 institutions and the measurement capture process has lasted more

than 2 years, resulting in an overwhelming amount of data which is by itself a

difficult problem to deal with.

This work also addresses this issue. Specifically, we further propose a mech-

anism to downsample traffic time-series using Multiresolution Analysis (MRA)

with wavelets, and evaluate the optimal subsampling level based on comparing

the queueing behavior of the subsampled and original time-series at the output of

a router. This mechanism is more related to network performance than conven-

tional downsampling methods, since queueing delay is a very representative QoS

metric. In addition, we take advantage of the fact that the internetwork mea-

surements show a strong periodicity due to their relation to the human activity

patterns. Thus, by applying MRA with wavelets we take into account information

not only in the time domain but also in the frequency domain.
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Next, this work pretends to characterize the RedIRIS’ busy hour given its

importance for accurate capacity planning. This challenge is of fundamental im-

portance for the ISPs since the quality that their users receive directly depends

on the link bandwidth. In general, there are two approaches [vdM06] to meet the

Service Level Agreements (SLA): (i) using Integrated Services (Intserv) or Differ-

entiated Services (Diffserv) to limit either the number of users in the network or

the resources that can be requested, and (ii) overprovisioning the network capacity

such that all the users and applications’ requirements are met. In this thesis, we

pay special attention to this latter option.

We have found that the two main drawbacks of the most of the current ap-

proaches to the capacity planning problem are: (i) The temporal and spatial

diversities are ignored, and (ii) such approaches are typically based only on a pri-

ori measurements of the demand for capacity. For instance, these approaches use

dedicated measurement systems to obtain the bandwidth consumption and, then,

the measurements are used to estimate the demand for bandwidth [PNvdMM09].

However, sometimes it is not possible to measure in a given network, for example, a

new institution that joins RedIRIS or a subnetwork without a dedicated measure-

ment system. In addition, sometimes the problem is to foresee “what happens if”

a certain feature changes. That is, the problem is to deem the variation on the de-

mand for network resources by adding new network users, when network topology

changes or it is upgraded. If the estimation are based on previous measurements

only, then, these questions cannot be addressed.

In this light, this thesis takes one step further and shows how the demand for

bandwidth can be estimated by means of the intrinsic features of the networks.

Basically, such features include the number of users and the network access ca-

pacity. Thus, given these features, network managers can estimate the demand

for bandwidth in their networks.

1.2 Objectives and hypotheses

The overall aim of this work is to show how the internetwork measurements (suf-

ficiently representative and appropriately captured, validated and reduced) can
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be useful to characterize a facet of the Internet’s behavior as important as the

Internet’s traffic busy hour and how it can be estimated from the IP networks’

intrinsic features. Consequently, the following specific hypotheses and objectives

are defined:

1. Hypothesis: Traffic measurements gathered from a limited number of net-

works and limited duration cannot be considered to be sufficiently represen-

tative of the Internet.

Objectives: We pretend to assess to what extend the traffic measurement

campaigns must last to obtain stationary internetwork statistics of a given

network.

In addition, we pretend to assess if a homogeneous set of networks shows

similar behavior with regard to several internetwork statistics.

2. Hypothesis: If the Internet traffic measurement campaigns must last for long

periods of time, the volume of data that such campaigns entails can result

by itself difficult to analyze, monitor, and store.

Objectives: This objectives comprises several aspects:

− To propose new techniques to subsample Internet traffic measurements.

We focus on the fact that it is well known that such measurements

follow the patterns of the human behavior, and, consequently, they

show strong periodicity.

− To define an automatic and objective mechanism to identify when the

subsampled signal is not longer representative of the original one.

− To validate the proposed approaches with real data that represents

measurements and statistics of the Internet traffic using an extensive

set of networks during a representative period of time.

− To compare the proposed approaches with previous well-known method-

ologies to subsample time-series.

3. Hypothesis: The demand for bandwidth in the busy hour over mid-length

periods can be characterized by a stochastic process.
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Objective: The aim of this objective is to model the traffic volume exchanged

during the busy hour over time by means of a stochastic process. This task

comprises two subtasks:

− Visual inspection of the data in order to propose a model.

− Validation of such model with real data, in this case measurements from

RedIRIS.

4. Hypothesis: The demand for bandwidth during the busy hour over long

periods calls for a non-stationary process model.

Objective: This objective includes the inspection of stationary of the demand

for bandwidth in the long term, bearing in mind that it is expected that the

demand increases over time. Thus, we pretend to assess if such increment is

either at a constant rate or, conversely, the demand changes as a staircase

function (that is, as a set of consecutive stationary processes).

5. Hypothesis: The demand for bandwidth in low-utilized networks are not

polluted by their access capacities. As RedIRIS networks’ utilizations are

typically low, we support the hypothesis that access capacities are not “cap-

ping” the demand of the users.

Objective: This objective tries to evaluated if the demand for bandwidth

is correlated to the access capacity of the networks in an extensive set of

network scenarios.

6. Hypothesis: The parameters of the process that models the demand for

bandwidth over time can be estimated by means of the networks’ intrinsic

features. Consequently, the demand for bandwidth in given a network can

be estimate in an objective and fairly fashion, and, even, avoiding to carry

out a dedicated measurement campaign.

Objective: Once the busy hour process is modeled by a stochastic process,

this objective intends to infer the parameters of such process by means of

explanatory variables, specifically, a set of network intrinsic features.

The reader may notice that these specific objectives are treated throughout

this Ph.D. thesis and their evaluation is reported at the end of this document.
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1.3 Thesis structure

This thesis is organized as follows:

− Chapter 2 presents the state-of-the-art. Firstly, we show literature that ana-

lyzes NRENs. Secondly, we focus on network monitoring tools that we have

used along the thesis. Next, we present some different Internet traffic mod-

els that the research community has proposed to characterize the Internet.

Finally, we show how some of these models have been applied to the capacity

planning problem.

− Chapter 3 analyzes the popularity of the IP addresses and port number

focusing in two aspects of the Internet’s characterization: the spatial and

temporal diversities, which have usually been ignored. In this light, this

chapter compares the behavior of universities with similar characteristics

during several months. Moreover, we also explain why both spatial and

temporal diversities occur. In addition, this chapter presents the measure-

ment scenario that is analyzed throughout this thesis. Essentially, it includes

a description of the RedIRIS’ architecture and measurement systems as well

as the validation of the data.

− Chapter 4 analyzes the geolocation of the Internet traffic destinations paying

also special attention to its spatial and temporal diversities.

− Chapter 5 deals with the traffic measurements reduction problem and pro-

poses a new method to subsample network measurements over time based

on the Multiresolution Analysis with wavelets.

− Chapter 6 analyzes the dynamics of the Internet traffic busy hour due to its

importance in the capacity planning problem. Several goodness-of-fit tests

are applied to an extensive set of RedIRIS’ measurements, concluding that a

Gaussian distribution can model the Internet traffic busy hour. In addition,

we further study the impact of the intrinsic features on the demands for

bandwidth at the Internet traffic busy hour.

− Chapter 7 presents the conclusions that can be drawn from this thesis and

proposes some directions for future research lines.
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Figure 1.1 shows the relation between the different contents that make up this

work and the layout of the chapters.
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Chapter 2

State of the art

This chapter presents a general background of the most important is-

sues that this work deals with and it is useful to justify the decisions

taken along the research process. Specifically, we focus on the following

items:

− Studies about other academic networks. In this section we analyze

research on networks similar to RedIRIS since its measurements

are an essential part of this thesis.

− Network monitoring tools, which serve to provide an accurate cap-

ture process and deal with the huge amount of data that the traf-

fic measurements imply. We have paid special attention to the

Cisco’s Netflow and Multi Router Traffic Grapher logs because

RedIRIS is currently using these tools.

− Data reduction. We present different proposed approaches that

aim at reducing the volume of data for further processing and

storage while still preserving relevant information.

− Traffic characterization. In this section we present several models

to characterize the Internet traffic that the research community

has proposed.

− Network Dimensioning. In this last section we study proposed

methodologies to dimension networks as well as techniques to pre-

dict the evolution of the Internet.

9
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2.1 National Research and Education Networks

The academic networks have received relatively much attention by the research

community. Basically, this is due to the current regulation that usually prevents

the research community from sharing actual traffic measurements and even cap-

turing traffic in commercial networks [JTO09]. As a consequence and due to the

greater accessibility of the academic networks, the researchers have typically used

measurements from their own institutions which are normally academic networks.

As this thesis analyzes measurement from an extensive set of campus networks,

this section presents some previous studies based on academic networks’ measure-

ments.

On the one hand, there are many research studies that have used measure-

ments from academic networks to evaluate new algorithms, systems, architec-

tures or applications’ performance. Examples of this are the MEHARI and MIRA

projects [LASP+99, RGMG+02]. In particular, MIRA is a distributed and scal-

able real-time measurement platform and MEHARI is a low-cost programmable

and scalable tool for the analysis of IP/ATM traffic. The authors tested both

projects using RedIRIS’ network and some details of the RedIRIS’ infrastruc-

ture can be found in these works. Moreover, measurements from academic net-

works have proven useful to validate traffic classification methodologies. Such

methodologies try to identify the applications that compose the traffic generated

by a network. Examples of that are the community research’s efforts to detect

Skype [BMM+07, BMM+09] and to classify the traffic into different application

groups [CEBRSP].

In addition, other studies have shown the current state of a given academic net-

work in terms of bandwidth, number of nodes and number of centers connected;

however, these studies neither explain the link capacity planning nor compare

the behavior between the institutions that make up the network. For instance,

in [Lia93, MKYK89, Mat87] the characteristics of the Japan and China’s aca-

demic networks are shown. However the authors do not provide any conclusion or

methodology for capacity planning. Similarly, the academic network of Slovenia

is explained in detail in [JBOK03]. Specifically, the authors introduce the net-

work topology, network technology, national and international connectivity, and

services that are available in the network.
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However, few studies have compared in detail the measurements from an ex-

tensive set of well-characterized networks. Only the Trans-European Research and

Education Networking Association (TERENA) [Terb] has supported the commu-

nication and the flow of ideas between the network manager of each of the academic

networks in Europe. Consequently, TERENA (especially by means of TERENA

networking conference) has presented some results of comparing several European

academic networks. The authors in [Tera] compare several characteristics of a

set of academic networks. This includes the core capacity of each network, the

capacity to Europe and to USA/rest of the world, network size, technology used

in the core network, traffic per student, services provided, staffing, investments,

budget per university student and country, and population.

It should come as no surprise that the networks with the greatest capacity,

staff, and investments show the highest ratio between the traffic volume and the

number of students per academic network. Such ratio ranges from lower than 0.6

Mb/s per student (in Albania) to more than 4 Mb/s per student (in Finland).

When the budget per student between both countries are compared it becomes

evident that Finland exceeds notably ones Albania. As a conclusion, the traffic

generated by user strongly depends on the “intrinsic” features of the academic

networks and their relation is evident.

In the case of this thesis, all the institutions under study are part of the same

operator, the Spanish academic network. Therefore, the most of these features

are not applicable. However, by comparing a set of institutions we assess if they

share similar features in terms of connectivity, provided services, population, etc.

as will be explained in detail in the forthcoming of this thesis (Chapter 3).

2.2 Network monitoring tools

A great deal of monitoring applications has been found in the literature. Such ap-

plications enable to estimate, among others, the available bandwidth, the router

queueing occupancy, service times, and link one-way delays. For example, the

authors in [ALML06] show an application that estimates many of these metrics,

transparently to users. In [LdVBF04] it is shown how these metrics can be es-

timated, in a university network, using only Netflow information. A work that
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shows an extensive background about this topic is [PMDC03]. However, we note

that the implementation of network monitoring tools are out of scope of this the-

sis. Actually, this work must adapt to the available measurements from RedIRIS.

Specifically, RedIRIS collects Netflow records, which consist of a summary record

per flow that traverses its routers, and logs from the Multi Router Traffic Grapher

(MRTG) tool.

2.2.1 Netflow

The analysis of Netflows seems to be the best option to study the RedIRIS traffic

characteristics. A Netflow is a sequence of packets that share the same resource

and destination IP addresses, port numbers and protocol. More specifically, a

Netflow summary includes: aggregated traffic volume in bytes, number of packets,

port numbers, source and destination IP addresses, type of service, input and

output interface indices, together with time-stamps for the flow beginning and

end.

Initially, the Netflow protocol was implemented in Juniper and Cisco’s routers

to reduce the router workload and subsequently standardized [Lei04]. As a matter

of fact, Netflow is the name that Cisco gave to the network flow records that its

routers generate, however, currently Netflow refers to any network flow records.

Additionally, the protocol that enables to export these records to other machines

is usually named Netflow as well. Routers using these Netflow records could for-

ward a packet without examining the routing table which implies an important

computational cost reduction [Cis]. Since then, Netflow records have been used for

many other tasks as we will show in this chapter and in the rest of this thesis. Such

tasks include, among others, the intrusion-prevention systems, the client’s invoic-

ing, traffic characterization, capacity planning, and estimations of the available

bandwidth capacity.

There are numerous tools and applications that enable to capture, store and

even visualize the Netflow records. One of these applications is the Flow-Tools

software package [RFL00], which has been used in this thesis. This application

allows the capture of the Netflow records that a router generates and stores them

compressed. Furthermore, it can be also filter the Netflow according to the IP

addresses, port numbers, size (in bytes) and length (in seconds) among others.
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In [LSLY05] a tool is presented that anonimizes the stored Netflow records in

order to fulfill the privacy policy requirements.

Netflow records have been extensively used to provide security to the networks.

There are many applications that enable to visualize a set of flows just in a graph

(note that it can involve to depict at least six dimensions). Thus, at first glance,

a network operator can detect problems in its network. In [OGK06] and [Yur06]

several of these applications are shown, specifically they show how Netflow can be

used to detect viruses, worms and attacks (like Denial of Service (DoS) attacks)

in the traffic that traverses a certain network.

However, both the Netflow capture process and Netflow statistics creation

process have two limitations. On the one hand, a flow may last days, nonetheless

the routers have a limited memory capacity and they cannot maintain an infinite

number of open flows awaiting for a hypothetical new packet. In general, a flow

is said to be finished [Cis]:

− When a rejected or an end-of-connection packet (FIN/RST flags) is found

(in TCP connection case).

− When a router does not detect traffic of an open flow for a reasonable period

of time (say 30 seconds).

− When a flow remains open for a long time (usually 30 minutes).

− When the flow statistics table is completely full and the router needs to free

some records to store new ones.

On the other hand, the traffic that goes through a router can be so intense that

the time a router takes to update the flow statistic table is larger than the packet

interarrival time; thus, the router cannot create all the Netflow records accurately.

These limitations are explained in detail in [EV03]. The solution that has been

accepted by the industry to avoid this latter problem is based on sampling the

flows, taking only a percentage of the packet that a router forwards. Then, from

this smaller set of packets the whole flow statistics are estimated. Obviously, this

mechanism adds inaccuracy to the Netflow records.

In [EV03] two new sampling algorithms are proposed that improve the deter-

ministic sampling performance (i.e., to take one out X packets, where X is a fixed
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number). These algorithms are based on the fact that the traffic is composed by a

small set of large flows and a large set of small flows. Thus, paying special atten-

tion to the set of the largest flows results in a better traffic characterization than

analyzing all the flows regardless of their sizes. However, these algorithms, in the

case of this thesis, are unlikely to prove useful since they are a replacement of the

algorithms currently installed in the network routers, and this is unfeasible. In

contrasts to this, the above-mentioned work shows interesting performance com-

parison with the Cisco sampling algorithm (deterministic sampling). They show

results that depend on the flow size: for those flows that represent more than 1%

of the link capacity, the deterministic sampling algorithm has a error of 9% while

in the case of smaller flows the error is much higher.

The authors in [DLT05] also assess the traffic characteristics after the sam-

pling process and present a comparison between the deterministic sampling and

the random sampling (i.e., to chose a packet with probability p). Reference [CB05]

performs a similar analysis. Both studies conclude that, in practical terms, the

flow statistics resulting from both subsampling algorithms are very similar, al-

though the authors show that the results are not statistically identical because

the algorithms can be distinguished using goodness-of-fit tests.

Cisco’s Netflow records are used in [FGL+01] to characterize a backbone net-

work as well as to estimate its traffic matrix. The obtained results improve pre-

vious results clearly. Such previous results were based on civil engineering ap-

proaches where the researchers know the number of vehicles in a point of the road

network but they do not know the destination of each vehicle. Therefore, these

previous works estimated the traffic matrix using traffic load measurements in the

network links without information from either source or destination addresses of

the traffic [BR02]. Conversely, Netflow data comprises information both source

and destination addresses, thus, the authors in [FGL+01] estimate the traffic ma-

trix of a backbone network analyzing only Netflow records in its peer links (and

some extra internal links to estimate the traffic between clients of the same net-

work). Additionally, they compare the traffic volume measurements that can be

obtained using Netflow records with the estimations obtained using other tech-

niques such as the Simple Network Management Protocol (SNMP) [CFSD90].

Similar comparisons were performed in [LPC+04]. In this latter study it is esti-
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mated that the difference, regarding network load, ranges from 1% to 5%.

Another interesting work about traffic characterization is presented in [WP05].

In this case, the authors focus on the optimization of the traffic data storage pro-

cess since some operators must retain information about their clients’ traffic to

comply with certain regulations. They compare different aggregation levels that

fulfill such regulations: storing all the packets, only IP headers, Netflow records

and pre-analyzed Netflow records. They conclude that Netflow is the most eco-

nomical way to store traffic information while preserving the information required

by the regulations. Specifically, the best option is to store pre-analyzed Netflow

records; this pre-analysis consist of removing redundant and useless Netflow data.

That is, the source port of a connection is sometimes chosen randomly so this in-

formation is pointless, however the destination port is usually important since it is

often bounded to specific services and applications. They also propose to assemble

similar flows in a single one, for instance, flows of the same application. However,

this pre-analysis has an evident problem: the computational cost. Obviously, the

process of assembling flows by application saves storage resources but the process

of identifying application, by itself, is a challenge. From this point of view, storing

Netflow without pre-analysis is the best option. According to [WP05] the ratio

between the traffic volume and the space that Netflow records demand is in the

range of 0.4% and 0.04% depending on the pre-analysis process.

2.2.2 Multi Router Traffic Grapher logs

MRTG [Oet98, Shi08] is a software tool that reports the amount of traffic for-

warded by a router interface. The data collection process is performed by means

of polling SNMP-enabled network devices in order to obtain the value of a given

variable Management Information Base (MIB). Specifically, it performs polling

of the ifInOctets and ifOutOctets counters of the Interfaces MIB [MK00]. The

time between two consecutive readings is configurable but it is typically set to 5

minutes, as it is the case of RedIRIS. MRTG stores such information in its own

text-format (MRTG log files) and then generates graphs and web pages for the

given time interval. It includes statistics such as maximum, minimum and mean

values. The MRTG log files format is presented in detail in [MRT]. Basically such

files comprise five columns that represent:
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− The Unix timestamp for the point in time the data on this line was measured.

− The average incoming transfer rate in bytes per second. This is valid for the

time between the timestamp of the current line and the timestamp value of

the previous line.

− The average outgoing transfer rate in bytes per second since the previous

measurement.

− The maximum incoming transfer rate in bytes per second for the current in-

terval. Note that MRTG files comprise not only records per two consecutive

pollings of the Interfaces MIB, but also the aggregation of several pollings.

Consequently, this column accounts for the maximum value between some

consecutive aggregated pollings.

− The maximum outgoing transfer rate in bytes per second for the current

interval.

2.2.3 Data reduction

One of the major challenges of the current monitoring systems is that the volume

and diversity of measurements that such systems are able to collect is so humon-

gous that makes it difficult to process, visualize and even to store (both in capacity

and speed terms). In this light, several methods have been proposed aiming at

reducing the amount of data while preserving the most of its relevant information.

In this section we present some of them, for further details the authors in [CK06,

Chapter 6] give a detailed review. Such methods include:

− Counters. This approach forms time-series of counts of internetwork traf-

fic statistics which are aggregated over certain time intervals. That is, as

first step this approach measures some traffic statistics, typically at fix time

intervals, then, it stores the data, and, finally, an aggregation process is ap-

plied to reduce the data in the time domain. This is the behavior of the

MRTG tool, presented in previous section, which counts the traffic volume

traversing a given network using SNMP and then aggregates the data per

day, week, month and year. In this thesis, we show how such time-series
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can be even reduced applying the fact of that the time-series that represent

the traffic statistics are strongly related to the human activity patterns and,

consequently, they show periodicity.

− Flow aggregation. This approach consists of summarizing sequences of pack-

ets into flows, thus, only information about the flows is stored instead of

information of each packet. This method was previously explained in Sec-

tion 2.2.1 because the RedIRIS’ routers are able to export Netflow records

of the traffic that they handle.

− Sampling. In this approach only a subset of the total set of packets is mea-

sured which implies a reduction of the amount of data collected as well as a

cut in the computational load of the monitoring system. Note that the flow

aggregation methodology typically also applies sampling to limit the load

that the flow aggregation process implies. The use of packet sampling by

forming Netflow records was introduced in Section 2.2.1. As introduced, the

sampling process can be done in deterministic or random intervals or, al-

ternatively, applying adaptive [CPZ04] and stratified sampling [EV03]. The

former approach adapts the sampling rate to the traffic characteristics, for

instance, reducing the sample rate at the busy hour or increasing it when the

traffic load is low. On the other hand, stratified sampling divides the packets

into subsets and then sampling is applied within each of such subsets.

− Packet truncation. Another approach to reduce the storage requirements

is to collect only a fraction of the packets that make up the traffic. Basi-

cally, such methodology only collects a fixed number of bytes of each packet

or a variable number of bytes, for instance, only the TCP/UDP headers.

Additionally, this latter option circumvents legal concerns about privacy by

avoiding to record potentially sensitive packet payloads [JTO09]. Albeit this

is at the expense of extra computation load, because it requires to inspect

the packet to remove such payload. The main drawback of this approach is

that the amount of data to be stored, in spite of the packet payload being

removed, can still be excessive as was shown in Section 2.2.1.

− Other approaches proposed to deal with the data reduction problem are
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the Bloom filter [BM03], and the dimensionality reduction. We note that

an overview of the applicability of this latter methodology is given in Sec-

tion 2.3.1 due to its importance in the characterization of the Internet traffic.

2.3 Traffic Characterization

As the Internet characterization has turned out to be useful both from a com-

mercial and a technical standpoint [CK06], the research community have recently

started to present works whose aim is to characterize different aspects of the In-

ternet’s dynamics.

There are a number of studies that have analyzed Internet characteristics, such

as web domains [BYCE07], web servers’ workload [AW97], web performance [MA98],

popularity of the port numbers and IP addresses [GDHA+08], Peer-to-Peer (P2P)

applications [IUKB+04], Internet Protocol Television (IPTV) applications [MM09],

online games [Bor00], trends and tendencies in the traffic [Pax94], just to mention

some of them.

The authors in [CK06], [NP08] and [FP01] present extensive overviews to many

of the well-known topics and the major challenges of the Internet measurement

characterization.

Specifically, in this latter reference the authors define an Internet invariant as

a facet of behavior that is empirically shown to persist for some time in a wide set

of measured samples. Thus, each invariant can be considered as an Internet traffic

characteristic and can result useful as foundation for future characterizations.

Some of the invariants are:

− Daily traffic pattern [TMW97]. The Internet follows daily patterns clearly

with direct relation to human behavior. According to this, the traffic during

the working days is “similar” from one day to another, but they are differ-

ent to the holidays and weekends that are, in turn, similar between them.

Likewise, the traffics during a week, month and year are similar between

them. Similarly, within the 24 hours in a day the traffic also shows clear

trends. We have found in RedIRIS’ traces that the traffic during the night is

low, it increases about 8-9 a.m., then it shows a dip during the lunch-time,

after this resting time traffic reaches a peak at 3-4 p.m. and finally it begins
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to decrease until 8-9 p.m. when the traffic becomes stable again, following

the night traffic pattern. However this pattern cannot be extrapolated to

any scenario, it depends on the population, the kind of network and the

protocols among other factors.

Regarding the population, obviously, the traffic patterns depend on the pop-

ulation’s regular lunch and work schedules.

Regarding the kind of network, we note there are many types of networks, for

instance, academic networks (as RedIRIS), commercial networks and private

networks. The traffic patterns in these networks can be very different. In

the case of academic networks the traffic during the weekends (especially,

incoming traffic) is very low, however in a commercial network the traffic

during the weekends can be as high as during the working days since the

users usually have more spare time during the weekends.

Furthermore, there are some protocols that are independent of the human

behavior, such as the Network News Transfer Protocol (NNTP) and auto-

matic software updates. Figure 2.1 shows the Netflow traffic that RedIRIS

generates, the traffic patterns described above turn out to be evident.

Figure 2.1: RedIRIS’ Netflow traffic for one week

− The interrarival time between packets show a self-similar behavior, in con-

trast with previous approaches that assume that the traffic follows a Poisson

model.

− The network “user session” arrivals can be modeled by a Poisson distribu-

tion. A “user session” interrarival is defined as the time between users decide

to use the network for a certain task and they decide to begin another one.
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− The connection sizes follow a log-normal distribution, however there are

many other Internet network activities that behave following a heavy-tail

distribution like Pareto (including the case when Pareto’s parameter α is

lower than 2 which implies infinite variance). Such distributions play an

important role in this thesis and they will be explained in detail later.

− Finally, there are other minor Internet invariants such as those related to cer-

tain protocol behaviors like Teletype Network (TELNET), or even regarding

the Earth’s topology: it never changes since the cities and the countries are

always in the same place.

On the Internet characterization task the research community has always taken

into account the Internet invariants since they are a very useful a-priori knowledge

that facilitates the understanding of the Internet.

In general, any characterization can be addressed from the parametric and non-

parametric point of view, the difference lies in that the former assumes that the

data follows a model or distribution, for instance, the Normal distribution. In the

following two sections we give an overview to both parametric and non-parametric

approaches that are typically used by the Internet community. We note that in

the forthcoming chapters some of such approaches are explained in a deeper detail

whereas other ones, not so typically used in the Internet measurement field, are

only introduced when we apply them to RedIRIS’ data.

2.3.1 Non-parametric analysis of Internet Traffic

The Internet traffic measurements can be analyzed as a mere set of data. There-

fore, any of the well-know data mining techniques can be applied. Such techniques

include the cluster analysis, the MultiVariate Analysis (MVA), neural networks,

Principal Component Analysis (PCA) and MultiResolution Analysis (MRA) with

wavelets. These techniques enable to find and group patterns of a given traffic

trace as well as filtering and finding the parameters that characterize the traffic

in an optimal and formal fashion.

The main problems that arise in the analysis traffic measurements are: (i)

The data usually covers very long time periods, (ii) the patterns are not well-

characterized, and (iii) the number of variables or dimensions is usually too high.
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All these problems, specially the high dimensionality of the data, make the task of

applying any of the data mining methodologies difficult. Thus, typically two ap-

proaches have been applied, on the one hand those techniques that transform the

original variables into new ones; this transformation usually consists of projecting

the old variables into new dimensions and removing the lowest informative di-

mensions. An example of these techniques is PCA. On the other hand, those

techniques that subsample the information, i.e., techniques that reduce the num-

ber of samples of a signal while retaining most of the information. One example

of this technique is the MRA with wavelets. The following research studies show

how these techniques can be used in practice.

The authors in [LPC+04] capture traces of a backbone network and apply

PCA to them. They find out that the Internet traces can be divided into three

classes: deterministic traffic, bursty traffic and Gaussian noise. Moreover, they

find periodic trends in the traffic each 12 hours, 24 hours, week and month. Finally,

they show that by using PCA the traces under study can be characterized by only

a few dimensions. This point is interesting since the volume of data that we

are collecting from RedIRIS makes it difficult to apply any of the mining data

algorithms.

However, the characterization of universities not only includes bandwidth mea-

surements but also other variables such as the number of students, the university

staff, types of degrees, etc. PCA transforms these variables, projecting the original

variables into new axes that are optimal (they maximize the variance of the data)

but leaving the new variables without meaning. Note that after applying PCA

the variables do no further represent the number of students or the university

location, they are only coordinates. This drawback can be important when the

traffic measurement variables are well-known as in the RedIRIS’ network.

The authors in [dOSVP06] follow the above-mentioned article’s guidelines

adding some interesting contributions. Basically, they repeat the same exper-

iments (obviously, they use their own traces), resulting that the dimension re-

duction, by means of PCA, is not so powerful. In addition, they show how to

apply cluster algorithms to the Internet user’s traffic. Specifically, they cluster

the clients of a commercial operator using 1-week-traffic measurements. The re-

sults show that the population can be grouped into three or four clusters with
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a high clustering coefficient between the members of each cluster. Then, they

apply PCA to the data and repeat the clustering process, resulting in important

differences (specially when the number of groups is high, say 4 or 5). However,

these experiments were performed over 1-week data in which each pattern repre-

sented the traffic of a single user with a total set of 6,000 users (mostly residential

clients). Hence, as pointed out in this paper, the results can be influenced by the

high measurement variance caused by the low aggregation level. The RedIRIS’

measurements are much more aggregated since the data comes from universities

with thousands of Internet users.

Another technique to face the high dimensionality problem is shown in [PTZD05].

They propose the use of MRA with wavelets to smooth and subsample tempo-

ral series, i.e., consecutive bandwidth traffic measurements. Such measurements

comprise MRTG logs, which implies a sample per 5 minutes that represents the

average throughput during this time interval. As they find periodic trends each

12 and 24 hours, they state that subsampling interval must be multiple of these

trends. To achieve this goal they use the analysis with wavelets [Dau90]. This

analysis consists of dividing a signal into two sub-signals: the first one, named

Details, comprises the high frequency terms and the second sub-signal, named

Approximations, comprises the low frequency components. If the Approximation

sub-signal is divided, again, into Approximation and Details signal (and so forth),

finally, the signal that we obtain is a subsampling of the original one since by each

step the number of samples is divided by two. In the MRTG measurements case

the original signal has a sample per 5 minutes, after the first subsampling process

one sample per 10 minutes, then per 20 minutes and so on. Finally, it is necessary

to have a distance measure that determines whether the subsampling process is

optimal regarding the signal size and the loss information. In general, the most

used distance measurement is the Euclidean distance [CFY03] and the Analysis

of Variance (ANOVA) [PTZD05].

Additionally, wavelet functions have also been used to characterize the traffic in

different aggregation scales [RRCB00], to estimate of the Hurst parameter [AV98]

and to detect anomalies in the Internet traffic [BKPR02]. MRA with wavelets

technique will be applied in Chapter 5, consequently, in such chapter a more

detailed description of this technique is given.
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2.3.2 Parametric analysis of the Internet Traffic

Nowadays it is usually assumed that the Internet traffic exhibits normal-distrib-

uted characteristics. In [vdMMP06, KN02] an analysis is presented that assesses

whether the used bandwidth follows such a distribution in a short-term fashion.

Thus, an operator can estimate the link load in the following time instant by cal-

culating the traffic mean and variance. These two studies assess if the Gaussian

model is still true when the traffic timescale is in the millisecond range (horizontal

aggregation). Additionally, they also analyze if this Gaussian behavior depends

on the network level aggregation (vertical aggregation). Both studies find Gaus-

sian behavior regardless of the timescale (at least up to 5 milliseconds) and that

the aggregation does not have to be large (in the order of tens of users). To

check the Gaussianity of the data they propose to correlate the original signal

and the Quantile-Quantile plot function [DS86, Chapter 2] instead of using some

well-known goodness-of-fit tests. Which are usually too demanding for traffic mea-

surements. Note that the networks are often upgraded, they suffer malfunctions

and the traffic patterns change from working days to weekends or holidays making

the use of Gaussian models difficult.

In [AH02] the Zipf distribution is used to model some of the Internet’s charac-

teristics. Among others, the webs’ incoming links usually follows a Zipf law, the

distribution of P2P networks or, for instance, the mails between Internet users.

In Zipf distributions a few elements represent most of the distribution, and many

elements explain a very small part of the distribution. Therefore, a small set of

webs are linked by a large set of networks (think about Google, for instance) and

there are many webs that do not have incoming links. In [FGL+01] it is shown

that Zipf law fits the most popular IP addresses distribution, consequently a small

set of IP address is visited by millions of users and an extensive set of IP addresses

are hardly visited. We note that Zipf law will be applied in the chapters 3 and 4

where we will provide a more extensive review.

Similarly, the research community have noticed that most of the Internet traffic

is generated by a small fraction of network users [Bro02, PTB+02], often referred

to as heavy-hitters [FGL+01]. A heavy-hitter is typically defined as a user whose

use of the network resources has a significant impact in the aggregated traffic of

the whole network. According to this, a user is considered to be a heavy-hitter:
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− If the traffic generated is higher than a certain threshold, for instance, 100

times the mean traffic/user or, in absolute terms, more than 1 GB.

− A user can be also considered as a heavy-hitter if such user accounts for a

certain percentage of the total traffic; in this case, depending of the total

number of users, a user whose traffic represents more than 1% or 0.1% of

the traffic volume.

− Another way to detect heavy-hitter users is to consider as such to the set

of users that represent a high percentage of the total traffic, namely 80% or

90%.

Finally, in this thesis we will use the ANOVA and Analysis of Covariance

(ANCOVA) [DC74, Jai91] as a way to compare and contrast traffic measurements

from the extensive set of networks under study. However, the Internet community

has not paid much attention to either ANOVA and ANCOVA methodologies. In

this light, they will be explained in the chapters 4 and 6, respectively, in detail.

The authors in [PTZD05] apply ANOVA, as mentioned in the previous section, to

reduce the high dimensionality of Internet measurements. Basically, they quantify

the amount of variability accounted for by each term in a multiple linear regression

model (in this case each term represents a wavelet detail signal) and they select

only those that comprise significant information. Additionally, in [Ber06] ANOVA

is applied to identify those factors that have a significant impact on the Quality

of Video (QoV) and Quality of Audio (QoA) of multimedia applications over the

Internet, such factors include the transmission delay, jitter, and packet loss ratio

among others.

2.4 Network Dimensioning

In [vdMMP07, PNvdMM09] the “Smart Network Dimensioning” concept is intro-

duced. This is defined as the lowest capacity (C) that a link must have to meet

the Quality of Service (QoS) requirements. The aim of such study is to assess

the validity of a general dimensioning rule for any network scenario: C = M ·d,

where M is the traffic mean (during the busy hour, for instance) and d is a net-

work constant. It turns out that the d value strongly depends on the network
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scenario (infrastructure, population, configuration, among others) and the level

of aggregation; consequently, a universal d parameter does not exist. As the for-

mer formula is not general they proposed to use the following one (assuming that

traffic is Gaussian): C = M + σ/T
√

V (N). Where V (·) is the traffic variance,

T is the time period, σ =
√−2 log ε and ε is the probability that the required

bandwidth is lower than the available bandwidth during T temporal units. In a

previous work [vdBMvdM+06], the authors defined the following equation that did

not take into account the traffic variance, it is more simple but more dependent of

the kind of the traffic: C = ρ+α
√

ρ being ρ the traffic mean and α an empirically

estimated parameter ranging from 0 and σ according to the kind of traffic in the

link under study. They estimate that the d parameter should be 3 at the most,

and, however, in practice this constant can be larger than 30 [Odl03]. This shows

the excessive overprovisioning of the current networks.

2.4.1 Relation between Traffic and Population

Another important aspect regarding network dimensioning is to find relations

between the characteristics of a network, its population and the traffic measure-

ments. In the literature, relatively few attention has been given to this issue.

In [AB97, BAD99] the “service factor” is introduced. They propose a direct re-

lation between any characteristic of the network under study and the generated

traffic. For instance, if the population doubles, then the operator should double

the traffic bandwidth. However, in [GMS+07] it is shown that this perfect linear

relationship cannot be assumed using traffic measurement from several Spanish

universities.

In [BBD05] a methodology is shown to allocate certain available capacity band-

width of a generic backbone network to the network’s users. This methodology

is based on dividing the traffic in classes according to its priority and its QoS

requirements. They propose an algorithm that, in execution time, estimates if the

bandwidth per traffic class is correct, otherwise it allocates more resources to any

inadequately dimensioned traffic class.

The authors in [MACL06] presents an empirical model to estimate the demand

for bandwidth according to the number of users in high speed networks in a short

term view. They first characterize the users’ demand of 190 ADSL subscribers as a
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Gamma distribution in a 1-sec scale during one day. Then, they repeat their study

focusing only on the busy hour. The results show how that they can extrapolate

the results for such amount of subscribers to any given number of users applying a

simple formula. However, the authors do not take into account that the behavior

of one network with respect to others is far to be homogeneous in order to extend

the results to other scenarios. In addition the impact that the access capacity can

have in the demands is also ignored.

RedIRIS gives service directly to an large fraction of the total set of Spanish

universities. However there are some other universities, which make up regional

networks, that do not receive service from RedIRIS directly. Actually, such re-

gional networks are a single Internet Exchange Point (IXP) for RedIRIS; this im-

plies that the traffic inside such networks is not captured by RedIRIS (RedIRIS’

architecture and measurement system are explained in the following chapter).

Regarding to this, the authors in [MKYK89] analyze whether this traffic between

universities, in this case between several Japanese universities, is high. In particu-

lar, they assess the requests for using online computation resources, resulting that

the most of these requests come from members of a university to their university

itself. Another important part of these requests linked close universities and, fi-

nally, the traffic between the rest of the universities was low. However, the ratio

between intra-universities traffic and external traffic shows that the traffic volume

of the former is almost marginal. This implies that, very likely, the RedIRIS’

traffic that is not captured is very low compared to the total traffic.

2.4.2 Bandwidth variability and demand

The Internet users and network infrastructures are always changing, which entails

a high variability of the user’s demand for bandwidth and a challenge to the net-

work operator. The authors in [dFV02] address these problems. They analyze

the investment that an operator must perform to upgrade its infrastructures in

order to meet client’s needs. Specifically in [dFV02] it is shown how to estimate

the increase of demand for bandwidth in a fixed period under uncertainty. That

is, from an estimated growth rate they add a factor that estimates the volatile

part of the demand. They support that this factor can be modeled by means of

a Wiener stochastic process. Such a process has been used to model the fluctu-
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ations of the share prices, for instance, in [PP00] is used to model the Madrid

stock market exchange. Moreover, the authors in [dFV02] intend to estimate the

“optimal timing investment into new capacity”. Once they model the traffic vari-

ability, using traces from a university network, they estimate the time in which the

operator should upgrade its infrastructure given the required QoS. Finally, they

show, again, that the current networks are excessively overprovisioned. Only in

non-typical situations (such as a very large increase in the demand for bandwidth

or in the case of absurd volatilities) an operator should upgrade its networks at

use-rates of 50%. However operators often think that they must upgrade their net-

works at much lower rates. Nonetheless, some of the estimations that this model

requires, such as the estimation of initial bandwidth demand or the estimated

growth, by themselves, are very challenging to obtain.

In [All08] the author proposes to forecast the capacity for web servers in a

peak-driven fashion. This approach consists of the characterization of how the

peaks of demand change over time and requires to set a time window in which

the peak is measured. In this specific case, the demands refers to web servers

resources as the bandwidth, storage capacity, CPU load, among others. The

analysis focuses on the mid-term, therefore the temporal window is set to a week.

Once a 4-month measurement campaign is carried out, the author shows how the

number of processes in a set of Apache servers (measured as the weekly peaks) of

the photo-sharing site Flickr.com increases at constant rate because the number

of stored photos also does. Finally, the author shows how the upper limit capacity

of the Flickr.com infrastructure will be reached in three months assuming that the

rate remains unchanged.

In the literature we have found some works that predict the demand for petrol,

gas and electricity among others things. Although the premises and constrains

do not match our scenario, an Internet operator, the models and methodologies

that the authors show can be useful in this thesis. In particular, the authors

in [BM95] deal with the prediction of the demand for petrol from a local gas com-

pany’s point of view. The demand fluctuates according to the month, holiday

periods, temperature and the demand for other industrial and agrarian products.

This study proposes to use linear regression and neural networks to perform such

estimations; the results show that neural networks can predict the demand with
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more precision. Similarly, in [EC96] it is intended to predict the electricity de-

mand for a much larger scenario: the Spanish electricity market. However, the

forecasting is just for short term, since the electricity operators need to know the

demand from one day to the following one. Specifically, they propose to use an

Auto Regressive Integrated Moving Average (ARIMA) model. They show a de-

tailed study of the factors that can influence the demand. In this case the most

influential factor is, above all, the temperature. They find a non-linear relation,

just as expected, since when the temperature ranges within a comfortable interval

(say 15-25oC) the air conditioning equipments and heaters are usually switched

off, and consequently, the demand for electricity remains low and constant. Nev-

ertheless, outside the comfortable intervals the demand suddenly increases, but

when the devices are working close to their limits the demand for energy becomes

constant again. Obviously all these considerations cannot be extrapolated to our

scenario: an Internet operator. It does not seem reasonable that the temperature

can have an effect on the demand for bandwidth. However both types of demands

fluctuate according to the time (holidays, weeks, months, among others).

The authors in [PTZD05], as previously seen in this chapter, show how to

use MRA with wavelets to subsample signals. Nonetheless, the final goal of such

article is to estimate the optimal moment to upgrade a backbone network (similar

goal to [dFV02]). In this case, they model the traffic using ARIMA (as in [EC96]).

They have traffic measurements for several years, and use this data to predict the

traffic for the following six months.

2.5 Conclusions

In this chapter we have shown the state of the art of some mathematical models,

techniques and tools that will be used along this thesis.

These include (i) monitoring and capturing tools such as MRTG, Netflow and

Flow-tools. (ii) Data reduction methods such as MRA with wavelets. (iii) Distance

measurements such as the Euclidean one. (iv) Goodness-of-fit techniques such as

QQ-plot function. (v) Several internetwork traffic models, for instance, Gaussian,

Zipf and Gamma distributions among others. In addition, we have shown different

approaches to problems such as the capacity planning problem, optimal timing
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investment into new capacity, traffic characterization, traffic prediction, etc.

As a result, we have mainly found three aspects that have not been analyzed

in-depth:

1. The generality of the captured measurements. That is, we have found many

studies that analyze their new algorithms, architectures and methodologies

using measurements from university networks, residential or office environ-

ments. However the authors in these studies have not taken into account

whether these measurements were representative of the Internet, or, other-

wise, these measurements only represented the behavior of a small set of the

Internet’s users. We believe that this lack of analysis is due to the difficul-

ties in obtaining measurements from an extensive set of networks over large

periods of times. This analysis is performed in Chapter 3 and Chapter 4 of

this thesis.

2. The research community has presented different techniques to reduce the

number of samples of a traffic measurement. These techniques are of par-

amount importance since such measurements usually involve overwhelming

amounts of information. However these well-know methods are based on

mathematical distances and they do not take into account the meaning of

the information, i.e., traffic measurements. In addition, the research commu-

nity has shown that some aspects of the Internet’s behavior follow well-know

patterns. In light of these premises, Chapter 5 of this thesis shows how to

make the most of this a-priori knowledge in the traffic measurement sub-

sampling process.

3. The research community has shown the importance of the busy hour in the

capacity planning problem. Essentially, this measure is usually employed by

the Internet operators to estimate the bandwidth of their links. Despite busy

hour’s importance, we have not found any characterization of its dynamics

nor explanatory factors in an extensive set of network over a long period of

time; consequently, this thesis addresses this issue in Chapter 6.





Chapter 3

Generality of the network

measurements and measurement

scenario

Often, Internet measurement-based studies have followed a three-step

procedure: (i) Collection of network measurements, (ii) measurement-

based model inference, and (iii) generalization of the results obtained

to other scenarios. Indeed, it has been a general belief that certain

internetwork traffic statistics, such as the mostly used IP addresses

and port numbers, show a similar behavior in networks with similar

features, and the conclusions derived from the measurements of a given

network could be extrapolated to a similar scenario.

This study makes no starting assumption concerning this issue and

undertakes a “spatial” analysis of network measurements. The mea-

surement set comprises a six-month trace collected by RedIRIS (the

Spanish National Research and Education Network) at different mon-

itored points across the country during 2007.

Our experiment shows that, although the frequency statistics of IP ad-

dresses and port numbers follow a Zipf distribution (as expected), the

distributions’ characteristic parameter values vary significantly in a

spatial dimension, that is, across the individual university networks,

31
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even when the profile of the networks’ user base are similar. Further-

more, we show that experiment durations of approximately one month

are necessary for the traffic processes to display stationarity. Hence,

in order to obtain accurate statistics on traffic characteristics of large

internetworks using state-of-the-art measurement techniques, long and

spatially diverse experiments may be necessary.

The structure of the present chapter is as follows: The first section

presents the introduction and motivation of the work carried out in this

chapter. Section 3.2 is devoted to the description of the measurement

scenario that will be used in this chapter as well as in the rest of this

thesis. Then, Section 3.3 presents the universities selected to perform

the study. The experiments performed and results obtained both in

the time and space dimensions are shown in Section 3.4, and, finally,

Section 3.2 summarizes the conclusions of this chapter.

3.1 Introduction

Collecting representative traffic measurement is a fundamental task in the Internet

traffic characterization. However, as stated in Chapter 2, it is an involved process

due to the heterogeneous nature of the Internet, its continuous expansion in speed

and size and the different application requirements, among other reasons.

In this chapter and the following, we pinpoint two additional difficulties: First,

the “spatial diversity” of measurements, that is, whether the information arisen

from measurements collected at diverse locations with similar features differs sig-

nificantly or not; and secondly, the time required to capture stationarity, the

“temporal diversity”, that is, the amount of measuring time needed to bring a

sampled distribution which persists over time. Essentially, we try to answer the

following two questions:

Can the conclusions derived from a measurement experiment in a given net-

work be further applied to a similar network/scenario? And, how long should the

measurement experiments last until stability in the metrics under study is reached?

Throughout this work, the term similar networks shall refer to networks which

share certain common intrinsic features. In this light, the research community has
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generally accepted that the conclusions derived from a given network are valid for a

scenario with similar characteristics, such as population size, bandwidth capacity

and filtering policy. Therefore, measurements have been taken from links that

are believed to be sufficiently representative of the Internet, typically university,

residential or even smaller networks.

To answer the questions above, this chapter focuses on the distribution of

the most popular IP addresses and port numbers (often bound to specific ser-

vices/applications), and the following one analyzes the geolocation of the Internet

connections in a set of university network access points nationwide.

It is worth noticing that this study is not focused on the measurement re-

sults themselves, which have been partially reported elsewhere, but instead on the

representativeness of network measurement experiments, in terms of spatial and

temporal diversity. Temporal diversity is related to the concept of “horizontal

aggregation”, as introduced in [KN02], whereby the authors study the necessary

timescale such that aggregated traffic follows a Gaussian distribution. However,

in this work we follow a rather different approach: the problem is not to esti-

mate the timescale to reach Gaussianity but to rather find the time horizon above

which the distribution parameters remain stable. Such time horizon is typically

in the range of days or weeks, a much coarser time-scale than the ones often con-

sidered in such horizontal aggregation studies (seconds or milliseconds). Other

works have aimed at ranking the top traffic generators in a network scenario, of-

ten known as “heavy-hitters” (see Section 2.3.2) and their persistence over time

in such ranking [WF06].

Concerning spatial diversity, this has received little attention from the research

community. For instance, the authors in [MKYK89] make a comparison study of

the inter and intra-use of mainframes between seven Japanese regions in the late

1980s, but nonetheless the spatial diversity of the measurements was not analyzed.

We believe that such lack of spatial diversity related studies is due to the difficulties

in capturing traffic from a large number of distant networks and over large periods

of time.

In fact, our work analyzes an extensive set of measurements (Netflow records)

collected from a large number of university networks kindly donated by RedIRIS,

the Spanish National Research and Education Network (NREN) [Red]. RedIRIS
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spans more than 70 universities whose size, user population and organization is

well documented in central repositories by the Spanish Ministry of Education for

statistical purposes [Con]. Therefore, it is possible to group universities by similar

features, for instance, number of users, bandwidth, traffic filters (e.g., restrictions

on Peer-to-Peer (P2P) applications such as music file sharing), and proceed with

the analysis to check whether or not, university networks with similar intrinsic

characteristics produce similar traffic patterns.

3.2 Measurement Scenario

In this section we presents the measurement scenario that will be used in this chap-

ter as well as in the rest of this thesis. The set of traffic measurement was kindly

donated by RedIRIS for research purposes1. First, a brief summary of RedIRIS’

architecture is given, secondly the data collection infrastructure is explained, and,

finally, we assess the accuracy and validity of the data.

3.2.1 RedIRIS’ architecture

RedIRIS serves more than 300 institutions, mainly universities and research cen-

ters, and comprises 18 Points of Presence (POPs) across the country, as shown in

Figure 3.1 (right). Each node represents a set of communication equipments that

concentrate the backbone transmission media and access lines of the institutions

of each region. However, it is worth remarking that RedIRIS does not give service

inside five regional networks, namely Andalućıa, Cataluña, Galicia, Madrid and

Pais Vasco. This implies that only the traffic that enters/leaves these regional

networks is captured by RedIRIS. Moreover, it has external links to other Eu-

ropean academic networks such as GEANT, and Internet Exchange Point (IXP)

with TELIA, COGENT, LEVEL3, among others. For the experiments, RedIRIS

provided the traffic measurements at the access routers of a large number of uni-

versities connected RedIRIS, typically with a bandwidth ranging from 100 Mb/s

to 1 Gb/s.

1The data is stored in isolated servers and never treated at the individual flow level, in full
compliance with the Spanish regulation concerning privacy of the electronic communications
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Figure 3.1: Measurement system architecture and RedIRIS’ network topology

3.2.2 Data collection infrastructure

The flow summaries provided by RedIRIS are sent to a central repository, located

at the Universidad Autónoma de Madrid (UAM) campus. The average input rate

to the repository was 2 Mb/s (flow compressed records), over a three year period

(April 2007-2009). Figure 3.1 (left) shows the measurement system architecture.

First, the Flow-Tools software package was used for data collection at the repos-

itory. Then, a number of statistics were obtained by the processing subsystem,

which included total bandwidth consumption, most active IP addresses and port

numbers, busy-hour bandwidth requirements, heavy-hitters users (see Chapter 6),

and geolocation information (see Chapter 4) per university. In the rest of this

thesis we labeled the data of each university as U1, U2, . . ., UN , where N is the

number of RedIRIS institutions, due to privacy reasons. Finally, the Monitoring

System provides a graphical interface, whereby such processed information can be

accessed via web and properly visualized (this is the third stage).

Additionally, RedIRIS have provided us with Multi Router Traffic Grapher

(MRTG) logs of eight universities, four regional networks and five external links
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/IXPs from February 2007. In the following we refer to such links, for privacy

reasons, as Ua, Ub, . . ., Uh in the case of university networks, RNa, . . ., RNd to

the set of regional networks and, finally, we have labeled the set of external link

and IXPs as ELa, . . ., ELe.

Let us introduce some of the traffic definitions that are used in this chapter

and the following ones. We shall denote “incoming traffic” as the traffic volume,

flows or packets that are sourced by a host located somewhere in the Internet and

destined for a host located in one of the RedIRIS’ institutions, and we shall denote

“outgoing traffic” as the converse, i.e., the traffic volume, flows or packets that

are sourced by a host in one of the institutions of RedIRIS and destined for a host

in the Internet (see Figure 3.2). Note that with these definitions, inter-RedIRIS’

insitutions traffic is neither incoming nor outgoing traffic, indeed we did not include

such traffic in our experiments in order to homogenize the set of measurements.

Measurement Point

OUTGOING

INCOMING

Networks under 

study: IXPj, RNj

and Uj

Internet

Figure 3.2: Incoming and outgoing directions of network traffic

3.2.3 Traffic Measurement validation

The RedIRIS’ data validation involves three main tasks:

1. In the process of generating Netflow records, as stated in Section 2.2.1, each

flow is subsampled at packet level in order to reduce the router’s workload.

In the case of RedIRIS’ routers the sampling ratio is configured to be either

1:100 or 1:200. The first question that arises is whether these statistics,

calculated multiplying the traffic by the inverse of the sampling ratio, are

accurate enough to perform any subsequent analysis.
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2. The flow-tools application stores all the Netflow records that we are receiving

without any source distinction. Thus, the traffic per institution is estimated

filtering by IP address ranges.

3. The RedIRIS’ Netflow records traffic uses UDP as transport layer, so we

could lose some packets and consequently, the statistics’ accuracy diminishes.

To ensure that the packet loss ratio is low, that we can filter the traffic by

university and regional router, and that the influence of the packet sampling pro-

cess is negligible, we compare the traffic measurement estimated using the Netflow

records and the measurements obtained using other tool such as MRTG. In this

light, we compared the MRTG logs of 8 universities and the sampled Netflow

records of these same 8 universities after inverting the sampling ratio and filtering

by university. To perform the filtering process RedIRIS informed us about re-

gional routers and universities network’s IP addresses that compose the network.

Figure 3.3 shows this comparison for three campus networks. The used bandwidth

calculated using Netflow records is plotted as a solid line; the bandwidth according

to MRTG is plotted as a full area. The accuracy can be visually evaluated in such

figure, the rest of universities showed similar results. This results are consistent

with those from other studies [FGL+01, LPC+04, SF02, MCS+06].

In conclusion, the statistics obtained from Netflow records fit the actual traffic

with accuracy in spite of the above-mentioned three limitations at least at 5-minute

aggregates. This thesis focuses on the characterization of traffic measurements at

a much larger granularity, thus, as we have shown, we can ignore such three

limitations.

3.3 University networks under study

The collected traffic sample comprised more than 70 universities, with different

user base populations, access link capacities, filtering policies (P2P applications),

proxies and Network Address Translation (NAT) capabilities. Clearly, such intrin-

sic features have an impact on the traffic pattern. For instance, if NAT services

or proxies are available it is very possible to find that most traffic comes from a

single IP address, but the truth is that a large number of traffic sources are shar-
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Figure 3.3: Traffic for a set of 3 different campus networks for 7 days, as a full area
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ing the same IP address. In the same way, NAT not only affects IP addresses but

also port numbers, since every traffic source under the same IP address is given a

different port number.

Consequently, we made a choice of universities with similar features, and com-

pared the resulting most popular port and IP addresses distribution. In this light,

we have carefully selected 9 universities out of the total set, for which the above

intrinsic features are very much alike. Let us labeled such universities as U1. . . U9

for privacy reasons.

Firstly, regarding the filtering policy, we have chosen universities in which most

non-educational traffic is allowed with no rate control except for well-know P2P

application ports. Additionally, it is worth noticing that the analyzed measure-

ments comprise traffic to the Internet only, not between campuses. Thus, such

inter-university traffic from supercomputing or grid facilities is explicitly not in-

cluded. Furthermore, we also performed an inspection of the most active flows, in

order to ensure that no outliers were present in the sample.

Secondly, concerning the use of NAT, we focus on most frequently accessed IP

addresses and ports on the Internet side, i.e. destination IP addresses and port

numbers of outgoing flows from campus networks, and origin IP addresses and

port numbers of incoming flows (see Figure 3.4). Such measurements provide a

more meaningful and representative portrait of the user behavior browsing Internet

content, rather than pursuing a characterization of the Internet users that access

hosts in the university campuses.

The population size of the universities under study ranges from 20, 000 to

40, 000 members with a similar proportion between subpopulations (strata), i.e.

students, faculty and administration, thus favoring the representativeness of the

aggregated traffic (see table 3.1). Furthermore, this table shows the number of

collected Netflow summaries for the selected universities, along with the number

of active IP addresses in the busy traffic hour. The latter gives a hint of the

population activity, to reinforce the fact that the sample is representative in terms

of number of active users.

In addition to this, the access bandwidth capacity in all universities under

study is exactly 1 Gb/s and they are connected to the Internet through a single

Exchange Point, located in Madrid.
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Table 3.1: User-base population size, average number of flows collected per day,
and average IP addresses in the busy hour per day for all universities under study
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Figure 3.4: Analysed data: Destination IP addresses and port number for outgoing
flows, and origin IP addresses and port numbers of incoming flows

We conclude that the selected universities are similar in terms of user base pop-

ulations, access link capacity, filtering policies (P2P applications) and availability

of proxies and NAT services. It is finally worth remarking that the measurements

were collected over the same time period, thus avoiding any contamination of the

spatial diversity by temporal factors.

3.4 Experiments and results

The following presents a measurement analysis from the spatial diversity point

of view, that is, whether or not equivalent universities share similar behavior. It

also shows the timescale for which the observed behavior becomes stable, i.e. the

sampling distribution does not significantly change as the sample size increases.

A typical invariant that can be observed from measurements of a university

network concerns the IP addresses and port numbers most widely found in the

traces. It is well-known that, although the amount of possible destination IP

addresses of flows and port numbers is huge, most users typically connect to the

same sites and use the same services [FGL+01]. Moreover, the amount of traffic

either sourced or destined to the most popular IP addresses and port numbers

follows a Zipf distribution. Zipf-like phenomena have been observed in the past

in internetwork traffic traces [AH02], and often appears in other disciplines, such
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as economics, sociology and linguistics.

The Zipf Cumulative Distribution Function (CDF) is given by:

F (k) =

∑k
n=1 1/ns

∑N
n=1 1/ns

, k = 1, . . . , N (3.1)

where s > 0 characterizes the Zipf distribution, N is the number of most

popular IP addresses or port numbers included in the study, and k refers to their

rank.

In our spatial analysis, we shall study the most popular (namely comprising

most exchanged traffic in bytes) IP addresses and port numbers. Thus, we shall

use F (k) to represent the cumulative fraction of traffic (in bytes) over the total

that are sent to the kth most popular IP address or port number k = 1, . . . , N in

the Internet.

For example, in Zipf distributions with s = 1, the most popular port number

(k = 1) or IP address comprises as much as twice the traffic exchanged by the

second (k = 2) most popular one, and thrice the traffic of the third (k = 3)

popular one, and so on. For s > 1, the percentage of total traffic of the most

popular one with respect to the others is even larger, and viceversa, i.e., if s < 1,

such percentage is smaller. Hence, the s parameter is related to the tail decay of

the Zipf distribution.

The purpose of the following experiments (spatial diversity) is to check whether

or not university networks with similar intrinsic features, as discussed in the pre-

vious section, show the same behavior, in terms of the s parameter of the Zipf

law.

However, prior to any spatial analysis, it is first necessary to find a time-scale

at which the parameters under study are stable. This is the purpose of next

section.

3.4.1 Temporal diversity analysis

This section examines the temporal aspect of the measurement set over which we

perform the spatial diversity analysis in the next sections. In other words, this

section aims to check that the measurement set under study shows stationarity

features, i.e., distributions that do not change with time. To do so, we evaluate
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the number of days worth of data required until the s parameter of the Zipf

distribution for the most popular IP addresses and port numbers remains stable.

Figures 3.5 and 3.6 shows the most active destination IP addresses and port

numbers of outgoing flows for universities U1 and U2 (for 1-day and 1-month time

slot), together with its most-likely Zipf distribution, obtained following the least

squares linear regression technique described in [Nic87]. The accuracy between the

measured data and the theoretical Zipf fit can be visually checked in the figures.

Note that only the fifteen (N = 15) most popular IP addresses and port numbers

were taken into account in the estimation of the Zipf parameter s. We remark

that similar behavior was observed for N = 8 and N = 20, although such results

have not been included for the sake of clarity.

These figures also shows that the estimated s values vary for different time-

scales. Hence it is necessary to consider a large traffic sample until the s parameter
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Figure 3.5: CDF of most popular port numbers and IP addresses (outgoing) for
U1 and its Zipf distribution fit, assuming 1 day worth of data (left) and 30-days
worth of data (right)
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Figure 3.6: CDF of most popular port numbers and IP addresses (outgoing) for
U2 and its Zipf distribution fit, assuming 1 day worth of data (left) and 30-days
worth of data (right)

becomes stable. Following this, Figure 3.7 shows the estimated s value assum-

ing several days of measurements. As shown, the s parameter estimate becomes

smoother as we increase the trace length, bringing a stable value after 30 days

of data. We consider a s estimate is stable if it varies less than 5% after five

consecutive days.

It is also worth noticing that the s estimate after 30 days of data is different

for all networks under consideration. This issue is analyzed in the next section.

3.4.2 Spatial diversity of most popular IP addresses and

port numbers

Figure 3.8 shows the CDF of the fifteen most popular IP addresses (on the right)

and port numbers (on the left) for all universities under study, both in the outgo-
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Figure 3.7: Most-likely Zipf distribution s value for the 15 most popular port num-
bers and IP addresses for all university networks (only outgoing flow direction) for
various time-scales of traffic statistics (from 1 day to 40 days worth of aggregated
data)
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ing (top) and incoming (bottom) direction from the Internet side. The numbers

shown refer to the cumulative ratio of transferred bytes over the total in the trace.

Following the results of the previous section, we have used 30 days worth of data

in order to obtain a reliable estimate of the CDF.
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Figure 3.8: CDF of most popular IP addresses and port numbers for all universities
under study

Surprisingly, although the networks under study were carefully chosen with

similar intrinsic features (large aggregation level, filtering policy, access band-

width, proxies, NAT and population size and strata), the observed traffic profiles,

as measured by the s parameter values, are different from one another. It is worth

noticing that the population sizes of all networks under study are large enough

(more than 20, 000 Internet users) such that the CDF are expected to converge to
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the same distribution.

In conclusion, the most popular IP addresses and port numbers of each uni-

versity network follow a Zipf distribution, but the spatial analysis has shown that

the particular s parameter is different in each case (see Figure 3.7). Hence, mea-

surements collected at one university are not generally valid to another, even if

they have similar intrinsic features.

3.5 Explanation of the spatial and temporal di-

versity behavior

This section analyzes why the spatial and temporal diversity occurs. Basically, the

possible reasons for this diversity can be divided into two groups: Those linked to

the Internet traffic characteristics and those relate to the population that makes

up a university.

First, some studies have shown that the size of the Internet connections and

the files downloaded by the users follow a heavy-tailed distribution, as mentioned

in Chapter 2. This fact may involve that the traffic directed to a port number or

IP address never shows stability even though more and more traffic is aggregated.

Second, the population must be large enough to expect representative and

comparable results. In this study the smallest university under study has more

than 20,000 students which supports this hypothesis. Nonetheless, it is well-know

that only a small set of the network users generate the most of the traffic, these

users are know as “heavy hitters” (see Section 2.3.2). Therefore, from the total

of university users we may only be analyzing and comparing the behavior of a

much smaller set of users and, consequently, without representativeness. Thus,

particular traffic patterns of a heavy hitter user may have impact on the results

of the whole university and explaining the different behavior that the universities

have shown.

− Reason 1: Heavy-tailed distribution of the Internet connections. To assess if

the heavy-tailed distribution of the Internet connections can strongly affect

the results, we simulated an scenario in which each connection follows a

Pareto’s distribution, with α ranging from 1.01 to 1.4. Then, we calculated
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the ratio between the received aggregated traffic by a certain port number

or IP address and the sum of the remaining 15 ones for one year, assuming

1 million connections per day. We fixed the total number of IP addresses

and port number to 15 since we use this number in our earlier experiments.

Figure 3.9 shows the results of these simulations. The conclusion that can be

drawn from these simulations is that with low α values, about 1.1, the process

attains the expected value, 1/15, and shows stationarity. This implies that,

bearing in mind that the values for the α parameter for actual traffic traces

is higher than 1.1, the heavy-tailed distribution of the Internet connections

cannot explain the spatial diversity behavior.
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Figure 3.9: Ratio between the aggregated traffic received by one port and the sum
of the other 15 ones during several days, assuming 3 million connections per day
and the connection sizes follow a Pareto distribution with α ranging from 1.01 to
1.4

− Reason 2: Heavy-hitters. In this point we analyze the heavy-hitters’ behav-

ior. A heavy-hitter is defined as a user that generates such a huge amount
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of data that this volume is representative with regard to the total traffic.

In RedIRIS’ traffic we have detected some heavy-hitter users. For instance,

we detected that one IP address of one the RedIRIS’ universities sent 122

GBytes to a certain external IP address with destination port 22 in only

one day. However, this IP address did not connect again to this university

in the following 10 days. Obviously, this heavy-hitter user’s behavior had

an important impact in the network statistics. It is worth remarking that

this connection started 20 days after the capture process did; and in spite

of this, such external IP address was the top-traffic producer until that mo-

ment, and only in one day. After this, this external IP address was ranking

lower successively, until disappearing from the most popular IP addresses

ranking.

Figure 3.10 shows the minimal number of different IP addresses that ac-

ceded to some of the 15 most popular port numbers as well as the Zipf’s

s parameter to the ports number and IP addresses. Note that some ports

are only used by a very low number of users, such users are heavy-hitters.

However, obviously, there are heavy-hitters that usually hit the most pop-

ular ports and, therefore, they are more difficult to detect. Interestingly,

note that all those distributions whose Zipf parameter needs more time to

become stable show a low number of minimal IP addresses (say less than

10). However there are some other university networks whose Zipf param-

eter becomes stable in a few days and show a low number of minimal IP

addresses. This happens because this minimal number of IP address refers

to the 15th or 14th most popular port traffic and the volume of exchanged

traffic was not representative.

In this section we have tackled the following issues: (i) the universities under

study show very different behavior regarding certain network metrics, and (ii) the

slow convergence rate to stability of the process of the most popular IP addresses

and port number. With regard to the first point the heavy-hitters make the

groups under comparison small and not representative of the whole population;

in this light, there is no reason to expect similar behavior between the networks.

Figure 3.10 showed that these groups can be smaller than 10 users. Regarding the

second point, we have shown that the heavy-hitters’ behavior has impact on the
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Figure 3.10: Minimal number of different IP addresses that access to some of the
15 most popular port numbers (solid lines) as well as the Zipf s parameter for the
most popular ports number and IP addresses (dashed lines)

network metrics and that this behavior is not regular. Consequently, the whole

university network metrics show this same behavior for days, until the aggregation

level makes it impossible that a heavy-hitter enters into the most popular ranking.

3.6 Conclusions

This chapter provides a new point of view in the study of network measurements:

the spatial analysis. Essentially, the spatial analysis aims to check whether or not

the conclusions derived from the analysis of a given set of measurements gathered

from a particular network scenario are valid to another but similar network sce-
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nario. The answer to this question is negative. Although a number of invariants

have been identified to persist across different scenarios, our findings show that,

when measurements from networks with similar intrinsic features are compared,

the distribution of the most popular port numbers and IP addresses differ from

one network to another.

Additionally, the experiments have shown that the distribution of the most

popular IP addresses and port numbers experience high variability, and only reach

some stability when long periods of measurements are considered, typically in the

range of weeks. However, it is important to remark that, given the heterogeneous

nature of the Internet and the fast and unpredictable way it changes, the results

do not remain valid for long periods of time, thus requiring continuous monitoring

and measuring, as noted in [FP01].

This involves two important consequences: Firstly, the duration of internet-

work experiments must last until the measurements under study become stable,

which involves a much longer traffic trace than usually believed; and, secondly,

single-link measurements do not suffice for a meaningful analysis, hence a spatially

diverse measurement experiment must be carried out. As a result, the required

measurement infrastructure must be designed accordingly, and may involve sophis-

ticated and costly equipment, both in terms of storage capabilities and number of

probes.





Chapter 4

Analyzing the geolocation of the

Internet connections

In this chapter we study the geographical location of end-hosts from

connections sourced in similar Spanish campuses from RedIRIS. We

remark that the geographical characterization of the Internet connec-

tions is of fundamental importance for the cost-optimization of peering

agreements and it is important to estimate the most efficient intra-

network route paths.

As done in the previous chapter, we specifically focus on the “temporal”

and “spatial diversity”. First, we obtain the distribution of connection

destinations (per country) and fit it to a Zipf-Mandelbrot law. Our

results show that the distribution of connection destinations has a very

slow convergence rate to the domain of attraction of such distribution

with the number of days added to the sample. More specifically, we

conclude that traces of less than 30 days are not valid to detect the

end-hosts geographical location pattern.

Then, factor analysis is performed to understand the relation between

the response variable of averaged number of bytes, flows, and packets

per day with dependent variables such as the source campus network,

traffic direction and destination country. We also show that the distri-

bution of geographical destinations is strongly dependent on the campus

53
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network. Even though there are thousands of users in a typical cam-

pus network, it turns out that the aggregation level which is required to

observe a stable end-hosts geographical location pattern is even larger.

Therefore, the aggregation level to set up an efficient routing arrange-

ment based on destinations is very large, possibly in the range of hun-

dreds of thousands of users. This is far beyond the average customer

population size of a small-to-medium Internet Service Provider.

This chapter is organized as follows: Section 4.2 shows the preliminar-

ies of this work, that is, we present the measurement set and briefly

review the different options to geolocate IP addresses, together with the

statistical methodology. Sections 4.3, 4.4 and 4.5 are devoted to results

and discussion. Finally, Section 4.6 concludes this chapter with a sum-

mary of the main findings.

4.1 Introduction

The Internet research community has not underestimated the benefits of the geo-

graphical location analysis, and has documented its potential range of applications,

such as traffic engineering [WGT95], peering agreements with other Internet Ser-

vice Providers (ISP) [LS08, LMRT01] and location-aware applications [LBCM03].

We provide a different approach by looking at the connection pattern of similar

user populations. Note that this analysis is not focused on the actual location

of the destination hosts, which has received an extensive research effort (Sec-

tion 4.2.4). More specifically, we perform a country-wide measurement campaign

that comprises the whole Spanish academic network. Then, we focus on the per-

campus destination pattern and focus on whether similar campus populations

provide the same connection pattern or not.

This is particularly important for the routing and capacity planning arrange-

ments of the ISP. In our case study, we make an analogy between campus network

and ISP. Let us assume that a new ISP starts business with a population base

which is similar to an existing population from a different ISP. Then, is the traffic

destination pattern different, even though the customer population looks simi-

lar?. Note that if the destination pattern differs so does the routing strategy and
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possible peering agreements from the ISP.

In principle, being the per-campus population large (over 28,000 students and

faculty/staff), one could assume that the overall connection pattern, when adding

a new campus, would simply scale up by a given factor. This is a consequence

of the large number of users, which basically drive the demand to the same limit

distribution. Namely, the destination pattern should be similar if the number of

aggregated users of the same type (students and faculty/staff) grows very large.

However, our findings show that the distribution of exchanged traffic volume per

country is far from being homogeneous. Interestingly, the latter result suggests

that the type of traffic that campus networks exchange depends on the country

in which the end-host is located, i.e., users tend to use certain services in certain

countries.

The following issues are analyzed in this chapter:

1. We model the geographical location distribution of Internet end-hosts per

country, with connections originated in Spain. Specifically, we show that

such distribution can be effectively modeled by means of a Zipf-Mandelbrot

function. This implies that a small set of countries accounts for the most

of the traffic destinations. Actually, we perform a χ2 goodness-of-fit test to

validate such model.

2. We estimate the amount of measurement time which is required to reach

stability in the model parameters. Namely, we address the issue of how long

a network should be measured to infer a destination pattern and possibly

set up a peering agreement.

3. Finally, we analyze the space diversity issue, i.e., whether similar campus

networks produce similar traffic in terms of destinations. Namely, we would

like to know to which extent there are invariants in destination patterns,

that may serve to set up routing arrangements based on population groups.

For example, traffic destination patterns should be similar for large Spanish

campuses, due to the large aggregation level. Hence, we could predict a

routing behavior on a per-campus basis and update the network accordingly

when new users are added. However, we find that the destination patterns

are indeed different.
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Actually, Analysis of Variance (ANOVA) methodology is adopted to explain

how the direction (incoming and outgoing), destination country and source net-

work affect traffic destinations. The results show that the traffic destination per

country heavily depends on the source campus network, despite of the large num-

ber of users. Furthermore, the distribution of traffic destinations does not seem

to have a domain of attraction with the number of users in the source network.

We note that the factor analysis has not been typically used by the research com-

munity to characterize and analyze Internet measurements.

This study is limited by the fact that we are considering academic users, who

are different from residential users. However, we do not pursue the characteriza-

tion of traffic destinations, but to which extent they are homogeneous if the user

populations are similar. The methodologies presented in this chapter can also

be applied to the case of residential networks, and provide valuable insight for a

residential network operator.

4.2 Preliminaries

This section is devoted to describe the background of this study. First of all,

we motivate the study of the geolocation of the Internet connections. Then, we

present a description of the previous studies related to this one. Later, a descrip-

tion of the measurement capture process is presented. That is, we explain how we

have modified the available data introduced in Section 3.2 in order to also include

the geolocation information related with the measurements. Finally, we present a

description of the main statistical techniques that have been applied in this study,

namely Pearson’s χ2 test and ANOVA methodology.

4.2.1 Motivation

Regarding traffic engineering, it turns out that networks are typically connected at

several exchange points that pass on the traffic as soon as possible, i.e., “hot potato

routing” [NP08]. Such routing procedures make no geographical optimization

whatsoever and lead to inefficient routing. Needless to say, knowledge of the

destination patterns allows to perform a better routing, possibly decreasing the

transit traffic in many intermediate networks [SPK02].
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Second, we note that peering agreements are becoming increasingly popu-

lar [SS06]. Essentially, a peering agreement is a deal between two (or more)

ISPs, such that both exchange traffic directly. On the other hand, a transit agree-

ment is a deal between a local ISP and a transit ISP, such that the local ISP

traffic to the rest of the Internet is carried through the transit ISP network. As

a result of both kind of agreements, the infrastructures are shared and there is

a cost reduction. Furthermore, latency can be also reduced if the most efficient

path, in terms of transit ISPs, is selected. Therefore the traffic destination is

a fundamental issue in the choice of peer and transit ISPs. Actually, ISPs use

to serve certain geographical areas, most likely at the country level. Then, the

choice of a peer ISP should be determined by the shortest path to the traffic

destination [Nor01b, Nor01a]. However, the decision-making process for peering

agreements is usually based on commercial reasons only, with less attention to the

traffic volumes that the peering ISPs may exchange. This has caused well-known

routing problems such as the path-inflation, i.e., end-to-end paths which are much

longer than necessary [SMA03].

Third, knowledge of traffic destinations allows for a new class of location-

aware applications that provide new functionalities to the Internet. As pre-

sented in [GZCF06] such functionalities include: targeted advertising on web pages

adapted to the location where consumers live, content delivery control according

to the local country policies and security features in electronic commerce and

transaction verification.

4.2.2 Related work

Despite of the importance of factor analysis of traffic destinations, as shown in

the previous sections, it turns out that the state of the art does not feature any

similar study. We believe that such lack of research effort is due to the difficulties

in capturing traffic from many geographically disperse source IP subnetworks.

The authors in [AW97], more than ten years ago, presented a detailed workload

characterization study of Internet web servers, on attempts to find invariants in the

Internet behavior (as defined in [FP01], that is, characteristics that are common

across an extensive set of networks for a significant period of time). One of those

characteristics was the geographical distribution of document requests to several
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web servers. However, they only considered two possible options, whether the

requests were local or remote to the web-server network, finding that most part of

the requests were remote. In our case, we discriminate the traffic destination per

country and do not restrict the analysis to the web service only. In [FCFW05] the

authors analyze the traffic received by a certain online-game server. Among other

characteristics, the players’ location is included in the study. Their results indicate

a clear geographical dispersion with only 30% of the clients placed close to the

online-game server. However, the authors are exclusively focus on the online game

service, i.e., the rest of the traffic is not considered and there is no comparison on

a per-source IP subnetwork basis.

4.2.3 Measurement set description

In this chapter, we have used the Netflow records that RedIRIS is providing us

with from each of its POPs as explained in Section 3.2. In this case, for the study

of the geolocation of the Internet connections we have adapted the processing

subsystem to include geolocation information. That is, we have upgraded the

Netflow records with the country that the destination IP address belongs to. This

geolocation information is obtained applying the methodology described in the

next section.

As was defined in Section 3.2.2, in what follows let us denote incoming direction

to the traffic that is destined to one of the universities. Conversely, the outgoing

direction refers to traffic sourced from one of the universities.

To make this information more manageable, we have computed daily aggre-

gates of the number of bytes, flows and packets (and their corresponding percent-

ages over the total of the day), in {university, country, direction} triples. That

is, for each day, we obtain the number of bytes, flows and packets and their cor-

responding percentages per source campus network to each country, i.e., for the

outgoing direction (from campus to the rest of the Internet). We also obtain the

same information for traffic sourced in each country and destined to each campus

network, i.e., for the incoming direction (from the rest of the Internet to campus).

In what follows, we use the term “measured items” to refer to bytes, flows or

packets. The measurement set entries are presented in Table 4.1.

Following the methodology presented in the previous chapter, we have carefully
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Field Description

Source University network/Country
Destination Country/University network
Direction Outgoing/Incoming

Total number of bytes
Bytes transferred from the source

to the destination that day
Total number of flows

Flows transferred from the source
to the destination that day
Total number of packets

Packets transferred from the source
to the destination that day

Percentage Percentage of the bytes
of transferred from the source

bytes to the destination that day
Percentage Percentage of flows

of transferred from the source
flows to the destination that day

Percentage Percentage of packets
of transferred from the source

packets to the destination that day

Table 4.1: Geolocation Measurement set summary

selected 12 universities out of the total set, for which the intrinsic network features,

such as population size, bandwidth capacity, ratio students-staff, filtering policies

(basically Peer-to-Peer (P2P) applications, etc.) are very much alike.

It is worth noting that Network Address Translation (NAT) capabilities and

Content Distribution Networks (CDN) or proxies have no impact on our mea-

surements. NAT groups the traffic of several different hosts in a single public IP

address but this has no influence in the geographical location of hosts, neither

remote nor local. Consequently, by relaxing the NAT constrain, we have extended

the number of campus networks under study. In addition, we have refined the

selected networks to comprise an even more similar set of networks. Thus, we

have removed U3 and U8 from the set of universities and we have included infor-

mation from other five ones. Table 4.2 provides some useful information about

the selected universities, which are labeled according to previous chapter as U1,
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U2, U4, U5, U6, U7, U9, U10, U11, . . ., U14.

It is worth remarking that local proxies inside the campus network do not

have any influence in the results. They are accounted for as local hosts, that

concentrate traffic. However, remote proxies will be accounted for as end-hosts

because we have no means to locate the real end-host. Nevertheless, from the

local ISP standpoint, this is traffic to an external host (the proxy) and accounts

for in the peering agreement, the same way that non-proxy traffic does.

Finally, the sampling rate for Netflow records is the same throughout the

measured routers, namely 1:100. We believe that the sampling error affects all

measured campuses the same way and has no influence in our obtained percent-

ages. Anyway, such sampling effect can be considered negligible for our analysis

as shown in [MCS+06] (Section 3.2.3).

4.2.4 IP geolocation Methodology

There are several ways to find the physical location of an IP address. The most

straightforward approach is to use a name resolver and make a Domain Name

System (DNS) reverse query. Then, the address location is guessed by parsing the

retrieved name. As a result, we can only obtain the location of the IP addresses

whose domain location is known beforehand or that contains some localization

information in the name itself. To circumvent these issues, we have used the ge-

olocation database approach. We note that there are free and commercial versions

of such databases. The differences between them are the accuracy of the geolo-

cation and the number of different IP addresses that can be geolocated. In this

study we have use the free version of the GeoIP Country database of MaxMind,

i.e., GeoLite Country [Max]. This database has an accuracy of 99.5% and it is up-

dated monthly. Actually, the accuracy of these databases has been studied and re-

ported [GUF07, SGU08] and it seems to be adequate for our purposes. The GeoIP

Country database has entries for the country code, country name and continent

data. Recently, and keeping pace with the accuracy needed by the location-aware

applications, there have been attempts to increase such accuracy [PS01, GZCF06].

We have discarded these methods because the database approach is simpler and

it provides enough accuracy for our purposes (i.e., group destinations per coun-

try). For a better understanding of geolocation procedures, the reader is referred
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University Population
Ratio No. of Flows

students/staff (millions)

U1 40,000 9.6 1.5
U2 31,000 10.9 1.3
U4 31,500 11.0 3.0
U5 31,000 10.8 1.4
U6 36,000 11.2 3.5
U7 33,500 12.2 5.7
U9 28,000 11.7 2.8
U10 55,000 11.2 5.0
U11 38,000 8 4.7
U12 38,000 11.1 4.0
U13 46,000 8.8 1.9
U14 38,500 8.6 2.0

University
Capacity P2P Unique IP
access filtering addresses acceded

U1 1 Gb/s No 23,000
U2 1 Gb/s No 24,000
U4 1 Gb/s No 66,000
U5 1 Gb/s No 22,800
U6 1 Gb/s No 58,000
U7 1 Gb/s No 90,000
U9 1 Gb/s No 30,000
U10 1 Gb/s No 70,000
U11 1 Gb/s No 55,000
U12 1 Gb/s No 66,000
U13 1 Gb/s No 40,000
U14 1 Gb/s No 27,000

Table 4.2: User-base population size, average number of flows collected per day,
networks’ bandwidth capacity, filtering policies and average Internet IP addresses
acceded during busy hour per day for all universities under study (January 2009)
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to [CK06, Section 5.3.6] and references therein.

4.2.5 Statistical Methodologies

In this section, we introduce the statistical techniques applied in this chapter and

the following one. First, we present goodness-of-fit techniques that allow us to

model the Internet end-hosts distribution and to assess the spatial diversity of the

measurements and the temporal aggregation needed for stability. Second, we give

a brief introduction to the ANOVA methodology, which allows us to measure the

impact that factors such as the source network, country and direction have on the

response variable, in this case the measured items (flows, packets, bytes).

Goodness-of-fit techniques

In order to find a suitable model for the traffic destinations, we perform visual

inspection first (Section 4.3). This visualization can only give us some insight on

the shape of the distribution, and this is not sufficient for hypothesis testing. To

this end, we adopt a goodness-of-fit technique over a hypothesized distribution. In

our case, the hypothesized distribution is a Zipf-Mandelbrot distribution [KV07,

RB89] and the goodness-of-fit test is well-known χ2 test [DS86, Chapter 3].

The underlying idea of Person’s χ2 test was to reduce the problem of good-

ness of fit of a general distribution to the testing fit to a multinomial distribution

by dividing the support of the distribution in cells and comparing the observed

values with the expected ones in each cell. In this way, to test if a random sam-

ple X1, X2, · · · , Xn, with n ≥ 30, follows a specified distribution with parameter

Θ ∈ Rr, F (x; Θ) (null hypothesis), one starts by partitioning the support of the

observations into M buckets, namely C1, C2, · · · , CM , where M ≥ 5. Let us de-

note by Oi the number of observations that lie in the bucket Ci, then under the

null hypothesis Oi follows a binomial distribution with parameters n and pi, that

is:

Oi ∼ B(n; pi) (4.1)

with pi being the probability of choosing the bucket Ci under the null hypothesis

pi =

∫

Ci

dF (x, Θ) (4.2)
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It is recommended that approximately the same number of observations lie in

each bucket, and also that each bucket has at least 3 observations. With these

assumptions, it is reasonable to think that Oi−Ei, being Ei the expected number

of observations in cell Ci (Ei = npi), is a good measure of distance between the

observed data and its theoretical distribution. It can be shown [DS86, Chapter 3]

that under the null hypothesis, the statistic

χ2 =
M∑
i=1

(Oi − Ei)
2

Ei

(4.3)

follows a χ2 distribution. The number of degrees of freedom depends on the

number of constraints placed on the data. If the parameter Θ is known, then

χ2 has d = M − 1 degrees of freedom. In contrast, if Θ is estimated from the

observations, the degrees of freedom of χ2 are d = M − 1 − r. The estimation

of the parameter Θ should be performed by Maximum Likelihood (ML) for the

former assumptions to be true. Finally, the null hypothesis of goodness of fit is

rejected if χ2 has a large value, e.g. if χ2 > χ2
d,α, being χ2

d,α the percentile (1-α)

of a χ2 distribution with d degrees of freedom.

Analysis of Variance

ANOVA is a widely used statistical methodology whereby the observed variance of

a given response or dependent variable is split into explanatory factors. ANOVA

provides a way to determine if such factors have any importance in explaining

the variability of a response variable, and to which extent. ANOVA performs

a contrast using the ratio between the adjusted sum of squares of samples that

belong to each factor level, i.e., intra-level samples, and the total, inter-level sam-

ples. Such ratio is shown to follow a Snedecor’s F distribution, provided that the

samples fulfill the following hypothesis: First, they must be necessarily indepen-

dent; second, they must be fairly Gaussian; and third, all of them must share

the same intra-level variance (i.e., exhibit homoscedasticity). However, the results

of ANOVA are generally accepted provided that the number of elements in each

group are similar (Balanced ANOVA), and there is a non-excessive deviation from

the homoscedasticity assumption [OA84, GPS72].



64 Chapter 4. Analyzing the geolocation of the Internet connections

The null hypothesis supports the homogeneity of means within each factor.

Basically, it contrasts, according to a given pre-defined significance level α (typ-

ically α = 0.05), whether or not the intra-level variance values can be explained

due to the randomness of measurements (generally, experimental errors) and not

to differences in the population when grouped by categories (or levels). If so, the

null hypothesis cannot be rejected and the factor used to build the groups is sta-

tistically non-significant. Otherwise, the factor explains enough variance and it is

considered as significant.

Following this, the simplest ANOVA univariate model for a response variable

y with an only significant factor α is given by:

yiu = µ + αi + εiu (4.4)

where yiu represents the uth observation on the ith level (i = 1, 2, . . . , I levels),

µ represents the overall mean response (or intercept). On the other hand, αi refers

to the effect due to the ith level of factor α and εiu is the deviation, random or

experimental error, in the uth sample on the ith level. We also note that
∑I

i=1 αi =

0.

The resulting model in case of two significant factor is:

yiju = µ + αi + βj + (αβ)ij + εiju (4.5)

and so forth in case of more than two factors. In this latter case, αi and βj

represent the effect due to the ith and jth levels of factors α and β respectively.

Similarly, (αβ)ij represents the interactions between ith level of factor α and jth

level of factor β. Finally, εiju represents the deviation in uth sample to the overall

mean of the samples within ith level of factor α and jth level of factor β. Again,

note that
∑I

i=1 αi = 0 and
∑J

j=1 βj = 0 being J the total number of levels of

factor β. The reader is referred to [DC74, Jai91] for further details on the ANOVA

methodology.
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4.3 Visual inspection

Following the common practice in data analysis, we first provide a visual inspection

of the main descriptive statistics. We order the destination countries by descending

value of the measured item. Then, replacing the name of the country by its rank

in the ordered list and plotting the corresponding percentage of the measured item

we observed a power law model (for example, see Figure 4.1(a) and Figure 4.2(a)

for campus U10 and U11). This observation is confirmed by the log-log plots of

the same data (shown in Figure 4.1(b) and Figure 4.2(b)) where the values follow

a straight line. However, the first value in the rank tend to look abnormal in

the complete set of networks under study. This first ranked country is Spain

for almost all campus networks under study, as expected. If we remove Spain

from the former figures, the data shows a better fit to a power law distribution

(figures 4.1(c) and 4.1(d), and figures 4.2(c) and 4.2(d) ). Thus, we decided to fit

the power law model to the data removing the first ranked country.

Concerning population aggregates, Figure 4.3 shows the top 15 countries for

the aggregate of the networks under study in both directions after removing both

Spain and USA for the three measured items for the sake of clarity since both

countries account for the most of the traffic.

In this study, the majority of the bytes, around 40%, are sent and received

within Spain. The United States comes in second place with 20% of the sent and

received bytes, which is also expected because of web traffic. In the third place we

find some of the most important countries of the European Union such as United

Kingdom, Germany, France, to mention a few, see Figure 4.3(a). They account

for a range between 2.5 and 6% of the total amount of bytes per country. In fourth

place we find Latin American countries such as Argentina, Chile, etc., accounting

for a range between 0.5 and 1.5% of the total share. These are Spanish-speaking

countries and redirections to Web pages in Latin America are usual. Also, there

are many researchers from such countries visiting Spanish universities. Finally,

we find that there is traffic going to or from nearly all countries although their

percentages of the total are negligible. In conclusion, a visual inspection of the

data provides reasonable results.

In order to further inspect the data set, we mapped each country with gray

intensities according to the value of the measured items (Figure 4.4). We have
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Figure 4.1: Visualization of the top 50 ranked countries for a day worth of mea-
surements in the outgoing direction of U10: (a) Percentage of bytes vs. rank. (b)
Percentage of bytes vs. log of the rank. (c) Percentage of bytes vs. rank without
the first ranked country. (d) log of the percentage of bytes vs. log of the rank
without the first ranked country
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Figure 4.2: Visualization of the top 50 ranked countries for a day worth of mea-
surements in the outgoing direction of U11: (a) Percentage of bytes vs. rank. (b)
Percentage of bytes vs. log of the rank. (c) Percentage of bytes vs. rank without
the first ranked country. (d) log of the percentage of bytes vs. log of the rank
without the first ranked country
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Figure 4.3: Percentages of traffic sent and received from top-15-contributing coun-
tries excluding Spain and USA
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excluded Spain and US for the reasons stated above and also those countries that

account for less than 10−3% of the measured item. To draw the maps, we used the

Google’s Visualization API 1 that can be used directly as a gadget from Google

docs 2.

4.4 On the characterization of end-hosts loca-

tion

The visualization of the dataset presented in figures 4.1 and 4.2 evidences the need

of a power law distribution to model the measurements. The most popular power

law distribution with discrete support is the Zipf’s law, whereby the probability

mass function of the element whose rank is k, zk, is proportional to an inverse

power a of k, i.e.,

zk =
q

ka
, (4.6)

where a > 1 and q is a normalization constant [JKK05]. Although this distribu-

tion has been widely used in Internet studies (including the study carried out in

the previous chapter), this time we have chosen the Zipf-Mandelbrot (ZM) distri-

bution, which is a generalization of the Zipf’s law. The ZM distribution has three

parameters instead of two, and shows better or equivalent performance in terms

of goodness-of-fit.

The ZM Probability Mass Function (PMF) pk is given by

pk =
c

(k + b)a
, (4.7)

where a > 0, b > −1 and c is a normalization constant which is not necessarily

equal to q.

When we used standard Zipf’s law in the previous chapter, we showed that the

goodness-of-fit between data and standard Zipf’s law was correct. The explanation

of this is that b parameter was equal to 0. In such a case, Eq. (4.6) and Eq. (4.7)

become the same and, consequently, ZM and standard Zipf’s law are equivalent.

1http://code.google.com/intl/es-ES/apis/visualization/documentation/gallery/intensitymap.html
2http://docs.google.com/
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(a) Bytes

(b) Flows

(c) Packets

Figure 4.4: Percentages of traffic sent and received from top-15-contributing coun-
tries in graduate gray scale (excluding Spain and USA)
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The Maximum Likelihood Estimation (MLE) procedure for the ZM distribu-

tion finds the parameters a and b that maximize the likelihood function for a

random sample X of size n and it is given by

l(X; a, b) =
n!

n1!n2! . . . nN

N∏

k=1

( c

(k + b)a

)nk

, (4.8)

where nk is the number of instances of the element in the kth order. The numeri-

cal optimization of this function is a very challenging task, and several procedures

have been studied to compute the multinomial coefficients involved in the like-

lihood function l(X; a, b) in a precise and fast way. One option to circumvent

the computation of the multinomial coefficients is presented in [Izs06], whereby

coefficients are obtained through the probability mass function of a Binomial dis-

tribution:

l(X; a, b) =
N−1∏
i=1

B
pa,b,j/pj

a,b

nj (nj), (4.9)

being

Bt
s(r) =

(
s

r

)
tr(1− t)s−r. (4.10)

In [Izs06] the calculation procedure for pa,b,j and pj
a,b is described, and this

method can be easily implemented in a mathematical software package like Mat-

lab, where the coefficients of Eq. (4.10) are optimally computed.

After obtaining the MLE parameters, we applied the χ2 test in order to measure

to which extent our model fits the data. As the ZM distribution is a discrete

distribution, the buckets in the χ2 test are defined by such discrete support. Even

though it is recommended to have all buckets filled up with the same number

of observations, this is unfeasible with our dataset, due to its power-law nature.

However, we merged buckets with small number of samples in the tail of the

distribution on attempts to have all the buckets with at least 5 samples on them.

We pursue a twofold objective in our analysis. On the one hand, we would

like to assess the validity of the ZM distribution to model the data. Furthermore,

we wish to find the smallest period of time such that the ZM parameters remain
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stable. It is worth noting that this stability check also provides hints about the

trace length which is required to obtain meaningful results.

4.4.1 Goodness-of-fit tests

Table 4.3 shows the results of the χ2 test for the 12 campus networks for a period

of 90 consecutive days between December of 2008 and March of 2009. Similar

results were obtained with the other two measured items and are not presented

here for the sake of clarity.

The first column shows the (anonymized) university name as described in Sec-

tion 4.2.3. The second column shows the direction of the traffic, either incoming or

outgoing the campus network. The accuracy in the third column is defined as the

percentage of days in the sample for which the χ2 test null hypothesis of goodness-

of-fit cannot be rejected at the significance level α = 0.05. Finally, the last column

shows the average p-value from all the performed χ2 tests. We show this average

only for those pairs university-direction where the accuracy was 100%, and it gives

an estimate on how good the goodness-of-fit was, the larger the better. As can be

seen in the table, except for a small number of university-direction pairs, the null

hypothesis of goodness of fit cannot be rejected for a 50% of days or more, which

supports our initial ZM distribution assumption. Remarkably, in most cases the

ZM distribution fits the measurements better in the outgoing direction than in the

incoming direction. We hypothesize that it can be due to the asymmetry of the

Internet applications and services. A further analysis of this issue is performed

using factor analysis (see Section 4.5).

To assess the stability of the estimated parameters, we form a time series

of aggregated days and measure the relative error in the parameters for all the

universities. The relative error rep(t) for a time series p(t), t = 1, . . . , N is defined

as follows:

rep(t) =
p(t + 1)− p(t)

p(t)
, t = 1, . . . , N − 1. (4.11)

In our case, t stands for the number of days used in the estimation and p(t) is

the estimated parameter a, b, c in Eq. (4.7), for all the university-direction pairs

showed in Table 4.3 using Eq. (4.11). Figure 4.5 shows the evolution of the relative

error in time of a and b parameters (note that c is function of a and b), for U10
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University Direction Accuracy(%)
Mean
p-value

U1
Outgoing 100 0.5917
Incoming 42.17 –

U2
Outgoing 50.57 –
Incoming 62.50 –

U4
Outgoing 68.29 –
Incoming 100 0.5332

U5
Outgoing 100 0.7304
Incoming 49.12 –

U6
Outgoing 100 0.8780
Incoming 57.53 –

U7
Outgoing 100 0.8452
Incoming 100 0.8778

U9
Outgoing 98.84 –
Incoming 45.88 –

U10
Outgoing 100 0.9974
Incoming 44.71 –

U11
Outgoing 100 0.8562
Incoming 60.23 –

U12
Outgoing 0 –
Incoming 100 0.7847

U13
Outgoing 100 0.9864
Incoming 17.44 –

U14
Outgoing 100 0.7956
Incoming 8.05 –

Table 4.3: Results of the goodness of fit tests
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and U11 networks.

As can be seen in Figure 4.5, at least one month worth of aggregated data are

necessary to make the parameter estimation stable, i.e., to make the relative error

be close to zero. This implies that the parameter estimation does not change

if we add one more day worth of data. According to it, Table 4.4 shows the

stable parameter values for all the universities under study. It turns out that the

parameter values differ from one university to another, even though some of them

are similar. Consequently, we find differences between campus networks, which,

in principle, are similar in terms of population, access bandwidth, etc. This is the

motivation for the factor analysis presented in the next section, which takes into

account source network, direction and destination country.

Finally, Figure 4.6 shows the percentage of connections per destination country

together with the fitted ZM distribution for U10 and U11, which shows remarkable

goodness-of-fit.

4.5 Factor analysis

In this section we apply ANOVA to our measurement set. The aim of such analysis

is to assess the impact that the traffic direction (both incoming and outgoing),

the campus network under study and the country in which the end-host is located

have in the response variable. In this study the response variable refers to the

three measured items introduced in Section 4.2.3 specifically to the percentages of

bytes, packets and flows. Note that we could also perform ANOVA analysis using

the absolute value of the measured items instead of percentages. However, this

analysis provides misleading results because small differences between the campus

networks have a large influence in the response variable. For instance, the traffic

load in absolute terms within the set of universities is not identical even though

the universities are similar. To avoid this overshadowing effect, we choose traffic

percentages.

ANOVA allow us to assess the impact of a specific country (i.e., knowing

exactly which country is) instead of using only the rank order as in the previous

analysis –Zipf-Mandelbrot characterization–. This permits to contrast:

− Whether or not the set of countries under study generate equivalent volumes
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Figure 4.5: Relative error for two university-direction pairs for a and b parameters
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Figure 4.6: Examples of empirical versus theoretical distribution for percentage
of destinations
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University Direction
Parameter estimate

a b c

U1
Outgoing 1.2553 0.0042 0.3254
Incoming 2.9853 2.6242 19.6172

U2
Outgoing 1.6252 1.3404 1.0195
Incoming 1.5122 -0.0038 0.4232

U4
Outgoing 1.4459 0.7031 0.5940
Incoming 2.1608 1.1988 2.2645

U5
Outgoing 1.9891 4.9630 5.6725
Incoming 1.2407 -0.5353 0.1904

U6
Outgoing 1.5514 2.1080 1.1068
Incoming 2.5244 2.4997 8.3640

U7
Outgoing 1.0050 -0.0036 0.2153
Incoming 1.2082 -0.1054 0.2949

U9
Outgoing 2.0804 4.4342 6.3758
Incoming 1.4100 -0.0118 0.3807

U10
Outgoing 2.1886 5.9179 11.3857
Incoming 1.4450 0.2046 0.4593

U11
Outgoing 2.4687 9.0764 41.9909
Incoming 1.5899 0.6253 0.7102

U12
Outgoing 326.71 7.2285 1.12 · 10299

Incoming 1.7949 0.5868 0.9308

U13
Outgoing 2.5076 7.0915 33.1939
Incoming 1.4256 -0.0003 0.3944

U14
Outgoing 1.7853 3.3648 2.5157
Incoming 1.7101 0.0004 0.5100

Table 4.4: Results of the maximum likelihood parameter estimation
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of traffic.

− Whether or not the set of universities under study connects to the same

locations.

− Whether or not the ratio incoming/outgoing traffic is similar from one cam-

pus to another and between the countries.

− Whether or not universities connect to the same countries with similar ratio

incoming/outgoing traffic.

Consequently, we define three fixed factors and their corresponding interactions

(full factorial ANOVA): Network, that is the source university network, Country

that represents the country in which the end-host is placed and Direction, either

incoming or outgoing traffic. For instance, Figure 4.1 shows the percentages of

traffic in bytes (response variable) that U10 (factor Network) exchanges with top 50

contributing countries (factor Country) in outgoing direction (factor Direction) for

a day worth of data. Thus, according to Eq. (4.5) we have the following initial

model:

yijku = µ + Networki + Countryj + Directionk

+ (Network&Country)ij

+ (Network&Direction)ik

+ (Country&Direction)jk

+ (Network&Country&Direction)ijk

+ εijku (4.12)

where y represents any of the measured items.

In the previous section it was shown that at least 30 days worth of data are

necessary to obtain stability in the measurements under study. In this light, the

ANOVA sample spans the entire month of January 2009. Regarding the number

of countries, for the sake of clarity, only the top 30 contributing countries in terms

of number of bytes were taken into account, although the same analysis can be

performed with a larger set. As a result, we have a data base for both directions,
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involving twelve networks, thirty countries and thirty days, i.e., more than 20,000

samples for each measured item.

4.5.1 ANOVA assumptions

Regarding the ANOVA assumptions introduced in Section 4.2.5, Figure 4.7 shows

the autocorrelation function (dots) along with its 95% confidence intervals (solid

lines), as described by the Bartlett test [CL66], applied to the averaged number

of bytes in both directions for two campus network (U10 and U11) and Spain as

factor. It becomes apparent that the samples are not correlated. It is worth

noticing that all the levels showed similar results.

Figure 4.8 shows the Quantile-Quantile plot [DS86, Chapter 2] diagram for the

same set of samples. In a QQ-plot, the order statistics of the empirical sample

are depicted as a function of the percentiles of the other distribution, in the case

the Gaussian distribution. If the data follows such distribution then it nearly fits

to a straight line. In general, we have not found evidences of significant deviation

from the gaussianity in the measurement set. Conversely, the homoscedasticity

hypothesis was rejected by means of the Levene test. However, a non-significant

deviation from the homoscedasticity assumption [GPS72] can be accepted in case

of Balanced ANOVA with large number of samples, which is the case of our ex-

perimental design.

4.5.2 Effect of Network, Country, and Direction factors in

the traffic

Table 4.5 shows the results of the ANOVA test with the percentage of bytes

per day as the response variable. According to the results, the null hypothe-

sis that supports the homogeneity of means cannot be rejected for the factors

Network, Direction and Network&Direction, but it is rejected for Country,

Network&Country, Country&Direction and Network&Country&Direction at the

significance level α = 0.05. This gives the following final model according to
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Figure 4.7: Autocorrelation function (dots) and 95%-confidence intervals (solid
lines) applied to the averaged number of bytes in both directions with U10 (top)
and U11 (bottom) as factor Network and Spain as factors Country
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Eq. (4.12):

yijku = µ + Countryj

+ (Network&Country)ij

+ (Country&Direction)jk

+ (Network&Country&Direction)ijk

+ εijku (4.13)

with i = 1, 2, 3, . . . , I = 12 (number of university networks), j = 1, 2, 3, . . . ,

J = 30 (number of countries) and k = 1, 2.

Several conclusions can be drawn from these results. The homogeneity of

means when taking into account factor Network implies that the traffic generated

by the campus networks, ignoring destination and direction, has no influence in

the measured items. Intuitively, this means that the campus networks has a

percentage of traffic per country which is similar, in both directions. However,

the countries are not the same per campus network. This is confirmed by the fact

that the Network&Country is clearly significant. Similarly, the fact that factors

Direction and Network&Direction are not significant indicates that the traffic

percentages are distributed similarly in both directions, regardless of the network.

The results of the factor Country show strong significance, which ties in with

what we expected taking into account the results of the previous section and other

works (for instance, [GNS05]). Basically, the location of the end-hosts is far from

being homogeneous. In addition, the results of the factor Country&Direction

shows strong significance, which implies that the relation incoming/outgoing traf-

fic depends on the destination country under analysis. This is directly related

to the peering agreement decision-making problem introduced in the section 4.1

and 4.2. Actually, one of the most typical peering agreements is the ratio-based

paid peering [Nor01b], in which peering is free of charge until traffic asymmetry

reaches a certain ratio, commonly 4:1. With the ANOVA results we have shown

that such ratio depends heavily on the destination country.

In addition, it is well known that the ratio incoming/outgoing traffic is a

good discriminant to differentiate traffic applications. For instance, the ratio of

the Hypertext Transfer Protocol (HTTP) is usually low, i.e., more downloaded
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traffic that uploaded, whereas the ratio of the P2P applications tends to be

higher [LFHL07]. Bearing this in mind, ANOVA suggests that users tend to access

to certain services in certain countries. Finally, the interaction factor of level 3

Network&Country&Direction, reveals that not only the countries receive a dif-

ferent sort of traffic but it also depends on the network that generated such traffic.

Once more, this is closely related to ratio-based paid peering, since the ratio in-

coming/outgoing traffic depends both on the country and on the source network.

That implies that single-network measurements do not suffice for a meaningful

characterization of the distribution of the end-hosts’ location, which supports the

results presented in Table 4.4.

The results for flows and packets as response variables, tables 4.6 and 4.7, are

similar to the previous analysis for bytes. Regarding flows, the factor Network

has some significance which indicates that the behavior of the source networks

is different even if we ignore the direction or the specific destination country.

Regarding the number of packets, the fact that the complete interaction factor

is moderate significant (that is, p-value is closer to 0.05) means that the number

of packets from any source network per direction to the set of countries is more

homogeneous. In any case, the differences are minimal and, regardless of the

response variable selected, the conclusions drawn for percentage of bytes remain

valid for the other two measured items.

Finally, the tables 4.5, 4.6 and 4.7 also show the (adjusted) coefficient of de-

termination R̄2. It represents a measure of the percentage of variation in the

response variable that can be explained by the factors. As R̄2 is close to 1, we

can conclude that the factors and their interactions model the measured items

distribution accurately.

4.6 Summary and conclusions

In this chapter, we have performed a factor analysis of the Internet end-hosts

location, from connections originated in an extensive set of campus networks for a

long period of time. The analysis has been performed using Netflow records from

the whole Spanish National Research and Education Network.

First of all, we have visualized the results of the geolocation process. This visu-
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Table 4.5: ANOVA table with Network, Country, Direction and their interac-
tions as fixed factors and average number of bytes as response variable
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Table 4.6: ANOVA table with Network, Country, Direction and their interac-
tions as fixed factors and average number of flows as response variable
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Table 4.7: ANOVA table with Network, Country, Direction and their interac-
tions as fixed factors and average number of packets as response variable
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alization evidences that the location of end-hosts per country follows a power law

distribution. To confirm this hypothesis, we aggregated traffic from several uni-

versities for a month and repeated the visualization process. With the aggregated

data, we confirmed the power law shape of the measurements but the behavior

was not the same per source campus network, even though the aggregation level

was very high. Such observations motivated us to perform two different analysis

of the data: a Zipf-Mandelbrot characterization of the measurements and a fac-

tor analysis to explain the impact of the network, destination country, and traffic

direction in our measured items.

In the Zipf-Mandelbrot characterization, we have modeled the traffic volume

according to its destination country, concluding that a small set of countries ac-

counts for the most part of the traffic. In addition, we have shown that distri-

bution’s parameters a and b need at least one month to be considered stationary,

meaning that measurement campaigns should be long enough to be meaningful.

Moreover, the characterization process evidenced that all the networks have

different values for the parameters of the distribution. In this light, it becomes

necessary to collect the data all across the network and not just from selected

measurement points. However, the ZM characterization pays no attention to the

countries themselves, but it only takes into account their position in the rank,

which calls for subsequent factor analysis.

As factor analysis, we have applied the ANOVA univariate methodology to

assess the amount of variance of connection destinations that can be explained

in terms of three factors, namely the traffic direction, the source campus network

and the destination country. The results show that the factor Country is strongly

significant, as well as its interactions with Network and Direction ones. The

former issue shows that the distribution of the traffic volume that a network ex-

changes per country is far from being be homogeneous. Interestingly, the latter

result suggests that the sort of traffic, probably at application level, that the cam-

pus networks exchange depends on the country in which the end-host is located,

i.e., users tend to use certain services in certain countries. Similarly, we conclude

that the most popular countries in terms of exchanged traffic differ from one net-

work to another, although all networks were objectively similar and the population

size significant. Additionally, we have not found differences in the results when
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measuring the average number bytes, packets or flows.

Our conclusions have direct application to the ISP capacity planning and rout-

ing strategies. It has been shown that there is no canonical model for traffic

destinations even though the source user populations are similar. Therefore, the

routing policies and peering agreements that may be good for an ISP may not

apply to another ISP that serves a similar user population. As an example, let us

compare university networks U5, U2, and U9 during January 2009. From Table 4.2

we note that they are very much alike. However, the destination patterns are far

from being similar. Just to mention some examples, more than 5% (in bytes) of

the U5 outgoing traffic is destined to Mexico, whereas this country represents less

than 0.5% in the two other university networks. Similarly, more than 10% (in

bytes) of the U2 incoming traffic comes from Germany, this amount is three times

as less in the other universities. Furthermore, a 30% of the bytes that U5 and U2

networks sent were destined to USA. However USA accounts for 50% of the U9

outgoing traffic. There are a number of similar examples. Thus, our findings show

that serving new populations which in principle look similar leads to dramatic

changes in the connection destinations and may call for a totally different peering

arrangements. Again, we explain this fact by the heavy-hitter phenomenon as

explained in Section 3.5.

While the characterization of the Internet traffic is worthwhile by itself, a num-

ber of interesting applications have been pointed out. Our conclusions have direct

application to the decision-making process for new transit and peering agreements.

ISPs should give priority to those ISPs that maximize the geolocation of their traf-

fic, thus mitigating the path inflation phenomenon and, consequently, producing

a latency decrease. This is a fundamental aspect that ISPs should tackle given the

advent of new multimedia services that call for more demanding Quality of Service

(QoS) requirements. Specially, ISPs should pay attention on the end-hosts loca-

tion since the Zipf-model characterization has shown that a small set of countries

accounts for the most of the traffic.

From a methodology point of view, we have also shown that the length of

the measurement campaign needed to obtain a significant characterization of the

end-host locations can involve a long period of time. Note that similar conclusion

was found in the previous chapter when we analyzed the popularity of the port
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numbers and IP addresses.

Similarly, from the ANOVA results we have learned that the granularity of such

characterization should be very narrow because each network connects to different

countries in a different way and the conclusions drawn for one network cannot be

extrapolated to the other ones. Note again that this results tie in with the results

provided in the previous chapter. Consequently, the ISPs’ measurement campaigns

should include an extensive set of networks to cope with the space diversity and

also encompass a significant period of time due to the large transient time.





Chapter 5

The “queueing equivalent”

thresholding method

In the development of accurate capacity planning and network resource

dimensioning models, network operators must handle representative in-

formation about the traffic volumes traversing its network. However,

the amount of traffic measurements available over which to perform

such analysis, processing and storage is overwhelming. For this rea-

son, the research community has understood the importance of finding

an effective mechanism to reduce (or subsample) such huge amount of

data, with minimum loss of information.

In this chapter, we propose a mechanism to downsample traffic time-

series using Multiresolution Analysis (MRA) with wavelets, and evalu-

ate the optimal subsampling level based on comparing the queueing be-

havior of the subsampled and original signals at the output of a router.

The chapter considers the traffic volume traversing a given router per

unit of time, which can be obtained by periodically polling the coun-

ters of the interfaces table via Simple Network Management Protocol

(SNMP). Specifically, we analyze Multi Router Traffic Grapher logs

from RedIRIS as traffic time-series. This mechanism is more related to

network performance than conventional comparison levels, since queue-

ing delay is a very representative Quality of Service metric. On the one

91
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hand, downsampling allows reducing the storage and processing require-

ments for the measured time-series. On the other hand, it also allows

the reduction of the SNMP polling rate.

The results show that it is possible to reduce the data to one fourth of its

original size for the traffic generated by most analyzed universities, and

even to one eighth for data collected from routers with more aggregated

traffic, both with a high level of confidence.

This chapter is organized as follows: Section 5.1 presents the intro-

duction and related work of this chapter. Section 5.2 briefly reviews

MRA and introduces the queueing equivalent thresholding method. Sec-

tion 5.3 shows the results of applying the queueing equivalent mecha-

nism to the set of measurements. Finally, Section 5.4 concludes this

chapter with the most important findings obtained.

5.1 Introduction and related work

Internet Service Providers (ISP) and network operators have traditionally found

challenging the task of network dimensioning and capacity planning for two reasons

mainly: the dynamics of network traffic which exhibit high variance and long-term

correlation, and secondly the overwhelming amount of traffic measurements over

which to perform any model parameters estimation. In this chapter we address

this latter problem.

Data collection is often performed by means of polling network devices. For

example, Simple Network Management Protocol (SNMP)-enabled devices can be

polled in order to obtain the value of a given MIB variable. Precisely, a number

of network monitoring tools, such as the Multi Router Traffic Grapher (MRTG)

(Section 2.2.2), Cricket [All99] or Cacti [Nag05] among others, perform polling of

the ifInOctets and ifOutOctets counters of the interfaces MIB [MK00].

Essentially, the amount of available traffic measurements is often excessive to

be handled efficiently, and the task of reducing its size is becoming more and more

important. However, the difficulty lies in the choice of the appropriate timescale

in which to represent the data. Clearly, aggregation reduces not only the amount

of data but also the available information. In this light, there are few studies
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concerning this matter: the optimal timescale over which traffic measurements

should be taken for analysis, monitoring or storage, among other tasks.

For instance, the Request for Comment (RFC) 1857 [Lam95] recommends to

poll every minute on attempts to detect peak behavior. Nevertheless, given that

the volume of data generated at such rate might be huge, such RFC proposes to

aggregate the data, either using the arithmetic mean or the maximum value of

the interval. Finally, this RFC proposes, as a rule of thumb, to use 15-minute

aggregates for 24-hour periods, 1-hour aggregates for 1-month periods and 1-day

aggregates for periods of years. For instance, the 15-minute aggregates can be

justified because the polling intervals should be taken small enough to capture

variations in human activity. According to such RFC, 30 minutes is taken as a

good estimate of the time at which people remain in one activity. Hence, to track

variations in this interval it is necessary to sample twice, which gives us a sample

every 15 minutes.

On the other hand, most ISPs and companies collect their router statistics ev-

ery 5 minutes. This value is compliant with the International Telecommunication

Union (ITU)-T recommendation Y.1540 [ITU02], which states that such interval

is consistent with practical limits for IP layer operations. These statistics are then

stored in a database. In order to limit the database size, only the most recent

data is stored in the original timescale, while the older data is aggregated in larger

timescales. The aggregation rules are somehow arbitrary and eventually result in

the loss of valuable monitoring information.

In this chapter, we have proposed techniques for data aggregation, which are

based on a trade-off between storage efficiency and information loss, and avoiding

arbitrary rules. It is desired to define a mechanism to subsample the huge amount

of traffic measurements available for study, and find a reduced-but-equivalent

downsampled signal over which the tasks of analysis, monitoring (using the typical

network monitoring tools), storage, and modeling becomes more tractable.

One possible architecture to achieve this goal is shown in Figure 5.1. First

the data is captured and stored. Concurrently, a “thinning” process is applied to

reduce the time-series, and to make it easier for the subsequent analysis process.

For example, there is a growing interest in the use of embedding techniques applied

to Internet traffic analysis [LZSS06], which could be a possible analysis process in
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Analyzing unit

(clustering, modelling,…)

“Thining” process

(subsampling)

Data repository

Monitoring

system

interface
Measurements

Figure 5.1: Proposed architecture to subsample measurements

the diagram presented in figure 5.1. Such embedding techniques can be used to find

similarities between Internet traffic sources or flows with a number of applications

in security and capacity planning. In order to perform embedding or clustering

it is very convenient to have the time-series size reduced to a minimum, while

keeping the original information nearly intact. Clearly, it is easier to perform

embedding or clustering if the number of points in the time-series is relatively

small. Otherwise, there is a high variability in the data, which makes it more

difficult to identify clusters.

Such a “thinning” process implies the following two tasks:

1. To propose a mechanism for subsampling the data collected in a way that

keeps most of its original information.

2. To define a strategy to decide when to stop the subsampling process based

on some sort of equivalence metric.

In the former, Multiresolution Analysis (MRA) with wavelets has been exten-

sively used for time-series analysis, particularly network traffic signals. The main
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advantage of MRA is its capability to analyze non-stationary time-series, which

are common in traffic monitoring comprising day and night periods, but at same

time it keeps the information of the series in the frequency domain. Thus, it has a

wider applicability than conventional frequency-domain (i.e., Fourier) techniques.

Note that if the signal is transformed only into the frequency domain, we lose all

information about time, what is not desirable when the final aim is to deal with

traffic measurements. Consequently, MRA shows the best results when the signal

presents a strong periodicity but the time-resolution information is required. This

is the case for most of the internetwork traffic measurements because they are

related to the properties of human activity (Section 2.3).

Additionally, MRA has been used to detect traffic anomalies via the isolation

of significant increases in local variance [BKPR02]. Also, MRA has proved fun-

damental in the characterization of network traffic at different aggregation scales,

with application in the synthesis of long-range dependent traffic [RRCB00], and

further to estimate its characteristic Hurst parameter [AV98].

Concerning the use of wavelets for downsampling traffic series, the work by

Papagiannaki et al. [PTZD05] proposes a subsampling strategy based on the 12-

and 24-hour periodicity trends found in the measurements. Indeed, the traffic

patterns are observed to repeat from day to day and in morning-evening cycles;

this phenomenon, known as daily traffic pattern, is close-related to the human

behavior patterns (already introduced in Section 2.3). In this light, they choose

to take one sample every λ = 90 minutes, since 12 and 24 hours constitute 23 · λ
mins., and 24 · λ mins. respectively.

Once the subsampling strategy is defined, the original and the subsampled

signals are compared based on a pre-defined distance metric, typically Eucli-

dean [CFY03] or via the Analysis of Variance (Section 4.2.5). However, with

distance metrics, there is no assessment on the quality of the subsampled signal

concerning network performance-related information and only second-order mo-

ment information is captured but other statistics can be lost, especially in terms

of network response.

In this light, since the time-series represents volumes of traffic, it makes sense

to determine the difference between the original and subsampled signals based on

some sort of network-performance metric, rather than mathematical distance. For
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this reason, we propose a rather more network-related approach, which consists of

feeding a given queueing system with both the original and subsampled signals,

and contrast (using a goodness-of-fit test) the two signals based on the queue-

occupancy distribution function of the router, which is key in the performance

evaluation of networks, as pointed out in [RRCB00].

5.2 “Queueing equivalent” thresholding method

In this section we provide a brief review of MRA. For a thorough explanation and

further details the reader is referred to [Chu92]. Then, we introduce our “queueing

equivalent” thresholding method.

5.2.1 Multiesolution Analysis review

Let {ωj,k =
√

2jω(2jt − k)} for all j, k denote an orthogonal basis for L2, where

ω(t) spans V0 (the reference subspace) and L2 is the space of the functions with

finite energy. Let us also consider the subspaces {0} ⊂ . . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂
V1 ⊂ V2 ⊂ . . . ⊂ L2, and let Wj refer to the orthogonal complement of Vj+1

with respect to Vj, namely Vj+1 = Wj ⊕ Vj. In MRA, a given signal x(t) ∈ V0

is decomposed into the sum of an approximation signal Aj(t) ∈ V−j and a set of

details Dj(t) ∈ W−j as follows [Mal89]:

x(t) = A1(t) + D1(t)

= A2(t) + D2(t) + D1(t)

= A3(t) + D3(t) + D2(t) + D1(t)

= . . . (5.1)

where the Ai(t), Dj(t) are the projection of x(t) over the subspaces V−i, W−j

respectively. Note that the Ai(t) signals are approximations of x(t) in a larger

timescale, i.e., in the timescale 2i times the timescale of the original subspace V0.

The aim of MRA is to obtain an adequate approximation for the signal, namely

to find the subspace Vi in which the original signal can be projected with minimum

information loss. If the original timescale for V0 is 5 minutes, then the timescale
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Figure 5.2: Wavelet filter banks. In each step the incoming signal goes through an
analysis linear filter and the Approximation signal (Ai) and Detail signal (Di) are
obtained. On the right, the reverse process is shown: x̃(t) is calculated applying
the reconstruction filters to Ai (using null signals as Di)

for Vi is 2i · 5 minutes. The approximations and details are obtained with the

analysis filter banks. Basically, the signal goes through an analysis linear filter in

order to obtain each successive approximation, as shown in Figure 5.2.

In summary, MRA provides a computationally efficient method for the approx-

imation of a time-series in larger timescales. In what follows, we assume that the

original time-series belongs to V0, namely V0 is the subspace that groups all the

signals in the same timescale of the original time-series. This is only for the sake

of notation simplicity. Note that the choice of the V0 timescale is arbitrary.

5.2.2 “Queueing equivalent” analysis

The goal is to approximate x(t) by the largest timescale approximation Ai(t)

such that the information loss, in terms of network behavior, is still acceptable.

For example, an approximation of x(t) in the subspace V1 consists of x̃(t) =

A1(t)+01(t) where 01(t) is the zero of W1. In V2, this is x̃(t) = A2(t)+02(t)+01(t),

etc.

As we approximate x(t) by its projection over the subspaces V−1, V−2, ... some

information about the signal is lost, since the timescale is larger. In fact, wavelet

shrinkage acts as an smoothing operator since it obtains a signal approximation

with fewer points. More specifically, if x(t) is a signal of finite length with N

points, then A1(t) has N/2 points approximately, and Aj(t) is an approximation

of x(t) with length N/2j points. Our objective is to find the largest timescale

approximation which is accurate enough for a given analysis.
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Clearly, the appropriate timescale for a given approximation depends on the ap-

plication of the MRA. For example, if we simply wish to detect an “average” value

of the signal, then we may choose to approximate in a very large timescale. The

timescale is usually selected by thresholding the energy of the details. However,

this is a squared error criterion which is not specifically tailored to any network-

related application of the MRA. Moreover, the energy threshold is a heuristic

value.

In this thesis we propose and validate an approximation method which relates

to queueing performance. Intuitively, a given signal x(t) and approximation x̃(t)

are said to be “queueing equivalent” if an infinite-buffer queue fed with both

processes produces the “same” (or very similar) queueing occupancy distribution.

If this is the case, then we may take the approximation x̃(t) instead of x(t) for

whatever queueing-related analysis we wish to perform.

Concerning other applications, as mentioned in section 5.1, clustering and

embedding applications may benefit from the fact that the time-series length is

reduced after applying MRA. If, for instance, we wish to perform a r-dimensional

clustering of x(t) with other traffic time-series, then we can take the approximation

signal Aj(t) instead of x(t), since Aj(t) has fewer points. This makes the clustering

algorithm converge faster.

More formally, let us consider an infinite-buffer single-server system which is

governed by the Lindley’s equation [Lin52]:

Q(t + 1) = max{0, Q(t) + A(t)− C}, t = 0, 1, 2, . . . (5.2)

where Q(t) is the system occupancy at time epoch t, A(t) are the bytes arriving

during such time interval, and C is the router capacity. Let FA denote the sys-

tem occupancy distribution under traffic input A(t). The following provides the

definition of “queueing equivalent” approximation:

Definition: The signal x(t) and the approximation Aj(t) are equivalent (in

the queueing performance sense) for a utilization factor ρ and significance level

α if and only if the null hypothesis of goodness-of-fit between FAj
and Fx can be

accepted at significance level α. Notation-wise, we say that x(t)Rρ,αAj(t).

Remark: Note that Rρ,α is a binary relationship but not an equivalence rela-

tionship in V0 × V0. Clearly, x(t)Rρ,αx(t) and if x(t)Rρ,αy(t) then y(t)Rρ,αx(t).
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However, the transitive property does not hold. For example, let us consider the

Kolmogorov-Smirnov statistic [DS86, Chapter 4] z(x(t), x̃(t)) = maxτ≥0 |Fx(τ)− Fx̃(τ)|.
Then, for any y(t) and z(t) such that x(t) 6= y(t), y(t) 6= z(t) and x(t) 6= z(t),

z(x(t), z(t)) = max
τ≥0

|Fx(τ)− Fy(τ) + Fy(τ)− Fz(τ)|
≤ max

τ≥0
|Fx(τ)− Fy(τ)|

+ max
τ≥0

|Fy(τ)− Fz(τ)|
= z(x(t), y(t)) + z(y(t), z(t)) (5.3)

and it cannot be assured that if z(x(t), y(t)) ∈ Sα and z(y(t), z(t)) ∈ Sα then

z(x(t), z(t)) ∈ Sα for a given significance level α where Sα is the acceptance re-

gion. As a consequence, x(t)Rρ,αy(t) and y(t)Rρ,αz(t) do not imply x(t)Rρ,αz(t).

The same result applies to other goodness-of-fit tests such as the χ2 test ([DS86,

Chapter 3] and Section 4.2.5). 2.

In conclusion, the “queueing equivalent” thresholding method provides a tech-

nique to decide whether a finite-length traffic time series in V0, say x(t), and its

approximation Aj(t) in the 2j timescale (namely, Aj(t) ∈ V−j) are equivalent in

terms of queueing performance. This is the case if and only if x̃(t) = Aj(t)+
∑j

i=1 0i

and x(t) yield queueing occupancy distributions that pass the null hypothesis of

a goodness-of-fit test for a given significance level and utilization factor.

Note that, in order to apply the method and obtain the queueing occupancy

in the same timescale, one needs to reconstruct the original time-series in V0

from Aj(t), by means of iterative application of the reconstruction filter j times

(upsampling with null details), as depicted in Figure 5.2. However, this is only

required to check whether approximation and original time-series are equivalent in

the queueing performance sense. Once the original time-series and approximation

are considered equivalent by the “queueing equivalent” method both can be used

indistinguishable. However, the approximation is smaller in size and it is easier

to store and process.

Concerning the computational complexity of this technique, we found that

most computational cost is carried by the MRA decomposition function. There-
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fore, the use of the “Queueing equivalent” method does not involve any substantial

overload increase, with respect to other techniques such as the squared error com-

putation.

5.3 Results and discussion

In this section we first describe the analysis scenario and data sample used to

experiment and assess the “thinning” process. Then, we provide the results for a

number of traffic time-series. The aim is to determine to which extent the queueing

equivalent approximation presented in the previous section can effectively perform

thinning of the original time-series, i.e., reduction in the time-series length.

5.3.1 Analysis Scenario

The “queueing equivalent” thresholding method has been applied to a data col-

lection which spans one month (February to March 2007) of MRTG logs from the

output routers of eight universities in Spain (labeled as Ua, Ub, . . ., Uh), four re-

gional networks (RNa, . . ., RNd) which aggregate traffic from several universities,

hospitals, computing and research centers, etc. and five external links (ELa, . . .,

ELe) that RedIRIS has provided us (see Section 3.2).

This data comprises the average incoming and outgoing traffic volumes col-

lected in 5 min time intervals. Thus, each monitored variable contains 288 sam-

ples per day, 2016 per week and 8640 measurements per month. A sample plot is

shown in Figure 5.3.

In this figure the overall trend over a week becomes apparent: traffic volumes

at weekends are smaller than during weekdays, which exhibit similar patterns

among them. Within a day, the traffic signal grows in the morning, it shows a

significant decrease at lunchtime, and then it increases until the users go home.

These patterns are well known by the researchers dedicated to networks studies,

actually diurnal patterns of Internet activity is considered one of the best-known

invariants that can be found in the Internet (Section 2.3).

Note that the traffic sample is diverse in terms measurement points (nation-

wide). Furthermore, the campuses from which the data was collected have a large

number of Internet users (both students and staff members), which favors that the
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Figure 5.3: Incoming traffic for university Uh for one month, a sample per 5
minutes

traffic sample is statistically representative. Table 5.1 shows the total number of

Internet users per university campus. Concerning the regional networks and the

external links, the data provided is even more representative since these networks

group up the traffic generated by several universities, hospitals, computing and

research centers, thus aggregating a very large number of Internet users.

5.3.2 Goodness-of-fit test

As stated previously, MRA can be used for subsampling a time-series, since we

can reduce the original N -size traffic signal into a smaller signal of length N/2j

just by its projection onto the subspace V−j. For instance, Figure 5.4 (top) shows

the original monthly signal (from a given university), and its projections onto sub-

spaces V−1 to V−10 using the Daubechies wavelet family [Dau90] and upsampling

with null details.

It can be seen that subsequent projections cause the original signal to lose

resolution gradually, but at the same time the signal length is divided by two.

Additionally, Figure 5.4 (bottom) shows the details (projections onto W−j) which,

added to their associated approximation signals through the appropriate recon-



102 Chapter 5. The “queueing equivalent” thresholding method

1000 2000 3000 4000 5000 6000 7000 8000

20
40

Samples

20
40

20
40

20
40

20
40

M
B

/s

20
40

20
40

20
40

20
40

20
40

A
4
+ 0

4
+... 0

1

A
2
+ 0

2
+ 0

1

A
1
+ 0

1

A
3
+ 0

3
+... 0

1

A
5
+ 0

5
+... 0

1

A
7
+ 0

7
+... 0

1

A
6
+ 0

6
+... 0

1

A
8
+ 0

8
+... 0

1
 

A
9
+ 0

9
+ ... 0

1

A
10

+ 0
10

..0
1

0 1000 2000 3000 4000 5000 6000 7000 8000

0
5

0
5

0
5

0
1

0
1

0
1

0
2

0
1

0
1

0
1

M
B

/s

D
1
 + 0

1
 

D
3
+ 0

3
+... 0

1
 

D
4
+ 0

4
+... 0

1

D
5
+ 0

5
+... 0

1

D
6
+ 0

6
+... 0

1

D
7
+ 0

7
+... 0

1

D
8
+ 0

8
+... 0

1

D
9
+ 0

9
+... 0

1

D
10

+ 0
10

.. 0
1

D
2
+ 0

2
+ 0

1

Samples 

Figure 5.4: First ten Approximation and Detail signals for university Uh
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University Population

Ua 1,500
Ub 8,000
Uc 8,500
Ud 12,000
Ue 22,000
Uf 30,000
Ug 16,000
Uh 40,000

Table 5.1: Population size per university

struction filters, give the original time-series.

Figure 5.5 shows three different measures of similarity for this example: the

energy of the details Di, the Mean Squared Error (MSE), defined as:

1

N

N∑
t=1

(x(t)− x̂(t))2 (5.4)

and the Euclidean distance [CFY03]:

(
N∑

t=1

(x(t)− x̂(t))2

) 1
2

(5.5)

As shown, it is not easy to determine a relevant cut-off approximation level,

since no knee point becomes evident. Nevertheless, even if a knee point is evident,

there is no possible way to know whether the information lost has a clear impact

on network performance or not.

On the other hand, Figure 5.6 shows the queueing occupancy Complementary

Cumulative Distribution Function (CCDF) at different approximation levels, for

the same signal. As shown, the queueing behavior significantly degrades for coarser

approximations of the original signal. A goodness-of-fit test can be used to check

whether such queueing occupancy distributions are “equal” or not.

For instance, Figure 5.7 shows the lowest significance level α such that the

subsampled signal passes the χ2 test for several approximations Aj. As shown, a

clear step concerning significance level occurs from approximation A3 to A4. For
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Figure 5.5: Detail energy, MSE and Euclidean distance for several approximation
for university Uh

A3, α ≈ 10−6 (1− α ≈ 100% confidence level) and it passes the χ2 test, however

in the fourth approximation the null hypothesis is absolutely rejected. This step-

change behavior in terms of significance level has been found in the vast majority

of the measurement sets studied, which gives a clear cut-off level.

This is a distinguishing feature of the proposed technique, because the good-

ness-of-fit test provides a clear pass or fail outcome. Thus, it clearly allows de-

termining which is the best approximation for a given time-series, in contrast to

previous methods based on continuous distances.

Hereafter, this test will be evaluated and compared with the Euclidean distance

for all the available data. The number of histogram bins will be approximately√
Ns, where Ns is the number of samples. All bins are required to contain at least

one sample to be taken into account. Table 5.2 shows the results of applying the

χ2 test with significance level α = 0.05 to the full measurement set. The results
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Figure 5.6: Distributions of delay suffered by a queue fed with the original and
sampled signals, university Uh (ρ = 0.8)

show that it is possible to reduce the number of samples at least by a factor of 22 (1

sample per 20 mins) in all the cases studied. Moreover, 70% of the time-series can

be further reduced to the 23 timescale (1 sample per 40 mins). For the external

links, the data can be subsampled by a factor of 24 (1 sample per 80 mins).

Interestingly, the universities show the worst results, and the external links,

with highest aggregation level, the best ones in terms of subsampling. A possible

explanation is that the larger the aggregation level the smoother the traffic in

terms of marginal distribution variance, by the Central Limit Theorem (CLT).

Thus, it is expected that external links, with highly aggregated traffic, provide

the best results in terms of approximation in a larger timescale.

Table 5.3 gives the Euclidean distance for the same original traffic signals and

their approximations. The comparison of the tables shows that there is no clear
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Figure 5.7: Lowest significance level (α) such passes χ2 test between distributions
delay suffered by a queue fed with the original and first ten approximation signals
for university Uh (ρ = 0.8)

relationship between the Euclidean distance metric and the “queueing equivalent”

thresholding method. For instance, university Uc shows larger Euclidean distance

than university Ub, however, the former can be subsampled by 24 according to χ2

test and the latter only by 23. In the same manner, ELa can be subsampled more

than RNb, but the latter shows smaller Euclidean distance. This is not surpris-

ing because the Euclidean distance is only affected by the amount of data being

removed and not by the real impact in queueing performance, as the “queueing

equivalent” thresholding method does.

There is no a evident way to contrast if the “queueing equivalent” criteria per-

mits to subsample the data more than the Euclidean distance does, since there is

no method to determinate the optimal subsampling level with this last method.

Nonetheless, in order to show a comparison, a reasonable error of 5% per sample,

in average, is accepted as the threshold for the Euclidean distance. In this way
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if the distance exceeds this threshold the subsampling level is rejected, otherwise,

it is accepted. Table 5.4 shows the results after applying this test. Obviously

this threshold has been fixed arbitrarily but actually, there is no other way to

set it. This is one of the major advantages of the “queueing equivalent” criteria

as previously stated. Assuming these premises, overall, we find that, with the

“queueing equivalent” criteria, the subsampling ratio achieved is larger than with

other metrics such as Euclidean distance. For the given error of 5% per sample,

with the latter metric only 50% of the analyzed networks can be subsampled by 22

whereas, with the former metric, all networks pass the χ2 test. The same results

arise for the next approximation level A3, that is, all the regional networks and

external links can be subsampled by 23 according to the “queueing equivalent”

metric, however two of these networks would not admit approximation level A3

following the other criteria. Similar results are obtained from the fourth approxi-

mation. Moreover Table 5.4 shows, as Table 5.3, that the traffic time-series from

the external links (highly aggregated traffic) can be subsampled up to larger levels

than universities or regional networks.

5.4 Conclusions

In this chapter we have proposed a new approach for downsampling a traffic time-

series in a large timescale –in the MRA sense– where the subsampled threshold is

determined based on queueing performance impact. Specifically, both the origi-

nal time-series and approximation signals are fed to a single-server infinite queue

system, and a goodness-of-fit test between the resulting occupancy distributions

is performed for a given significance level and utilization factor.

In addition, we take advantage of the fact that the internetwork traffic mea-

surements show a strong periodicity, due to their relation to the human activity

patterns. Thus, by applying MRA with wavelets we take into account information

not only in the time domain but also in the frequency domain, which in turn gives

better results than those based on well-known time-based methodologies.

The results of applying our approach to real traffic time-series obtained from

RedIRIS show that all the time-series can be approximated in the 22 timescale (20

mins), and 70% of them in the 23 timescale (40 mins). In the case of highly aggre-
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gated traffic, most time-series were successfully approximated in the 24 timescale

(80 mins). These results overcome the ones obtained applying the typical distance

metrics.





Chapter 6

Characterization of the busy-hour

traffic based on IP networks’

intrinsic features

Internet Traffic measurements collected in the busy hour constitute a

key tool to evaluate the operation of networks under the heaviest-load

case scenarios, and further provide a means to network dimensioning

and planning future capacity upgrades. In this light, this chapter pro-

vides an in-deepth analysis of the busy-hour traffic measurements from

an extensive set of universities, regional networks and external links

collected from the Spanish Research and Education Network (RedIRIS).

After proving that the traffic volumes observed in the busy hour over

time can be modeled by a white Gaussian process, this work takes one

step further and inspects the influence of the networks’ intrinsic fea-

ture, primarily population size and access link capacity, on the charac-

terization of busy-hour traffic as a Gaussian model. Analysis of Vari-

ance and Covariance methodologies are applied to the data, and the

results show that the network size in terms of number of users accounts

for the most of the variance of busy-hour traffic information. We fur-

ther provide a linear-regression model that adjusts the amount of traffic

that each network user contributes to the busy-hour traffic mean and

variance values, with direct application to the link-capacity-planning

113
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problem of IP networks.

The remainder of this chapter is organized as follows: Section 6.2

reviews previous work in the field, presents the goals of this study and

provides some extra details of the measurement set under study. The

sections 6.3 and 6.4 comprise the core results of this chapter, which

are finally summarized in Section 6.5.

6.1 Introduction

The characterization of Internet Traffic has received much attention from both

network operators and the research community over years (Section 2.3). Indeed,

there has been an intensive research effort in the characterization of the packet

and byte counting process at small time-scales (say seconds and smaller), giving

raise to a number of long-range dependence models [AFT98, HPA07]. Also, the

estimation of Internet bandwidth demands has been a subject of study, either from

a long-term [PTZD05] or a short-term [vdBMvdM+06, FTD03, MACL06] point of

view. While these analyses and models serve to better understand the dynamics of

Internet traffic, it turns out that network operators often use a different metric for

capacity planning purposes: the total traffic volume observed in a given link during

its busiest hour [vdMMP07, MACL06]. Obviously, network operators base their

capacity planning strategies on worst-case scenarios, that is, on measurements

collected when the network is most heavily loaded. This justifies the interest by

the research community on studying and characterizing the busy-hour traffic, and

its evolution over time. Typically, as noted by the authors in [vdMMP07], network

operators use the following rule of thumb:

C = d ·M (6.1)

where C is the target link capacity, M represents the bandwidth demand over

the link under study, and d is some constant. Clearly d ≥ 1, and is often much

greater than one to provide sufficient capacity C to satisfy the burstiness of the

bandwidth demand M .

The goal of this chapter is to characterize such bandwidth demand M for uni-
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versity access links during the busy hour, and further study the impact of intrinsic

features [GDHA+08] of the universities on such bandwidth demands. Examples of

intrinsic features of networks comprise their population (i.e., number of users) and

access link capacity, among others. More specifically, this work studies the busy-

hour traffic observed in the access links of a numerous set of large-size networks,

focusing on its statistical properties and applicability to network dimensioning

tasks. To this end, RedIRIS has kindly donated the traffic measurements of the

access links to a large number of universities, regional networks and external links

over a six-month period.

More specifically, we show that the busy-hour traffic can be accurately charac-

terized by a pure Gaussian process, i.e., the average traffic volume during the most

loaded hour is independent from one day to another, and it is further Gaussian

distributed over time. Then, we go one step further and examine the influence of

intrinsic network features, such as its population size (number of users) and its

actual access link capacity, on the mean and variance of such a Gaussian model.

After performing an Analysis of Variance (ANOVA) test, it is found that both

access link capacity and population size are significant factors that greatly influ-

ence the traffic demands during the busy hour. However, after this, an Analysis

of Covariance (ANCOVA) test is applied to check whether or not the access link

capacity factor has a significative effect after removing the variance for which the

population size accounts. Interestingly, in the set of networks under study (which

show high capacity over-provisioning), it is only the population size that matters

in the characterization of the busy-hour Gaussian process.

6.2 Preliminaries

6.2.1 Related work and contributions

In spite of its paramount importance for capacity planning and network design

purposes, the network research community has surprisingly paid little attention

to the study of the busy-hour traffic observed in network links, on the contrary

to Plain Old Telephone System (POTS) designers. In fact, the network research

community has addressed the problem of capacity planning by modeling the whole
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traffic process at different aggregation scales: packet, flow, application and aggre-

gated traffic volumes.

At the packet level, the classical queueing theory has provided a framework

for capacity planning, considering Markovian arrivals and service times. However,

such assumptions no longer apply in light of the observed self-similar features of

Internet traffic [CB97, PF95, LTWW94].

A flow-based approach is proposed in [BK00] whereby the authors base their

capacity planning models on flow metrics. In such work, the authors end up with

a model that considers the bandwidth mean and distribution tail of simulated

TCP flows. On the downside, such flow-based dimensioning models are hardly

feasible in practice and very sensitive to changes in the profiles of flows. The

use of aggregated busy-hour traffic values provides a more robust approach to the

process of traffic characterization.

As introduced in Section 2.4, the authors in [vdBMvdM+06] take one step

further and propose a hybrid model ρ + α
√

ρ which considers both aggregated

(the network load ρ) and per-flow (by means of α) metrics. Such parameter

α is related to some characteristics of individual measured flows, for instance,

their size and peak rate. A further refinement to this approach is proposed

in [vdMMP07] where the burstiness of traffic is modeled from the variance of

aggregated traffic, rather than following a flow-based approach (parameter α). In

both approaches [vdBMvdM+06, vdMMP07], the estimation of average demands

is kept constant throughout the entire analysis, and the authors mostly focus on

the burstiness of traffic. However, given the assumption of traffic stationarity (at

small time-scales) these approaches are only valid for capacity planning over short

periods of time (in the order of few hours or so), which makes them impractical for

long-mid term planning purposes. In fact, such a stationarity assumption breaks

with the well-known fact that traffic patterns follow human behavior [FP01].

At the application level, the authors in [MNAR+04] characterize the traffic

demand of individual users as a combination of the typical application sessions

started by them: web browsing, Peer-to-Peer (P2P), Instant Messaging (IM) and

email. However, such an application-based model requires network operators to

correctly identify each application (which is not straightforward [MP05]). Addi-

tionally, this model is extremely sensitive to changes in user request patterns and
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hardly viable for forecasting purposes.

Finally, the authors in [PTZD05] have addressed the problem of capacity

planning and network dimensioning by modeling the whole traffic measurement

plot, as already introduced in Chapter 2.4.2. In [PTZD05], a long-term forecast

of network traffic load based on three years of aggregated traffic measurements is

presented. Essentially, the authors apply Auto Regressive Integrated Moving Av-

erage (ARIMA) models to the measurements collected on attempts to infer future

network load values. Such a model is further applied in [FML+03] to characterize

the end-to-end traffic demands between each pair of Points of Presence (POPs)

in a backbone network. Interestingly, such work shows that the bandwidth over-

provisioning could be lower than usually assumed for a given Quality of Service

(QoS) requirements. For instance, only about 15% of extra bandwidth (that is,

d = 1.15 parameter of Eq. (6.1)) is required to ensure less than 3 ms of queuing

delay.

Given the large size of measurements involved in such studies (one measure-

ment every five minutes), the authors in [PTZD05] firstly aggregate the data to

90-minute intervals and then, they apply wavelets and ANOVA to further reduce

the data volume. In contrast, using the busy-hour traffic approach only requires

one measurement per day (the throughput value during the most loaded hour)

and data preprocessing is barely required, which first simplifies the process of

data collection, storage and management, and secondly considers the worst case

scenario for capacity planning purposes.

The model proposed in this work tries to overcome the above limitations found

in the literature. More precisely, our model studies only the traffic volumes during

the busy hour over a relatively long period of time (in the range of several months),

and finds that such busy-hour traffic characterization is accurately modeled with

a Gaussian process. Additionally, the model only requires one aggregated traffic-

related value to be collected every day: the busy-hour traffic mean, which makes it

more practical and robust (less sensitive to fine-grane measurements). Moreover,

the model relates the bandwidth demand results to the intrinsic characteristics of

networks, such as its population size and access link capacity, which is novel.

Concerning traffic Gaussianity, the authors in [KN02, vdMMP06] test whether

or not aggregated traffic follows a Gaussian distribution at different aggregation
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levels in terms of number of users and time-scales. Both studies find Gaussian

behavior from 5-ms to 5 seconds of time-granularity. It is worth noticing that we

are facing a different problem: The Gaussian modeling of the busy-hour traffic

over a number of consecutive days, rather than characterizing the aggregated

traffic sample itself.

6.2.2 Definition of busy-hour traffic

Let A(t) be the instantaneous network throughput measured (in units of Mbits/s

for instance) on a given access link. Here, t spans a day of throughput measure-

ments, that is, t ∈ [0, 24) hours. Also, let HT (t) denote an average throughput

metric computed over a given range [t− T
2
, t + T

2
] of length T , typically one hour:

HT (t) =
1

T

∫ t+T
2

t−T
2

A(τ)dτ (6.2)

According to this, the busy-hour traffic X is the value that maximizes the

above equation, i.e.:

X = max
t

HT (t), t ∈ [0, 24) hours

T = 1 hour (6.3)

which gives the average throughput (in Mbits/sec) during the busiest hour of a

given day, and such value occurs at time t that maximizes HT (t).

Additionally, let V be the variance of A(t) during the busy hour [t− T
2
, t + T

2
],

that is

V =
1

T

∫ t+T
2

t−T
2

(A(τ)−X)2dτ (6.4)

Since the traffic is collected in intervals of five minutes the above equations are

discretized accordingly.

Thus, for each data unit (either university, regional network or external links),

the above equations define the time-series {Xi, i = 1, . . . , N} and {Vi, i = 1, . . . , N}
which comprise the average traffic volume observed during the busy hour and its
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variance for different days i = 1, . . . , N . In addition, it is also interesting to

study the time of day ti at which the traffic busiest hour occurs. This is given

by the time-series {ti, i = 1, . . . , N}. Figure 6.1 illustrates how these metrics are

computed for a given network over three days.

A(t)

(Mb/s)

t1 t2 t3

Day 1

50

150

250
X1

V1

X2
V2

X3
V3

Day 3Day 2

Figure 6.1: A three-day example of traffic measurements to illustrate Xi, Vi, and
ti

Finally, with daily values of Xi and Vi, it is also possible to compute the

Coefficient of Variation (CV) as defined by:

CVi =

√
Vi

X2
i

, i = 1, . . . , N (6.5)

which gives a measure of the variability of the busy-hour traffic volume with

respect to its mean.

6.2.3 Measurement set description

The Spanish National Research and Education Network, RedIRIS, kindly provided

the measurements to carry out this study. RedIRIS infrastructure and available

data was presented in Section 3.2. Specifically, we use traffic capture measure-

ments ranging from April to October 2007, in which traffic was monitored in both

directions of the access link, say incoming (from the Internet to the network un-

der study) and outgoing (sourced on the network under study and destined to the

Internet), as was shown in Figure 3.2.
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The traffic trace collected is based on Multi Router Traffic Grapher (MRTG)

logs and Cisco’s Netflow data. As explained in Section 3.2.3, such Netflow data

provides another means to obtain the inbound and outbound traffic volumes, which

were shown to validate the traffic values given by the MRTG data. We preformed

this experiment with the RedIRIS’ data and the results were satisfactory.

Both these data provide an approximation to the instantaneous network through-

put A(t) defined previously, and consequently have been used to calculate the daily

busy-hour traffic volume mean X and variance V as stated in Eqs. (6.3) and (6.4)

for each access link.

After the time-series {Xi, i = 1, . . . , N} for each access link was calculated

over different days, it is worth mentioning that the values obtained on both local

and bank holidays as well as other non-teaching periods were removed from all

time-series. The reason is that only the working-day values are of interest since

the network operators are interested in worst-case scenarios for capacity planning

purposes. In addition to this, note that both network upgrades and configuration

changes, for instance infrastructure improvements, new filtering policies, new killer

applications appraisal, etc. may also have a negative effect on the long-term char-

acterization of the busy-hour throughput, yielding to a non-stationary process.

Hence, in order to avoid these problems and to maximize the number of available

days in the time-series, we have carefully selected a set of network access links

that minimizes all these restrictions, thus removing all those which have shown

a clear non-stationary behavior over year 2007. Such a refined measurement set

comprises data from four regional networks (in what follows RNa . . . RNd) which

aggregate traffic from several universities, hospitals, computing and research cen-

ters; five external links/Internet Exchange Point (IXP) (namely ELa . . . ELe); and

22 university networks generically labeled as Uj.

As ANOVA requires to group the networks by factors and the group sizes must

be similar, we have extended the analysis to a larger set of university networks

and we have carefully selected them to obtain homogeneous sets of universities by

factor. Thus, following the labeling carried out in the previous chapters, the set of

22 university networks that are studied in this chapter are labeled as U2, U7, U9,

U10, U13, U15, . . . , U30. This set comprises some campus networks earlier analyzed

and other that included specifically to this study (U15,. . ., U30).
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The set of university networks was completed with the so-called network intrin-

sic features, that is, the values of their population size and access link capacity.

There exist well-documented central repositories which describe the university

networks’ user population, Internet access capacity and organization [Con]. This

information has allowed us to select a representative set of universities regarding

such intrinsic features (see Table 6.1), and rank them by means of both population

size and access link capacity. However, we note that the same does not apply to

the EL and RN networks as the population size of each of them is unknown.

Finally, the capping effect, as introduced in [VK00], states that the traffic

demands may be affected (bounded) by a limiting bandwidth capacity. In this

light, Table 6.1 summarizes the access link capacity CUj
for each university network

Uj (third column), along with the maximum average busy-hour traffic over the N

days of measurement (last column). The reader should note that all links show

low-levels of utilization even at highly-loaded days, typically below 40%. Indeed,

such over-provisioning of access links is a common practice by network operators,

as noted in Section 2.4. Actually, the average utilization during the busy hour

in our set of measurements was under 25% in all cases, and the most loaded

network, U20 showed a maximum utilization lower than 70%. Such low levels

of utilization make the capping effect negligible in this data [NP08, Chapter 4],

since the maximum busy hour traffic volumes found in the measurements are far

from reaching the maximum capacity of access links. Obviously, in other under-

provisioned scenarios with higher levels of utilization, the capping effect cannot

be ignored.

6.3 Characterization and dynamics of the busy-

hour traffic process

The following experiments firstly study the marginal distribution of the busy-

hour traffic volume or throughput, and then focus on its correlation structure.

The results obtained for all ELs, RNs and Us are summarized in Table 6.2.
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Networks
Capacity Population size max (Xi) Max. utilization
(Mb/s) (thousands) (Mb/s) (Mb/s)

U15 1000 58 328 / 190 0.33 / 0.19
U10 1000 55 150 / 115 0.15 / 0.12
U13 1000 46 328 / 207 0.33 / 0.21
U7 1000 34 107 / 126 0.11 / 0.13
U9 1000 28 158 / 126 0.16 / 0.13
U2 1000 28 83 / 111 0.08 / 0.11
U8 1000 26 115 / 90 0.12 / 0.09
U16 1000 14 23 / 73 0.02 / 0.07
U17 1000 11 17 / 54 0.02 / 0.05
U18 1000 8 17 / 41 0.02 / 0.04
U19 1000 7 8 / 21 0.01 / 0.02

U20 200 54 133 / 137 0.67 / 0.69
U21 100 37 35 / 65 0.35 / 0.65
U22 200 35 120 / 111 0.60 / 0.56
U23 100 20 46 / 38 0.46 / 0.38
U24 200 18 40 / 57 0.20 / 0.29
U25 200 15 13 / 29 0.07 / 0.15
U26 100 15 4 / 23 0.04 / 0.02
U27 100 13 30 / 57 0.30 / 0.57
U28 100 9 20 / 29 0.20 / 0.29
U29 100 7 7 / 17 0.07 / 0.17
U30 100 4 17 / 11 0.17 / 0.11

Table 6.1: Description of universities, their intrinsic features, and maximum uti-
lization in outgoing/incoming direction ranked by population size
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6.3.1 Gaussian marginal distribution

The first two columns of Table 6.2 show the estimated mean µ̂ and standard

deviation σ̂ of the busy-hour throughput distribution over time, measured at each

monitored point in both outgoing and incoming directions. Essentially, for a

given university Uj, whose busy-hour traffic over N days is defined in the set

{XUj

1 , . . . , X
Uj

N }, such mean and standard deviation values are computed as:

µ̂Uj
=

1

N

N∑
i=1

X
Uj

i (6.6)

σ̂Uj
=

1

N

√√√√(
N∑

i=1

(X
Uj

i − µ̂Uj
)2)

1
2 (6.7)

The fourth column in the table shows the maximum coefficient of variation

(CV max) during each busy hour, calculated following Eq. (6.8). Essentially, for

each university Uj, we compute its CV for each day i and take its maximum value

over all N days:

CV max
Uj

= max
i

√
Vi

X2
i

, i = 1, . . . , N (6.8)

This value represents the ratio of the variance V to the mean X, and it is very

useful for comparing the degree of variation of the busy hour traffic over different

days. This maximum considers the worst possible case: The day which shows

highest variability ratio (highest bursty behavior). This result is discussed at the

end of this section.

Finally, Table 6.3 provide the results of different Gaussian goodness-of-fit tests

applied to the measurements. Essentially, the null hypothesis assumes that the

busy hour traffic follows a Gaussian distribution with parameters µ̂Uj
and σ̂Uj

for

university network Uj. The easiest way to visually assess on the validity of the null

hypothesis is via the Quantile-Quantile plot [DS86, Chapter 2], which plots the

pairs x(i) versus Q(i/n)), whereby x(i) is the order statistics of the empirical sample

and Q(·) is the Quantile function (inverse of the cumulative distribution function)

of the reference distribution (in this case, Gaussian distribution). If indeed the
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measured data follows the Gaussian distribution N(µ̂Uj
, σ̂Uj

), the points depicted

overlap the angle bisector (line y = x). This is the case of Figure 6.2, where the

QQ-plot technique is applied to the busy-hour measurements of ELa, RNa and

U15 respectively in both incoming and outgoing directions. The same experiment

has been applied to all other measurement sets, showing linear QQ-plots in all

cases.

Besides visual matches, it is desirable to assess Gaussianity objectively follow-

ing the most common goodness-of-fit tests found in the literature, say: Kolmogo-

rov-Smirnov [DS86, Chapter 4], Shapiro-Wilks [DS86, Chapter 9], Anderson-Dar-

ling [DS86, Chapter 9] and correlation-based [KN02]. Basically, the correlation

test consists in checking whether or not the linear correlation coefficient R com-

puted between the pairs x(i) and Q(i/n)) in the QQ-Plot gives a relatively high

value, say 0.9 [vdMMP06].

Table 6.3 gives the results obtained after applying such tests. As shown, all em-

pirical distributions pass the correlation test. Also, we observe that the goodness-

of-fit tests support the null hypothesis (Gaussianity) for most of the cases and fur-

ther show visual Gaussianity too. However, as noted in [vdMMP06], conventional

goodness-of-fit tests are usually excessively demanding with traffic measurements.

Note that certain outliers may arise from events such as network misuse, power

cuts, temporal malfunctioning, etc. instead of typical network behavior, hence

making the tests fail. For this reason, we conclude that the busy-hour traffic mea-

surements for the access links of all universities, regional networks and external

links can be considered “fairly Gaussian”, borrowing the term from [vdMMP06].

6.3.2 Autocorrelation experiments

This section studies the correlation between consecutive busy-hour traffic mea-

surements, that is, whether or not the busy-hour traffic experienced on one day

depends on the values measured the previous days. To this end, the autocorrela-

tion function was calculated for all data items (Us, RNs and ELs) together with

their confidence intervals (with significance level α = 0.05) as described by the

Bartlett test [CL66] for the autocorrelation of a pure white Gaussian process, i.e.,

a Dirac delta at the origin of the autocorrelation function. Figure 6.3 shows the

autocorrelation (dots) and the confidence intervals (solid lines) applied again to
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Networks µ̂Uj
σ̂Uj

CV max
Uj

(outgoing / incoming) (Mb/s) (Mb/s)

ELa 1460 / 570 18 / 8.0 0.05 / 0.10
ELb 1111 / 806 18 / 19 0.59 / 0.55
ELc 1510 / 2223 11 / 9.1 0.20 / 0.03
ELd 52 / 33 3.2 / 2.3 0.31 / 0.40
ELe 683 / 895 8.2 / 12 0.17 / 0.22

RNa 288 / 558 6.6 / 9.2 0.22 / 0.17
RNb 80 / 136 4.2 / 5.0 0.40 / 0.22
RNc 71 / 213 4.1 / 6.3 0.42 / 0.70
RNd 920 / 661 11 / 10 0.13 / 0.18

U15 255 / 199 6.1 / 4.1 0.20 / 0.42
U10 109 / 84 21 / 13 0.10 / 0.17
U13 206 / 113 6.1 / 4.9 0.32 / 0.27
U7 63 / 102 18 / 9.0 0.21 / 0.14
U9 55 / 117 4.1 / 4.0 0.32 / 0.26
U2 51 / 84 14 / 13 0.20 / 0.42
U8 94 / 73 15 / 11 0.10 / 0.20
U16 32 / 90 2.4 / 4.6 0.20 / 0.18
U17 10 / 41 3.2 / 7.0 0.70 / 0.25
U18 8.1 / 30 2.6 / 6.6 0.35 / 0.47
U19 4.6 / 16 1.4 / 2.7 0.57 / 0.61
U20 97 / 118 17 / 10 0.10 / 0.10
U21 15 / 40 2.6 / 4.1 0.50 / 0.34
U22 102 / 88 22 / 11 0.33 / 0.41
U23 26 / 26 6.0 / 5.6 0.20 / 0.27
U24 31 / 46 3.2 / 5.4 0.28 / 0.16
U25 8.7 / 21 1.3 / 3.5 0.32 / 0.19
U26 3.1 / 17 0.5 / 3.1 0.41 / 0.50
U27 21 / 38 4.1 / 7.1 0.49 / 0.41
U28 11 / 22 2.7 / 3.8 0.35 / 0.47
U29 4.6 / 10 1.4 / 3.0 0.80 / 0.52
U30 6.6 / 7.7 3.2 / 1.6 0.34 / 0.31

Table 6.2: Gaussian characterization of busy-hour traffic N(µ̂, σ̂) in both incom-
ing/outgoing directions of traffic for the set of network under study
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Figure 6.2: QQ-Plot for ELa, RNa and U15
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Networks
Kolmogorov- Shapiro- Anderson- Correlation

(outgoing / incoming)
Smirnov Wilks Darling Test

(α = 0.05) (α = 0.05) (α = 0.05) (R > 0.9)

ELa X / X X / X X / X X / X
ELb X / X X / X X / × X / X
ELc X / X X /X X / X X / X
ELd × / X X / X × / X X / X
ELe X / X X / X X / X X / X
RNa X / X X / X X / X X / X
RNb X / X X / X X / X X / X
RNc X / X X / X X / × X / X
RNd X / X X / X X / × X / X
U15 X / X X / X X / X X / X
U10 X / X X / X X / × X / X
U13 X / X X / X × / X X / X
U7 × / X X / X × / X X / X
U9 X / X X / X X / X X / X
U2 X / × X / X X / × X / X
U8 X / X X / X X / X X / X
U16 × / X X / X × / X X / X
U17 × / X × / X × / X X / X
U18 × / X × / X × / X X / X
U19 X / X X / X X / X × / X
U20 X / X X / X X / × X / X
U21 X / × X / X X / × X / X
U22 × / X X / X X / X X / X
U23 X / X × / X × / X X / X
U24 X / X X / X X / X X / X
U25 × / X × / X × / X X / X
U26 × / X × / X X / X X / X
U27 X / X X / X X / X X / X
U28 × / X × / X × / X X / X
U29 X / X × / X × / X X / X
U30 X / X × / X × / X X / X

Table 6.3: Goodness-of-fit test results for Gaussian characterization in both in-
coming/outgoing directions of traffic
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ELa, RNa and U15 respectively. Interestingly, all networks pass this test, which

proves the independence of the busy-hour traffic values from one day to another

after removing both weekends and holidays.

6.3.3 Distribution of the Busy-hour times

Figure 6.4 shows the Cumulative Distribution Function (CDF) of the time instants

when the daily busy hour occurs, that is, the value of t in Eq. (6.3). For the sake of

clarity only the results for six universities during two months are shown, although

similar behaviors were observed for the rest of the networks under study. As

shown, the CDFs for all six universities are almost overlapped in both directions

of traffic. In the incoming direction of traffic, the busiest hour typically occurs in

the range from 10:00 a.m. to 1:00 p.m. However, the outgoing direction shows a

bimodal behavior with its busiest hour typically found either around 11:00 a.m.

or around 5:00 p.m.

These results are consistent with the “Daily traffic pattern” invariant defined

in [TMW97, FP01] and presented in Section 2.3.

Essentially, the authors in [FP01] expose that some traffic patterns follow

strictly the human behavior which, in the case of an academic network, this seems

to show two peaks of traffic: one in the morning and another one in the afternoon.

As shown, the busiest hour t never occurs at night, which gives at least 12

hours between any two consecutive busy-hour traffic measurements X. Intuitively,

this can be the reason that explains why the correlation structure in the busy-

hour traffic time-series {Xi, i = 1, . . . , N} vanishes since there is a gap of at least

12 hours between any two consecutive busy-hour traffic measurements X (see

Figure 6.4).

6.3.4 Applicability to capacity planning problem

On one hand, the above results show that the busy-hour traffic samples {X1, . . . , XN}
are both uncorrelated and Gaussian distributed. Hence, the busy-hour traffic pro-

cess can be modeled by a white Gaussian process.

Additionally, the maximum coefficient of variation, which gives the maximum

ratio of the variance V to the mean X over different days i is always smaller than
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Figure 6.3: Autocorrelation function and Bartlett Test (solid lines) for ELa, RNa,
and U15
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Figure 6.4: Busy-hour time CDF in both outgoing (a) and incoming (b) directions
of traffic
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one, hence showing sub-exponential behavior in all cases. In other words, the

traffic during the busy hour is close to the average value (small variation with

respect to the mean), which is of clear importance for capacity planning purposes.

Having found that the process is white and Gaussian, network operators can

apply the conventional sample mean and variance estimator to a measurement set.

With such parameters at hand, operators can use the following formula to derive

the access link capacity C required such that the busy-hour traffic volume is met

with probability 1− ε (typically ε ≤ 0.1):

CUj
such that Prob(d ·XUj < CUj

) ≥ 1− ε,

with XUj ∼ N(µ̂Uj
, σ̂Uj

) (6.9)

Finally, it is worth noticing that this section’s conclusions are derived based

on measured busy-hour traffic volumes only. This capacity planning application

is not valid for designing new networks over which no measurements have already

been taken. For this reason, the next section is devoted to extracting how much

information of the busy-hour traffic is directly related to the number of users

(population size) for a given network, on attempts to refine the dimensioning rule

above (Eq. (6.9)).

6.4 Factor analysis of access link capacity and

population size

The previous tests have shown that the busy-hour traffic distribution of univer-

sity networks can be accurately characterized by a Gaussian distribution N(µ, σ),

whereby its characteristic parameters µ and σ can be estimated from measure-

ments. The next set of experiments aim to study whether or not the intrinsic

features of the networks (population size and access link capacity), which are

denoted as explanatory variables in what follows, have any influence on such pa-

rameters µ and σ, which are denoted as response variables. To do so, ANOVA

and ANCOVA methodologies are first overviewed, and then applied to the mea-

surement set. Before that, we remark that this section only takes into account the

measurements collected at the 22 university access links Uj. The ELs and RNs
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measurements are not considered in these experiments since their population size

is unknown.

Both the ANOVA and ANCOVA methodologies require the data to meet a few

requirements, as introduced in Chapter 4: First, the explanatory variables must

be independent and Gaussian distributed; and second, all of them must share

the same intra-group variance (exhibit homoscedasticity). However, the results

of ANOVA and ANCOVA are generally accepted provided that the number of

elements in each group are similar and there is a non-excessive deviation from the

homoscedasticity assumption. This is the case for our measurements. For further

explanation see Section 4.2.5. Additionally, the ANCOVA model assumes a linear

relationship between the response and the explanatory variables (as will be shown

in Section 6.4.2).

Table 6.4 summarizes the factors (access link capacity CUj
and population size

PUj
) for each university under study. As noted from the table, the universities

have been split into two groups depending on the capacity of their access links:

The universities with 1 Gb/s of capacity belong to group Ghigh (which stands

for high-speed access link), thus leaving Glow to the universities with low access

capacity (ranging from 100 to 200 Mb/s). This classification is important to apply

ANOVA, as shown in the following.

6.4.1 Effect of access link capacity: ANOVA

This section studies the effect of the access link capacity only on the busy-hour

traffic volumes for each university characterized by N(µUj
, σUj

). Remark that, for

each university Uj, its access link capacity CUj
and population size PUj

are known

but, for this former experiment, PUj
is ignored.

ANOVA is a statistical methodology whereby the observed variance of a given

response variable is split into explanatory factors or categories and provides a

means to determine if the factors have any importance in explaining such a re-

sponse variable, and how much this accounts for.

In our example, ANOVA proceeds as follows: It first splits the response variable

µUj
into two categories: Ghigh and Glow. Then, it computes the adjusted mean

squares for each category and for the total. The difference between both is due to

the experimental error.
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Networks
CapacityAccess PopulationSize (users)
Group (Mb/s) Group (Thousands)

U15 1000 58
U10 1000 Large 55
U13 1000 46
U7 1000 34
U9 1000 Medium 28
U2 Ghigh 1000 28
U8 1000 26
U16 1000 14
U17 1000 Small 11
U18 1000 8
U19 1000 7

U20 200 54
U21 100 Large 37
U22 200 35
U23 100 20
U24 200 Medium 18
U25 Glow 200 15
U26 100 15
U27 100 13
U28 100 Small 9
U29 100 7
U30 100 4

Table 6.4: Set of universities grouped by access link capacity and population size
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Finally, ANOVA performs a contrast test using the ratio between the adjusted

mean square of each factor and the total, which follows a Snedecor-F distribution.

The null hypothesis considers that the total adjusted mean square is due to the

experimental error, and not to differences in the population when grouped by

categories. However, if the null hypothesis is not accepted, this means that the

factor used to build the groups (access link capacity) is statistically significant

according to the F -test. Moreover, the ANOVA test provides a p-value which

determines if the null hypothesis should be accepted or not, according to a given

pre-defined significance level α (typically α = 0.05). Basically, if p > α, then

the null hypothesis is accepted (non-significative factor), and rejected otherwise.

Furthermore, ANOVA also quantifies the amount of variance explained by the

factors (explained variance) and the amount of variance that remains unexplained

(non-explained or residual variance).

It is worth noticing that this test will be applied to both µ and σ in both

outgoing and incoming directions of traffic. For now, let us refer to them as a

generic response variable y.

The ANOVA model for response variable y with the access link capacity as its

only factor is given by:

ygroup
Uj

= ky + αgroup + εgroup
Uj

(6.10)

Here, ky is the overall means response for the response variable under study

(y), typically named as µ but, in this case, to avoid confusion with the response

variable µUj
we have renamed this term as k. ygroup

Uj
refers to the mean or variance

(in incoming or outgoing direction) value of university Uj which belongs to a given

group (either Ghigh or Glow). The value of αgroup represents the effect because of

a given network Uj belongs to a given group.

Finally, the value of εgroup
Uj

refers to the experimental error introduced above.

Clearly, large values of εgroup
Uj

means that the link access capacity factor explains

little variance and, perhaps, other factors that explain more variance must be

included in the model given by Eq. (6.10).

Table 6.5 shows the results after applying the ANOVA test to the busy hour

traffic mean µ and standard deviation σ in both incoming and outgoing directions

of the university access routers under study. The third column gives the sum of
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Response Source Sum Adj.
Variable of of df Mean F p-value

(direction) Variation Squares Square

ou
tg

oi
n
g µ

Capacity 13425 1 13425 2.67 0.118
Error 100386 (88%) 20 5019
Total 113811 21

σ
Capacity 95.5 1 95.5 1.22 0.282

Error 1561 (94%) 20 78.1
Total 1657 21

in
co

m
in

g µ
Capacity 8158 1 8158 4.44 0.048

Error 36760 (82%) 20 1838
Total 44918 21

σ
Capacity 168 1 168 4.77 0.041

Error 704 (82%) 20 35.2
Total 872 21

Table 6.5: ANOVA table with access link capacity as factor and µ and σ param-
eters as response variables (in both directions)

squares for each source of variation: Capacity and Error. According to the results,

the access link capacity factor shows moderate significance (that is, p ≈ α = 0.05)

only in the test for the measurements in the incoming direction (both mean and

standard deviation). On the other hand, the access link capacity factor has no

influence for the case of mean and standard deviation in the outgoing direction of

traffic.

Finally, the third column also shows the percentage that the error represents of

the total variance (inside brackets). Although the ANOVA test shows that there

exists some degree of influence between the access link capacity and the busy hour

traffic, it can be noted that the amount of unexplained variance remains high after

the test is applied. More specifically, these values are 88%, 94%, 82% and 82%, of

the total variance for µ and σ in the outgoing and incoming directions respectively.

Indeed, such large values of error reinforce the conclusion that the access ca-

pacity barely influences the measurements, namely the measurements are not dis-

torted by capping effects. Following this, the next section checks whether or not

the other intrinsic network parameter, population size, explains more variance

than that of the access link capacity.
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6.4.2 Combined effect of the access link capacity and pop-

ulation size: ANCOVA

This section aims to repeat the previous experiment but taking into account both

intrinsic network factors: the access link capacity and population size. In this

case, the model of Eq. (6.10) is extended to:

ygroup
Uj

= ky + αgroup + βgroupPUj
+ εgroup

Uj
(6.11)

where the term βgroupPUj
has been included with respect to Eq. (6.10) to deal with

the population size intrinsic feature of networks.

In this case, the population size factor appears as a quantitative variable rather

than a categorical group as it is the case for the access link capacity. When this

occurs, it is recommended to use the ANCOVA methodology instead of ANOVA.

Additionally, ANCOVA is recommended when the two factors are strongly corre-

lated since it helps to separate the amount of variance explained by each factor.

Basically, ANCOVA is the result of removing the variance for which some

covariates or quantitative variables (in this case, the population size) account by

means of a linear regression and, after this, applying a regular ANOVA with the

access link capacity as unique factor. Note that such a linear regression does not

assume that the value of the slopes βgroup in Eq. (6.11) for groups Ghigh and Glow

are equal.

Following this, Table 6.6 shows the results obtained after applying ANCOVA

to the whole set of universities. The table shows a new row that quantifies the

adjusted sum of squares of the explained variance by the population size as covari-

ate. As shown, including the population size in the analysis brings two important

conclusions: (i) the amount of total unexplained variance reduces very signifi-

cantly with respect to the previous experiment; and (ii) the amount of variance

explained by the access link capacity factor becomes negligible. Concerning the

former conclusion, note that the amount of variance that remains unexplained for

the mean busy-hour traffic µ has been reduced to 24% and 38% for the incoming

and outgoing directions respectively. Remark that, in the previous model which

only took into account the access link capacity, the unexplained variance was

much higher, up to 82% and 88% (see Table 6.5) for the incoming and outgoing
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Response Source Sum Adj.
Variable of of df Mean F p-value

(direction) Variation Squares Square
ou

tg
oi

n
g

µ

Popula. 68491 1 57569 25.6 0.000
Capacity 2504 1 2504 1.11 0.305

Error 42817 (38%) 19 2254
Total 113811 21

σ

Popula. 943 1 851 22.8 0.000
Capacity 3.66 1 3.66 0.10 0.758

Error 710 (58%) 19 37.4
Total 1657 21

in
co

m
in

g

µ

Popula. 32014 1 25944 45.6 0.000
Capacity 2089 1 2089 3.67 0.071

Error 10815 (24%) 19 569
Total 44918 21

σ

Popula. 349 1 252 10.6 0.003
Capacity 71.1 1 71.1 2.99 0.100

Error 452 (56%) 19 23.8
Total 872 21

Table 6.6: ANCOVA table with access link capacity as factor, population size as
covariate, and µ and σ parameters as response variables (in both directions)

directions respectively.

Indeed, the amount of variance explained by the access link capacity was due

to the correlation between the population size and the access link capacity of

universities, rather than on the latter factor only. This null effect of access link

capacity is consistent with the premise of negligible capping effect (Section 6.2.3).

We believe that the population size has a more clear impact in the busy hour

traffic in the incoming direction than in the outgoing direction. Apparently, it

seems to be the university which is responsible for the amount of traffic observed

in the incoming direction (the university users request such information), whereas

in the outgoing direction, it is the Internet’s population (unknown) which request

such traffic. Probably, the amount of traffic in the outgoing direction is propor-

tional to the network services (web services, Virtual Private Networks (VPNs),

databases, etc) that universities offer to the outside world, which also have a rela-

tionship to the population size of universities, but not as strong as in the incoming
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direction of traffic.

Given that the access link capacity is not significant, the following section is

focused on a simplified model that only takes into account the population size via

linear regression.

6.4.3 Focusing on the population size: Linear Regression

As stated before, ANCOVA performs a linear regression in order to remove the

variance explained by the covariates. Next, we assess whether such a linear re-

gression can be useful to estimate the busy hour traffic distribution N(µ, σ) based

on the university’s population size only.

Note that the previous model (Eq. (6.11)) assumes a different βgroup for each

group of universities Ghigh and Glow. The next model simplifies this issue as-

suming a common slope β for all universities. Such assumption is known as the

homogeneity of regression coefficients [All97]. We did not find any evidence that

such assumption is violated, consequently we can use the same β parameter for

all groups (Ghigh and Glow), given by the following simplified model:

yUj
= ky + βPUj

+ εUj
(6.12)

which only takes into account the university’s population size PUj
as the only

source of influence in the busy-hour traffic distribution N(µ, σ). We remark that

the value of β represents the slope in the linear regression model, and can be

viewed as the amount of traffic that each network user contributes to the average

busy-hour traffic value µUj
. This is a parameter of key importance in the capacity

planning of university access links based on their population size.

After applying the linear regression, Table 6.7 shows the regression coefficients

for each response variable, together with their 95% confidence intervals. The

fourth column in the table provides the coefficient of determination, R̄2, which

gives the amount of variance explained by the linear regression model. The results

show that the population size explains 62% and 71% of the variance of the busy-

hour process mean µ in the outgoing and incoming directions of traffic respectively.

For σ, the experiment results give 56% and 40% of explained variance, again in

the outgoing and incoming directions respectively.
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Response
Coefficients 95%-confidence

Variable
(Mb/s) intervals

R̄2

(direction)

ou
tg

oi
n
g

µ
k = -24.960 -63.024 / -13.104

62.18%
β = 0.0034 0.0021 / 0.0047

σ
k = 0.44 -4.339 / 4.251

56.09%
β = 0.0004 0.0002 / 0.0006

in
co

m
in

g

µ
k = 5.10 -15.211 / 25.411

71.27%
β = 0.0024 0.0017 / 0.0031

σ
k = 3.117 -0.969 / 7.206

40.10%
β = 0.00025 0.00011 / 0.00039

Table 6.7: Regression coefficients for µ and σ in both directions

Furthermore, Figure 6.5 shows the regression lines estimated by ANCOVA for

each parameter along with the data, on attempts to provide a visual contrast of

the results.

Concerning capacity planning, a given university Uj with population size PUj

requires a capacity in the incoming direction of k = 5.1 Mb/s constant plus 2.4

Kb/s (and depending on the selected significance level an extra addend that takes

into account the standard deviation (240 b/s)) per user, as given by Table 6.7,

since the error ε is zero-mean Gaussian distributed (modeled with N(0, σε) and the

representativeness of R̄2. This provides a simple rule for dimensioning the access

link capacity of a new university based on its expective population (number of

users), as:

CUj
such that Prob (d ·XUj > CUj

) ≤ ε,

with XUj ∼ N(µUj
, σUj

)

where µUj
= kµ + βµPUj

,

and σUj
= kσ + βσPUj

for each of the directions (6.13)

This constitutes a further refinement of Eqs. (6.1) and (6.9).

This methodology makes it possible to estimate the demand for bandwidth
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Figure 6.5: ANCOVA linear regression for the µ and σ parameters in both direc-
tions of traffic
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for new universities, over which no previous measurement experiments have been

carried out, in contrast with Eq. (6.9) which requires a set of busy-hour daily traffic

measurements. Furthermore, Eq. (6.13) can be used to estimate the bandwidth

demands for a university network whose population changes with time, that is,

whose student body either increases or decreases every academic year.

6.4.4 On the relationship between heavy-hitters and pop-

ulation size

Previous studies have pointed out that most of the Internet traffic is generated

by a small fraction of network users [Bro02, PTB+02], often referred to as heavy-

hitters [FGL+01], this phenomenon was introduced in Section 2.3.2. According

to the definitions presented in such chapter, Figure 6.6 shows that there is a

clear correlation between the population size of a given university and the num-

ber of heavy-hitters observed during its busiest hour. Figure 6.6(a) considers as

heavy-hitters all those IP addresses which account for 90% of the total traffic.

Figure 6.6(b) defines heavy hitters as those users who exchange more than 1 Gbit

(about 100 times the average) of traffic, and Figure 6.6(c) marks as heavy hit-

ters to the users than account for more than 0.5% of the total traffic, in all cases

measured in the busy hour. The points depicted are computed as the average

number of heavy-hitters per day found during the busy-hour over the six-month

experiment. In the plots, we have removed those university networks in which the

use of Network Address Translation (NAT) is a common practice, resulting in a

set of eleven networks under study.

These results give support to the idea that heavy-hitters are homogeneously

distributed with respect to the population across the universities. In other words,

the larger a university is in terms of population size, the more number of heavy-

hitters is expected to be found in its busy-hour traffic measurements. Nevertheless,

it is more interesting to define link dimensioning rules based on well-documented

intrinsic characteristics such as the population size of universities rather than on

measurement-based metrics such as the number of heavy-hitters since the latter

requires extensive measurement experiments and computational analysis.
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6.5 Conclusions

This chapter provides an in-depth analysis on the traffic volumes observed during

the busy hour of the access links of universities, regional networks, and external

links in the Spanish Research and Education Network from a mid-term point of

view. First, it is shown that such busy-hour traffic is Gaussian distributed, and

shows no correlation between measurements over different days, hence accurately

characterized by a white Gaussian process. Therefore, the collection of measure-

ments over different days can be used to estimate the mean and standard deviation

of such a white Gaussian model for capacity planning purposes. Nevertheless, the

network operator must use this methodology only while the stationarity of the

measurements remains, that is, no infrastructure upgrades, new killer applica-

tions appraisal, P2P filtering policy changes, etc. In such cases, the operator

should restart the traffic measurement campaign.

In this regard, we proposed in [MAGD09] an algorithm to detect stationary

changes of demand for bandwidth in links whose load is increasing over time. The

result showed that the variation of the load over time (not necessarily during the

busy hour) can be characterized by a Gaussian process in periods of some weeks

or months in several links of the RedIRIS’ network. That is, the increase/decrease

of the demand for bandwidth are not changing at a constant rate. But, it changes

periodically from a stationary process, in this case, a Gaussian process with certain

mean and variance, to another stationary process with different parameters. This

supports the hypothesis that the demand for bandwidth during the busy hour can

be modeled as a stationary process at the mid-term, as we have already shown in

this chapter for some months in the RedIRIS’ network.

Additionally, this chapter goes one step further and aims to characterize the

mean and variance of such process based on the population of the network for

which the measured access link gives service. The ANOVA and ANCOVA method-

ology are applied over the Gaussian models that characterize the busy-hour traffic

volumes measured for different universities on attempts to check whether or not

the universities’ intrinsic features (population size and access link capacity) ex-

plains part of the busy-hour traffic volume generated. The experiments show that

the access link capacity feature shows little influence on the busy-hour traffic for

networks whose maximum utilization are far from reaching the maximum avail-
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able capacity. On the other hand, the population size accounts for the majority

of explained variance in the ANCOVA test. Furthermore, the test provides a lin-

ear regression model and estimates its parameters, making possible the task of

dimensioning access links for university networks based on their population size.

However, after applying ANCOVA the unexplained variance still accounted for

some percentage. The use of more features may improve the results that we have

shown obtaining more accurate estimations. To this end, we plan to find and an-

alyze these other features, such as, for instance, the sort of university under study

(technical versus non-technical) or the ratio between staff members and student

body.



Chapter 7

Conclusions and future work

This chapter first summarizes the main contributions and conclusions

for the research described in this thesis (Section 7.1). Then, in Sec-

tion 7.2, the hypotheses and objectives presented in the first chapter are

reviewed . Finally, Section 7.3 identifies possible directions for future

work.

7.1 Contributions and conclusions

The results of this thesis can be summarized in four items. First, we have analyzed

the representativeness and generality of the Internet traffic measurements. Second,

we have addressed the problem of subsampling the traffic captures. Third, we have

characterized the Internet traffic busy hour and we have shown how it can be used

to tackle the network capacity planning problem. Finally, we have explained

the relation between the traffic in the busy hour and the intrinsic features of IP

networks.

1. We have analyzed the representativeness and generality of the Internet traffic

measurements, which were kindly donated by RedIRIS. We have shown that

although the frequency statistics of IP addresses and port numbers of an

extensive set of university networks follow a Zipf distribution, the Zipf’s pa-

rameter is very different from one network to another, even for networks with

very similar features. We have further analyzed the distribution of the geolo-

cation of the Internet connections obtained similar conclusions although, in

145
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this case, we have modeled the measurements by means of a Zipf-Mandelbrot

distribution and the Analysis of Variance (ANOVA). Furthermore, it has

been shown that more than one month worth of measurements are neces-

sary to obtain a sampled distribution that is stable in time. In other words,

a large time horizon is required in order to capture stationarity. Hence, a

very large measurement experiments must be performed, both in duration

and spatial diversity, in order to generalize the derived conclusions. Finally,

we have shown that the erratic and non-homogeneous traffic patterns of a

small set of users, known as heavy-hitters, causes this behavior.

Chapters 3 and 4 include this contribution, which has led the following

publications:

− José Luis Garćıa-Dorado, José Alberto Hernández, Javier Aracil, Jorge

E. López de Vergara, Francisco Montserrat, Esther Robles, and Tomás

P. de Miguel, On the duration and spatial characteristics of Internet

traffic measurement experiments, IEEE Communications Magazine 46

(2008), no. 11, 148-155.

− F. Mata, J. L. Garćıa-Dorado, J. Aracil, and J. E. López de Vergara,

Factor analysis of Internet traffic destinations from similar source IP

subnetworks, submitted to Elsevier Computer Networks.

− J. L. Garćıa-Dorado, J. E. López de Vergara, J. Aracil, V. López, J.

A. Hernández, S. Lopez-Buedo, and L. de Pedro, Utilidad de los flujos

Netflow de RedIRIS para análisis de una red académica (On the use

of RedIRIS’ Netflow information for academic networks), Bolet́ın de

RedIRIS, no. 82-83, Jornadas Técnicas RedIRIS 2007 (Mieres, Spain),

November 2007.

2. We have shown a new method to subsample optimally network traffic mea-

surements. This method is based on the Multiresolution Analysis (MRA)

with wavelets, thus subsampling the measurements in both time and fre-

quency planes. Moreover, it is based on metrics that are related to the traf-

fic queueing behavior instead of the typical Euclidean distance and Mean

Squared Error (MSE) methodologies. This method has been applied to an
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extensive set of real measurements collected from RedIRIS. The results show

that it is possible to reduce the data to one-fourth of its original size for the

traffic generated by most universities, and even to one-eighth for data col-

lected from routers with more aggregated traffic, both with a high level of

confidence.

Chapter 5 includes this contribution, which has led the following publication:

− José Luis Garćıa-Dorado, Javier Aracil, José Alberto Hernández, and

Jorge E. López de Vergara, A queueing equivalent thresholding method

for thinning traffic captures, in Proceedings of the IEEE/IFIP Net-

work Operations and Management Symposium (Salvador, Brazil), April

2008.

3. We have analyzed the dynamics of Internet traffic busy hour. We have found

that the average traffic during the busy hour through several months can be

modeled by a Gaussian distribution with no correlation between measure-

ments over different days (white noise) and subexponential behavior. This

finding provides a refinement for capacity planning purposes, whereby it is

possible to design the capacity needed such that the traffic volume does not

exceed the network capacity with a given probability.

Section 6.3 of this thesis includes this contribution.

4. Finally, we have found relations between the intrinsic features of a network,

basically the population and the network infrastructure, and the traffic that

goes through it. Specifically, we have used them to predict the Gaussian dis-

tribution parameters that model the traffic of the busy hour. Knowing that

the busy hour follows a normal distribution, we have used ANOVA and the

Analysis of Covariance (ANCOVA) to determine in what extent the observed

variance is explained by each intrinsic network feature. Consequently, given

the characterization of a network, infrastructure and population, an opera-

tor can estimate the traffic that a network is expected to receive/generate.

Thus, Internet operators can dimension their links with a formal and objec-

tive methodology instead of the current arbitrary rules based on previous

experiences or those methods that estimate the traffic in a short-term fash-
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ion. In addition, an operator can foresee the impact of changes on the

intrinsic features (network upgrades and changes on the population size, for

instance) will have on the demand for bandwidth or on the demand for any

other network resource.

This contribution explained in Chapter 6 together with the previous one

make up the following article:

− J. L. Garćıa-Dorado, J. A. Hernández, J. Aracil, J. E. López de Vergara,

and S. Lopez-Buedo, Characterization of the busy-hour traffic of IP

networks based on their inherent features, submitted to IEEE/ACM

Transactions on Networking.

7.2 Assessment of the objectives and hypotheses

This section reviews the hypotheses and objectives posed in the first chapter.

− Hypothesis: Traffic measurements gathered from a limited number of net-

works and limited duration cannot be considered to be sufficiently represen-

tative of the Internet.

In the chapters 3 and 4 we have shown that although some internetwork

statistics (specifically, the popularity of IP addresses and port numbers and

the geolocation of the Internet connections) can be modeled by well-known

probability distributions, the distributions’ parameters are very different

from one network to another, and more than one month worth of data are

necessary to obtain a sampled distribution that is stable in time. Thus, a

limited number of networks and duration of the measurement campaigns

cannot be sufficient to obtain representative conclusions.

− Hypothesis: If the Internet traffic measurement campaigns must last for long

periods of time, the volume of data that such campaigns entails can result by

itself difficult to analyze, monitor, and store.

Chapter 5 has shown a novel method to subsample traffic measurements over

time in order to reduce the computational load of analyzing and monitor-

ing such measurements as well as their storage capacity requirements. This
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method subsamples the measurements in both time and frequency domains

with subsampling-level thresholds based on close-related metrics to traffic

queueing behavior. The results have shown how the proposed method out-

performs previous well-known techniques.

− Hypothesis: The demand for bandwidth in the busy hour over mid-length

periods can be characterized by a stochastic process.

This issue has been tackled in Section 6.3, we have found that a white

Gaussian process models the average traffic during the busy hour through

several months in an extensive set of networks.

− Hypothesis: The demand for bandwidth during the busy hour over long peri-

ods calls for a non-stationary process model.

In Section 6.5 it was pointed out that the RedIRIS institutions’ demands

for bandwidth (not necessarily during the busy hour) increase/decrease as

a staircase function with time intervals between two consecutive changes in

the range of several weeks or months. This suggests that, within the time

interval between two change occurrences, the busy-hour traffic demand can

be modeled by a stationary process. Therefore, in the long-term case, the

busy hour process’ parameters call for a new estimation every time a change

occurs.

− Hypothesis: The demand for bandwidth in low-utilized networks are not pol-

luted by their access capacities. As RedIRIS networks’ utilizations are typi-

cally low, we support the hypothesis that access capacities are not “capping”

the demand of the users.

Section 6.4.1 has shown how the factor Capacity is not a significant factor

by applying ANCOVA methodology. This implies that, in the case of the

networks under study with low utilization, the demand for bandwidth per

user does not depend on the access capacity of the network.

− Hypothesis: The process that models the demand for bandwidth over time

can be estimated by means of the networks’ intrinsic features. Consequently,

the demand for bandwidth in a network can be estimate in an objective and
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fairly fashion, and, even, avoiding to carry out a dedicated measurement

campaign.

The mean and standard deviation of the process that models the busy hour

can be fairly estimated by means of the population size, as shown in Sec-

tion 6.4.2. It allows the operators to base their estimations of the demand

for bandwidth on intrinsic features with the mentioned advantages.

7.3 Future work

We suggest some future research lines to continue the work presented in this thesis:

− Characterization of Internet behavior. In this thesis we have focused on the

characterization of several facets of the Internet behavior. To this end, we

have used actual measurements but only from campus networks. Thus, we

would like to apply the proposed methodologies to non-academic networks

and compare the results. The final aim would be determinate if the con-

clusions obtained in some RedIRIS’ institutions also hold in other kinds of

networks.

− Geolocation of the Internet connections. We plan to extend the geolocation

analysis studying not only the distribution of the connections by country but

also by region and even by Internet Service Provider (ISP) and Autonomous

System (AS).

− Internetwork measurement subsampling. In Chapter 5 we have proposed a

novel method to subsample internetwork measurement, the “queueing equiv-

alent thresholding method”. As further work, we will apply some typical

data mining algorithms (for instance, Principal Component Analysis and

clustering algorithms) to perform network capacity planning tasks over the

measurements previously subsampled applying the proposed method.

− Stationarity of the busy hour process. We plan to pay spatial attention

on the stationarity of the demand for bandwidth in the busy hour. We

have shown that its stationary holds in RedIRIS networks for some months,

however, it is well-known that the demand for bandwidth varies over time.
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This implies the traffic mean and variance in the busy hour may change over

time. Consequently, we plan to study the duration and occurrence of the

temporal frames in which stationarity can be assumed.

− Overdimensioning factor. In the state-of-the-art chapter we have presented

the overdimensioning factor (named as d parameter). That is, the extra

bandwidth capacity over the traffic mean that a link requires to meet the

Service Level Agreements (SLA). We think that this parameter can be also

estimated using the intrinsic features of the networks.

− Busy-hour model. We are interested in including more features to ANOVA

and ANCOVA methodologies. Actually, campus networks can be charac-

terized by more features than the population size and the access capacity,

for instance, ratio between student and teaching bodies, accessibility to the

Internet, filtering policies, typology of the campus network (private/public,

technical university/social science university, etc.) among others. All these

features can be known in advance for a campus network and be useful to

improve the accuracy of the model.





Conclusiones y trabajo futuro

Este caṕıtulo, primero, resume las principales contribuciones y conclu-

siones obtenidas en esta tesis. A continuación, las hipótesis y objetivos

presentados en el primer caṕıtulo son revisados. Finalmente, se deter-

minan posibles continuaciones al trabajo aqúı desarrollado.

Contribuciones y conclusiones

Los resultados de esta tesis pueden resumirse en cuatro puntos. Primero, hemos

analizado la representatividad y generalidad de las medidas de tráfico de Inter-

net. Segundo, hemos tratado el problema del submuestreo de capturas de red

en el tiempo. Tercero, hemos caracterizado la hora cargada de Internet y hemos

mostrado como puede resultar útil en el problema de asignación de capacidad a

la redes. Finalmente, hemos explicado la relación entre el tráfico durante la hora

cargada y las caracteŕısticas inherentes de las redes IP.

1. Análisis de la representatividad y generalidad de las medidas de tráfico de

Internet, las cuales han sido amablemente cedidas por RedIRIS. En esta tesis

se ha comprobado que, aunque la frecuencia estad́ıstica de la popularidad de

las direcciones IP y puertos de un numeroso conjunto de redes académicas

siguen una distribución Zipf, los parámetros de esta distribución son muy

diferentes en un conjunto extenso de redes universitarias, incluso cuando las

redes presentan caracteŕısticas muy similares. Al analizar la distribución de

la geolocalización de las conexiones de Internet se han obtenido resultados

equivalentes, aunque en este caso las medidas han sido modeladas con una

distribución Zipf-Mandelbrot y Analisis de Varianza (ADEVA). Además, se

ha concluido que es necesario más de un mes de medidas para obtener una

153
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distribución muestral que permanezca estable en el tiempo. En otras pala-

bras, un extenso horizonte temporal es requerido para que cierta medidas

muestren estacionariedad. Por lo tanto, las campañas de captura de medidas

deben afrontar la diversidad espacial y temporal para obtener conclusiones

realmente representativas del tráfico de Internet. Finalmente, hemos com-

prabado que el comportamiento errático y no homogéneo de un pequeño

conjunto de usuarios causa este fenómeno.

Las caṕıtulos 3 y 4 incluyen esta contribución, que ha dado lugar a los

siguientes art́ıculos:

− José Luis Garćıa-Dorado, José Alberto Hernández, Javier Aracil, Jorge

E. López de Vergara, Francisco Montserrat, Esther Robles, and Tomás

P. de Miguel, On the duration and spatial characteristics of Internet

traffic measurement experiments, IEEE Communications Magazine 46

(2008), no. 11, 148-155.

− F. Mata, J. L. Garćıa-Dorado, J. Aracil, and J. E. López de Vergara,

Factor analysis of Internet traffic destinations from similar source IP

subnetworks, enviado a Elsevier Computer Networks.

− J. L. Garćıa-Dorado, J. E. López de Vergara, J. Aracil, V. López, J.

A. Hernández, S. Lopez-Buedo, and L. de Pedro, Utilidad de los flujos

Netflow de RedIRIS para análisis de una red académica, Bolet́ın de

RedIRIS, no. 82-83, Jornadas Técnicas RedIRIS 2007 (Mieres, Spain),

November 2007.

2. Esta tesis propone un nuevo método para submuestrear medidas de tráfico

de red. Este método esta basado en el Análisis Multiresolución (MRA) con

wavelets, de modo que el submuestreo de las medidas se hace tanto en el

dominio del tiempo como en el de la frecuencia. Además, se basa en métricas

estrechamente relacionadas con la teoŕıa de colas, en vez de en distancias

euclideas o mı́nimos cuadrados. Este método ha sido aplicado a un conjunto

extenso de medidas reales de red capturadas en RedIRIS. Los resultados

muestran que es posible reducir a un cuarto de su tamaño original el tráfico

generado por la mayoŕıa de las universidades, e incluso, a un octavo para



Conclusiones 155

medidas tomadas en routers con mayor agregación de tráfico, ambas con

altos niveles de confianza.

El caṕıtulo 5 incluye esta contribución, que ha dado lugar al siguiente

art́ıculo:

− José Luis Garćıa-Dorado, Javier Aracil, José Alberto Hernández, and

Jorge E. López de Vergara, A queueing equivalent thresholding method

for thinning traffic captures, in Proceedings of the IEEE/IFIP Net-

work Operations and Management Symposium (Salvador, Brazil), April

2008.

3. Análisis de la dinámica de la hora cargada de Internet. En esta tesis hemos

comprobado que el volumen de tráfico intercambiado durante la hora cargada

durante varios meses puede ser modelado mediante una distribución normal,

sin correlación entre las medidas a lo largo de los d́ıas (ruido blanco) y

comportamiento subexponencial. Este resultado representa un avance en el

problema de asignación de capacidad a la redes, puesto que hace posible

determinar la capacidad necesaria tal que el volumen de tráfico intercam-

biado no exceda con cierta probabilidad dicha capacidad.

La sección 6.3 de esta tesis incluye esta contribución.

4. Finalmente, hemos relacionado las caracteŕısticas inherentes de una red,

esencialmente la población y la infraestructura de red, y el tráfico que la

atraviesa. En concreto, hemos usado estas caracteŕısticas para predecir los

parámetros de la distribución normal que modela el tráfico de la hora car-

gada. Sabiendo que la hora cargada sigue la distribución normal, hemos

usado ADEVA y Analisis de Covarianza (ADECOV) para determinar en

que medida la varianza observada es explicada por cada caracteŕıstica inhe-

rente. Consecuentemente, dada la caracterización de una red, infraestruc-

tura y población, un operador puede estimar el tráfico que se espera que

la red genere y reciva. De este modo, los operadores de Internet pueden

dimensionar sus enlaces con una metodoloǵıa formal y objetiva en lugar de

las actuales reglas arbitrarias basadas en experiencias previas o en métodos

válidos a corto plazo. Además, un operador puede preveer el impacto que
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los cambios en las caracteŕısticas inherentes (actualización de la red y varia-

ciones en el número de usuarios, por ejemplo) conllevarán en la demanda de

ancho de banda o en la demanda de cualquier otro recurso de red.

Esta contribución expuesta en el caṕıtulo 6 junto con la contribución anterior

forman el siguiente art́ıculo:

− J. L. Garćıa-Dorado, J. A. Hernández, J. Aracil, J. E. López de Vergara,

and S. Lopez-Buedo, Characterization of the busy-hour traffic of IP

networks based on their inherent features, submitted to IEEE/ACM

Transactions on Networking.

Evaluación de las hipótesis y los objetivos

Esta sección examina las hipótesis y objetivos planteados en el primer caṕıtulo.

− Hipótesis: Las campañas de captura de medidas de tráfico sobre un número

limitado de redes y de duración acotada no son suficientemente representa-

tivas de Internet.

En los caṕıtulos 3 y 4 hemos mostrado que aunque algunas estad́ısticas

de Internet (en concreto, la popularidad de las direcciones IP y puertos,

y la geolocalización de las conexiones de Internet) pueden ser modeladas

usuando distribuciones de probabilidad bien conocidas, los parámetros de

estas distribuciones son muy diferentes de una red a otra, y más de un

mes de medidas es necesario para obtener una distribución muestral estable

en el tiempo. De este modo, un pequeño número limitado de redes y un

tiempo acotado de captura de medias puede no ser suficiente para obtener

conclusiones representativas.

− Hipótesis: Si las campañas de captura de medidas de Internet deben durar

peridos largos de tiempo, el volumen de datos que estas campañas conllevan

puede resultar, por si mismo, dif́ıcil de analizar, monitorizar y almacenar.

El caṕıtulo 5 ha mostrado un nuevo método que submuestrea medidas de

red para reducir el coste computacional de analizar y monitorizar tales me-

didas aśı como los requisitos de almacenamiento. Este método submuestrea
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las medidas en el dominio del tiempo y de la frecuencia con umbrales de

submuestreo basados en métricas relacionadas con la teoŕıa de colas. Los re-

sultados han demostrado como el método propuesto mejorar técnicas previas

bien conocidas.

− Hipótesis: La demanda de ancho de banda durante la hora cargada a medio

plazo puede ser caracterizada por un proceso estocástico.

Esta cuestión fue analizada en la sección 6.3, se comprobó que un proceso

blanco gaussiano modela el tráfico medio durante la hora cargada durante

varios meses en un conjunto extenso de redes.

− Hipótesis: La demanda de ancho de banda durante la hora cargada a largo

plazo requiere un modelo no estacionario.

En la sección 6.5 se señaló que la demanda de ancho de banda (no necesaria-

mente durante la hora cargada) crece/decrece como una función a escalones

con intervalos entre cambios consecutivos en el rango de semanas o meses.

Esto sugiere que en los periodos entre cambios, la demanda de tráfico durante

la hora cargada puede ser modelada como un proceso estacionario. De este

modo, a largo plazo, los parámetros del proceso que modela la hora cargada

pueden requerir una nueva estimación cada vez que un cambio ocurre.

− Hipótesis: La demanda de ancho de banda en redes con baja utilización no

está limitada por la capacidad de acceso de las redes. Como la utilización de

las redes de RedIRIS es t́ıpicamente baja, pensamos que las capacidades de

acceso no están limitando la demanda de los usuarios.

La sección 6.4.1 mostró como el factor Capacity era un factor no significante

al aplicar ADECOV. Esto implica que, en el caso de las redes en estudio con

baja utilización, la demanda de ancho de banda por usuario no depende de

la capacidad de acceso de la red.

− Hipótesis: Los parámetros del proceso que modela la demanda de ancho de

banda en el tiempo pueden ser estimados usando las caracteŕısticas inheren-

tes de la redes. Consecuentemente, la demanda de ancho de banda en una

red puede ser estimada de una manera objetiva, evitando incluso la captura

de medidas de red.
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La media y desviación estándard del proceso que modela la hora cargada

pueden ser ajustadamente estimados por medio del tamaño de la población,

como fue mostrado en la sección 6.4.2. Esto permite a los operadores basar

sus estimaciones de la demanda de ancho de banda en caracteŕısticas in-

herentes con las ventajas ya mencionadas.

Trabajo Futuro

En esta sección se presentan posible lineas de investigación que continuan el tra-

bajo presentado en esta tesis:

− Caracterización del comportamiento de Internet. En esta tesis nos hemos

centrado en la caracterización de varias facetas del comportamiento de Inter-

net. Para ello, hemos usado medidas reales de tráfico, pero sólo de redes uni-

versitarias. De este modo, queremos aplicar las metodoloǵıas propuestas a

redes no académicas y comparar los resultados. El objetivo final seŕıa deter-

minar si las conclusiones obtenidas en una serie de instituciones académicas

también son validas en otros escenarios.

− Geolocalización de las conexiones de Internet. El estudio de la geolocaliza-

ción de las conexiones de Internet se puede extender para incluir el análisis no

sólo a nivel de paises, sino también a nivel regional o incluso por proveedores

de servicios de Internet y sistemas autónomos.

− Submuestreo de medidas de red. En el caṕıtulo 5 hemos propuesto un nuevo

método para submuestrear medidas de red. Como trabajo futuro, aplicare-

mos varios algoŕıtmos del area de la mineŕıa de datos (por ejemplo, Análisis

de Componentes Principales y algoŕıtmos de clustering) sobre las medidas

de red previamente submuestreadas con este método, y aśı, reevaluar el

rendimiento.

− Estacionariedad del proceso hora cargada. En esta tesis se ha mostrado

que la estacionariedad puede ser asumida en muchas de las instituciones

de RedIRIS durante varios meses, sin embargo, es bien conocido que la

demanda de ancho de banda cambia con el tiempo. Esto implica que la
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media y varianza del tráfico en la hora cargada puede cambiar con el tiempo.

Consecuentemente, hemos planificado estudiar la duración y ocurrencia de

las ventanas temporales en las cuales la estacionariedad puede ser asumida.

− Factor de sobredimensionado. En el caṕıtulo de estado del arte se introdujó

el factor de sobredimensionado (denominado como parámetro d). Esto es,

la capacidad extra que se requiere sobre la media del tráfico para cumplir

los acuerdos de calidad de servicio. Pensamos que este parámetro puede ser

también estimado usando las caracteŕısticas inherentes de la redes.

− Modelo hora cargada. Estamos interesados en incluir más caracteŕısticas a

los modelos ADEVA y ADECOV. De hecho, las redes de la universidades

pueden ser caracterizadas con más caracteŕısticas que el número de usuarios

y la capacidad de acceso, por ejemplo, el ratio entre el número de estu-

diantes y profesores, accesibilidad a Internet, poĺıticas de filtrado, clases

de universidades (privada/pública, técnicas/humańısticas, etc.) entre otras.

Todas estas caracteŕısticas pueden resultar útiles para mejorar la precisión

del modelo propuesto.
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Hernández, S. Lopez-Buedo, and L. de Pedro, Utilidad de los flujos Netflow

de RedIRIS para análisis de una red académica (On the use of RedIRIS’

Netflow information for academic networks), Bolet́ın de RedIRIS, no. 82-

83, Jornadas Técnicas RedIRIS 2007 (Mieres, Spain), November 2007.

Section 3.2 in this thesis.
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the processing and sojourn times of burst control packets in optical burst



List of Publications 179

switches times, in Proceedings of the International Conference on Optical

Networking Design and Modeling (Vilanova i la Geltrú, Spain), March 2008.
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