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Abstract

Nowadays, the huge amount of video material stored in multimedia repositories makes its search and
retrieval a very slow and usually difficult task. Existing video abstraction systems aim to relieve this
problem by providing condensed versions of the original content which ease the search and navi-
gation processes and reduce the browsing time. In the last years, many different video abstraction
approaches, based on the optimal selection and presentation of a subset of fragments (keyframes,
shots, etc.) from the original video attending to different criteria, have been developed. The applied
mechanisms usually depend on the application scenario and almost any kind of video content has
been subject of interest for the development of video abstraction techniques: music videos, sports,
news, surveillance recordings, movies, home videos, etc. The developed techniques have proven to
provide useful tools for easing the search and retrieval of video content. Nevertheless, given the huge
size and growth rate of existing video repositories, the efficiency of the developed approaches is a
limiting factor for their integration in practical scenarios or commercial applications: there is an in-
creasing need for providing efficient techniques. This work is focused in the study and development
of such efficient techniques for video content abstraction, aiming for on-line performance.

After presenting an overview of existing video abstraction approaches, aimed to provide a gen-
eral idea of the wide variety of existing techniques, a novel taxonomy and a general architecture for
video abstraction systems are proposed in order to establish a common framework for the study and
classification of existing abstraction algorithms based on their operational characteristics.

The definition and general requirements for the development of on-line and real-time abstraction
systems are then established, together with a study of the possible implications of such operation
modalities in terms of development constraints or limitations in the applicable techniques. Taking
into consideration those implications and constraints, two generic on-line video abstraction systems
are proposed.

The evaluation of video abstraction approaches has always been a very difficult task, due to the
high amount of required time and human resources. In this work, as part of the evaluation of the de-
veloped algorithms, a novel framework for automatic video summaries evaluation is proposed. Such
framework is applied for an exhaustive evaluation of the proposed algorithms, comparing them with
other off-line abstraction approaches and demonstrating the high competitiveness of the proposed
techniques.

Finally, the last part of this work describes two applications based in the proposed on-line video
abstraction algorithms which demonstrate the potential possibilities of on-line abstraction techniques.
The first one is devoted to the generation of news broadcasts bulletins in broadcast time. The second
application consists in an interactive real-time video summaries generator and player which allows
the user to watch and modify the generation parameters of video summaries on the fly.





Resumen

La gran cantidad de material almacenado hoy en día en repositorios multimedia provoca que su
búsqueda y acceso se conviertan en actividades lentas y, en muchos casos, difíciles. Los sistemas de
generación de resúmenes de vídeo abordan este problema proporcionando versiones condensadas
del contenido original que facilitan y reducen el tiempo invertido en su búsqueda y recuperación.
En los últimos años se han desarrollado gran cantidad de algoritmos basados en la selección y pre-
sentación, en función de un criterio determinado, de un subconjunto óptimo de elementos del vídeo
original (imágenes, segmentos de vídeo). El tipo de técnicas de empleadas varía en función del es-
cenario de aplicación, siendo objeto de interés prácticamente todos los tipos posibles de contenido:
vídeos musicales, noticias, deportes, vigilancia, vídeos caseros, etc. Las técnicas aplicadas han de-
mostrado su utilidad pero, dada la gran cantidad de contenido existente y su ritmo de crecimiento,
la eficiencia de las técnicas de generación de resúmenes es un factor que limita su integración en
aplicaciones comerciales: hay una creciente necesidad de desarrollar técnicas computacionalmente
eficientes. Este trabajo se centra en el desarrollo y estudio de dichas técnicas, aplicadas a la gen-
eración de resúmenes de vídeo, con el objetivo final de generar resúmenes ’en vivo’.

Tras la presentación de un resumen de técnicas actuales de generación de resúmenes, con el
objeto de proporcionar una idea general de la gran variedad existente, se propone una taxonomía
y arquitectura genéricas que permiten establecer un marco común para el estudio de las distintas
aproximaciones al problema desde un punto de vista ’operacional’.

A continuación se detallan los requisitos de los sistemas que hemos caracterizado como on-line
(en vivo) y real-time (en tiempo real) junto con un estudio de las implicaciones y limitaciones que
dichos sistemas pueden presentar a la hora de su desarrollo. Teniendo en cuenta dichos requisitos y
limitaciones, se proponen dos sistemas de generación de resúmenes on-line/real-time.

La evaluación de los sistemas de generación de resúmenes de vídeo ha sido una tarea general-
mente muy costosa debido a la subjetividad respecto a la calidad de un resumen de vídeo y a la gran
cantidad de recursos (humanos y de tiempo) necesarios para llevarlas a cabo. En este trabajo se ha
desarrollado un sistema para la evaluación automática de resúmenes. Dicho sistema es utilizado para
la evaluación en profundidad de los algoritmos desarrollados, comparándolos con técnicas existentes
y demostrando la competitividad de las técnicas propuestas.

Finalmente, la última parte de este trabajo se centra en el desarrollo de dos aplicaciones que
demuestran las posibilidades de las técnicas de generación de resúmenes en vivo. La primera apli-
cación consiste en un sistema completo para la generación de resúmenes de telediarios en tiempo de
emisión mientras que la segunda consiste en un visualizador interactivo de resúmenes de vídeo que
permite al usuario modificar los parámetros de generación y visualizar los resultados en tiempo real.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, video abstraction (also called video summarization) is becoming a need in order to deal
with the increasing amount of available video content in networked or home repositories. The amount
and variety of available video makes its search and retrieval a more and more difficult task and many
times content is lost and never used due to the difficulties to navigate in such large repositories. The
search and visualization effort implies a waste of time and, in some cases, of bandwidth because
many videos must be downloaded and visualized before the user finds the content he is looking
for. These problems can be reduced or eliminated with the application of proper browsing methods.
Existing video abstraction techniques offer solutions providing short and representative versions of
original videos that can be easily downloaded and watched in a shorter amount of time, reducing as
well the employed bandwidth.

There exist a lot of video abstraction approaches mainly focused on the selection of the most rep-
resentative fragments from the original video attending to a specific criteria. Nevertheless, despite
the great number of available approaches, their application and integration in real systems is not
spread at all. One of the main reasons for this situation may be the high computational resources re-
quired by most of the existing techniques: their application become useless either because the great
amount of time needed to compute a video abstract can reduce its value (for example in live events)
or because it is not computationally possible to generate video abstracts for all the content in large
repositories or at a high enough rate to process the incoming video clips. Most of the commercial
video streaming portals with higher number of visitors such as Youtube1, Metacafe2, Break3, Daily
Motion4 or Google Video5 provide only single keyframe previews of the available videos. The most
sophisticated approaches are limited to uniform subsampling (Imeem6) or the possibility (available
at the experimental video library Open Video Project7) of choosing between the first 7 seconds of the

1www.youtube.com
2www.metacafe.com
3www.break.com
4www.dailymotion.com
5video.google.com
6www.imeem.com
7www.open-video.org
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video, a uniform subsampling storyboard or a fast-forward version of the video. In 20078 and 20089,
the TRECVid BBC Rushes summarization tasks provided an evaluation framework which, beyond the
specific characteristics of rushes sequences, enables the possibility of comparing different abstrac-
tion approaches. Nevertheless, it was not possible to find any relation between the computational
effort required by the different approaches and the quality of the generated summaries (according to
the metrics applied in the submissions evaluation).

Taking into account these facts, it should be worth to study the performance of abstraction meth-
ods in order to develop useful tools applicable in real/commercial environments.

1.2 Objectives

The main objective of this work is the study and proposal of systems not just computationally efficient
but fulfilling more restrictive requirements in order to raise up the possibility of applying on-line
abstract generation. The on-line modality, as we define it, implies that the video abstract is generated
in a progressive way, that is, while the video is being received, recorded or decoded, with a controlled
delay. Although the development of such on-line approaches implies to deal with several technical
and practical limitations, it will permit novel functionalities for the abstract generation processes
aimed to solve part of the explained practical issues which prevent for a higher spread of abstraction
systems being implemented in commercial applications.

In order to completely understand and define the operational requirements of on-line video ab-
straction approaches, a prior study of existing abstraction systems must be carried out for the iden-
tification of the key issues which may influence their computational performance. Based on such
information, alternative solutions for the implementation of on-line systems are analyzed, identify-
ing as well possible associated drawbacks and proposing complete on-line abstraction systems.

The proposed techniques impose limitations to the way in which abstraction systems may be
implemented and, for this reason, an important part of the present work deals with the evaluation
of the proposed on-line video abstraction systems. Such evaluation is devoted to the comparison
between existing abstraction systems and the newly proposed on-line ones, aiming to quantify the
possible loss of quality due to the constraints imposed to fulfill the on-line operational requirements.

Finally, the last objective of this work is to explore the specific functionalities that on-line abstrac-
tion approaches may provide, apart from their computational efficiency, with the implementation
of real applications making use of the proposed algorithms. One of the functionalities is the con-
tinuous generation of video abstracts while content is being recorded, broadcasted or uploaded to a
repository. In those cases, the user may have an almost instantly available video abstract of already re-
ceived content without the need of waiting for off-line processing. Besides those ’instantly’ available
video abstracts, the development of fast enough on-line generation processes will make possible the
generation of personalized video abstracts (from stored content) for real-time delivery without the
unrealistic option of storing milliards of pre-generated versions and therefore enhancing the system’s
utility for the user.

8http://www-nlpir.nist.gov/projects/tv2007/tv2007.html
9http://www-nlpir.nist.gov/projects/tv2008/tv2008.html
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1.3 Main Achievements

In the present work, we have carried out a study of existing abstraction approaches, from an opera-
tional point of view, with the proposal of a novel abstraction systems taxonomy. For the analysis of
existing and future abstraction approaches, we have defined a generic abstraction architecture able
to model a wide variety of abstraction systems. Taking into consideration the established concepts
and models, we have defined the computational requirements of both on-line and real-time abstrac-
tion approaches as well as the practical issues that must be solved for the implementation of such
kind of systems.

Two novel on-line abstraction approaches, fulfilling the established computational requirements,
are proposed. These approaches provide different levels of complexity and functionalities which have
been analyzed by means of an original developed automatic video abstract evaluation system. The
obtained results demonstrate how the proposed on-line abstraction approaches can generate video
summaries with quality comparable to off-line algorithms.

Finally, two innovative applications are presented. The first application consists in a news ab-
straction system on broadcast time. The second one conforms a real-time interactive video summary
player which allows watching the video summaries as they are being generated and permits the in-
teractive modification of the abstract generation parameters displaying the results on the fly. Both
applications demonstrate the potential of the developed on-line abstraction techniques.

A more detailed description of the novel aspects and contributions of this work can be found in
the conclusions chapter 10 while the list of related publications is detailed in appendix D.

1.4 Document Overview

The rest of this document is divided in six main parts, including conclusions and appendixes, which
are organized as follows:

• Part II: Existing Video Abstraction Approaches

– Chapter 2 - Overview of State of the Art on Video Abstraction: This chapter presents an
overview of existing video abstraction approaches, summarizing several existing video
abstraction classifications and outlining the high variety of techniques, mechanisms and
applied features found in the literature.

– Chapter 3 - A Framework for Video Abstraction Systems: This chapter describes a unified
taxonomy and a generic architectural model aimed for the study of existing abstraction
systems characteristics and computational performance.

• Part III: On-Line Video Abstraction

– Chapter 4 - On-Line Video Abstraction Systems Requirements and Implications: This chap-
ter defines the on-line and real-time video abstract generation modalities and includes a
study on the requirements and development implications of both approaches.

– Chapter 5 - On-Line Video Skimming Algorithms: This chapter presents two generic on-
line video skimming approaches, analyzes the foundations of the underlying abstraction
mechanism of both approaches (redundancy removal) and, finally, presents the results
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of two submissions, based on both algorithms, sent to the TRECVid 2007 and 2008 BBC
Rushes Summarization Task.

• Part IV: Evaluation

– Chapter 6 - Automatic Evaluation of Video Summaries: In this chapter a novel automatic
video summaries evaluation system is described. The approach makes use of the TRECVid
2008 submitted summaries and respective obtained evaluations for training different mea-
sures predictors.

– Chapter 7 - On-Line Video Skimming Systems Evaluation: In this chapter the two on-
line video skimming approaches previously presented are thoroughly evaluated and com-
pared with off-line approaches making use of the proposed automatic evaluation system.
The functionalities of the proposed approaches are as well presented and analyzed.

• Part V: Applications

– Chapter 8 - On-line Video Abstract Generation of Multimedia News: This chapter presents
a complete end-to-end system for the generation of on-line news summaries. The pro-
posed approach, based in a combination of content classification, video summarization
and composition techniques, allows the generation of TV news video abstracts on broad-
cast time.

– Chapter 9 - Real-Time Video Summaries Player: In this chapter an application for real-time
generation and visualization of different types of video summaries, which allows the user
to interact with the summary generation process watching the effects of the modifications
on the fly, is described.

• Part VI: Conclusions

– Chapter 10 - Conclusions: This chapter concludes the present work, summarizing the con-
tents of the different chapters and obtained conclusions, as well as the original contribu-
tions together with future work proposals.

• Part VII: Appendixes

– Appendix A - Example of Application of the Abstraction Systems Framework: This appendix
includes a practical example of application of the taxonomy and video abstraction sys-
tems architecture proposed in chapter 3.

– Appendix B - News Content On-Line Classification: This appendix details the video seg-
ment category classification approach, based on SVMs, applied for the news content cat-
egorization system as part of the news content abstraction application presented in chap-
ter 8.

– Appendix C - On-Line News Summarization Evaluation: This appendix includes the ob-
jective and subjective evaluations carried out for the validation of the news content ab-
straction application presented in chapter 8.

– Appendix D - Publications: This appendix includes the list of published papers grouped
by related topic and associated thesis chapter.
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Chapter 2

Overview of State of the Art in Video
Abstraction

2.1 Introduction

Research on video abstraction or summarization techniques (both terms are applied indistinctly in
different works) has been very productive in the last years. The wide spread of digital multimedia
content, together with the high growing rate of existing video repositories and media producers made
the video abstraction technologies an interesting field of research. Such active research has generated
an enormous variety of video analysis and abstraction approaches focusing on their application for
different types of content and scenarios. Almost any kind of video content has been subject of interest
for research on specific abstraction techniques. In [1] and [2] a number of possible applications are
enumerated: generic approaches [3, 4], music videos [5, 6], sport videos [7, 8, 9, 10], news [11, 12, 13,
14], surveillance [15], movies [16, 17], home videos [18], video lectures [19, 20] or even cooking videos
[21].

A video abstraction approach can be defined as “‘[...] a technique that abstracts video content and
represents it in a compact manner” [16] and, focusing on the definition of what a video abstract is, an
appropriate definition can be found in [17], where a video abstract is defined as “[...] a sequence of
still or moving images representing the content of a video in such a way that the target party is rapidly
provided with concise information about the content while the essential message of the original is well
preserved”.

Hundreds of references describing different video abstraction approaches can be found in the lit-
erature. However most survey works differentiate between two basic types of abstraction algorithms:
those which extract static images, denoted as ’keyframes’ in [1, 16], ’still image abstracts’ in [2], ’static
storyboards’ or ’video summaries’ [22], and those which generate a reduced length video from the
original content, commonly denoted as ’video skims’ [1, 16] but also ’short clips’ [2] or ’moving image
abstracts’ [22]. Although both approaches are, in many cases, based on the same video processing
principles, many authors maintain the conceptual division between both categories because there
exist several differences: in the cases of keyframe extraction, the amount of data to process can be
reduced and the audio is usually ignored. Additionally, video keyframes provide more possibilities
for the presentation of the results. On the other hand, video skims have the possibility of providing a
more complete information about the original content by including audio and motion information,
but its processing can be more resource consuming that in the case of keyframe extraction. However,
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as stated in [1], “[...] these two forms of video abstract can be transformed from one to another. Video
skims can be created from keyframes by joining fixed-size segments, subshots, or the whole shots that
enclose them[...]. On the other hand, the keyframe set can be created from the video skim by uniform
sampling or selecting one frame from each skim excerpt”.

In this chapter we provide an overview of video abstraction approaches aimed to outline the high
variety of existing techniques without trying to exhaustively enumerate them. For a more detailed
overview of the state of the art, the interested reader is referred to the different surveys on video
abstraction approaches (e.g., [1, 16, 22, 23, 24, 25]) which contain more details about classification
categories and examples.

The rest of the chapter is organized as follows: in section 2.2, an overview of existing approaches
for video keyframe extraction is provided. Section 2.3 summarizes different categories for video skim-
ming techniques, while section 2.4 describes different types of features in which existing video ab-
straction techniques rely. Finally, section 2.5 presents the chapter conclusions.

2.2 Keyframe Extraction

In the literature, there exist different proposals for the classification of keyframe extraction systems.
In this section we will enumerate some of them, depicted in figure 2.1, providing explanation and
examples of the categories identified in previous works.

The first classification we will consider (figure 2.1 -A-) is proposed in one of the earliest surveys
on video abstraction approaches [22], as well as in [16], and it identifies three different categories de-
pending on the type of video unit applied in the keyframe extraction approach: sampling based, shot
based and segment based. A different approach is provided in [25] (figure 2.1 -B-) , which describes a
classification which considers four different categories. Such categories are based, in this case, on the
kind of processing mechanism that guides the abstraction process: shot boundary based, perceptual
feature based, feature vector space based and cluster based. It should be pointed that, even provid-
ing different perspectives for the keyframe extraction system classifications, those first two proposals
contain overlapping categories which will be later explained (e.g. shot based and shot boundary based
categories). The last approach we will take into consideration [1] provides an exhaustive classification
of keyframe extraction systems (which contains as well the previously enumerated categories) differ-
entiating between different aspects of the process: keyframe number, unit, representation scope and
underlying mechanism (see figure 2.1 -C-) . All the enumerated categories will be hereafter explained.

The previously mentioned works, [22] and [16], provide a classification scheme (figure 2.1 -A-)
based on the video unit used for the keyframe selection. The ’video unit’ concept refers to how the
original content, typically frames and audio samples, are grouped for its processing:

• Sampling based: those approaches consist on simple random or uniformly sampling approaches
for key frame selection [26, 27, 28, 29, 30, 31].

• Shot based: this category includes approaches taking a single frame per shot, usually the first
frame [32, 33], but also approaches based on color, like [34], where more keyframes are ex-
tracted within a shot if their histogram difference with the first keyframe exceeds a limit, or
[35], where the shot segmentation and selection of keyframes within a shot are both carried
out by histogram-based clustering techniques. Other ’shot based’ selection approaches rely on
motion measurement, for example based on pixel differences [36] or optical flow [37], among
others [38, 39, 40, 41].
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Figure 2.1: Keyframe Extraction Categorizations

• Segment based: groups approaches that make use of video units of higher level than a shot,
which could contain for a example a scene or event composed by different shots. Authors in-
clude in this category global clustering approaches [42, 43] or scene based approaches like [44],
where shots are clustered into scenes which are then rated and selected.

The classification provided in [25] considered four categories differentiated by the processing mech-
anisms applied for the selection of the keyframes (see figure 2.1 -B-):

• Shot boundary-based: Including approaches where the original videos are segmented in shots
and one or more keyframes are extracted from each shot (analogous to the Shot based category
described in [22] and [16]). One keyframe is selected from the beginning, middle or end of a
shot [45] or from multiple positions according to changes within the shot [46].

• Perceptual feature-based: Including approaches where, after selecting a first key frame, subse-
quent keyframes are picked based on the comparison with the previously selected ones using
visual perception features. Different types of features, like color [38], motion [47] or object-
based approaches [35] (based on region descriptors in the images), are considered.
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• Feature vector space-based: Including approaches were the original video frames are character-
ized as a set of feature vectors which constitute a curve in the space [48, 49]. Key frames are
selected based on particularities of the feature curve (sharp corners, changes, etc.).

• Cluster based: Including approaches which aim to group data elements (in this case frames)
according to their distance in a feature space for a subsequent selection of representative ele-
ments from the groups created (clusters) [50, 43].

According to [1], which provides a more exhaustive classification and includes several of the previ-
ously enumerated categories (see figure 2.1 -C-) , the keyframe extraction approaches can be consid-
ered attending to four possible aspects of the generating algorithms:

• Keyframe number: refers to the mechanism for determining the number of extracted keyframes,
differentiating between approaches where the number of keyframes can be fixed a priori [39,
51], or decided by the abstraction process [52, 53].

• Unit: classifies the methods according to the temporal unit that each keyframe represents and
differentiates between shot-based and clip-based approaches (which are analogous to the pre-
viously defined [16] and [22] categories shot based and segment based).

• Representation scope: differentiates between methods where a keyframe represents a neighbor-
hood segment [54] or non contiguous segments of the videoclip [55, 40].

• Underlying computational mechanism: the keyframe extraction methods are differentiated in
‘[...] eight somewhat overlapping classes´[1] according to the applied processing mechanisms:

– Sufficient content change: Selects keyframes as long as their visual content significantly
differs from previous selected content [44, 56, 57, 58].

– Equal temporal variance: A variant of the sufficient content change approaches, where
the number of keyframes is set a priori [39, 51, 59].

– Maximum frame coverage: Aims to maximize the number of frames represented by the
selected keyframes [60, 61].

– Clustering: As previously described, clustering approaches group frames in clusters ac-
cording to their distance in a feature space. A selection process is then carried out with
the generated set of clusters. [54, 62, 63, 64, 65].

– Minimum correlation among keyframes: Methods included in this category aim to pro-
duce sets of keyframes with a minimal correlation between their elements [66, 67].

– Sequence reconstruction error: This category refers to approaches which make use of a
measurement of the capacity of the selected keyframes for reconstructing the original shot
or sequence [68, 69, 70, 71].

– Curve simplification: In this kind of approaches, frames are treated as points in a feature
space connected by a curve. The abstraction process consists on the selection of those
points which produce a smaller distortion in the shape of the curve [48, 72, 73].

– Interesting events: In this case, the selection of keyframes relies on their ’interestingness’
measured according to different criteria. Typical approaches for the measurement of in-
terestingness are motion patterns [74, 75] or camera motion [76, 77].
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Figure 2.2: Video Skimming Categorizations

A completely different perspective for static images generation are the mosaic-based approaches (as
defined in [22]) which, instead of extracting a set of keyframes, aim to represent the original content
with a synthesized panoramic image composed by the fusion of different frames (or part of them)
from the original content [78, 79]. However, most approaches keep the extracted keyframes unmodi-
fied, although several of them apply advanced presentation techniques, for example different kind of
storyboards [80, 43], comic-like layouts [81] or slideshows [82].

2.3 Video Skimming

Video skimming consists in the extraction of several continuous video segments from the original
video which can be later composed (edited) in different ways. In this case, it is considered that the
temporal sequence of frames is preserved between the beginning and the end of each selected seg-
ment. A clear advantage of this method is to provide motion information and the possibility of in-
cluding synchronized audio information. We will differentiate between two possible categorizations,
shown in figure 2.2. The first one (figure 2.2 -A-), proposed in [16] and [25] presents two principal
video skimming categories according to the segment selection criterion: highlight oriented and sum-
mary oriented approaches. On the other hand, [1] provides a more complex classification of video
skimming approaches considering some additional aspects: skim length, skim generation process,
preserved perspective, underlying mechanisms and features used (see figure 2.2 -B-, where the features
used category has been omitted for its later description in section 2.4).

The two categories defined according to the first classification scheme [16, 25] (figure 2.2 -A-) are
defined as follows:

• Highlight oriented: the output is composed by a set of relevant parts of the original content, as
in the case of movie trailers or sport highlights summaries [74].

• Summary oriented: the output is composed by different segments which provide an overview of
the whole original video [83]. This category is usually related to approaches where the abstrac-
tion process is treated as a global optimization problem. Clustering [50] and rate-distortion
optimization methods [84] fall into this category.
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Both categories are included within the more complex classification provided in [1], which differen-
tiates between the following video skimming aspects (see figure 2.2 -B-):

• Skim length: As in the case of keyframes extraction, the video skim length can be defined a
priori [19, 85] or determined by the content and skimming approach [7, 86].

• Skim generation process: This category is based on the different steps in which the original video
excerpts (video segments) are processed.

– Excerpt segmentation: Refers to the applied mechanism for the segmentation of the origi-
nal video in separate units (without including shot segmentation techniques, usually con-
sidered as a previous process). Approaches include, for example, speech segmentation
[87], application of interesting events [88, 89] or changes in the dominant motion [90].

– Excerpt selection: Consists in the selection of the excerpts to be included in the video skim
and can be based, among others, in clustering [3], event-based selection [89] or filtering
based on extracted features [21].

– Excerpt shortening: Corresponds to the reduction of the length of the original segmented
excerpts. May be based, for example, on the selection of a predetermined portion of the
excerpt [62, 3], selecting keyframes based on an attention curve and picking the surround-
ing segments [85], or selecting a portion of the excerpt which adequately represents the
whole excerpt [91].

– Excerpt assembly: Consists in the composition of the final video skim by taking the ex-
cerpts resulting from the previous steps. The most straightforward and common tech-
nique is to join the excerpts sequentially but there exist exceptions like joining segments
with fades and wipes [92], alter the order of the excerpts [93] or compose advanced pre-
sentation layouts [94, 95].

• Preserved perspective: Refers to which aspects of the original video must be preserved in the
video skim, differentiating between three categories:

– Information coverage: Aims to generate a video skim able to represent the whole original
video [50, 93, 96].

– Interesting events: Also denoted as video highlights, represents interesting or important
events in the video (according to the specific characteristics of the application). For ex-
ample, goal scoring [97], high motion [85], applause and cheering [74], etc.

– Query context/personalization: In this case, video skims are generated according to a set of
user preferences or query. For example the selection of fragments which audio transcript
corresponds to a user query [98], or the application of user-defined weights over a set of
extracted features [99] for the selection of the excerpts.

• Underlying mechanisms: As in the case of keyframe extraction, the type of generated video skim
depends on the applied underlying mechanism.

– Redundancy elimination: Relies on the elimination of redundant content (according to
the applied perspective on each specific approach). Such redundancy elimination can
be achieved, for example, with clustering approaches [50, 62, 100] or sufficient content
change approaches applied to video skimming [57].
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Figure 2.3: Commonly Extracted Features for Video Abstraction

– Event/highlight detection: Video skimming approaches belonging to this category aim to
preserve specific types of events that must be identified in the original video. Examples
include different types of sports summarization systems like baseball [101], soccer [102]
or different kind of events in surveillance recordings [103].

– Skimming curve formulation: Those approaches compute a score curve with different val-
ues associated to the original video units according to an applied perspective. The video
skim is generated by taking original fragments according to their score. Examples include,
among others, skimming curve calculation based on motion activity and audio energy [8],
motion and face detection combination [104] or original video annotations [105].

• Features used: In this category, video skimming approaches are classified according to the type
of features extracted during the abstraction process. See section 2.4 for additional details.

2.4 Extracted Features

In the previous sections existing approaches for video keyframe extraction (section 2.2) and video
skimming (section 2.3) have been overviewed. In this section, we will describe the different types of
features that existing video abstraction approaches extract, combining generalized techniques with
more specific ones. Although in some works (e.g. [1]) the techniques are differentiated between those
applied for skimming or keyframe extraction, we consider that there is no difference between both
approaches in terms of the extracted features. Every abstraction approach, depending on its applica-
tion scenario or type of content, may rely on any of the enumerated features.

Similarly to other video abstraction surveys [1, 24] we will differentiate between three basic types
of extracted features, depicted in figure 2.3:

• Visual features: visual features are, of course, of the major relevance for video summariza-
tion. Most approaches which rely on visual redundancy removal require at least a technique
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for image or video segment comparison (usually applied for shot segmentation as well). Many
of those works rely in the comparison by applying color histograms [57, 106, 107], MPEG-7
Color Layout [56, 96, 108], edge histograms [109, 110], SIFT features [111], dominant colors and
textures[101, 89]. Image saliency calculation [4, 85] is applied as well for determining the rel-
evance of the original video segments. Other techniques for selecting video segments rely on
camera motion patterns [97, 102], optical flow [112], or motion activity [8, 104, 113]. Finally,
some approaches include detection or analysis techniques for specific features in the video, for
example faces [104, 82], clapboards [96, 114] or gestures [115].

• Audio features: Audio features are commonly used as well for video abstraction purposes, spe-
cially for the detection of specific conditions or situations, that is, events in the videos. For
example, different sports highlight detection approaches aim to detect people cheering or ap-
plause for locating relevant footage [116, 89]. In [93] gun shots and explosions are detected for
highlight selection in movies. Speech segments and their emphasis are detected in [117] for
the identification of relevant content. In [118] the summarization conditions change according
to silence or noise in the video. Other approaches summarize, for example, sitcoms based on
laugh detection [119] or music videos [6] according to specific audio conditions (choruses, song
introduction).

• Textual features: Text, extracted from different sources, can be a very useful tool for comple-
menting other information sources in video abstraction approaches. Methods for extracting
text include superimposed captions, text overlays and graphics [17, 93] extracted, for example,
with OCR techniques [120, 121]. In other cases, textual information is extracted from closed
captions included in the video stream [122, 123] or speech recognition [89, 124] techniques.

2.5 Conclusions

In this section, we have reviewed a number of existing video abstraction approaches following several
classifications that exist in the literature. The classification categories proposed in such works are
manifold, in tune with the wide variety of existing video abstraction approaches. The huge collection
of existing techniques may be applied to many different types of content and application scenarios
and the studied works usually categorize the abstraction approaches based on such applications or
the techniques applied for the selection of the abstracts content.

After the overview of existing classification techniques and abstraction approaches, a video ab-
straction systems taxonomy and framework are proposed in the next chapter 3 for the characteriza-
tion of abstraction approaches from an operational point of view, according to the objectives of this
work.
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Chapter 3

A Framework for Video Abstraction
Systems

3.1 Introduction

This chapter presents a unified taxonomy and a generic architectural model aimed for the study of
the characteristics and computational performance of existing abstraction systems. The taxonomy
has been developed taking into account and identifying the operative characteristics of current state
of the art video abstraction techniques. The proposed video abstraction architecture model charac-
terizes the stages needed to build a generic abstraction process and establishes the basic architectural
aspects and requirements for the modeling of systems with specific operative requirements.

A video abstraction systems taxonomy based on the operational aspects of the algorithms is firstly
presented. Domain specific considerations such as particular content selection criteria, extracted
features or selection mechanisms have been omitted and can be found in the taxonomies described
in previous chapter 2. Once the taxonomy is presented, the chapter focuses on the definition of a
common framework aimed to model the possible abstraction approaches in the taxonomy. There ex-
ist a high heterogeneity in the different approaches but most of them share conceptual stages which
can be represented in a generic video abstraction architecture. The proposed taxonomy and archi-
tecture do not pretend to be an universal survey about video abstraction systems but to provide a
common framework in which heterogeneous abstraction approaches could be compared and ana-
lyzed from an operational point of view. The work has been carried out studying the existing video
abstraction methods and systems found in the literature and synthesizing their approaches together
to generalize them into a unified model.

There exist works in the literature which depict and classify many of the existing abstraction ap-
proaches [1, 16] attending to different criteria and algorithm characteristics but there are few deal-
ing with generic architectures. [24] presents a conceptual framework in which different categories
of video abstraction are considered without dealing with specific stage definition. [93] presents an
abstraction system in which three stages are roughly defined: video segmentation and analysis, clip
selection and clip assembly. In addition there exist many specific approaches such as [10] which de-
picts a framework for sports video summarization (applied to a specific scenario but including several
concepts that can be extrapolated to generic event or highlight oriented video abstraction) or many
others [50, 85, 125] where different approaches are presented without trying to model the abstraction
process in generic terms.
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The rest of the chapter is organized as follows: section 3.2 depicts the proposed video abstraction
taxonomy divided in external and internal characteristics. Section 3.3 explains the proposed abstrac-
tion system architecture. Examples of systems decomposition and the application of the proposed
taxonomy and architecture to a real system can be found in Annex A. Finally, section 3.4 summarizes
the obtained conclusions.

3.2 Abstraction Systems Taxonomy

The proposed taxonomy is organized at two different levels (namely, external and internal character-
istics of the abstraction process) and can be used as a starting point for the understanding, modeling
and development of efficient video abstraction architectures. It focuses on operational aspects and
desired functionalities without dealing with specific algorithms for the different stages (alternative
video abstraction systems taxonomies are described in chapter 2). Whilst the taxonomy has been de-
veloped considering the large number of existing references (see, for example, [16] and [1]), only a
limited number of them are referenced in order to provide examples as this work is not aimed to be a
survey of existing techniques.

3.2.1 Abstraction Process External Characteristics

This section characterizes the video abstraction techniques attending to their external properties:
what kind of abstract is generated and what external interfaces and observable characteristics the
abstraction system presents. Figure 3.1 shows the proposed classification of abstraction methods
according to five external characteristics: Output, Presentation, Size, Performance and Generation
Delay.

Output

The Output category refers to the kind of generated video abstract. From this point of view, abstrac-
tion approaches’ output can be classified in:

• Keyframes: The output of the abstraction process is a set of still images that represent the origi-
nal video according to a specific criterion.

• Video Skims: This approach consists on the extraction of several video fragments from the orig-
inal video presented as a continuous sequence (even though presentation variations could be
applied). The temporal order of frames between the beginning and end of each fragment is
preserved but intermediate frames could be dropped.

Keyframe generation systems are very popular in the literature and allow very compact and fast-
browsable representations of the original video. One of their main disadvantages is the absence of
motion and audio information, desirable in certain applications. The usage of motion measures is a
common approach for keyframe extraction: in [39] the incoming video is divided in segments of equal
accumulated motion activity, selecting the middle frame of each obtained segment as keyframe. In
[75] the points with motion acceleration or deceleration are selected as keyframes. Another typi-
cal approach is the selection of keyframes based on their visual dissimilarity, for example with clus-
tering techniques [40]. The techniques for video skimming do not differ in many cases from those
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Figure 3.1: External Abstract Generation Characteristics

applied for keyframe extraction: [85] proposes a system which analyzes the incoming video and com-
putes a saliency curve based on visual, audio and linguistic features. Given a target abstract length
the system selects those fragments which maximize the relevance. The system is able to generate
keyframes as well, just by selecting the intermediate frames from the selected video fragments (this
skim/keyframe modality change can be easily extrapolated to almost any video abstraction system).
[86] shows a completely different approach in which an original video is skimmed by analyzing each
shot complexity to determine the minimal duration needed for its understanding and identifying
scenes -groups of shots- for reducing their content.

Presentation

The Presentation category is related to the Output modality but is independent as any combination
of Output and Presentation is, in principle, possible. Two modalities have been identified:

• Plain: The output, keyframes or video skims, are not formatted at all.

• Formatted: Includes abstraction mechanisms where the output format is modified in two pos-
sible ways: Spatially, implying spatial content variation or Temporarily, where the temporal
dimension of the content is altered.

Most part of the existing abstraction systems present plain presentation, for example all the systems
presented in the previous section for keyframe extraction [39, 75] or video skimming [85, 86]. For-
matted presentations are usually applied for specific applications, higher condensation of the infor-
mation or trying to provide pleasant interfaces. One typical spatial presentation is the storyboard,
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where the extracted keyframes are presented in a equally distributed canvas, as in the case of [80] for
news abstraction. Video Manga [43] displays a comic-like output with different size areas for each
keyframe. The assigned area depends on a relevance measure according to the keyframe shot length
and redundancy. Spatial formatting is present on video skimming systems as well: [94] and [95], pre-
sented to the TRECVid 2007 BBC rushes summarization task, display multiple simultaneous video
playing areas aiming to maximize the amount of information included in the output. Temporally
formatted outputs involve modifications in the original content temporal dimension, for example
slide-show approaches like [82], where selected keyframes are presented with an assigned fixed time
or fast forward approaches where the original video content is accelerated [27].

Size

The Size external characteristic refers to the output summary size, defined as the number of extracted
keyframes or number of frames if considering a video skim. Attending to this criterion abstraction
methods can be grouped in two modalities:

• Bounded: The abstract size is defined as a fixed value or as a ratio of the original size: if the size
of the original video is a priori known, both modalities are equivalent.

• Unbounded: The size of the output summary depends only on the abstraction process, its con-
figuration parameters and the original video content.

The abstraction systems output size type mainly relies on the kind of application or underlying ab-
straction algorithms. In certain situations, such as a limited space presentation layout, a fixed number
of keyframes could be required. The disadvantage of this method is the possible loss of representative
or relevant events (attending to some criterion) if the target output size is too limited, or the inclu-
sion of redundant information if it is too large. An example can be found in [84] where a predefined
number of keyframes minimizing the distortion with respect to the original video are extracted. Nev-
ertheless the same approach is able to deal with unbounded output size, selecting keyframes until a
specific distortion value is reached. [57] aims to generate a specific original size ratio length video
skim and presents two steps: in the first one, original video segments are appended to the skim if
no similar fragments are already selected obtaining an undefined length output. This output size is
reduced in the second step, if needed, by dropping the most redundant fragments until the output
length is under the defined target size ratio. In unbounded size systems, the output abstract size is
unknown until the end of the abstraction process like in the first step of [57]. Many early abstraction
methods based on content variation such as [58], which outputs a keyframe per each detected scene
change, or [75], where the keyframes are extracted in points where motion acceleration or deceler-
ation are detected, work without a priori defined abstract length. Clustering approaches may work
in unbounded modality if the number of clusters is not predefined, like in [50] where the centroid of
every obtained cluster is selected as keyframe.

Performance

The Performance category refers to the amount of processing needed to complete the abstraction
process in the sense of the algorithm’s computational complexity and is one of the main aspects of an
abstraction process to be taken into account for the characterization of on-line systems. Two main
modalities can be defined:
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CATEGORY MODALITY REFERENCES

Output Keyframes [85, 75, 39, 40, 80]
Video Skims [85, 86, 94, 95]

Presentation Plain [85, 75, 39, 86]
Formatted Spatially [80, 43, 94, 95]

Temporarily [94, 95, 82, 27]

Size Unbounded [50, 75, 58]
Bounded Rate [57, 127]

Fixed [39, 84]

Performance Linear [39, 27, 57, 58, 52, 64]
Non Linear [50, 40, 60, 67, 126, 100]

Generation Delay Progressive [75, 39, 27, 57, 58, 128, 64]
Off-line [50, 40, 84, 100, 72]

Table 3.1: External Characteristics Abstract System Examples Classification

• Linear: The amount of processing resources needed by the abstraction algorithm scales pro-
portionally with respect to the original video length.

• Non-Linear: Include video abstraction techniques which require computationally costly algo-
rithms which do not scale linearly and, in consequence, are commonly applied only in off-line
scenarios.

In most of the cases the abstraction processes with linear complexity are those that perform local op-
timization or selection of the original video fragments maintaining a constant analysis and selection
complexity (as it will be described in chapter 4, linear performance is one of the requirements of on-
line abstraction systems). Many abstraction approaches rely on visual redundancy elimination and,
in those cases, costly image and video fragment comparisons must be carried out. If those compar-
isons are avoided or reduced the abstraction systems are more likely to perform linearly. Straightfor-
ward solutions like selecting the first frame of each shot [58], video subsampling [64] or more complex
systems where the number of comparisons are applied only to surrounding frames [52] or a limited
amount of preceding video fragments [57] fall into the linear performance category (if no other non-
linear component is integrated in the system). On the other hand, methods dealing with the abstrac-
tion problem as an optimization problem [60, 67], maximization of an objective function [126] or
clustering based approaches [100] make use of the whole available original content for the abstract
generation and require a number of comparisons which heavily increases with respect to the amount
of original information, yielding to non-linear performance.

Generation Delay

The generation delay category is defined as the latency between the beginning of the video processing
(the instant when video frames are read or received) and the instant when the abstract output starts
to be generated. Two modalities have been defined:

• Progressive: Do not require the complete original video available in order to start the abstract
output.
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• Off-Line: The abstract generation does not begin until the complete original content is available
and analyzed.

Most subsampling based methods such as fast-forward approaches [27, 64] or systems where one
keyframe is selected from each incoming shot [58] or group of frames (e.g. in [39] keyframes are
extracted from each video segment accumulating a predefined amount of variation) are able to gen-
erate the output progressively. Other more complex methods such as sufficient content change based
approaches [57], where video segments are added to the output if no visually similar fragments are
already included, are able to generate a progressive output. This category includes other approaches
such as [75] with a progressive analysis for the identification of motion acceleration or deceleration
points as keyframes or methods based on local analysis of a feature curve extracted from the orig-
inal video [128]. Progressive abstract generation is one of the requirements of on-line abstraction
approaches (see chapter 4 for the definition of on-line abstraction systems).

The off-line operation mode is typical of systems which apply an algorithm requiring the com-
plete original data for the abstract generation: clustering approaches [50, 40, 100], the previously
commented rate-distortion approach [84] or other methods such as [72] where the complete original
video is mapped to a polyline which is later simplified for the generation of the video abstract.

External Characteristics Taxonomy

Table 3.1 summarizes the previously commented representative examples of each of the categories in
the External Characteristics Taxonomy. Some algorithms can appear in several modalities within the
same main category due to their flexibility.

It can be observed that Performance and Generation Delay are closely related categories: a pro-
gressive generation system requires local processing of the original video implying a reduction of the
information to be processed by the algorithms. Therefore, such methods are more likely to perform
linearly. On the other hand, off-line approaches making use of the complete input video, usually
present lower performance due to the great amount of information to deal with. For characteristics
such as the Size it is easier for an off-line and iterative method to reach a specific output abstract size
than for progressive methods which do not have complete video information available and, in many
cases, can not change the already selected fragments.

3.2.2 Abstraction Process Internal Characteristics

This section presents the proposed classification with respect to the internal mechanisms applied in
the abstraction process. Figure 3.2 shows the different categories proposed for the internal character-
istics: Basic Unit, Analysis, and Scoring & Selection.

Basic Unit

The Basic Unit (BU) category refers to the kind of processing unit used for reading, analyzing and
selecting within the abstraction process. The frame is the minimal and indivisible visual unit and
therefore the BUs will be composed by one or more frames. How the number of frames in a BU is
selected can be based on fixed values, visual characteristics, or any other approach like, for example,
segments of homogeneous audio. Two BU modalities are considered:

• Fixed Size: Includes approaches making use of fixed size BUs being the single frame the most
typical kind of BU.
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Figure 3.2: Internal Abstract Generation Characteristics

• Variable Size: The BUs have a variable length, for example approaches making use of the shot
(variable length) as basic unit.

Single frame based methods, such as subsampling approaches [27, 64], make use of single-frame
BUs as basic unit. In [39] motion activity is extracted and accumulated per frame. [66] represents
an example where a clustering process is carried out with a set of features extracted in a per-frame
basis. The usage of fixed size block of frames -BoF- is less common but can be found for example
in [104], where the original video is split in fixed size blocks which are then selected based on a set
of extracted features (e.g. motion activity, face presence) or [129], which analyzes a priority curve
associated to the original video looking for peaks and is able to work in both fixed size (BoFs) or
variable size (shots) BUs. Numerous approaches make use of shot segmentation methods, resulting
on variable size BUs (shots): in [130] an initial division of the content in shots is carried out and then
such shots are processed by analysis algorithms, compared and finally selected or discarded. Other
methods make use of varying size BUs, for example in [57] where original video is split in fixed-size
fragments unless a shot change is detected within a fragment which is, in this case, sub-partitioned.
It is possible to deal with different types of BUs within a single abstraction system: different stages or
included algorithms may require different modalities. For example the algorithm proposed in [131],
an automatic video editing system, works at both shot, performing visual shot boundary detection
and sub-shot levels, dividing each shot taking into account audio analysis.

The type of applied BUs can have impact in other abstraction process characteristics. The com-
putational performance of a two shot comparison mechanism may vary if only two representative
keyframes, one from each shot, are used or if a complete frame-by-frame shot comparison is car-
ried out. In the first case, the computational cost is usually constant while, in the second case, the
computational complexity will grow quadratically with the shot length. On the other hand, compar-
ison results, and hence the abstraction result, will be necessarily affected if only one representative
keyframe or the whole shots are compared.
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Analysis

The Analysis category refers to the scope of application of the analysis algorithms within the abstrac-
tion process, considering an analysis algorithm as any kind of method used for the extraction of fea-
tures (e.g., statistics, MPEG-7 descriptions, object detection) from the original video. In general terms,
an analysis algorithm provides information which would be later used for the selection of BUs to be
included in the output abstract. Two different modalities are considered:

• Intra Basic Unit: Methods in which the feature extraction is performed on single BUs.

• Inter Basic Unit: Involves the usage of two or more BUs in the feature extraction process.

Intra-BU analysis methods are those in which the extraction of features depends on individual BUs.
This kind of systems are more likely to be able to perform progressively because there is no need to
have all the original video BUs available for their analysis (nevertheless other steps in the abstraction
system could limit the overall performance). The single frame analysis (intra-BU) is very common
in abstraction approaches, for example the extraction of color histograms usually applied for frame
comparison [57] or face detection, which is applied in [82] for the calculation of segments relevance
(in many approaches video segments are considered as more relevant if faces are detected on them).
An example of intra-BU analysis group of frames -GoF- based BUs can be found in [104], where each
GoF motion activity is measured. In [127] the audio energy for each 5ms audio fragment is extracted
for the detection of clapboards in BBC unedited content (in this case the small audio fragments can
be considered as fixed size BUs). Regarding inter-BU analysis it is possible to find single frame BU
approaches where the extracted feature is the distance between frames: in [58] the distance between
the color histogram of a given frame and an average histogram of previous frames (BUs) is calculated
for the identification of shot boundaries. For BUs composed by more than one frame, it is possible
to find cases in which feature extraction is performed making use of several BUs, for example shot
similarity metrics applied for redundancy reduction [57, 132]. Inter-BU approaches would, in many
cases, require a higher amount of the original video information available (and hence higher memory
consumption) and could constrain some of the abstraction system external characteristics.

Scoring and Selection

The Scoring & Selection category refers to the different ways in which those steps can be applied to
the original video BUs. As in the Analysis category, two modalities are defined:

• Intra Basic Unit: The scoring or decision about the inclusion of a given BU in the output ab-
stract is based only on intrinsic BU characteristics. This is compatible with both Intra-BU or
Inter-BU analysis for BU annotation.

• Inter Basic Unit: The selection of a given BU takes into account its intrinsic features as well as
those associated to other BUs. If the selection does not depend on other BUs already included
in the abstract, the system will be categorized as Abstract Independent or Abstract Dependent
otherwise.

Highlight abstraction methods, which include in the output BUs fulfilling a set of predefined condi-
tions (e.g., presence of face, motion activity over a threshold), fall into this category. An example is
[74] where relevant sport events are identified and selected for the abstract taking into account mo-
tion activity and audio features. An Inter-BU Abstract Independent approach can be found in [126]
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CATEGORY MODALITY REFERENCES

Basic Unit Fixed Size [39, 27, 66, 104, 64, 129]
Variable Size [133, 57, 131, 130, 129]

Analysis Intra Basic Unit [82, 57, 127]
Inter Basic Unit [57, 58, 132]

Scoring & Selection Intra Basic Unit [52, 74]
Inter Basic Unit Abstract Independent [126, 75]

Abstract Dependent [39, 57]

Table 3.2: Internal Characteristics Abstract System Examples Classification

where priority, continuity and non-repetition criteria must be fulfilled by the generated abstract and
must be calculated taking into account different combinations of BUs. In [75], classified in the same
category, abstracts are composed as a subset of the original content maximizing a ’perceived motion
energy’ function and, for this reason, the selection of a given BU depends on the score of others. The
Abstract Dependent categorization groups methods which take into account BUs previously selected
for its inclusion in the generated abstract. For example methods based in the maximization of the
included content coverage avoid the inclusion of BUs too similar to other already included in the
abstract [39, 57].

Internal Characteristics Taxonomy

Without providing an exhaustive classification of each method according to each explained category,
Table 3.2 summarizes a number of representative examples of each of the categories in the Inter-
nal Characteristics Taxonomy. As in the External Characteristics Taxonomy case, there are examples
which appear on several of the existing categories while, in other cases, it is possible to classify an
abstraction algorithm in several modalities within the same main category. In opposition to the Ex-
ternal Characteristics Taxonomy, here there are not clear relationships between the different internal
categories so arbitrary combinations can be found on existing methods.

3.3 Architectural Models for Video Abstraction

The aim of the proposed architecture is to provide a modular, as simpler as possible, solution which
could allow to fit inside most part of the (current and future) existing video abstraction approaches
and to identify the different steps required to complete the abstract generation. It has been developed
taking into account the previously depicted video taxonomy and it is compatible with the defined
concepts and categories. Furthermore, a relationship between an abstraction approach classification
and its corresponding modeling can be stated in many cases.

Although the proposed approach may not be the most practical or natural implementation for
several abstraction algorithms, it provides a common conceptual division that will allow the study
and comparison of different abstraction processes in terms of functionalities and performance. The
studied abstraction algorithms and their possibilities and limitations will be defined by the way in
which they can be mapped into the proposed architecture.

The abstraction process is modeled as a chain of independent stages through which the video
BUs (as defined in section 3.2.2) “travel trough” while being analyzed, compared and selected. The
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Figure 3.3: Abstraction Stages Decomposition

defined stages will be considered as independent modules but it will be allowed to share information
and metadata about the abstract generation and processed BUs among them. Such information will
be useful for guiding the different stages processing or for allowing the modeling of complex scoring
mechanisms.

The proposed abstraction model will ease the generic study of abstraction mechanisms and the
restrictions required for building systems with specific external characteristics (see section 3.2.1). It is
aimed as well to ease the understanding of the dependencies between different stages of an abstrac-
tion approach, to improve the algorithms performance or even to identify potential parallelizations
in the process.

3.3.1 Simplified Functional Architecture

Any abstraction process can be considered as a black box where an original video is processed to
produce a video summary (see Figure 3.3 (a)). Every abstraction algorithm may be described in this
way: a process which receives an original video input and outputs a video abstract. Nevertheless this
model has not utility for abstraction mechanisms analysis and a more detailed model is required.

The first significative characterization of the abstraction architecture is shown in Figure 3.3 (b)
where the abstraction process is divided in two stages: ’analysis’ and ’generation’. The ’analysis’ stage
will be in charge of extracting relevant features from the original video that will be taken into con-
sideration for the production of the final video abstract in the ’generation’ stage, where any possible
application of the extracted information will be carried out (including BU comparison , ranking and
selection).

The ’generation’ stage is, in many cases, the most complex one and, for this reason, a further
conceptual division will be considered. Figure 3.3 (c) shows the division of the ’generation’ stage in
’scoring’ and ’selection’. The ’scoring’ stage will be in charge of providing a score or rank for each orig-
inal video BU. Such score is not necessarily defined as a single numeric value but as a combination
of an arbitrary number of numeric values, tags, classifications, etc. On the other hand the ’selection’
stage will decide which of the incoming BUs must be included in the video abstract based on their as-
sociated score. The complexity balance between the two stages depends on the specific abstraction
algorithm considered. There are abstraction mechanisms suitable to be modeled with a very sim-
ple scoring mechanism followed by complex selection algorithms (for example [126] where different
possible combinations of abstracts are evaluated considering a complex score based on priority, con-
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tinuity and redundancy criteria) or abstraction mechanisms where the selection stage can be reduced
to a basic score thresholding (for example [57] where the visual similarity of each incoming BU is cal-
culated with respect to previously selected BUs and those with a dissimilarity value over a predefined
threshold are included in the abstract).

It is straightforward to demonstrate that any abstraction technique fits inside the proposed model
by encapsulating all the complexity in the ’scoring’ stage which would tag each BU to be included
in the final abstract as ’1’ or ’0’ otherwise. The selection module will just drop those BUs rated as
’0’ and will write in the output abstract those with score ’1’. In this way it would be possible to fit
any abstraction modality inside the analysis-scoring-selection model although a balance between
the different stages would be usually possible and desirable.

The defined functional modules can be considered as a minimal set of stages needed for a generic
enough abstraction architecture: there is no need for considering all of them in the design of a work-
ing abstraction system, being the ’selection’ stage the only mandatory one (a minimal abstraction
system can be built with a single selection stage in which subsampling [64] or random selection of
BUs is performed). Nevertheless most of the existing abstraction approaches can be modeled with
this ’analysis’-’scoring’-’selection’ stages approach.

3.3.2 Abstraction Systems Modeling

A basic stage-based functional architecture for video abstraction systems has been depicted in the
previous section. The abstraction process is considered as a flow of independent BUs through the
defined stages which ends when the complete set of original video BUs has leaved the system. The
different abstraction stages, type of BUs, how those BUs are processed, the time needed to complete
the process and other considerations vary depending on each abstraction approach and will be deter-
mined by the external and internal system characteristics (previously defined in section 3.2). In this
section different abstraction approaches are taken into account for the identification of the different
components and data flows that should added for completing the proposed stage architecture.

The different approaches are grouped in non-iterative systems, that is, systems where the BUs are
processed at the most one time per stage, and iterative systems, where the BUs can be resent to the
’scoring’ stage after being processed by the ’selection’ stage.

Non-iterative Video Abstraction Systems

Figure 3.4 (a) depicts the most simple abstraction architecture possible. As it is based on a simple
subsampling mechanism all the needed algorithms are included in a single ’selection’ stage in charge
of picking 1 out of every n BUs (e.g. just by direct subsampling or random selection). The ’User
Preferences’ which, in this case, will be limited to the selection of the output abstract rate 1

n guide the
process. This kind of systems are able to generate progressive, bounded size abstracts with negligible
delay and linear performance, as no analysis over the original content is needed and BUs can be
immediately selected or discarded. An example of this architecture can be found in [64] which depicts
one system in which the abstract generation consist on simple speed-up of the original video carried
out by uniform frame subsampling.

With the same architecture and considering different kind of input and output BUs, keyframe or
video skims could be generated and formatted in different ways if a ’presentation’ stage (see section
3.3.3) is appended to the system; this consideration can be generalized for any of the abstraction
systems that will be described next.
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Figure 3.4: Non-iterative Abstraction Architecture Examples

Figure 3.4 (b) shows an architecture including the ’analysis’ and ’scoring’ stages. In this case the
BUs scoring depends only on the original content and it is based on the results of the analysis stage
and the ’User Preferences’ which could specify, for example, the desired abstract length or be used
in the ’scoring’ stage for personalization purposes. One kind of abstraction systems belonging to this
architecture are adaptive subsampling abstraction systems where a varying amount of original BUs
are selected based on the analysis results. In [28] a single frame BU system is presented where the BU
selection rate is proportional to the visual activity in the video. The system described in [39] generates
keyframes by non-uniform sampling based on motion activity. It can be modeled with an initial ’anal-
ysis’ stage in charge of measuring the incoming BUs motion activity. The ’scoring’ stage should rate
each incoming BU with the accumulated motion activity for each frame composing the BU. Finally,
the ’selection’ stage performs a selection of n frames from each shot based on its accumulated motion
activity value. The model can be generalized for any adaptive sampling mechanism by considering
different extracted features and scoring approaches.

Relevance curve-based abstraction systems can be included in this category as well. In those
systems a relevance curve is generated applying different criteria and such curve is later taken into
account for the selection of the final output abstract. In [104] the relevance curve is generated de-
pending on the video activity and face detection and the blocks of frames with a relevance value over
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a predefined threshold are selected. Another example can be found in [129], where soccer videos
are split into blocks and annotated with concepts such as goal, red card, etc., each one with differ-
ent assigned priority. The generated curve is then analyzed identifying peaks, eliminating irrelevant
blocks and merging relevant ones. The final set of selected blocks is then reduced in length to fit in
an specified output abstract size. In both systems the ’scoring’ stage is in charge of combining the
features extracted in the ’analysis’ stage generating a relevance/priority curve. The ’selection’ stage
selects a limited size subset of the incoming BUs which maximizes the accumulated relevance. Other
considerations can be taken into account in the process, for example user preferences for relevance
curve generation or continuity in the set of selected BUs for the generation of abstracts with pleasant
rhythm. The relevance curve model is a generalization which covers many abstraction approaches
due to the arbitrary criteria applicable in the curve generation.

Those kind of abstraction mechanisms, adaptive subsampling or relevance-curve based, where
the scoring of each BU is independent from other BUs or have a limited dependency, are particularly
suitable for progressive abstract generation (defined in section 3.2.1): BUs can leave the system even
when other BUs have not passed trough all stages yet. Nevertheless the model presented in 3.4 (b) is
also suitable for other abstraction systems in which this condition is not fulfilled, for example clus-
tering based approaches [50, 65]. In a typical clustering process a first stage of data analysis is carried
out extracting features applicable in a subsequent clustering process. Those two stages are clearly
identified with the ’analysis’ -feature extraction- and ’scoring’ stage in which each BU is tagged with
a cluster number and sometimes scored (for example, with its distance to the cluster centroid). The
further ’selection’ stage will be in charge of selecting the final set of BUs from the calculated clusters
(for example selecting the closest BUs to each cluster centroid [55]). In those cases the whole set of
original video BUs is needed to complete the clustering process in the ’scoring’ stage and, therefore,
the approach is not suitable for progressive abstract generation (no BU leaves the ’scoring’ stage until
all of them have been scored).

Figure 3.4 (c) shows a variation of the architecture in which an ’Abstract Metadata’ database has
been enabled. This database is a representation of any possible information feedback mechanism
between the ’selection’ and ’scoring’ stages needed by certain approaches. For example, sufficient
content change (as called in [1]) abstraction approaches include BUs in the output abstract only if
their visual difference with previously selected keyframes is significant. In those cases the ’analysis’
stage extracts visual features from the original content such as color histograms [57] or the MPEG-7
Color Layout descriptor [56] which are used in the ’scoring’ stage to compare and rate the BUs attend-
ing to its similarity to already selected BUs. As the BUs selected to be part of the abstract leave the
system their visual features must be kept in the ’Abstract Metadata’ repository for its usage in the rest
of the abstraction process.

Iterative Video Abstraction Systems

The models shown in figure 3.4 are valid for abstraction systems where the incoming BUs are pro-
cessed only once by each defined stage and allow the modeling of most of the existing abstraction
approaches. Nevertheless, there are abstraction systems based on iterative processing which require
a more complex solution: in [71] an initial set of keyframes is sequentially selected from the original
video. The position of such keyframes is then iteratively refined reducing the abstract distortion un-
til a specific value is reached. [60] presents a maximum frame coverage abstraction approach which
aims to generate a video abstract selecting a set of BUs as most representative as possible of the orig-
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Figure 3.5: Iterative Abstraction Architecture

inal content. In this case, each time a new frame is selected for the abstract a recalculation of each
frame coverage is carried out. Figure 3.5 architecture includes an additional video data (BUs) and
metadata flow from the ’selection’ to the ’scoring’ stage, allowing the iterative scoring of the BUs. In
[60] the coverage of each original frame is calculated as the set of all frames in the original video which
are considered as similar to the given one. The most representative frame (the one with higher num-
ber of similar frames) is iteratively selected to be included in the output abstract. On each iteration
the the set of similar frames to the selected one are removed from the remaining selectable frames
and the most representative frame must be recalculated. This scheme can be modeled with the pro-
posed architecture as a frame-BU system with an ’analysis’ stage where visual features are extracted
(e.g. color histograms, color layout), a ’scoring’ stage where the coverage value (i.e. the set of similar
BUs to each given one) is calculated and a ’selection’ stage where the BUs for the video abstract are
iteratively selected as those with the highest coverage values. On each iteration a BU is selected and
some others -those similar to the selected one-, considered as already ’represented’, are discarded. All
the BUs which have not been selected to be part of the output abstract nor eliminated from the system
are sent back to the scoring stage (via the defined feedback data flow) for a recalculation of their cov-
erage value; this process is repeated until there are no more BUs available in the system. This example
demonstrates the need of a feedback data flow between the ’selection’ and ’scoring’ for those systems
in which the original scores associated to the incoming BUs must be periodically recalculated.

Abstraction Systems Architecture Summary

Table 3.3 summarizes the architectural categories divided in Iterative -I- or Not Iterative -NI- and
depicting the set of abstraction modules which are included: Analysis -A-, Scoring -Sc-, Selection
-Sel- and the inclusion of a Metadata Feedback -MF- data flow. It is not surprising to find a lack
of references corresponding to the [NI,Sel] category due to its simplicity (e.g. simple subsampling
or selection of the beginning of the original video) while more approaches can be easily found in
other categories. The computational complexity of every abstraction system will depend on each
abstraction stage internal complexity as well as the system architectural category.

Other abstraction systems, implementable with different combinations of abstraction modules
and data flows, may exist in the literature: the different presented combinations have been selected
because they are considered as representative models.
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ARCHITECTURAL CATEGORY REFERENCES

[NI,Sel] [64]
[NI,A,Sc,Sel] [50, 39, 104, 28, 129, 65, 55]

[NI,A,Sc,Sel,MF] [57, 56]
[I, A, Sc, Sel, MF] [60, 71]

Table 3.3: Abstraction System Architectural Classification

Figure 3.6: Generic Abstraction Architecture

3.3.3 Generic Video Abstraction Architecture

Figure 3.6 depicts the final generic abstraction architecture following the analysis-scoring-selection
stages model. The data flow between the different stages and the repositories/databases for metadata
storage are shown in the architecture. Such repositories represent information storage or interchange
with independence of the mechanisms applied for its implementation (direct memory access, disk
storage, databases, etc.).

The ’selection’ stage is mandatory in any abstraction architecture because a mechanism to out-
put part of the original video content must be included in any abstraction system. The rest of the
stages -’analysis’, ’scoring’ and ’presentation’- are not mandatory: for example, in the case of a video
abstraction system based on a original video subsampling, there is no need to analyze or rate the orig-
inal content. A ’presentation’ step has been included in the generic architecture providing coverage
to those abstraction approaches in which video editing or formatting is needed. This stage is rarely
present in the studied abstraction systems and has neither impact in the BUs selection methods nor
in the overall system efficiency. It has been considered as a element which can be appended to the
system and would have an impact in the users perception about the generated abstracts but without
relevance in terms of systems characterization.

The abstraction process will be considered as the flow of the available BUs through the depicted
stages until all of them have left the system (being included in the output abstract or discarded). All
the processing stages receive BUs which can be accumulated, processed (analyzed, annotated, rated,
combined, etc.), redirected to other stage, selected or discarded. Any stage can produce metadata
(e.g. low-level video analysis results, mid-level features, semantic annotations, tags, etc.) that can be
appended to the BUs and/or stored in the ’Abstract Metadata’ repository making them available for
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its usage by other stages.

The video an metadata feedback flow displayed in Figure 3.6 enables iterative abstraction systems
(see section 3.3.2) where the selection or discard of a specific BU as part of the output abstract yields
to the recalculation of other BUs scores.

The ’User Preferences’ repository makes available user preferences or system configurations for
cases in which this information can be applied for customized abstract generation. For example, the
user could define abstract characteristics such as its length (to be considered in the ’selection’ stage),
modality, or media format for the output abstract (to be considered by the ’presentation’ stage). The
definition of what categories of content (e.g., economy, sports, weather forecast) the user is interested
in could be used in the ’selection’ stage as a filtering constraint or in the ’analysis’ stage, applying
different analysis algorithms depending on the user preferences (for example the application of a face
detector algorithm only if the user specifies any preference about faces inclusion in the abstract).

Composed Abstraction Systems

The architecture depicted in previous sections enables the modeling of arbitrary abstraction ap-
proaches by the encapsulation of their algorithms in the proposed conceptual stages. Nevertheless,
there are cases where an abstraction system may be difficult to map to such stages or the reached
solution is not intuitive due to the system complexity. In such cases, a decomposition of the system
as a combination of two or more ’simple’ abstraction approaches can ease the system modeling. We
will define an abstraction subsystem as a set of the techniques or algorithms applied within a given
abstraction approach that could be isolated from the rest of the system and modeled with the pro-
posed ’analysis’-’scoring’-’selection’ stages. Most part of the studied approaches can be modeled with
a single subsystem but several cases may be more clearly modeled if presented as a combination of
several subsystems. Figure 3.7 shows two basic composed architectures. Figure 3.7 (A) shows a se-
rial abstraction architecture where the overall abstraction process is modeled as a concatenation of
subsystems in which the output of each subsystem serve as input for the following one.

An example can be found in [57], a video skimming approach later described in chapter 5, where
the abstraction process can be separated in two independent subsystems. The first one consists in a
sufficient content change approach where the incoming video shots are split in fixed size blocks. The
analysis stage extracts each frame color histogram and the scoring stage compares every incoming
video segment with previously selected ones (the first one is automatically included in the abstract)
obtaining a dissimilarity measure. In the selection stage those fragments with a dissimilarity value
over a predefined threshold are selected for the output abstract. The described steps can be consid-
ered as a complete on-line abstraction approach (that is, it is able to process the original video in
a progressive way with linear performance, see chapter 4 for further clarification of the on-line con-
cept) but have the inconvenience of an uncontrolled output size. For this reason, a second subsystem
was appended in order to control the output abstract length. In this case no analysis is carried out
as color histograms are already available. The scoring stage is in charge of measuring the dissimilar-
ity between all possible combinations of the BUs (video segments) received from the first subsystem
obtaining an average dissimilarity measure for each of them. Finally, those BUs are ranked and dis-
carded until the desired output size is reached. The second subsystem constitutes a complete off-line
abstraction system that could be directly applied to a original video although it would be quite inef-
ficient because all the possible comparisons between BUs are carried out. In the complete approach
the number of BUs is heavily reduced in the first on-line subsystem obtaining a efficient overall pro-

32



Figure 3.7: Composed Abstraction Architectures

cess.
Figure 3.7 (B) shows the architecture of parallel composed abstraction system. In this case the

different abstraction subsystems do not process the results of the previous subsystems and deal with
the incoming BUs in different ways. The results of the parallel abstraction processes are combined in
order to generate the video abstract. [134] presents a system which can be easily modeled as a com-
posed parallel abstraction system with two subsystems. The abstraction approach generates a video
abstract by a frame (BU) subsampling process generating a 25x accelerated output. This subsampling
approach can be represented as a simple abstraction subsystem with an unique ’selection’ stage in
charge of picking one out of every 25 frames. The particularity of the system is that authors consider
that a 25x accelerated audio is incomprehensible and, for this reason, complete audio phrases are
included in the abstract played at normal speed (the audio and video synchronization is lost). The
audio processing can be considered as a parallel abstraction subsystem in which the BUs are com-
posed by audio fragments. Speech recognition and SNR analysis are carried out for the segmentation
of the audio in silence bounded phrases. The selection of phrases to be included in the abstract de-
pend on their location (aiming to cover all possible locations), length and word repetition (aiming
to avoid repeated sentences which can be found on BBC rushes). The final abstract is composed in
the presentation stage by the combination of the independent results of the fast-forward (visual) and
phrases selection (audio) abstraction subsystems.

For both of the depicted composed abstraction architectures -serial and parallel- it would be pos-
sible to define BUs and metadata flows between the different abstraction subsystems enabling the
exchange of any kind of information. The combinations of composed abstraction systems is not lim-
ited to the two proposed architectures: any combination of subsystems could be applicable, enabling
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the modeling of almost any possible abstraction system (nevertheless we have not found examples of
more complex approaches in the literature).

3.4 Conclusions

In this chapter, a framework for video abstraction systems analysis and modeling from an operational
point of view has been proposed. A taxonomy for classifying the different approaches based on their
internal and external characteristics has been firstly depicted together with non-exhaustive classifi-
cation examples of existing algorithms. The study of the influences and constraints between all the
internal and external abstraction modalities can be a complex matter but will be useful for the design
of abstraction systems.

Considering the defined taxonomy, an architectural model that allows the development of generic
abstraction systems as a sequential processing of the original video BUs has been proposed. This ar-
chitecture starts from isolating the different possible stages involved in the video abstract generation
process, considering each stage as BU processing modules in charge of analyzing, adding information
and redirecting the incoming BUs. This separation between the different abstract generation stages
will allow the generic study of the abstraction algorithms by dividing the different approaches and
studying each part independently. At the same time this division enables the development of generic
interchangeable modules for the analysis, scoring, selection and presentation algorithms to be com-
bined in different ways. Once we have a good understanding of video abstraction processes and have
a standardized exchange established, the following scenario can be a reality: system A, developed by
a video processing group, has a strong Analysis module - if input/output of the module is in standard-
ized format, then system B, developed by a media producer, could borrow that module for its analysis
and use system B’s fancy presentation module to output a better abstraction.

The proposed approach will ease the task of analyzing the performance and internal/external
characteristics of any proposed system in a unified framework applicable for subsequent systems
comparison and characteristics specification as well as the classification of the different abstraction
approaches attending to their architectural requirements. Additionally, the proposed architecture has
allowed to define a set of elemental abstraction models, which are suitable for building almost any
of the most spread abstraction approaches found in the literature. The proposed model can be used
for evaluating and comparing our methods and systems with the ones from other research groups
(e.g., what my group has been focusing so far is actually the ’scoring’ stage, while that other group’s
system has a strength in the ’presentation’ stage). Additionally, it is possible to study methodologically
the possibilities of modifying a given algorithm with alternative internal or external characteristics.
Examples of system modeling and modification of a given system external and internal characteristics
can be found in Annex A.
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Part III

On-Line Video Abstraction
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Chapter 4

On-Line Video Abstraction Requirements
and Implications

4.1 Introduction

In chapter 3, a taxonomy for video abstraction systems is presented. It is aimed to classify existing
video abstraction technologies from an operational point of view, taking into consideration both their
internal and external characteristics. Such approach is an uncommon point of view for the character-
ization of video abstraction systems if compared with other similar works, like for example [1] or the
rest of taxonomies described in chapter 2, more focused in a systematic review of video abstraction
techniques from the point of view of the applied abstraction mechanisms, without analyzing each
system operational characteristics. Nevertheless, the two main classification categories in which the
taxonomy was divided, video abstraction process external and internal characteristics, provide a con-
venient point of view for dealing with the subject of this work: the study and development of on-line
video abstraction systems. From the set of defined external characteristics (chapter 3 section 3.2.1),
we will focus on the Performance and Generation Delay which will determine if an abstraction system
can be considered as off-line on-line or real-time (a subset of on-line abstraction approaches). The
requirements of each possible category will be defined in the following sections.

The proposed taxonomy, together with the generic video abstraction architecture proposed in
chapter 3 section 3.3.3, serves as the basic framework for the definition and analysis of the elements
and concepts required for the definition of the operational constraints for building both on-line and
real-time video abstraction systems.

The rest of the chapter is organized as follows: in section 4.2 the possible operation modalities
are defined together with the terminology applied in the rest of the chapter. Section 4.3 deals with
the operational requirements of each abstraction modality. In section 4.4, the practical issues of the
on-line abstraction modality are discussed. Finally, conclusions are presented in section 4.5.

4.2 Definitions

4.2.1 On-Line and Real-Time Abstraction Systems

The target of this work is the development and analysis of on-line video abstraction algorithms, con-
sidering as well the particular case of real-time approaches. Attending to the taxonomy presented
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in chapter 3, the kind of systems we will deal with must fulfill specific Performance and Generation
Delay constraints. For the rest of the work, we will mainly focus on two possible types of abstraction
approaches:

• On-Line: Abstraction systems with linear performance and progressive generation delay. To ful-
fill a linear performance, the amount of resources required by the abstraction approach must
scale linearly with the length of the original video. On the other hand, the progressive genera-
tion delay implies that the availability of the complete original video is not required to begin the
output abstract generation. With the fulfillment of both conditions, the abstract can be gener-
ated ’on the fly’, as the original video is being broadcasted or recorded, making a video abstract
available with a limited delay once the original video finishes (the amount of acceptable delay
will depend on the application scenario) and being able to provide partial output during the
original video processing.

• Real-Time: A real-time abstraction system is a particular case of on-line abstraction approaches
and, therefore, it must fulfill the same requirements as an on-line system (linear performance
and progressive generation delay) with the additional constraints of being able to generate the
output abstract without pauses and at a high enough rate to enable its real-time visualization,
consisting on being able to display the video abstract at regular video playing speed.

In section 4.3, the operational constraints of the defined on-line and real-time abstraction approaches
are presented, based on the operational concepts defined in the following subsection 4.2.2.

4.2.2 Abstraction Systems Operational Concepts

Figure 4.1 shows an abstraction system depicted as a black box, without considering the stage divi-
sion proposed (see chapter 3, section 3.3) which will be later taken into account. As discussed in the
previous chapter, an abstraction system can be modeled as a BU flow through the different abstrac-
tion stages (’analysis’, ’scoring’ and ’selection’) until all the BUs have been either discarded or included
in the output abstract. Maintaining the same conceptual point of view, we will consider that the in-
coming BUs are generated by an external source arriving to the abstraction system at an average rate,
RA . The abstraction system processes the incoming BUs and outputs them at an average rate RO . A
fraction of the outputted BUs is selected to be included in the abstract at an average selection rate,
RS , while the rest of the BUs are discarded at an average discard rate RD (both measures expressed in
BUs/second), with RO = RS +RD . In most abstraction systems, the BUs are collections of frames (with
the associated audio samples) so the arrival rate, RA , depends on the incoming frame rate and the
size or length of the BUs. For this reason, the input and output rates of the system can be expressed in
terms of frames per second or number of BUs per second (according to the number of frames com-
posing each BU). Analogous considerations could be applied if dealing with other kind of BUs such
as audio samples instead of frames.

Depending on its characteristics, an abstraction system will process the incoming BUs individu-
ally or in groups of BUs -GoBs- and will require a specific amount of time for the processing of each i th

incoming GoB, TPi , defined as the time such GoB spends inside the system until it is selected or dis-
carded. The amount of time required for the arrival of the required number, n, of BUs composing the
GoB must be taken into consideration. Such filling time, denoted as TFi for the i th received GoB, will
depend on the BU arrival rate, RA , and for the first GoB it will be defined as TFo = n

RA
. Once the system

has accumulated the required amount of BUs, it will spend, on average, an amount of time, TGoBP , in
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Figure 4.1: Abstraction System Operational Definitions

processing the GoB (TGoBPo for the processing of first received GoB). Therefore, the total processing
time for the first received GoB will be defined as TPo = TFo +TGoBPo while, for the forthcoming GoBs,
the filling time will be reduced due to possibility of receiving BUs during the previous GoB processing
time lapse. Therefore, the number of BUs left to receive is determined as n− (TGoBP ·RA). For the rest
of the processed GoBs, the average filling time, TF , will be expressed as

TF = max

(
0,

n −TGoBP ·RA

RA

)
= max

(
0,

n

RA
−TGoBP

)
(4.1)

resulting in no waiting time, TF = 0, if the GoB processing time is greater than the time required
to receive a complete GoB, TGoBP ≥ n

RA
. The average GoBs processing time for the rest of the GoBs,

TP , can be expressed as:

TP = TF +TGoBP = max

(
0,

n

RA
−TGoBP

)
+TGoBP = max

(
TGoBP ,

n

RA

)
(4.2)

Therefore, given the average required time by the system for the processing of a GoB, TP , it is
possible to determine the average rate at which the abstraction system is able to accept the received
BUs for its processing, RAcc :

RAcc = n

TP
= n

max
(
TGoBP , n

RA

) = mi n

(
n

TGoBP
, RA

)
(4.3)

The maximum possible acceptance rate achieved by the system is therefore limited by the average
arrival rate, RA (logically, the system can not accept BUs not received yet). In the case of an ideal
system with an infinite RA , that is, a system where all the BUs are instantly available (e.g. stored in
a local repository with negligible reading and transfer times), the average BUs processing rate will be
determined only by the GoB processing time, TGoBP , and the length, n, of the GoB.

BUs not directly accepted in the system at their arrival are inserted in a storage buffer (see figure
4.1) during a TW amount of time until the system is able to process them. Such time depends on the
number of previous BUs stored in such buffer, NW , and the average rate in which those BUs leave the
buffer, that corresponds with the acceptance rate, RAcc . For the i th received BU, its waiting time, TWi ,
can be approximated as:
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TWi =
NWi

RAcc
(4.4)

where NWi specified the number of BUs stored in the buffer when the i th BU arrives. It is straightfor-
ward to determine that the number of buffered BUs, NW will increase when the arrival rate is greater
than the rate of acceptance, RA > RAcc , it will decrease if RA < RAcc (eventually implying no waiting
time, TW = 0) and it will be constant, in average, in the RA = RAcc case. Consequently, an increasing
NW value implies a growing delay in the system due to the increment of the waiting time, TW , yielding
to an ’unstable’ abstraction system in which the delay will depend on the length of the original video.

The system delay for the i th BU, Di , will be defined as the total elapsed time since the BU ar-
rives in the system (without being necessarily accepted immediately for its processing) until it is se-
lected/discarded. Such time will be determined by the time spent in the waiting buffer, TWi plus the
time required for the i th BU processing, TPi :

Di = TWi +TPi (4.5)

4.3 Operational Constraints

In this section, the operational constraints associated to the development of on-line and real-time
abstraction systems are analyzed (subsections 4.3.1 and 4.3.2) together with the set of constraints
that the individual abstraction system stages must fulfill (subsection 4.3.3). The set of most relevant
constraints for both types of systems are summarized in table 4.1.

On-Line TN ≤ N
n · c ; RA ≤ RAcc ; TP ≤ n

RA

Real-Time RS ≥VR ; TP ≤ n·s
VR

; NI ≥ (t −DF ) ·VR

Table 4.1: On-Line and Real-Time Abstraction Systems Operational Constraints

4.3.1 On-Line Systems

The first requirement for an on-line system is the linear performance, that is, the total amount of
time required for the processing of video scales linearly with respect to its length. Considering TPi ,
the required time for the processing of the i th GoB of a video composed of n BUs, the total time
required for the processing of a N GoBs video will be defined as:

TN =
N /n∑
i=1

TPi (4.6)

the linear performance implies that the condition TN ≤ c · N
n must be fulfilled. Such restriction

implies that the total processing time is proportional to the amount of GoBs processed (with a linear
relation determined by a constant value c ∈ R > 0). The most straightforward way to assure such
restriction fulfillment is to establish an upper limit for GoB processing time, TPi ≤ c, ∀i > 0 so the
total processing time scales linearly with respect to the number of GoBs
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TN =
N /n∑
i=1

TPi � TPi ≤ c, ∀i > 0 ⇒ TN ≤ N

n
· c (4.7)

Another of the characteristics of an on-line abstraction system is its capability for starting the out-
put process, selection or discard of BUs, without a complete availability of the original video N BUs.
On-line systems must operate with a limited delay, D , defined as the total elapsed time since a BU
arrives in the system until it is selected/discarded (see equation 4.5). As it was depicted in the previ-
ous section, the time spent in by the i th BU in the waiting buffer, TWi , will depend on the number of
BUs in such buffer when such BU arrives, NWi . Therefore, for a controlled TW value, the number of
waiting BUs must be always limited and such situation occurs only if the system is able to accept in-
coming BUs at a rate at least as high as the arrival rate RA ≤ RAcc . As an upper limit for the processing
time was established, TPi ≤ c, it can be derived that the fulfillment of the condition TP ≤ n

RA
assures

the on-line operation.
It is possible to assure that a system will be able to operate on-line if it is possible to guarantee

that the input rate will be at least equal to the BU arrival rate and the required time to process a GoB
of n BUs is limited. The temporary unfulfilment of those conditions does not necessarily imply an
off-line behavior of the system but, if those conditions are not controlled, it is not possible to assure
the on-line processing in all situations.

4.3.2 Real-Time Systems

For the real-time operation mode additional conditions to those required for the on-line processing
must be fulfilled: the average selection rate, RS , must be higher than a fixed visualization rate, VR ,
which determines the minimum speed for continuous visualization of the output abstract

RS ≥VR (4.8)

The selection rate of the system, RS , will be determined by the total rate of BUs, RO = RS +RD , the
system is able to output per time unit:

RO = RAcc = n

TP
(4.9)

and the fraction, 0 < s < 1, of the processed BUs which are included in the output abstract:

RS = s ·RO = s.RAcc = s ·n

TP
(4.10)

from equations 4.8 and 4.10 the following limitation can be derived

TP ≤ n · s

VR
(4.11)

establishing the maximum processing time per group of BUs allowed to fulfill the real-time op-
eration mode. It should be noted that, apart from a maximum processing time per BU, a real-time
abstraction system would require a homogeneous selection of BUs: the discard of too many consec-
utive BUs may produce pauses in the abstract playing. In a given time instant, t , the number of BUs
included in the output summary, NI , should be
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Figure 4.2: Stages Operational Definitions

NI ≥ (t −DF ) ·VR (4.12)

where DF represents the elapsed delay until the first BU is included in the abstract. From that time
instant, the total selected BUs (included in the abstract) must be at least the number of displayed BUs.

4.3.3 Abstraction Stages Constraints

In the previous sections, the general operational constraints for guaranteeing abstraction systems
with on-line or real-time operation modes were defined. This section is devoted to provide a brief
analysis of how those global constraints may affect the individual abstraction stages depending on
the kind of applied algorithms.

Figure 4.2 presents the three basic stages an abstraction system can contain (as defined in chap-
ter 3), that is, ’analysis’, ’scoring’ and ’selection’ modules. Each stage has an associated BU process-
ing time: TA for the ’analysis’, TSc associated to the ’scoring’ stage and, finally, TSl for the ’selection’
process. The total BU processing time will be determined by the sum of each individual stage BU
processing times (for each i th received BU)

TPi = TAi +TSci +TSli ≤ c ∀i > 0 (4.13)

So, as long as the total processing time is kept under a constant upper limit, c, the on-line or real-time
operation modes are assured (with a more or less restrictive c value depending on the desired oper-
ation mode). This condition should be easier to control in systems with constant ’analysis’, ’scoring’
and ’selection’ BU processing times, but it is not the natural way in which many existing abstraction
techniques work.

A classification of abstraction systems based on their internal characteristics was defined in chap-
ter 3 section 3.2.2. Systems dealing with fixed or variable size BUs were differentiated and two main
categories were considered for the ’analysis’, ’scoring’ and ’selection’ stages: intra-BU and inter-BU
approaches. Depending on how an abstraction system is classified among those categories, there will
be different ways in which the proposed constraints affect the system.

The problem relies on keeping the overall system BU processing time under a predefined thresh-
old in all possible circumstances and, for this purpose, the individual complexity of each stage in the
abstraction chain must be controlled. The difficulty arises when the applied algorithms have a com-
putational efficiency worse than linear performance (e.g. quadratic, exponential) with respect to the
amount of processed data. In the way we have represented an abstraction system, the amount of data
corresponds to either the size of a BU (e.g. number of frames, audio samples) or the number of BUs
needed in the processing (for example, inter-BU processes where a feature is extracted from several
BUs, or where a number of BUs are compared). In both cases, we will denote the process carried out in
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Function Type Performance

type 1 O (1), O (log (n)), O (n)
type 2 O (n · log (n)), O (n2),O (n3),...,O (n2),O (n!)

Table 4.2: Common Algorithms Performances

any abstraction stage as f (n), with n being the number of elements to be processed (elements within
a BU, or number of BUs). We will differentiate two types of function, type1 and type2, according to
a computational efficiency criterion. Type1 functions are those where the required processing time
scales linearly (or better) with respect to n ( f ∈O (n)). For such kind of functions it is possible to find
a constant c satisfying

∃n0 ∈Z+, c ∈R+ � f (n) ≤ c ·n ∀n > n0 (4.14)

The rest of functions, with a worse performance than type1 ones, will be denoted as type 2. Table 4.2
enumerates typical example of performances for both type of functions1.

Intra-BU Systems

We will consider, in a first place, intra-BU systems, that is, systems where the ’analysis’ and ’scoring’
processes work with individual BUs (fixed or variable length).

In the case of applying type 1 functions, the size of the BU will not affect the overall system’s per-
formance: the time required for the processing of a BU will scale (in the worst case) linearly with
respect to its size. Nevertheless, higher BU sizes will produce a proportional reduction in the average
BU arrival rate, RA , resulting in no effect in the total amount of time required for processing a video
but in a higher delay in the system, as can be deduced from equations 4.2 and 4.5.

Type 2 functions require a more restrictive usage because, in this case, the reduction in the BU
arrival rate is not sufficient to balance the increment in the individual BU processing time. In the
case of a fixed size BU system, the required BU process time will be constant (with independence of
the algorithm performance) and the processing times will be easier to control, just by applying fast
algorithms, optimizing the algorithms complexity or reducing the fixed BU size when possible. On
the other hand, abstraction systems working with variable size BUs (e.g. a system in which each BU
corresponds to a shot in the original video and, therefore, the BU size can not be a priori determined)
and applying type 2 functions present more difficulties for the computational performance control:
it is not possible to assure that all the incoming BUs are processed in an amount of time under the
established limit c (see equation 4.13) as such time depends on the BU size (it would be possible if the
application scenario or type of content allows us to determine that it is not possible to deal with over-
sized BUs). In this case, one of the possibilities is to maintain a variable BU size with an upper limit
so that the maximum processing time could be controlled. Another possibility could be to substitute
the type 2 applied functions for type 1 approximations or change the operation modality to fixed-size
BUs.

Inter-BU systems

All the previous considerations with respect to fixed or variable BU sizes are applicable as well to
inter-BU abstraction systems. In such systems, together with the size of the BUs, the number of BUs

1A performance, f (n) ∈O (1), implies a constant cost function
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needed for the processing of each stage must be taken into account. The complexity of the applied
algorithms should be controlled in the following situations:

• The complexity of the process depends on the size of the BUs: for example, many algorithms for
video fragment comparison perform operations where all the elements (frames) of one of the
fragments are compared with all the elements of the second one. When dealing with BUs com-
posed of n frames this kind of comparison are O (n2), that is, type 2 algorithms and, therefore,
all the considerations taken for intra-BU systems should be taken into account.

• The complexity of the process depends on the number of BUs considered: for example, in case
of redundancy elimination approaches, such as clustering approaches, it is quite common to
compare a given BU with all the other BUs in the video and, even considering low cost BU
comparison functions, a long video could yield to an excessive processing time per BU.

In general terms, in order to control the processing time and delay in on-line video abstraction sys-
tems, a proper strategy would consist on the implementation of fixed-size BU algorithms while es-
tablishing a limit in the number of BUs involved in any kind of processing. The consequences of such
limitations in the application scenarios of on-line/real-time abstraction systems will be subject to
study in the following sections.

4.4 On-Line Abstraction Practical Issues

In this section, some of the operational limitations of on-line abstraction systems will be discussed.
The previous sections depicted the performance constraints required for the development of on-line
systems in terms of processing times, algorithms complexity, delay, etc. In this section, we will take
into consideration different possibilities for on-line abstraction systems and their limitations, derived
from the lack of information and required computational performance associated to the progressive
generation modality. The two main types of practical issues for the implementation of on-line ab-
stract generation systems that we have identified are the following:

• Abstract length control: The lack of information about the length of the original video and the
characteristics of the incoming BUs (due to the progressive generation modality) may difficult
the control over the obtained abstract length.

• ’Analysis’, ’scoring’ and ’selection’ stages precision: Depending on the type of implemented ab-
straction approach, the lack of information about the incoming BUs (as well as the compu-
tational complexity constraints) may cause a loss of precision in the ’analysis’, ’scoring’ and
’selection’ stages.

Along the present section, in order to study the defined practical issues in different situations, we
will present several types of abstraction systems in incremental complexity order. Most simple ap-
proaches are easily implementable but, at the same time, provide a smaller number of functionalities
and possible application scenarios. More complex systems will be progressively presented explain-
ing their additional functionalities and limitations. The types of systems considered are the following
(based on the taxonomy and generic architecture provided in the chapter 3 framework):
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Figure 4.3: Relevance Curve Abstraction Mechanism

• Unbounded size, intra-BU systems: Abstraction systems where the abstract size is not a priori
set and depends only on the abstraction system internal mechanisms. The intra-BU opera-
tion mode implies that the ’analysis’, ’scoring’ and ’selection’ of a BU depend only on such BU
characteristics (no information from other BUs is required).

• Bounded size, intra-BU systems: Abstraction systems in which the output abstract length is a
priori set with intra-BU ’analysis’, ’scoring’ and ’selection’ stages.

• Inter-BU systems: Abstraction systems containing inter-BU stages, that is, one or more of the
’analysis’, ’scoring’ or ’selection’ stages requires information from several BUs.

For the analysis of different types of abstraction approaches and the practical issues associated to
their implementation as on-line systems, we will consider their modeling as ’relevance curve’ ap-
proaches. ’Relevance curve’ [8, 104] and ’highlight oriented’ [101, 102] based approaches are very
similar video abstraction techniques relying on the same underlying mechanisms. Video abstracts
are composed by the selection of a subset of fragments (e.g. frames, shots) from the original video
fulfilling certain conditions. Such conditions could be, for example, the detection of specific events
-highlights- (e.g. a goal in a soccer match [97], applause and cheering [135] or specific viewing pat-
terns [136]) or an associated relevance value over a predefined threshold [137] (where the relevance
value could be calculated based on the combination of any kind of extracted features: motion activity
[8], manual annotations [105], video sequence quality [138], etc.). In principle, any type of abstract
could be generated with those techniques as long as the appropriate analysis techniques exist. The
generic video abstraction systems architecture proposed in the previous chapter (see chapter 3 sec-
tion 3.3) demonstrates how different kind of video abstraction approaches can be modeled in such a
way.

Figure 4.3 shows the process of a relevance abstraction approach: the original video is analyzed
with one or more techniques, generating a number of associated feature curves, c1,c2, ..,cn . Such
curves are processed and combined in some way for obtaining a relevance curve. The relevance curve
should not be necessarily a numerical value, although such approach is the most usual, and could be
a set of tags or annotations, a multidimensional value or whatever notation required for the specific
application of the abstraction system. Finally, the original content fulfilling certain conditions (in fig-
ure 4.3, the condition is a simple thresholding) are selected for the composition of the video abstract.
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In the following subsections, we will depict the implementation issues associated to each one of
the three previously defined types of systems, modeled as ’relevance curve’ approaches.

4.4.1 Unbounded Size Intra-BU Systems

Within the ’relevance curve’ based abstraction approaches, the most simple systems are the ones in
which the generated abstract size is unbounded, and which operate with intra-BU analysis, scoring
& selection mechanisms. An unbounded size approach implies that the output abstract length is not
known a priori and, therefore, the length of the output abstract will only depend on the amount of
original content fulfilling the inclusion condition [50, 75]. The intra-BU category includes all those
approaches where the analysis, score and selection of a given video fragment depends only on such
fragment characteristics [82, 57]. The relevance value of a given BU will have no relation with the
inclusion, discard or characteristics of other fragments from the original video.

The described approach is one of the most straightforward ones for its implementation as an on-
line abstraction system because of the intra-BU mechanisms: an independent BU processing mech-
anism makes it possible to avoid one of the most important disadvantages in on-line abstraction sys-
tem, which is to calculate the relevance of a given BU without information about the characteristics of
the forthcoming ones. Another important advantage is that there is no need for the implementation
of an output abstract size control.

Figure 4.4 presents the basic architecture for an on-line, relevance curve based, abstraction ap-
proach. The incoming BUs arrive at the analysis stage which analyzes the BUs individually or in
groups. Such analysis stage can include an arbitrary number of analysis functions, f1, f2, ..., fn , for the
extraction of the same number of analysis values, a1,a2, .., an which are associated to the processed
BUs. The annotations for the BUs are individual, being, in this case, the feature curves the complete
set of annotations for all the BUs. Such ’annotated’ BUs are then processed by the scoring stage, in
charge of assigning a relevance value, r , to each BU (or group of BUs) based on their associated anno-
tations. Finally, the selection stage must decide which of the BUs are included in the output abstract
and which of them should be discarded. As depicted in figure 4.4, the user preferences could be taken
into account in the whole process for guiding the feature extraction, scoring (for example, using dif-
ferent weights for different preferred features) or the selection stage. The only consideration which
should be taken into account for an appropriate on-line operation in this kind of abstraction system,
is to keep each stage execution time under control, as discussed in section 4.3.3. For this reason,
the possibility of building a specific type of on-line abstraction system with these characteristics (un-
bounded size, abstract independent) will mainly depend on the existence of computationally efficient
analysis approaches for the extraction of the required features. In many cases, adapting an existing
abstraction system for on-line operation mode relies in the amount of possible optimizations that
can be applied for getting efficient enough techniques, from a computational point of view, without
an excessive reduction in the precision of the obtained results.

4.4.2 Bounded Size Intra-BU Systems

The first restriction that can be found in the development of on-line abstraction systems is the imple-
mentation of bounded-size approaches, where there is an established target for the output abstract
length. Such target size, as defined in the proposed external characteristics taxonomy (chapter 3, sec-
tion 3.2.1), can be a fraction of the original video length [57, 127] or a fixed value [39, 84]. In systems
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Figure 4.4: Relevance Curve Abstraction Stages Architecture

where the length of the original video is a priori known, the fixed output size approach is equivalent
to setting an output abstract target rate with respect to the original video length.

The kind of system considered will be a relevance curve abstraction approach, as it has been de-
fined in previous section, which enables the generation of any kind of abstract if a proper scoring
mechanism exists.

’Binary Relevance’ BUs

We will consider, in a first case, abstraction systems where the BUs from the original video can be clas-
sified in a binary way: those ’fulfilling the inclusion condition’ and those ’not fulfilling the inclusion
condition’ (this approach is equivalent to highlight oriented systems where fragments fulfilling cer-
tain condition are included in the abstract [85, 97, 135, 136]). The specific set of BUs included in the
abstract when the output size is predefined, will usually not be relevant as long as the included BUs
are classified as ’fulfilling the inclusion condition’. An on-line implementation of such abstraction
system should be straightforward: the BUs are sequentially analyzed and scored, and those ’fulfilling
the inclusion condition’ are included in the output abstract until the target length is reached. Other
considerations such as, for example, the way to proceed when not enough ’selectable’ BUs to reach
the desired abstract size are available, will depend on the specific application scenario. Nevertheless,
such problem will affect in an analogous way to an off-line abstraction approach.

’Continuous Relevance’ BUs

The application of on-line approaches to scenarios where the BUs can not be binary classified and
each BU fulfills the inclusion condition in a different degree presents more difficulties. In such case,
some BUs are more relevant or appropriate than others for their inclusion in the output abstract [137,
8, 105, 87]. Given a predefined abstract size, the usual way to proceed is to select the subset of original
BUs which maximize the total relevance value. The off-line implementation of such solution presents
no complications: the original video BUs can be analyzed, rated and sorted in order of relevance
and then the desired number of BUs can be just taken from the relevance-sorted list [87, 139]. On
the other hand, an on-line approach involves more difficulties because, in the instant a BU must be
selected or discarded, there is no available information about the characteristics of the forthcoming
BUs. Therefore, it is not possible to determine if the selected BUs are the most appropriate to be
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Figure 4.5: Size Control Diagram

included or if, otherwise, BUs with higher relevance values will be received in the future. The possible
solutions for this problem and the quality of the BU selection will depend on the application scenario.
The kind of original content, the level of knowledge and assumptions that can be made about such
content, the available analysis tools, or the type of desired abstract are different conditions that will
determine the final results and all of them should be taken into consideration when studying the
application of an on-line approach to a video abstraction problem.

The main issue to take into consideration is the definition of the inclusion condition, that is, to
determine what characteristics a given BU should fulfill in order to be included in the abstract. For
example, in relevance curve based system, we should determine the relevance value limits for the
selection of BUs. Figure 4.5 shows a diagram summarizing different possible approaches. The most
straightforward one is the a priori determination of a fixed inclusion condition without further con-
siderations. Such approach implies many difficulties for obtaining the desired output abstract sizes
because such size will only depend on the arbitrary characteristics of the original video content. For
this reason, this kind of approach will be, in most of the cases, only useful for unbounded size abstrac-
tion systems in which the length of the output is not a determinant aspect of the abstraction system.
The application of more appropriate inclusion conditions could be feasible in scenarios where there
is some previous knowledge about the original video characteristics. For example, if the abstraction
system is always applied to the same video genre (e.g. soccer matches), it could be possible to make
useful assumptions about the relevance values distribution along the video and, therefore, it could be
possible to determine an appropriate initial inclusion condition for achieving output abstract lengths
close enough to the target values. The deviation in the obtained lengths with respect to the target val-
ues will depend on the original content. If such deviations are acceptable is something that should
be determined by the application scenario.

A different approach to deal with the problem is to make use of variable conditions during the
video BUs processing. Such approaches are represented in the ’Variable’ branch in the figure 4.5.
The ’Content Adaptive’ category represents abstraction systems which establish adaptive inclusion
conditions that can be adapted on-the-fly to the characteristics of the video under process. Such
conditions will vary according to the analysis of the already received content. For example, a possi-
bility for setting an adaptive relevance threshold could rely on the analysis of the already received BUs
relevance, extracting their statistical distributions and applying then an estimation of an appropriate
threshold for the generation of an approximated length abstract. The kind of statistical analysis car-
ried out, applied estimations and assumptions, and other parameters related to the selection process
will determine the quality of the selection.

Another approach included in the variable inclusion category is the ’Local Selection’ approach.
In this case, in the same way as an off-line approach accumulates the complete set of the BUs infor-
mation for the selection of the most relevant ones, a local selection process is carried out over subsets
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Figure 4.6: Fixed and Variable Inclusion Condition Examples

of the original video BUs. Instead of making instantaneous inclusion or discard decisions, a number
of BUs is accumulated and, based on the information provided by the complete subset, those BUs
considered relevant enough are selected to be part of the output video abstract. Figure 4.6 (a) shows
an example of a selection process carried out over a complete video according to its associated rele-
vance curve where the inclusion condition is fixed along the complete video BUs processing. On the
other hand, Figure 4.6 (b) depicts a possible ’local selection’ approach where the BUs are accumulated
in different selection windows where varying inclusion conditions (different thresholds in the exam-
ple) are applied. Of course, a local selection approach could be implemented in many different ways
(sliding selection window, variable window size, etc.). The basic principle in this kind of selection
processes relies on considering that a higher number of available BUs information permits, poten-
tially, to obtain better selection results. At least, the availability of more information should not have
a negative influence in the selection process. The drawback is the required accumulation of BUs in
the selection stage that, in turn, implies a higher delay in the abstract generation process (see section
4.3), fact that could limit the number of scenarios in which this technique could be applied.

The way in which the selection process is executed is not necessarily limited to the defined cat-
egories and it could be possible, for example, to apply a combination of the approaches depicted in
figure 4.5 or variations of the proposed techniques. It is possible to implement adaptive inclusion
conditions limited by previous knowledge about the original content or, for example, to apply a lo-
cal selection approach with a selection condition depending on the information acquired from the
previously processed content (and not from the current selection window data).

The application of on-line selection will be, in the best case, as good as an off-line approach op-
erating with the same data (a better selection can be carried out with the availability of the complete
video information). The characteristics of the original content and the selected method will deter-
mine how close an on-line approach can get to an off-line process in terms of selection quality. Gen-
erally, the best kind of content for the application of on-line abstraction is that presenting constant
or similar characteristics all along the video length. For example, the processing of a video which last
set of BUs have similar characteristics to the first ones will permit the effective application of adaptive
selection mechanisms (the statistics extracted from the first fragments of the video would be applica-
ble to the last ones). The homogeneous distribution of relevant content along the video benefits the
on-line approaches because, given the limited scope of the information handled by such systems, it
increases the probability of a selection process where the most relevant content is correctly selected.
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Figure 4.7: Inter-BU Dependency Diagram

On the other hand, a very heterogeneous content difficults the selection process: if we consider, for
example, a video where the most relevant content is accumulated at the end of the video, an on-line
system lacking of such information will probably select less relevant content from the beginning of
the video given its unawareness about the relevant content accumulation at the end of the video. That
means that not every kind of content is suitable to be processed by an on-line approach in a proper
way and, therefore, each application scenario should be carefully studied before the application of
on-line techniques.

4.4.3 Inter-BU Systems

The previous sections focused on the implementation of the most simple application cases for on-
line abstraction; unbounded size intra-BU abstraction systems, which major limitation consists on
the need of computationally efficient analysis and scoring algorithms. A further level of complexity
is reached when dealing with systems where the selection process is constrained by the unawareness
about not yet received content characteristics, discussed in section 4.4.2. In this section, we will take
into consideration the implications of inter-BU abstraction approaches, that is, systems in which the
analysis, scoring or selection of a BU depends on other BUs from the original content set [39, 75, 126].

There are many different ways in which inter-BU dependencies can be present in an abstraction
system. Figure 4.7 depicts the two main aspects that we will consider for the analysis of inter-BU
dependencies: direction and scope. Those aspects have been taken into consideration because they
have a direct influence in the characteristics of an on-line implementation of a given abstraction sys-
tem. The ’direction’ category differentiates the cases in which the analysis, scoring, or selection of a
BU depends on already received BUs -backward dependency- or the case in which any of them de-
pend on forthcoming BUs -forward dependency-. In a backward inter-BU dependency case, in the
instant a BU is received, the required BUs to complete its processing have been previously received
so, as long as the previous BU information has been appropriately stored, the system is able to imme-
diately process the current BU. A representative example can be found in ’sufficient content change’
abstraction approaches [56, 44, 58], where original content is added to the video abstract only if it
differs enough from previously selected content so, in this case, the selection of a given BU only de-
pends on previous content. On the other hand, in case a BU processing depends on ’future’ BUs, the
system will be forced to wait for the reception of such BUs, implying an increase of the delay in the
output abstract generation. Clustering approaches [50, 64, 62] usually require all the original BUs to
complete the process: any BU can have both backward and forward dependencies with any other
random-positioned BU (in this case the dependency relies in belonging to the same cluster and can
affect the selected set of BUs).

The other main aspect about inter-BU dependencies to be considered is the ’scope’. Such term
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Figure 4.8: BU Inter-Dependencies Example

refers to the distribution of the BUs dependencies along the original video. In a local dependency
case, the number of BUs required for the processing and their distances to the dependent BUs is
limited. This is a common situation that can be found, for example, in systems where the feature
extraction or scoring of a given BU depends on the adjacent or neighboring BUs. For example, in
[104], motion activity is extracted from limited length group of frames -GoFs-. In local approaches,
whether the dependencies are backward or forward oriented, the amount of accumulated BUs and,
therefore, potential delay will be always limited. A global scope dependency will be present when
it is not possible to determine the number and distance of the dependencies of the processed BU.
The most common global dependency arises in redundancy removal approaches [91, 3, 62], which
aim to remove repeated or too redundant events in a video. In such systems, the repeated events are
distributed in arbitrary positions along the video and it will be not possible to a priori determine the
amount of repeated events and their separation, factors that will determine the relevance of given
BU.

Figure 4.8 shows an example of cases of backward global and forward local dependencies. In
the first case, backward global dependencies, the current BU processing requires information from
already received BUs located in any position in the original video. The second case, forward local
dependency, is represented by the links to not yet received BUs which are, in this case, located in
close and localized positions of the video. The combination of forward/backward and local/global
dependencies will be possible but we will denote the dependencies in a given system with the name
of the most limiting present dependencies, namely, the forward and the global ones.

As it has been previously explained, a forward dependency implies a higher delay in the abstrac-
tion system because the processing of a BU can not be finished until all the BUs it depends on are
available. In any case, in the local dependency case, the amount of time and BUs to be processed
are limited. On the other hand, when dealing with global dependencies (in terms of dependencies
location or number) different problems which could influence the on-line operation of the system
arise:

• An excessive amount of dependencies could influence the processing of a BU in one of the
abstraction process stages.

• An undetermined number of dependencies in a forward dependency case can produce an un-
predictable amount of delay in the system.

The number of BU dependencies in an analysis, scoring or selection process must be carefully
considered when implementing on-line systems and has been previously analyzed in section 4.3.3,
where the computational performance requirements for on-line approaches were described. The
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Figure 4.9: Inter-BU On-Line Abstraction Architecture

amount of BUs information that is required to store should be taken into account as well, due to the
associated memory consumption, which could be limited in a given system. Even considering that
the number of dependencies are kept under the required operation limits, the global dependencies
may produce, in case of forward dependencies, unfeasible delays. Such kind of dependencies should
be avoided in the implementation of on-line approaches and, if possible, substituted by alternative
methods (some examples for redundancy elimination approaches will be provided in the following
chapters).

A special case of inter-BU dependency can be found in the abstraction approaches classified as
abstract-dependent [39, 57]. In such systems, the scoring or selection mechanisms depend on the
previously selected or discarded BUs and not only on the original video characteristics: so, a BU
processing depends on the generated abstract content. In ’sufficient content change’ approaches
[38, 75, 128], BUs are included in the output abstract if they differ enough from previously included
BUs. Another example can be found in [60], where BUs are iteratively included in the abstract and
those similar to those included are removed from the selectable set. Figure 4.9 presents an on-line ar-
chitecture which enables the implementation of inter-BU approaches (including abstract-dependent
ones) adding the Abstract Metadata storage which allows to keep information about previously pro-
cessed BUs (that could be needed for backward dependencies) and generated abstract information.

4.5 Conclusions

In this chapter, taking into account the previously defined taxonomy and generic abstraction archi-
tecture, the restrictions and requirements of both on-line and real-time systems have been analyzed
and formalized. Starting from the most basic abstraction models to more complex ones, the different
algorithmical issues that must be taken into consideration for on-line implementations have been
discussed. One of the main targets of the work presented in this chapter is to determine under which
circumstances it is possible to build equivalent on-line or real-time approaches to existing video ab-
straction techniques and what are the limitations of those on-line and real-time systems.

The most appropriate approaches for on-line implementation have been analyzed and the main
issues that should be addressed for dealing with more complex systems have been enumerated. The
imposed constraints imply that, in the case of developing an on-line or real-time abstraction ap-
proach, techniques commonly applied should be modified or simplified to fulfill the required op-
erational constraints. However, the possibility of applying an on-line approach will vary attending to
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each specific application scenario, characteristics of the abstraction mechanism and type of content
to be processed.

In the following chapters, the analysis carried out in this work is applied for the development of
generic content on-line/real-time video skimming approaches as well as applications which fulfill the
described operational constraints and solve the identified limitations.
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Chapter 5

On-Line Video Skimming Algorithms

5.1 Introduction

In previous chapters, the characteristics of on-line and real-time abstraction systems, as well as the
constraints associated to their implementation, have been defined. The main restrictions of the on-
line approaches rely on the computational efficiency of the applied algorithms and the lack of infor-
mation about forthcoming video fragments which can limit the precision of the abstraction system
’analysis’, ’scoring’ and ’selection’ stages (as analyzed in previous chapter 4 section 4.4). All the de-
scribed operational constraints aim to enable the implementation of systems fast enough to process
the incoming content ’on-the-fly’ and to output results with a limited and controlled delay. For this
purpose, it is required to propose alternative solutions to common abstraction techniques, usually
designed to provide off-line operation modalities. This chapter describes the work carried out for
the development of efficient on-line algorithms which could be applied for generic content video ab-
straction. The reasons why on-line approaches work for video summarization based on redundancy
removal are analyzed and applied.

Two experimental systems have been designed and developed (with preliminary versions pre-
sented to the TRECVid 2007 and 2008 campaigns). The purpose of the developed algorithms was the
implementation of on-line abstraction approaches which could confirm the possibility of achieving
results comparable to off-line algorithms with the restrictions of the on-line perspective. The out-
come of the developed systems are video skims, which have the advantage of including audio and
motion information although, in this case, the systems development was focused on the visual as-
pects of the video content (as discussed in chapter 3, the swapping between a video skimming and a
keyframe extraction algorithm is usually straightforward).

In the following sections, we will firstly present, in section 5.2, related work in terms of exist-
ing abstraction approaches which provide low computational complexity and progressive generation
functionalities. In section 5.3, the foundations of the redundancy removal approach are presented
together with the justification of why such abstraction technique can be successfully applied in an
on-line way obtaining good results. Afterwards, the developed summarization algorithms are pre-
sented in sections 5.4 and 5.5. The first one provides an on-line approach, without guarantee of a
generating a specific length summary, which was employed as a first experiment demonstrating the
possibility of obtaining results similar to other off-line abstraction approaches with an on-line system.
Afterwards, the second summarization algorithm, a binary tree based approach, is presented. Such
system represents the evolution and generalization of the previously developed systems for provid-
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ing a highly configurable, on-line scalable (in terms of computational effort and generated abstract
quality) abstraction system. The results of the early version of both approaches in the TRECVid eval-
uation campaigns can be consulted in section 5.6. Finally, in section 5.7, some conclusions close the
chapter.

5.2 Related Work

We have defined on-line abstraction systems as linear computational performance approaches with
progressive generation delay (see chapter 4). In most cases, abstraction systems with linear complex-
ity are those performing local optimization or selection of the original video fragments maintaining
a constant analysis and selection complexity. Many abstraction approaches rely on visual redun-
dancy elimination, usually applying costly image and video fragment comparisons. On the other
hand, straightforward solutions, like the selection of the first frame of each shot [58], direct video
subsampling [64] or limit the number of comparisons to surrounding frames [52], are able to per-
form linearly and provide progressive generation delay. Approaches aimed for their implementation
in commercial devices such as personal video recorders (PVRs) pay special attention to the computa-
tional performance of the system. Examples can be found in [140], an automatic highlight scene de-
tection system, in [141], which presents a fast-forward abstraction approach relying in the detection
of face tracks on the original video, or in [11], a recorded programs browsing system which classifies
the content according to the number and position of detected faces. On the other hand, methods
dealing with the abstraction problem as an optimization problem [60, 67], maximization of an ob-
jective function [126], or clustering based approaches [100], make use of the whole available original
content for the abstract generation and require a number of comparisons which heavily increases
with respect to the amount of original information, yielding to non-linear performance.

With respect to the generation delay, the most common approach is the off-line operation modal-
ity, that is, the abstraction algorithm requires the complete original data before processing the ab-
stract. Clustering [50, 40, 100], rate-distortion [84] approaches or other methods such as [72], where
the complete original video is mapped to a polyline later simplified for the generation of the video
abstract, are typical off-line solutions. Most of the existing progressive abstraction approaches are re-
duced to subsampling methods like fast-forward approaches [27, 64] or systems where one keyframe
is selected from each incoming shot [58] or group of frames (e.g. in [39] keyframes are extracted from
each video segment accumulating a predefined amount of variation). More complex methods include
potentially progressive adaptive playback approaches [142], progressive analysis for the identification
of motion acceleration or deceleration points as keyframes [75], or methods based on local analysis
of a feature curve extracted from the original video [128].

The on-line abstraction modality has not been specifically addressed in the literature and exist-
ing on-line systems are mainly reduced to basic subsampling [64] approaches and ’sufficient content
change’ keyframe extraction systems [75, 128, 38]. The first algorithm presented in this chapter (sec-
tion 5.4) consists on a ’sufficient content change’. Its main novelty lies in being a video skimming sys-
tem instead of a keyframe extraction approach, implying higher computational requirements and the
novel mechanisms to control its computational complexity. Such system served as a first approach
to evaluate the possibilities of on-line video skimming systems compared with off-line approaches.
The second approach (section 5.5) constitutes a completely novel approach and no on-line systems,
similar in terms of provided functionalities, have been found in the literature. Both algorithms have
been evaluated, in terms of comparison with other abstraction approaches, within the TRECVid BBC
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rushes evaluation campaigns (see section 5.6) and their functionalities are in-depth analyzed in chap-
ter 7.

5.3 Redundancy Removal Foundations

Redundancy removal, usually based on visual similarity metrics, is one of the most common applied
approaches for video abstract generation. Such mechanism consists in the elimination of fragments
from the original content which contain repeated, that is, similar information already selected for
its inclusion in the video abstract. The abstracts are generated as a reduced set of fragments from
the original video which tend to be visually different from each other. It is usually assumed that the
selection of very dissimilar fragments would necessarily provide a wider coverage of the original in-
formation. One of the advantages of this technique is the possibility of its application to almost any
kind of content and, therefore, no specific domain information is required. This is one of the main
reasons why the redundancy removal approach has been applied for the video skimming processes
described in this section. Nevertheless, as it will be explained in the following subsections, different
abstraction criteria may be integrated in the developed systems.

Clustering is one of the most common techniques applied for redundancy elimination. Such
technique consists in the accumulation of similar fragments from the original video (e.g., frames,
GoPs, shots) in groups called clusters. The similarity criteria may rely on visual, semantic or whatever
features the system is designed to work with (the most common are the visual features). The video
abstract is then built by taking representative fragments from the different groups and, in this case,
the fragments considered as representative vary from one method to another (e.g. cluster centroid,
longest fragment). Many video abstraction methods found in the literature [40, 62, 64, 50, 100, 63]
summarize the original videos by the application of those clustering approaches. Nevertheless, there
are alternative approaches for redundancy elimination like, for example: [119] which makes use of a
graph based optimization method; [143] where authors make use of an ’excerpt shortening approach’
(as defined in [1]) for retaining only the essential information for the comprehension of each original
video excerpt; and [91] where a similarity matrix is generated, calculating the differences between
all the fragments of the video, for a further selection of the most representative non-redundant frag-
ments.

5.3.1 Redundancy Removal from an On-Line Perspective

From the on-line video abstraction perspective studied in this work, the most restrictive limitation of
the most common redundancy elimination approaches is the requirement of processing the whole
original video information for carrying out the clustering or global optimization process. According to
the conditions defined in previous chapter 4, an on-line abstraction approach can not depend on the
availability of the whole original content for starting the abstract generation process and, therefore,
different redundancy elimination techniques must be applied. The most suitable are ’sufficient con-
tent change’ approaches [75, 128, 38], where Basic Units -BUs-, that is, incoming video fragments of
different length depending on the application (see chapter 3), are included in the output abstract only
if they differ enough from previously included BUs. This mechanism provides a way to avoid exces-
sive redundancy in the generated abstract and does not require the complete original content which
can be, therefore, progressively processed. Nevertheless, some of the problems previously identified
(see chapter 4, section 4.4) arise and others continue unsolved. For example, setting an appropri-
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ate similarity threshold for BU inclusion without the complete content information will introduce an
uncertainty in the output abstract length. On the other hand, one of the problems that must be ad-
dressed for the fulfillment of the on-line operation mode is to keep the computational complexity of
the applied algorithms under the required levels for on-line (or real-time) processing. In ’sufficient
content change’ approaches, the amount of selected content is constantly growing as the original
video is processed. Consequently, the amount of comparisons required for checking that an incom-
ing video fragment (BU) is not redundant grows as well. Such growing number of comparisons can
eventually imply a not on-line performance of the system and, hence, must be avoided.

The main approach applied in this work for solving the above identified problems is to limit the
number of comparisons to be carried out, forcing the abstraction systems to perform only a reduced
number of video fragment similarity checks. The hypothesis in which we rely is to consider that, in
most of the video content, like movies or TV series, the visual redundancies are located within limited
time lapses, that is, the probability of finding a video fragment similar to a given one is smaller as the
temporal distance between both fragments increases. This may not happen in every type of content
like, for example, news bulletins or quiz shows, where redundancies, like anchorperson shots, are uni-
formly distributed along the footage. In movies content it is quite likely, within a given scene, to find
very similar shots (same character, same position in stage) but, as the movie and situations evolve,
the characters, cloths, light conditions or locations vary and it is more difficult to find repeated con-
tent (from a visual point of view, as well as from a narrative one -e.g., the same setting may appear
but it will belong to a different scene and may contain relevant semantic information, different from
previous one-). If such hypothesis is fulfilled, then it would be possible to establish a time limitation
for the comparisons carried out by an on-line abstraction system while keeping under control the
amount of undetected redundancies and maintaining the computational complexity of the system
under acceptable levels. As its has been mentioned, this may not be applicable to every video genre:
for example, sport events typically contain visual redundancies homogeneously distributed along the
video length which do not represent the same semantic information and a movie could contain as
well repeated content in distant positions along its footage. Of course, the temporal window redun-
dancy check will work better in content in which it is possible to assure that a high as possible amount
of the redundancies are concentrated in a locality of the video fragment subject to comparison.

Analysis of Redundancies Distribution in Video Content

In order to determine the feasibility of the formulated hypothesis, a simple test has been carried out
with commercial movies1 and the TRECVid BBC rushes content2, a much more redundant content
than usual movies and TV series. The main objective of the test was to determine how much re-
dundant content can be detected with the application of common visual distance metrics and to
figure out the video timeline evolution of such redundancies. The first stage consisted on establish-
ing a visual similarity distance. In this case, the chosen technique was a combination of the classical
color histogram and MPEG-7 Color Layout [144], both of them calculated in the YCbCr color space.
The color histogram is a technique commonly used in image retrieval [145] and summarization ap-
proaches (see chapter 2, section 2.4) because of its simplicity, speed, and reasonably good results.
Nevertheless, such technique lacks of spatial information about the distribution of colors in the im-
age and it has been combined with the Color Layout descriptor, applied as well for image retrieval

1’Pasqualino: Seven Beauties’, ’House of Flying Daggers’, ’Mediterraneo’, ’Hotel Rwanda’ and ’Kagemusha’
2The complete set of 39 test videos from the 2008 evaluation campaign
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Figure 5.1: Visual Distance Vs. Similar Images Ratio

[146], which includes color spatial distribution information. The obtained distance, averaging the
two original distances, is still far from providing the results of the human visual perception, but such
circumstance is an inherent characteristic of all existing image comparison techniques (specially the
fastest, and therefore simplest, ones). A test was carried out picking random frames (~150 frames)
from 4 of the above mentioned movies random fragments (~15 minutes fragments subsampled at 1
second interval). Each frame was displayed together with the most similar frames found in the same
fragment, according to the proposed distance. Finally, the distance corresponding to the most dis-
tant frame (according to the defined image distance) containing the same semantic information as
the original one (from a subjective point of view) was annotated. It was observed that, for images
which obtained larger values, it was more likely to find other images not representing the same in-
formation as the original one with smaller distance values. The graph shown in figure 5.1, which
represents the probability of one image to be perceptually similar to another one depending on their
visual distance, was derived from the experiment. It can be observed how, for small values (under
0.03) the probability that two images with such distance represent the same semantic information is
above 90%. Such probability drops as the visual distance increases and, for example, for distances
above 0.08, the amount of cases in which the two images represent the same ’semantic’ information
is under 20%.

The main problem related to existing image distances is their impossibility to capture the ’real’
semantic meaning of the images. There is always a degree of uncertainty about the perceptual simi-
larity of two images which may share the same color and shape structure or distribution but contain
different information. Therefore, it is not possible to determine a fixed threshold for a perfect sepa-
ration between semantically different or similar images. This limitation introduces an uncertainty in
any visual comparison result which, depending on the case, may have even a heavier influence in the
redundancy removal imprecisions than the applied fragment selection methodology.

Once we have approximated a degree of confidence in the defined distance metric for the identifi-
cation of similar images, it is possible to study the distribution of the ’detectable’ similarities in video
content. For this purpose, we have carried out a test with the previously mentioned commercial
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Figure 5.2: Movie Content Visual Redundancies Distribution

movies and the BBC rushes content. The original videos are firstly subsampled extracting 2 frames
per second and all the frame cross-comparisons are carried out. The results are accumulated in a 2D
histogram where each bin represents how many pairs of frames are separated by certain temporal (y
axis) and visual (x axis) distances. For each possible visual distance value, d, the cumulative distri-
bution function is calculated. Therefore, each position (d , t ) in the obtained distribution represents
the probability that, given two frames separated by a visual distance d , their temporal separation, t ′,
fulfills t ′ ≤ t . With such information we have derived the graphics displayed in figures 5.2 and 5.3. The
70%, 80% and 90% coverage lines represent the temporal margin (in minutes) which includes 70%,
80% and 90% of the pairs of frames with certain visual distance values (x axis).

Figure 5.2 was calculated making use of the 5 complete movies previously identified without con-
sidering the first and last 5 minutes in order to avoid distortions caused by the opening/closing cred-
its. Making use of this figure, we can determine that, on average, 80% of the pairs of frames in the
studied movies with a visual distance value of 0.3 are separated by less than 54 minutes. The dot-
ted lines in the graph, labeled as ’Similarity Confidence Degree’ determine the visual distance values,
from the previously defined tests (see figure 5.1), which provide a security of 90%, 70%, 50% and 20%
of two images being semantically similar. The obtained graphics provide very significant informa-
tion about the redundancies distribution in the video, being possible to determine that most of the
detectable image redundancies are concentrated in small temporal distances. For example, if we es-
tablish an acceptable confidence degree for considering two images being similar as 70%, making use
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Figure 5.3: BBC Rushes Content Redundancies Distribution

of the data represented in figure 5.1, it is possible to determine that we require a visual distance value
below 0.044 in order to reach such level of confidence. If we follow the 90% coverage level line, we can
see how it crosses the 70% similarity confidence degree line in about 1 minute amount of time. Such
result means that 90% of the pairs of frames with such computed visual distance are separated by less
than a minute in the original video. It must be pointed out that the test has been carried out at frame
level, without considering higher units (such as segments or shots), subsampled at 1/2 second rate.
Without aiming to extract further conclusions, the graph shows a clear tendency of most part of the
visually similar frames to be grouped in close temporal positions.

Figure 5.3 shows the obtained graph for the 39 BBC rushes videos leaving 2 minutes margin of
unprocessed frames at the beginning and end of the videos to avoid the distortion introduced by the
included test patterns. In general terms, the observed behavior is very similar to the values obtained
with the movies content. Nevertheless, the temporal distance for similarity confidence degrees above
50% (visual similarity distance below 0.06) is greater than in the previous example due to the high
redundancy of the BBC content, which includes repeated takes. In this case, as the videos are shorter
(about 30 minutes maximum length), the obtained covering curves do not reach high distance values.
It can be observed how the coverage curves present an increment in the distance values when reach-
ing similarity values very close to 0 (for similarity confidence degree levels above 90%). This fact can
be explained because of the junk content included in the BBC rushes videos that is mainly composed
by blank frames or test patterns randomly distributed along the videos. Such kind of content (for ex-
ample, blank frames) produces very low visual distance values when compared and it can be found in
any position in the videos. However, the obtained graph shows again a clear grouping of most similar
frames in very reduced time intervals.

In conclusion, it seems reasonable to consider that the temporal comparison limitation imposed
by the on-line operation mode, as previously discussed, will not produce a heavy impact in the gen-
erated summary quality if considering the time lapses that cover the majority of the ’detectable’ re-
dundancies. In the following sections two on-line summarization approaches, which results in the
TRECVid evaluation campaigns are included in section 5.6, are presented. Such results demonstrate
how the performance of on-line approaches are comparable to off-line ones, which make use of the
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Figure 5.4: (a) Image Quarters Histogram Calculation; (b) Histogram Value Neighborhood Compari-
son

whole original content.

5.4 On-Line Video Skimming Based on Histogram Similarity

In this section, the first developed ’sufficient content change’ abstraction approach is described. Such
approach was applied in the submission presented to the TRECVID 2007 BBC rushes summarization
task [147] (the results obtained are included in section 5.6). The method provides a very fast algo-
rithm with low memory consumption which relies in fast frame and shot similarity measures applied
in a redundancy elimination process. The reasons why the on-line operation modality can be effec-
tively applied in combination with such redundancy removal techniques have been described in the
previous section.

5.4.1 Similarity Measures

Frame Similarity

The Color histogram is a popular image indexing feature commonly used for image [148, 149] and
video segments retrieval and identification [150, 151] due to the advantages it provides: simple im-
plementation, speed of histogram calculation and comparison, and robustness and invariance to ro-
tation and small scale changes. Its main disadvantages are associated to its high sensibility to changes
on the image lightning conditions [149] and its impossibility for representing the spatial distribution
of the colors in the image. There exist several techniques applied for the reduction or elimination of
the illumination [152] or spatial [153] limitations of the color histogram. In this algorithm, in order to
reduce these limitations while maintaining a high computational efficiency required for the on-line
approach, the histogram is not calculated over the complete image but over rectangular areas resul-
tant from the division of the original image in quarters. Such technique is a simple way to add spatial
information to the color information provided by the color histograms [154].

As shown in figure 5.4 (a), the complete frame area is not used for the calculation of the histograms
and only a central region is considered. Such reduced area is focused in the center of the image,
which is considered to contain the most relevant information. Additionally, a smaller area reduces
each frame histogram extraction time. Nevertheless, the usage of a too small processing area may
produce undesired results, for example, if an object or element covers most of the processing area,
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the color histogram results may not represent the whole image. In the experiments carried out, the
width and height margins of unused information in each side of the histogram computing area is set
to 1/6 of the total width or height respectively, obtaining a reduction in the process time required for
the calculation of the color histogram.

Histograms are affected by changes in the illumination in terms of a horizontal displacement
of the calculated indexes, principally in the Y channel. In order to reduce such effect, when two
histograms are compared, the differences are not calculated directly between corresponding indexes
in the histograms but as an average of a given histogram position and a neighborhood of positions
in the compared histogram (5.4 (b)). Defining the original image histogram values as Hoi and the
histogram values of the comparison picture as Hci (histogram A and B respectively in figure 5.4 (b))
with 0 ≤ i ≤ 255 (assuming 256 quantification levels on each color channel), the difference between
the two given histograms is defined as:

HDiff (Ho, Hc) =
∑255−w

i=w

∑w
j=−w

abs(Hoi−Hci+ j )
(2w+1)

(255−2 ·w)
(5.1)

Where w defines the number of values adjacent to the original histogram position (in both sides)
which are part of the comparison neighborhood (see figure 5.4 (b)).

Considering H(Im)q,c as the histogram corresponding to image Im, quarter q (see figure 5.4 (a))
and channel c (with 1 ≤ q ≤ 4 corresponding to the four possible quarters and 1 ≤ c ≤ 3 to the 3 possi-
ble image color channels Y, U, V, -no color space transformation has been considered in order to avoid
time consumption in color space conversions-) the final frame visual difference -Diff - value between
to images Im1 and Im2 is calculated as the average color histogram differences of each image quarter
and color channel:

Diff (Im1, Im2) =
∑3

c=1
∑4

q=1 HDiff (H(Im1)q,c , H(Im2)q,c )

3 ·4
(5.2)

This visual distance measure will be used in the rest of the algorithm steps for different purposes such
as shot similarity measure, shot change detection and shot variation metrics.

Shot Similarity

Histogram based visual distance metrics are commonly used for video segment retrieval by selecting a
specific key frame and using it for comparison, selecting or dropping video segments [23, 155]. In this
case, the comparison metric defined in the previous section is applied for the definition of a visual
similarity metric between sequences of frames. Given two frame sequences S1 = { f1,1, f1,2, ..., f1,a}
and S2 = { f2,1, f2,2, ..., f2,b} composed by a and b frames - f - respectively, we define the histogram
difference matrix, HDiffMatrix, between S1 and S2 where each position i , j , with 1 ≤ i ≤ a and 1 ≤
j ≤ b, is defined as:

HDiffMatrixi,j(S1,S2) = Diff ( f1,i , f2, j ) (5.3)

Each position of HDiffMatrix is defined as the difference value between the frames on both se-
quences indexed by the row and column of the matrix. Each row (or column) in the matrix represents
the difference of a specific frame in one sequence with all the frames of the other. Figure 5.5 shows
several examples of histogram difference matrices calculated for several kind of shots with themselves
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Figure 5.5: Intrashot Histogram Difference Matrices

(darker values represent similar frames). The black diagonal on the obtained matrices represent the
self comparison of each frame in the sequence.

Shot A (static group of frames) shows low and constant distance values, as all the frames in the
shot are similar. In Shot B, a gradual increment in the difference matrix values (from the top left
corner) can be observed, caused by the evolution of the shot. Shot C shows a slowly evolving sequence
of frames with an abrupt change (corresponding to the white band in the right and bottom sides of
the matrix) at the end of the sequence. Shot D shows an example of static camera sequence (dark
areas of the difference matrix) in which some people cross the street in front of the camera (the white
bands in the matrix). Finally, Shot E includes a shot change example which is clearly visible in the
regions shown in the histogram difference matrix.

The HDiffMatrix, when self calculated for a given frame sequence, provides information about
the evolution of such sequence and can be used to estimate its accumulated variation. Given two
sequences S1 and S2 composed by a and b and frames respectively, we will define the mean difference
value between them as:

MeanDiff (S1,S2) =
∑a

i=1

∑b
j=1 HDiffMatrixi,j(S1,S2)

a ·b
(5.4)

When self-calculated for a given sequence S1, the MeanDiff (S1,S1) will result in low values for
static or low movement sequences, and in higher values for sequences with significant changes. Al-
though the distribution of the changes in the sequence is lost, the speed restrictions imposed by the
on-line operation mode requires to avoid other more complex and computationally expensive de-
scriptors. Regarding the study of similarity between different shots, figure 5.6 shows several examples
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Figure 5.6: Intershots Histogram Difference Matrix.

of histogram difference matrix calculation for different shots in each axis. Comparison between shots
A and D shows low frame distances while some vertical higher distance bands appear (corresponding
with the people crossing in front of the camera –see figure 5.5-).

Comparison between Shots A and E shows a light region to the left and a dark area to the right
corresponding to the shot change within Shot E. Comparison between shots C and B shows how two
completely different sequences result on an almost white (high distances) difference matrix. While
the MeanDiff value provides information about the variability of a frame sequence, the intrashot
HDiffMatrix provides a metric for frame sequence similarity when calculated for two different se-
quences. As each frame in the sequences is compared with all the frames of the other sequence, the
obtained value is invariant to the temporal distribution of the frames in the sequences. Therefore, vi-
sually similar events do not need to be time-aligned in both sequences to detect their similarity. When
dealing with long sequences, all the particularities included in each sequence, similarities and differ-
ences, tend to balance each other. Therefore, the final mean difference value loses significance and
better discrimination results are obtained when comparing static sequences or short video segments.
In this proposal, it is not considered to extract and apply more sophisticated (and computationally
costly) descriptors due to the on-line and real-time target and, therefore, the approach is to split the
original video in small subsegments trying to maintain as much visual coherence in the clips as pos-
sible. This approach will allow, not only meaningful comparisons between shots but to reduce the
computational cost of the histogram difference matrix calculation (O(n ×m), when comparing two
frame sequences of n and m frames).

5.4.2 Shot Change Detection and Splitting

The first step in the proposed on-line abstraction chain is the detection of shot changes in the orig-
inal video: the original frames are read one by one and stored in a shot detection buffer where the
frame histogram distances are applied for the detection of shot changes [156]. The comparison is
performed between several consecutive frames, so it is possible to detect both abrupt and gradual
shot changes depending on the size of the shot detection buffer. Nevertheless, such size can affect
the overall performance of the system because each decoded frame is compared with all the frames
already stored in the shot detection buffer.

Figure 5.7 depicts the data flow in the summarization process. Figure 5.7 (a), the Shot Detection
Buffer, corresponds with the shot change detection mechanism. When no shot change is detected the
read frames are stored in the Splitting Buffer -figure 5.7 (b)- where the received frames are grouped
and further processed for a subsequent splitting before sending them to the On-line Shot Selection
step -figure 5.7 (c)-. The way in which the incoming groups of frames are divided in small frame se-
quences aims to minimize the HDiffMatrix calculation time while allowing the On-line Shot Selection
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Figure 5.7: On-Line Stage Processing Flow

module to carry out meaningful comparisons (avoiding too long and heterogeneous sequences). For
determining the frame in which the sequences are split, given an accumulated sequence S composed
of n frames, a ‘decay’ value is calculated as:

Decay(S) = MeanDiff (S,S)

n
(5.5)

This Decay value tends to 0 as the number of frames in the sequence, n, increases, but the decay
amount depends as well on the MeanDiff value of the video segment which, as previously discussed,
is an indicator of its variety and increases as the variety does. The Decay value drops faster in static
sequences than in high variation ones. Assuming that a user requires a smaller amount of time for
the understanding of a static sequence than in the case of a dynamic one, it is convenient to set a
mechanism outputting more fragmented sequences in cases of low variation and viceversa. More-
over, higher fragmentation in static sequences will produce a more effective summarization because
a high number of very similar video segments will be compared and most of them will be eliminated.
For this purpose, the Splitting Buffer flushes its content to the On-line Shot Selection stage when a
shot change is detected in the Shot Detection Buffer or when the Decay value reaches values below
a specific splitThreshold, thus controlling the split size of each frame sequence. In the implemented
system, the splitThreshold parameter has been experimentally set in such a way that the length of
the obtained video fragments is about 20 frames length for static content and up to 40 frames for
sequences with the high variety. Keeping the length of the segments in small values allows faster
segment and shot comparisons.

5.4.3 Shot Selection

Once the received video has been split, the obtained segments are processed in order to decide about
their discard or their inclusion in the final summary. The proposed approach has been designed to
operate on-line, generating the summary as the video is being received and analyzed, but it does not
allow to strictly control the output summary length, which will depend on the content characteristics.

Filtering of Subsequences

Before deciding if a video segment received from the Splitting Buffer should be included in the output
summary or not, it must fulfill several conditions. The first filtering criteria is related to the length
of the segment: too short segments are discarded in order to allow the user to correctly perceive the
content and a minimum sequence length of 20 frames is applied in the system. Another implemented
filtering mechanism is related to the amount of visual information provided by the video segment. For
example, a uniformly colored set of frames does not provide information with enough relevance to
be included in the output summary (black or white sequences, TV test patterns) and a mechanism to
discard such kind of content has been added to the filtering step. The number of significant colors
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Figure 5.8: On-line Shot Selection Data Flow

on each frame are calculated counting the number of positions in the color histogram with a value
above 1/3 of the maximum histogram value (considering each color channel). Those video segments
containing too few colors are considered to provide no information and are filtered.

On-Line Subsegment Selection

Figure 5.8 depicts the on-line shot selection process. Each new sequence of frames obtained from
the Splitting Buffer (see Figure 5.7 -b-) is compared with the set of already selected sequences (Figure
5.8 -a-) obtaining the MeanDiff value between the new sequence and all the stored sequences with a
timestamp difference below a configurable value. Setting a temporal difference limit for the compar-
ison of video subsegments avoids an excessive and increasing number of comparisons as the video
is being generated, improving the computational efficiency of the system without decreasing signif-
icantly the final results quality. The temporal structure of the original video is maintained as well,
because similar video segments are eliminated only if they are close in time, characteristic which
may be interesting in certain abstraction scenarios. Depending on the result of the comparison, the
new frame segment is added to the Selected Sequences Storage (Figure 5.8 -b-) and written in the sum-
mary if it is different enough to the already selected sequences. For this purpose a MeanDiff value
configurable threshold is defined for the inclusion or discard of the incoming fragments (Figure 5.8
-c-).

Therefore, the length of the obtained summary depends on the redundancy of the original video
and the distribution of the similar fragments (similar and close in time video fragments have a higher
discard probability), the maximum temporal difference for frame sequences comparison and finally
the MeanDiff threshold for the inclusion of video segments. The computational efficiency of this
method (which mainly relies on the number of comparisons between frame sequences) depends on
the same variables: for a low MeanDiff threshold more sequences are included in the buffer and more
segments comparisons are required for the processing of the original video, what makes the system to
get slower. The same happens if the temporal comparison limit is increased, although the number of
selected segments may be reduced because each incoming fragment is compared with more distant
segments. Such limit should be set attending to the trade-off between the detectable redundancies
(see redundancy distribution analysis in section 5.3.1) and the computational efficiency of the sys-
tem. Section 5.6, where the customizations to rushes are described, includes several performance
and generated summaries quality results corresponding to the TRECVid 2007 BBC rushes summa-
rization task submission.
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5.5 Binary Tree Based On-Line Video Summarization

This section describes the on-line video skimming algorithm developed starting from the experience
gained in the development and evaluation of the previous system. The new algorithm provides a
generic approach for on-line video summarization, scalable in terms of computational complexity,
abstract generation delay and memory consumption as well as summary quality. The flexibility of the
proposed approach enables the application of the abstraction algorithm for devices with different
processing capacities or abstraction purposes. Furthermore, the proposed approach provides a flex-
ible on-line framework in which different summarization criteria and techniques can be integrated.

The algorithm is based on the dynamic generation of a ’summary tree’ which models the different
possibilities for inclusion or exclusion of the incoming video fragments. Based on such tree structure,
the algorithm is able to calculate different generable video summaries as the video is being received
and, iteratively, the best path in this binary tree is selected. Such path in the tree codifies the selection
or discard of each incoming video fragment, characterizing the output video summary.

In the following sections the different parts of the algorithm are described: in section 5.5.1, an
overview of the binary trees skimming approach is provided, section 5.5.2 describes the applied frame
and shot comparison techniques, while the branch scoring and pruning mechanisms are described
in sections 5.5.3 and 5.5.4 respectively.

5.5.1 Dynamic Tree Summarization

As it has been discussed in previous chapters, the on-line abstraction approach implies several limi-
tations with respect to off-line systems (e.g., small and limited delay, progressive generation, lack of
complete information about the incoming video) which may produce, given the constraints of the
selection process, a negative impact in the results quality. The output summary length control is
one of the problems that can be found. For example, in the basic system described in section 5.4,
the summary length depends on the characteristics of the original content. Another issue identified
in the previous system was related to the potential summary quality loss caused by the instant se-
lection or discard of the incoming video fragments, without any mechanism to check if subsequent
fragments could be more appropriate for their inclusion in the summary. The dynamic tree summa-
rization approach described in this section is based on assuming that the usage of a buffer storing n
incoming video fragments allows to improve the selection process. Such buffer allows choosing from
1 to n fragments on each segment inclusion decision instead of taking instantly inclusion/discard
decisions based on the characteristics of a single incoming fragment. The precision of the fragment
selection process will increase with higher n values, enabling to reach an off-line approach equiva-
lent precision with n equal to the total number of fragments in the original video. Nevertheless, the
increment of the buffer length, n, will introduce as well a minimum delay in the summary generation
of n video fragments (the video fragment buffer must be filled before starting the selection process,
as described in chapter 4) as well as an increment in the complexity of the selection system (up to 2n

possible combinations of fragment selection could be evaluated for its inclusion).

Summarization Trees

Binary trees have been selected to model the different possibilities for video fragment selection from
the buffer. The proposed approach assumes the reception of arbitrary length incoming video frag-
ments (which could correspond to isolated frames, fixed length blocks of frames, shots, etc.) which
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Figure 5.9: Summarization Tree Example

will be denoted as basic units, BU (see chapter 3 framework definition). The original video V =
{BU1,BU2, ...,BUs} will be, therefore, composed by s basic units.

The summarization tree will be constructed starting from an empty root node N0. For each ith

received basic unit (BUi ) we define two types of nodes: inclusion -NI i - and discard -NDi -; which
correspond, respectively, to the inclusion or discard of BUi in the output summary. For each BUi , an
instance of the two types of nodes are appended to the existing i −1 position nodes (all NI (i−1) and
ND(i−1) nodes, or the N0 node in case i = 1): we denote this operation as ’expand’. An example of a
generated tree is shown in figure 5.9: each tree branch represents a possible video summary and the
type of each level i node indicates the inclusion or discard of the ith video fragment, BU i .

Given a summarization tree starting at level i = 0 (initial node N0) with a depth of d BU s, all the
possible combinations of inclusion and discard of d BU s are represented in the different branches of
the tree. Each branch ends in a d-level terminal node without child nodes that is denoted as a ’leaf’
node Ln

d (nth leaf at d depth). Each leaf, Ln
d , in the tree represents a possible video summary as the

sequence of BU inclusions/discards from the initial node N0 to the Ln
d node.

For an original video V composed of s BU s, a summarization tree of depth s can be built repre-
senting all the possible generable video summaries, each one corresponding to one of the possible
Ln

s leaf nodes (1 <= n <= 2s). Assuming that it is possible to compute a score value, Sn
s , for each gen-

erable video summary, Ln
s , according to a given criterion, an optimal summarization process would

consist on the selection of the tree branch corresponding to the Ln
s with higher Sn

s value. As all the
generable video summaries are evaluated, the generation of the best summary, according to the se-
lected criterion, is assured.

Nonetheless, the computational requirements for the generation of a s-depth summarization tree
requires the evaluation of 2s video summaries which, even for very efficient scoring algorithms, is
computationally unfeasible for high s values (and even more for real-time requirements). Moreover,
such tree structure would require memory capacity for the 2s+1 − 1 total nodes composing the tree
(the memory required for storing each node will depend on the needed information storage per node
which will, in turn, depend on the summary scoring algorithm). Therefore, a more computationally
efficient approach, enabling on-line and real-time operation modes, is required and is described in
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Figure 5.10: Dynamic Tree Example

the following sections.

Dynamic Sub-Trees

The on-line summary generation is achieved by the generation of partial summarization trees: given
a required maximum delay D (that is, the period between the reception of a BU in the system and the
decision about its inclusion or discard in the abstract -see chapter 4 section 4.2-) the algorithm builds
an initial summarization tree of depth d = D . At this point, in order to keep the maximum allowed
delay, the BU1 (the first basic unit inserted in the system) must be either selected to be included or
discarded for the summary. In order to take such decision, all the scores Sn

D corresponding to the tree
leafs are calculated and the subtree including the Ln

D with higher score is selected (alternative branch
selection mechanisms such as, for example, the selection of the subtree with higher average leaves
score, could be considered). The selected subtree will necessarily start with either the node NI 1 or the
node ND1; the type of such node indicates the inclusion or discard of BU1. Hereafter, the complete
subtree with N0 as root, which does not include the leaf with best score, is discarded and eliminated
from the system. The first node of the selected subtree (NI 1 or ND1) is then set as new tree root. The
resulting structure is a subtree of depth d = D−1 (starting at level 1 and ending at level D) ready to be
expanded with the next incoming basic unit BUD+1 and to iteratively repeat the process by discarding
the subtree with the lowest score and by expanding the one with the highest score.

Figure 5.10 shows an example of a tree with depth d = 3 when BUi+3 has been just received and
the tree has been expanded. A decision about the inclusion of all the BUs from BU1 to BUi has already
been taken and the next step consists on the decision about the inclusion of BUi+1 in the summary.
The scores corresponding to all the tree leafs are calculated and, in this example, result in a maximum
score associated to a leaf node located in the NI i+1 subtree. Such subtree is selected, while the NDi+1

one is discarded. As the root of the selected subtree is an inclusion-class node, NI i+1, the basic unit
BUi+1 is included in the summary. Finally, the new tree root is updated and the dynamic tree is ready
for the next iteration.

The described mechanism allows the progressive summary generation by building partial sub-
trees as the video is being received. The tree size, and hence the summarization process delay, is
maintained by an expansion-reduction mechanism corresponding to the subtree selection (reduc-
tion) and to the new BU instance nodes addition (expansion).
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Summarization Tree Scalability

The application of the abstraction tree approach provides a generic mechanism for on-line video
summarization in which three main aspects of the system performance may be easily controlled vary-
ing the tree generation parameters (tree depth and maximum number of tree branches):

• Abstraction Delay: The maximum summarization delay D can be controlled with the maximum
depth d of the generated sub-trees. Higher d values imply more time between the instant a BU
enters in the system and the instant in which it is selected or discarded. On the other hand,
in the case of applying higher d values, a better selection process can be expected (due to the
higher number of BU s and, hence, tree branches evaluated). Finally, if an unbounded d value
is applied, the complete summarization tree will be generated and the process will be equiv-
alent to an off-line approach (the complete original information must be received before the
selection of the best path in the tree).

• Computational Performance: The computational performance of the summarization process
will depend on the number of tree branches that must be scored as well as each branch evalu-
ation cost. The maximum possible number of summaries evaluation on each iteration (that is,
the number of tree branches or leafs), 2d , grows exponentially with respect to the subtree depth
d . This growth may imply the evaluation of too many branches, preventing the system from
reaching real-time performance. In order to deal with this limitation, the number of branches
must be limited by considering low d values (which imply low delay and higher speed but re-
duced summarization accuracy) and/or by the application of tree pruning algorithms (i.e. elim-
ination of low-scored branches) avoiding the expansion of too many branches.

• Memory consumption: The memory consumption of the abstraction algorithm will directly de-
pend on the number of stored nodes and the amount of information associated to each node.
The branch scoring algorithm will determine which information each node must keep for its
containing branch evaluation and, in any case, the amount of nodes will be determinant in the
memory resources consumption. As it has been previously stated, the number of nodes will
depend on the tree depth and the number of branches it is composed of and, therefore, the
memory consumption will be directly related to the summarization delay and performance.

Although for most applications the generation parameters, tree depth and maximum number of
branches, may be set as fixed values, the proposed system is particularly suitable for the implemen-
tation of adaptive systems where the depth of the tree and the number of evaluated branches could
dynamically vary in order to achieve specific performance results, such as fixed abstract generation
rate or delay with varying computational resources (e.g. a summary could be generated in a system
with low memory or CPU speed at the same rate than in a faster system by computing lower depth
trees or evaluating a fewer number of branches, generating a lower quality summary). A real-time
summary generation application making use of such scalability functionalities is presented in chap-
ter 8.

5.5.2 Frame and Segment Similarity

In our first on-line system (see section 5.4), the applied visual similarity measure was based on the
calculation of color histograms of the frames in the video sequences. As it has been commented, the
color histogram performs well for measuring the similarity between two images in quantitative terms
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but fails in the differentiation of the spatial distribution of the colors in the image. A division of the
original images in four quarters with a subsequent calculation of the color histogram of each quarter
was applied, obtaining better results than with a simple histogram but still limited. In the improved
system, the color histogram was substituted by the MPEG-7 Color Layout descriptor [144], specifically
designed to be a fast, resolution independent descriptor aimed for image retrieval, indexing and video
shot identification. Therefore, it fulfills the real-time requirements of the proposed approach while
capturing the spatial distribution of the colors in the image.

Once the Color Layout is computed for each frame within a video segment, it is necessary to
define a sequence comparison mechanism. Given two sequences S1 = { f1,1, f1,2, ..., f1,a} and S2 =
{ f2,1, f2,2, ..., f2,b} (constituted by a and b frames respectively), the first step is to compute the simi-
larity between all the frames in both sequences, obtaining the similarityMatrix between S1and S2. In
this matrix position i , j is defined as

similarityMatrixi,j = CLDiff ( f1,i , f2, j ) (5.6)

where CLDiff corresponds to the Color Layout difference between two frames (as defined in
[144]). The computational cost of the similarityMatrix calculation is O (N 2), being N the length, in
frames, of the sequences. The frame sequence length limitation applied in the proposed algorithm
assures a constant and limited complexity in the calculation of the difference matrix for visual seg-
ment comparison.

For each row r in the similarityMatrix we define

minRowValuesn(S1,S2,r ) = {mvr 1,mvr 2, ...,mvr n} (5.7)

as the subset of the n minimum values in row r of the similarityMatrix(S1,S2). With such values
we define the distance measure

minDistancen(S1,S2) =
∑a

i=1

∑n
j=1 mvi j

a ·n
(5.8)

being a the number of frames in S1. As this measure is not symmetric (minDistancen(S1,S2) 6=
minDistancen(S2,S1)) we finally define the similarity measure as

distancen(S1,S2) = minDistancen(S1,S2)+minDistancen(S2,S1)

2
(5.9)

In case n = a = b, with a and b being the number of frames in S1and S2, the distancen value ob-
tained is equivalent to the similarityMatrix average value, a visual segment similarity measure which
fails to represent differences in cases such as the comparison between shots A and B in figure 5.11
(video fragments from TRECVID 2007 content set) where, although several frames from each video
segment are very similar, the average difference will be negatively penalized by the rest of dissimilar
frames.

On the other hand, in the case n = 1, the proposed metric represents the average between the
minimal differences between all the frames in S1and S2. Figure 5.11 shows the example of shots A and
C, which are very different with the exception of the last fragment of shot C: a comparison with n = 1
will cause a high similarity value. The application of the n-most similar frames comparison method
with intermediate n values requires a minimum number of similar frames between two sequences in
order to produce high similarity values.
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Figure 5.11: Shot Comparison Examples

5.5.3 Branch Scoring

When considering the characteristics of the generated video abstract, the branch scoring mechanism
is the core of the proposed summarization approach. The branch scores are applied for the selection
of the summarization sub-trees kept during the tree branch reduction process applied to control the
computational complexity of the approach. Therefore, such scores will determine the characteristics
of the generated video summary.

The proposed summarization scoring system aims to generate video summaries with the follow-
ing characteristics:

• Controllable summary length with independence of the characteristics of the original content.

• Lowest possible visual redundancy: including fragments as different as possible from a visual
point of view will reduce the perceived summary redundancy and will increase the probability
of including a higher number of different events in the output summary.

• High continuity values: smoother summaries will positively influence the perceived summary
quality [126].

• Inclusion of high activity segments: including the fragments with higher activity values aims to
maximize the probability of including events in the output summary.

In the developed scoring system, an independent metric has been extracted for the measurement of
each of the defined characteristics and later combined.

Summary Length Score

The summary length control has been implemented by determining a target summarization rate,
0 < t ar g et < 1. In the developed algorithm, each d level node, Nd , associated to BUd , contains in-
formation about the number of frames of BUd . Such number of frames will be denoted as nF(BUd )
while the total number of possible and included frames in the tree branch containing BUd will be de-
noted as totalF(BUd ) and includedF(BUd ) respectively. The summarization ratio is calculated based
on those values as follows:

sumRatio(BUd ) = includedF(BUd )

totalF(BUd ) · t ar g et
(5.10)
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And the size score is defined as:

sizeScore(BUd) =
{

1
sumRatio(BUd) sumRatioBUd > 1

sqrt(sumRatio(BUd )) sumRati o(BUd ) ≤ 1
(5.11)

Continuity Score

In this work, it is considered that the output summary will be perceptually more pleasant if the num-
ber of discontinuities is reduced as much as possible. As the proposed system splits the original video
in small fragments, it is possible that the output summary could contain unpleasant ’cuts’. To avoid
such effect, we introduce in the system a mechanism for rating summaries with less discontinuities
with higher scores. A continuity will be present in a node when both such node and its parent node
are included nodes. We define continuities(Nd ) as the total number of continuities in the summa-
rization tree branch ending in node Nd and includedN(Nd ) as the total number of inclusion nodes
contained in such path (that is, the number of included BUs in the summary represented by the tree
branch). The continuity score is defined as the ratio between the included nodes and the number of
continuities in the tree branch:

continuityScore(BUd ) = continuities(Nd )

includedN(Nd )
(5.12)

Redundancy Score

As it has been discussed in the introductory section (see section 5.3), the reduction of the visual re-
dundancy of the original video is the core of the presented summarization approach. Such mecha-
nism has been applied because it is potentially applicable for almost any kind of video content with-
out requiring a priori knowledge about such content characteristics. For this redundancy removal
purpose, the target of the system will be the maximization of the output summary coverage, avoiding
the inclusion of too similar fragments in the output summary. Considering two nodes Na , Nb and
their corresponding basic units BUa and BUb , we define the visual distance between such nodes as

distanceN(Na , Nb) = distancen(BUa ,BUb) (5.13)

being distancen(BUa ,BUb) the shot distance (described in section 5.5.2) if both Na , Nb are inclu-
sion nodes, or 0 otherwise. Given a specific leaf node at level d , the mean distance between Nd and
all the nodes included in the tree branch ending in Nd will be calculated as:

meanDistance(Nd ) =
∑d−1

i=0 distanceN(Nd , Ni )

includedN(Nd )
(5.14)

It should be noted that the tree nodes corresponding already selected or discarded elements are
included as well in the comparisons. Therefore, the computational complexity required for the cal-
culation of the meanDistance value will grow with the number of processed (and selected) video
fragments. In order to keep the performance of the process under controlled levels and taking into
consideration the video content redundancy distribution issues described in section 5.3.1, the node
comparison is carried out with a maximal amount of p previous nodes, calculating the mean and
minimum distance values as:
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meanDistancep(Nd ) =
∑d−1

i=d−p distanceN(Nd , Ni )

includedN(Nd )
(5.15)

minDistancep(Nd ) = mi n {distanceN(Nd , Ni )} , d −p ≤ i ≤ d −1 (5.16)

Both meanDistance and minDistance values are combined for calculating the final node redun-
dancy value:

nodeDistancep(Nd) = meanDistancep(Nd)+minDistancep(Nd)

2
(5.17)

Such distance, nodeDistancep, takes into account the average visual distance of the current node,
Nd , with all the previous nodes included in the summary but includes as well the minimum distance
value found. In this way, in case a very similar node is already included in the summary, it will have
an increased influence in the final node score.

Finally, the redundancy score for a given tree branch ending in node Nd is iteratively calculated
based on the parent node Nd−1 score as

parentR(Nd ) = rScore(Nd−1) · includedF(BUd−1) (5.18)

currentR(Nd ) = nodeDistancep(Nd ) ·nF(BUd ) (5.19)

rScore(Nd ) = parentR(Nd )+ currentR(Nd )

includedF(BUd )
(5.20)

if Nd is an inclusion node or rScore(Nd ) = rScore(Nd−1) otherwise. Higher redundancy scores are
obtained for summaries composed of dissimilar fragments, as the score calculation is based on the
similarity distance between all the fragments included in the summary.

Activity Score

The previously depicted redundancy score aims to generate video summaries composed by varied
fragments, from a visual point of view, trying to capture as many different events from the original
video as possible. In this case, the activity score models the amount of variation within a specific
video fragment, aiming to include high activity fragments in the video output (we consider that high
activity fragments are more likely to contain events than static video segments). Given a tree node Nd

with an associated basic unit composed by n frames BUd = { f1, f2, ..., fn} the amount of activity for the
node is defined as

activity(BUd) =
∑n−1

i=1 CLDiff (fi, fi+1)

n
(5.21)

and the activity score is iteratively calculated based on the score of the parent node Nd−1 as

parentA(Nd ) = aScore(Nd−1) · includedF(BUd−1) (5.22)

currentA(Nd ) = activity(Nd ) ·nF(BUd ) (5.23)

aScore(Nd ) = parentA(Nd )+ currentA(Nd )

includedF(BUd )
(5.24)
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Score Combination and Normalization

Once the different scores are calculated, they must be combined in order to obtain the score for
each possible summary (i.e. summarization tree branch). The scoring model implemented in the
summarization tree algorithm allows to define independent weights for each individual score con-
sidered. Assuming that m different scores {sd1, sd2, ..., sdm} are calculated for each tree leaf (Ln

d ) and
that they must be combined for the calculation of the summary score, m weights should be consid-
ered {w1, w2, ..., wm} ∈ [0,1] (in this case, considering size, redundancy, continuity and activity scores,
m = 4).

On each iteration over the summarization tree, the maximum and minimum values for each in-
dividual score si , max(si ) and min(si ), are calculated for the complete set of tree leafs Li

d and are
applied for normalizing each leaf score. For every leaf contained in the tree, its final score will be
calculated as

score(Ld ) =
m∑

i=1
wi · sdi −min(si )

max(si )−min(si )
(5.25)

obtaining the final score that will be applied for the tree branch selection and pruning processes.
The proposed weighted scoring provides a mechanism for applying an arbitrary number of com-

bined individual scoring measures, each one with the desired associated weighting. As the differ-
ent scores are individually normalized on each iteration, there is no need to control their bound-
aries, which could vary with different types of original content, and the proposed scoring mechanism
adapts itself to the particular characteristics of each processed video.

5.5.4 Branch Pruning

The branch pruning step consists on the elimination (or not expansion) of specific sub-trees included
in the generated summarization tree. In this case, the branch pruning is applied in two situations:
for limiting the number of branches evaluated in the constructed partial summarization trees and
for content filtering purposes. The number of branches control aims to speed-up the processing,
avoiding to evaluate too many paths in the summarization tree. Such process relies on the previously
defined scoring algorithm: on each tree iteration, all the leafs of the current summarization partial
tree are scored and, given a branch limit, l , the l leafs with higher scores are kept. All the non selected
leafs and their corresponding branches are eliminated.

On the other hand, a branch pruning approach can be applied as well for the elimination of those
branches containing inclusion nodes corresponding to non desired BUs (that is, the summary repre-
sented by the tree branch includes non desired video fragments). For this purpose, every time a new
BU is added to the tree, it is analyzed and in case it is considered as undesired no inclusion nodes are
appended to the tree for such BU, including discard nodes only (see the tree generation mechanism
on section 5.5.1). This mechanism yields to a tree generation process in which no branches includ-
ing undesired fragments are generated. An example of tree pruning is described in the submission
presented to the TRECVid 2008 BBC rushes summarization task (see section 5.6 for more details).

5.6 Results of the TRECVid BBC Rushes Summarization Tasks

This section details submissions to the TRECVID 2007 & 2008 BBC Rushes Summarization Tasks
[147, 133] . The TRECVid BBC Rushes Summarization task consisted on the generation of videos
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Figure 5.12: Overview of the TRECVid 2007 Abstraction System

summaries of unedited TV shows video content, rushes, which are characterized by containing a
high amount of repeated takes as well as junk content, such as blank frames or test patterns. Each
participant submitted summaries for the complete set of test videos (42 for the 2007 campaign and
40 for the 2008 one) which were evaluated by human assessors which scored several characteristics
of the summaries such as the number of included events, the tempo and rhythm of the summaries or
the perception of redundancy in the video (see chapter 6 for more details). The TRECVid campaigns
did not consider the audio for the evaluation of the summaries.

In the following subsections, details about the presented submissions (generated with the on-
line algorithms described in sections 5.4 and 5.5) together with the obtained evaluation results are
provided.

5.6.1 BBC Rushes 2007 Submission

The algorithm presented to the 2007 BBC rushes evaluation campaign [147] is based on the algorithm
described in section 5.4, a ’sufficient content change’ approach originally published in [57]. The pro-
posed approach was initially developed a completely on-line abstract generation system which pro-
vided a fast way to generate a base video abstract. Nevertheless, given the abstract length limitation
requirement of the contest (the summaries length limit was 4% of the original video length), and the
difficulties to control the output abstract length with the proposed on-line approach, the method
was combined with a final abstract reduction step. Such step was applied in those cases in which
the target summary length exceeded the limit. In both steps the abstraction mechanism rely on the
reduction of the original content visual redundancy with methods based on color similarity features.
The combination of these two-step summarization processes provided a very fast method with low
memory usage for the creation of the video abstract. Although the application of the second stage
makes the abstraction system, originally implemented as an on-line approach, to become off-line in
several cases, the pruning stage was applied only in 8 out of the 42 videos evaluated and only for a
small reduction of the resulting abstract length. Therefore, the obtained results provided useful in-
formation about the characteristics of on-line generated summaries when compared with the rest of
the participants (off-line approaches).

Figure 5.12 shows an overview of the proposed summarization system which is mainly divided in
a first on-line stage, where the video summary is generated on the fly while it is being read based on a
sufficient content change approach, and an optional off-line pruning stage aimed to reduce the size
of the on-line generated summary in case it exceeds the requested limitations. Both stages are based
in frame and shot similarity measures defined in section 5.4.1. The details of the on-line stage are
those described section 5.4.

For those cases in which the summary generated in the on-line stage exceeds the length limit,
a pruning process is carried out by calculating all the MeanDiff values (see definition in equation
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MeanDiff Threshold On-Line Time Off-Line Time On-Line Length Off-Line Length

11 35.61 0 2.91% 2.91%
9 37.12 0 2.74% 2.74%
7 42.01 5.12 5.3% 3.95%
5 102.86 215.25 34.25% 3.9%
3 182.9 1062.29 83.44% 3.97%

Table 5.1: Summarization Stage Times and Output Lengths.

DU XD TT VT IN EA RE Effort

Average 50.5 9.3 93.1 51.8 0.48 3.1 3.65 3291.8 seconds.
UAM 46.6 13.2 92.3 50 0.47 3.3 3.7 53.3 seconds.

Table 5.2: TRECVid 2007 BBC Rushes Summarization Evaluation Results.

5.4) between all the subsegments selected by the on-line stage. Iteratively, each pair of subsegments
with the lowest MeanDiff (i.e. more similar) are selected and their intra MeanDiff value is calculated.
The subsegment with the lower value (the one with less variability and, hence, the less informative
one) from each selected pair is eliminated. This process is iteratively repeated until the selected seg-
ments total length is below the established limit. This step introduces an off-line processing stage
and, therefore, in the cases in which it must be applied, the system can not be considered an on-line
approach. Nevertheless only 8 from the 42 test videos required the off-line pruning stage.

Performance & Results

Table 5.1 shows an example of different MeanDiff threshold values applied to one of the TRECVid
2007 BBC Rushes Summarization Task content set videos, the required on-line processing time and
the off-line pruning time in case it is needed (without considering video coding and decoding times).
The obtained summary length produced by each stage is depicted as well. Lower threshold values
involve a higher number of included segments in the on-line stage and, therefore, a greater summary
reduction must be carried out in the off-line pruning stage except for those cases where the summary
length after the on-line processing is already below the 4% limit. The off-line pruning stage has a
heavy computational complexity, specially when compared with the on-line stage. This can be ob-
served in the required off-line processing times when the on-line stage outputs too long summaries.

Table 5.2 shows a comparison between the proposed approach and the average evaluation results
of all participant’s submissions to the TRECVID 2007 BBC rushes evaluation [147].

The results are obtained for the 42 test BBC rushes by setting a MeanDiff threshold in the on-line
stage trying to approximate the output length to the 4% limit. In this case, the knowledge about the
original content characteristics, extracted from the training set, allows to experimentally set such pa-
rameter. Only 8 of the test videos exceeded the 4% limit after the on-line stage and required the sub-
sequent off-line pruning. Nevertheless, one of the consequences of setting conservative parameters
in the on-line stage to reduce the number of summaries exceeding the length limit, is the low dura-
tion of the resulting summaries. As can be observed in table 5.2 –DU-, the duration of the summaries
is below the average values with a significant difference between the obtained and target summary
durations (table 5.2 –XD-).

The rest of the evaluation results, total time judging, total time video play and inclusion rate (TT,
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VT, and IN) are very close but slightly under the average values obtained by the rest of participants,
while the easiness for understanding the video (EA) and the duplicate video indicator (RE) are slightly
above the average. The rate of inclusion in the summary results could be easily improved by setting
less restrictive on-line stage parameters which would produce a higher number of summaries exceed-
ing the 4% summary length limit and, after the off-line pruning, a slightly under 4% length summaries.
Nevertheless, the purpose of the proposed approach was to demonstrate the feasibility of applying an
on-line summarization approach to obtain results comparable to off-line methods. Even with the re-
strictions imposed to the on-line system, the obtained results are very close to the average values
obtained by the other participants in every category, while the effort of the proposed system (seconds
required for the generation of the video summaries) is clearly below other participants results (see
table5.2 –Effort-). The performance difference of the proposed method with respect to other partici-
pants is huge. When the system is individually compared with the fastests participants, a very similar
efficiency is found while the proposed on-line abstraction approach obtained better evaluation re-
sults. On the other hand, the systems which obtained better evaluation scores required a processing
time several orders of magnitude above the proposed method one.

5.6.2 BBC Rushes 2008 Submission

The results obtained in the TRECVid 2007 BBC rushes summarization task (see previous section)
demonstrated the possibility of generating high efficiency on-line video summaries with results com-
parable to off-line approaches. Nevertheless, the proposed system was not completely on-line, re-
quiring an off-line pruning stage for avoiding to exceed the 4% limit (in the TRECVid 2008 evaluation
campaign the length limit was reduced to 2%). Building a completely on-line system with a more so-
phisticated summary length control was one of the main objectives after the TRECVid 2007 participa-
tion. Several aspects of the abstraction process were identified as key issues to be improved in further
developments: image and shot comparison mechanisms, summary smoothness control mechanisms
(the generated summaries included unpleasant discontinuities) and junk removal mechanisms. The
proposed algorithm relies on the summary trees generation algorithm, described in section 5.5. Such
algorithm provides mechanisms for controlling the length, redundancy, continuity an activity of the
generated video summaries as well as filtering mechanisms based on branch pruning, applied for
junk removal, eliminating test patterns and clapboard fragments from the original content.

Figure 5.13 depicts the summarization approach overview. The first summarization step consists
on the split of the original video in fixed size BUs (25 frames -1 second-, usually considered as the
minimal length needed by an human to recognize visual content [64]). Afterwards, the BUs are pro-
cessed by an initial redundancy reduction step: an adaptive frame dropping mechanism aimed to
reduce the number of segments in the video with very small variation between consecutive frames
(i.e. static sequences) while keeping the original BU length for high variation segments. The maxi-
mum drop rate is set to 1/2 per BU and hence a maximum 2-times speed increment can be achieved
with this approach in case of dealing with low variation sequences.

Once the original BUs are accelerated, they are iteratively inserted in a summarization tree with
a maximum d = 90 depth. Therefore, the established generation delay is 90 seconds (1-second BUs
are used) and a maximum of 1000 or 1500 leaf nodes (depending on the submitted run) are kept on
each iteration. The number of subtree branches is controlled by the selection of those paths within
the generated tree with higher scores. In the submitted approach the scoring mechanism described
in section 5.5.3 was applied with the exception of the redundancy metric described in equation 5.17,
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Figure 5.13: Overview of the TRECVid 2008 Abstraction System

nodeDi st ancep (Nd ), which is in this case defined as:

nodeDistancep(Nd) = meanDistancep(Nd) (5.26)

The branch pruning mechanism designed for filtering undesired video fragments (see section
5.5.4) was applied in the TRECVID BBC rushes summarization task by including in the system three
different content filters:

• Junk Detection: For the detection of video segments constituted by blank frames and test pat-
terns, a fast variation measure has been defined. It makes use of the 8x8 thumbnail used for
the calculation of the MPEG-7 Color Layout of each received frame. The squared differences of
each thumbnail pixel and the surrounding pixels are calculated and averaged. It has been ex-
perimentally checked that the obtained values for plain color frames are significatively higher
than in the case of natural images while test patterns produce the highest values. These exper-
imental observations allowed to set two thresholds, namely, maximum and minimum values
for considering an image as ’natural’ content.

• Clapboard Detection: For the detection of clapboards on video frames two Haar cascade object
detectors [157] for white and black clapboards were trained with about 1500 example frames;
detection rates over 95% were achieved with the training set. Nevertheless, the high variability
in the position, size, rotation and illumination of the clapboards in the test content set would
surely produce a non quantified reduction of the detectors’ precision. Although the detec-
tion rates were not formally evaluated, the junk removal results obtained in the evaluation,
described in the following subsection, validate the applied mechanism.

• Shot Change: A basic shot change detection filter was added to the system in order to avoid the
inclusion of video BUs including shot changes (which could produce unpleasant cuts in the
output summaries); a simple shot detection was implemented by the calculation of the maxi-
mum variation between consecutive frames in a video sequence and the variation between the
beginning and end of the video fragment (making use of the Color Histogram distance mea-
sure).

Performance & Results

Two runs were sent for evaluation in the TRECVID 2008 BBC rushes summarization task [133] with
different summarization parameters. The machine used was a Pentium Xeon @ 3.7 GHz with 3 Mb of
RAM. Both runs, Run1 and Run2 (submitted as GTI_UAM.1 and GTI_UAM.2), were generated with a
maximum tree depth of 90 nodes and a maximum of 1500 nodes by iteration for Run1 and of 1000 for
Run2. In both cases the summarization performance (120s. on average for Run1 and 99s. for Run2)
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outperformed most of the other systems (4879s. effort on average) and only one of the baselines
(cmubase3 -17,2 s.-), based on a sumbsampling approach, was faster than the proposed system.

Run DU XD TT VT IN JU RE TE

Run1 31.2 0.5 45.1 33.1 0.55 3.27 2.97 2.71
Run2 31.1 0.5 47.7 33.5 0.56 3.32 2.96 2.62
Avg. 27 4.5 41.4 29.0 0.46 3.15 3.2 2.72

Table 5.3: TRECVid 2008 BBC Rushes Summarization Evaluation Results.

With respect to the summarization score weights, run1 was configured for a balanced summary
generation -wSize= 0.475, wRedundancy= 0.21, wContinuity= 0.120, wVariation= 0.195- while run2
was configured focusing in the size and redundancy control -wSize= 0.6, wRedundancy= 0.350, wCon-
tinuity= 0.050, wVariation= 0-. Table 5.3 depicts the results obtained for the two runs and the average
values for the complete set of participants including the baseline summaries. The duration -DU- and
time difference with the target -XD- metrics show that the output size control incorporated in the
proposed system works very well (very close to the 2% length target) which is a very significative re-
sult considering a fully on-line approach without information about the length of the incoming video.
The obtained lengths are higher than average probably because the 2% may have been considered as
a limit and not a target length in many of the submitted runs. The metrics related to the judging time -
TT, VT- are slightly higher than the average, an expectable result as the obtained summary lengths are
higher than the average and there is a strong correlation between the DU/TT (correlation coefficient
= 0,84) and DU/VT (corr. coeff.=0,98) parameters. Regarding the junk metric -JU- the obtained results
are over the average proving that the mechanisms for junk shots filtering incorporated in the system
works well. Both runs obtained very good results in the inclusion rate -IN-, which are clearly over
the average results, paid back in the perceived redundancy -RE- and tempo -TE- of the summaries
which are slightly under the average results. Figure 5.14 shows the high correlation between IN/RE
and IN/TE measures for all the participants’ results and the proposed algorithm results. It should be
considered that the video fragment acceleration would probably had positive impact in the IN rate
but negative in the summary tempo/rhythm RE.

Figure 5.14: Inclusion vs. Redundancy/Tempo
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5.7 Conclusions

In the first part of this chapter, the foundations of the on-line visual redundancy removal approach
have been presented, explaining the reasons to consider the on-line redundancy removal abstrac-
tion approaches as potentially comparable to off-line systems, due to the distribution of the visual
redundancies in typical video content.

In sections 5.4 and 5.5, two on-line abstraction approaches, fulfilling the operative constraints
described in chapter 4, have been described in increasing order of complexity and included features.
The first approach, presented to TRECVID 2007 BBC rushes evaluation task consists on a ’sufficient
content change’ approach (section 5.4). Although such system had some limitations, such as the
summary length control mechanism, it demonstrated the feasibility of applying an on-line solution
obtaining results comparable to off-line approaches in the TRECVid 2007 summary evaluation cam-
paign.

The experience accumulated with the development and testing of the first abstraction approach
served as the basis for the development of the binary tree based summarization algorithm (section
5.5), an innovative and generic on-line summarization approach which allows the combination of any
summarization criteria with the application of different scoring functions. The described algorithm
(based on progressive summarization sub-tree generation) provides a generic mechanism for on-line
video summarization in which the performance of the summarization process, in terms of summary
generation delay and processing time, can be controlled. It is possible to configure the algorithm for
faster and lower memory consumption runs (considering smaller trees and lower number of evalu-
ated branches) or for more accurate summary generation modes (deeper trees with higher number
of branches).

The participation details in both TRECVid BBC Rushes Summarization Task in 2007 and 2008 are
described in section 5.6, including implementation details of the complete systems, developed based
on the proposed on-line abstraction algorithms, as well as the obtained evaluations. Such results
prove that the proposed algorithms are able to obtain results comparable to other participants’ pro-
posals while applying efficient and customizable on-line approaches.

In the following chapters a framework for the automatic evaluation of video summarization (chap-
ter 6) systems will be described and the two algorithms presented in this chapter will be in-depth
analyzed and evaluated (chapter 7).
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Evaluation
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Chapter 6

Automatic Evaluation of Video Summaries

6.1 Introduction

In 2007 and 2008 the TRECVid BBC Rushes evaluation campaigns were carried out as the first attempt
of a high scale evaluation of automatic video summarization methods. Such campaigns permitted the
evaluation and, hence, the comparison of different approaches for video summarization. Neverthe-
less, once the evaluation campaigns are over, it is not possible to compare the new developments
with previous works. In this chapter, we will describe an automatic system for the evaluation of video
summaries which aims to emulate the results provided by the TRECVid BBC rushes evaluation cam-
paigns, making use of the same data sets and evaluation measures (including both subjective and
objective evaluations). The proposed approach makes use of the 2008 original participants’ submis-
sions and their corresponding results for training different predictors for each considered evaluation
measure.

This chapter is organized as follows: the TRECVid BBC Rushes Evaluation Campaigns are briefly
described in section 6.2. Section 6.3 describes the feature extraction (subsection 6.3.2) and predictors
training and results (subsection 6.3.3). Finally, conclusions are drawn in section 6.4.

6.2 TRECVid BBC Rushes Evaluation Campaigns

The TRECVid 2007 and 2008 BBC rushes evaluation campaigns [133, 147] represented the first at-
tempt for carrying out a large-scale evaluation of video summarization systems. Several previous
works on video summary evaluation are depicted in [147] where the approaches are classified as ex-
trinsic or intrinsic: ‘Some are extrinsic, i.e., in terms of how a summary helps in some task, rather than
intrinsic i.e., direct evaluations [...]´. The enumerated extrinsic approaches include, among others,
[158] which evaluated slideshow summaries and [159] evaluating video skims for fact-finding and
gisting tasks. The intrinsic approaches included approaches like [160], where ’neutral observers’ de-
termined the number of missing or redundant frames on video summaries, [9] which deals with the
evaluation of soccer content video summaries, and [161] which included both extrinsic and intrinsic
evaluations. However, existing works in the literature are generally applied to a reduced content set
and based on the developments of a single research group. The TRECVid BBC Rushes Summarization
Tasks in 2007 and 2008 provided a large video database, an uniform method for creating the ground
truth and a uniform scoring mechanism. In this chapter, we will focus on the 2008 campaign [133],
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where the experiences learnt in 2007 were applied, and contains several differences in the evaluation
measures with respect to the previous year campaign.

The task proposed to the participants was to generate a video summary of the original content
by removing redundant or unclear footage from BBC unedited footage (rushes), shot for five differ-
ent drama series. Given the high redundancy of the original video content as well as the amount of
junk it includes (e.g., test patterns, clapboards), it was established that the summaries should be no
longer than 2% the original video duration and should be presented in a MPEG-1 file (without any
specific encoding conditions), to be displayed during the evaluation using the original video frame
rate. Participants had to generate video summaries for 40 original rushes videos and their quality was
evaluated by 3 human assessors hired for such purpose, with the following subjective and objective
measures:

• Objective:

– Assessment Time: Time taken by the assessors to determine the presence/absence of de-
sired fragments.

– Duration (DU): Duration of the summary relative to the 2% target length.

– Effort: Elapsed time for summary creation.

• Subjective:

– Inclusion (IN): A groundtruth was created by the organization identifying video segments
from the original video which should be included in a good summary: the decision about
such inclusion was based on the events in the segments. The inclusion measure indicates
the percentage of such segments (and therefore, events) the assessors consider to be in-
cluded in the output summary.

– Junk (JU): Subjective perception by the assessors of the amount of junk such as color bars,
clapboards or empty frames, included in the summary in a scale from 1 to 5 (5-point Lik-
ert scale indicating the assessor’s agreement with the statement ’This summary contains
many color bars, clapboards, all black or all white frames’).

– Redundancy (RE): Amount of redundancy (in terms of nearly identical fragments included)
perceived in the summary in a 1 to 5 scale (5-point Likert scale indicating the assessor’s
agreement with the statement ’This summary contains many nearly identical segments’).

– Tempo (TE): Satisfaction in the tempo and rhythm of the presentation in a 1 to 5 scale (5-
point Likert scale indicating the assessor’s agreement with the statement ’This summary
is presented in a pleasant tempo and rhythm’).

In this work, we focus in the subjective measures redundancy -RE- and tempo -TE- as well as the
groundtruth inclusion metric -IN- which, although based in a groundtruth event list, is influenced
by the assessors subjectivity. Such three measures have been selected because they can reasonably
model the quality of a summary and, although two of them are clearly subjective, we hypothesized
that they depend on quantifiable characteristics of the video summaries. The rest of the measures
have not been considered as some of them are impossible to reproduce (assessment time), straight-
forward to extract (summary lengths), too domain specific (junk perception), or require running the
original summarization algorithms (effort). However, all of those metrics, except the assessment time,
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Figure 6.1: IN - RE - TE Comparison

can be extracted with different techniques and included, if needed, in an automatic evaluation ap-
proach.

31 teams submitted summaries of the 40 videos, being possible to submit up to two different runs.
The total amount of submissions was 43, including three baselines by CMU [134]. With respect to the
three measures selected for our study (inclusion -IN-, redundancy -RE- and tempo -TE-), it was found
that, in all the proposed approaches, such measures presented a high correlation. The obtained per
run average values for IN ranged from 0.07 to 0.83, the RE average results ranged from 2.02 to 3.99
and, finally, the TE mean results ranged from 1.44 to 3.38. Figure 6.1 shows the representation of
the average obtained IN values with respect to the RE ones (correlation coefficient -0.88) and with
respect to the average TE values (correlation coefficient -0.74). With independence of the applied
approaches, the results show how it seems difficult to obtain high IN values while keeping high RE
and TE scores and vice versa, and the differences between the presented approaches may rely in
analyzing the equilibrium between such measures. More details about such differences, evaluation
process and the presented approaches can be found in [133, 147].

6.3 Automatic Summary Evaluation

6.3.1 Introduction

The 2007 and 2008 TRECVid summary evaluation campaigns established a common scenario for the
evaluation and comparison of different video summarization techniques. Although the type of con-
tent was very specific, it was very appropriate for the evaluation of automatic video summarization
approaches given its high redundancy. Moreover, the summarization task target, with its restrictive
target length, was tough enough to measure the performance of the presented systems under very
constraining conditions. Nevertheless, once the evaluation campaigns have finished, it is not possi-
ble to compare the results of improved or newly developed techniques with existing (and previously
evaluated) approaches.

A possibility for further evaluations and comparison of new methods is to reproduce the evalu-
ation process carried out in the TRECVid campaigns. In [162], DCU researchers presented a rushes
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summarization system together with an evaluation carried out by re-running the TRECVid 2007 sum-
mary evaluation process. The two baselines used in the TRECVid 2007 were newly evaluated, ob-
taining results coherent with the original TRECVid measures, so authors were able to validate the re-
evaluation process and measure the improvements of the new proposed summarization algorithm.
Nevertheless, such kind of human evaluation process requires a big amount of time and effort, espe-
cially if researchers aim to carry out the evaluation process with the TRECVid 40 original videos and
several summarization approaches or different runs.

In order to deal with such limitation, the development of automatic evaluation approaches is
highly desirable. Several TRECVid participants carried out efforts for the automation of part of the
evaluation process, focusing on the event inclusion -IN- measure. As it has been previously described,
such measure aims to determine the amount of events, defined in a manually annotated groundtruth,
included in the video summaries. CMU researchers, in charge of developing the baselines for the eval-
uation campaigns in 2007 and 2008, carried out a manual annotation of the starting and ending times
of every groundtruth event and estimated the IN measure by checking the overlapping between the
segments included in the summary and the annotated ones [64] with an established minimal length
of the video summary segments of one second. The estimated IN values and finally obtained results
presented a correlation coefficient of 0.67. In [95], authors carried out an experiment with one of the
videos of the 2007 campaign for estimating the required overlapping between a groundtruth event
and a summary segment to consider an event as included (the optimal values were found between 2
and 22 frames). In [163] and [164] authors continued their work on automatic IN prediction by ex-
tending the original approach. In this case, the method for determining if a groundtruth event was
included in the output summary was improved by adding more characteristics, apart from the start
and end times, to the set of groundtruth events. Such extended information included, for example,
the length or activity of the different events. The number and length of the segments included in the
video summary corresponding to every original event are computed as well, completing a feature vec-
tor which is used for determining if the events were included or not. Different machine learning ap-
proaches were tested using 8 original TRECVid videos and 10 summarization systems for training and
evaluation, and they obtained a maximum IN measure correlation of 0.88. The depicted approaches
focus in the individual video estimation of the IN measure only, relying on the manual annotation
of the original videos for matching the generated summaries included segments with the annotated
groundtruth events starting and end times. A different approach can be found in [165], where an
automatic summary evaluation method is described. Such method extracts the so-called coverage,
conciseness, coherence and context metrics, related to the IN, RE and TE measures of the TRECVid
campaigns, by the automatic comparison of generated summaries with a manually created reference
summary. Authors’ carried out a test manually re-evaluating fragments of part of the TRECVid 2007
original videos and submissions and obtained interesting correlations between the automatically ex-
tracted and subjective metrics.

In this work, we propose a novel approach for the training and application of automatic IN, RE
and TE predictors for complete summarization systems and it is differentiated from previous works
for different reasons:

• The system aims to approximate the evaluation results of complete evaluation systems and not
only individual videos.

• The chosen measures include, apart from the IN measure, the RE and TE measures which are
very relevant to determine the quality of the summarization approach. Although such mea-
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sures are quite subjective, in this work it will be demonstrated that they can be predicted.

• The prediction system relies on visual analysis techniques only, extracting features for a further
machine learning process, and does not require manual annotation of the original video events
or creation of reference summaries.

The proposed approach for the prediction of the IN values consists in the automatic comparison of
the video summaries with their corresponding original videos, by means of image distance metrics,
and the extraction of different statistics from such comparisons for a further training of the predictors.
For the prediction of the RE and TE values information extracted only from the summaries is taken
into account. The summaries fragments are analyzed and compared for the extraction of significant
features for the estimation of their redundancy and tempo. Once the different set of features are
computed, they are used together with the evaluations obtained in the TRECVid 2008 task for training
different predictors for each feature. In the following sections the features extraction, training and
testing processes will be described.

6.3.2 Feature Extraction

The complete data set used for the development, training and validation of the automatic predic-
tors is composed by the 39 test videos from the TRECVid BBC rushes summarization task (one of
the videos from the original 40 videos set was eliminated from the evaluation process by the orga-
nization due to problems for defining a groundtruth) together with the summaries submitted by 30
participants (including the baselines), some of the submitting two runs. From the complete set of
submissions, some of them were discarded for the analysis and training processes because of their
specific characteristics. DCU [107] and EURECOM [166], which summaries presentation was com-
posed by multiple windows and overlay information, were eliminated from the content set for avoid-
ing distortions that such characteristics could introduce in some of the extracted features which, as
described later, rely on image comparison techniques. The second run from Joanneum Research
approach [108] and the Tokyotech submissions [112] were discarded because they included several
one and two second summaries, including blank frames ones, a too small amount of information for
extracting significative statistics from the summaries.

Some other submissions contained small texts overprinted in the image, but they were kept as
they were considered to introduce a negligible distortion in the comparisons. The selected final con-
tent set contained 38 different submissions.

From the set of original videos and corresponding video summaries, a number of different fea-
tures were extracted for the training of the individual predictors. Figure 6.2 shows an overview of the
feature extraction process: in a first stage several feature matrices were directly extracted from the
original content while the final set of features applied for the individual training of the IN, RE, and TE
predictors were extracted from those previously calculated feature matrices. Both feature extraction
steps are described in the following subsections.

Directly Extracted Features

The average original video was 26.6 minutes length, that is, an average amount of almost 40000 frames
per video. Considering that the target length of the summaries was 2% the original video length, it can
be estimated that they could reach an average of 800 frames each. As it will be later described, part
of the feature extraction relies on a comparison between the frames included in the summary and
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Figure 6.2: Feature Extraction Overview

the original video length and for that reason, in order to speed up the feature extraction process, the
amount of information was reduced: the frames of the original videos and summaries were extracted
and resized to 80x80 thumbnails (from the original 352x288 resolution). During the extraction pro-
cess, the original videos were subsampled at 3 frames per second (averaging about 4800 extracted
frames per original video) while the complete set of frames of each summary was kept.

The next step was to compute difference matrices between the original and summarized videos.
We will define the video difference matrix between two videos V1 and V2 as vDiffMatrix, where each
position i , j of the matrix is calculated as

vDiffMatrix(V1,V2)i , j = imDifference(V1(i ),V2( j )) (6.1)

where vx (i ) corresponds to the i th extracted frame from video x and imDifference corresponds
to the selected (among the suitable ones) image distance metric. In this case, we aimed to compare
heterogeneous summaries from different research groups with the corresponding original videos. It
was observed that the coding process or parameters varied from one group to another, producing
color and quality variations in the videos. For this reason, the applied distance metric was chosen
targeting to reduce such differences as much as possible. The huge amount of data to process was
a restricting issue, therefore a fast as possible comparison method was required. The applied image
distance metric was based on Speeded Up Robust Features -SURF-[167], a scale and rotation invariant
interest points detector. The SURF features extraction was carried out on every extracted frame from
the original videos and summaries. For each image i of a video, Vx , the SURF extraction process,
SU RF (Vx (i )), generates a number, n, of interest points from the luminance channel of the image,

SURF(Vx (i )) = {I Pi ,1, I Pi ,2, ...I Pi ,n} (6.2)

and each interest point, I P , is defined by a vector composed of a fixed number, c, of coefficients
(which may vary depending on the configuration of the SURF extraction process)

IPi,n = { f1, f2, ..., fc } (6.3)
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We will denote the euclidean distance between two feature vectors IPA and IPB as d(I P A , I PB ). For
the comparison of two images, i and j , corresponding to videos V1 and V2, we compute the distances
between all the interest points from image V1(i ) and image V2( j ), so each position (a,b) in an interest
point differences matrix, IPDiffMatrix, is defined as

IPDiffMatrixa,b(V1(i ),V2( j )) = d(IPi,a, IPj,b) (6.4)

Assuming that IPDiffMatrix is composed by n rows and m columns (that is, n and m interest
points have been found for images i and j respectively), we define mi nRow as the distances vector
corresponding to the minimum values found on each IPDiffMatrix row and the analogous mi nCol umn
value for the columns

minRowk(V1(i ),V2( j )) = min
∀l ,1≤l≤m

{IPDiffMatrixk,l} (6.5)

minColumnl(V1( j ),V2( j )) = min
∀k,1≤k≤n

{IPDiffMatrixk,l} (6.6)

The final distance metric applied, imDifferenceSURF , is defined as follows

imDifferenceSURF (V1(i ),V2( j )) =
∑n

k=1 minRowk(V1(i ),V2( j ))+∑m
l=1 minColumnl (V1(i ),V2( j ))

n +m
(6.7)

With such defined distance metric, given a video summary, Vsummar y , and its corresponding orig-
inal video, Vor i g i nal , we denote cr ossSU RF as the difference matrix (see equation 6.1) between both
videos calculated with the imDifferenceSURF image distance,

crossSURF(Vor i g i nal ,Vsummar y ) = vDiffMatrixSURF (Vor i g i nal ,Vsummar y ) (6.8)

and autoSIFT as the self difference matrix of a given summary video ,

autoSURF(Vsummar y ) = vDiffMatrixSURF (Vsummar y ,Vsummar y ) (6.9)

Both matrices provide information for determining the amount of content from the original video
represented in the summary (IN measure) and the redundancy of the summary video itself, that is,
how much repeated information it contains (related with the RE measure). The image comparison
based on interest points, invariant to rotation and scale, is very convenient for a comparison of a type
of content like the BBC rushes with many shot repetitions with small changes in camera position,
zoom or angle. Nevertheless, there are some characteristics that such image comparison techniques
are not able to properly capture. For example, it was observed that, in the TRECVid campaigns, the
video acceleration negatively influence the tempo -TE- perception of the evaluators. It was also no-
ticed, that the proposed SURF based comparison is not able to ’capture’, in many cases, such accel-
eration effects because the interest points are compared based on their vector of characteristics only
and not based on their position and displacement in the images. For this reason, it was convenient to
extract additionally alternative descriptors, aiming to capture the described effects. In order to pro-
vide more information for the training and prediction processes, an additional measure, focused on
capturing the differences between consecutive frames, is calculated. Given to images, I1 and I2, with

91



three color planes each ( I Y
1 ,I C b

1 ,I Cr
1 and I Y

2 ,I C b
2 ,I Cr

2 ), with pixel values between 0 and 255, the image
plane difference is calculated as

diffPlane(I1, I2) = abs(IY
1 − IY

2 )+abs(ICb
1 − ICb

2 )+abs(ICr
1 − ICr

2 )

3 ·255
(6.10)

We will denote histogram20 as the calculation of a single plane image 20 bins histogram (the num-
ber of bins was selected according to experimental results). Given a video, V , composed of n frames
V (i ), 1 ≤ i ≤ n, each position i of the finally calculated measure, consecutiveDiffs, is defined as the
20-bin histogram of the difference plane between consecutive frames

consecutiveDiffs(V )i = histogram20(diffPlane(V (i ),V (i +1))) ∀i < n (6.11)

Such measure captures the information about the activity between consecutive frames in the
video. Instead of accumulating each single pixel variation, the histogram keeps the information about
the distribution of such differences in levels of variation (how many pixels in the image have specific
levels of variation). We will define the final extracted measure from every processed video summary
as autoDIFF , which consists on a vector of difference histograms:

autoDIFF(Vsummar y ) = consecutiveDiffs(Vsummar y ) (6.12)

The final set of extracted data applied for the training and prediction processes will consist of the
crossSURF(Vor i g i nal ,Vsummar y ) (equation 6.8), autoSURF(Vsummar y ) (equation 6.9) matrices, as well
as the just defined autoDIFF(Vsummar y ) measure.

Specific Predictor Features

The feature matrices extracted from the original videos and summaries (crossSURF, autoSURF, and
autoDIFF matrices, described in the previous section) represent the basic content information avail-
able for the further predictor training process. Nevertheless, the dimensionality of the data is too high
to enable the practical application of machine learning techniques. For this reason, the information
must be processed to extract the more significant features for its application in the different predic-
tors training processes. In this case, as individual predictors for the IN, RE and TE measures have
been developed, and given the different characteristics of the summaries such measures are related
to, the applied features will necessarily be different for each predictor. In the following subsections,
the final features computed from the previously extracted data are described. The selected features
are based on rational reasons, although there were different feature extraction attempts which did not
produce the desired results. For this reason, the final set of applied features is the result of a heuristic
trial and error process, developed and tested in parallel with the testing and development of the the
applied machine learning approaches. The chosen prediction mechanism, training and validation
results are described in the next section.

Inclusion -IN- Features As previously defined (see section 6.2), the inclusion measure -IN- aims to
determine the amount of groundtruth events, from the original video, included on each summary.
For the automatic prediction of IN values, it will be necessary to compare the original and summary
videos making use, in this case, of the crossSURF matrix. Such matrix includes the comparison value
of the subsampled original video frames with all the frames in the summary. In an ideal case, the
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distance between an original frame and the same frame included in the summary should be 0. Nev-
ertheless, the coding format used by the participants for the submitted summaries is heterogeneous
and the condition is not always fulfilled. Moreover, the original video frame set does not contain ev-
ery original frame (original videos are subsampled at 3 frames per second). However, even with such
restrictions, for those frames from the original video contained in the summary, it is always possible
to find very low distance values in the crossSURF matrix. Therefore, assuming that it is possible to
determine which frames from the original video are included in the summary, it is necessary a mech-
anism to compute how much different information such frames cover: as the original video is very
redundant, it is not enough to determine how many frames are included, but to determine how many
of them are different and what fraction of the total information contained in the original video they
represent.

The first step was to reduce the size of the crossSURF matrix, eliminating positions correspond-
ing to almost equal images. For this purpose the self difference matrix of the original video, that is
autoDIFF(Vor i g i nal ), is used for checking every position,discarding those corresponding to frames
very similar to already selected ones. An experimental imDifferenceSURF (see equation 6.7) threshold
value 0.1 demonstrated to obtain good results. The crossSURF matrix is sequentially processed for the
generation of a reduced version, redCrossSURF, appending every row crossSURFi to the redCrossSURF
if it does not already contain a row crossSURFj with j < i so autoDIFF(Voriginal)i,j < 0.1. Finally, the
minimum value for each original video frame comparison is kept, producing the minCrossSURF vec-
tor.

minCrossSURFi = min
∀j

redCrossSURFi,j (6.13)

In other words, the minCrossSURF vector contains the distance between every non-repeated orig-
inal video frame and its most similar summary frame.

The final step consists on counting the runs, defined as sets of consecutive values below a given
threshold, included in the minCrossSURF vector. In this way, it is possible to determine how many
positions are below a given threshold but also if such positions are grouped (located in adjacent posi-
tions) and, if so, the length of such groups. The runs are calculated for 20 different possible thresholds

thresholdi = (i ·0.02)2, 1 ≤ i ≤ 20 ⇒ 0.004 ≤ thresholdi ≤ 0.16 (6.14)

The applied thresholds represent small image distance values (from 0.004 to 0.16), which corre-
spond to very similar images. In this way the extracted runs statistics provide information about how
much information, from the original video, is represented in the summary and how such information
is distributed. For each different applied threshold the number, average length and variance of the
obtained runs are appended are stored as features for the IN predictor. Such features aim to model
what fraction of the original information is covered, but also how much of it is distributed in consec-
utive positions as long runs will be more likely to represent complete events from the original video.

Redundancy -RE- Features The redundancy measure -RE- is related to the subjective perception
of repeated content in the generated summaries. In this case, we have made use of the autoSURF
matrix, which codes the visual distance (computed with the imDifferenceSURF metric, equation 6.7)
between all the frames in the summary, and the autoDIFF matrix (equation 6.12), that codes informa-
tion about consecutive frames differences in the summary video. A highly redundant summary will
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necessarily contain a higher amount of visually similar frames, and such information is contained in
the described matrices.

As in the IN case, the amount of data is too huge for a direct treatment and must be reduced. In
this case, making use of the autoSURF matrix, all the possible pairwise comparisons between frames
in the summary are grouped according to their autoSURF matrix normalized value considering 20
bins (the number of bins was selected according to experimental results), providing a fine differenti-
ation between the possible similarity levels :

groupSURFk = {autoSURFi,j| k−1

20
< autoSURFi,j ≤ k

20
}, 1 ≤ k ≤ 20 (6.15)

The temporal distance of all the pairs of frames which distance is included on every group is
calculated and the average and variance of such distances are calculated for every possible group,
distGroupSURFk.

distGroupSURFk = {abs(i − j ) | ∀autoSURFi,j ∈ groupSURFk}, 1 ≤ k ≤ 20 (6.16)

In this way, the average distance between groups of frames with different levels of similarity is
extracted. For a non redundant summary, distGroupSURFk will necessarily tend to: 1) not contain
many values with high similarity, and 2) not contain very similar frames in distant positions; and
such information is coded in the extracted features.

The autoDIFF matrix contains the histograms of pixel differences between consecutive frames in
the summary and therefore it provides additional information: many frames with almost no variation
represent static shots and very long static shots in a summary may be perceived as redundant. In this
case, an activity metric is computed for every autoDiff matrix position from the autoDIFF histograms
by calculating the ratio between the amount pixels included in the upper half levels of the histogram
(that is, high variation pixels) with respect to the total pixels of the image. If we denote each histogram
level as l in a given position, i , of the autoDIFF vector as autoDIFFi,l, we will define the activity metric
as

activityi =
∑20

l=11 autoDIFFi,l∑20
l=1 autoDIFFi,l

(6.17)

From the obtained curve, the average and variance values are extracted and added as features for
the predictor training process. Apart from the average and variance values, some different parameters
of the activity curve were tested in order to feed the predictor with additional information about the
video summary activity distribution. The selected features were the average of the activity values
above and below the mean which were included in the predictor feature set.

globalAverage = average({acti vi t yi ,∀i }) (6.18)

supAverage = average({acti vi t yi |acti vi t yi > g l obal Aver ag e}) (6.19)

infAverage = average({acti vi t yi |acti vi t yi < g l obal Aver ag e}) (6.20)

globalVar = variance({acti vi t yi ,∀i }) (6.21)

94



Tempo -TE- Features In the TRECVid participants submissions, it is possible to observe that the
tempo & rhythm measure -TE- seems to be related with two main factors: the activity in the summary,
and the number and rate in which shot changes appear in the summary. High variation/activity shots
can be found in video segments capturing actions or, for example, in cases of abrupt camera move-
ment (not common in edited video but easily found in the rushes content), as well as in many of
the participants approaches who applied video acceleration aiming to increase the -IN- scores. Sum-
maries composed by very short shots (including, therefore, many shot changes or cuts) tend to obtain
lower RE scores as well. As in the case of the RE extracted features, it is possible to make use of the
autoDIFF information, which codes the histogram of pixel differences between consecutive frames,
for the measurement of such summary characteristics. The activity metric calculated as part of the RE
features processing (see equation 6.17 on previous subsection) is applied as well in this case, includ-
ing as features for the TE predictor the values obtained from equations 6.18 to 6.21 together with the
length of the generated summary as an additional feature to determine relations between the length
and activity statistics of the summary and the perceived tempo and rhythm.

6.3.3 Predictor Training and Results

In order to keep the different measure estimators independent, individual predictors have been de-
veloped for each one of them. The predictors are feed with a different set of features each (see previ-
ous section 6.3.2) and, to avoid any possible influence of the existing correlation among IN, RE and
TE measures (described in section 6.2), they have been trained separately. Different learning mech-
anisms (neural networks and SVMs) were tested during the development of the system and, finally,
the selected technique was the application of regression trees [168] (standard Matlab implementa-
tion). The same technique was employed for the three different measures, each of them with their
respective set of features.

The complete available content set consists on 38 different runs composed by 39 different sum-
maries each, totaling 1482 video summaries and the corresponding assessors evaluation results. We
denote each available run as Runi and each individual summary included in a given run is denoted
as smi , j . Therefore, the complete set of 38 available runs is denoted as

Runi = {smi,1,smi,2, ...,smi,39} 1 ≤ i ≤ 38 (6.22)

The target of the prediction process consists in approximating the average measures for IN, RE
and TE obtained by each submission, with the perspective of a future usage of the trained predictors
for automatic evaluation of new summarization methods or runs.

The first step consists in the individual processing of the video summaries, aiming to train pre-
dictors for their obtained measure scores.

This process was carried out following a leave-one-out cross-validation approach, considering
each complete submission, composed by 39 video summaries, as a individual validation unit. In this
way, a training process is carried out with the normalized data of all the participants submissions
except a complete submission kept apart for measuring the performance of the prediction system.
Such approach, by completely keeping a given submission out of the training process, prevents the
system from learning specific characteristics from summaries generated with the same technique as
those used for validation. Given a summary, smi , j , we denote its original obtained measures as I Ni , j ,
REi , j and T Ei , j and its obtained measure predictions are denoted as predINi,j, predREi,j and predTEi,j.
For the prediction of any of the three possible measures for a given summary, smi , j belonging to run
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i , a predictor trained with the all the available data from every summary not included in the same
run, smk,l , ∀k, l k 6= i , is applied.

Figure 6.3: IN, RE and TE Individual Predictions Error Distributions

Figure 6.3 (a) shows the individual summaries IN measure targets and predictions error distri-
bution (error = INi,j −predINi,j), obtained by applying the leave-one-out process for the 38 different
available submissions. The correlation between the I Ni , j and predINi,j distributions is 0.62 (close to
the 0.67 obtained in [64] with the application of manual groundtruth segment annotations). A lim-
itation was observed in the predicted results, which are unable to reach as high or low scores as the
target ones. This is caused because, from the original submissions, only one is able to reach the max-
imum IN scores and only one reaches the lower scores. When such approaches are left out for the
leave-one-out validation, there are not available examples in the content set for so high or low IN
score summaries and, therefore, the regression tree is not able to predict such values. Nevertheless, it
could be expected that a tree trained with the whole set of submissions would be able to reach those
values.

Although the individual predictions provide a limited utility, the target of this work, and what
should be determined, is if such ’weak’ predictions are useful for a global estimation of a summa-
rization system performance. Comparing the average IN measure values for a complete run i, I Ni ,
and the average predictions value for the same run, predINi, both shown in figure 6.4, a correlation
coefficient of 0.92 is obtained. The predictions present a reduced error, with the highest error found
for the lowest IN values predictions, cased by the previously mentioned lack of training examples.

In figure 6.3 (b) and (c), the individual summary predictions error for RE and TE measures are
shown. As in the case of the IN measure, the correlation of the individual summary predictions with
respect to the assessors evaluations is limited: 0.52 in the case of RE and 0.53 for the TE. However,
if considering again average values per complete submissions original measures (REi , T Ei ) and pre-
dictions (predREi, predTEi), the results are very good. Figure 6.5 shows the average prediction results
per submissions for the RE measure and figure 6.6 shows the same results for the TE measure. In both
cases, the obtained correlations are very high with a correlation coefficient value of 0.94.

Apart from the high correlation obtained for the three measures (IN, RE and TE), the absolute
error of the predictions with respect to the real evaluations obtained by different summarization ap-
proaches is quite small and the highest errors are located in maximum or minimum values, caused by
the leave-one-out experiments and the lack of examples with very high or very low values. In general
terms, the obtained estimation produces very good results and apart from the comparison of new
approaches with existing ones, the high correlation between the predicted per-submission IN, RE
and TE values with the assessors scores will enable the usage of the developed predictors for relative
comparisons between newly developed summarization approaches.
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Figure 6.4: Average IN Evaluation Measures and Predictions per Run.

Figure 6.5: Average RE Evaluation Measures and Predictions per Run.
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Figure 6.6: Average TE Evaluation Measures and Predictions per Run.

6.4 Conclusions

In this chapter, we have described the development of an automatic summary evaluation prediction
system. With respect to previous works in the field, the proposed approach focuses not only in the
estimation of inclusion, IN, measure scores, but in the estimation of redundancy, RE, and tempo &
rhythm, TE, measures as well. Such measures are of the highest importance for the evaluation of a
summarization system because, apart from the IN value, a system is defined by the relation between
such IN score and the RE and TE characteristics it provides.

The results of the proposed automatic evaluation system demonstrate that, with a large scale eval-
uation set of data (like the TRECVid BBC Rushes Evaluation Campaigns submissions and results), it is
possible to train automatic evaluation systems for the prediction of video summaries characteristics,
a very difficult task given the high effort and time required for such evaluations. This system will en-
able the fast and easier estimation of results for newly developed abstraction approaches. Moreover,
the fundamentals in which the approach relies do not make use of any specific annotation or char-
acteristics from the specific content used (BBC rushes) and it is, in principle, applicable for different
evaluations if properly trained (for example, different type of content, summarization targets, etc.).

The obtained results demonstrate that it is possible to automatically predict different subjective
evaluation measures based on objective characteristics extracted from the summaries, by approach-
ing the problem from a ’whole submission’ evaluation point of view and not trying to focus on the
evaluation of the individual videos. A precise prediction of assesment results for individual videos is
very difficult to obtain, given the high subjectivity of the task and the high influence of the particu-
lar characteristics of each video. However, the trained predictors properly model general tendencies
and, for complete submissions, the prediction errors of each individual video seem mutually bal-
anced. The obtained results encourages the research on what those objective characteristics are and
how they can be adjusted for generating higher quality video summaries.
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Chapter 7

On-Line Video Skimming Systems
Evaluation

7.1 Introduction

This chapter focuses in the analysis and evaluation of the two on-line video skimming algorithms de-
scribed in chapter 5 using the automatic evaluation framework described in chapter 6. Summaries
generated with both algorithms were submitted to, respectively, the 2007 [57] and 2008 [96] TRECVid
BBC Rushes Summarization tasks, obtaining competitive results, specially considering that the rest
of the participants submitted off-line approaches. However, the two TRECVid evaluation campaigns
relied in slightly different evaluation measures as well as a different summary target length and, given
the limit in the number of submissions, it was not possible to carry out an exhaustive study of the
possibilities of the algorithms. In this chapter, the evaluation measures estimation system proposed
in chapter 6 is applied for the evaluation and comparison of both systems under the same condi-
tions. Moreover, a study of the different types of video summaries that the proposed approaches are
able to generate and of how the set of configurable summarization parameters affect such summaries
characteristics is presented. In this case, by making use of the TRECVid 2008 evaluation measures es-
timators, described in the previous chapter, which are able to ’predict’ the inclusion -IN-, perception
of redundancy -RE- and pleasant tempo & rhythm -TE- measures for a given summarization system,
it will be possible to experiment with different summary generation possibilities and measure their
impact in the summaries quality.

The following sections are organized as follows: in section 7.2 the on-line ’sufficient content change’
skimming approach (described in chapter 5 section 5.4) is analyzed, discussing the obtained IN, RE
and TE predictions for different algorithm configurations. The binary tree based approach (chapter
5 section 5.5), which provides more configuration possibilities, is analyzed in section 7.3 including
a discussion about the different types and qualities of the generable summaries (sections 7.3.2 and
7.3.3). Finally, section 7.4 summarizes the presented work and conclusions.

7.2 ’Sufficient Content Change’ Approach Evaluation

In this section, the results obtained by the ’sufficient content change’ approach -SCC- described in
chapter 5 section 5.4 are described. In the experiments, we have taken into consideration different
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Figure 7.1: SCC On-Line Runs / TRECVid 2008 Submissions

combinations of the three possible configurable parameters of the algorithm: splitThreshold, addi-
tionThreshold and minLength. The splitThreshold was applied in the first step of the algorithm for
partitioning the original video in variable size BUs according to their visual variety (see chapter 5 sec-
tion 5.4.2). Higher splitThreshold values produce shorter video segments ( that is, BUs) and vice versa.
The additionThreshold defines the minimum visual distance an incoming BU must keep with all the
already selected ones for being included in the summary. Finally, the minLength parameter sets a
minimum length for the processed BUs for filtering too small generated BUs.

The original algorithm was evaluated in the TRECVid 2007 BBC Rushes Summarization Task (see
chapter 5, section 5.6.1) but, in this case, we will consider the evaluation measures and conditions
defined in the TRECVid 2008 campaign. Several runs of the proposed algorithms were generated with
all the possible combinations of the following parameters values: splitThreshold ∈ {0.1,0.15,0.20}, ad-
ditionThreshold ∈ {8,10,12,14} and minLength ∈ {5,25}. The possible combinations of parameters re-
sult on 24 complete runs which were evaluated with the IN, RE and TE measure predictors described
in the chapter 6.

Figure 7.1 shows the comparison between the IN, RE and TE predicted values for the 38 original
participants submissions to the TRECVid 2008 campaign and the proposed on-line skimming algo-
rithm. For the generated runs the measures predictions ranged I N ∈ [0.33,0.42], RE ∈ [3.17,3.72] and
T E ∈ [2.67,3.11], while the rest of participants’ runs ranged I N ∈ [0.14,0.79], RE ∈ [2.17,3.94] and
T E ∈ [1.65,3.30]. The proposed algorithm was able to reach combinations of scores similar to several
of the original off-line submissions but the different combinations of generation parameters did not
produce great variations in the characteristics of the generated summaries (in terms of IN, RE and TE
predicted values).

Figure 7.2 shows the average output rates of the on-line stage of the algorithm (that is, the rate
between the lengths -durations- of the original video and the abstract generated by the on-line stage)
in relation with the addThreshold value and considering two possible splitThreshold values. As the
generated summary length depends of the characteristics of the original video, in case of exceeding
the 2% target limit, the off-line stage is executed for the reduction of the final summary length (see
chapter 5 section 5.6.1).
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Figure 7.2: On-Line Stage Output Rates

Figure 7.3: Off-Line Stage Pruning Time / Frames per Second Processing
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Figure 7.4: On-Line Stage Output Rate / IN and TE Results

Figure 7.3 shows the required time for the off-line processing stage1 (named ’Pruning Time’) as
well as the average frames per second processed by the algorithm in relation with the on-line stage
output rate. Although the off-line stage times are kept in very small values, the amount of process-
ing grows quadratically with respect to the amount of data. With respect to the effects of the off-line
stage in the summary characteristics, figure 7.4 shows a comparison between the on-line stage output
rate and the predicted IN values which shows an increment in the summary IN value when a higher
amount of data is processed by the off-line stage (it must be noted that in all cases the final summary
length never exceeds 2% the original video length). On the other hand, such processing does not
seem to produce a reduction in the RE or TE measures and results may invite to think that the off-
line stage results can offer better quality than those obtained only by the on-line stage. Such quality
increment seems reasonable because the off-line stage reduces the on-line generated abstract length
with the complete abstract information available, while the on-line stage is forced to take instanta-
neous threshold-based decisions about the inclusion or discard of BUs (the binary tree approach,
analyzed in the next section 7.3, provides mechanisms for a more precise BU selection based on the
accumulation of several BUs before their selection or discard).

Observing the results shown in figure 7.4, its is possible to extract some interesting conclusions
about the effects of the splitThreshold value in the output summary characteristics. As we have
previously explained, the splitThreshold controls the length of the BUs processed by the system: a
higher splitThreshold generates smaller BUs producing an increment in the IN value due to the higher
amount of different BUs which can be selected. On the other hand, smaller BUs result on a reduction
in the output summary TE value, probably caused by the increment in the number and frequency of
abrupt changes in the generated summary.

The results shown in this section demonstrate the possibilities provided by the proposed SCC
algorithm for the on-line generation of video summaries with quality levels comparable to off-line
approaches. However, for the generation of limited length summaries, the proposed approach re-
quires a priori knowledge about the characteristics of the original content for setting an appropriate
addThreshold value that could allow to avoid the application of the off-line summary length reduction
stage. Moreover, the characteristics of the generated summaries are fixed in a small range of possible

1Hardware platform: Intel Xeon @2.83GHz with 24GB of RAM.

102



IN, RE and TE values and, as it is shown in the carried out experiments, the variations on the gen-
eration parameters do not have heavy effects in the characteristics of the generated video abstracts.
In the next section, the characteristics of the binary-tree based on-line summarization approach, de-
veloped for the dealing with the drawbacks of the SCC algorithm, providing additional features and
configuration capabilities, is in-depth analyzed.

7.3 Binary Tree Approach Evaluation

The binary-tree -BT- based summarization approach provides many different summarization possi-
bilities by means of a higher number of configurable parameters. A first set of parameters is related to
the operational characteristics of the system: summarization tree depth, number of branches, BU
(basic unit) length and application of acceleration to the original video (all of them explained in
chapter 5 section 5.5). The second set of parameters will determine the characteristics of the gen-
erated summaries by applying different scoring weights in the tree generation and branch selection
processes. Such weights control different characteristics of the video summaries such as summary
length, visual redundancy, selection of contiguous BUs from the original video or the selection of
high visual variation BUs. The combination of the different weighting and operational parameters
will determine the type of summary that will be generated and its quality level. The analysis carried
out in this section shows the relationships between the generation parameters and characteristics of
the produced summaries.

7.3.1 Overall Performance

This section is focused on analyzing how the proposed on-line summarization approach compares
with the results obtained by the off-line summarization approaches submitted to the TRECVid 2008
BBC Rushes Summarization task. Figure 7.5 shows the comparison between the IN, RE and TE pre-
dictions for the 38 original runs submitted to the TRECVid summarization task and 367 generated
on-line runs. The on-line runs were generated with different configurations of parameters (some of
them will be later analyzed) trying to determine the different ranges of IN, RE and TE values that
could be covered by the BT on-line approach and how such measures values were combined. For the
summaries generation, BUs from 1 to 50 frames, trees with 5 to 5000 nodes and 6 to 300 levels depth
were applied together with different combination of summary scoring weights. It should be noted
that not every possible parameter configuration was tested, carrying out a combination of random
parameters runs, manually selected ones and several grid parameters tests.

Results shown in Figure 7.5 show how the on-line approach is able to reach measure predictions
covering almost any measure values obtained by the off-line approaches submitted to the TRECVid
2008 campaign. For the BT generated runs, the measures predictions ranged I N ∈ [0.18,0.72], RE ∈
[2.45,3.72] and T E ∈ [1.65,3.24], while the off-line runs were able to reach I N ∈ [0.14,0.79], RE ∈
[2.17,3.94] and T E ∈ [1.65,3.30] values. The maximum and minimum IN, RE and TE measures val-
ues obtained with the on-line approach were slightly under the original submissions limits. However,
the generated runs aimed to determine the measure covering capabilities of the on-line algorithm
without focusing on the maximization or minimization of each possible measure. Moreover, the pre-
dicted measures must be considered as indicators of a summary quality and not as exact scores. The
obtained results demonstrate the capability of the proposed system for generating different types of
summaries.
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Figure 7.5: BT On-Line Runs - TRECVid 2008 submissions comparison

Another issue which must be taken into account is how the obtained IN, RE and TE results com-
bine in a given summarization system. It can be considered that, given the inverse correlation be-
tween the IN, RE and TE measures, those summarization approaches able to keep simultaneously
high scores in the IN, RE and TE values will be of better quality than others which, for example, could
get high scores in one of the measures but are not able to keep high results on the others. In the re-
sults shown in Figure 7.5, it is possible to check how for both IN/RE and IN/TE relations the on-line
approach is able to perform very well, reaching most of the measure combinations corresponding to
off-line approaches.

It can be observed how, in the set of obtained results, only a few runs are able to perform above
the 0.5 IN value limit. Such high IN values were only obtained when small length BUs (below 25
frames) were applied during the summarization process. In other words, such high IN scores were
only reachable when splitting the original video in very small fragments. Figure 7.6 depicts the rela-
tionship found between a group of runs with a BU length ranging from 1 to 40 frames. The plots show
two differentiated runs: a first group with BU lengths below 25 frames (commonly considered as the
minimum length for the perception of a video fragment) and a second group with values above 25
frames. Both runs were configured to behave as a subsampling approach by only considering the size
weighting, wSize, in the summarization system (see scoring details in chapter 5 section 5.5.3) while
keeping the rest of the weights in null values. It can be observed how smaller BU lengths allow to com-
pose a summary including frames from a higher number of different positions in the original video
and, therefore, it is possible to obtain a higher event inclusion rate, that is, IN scores. Nevertheless,
such small BU length produces negative effects in both RE and TE scores because the frame repetition
perception is increased (specially if dealing as a subsampling approach) and the rhythm and tempo
of the summaries are not adequate for a comfortable watching. Figure 7.7 shows the effects on the
IN, RE, and TE predicted scores caused by the change of the BU length on the depicted examples.

Another feature included in the proposed on-line summarization approach is the adaptive seg-
ment acceleration mechanism, described in chapter 5 section 5.6.2, in charge of dropping consecu-
tive frames in case they are too similar (by applying a configurable similarity threshold). The maxi-
mum applied acceleration is set to 2x in order to avoid an excessive, and too unpleasant, acceleration
in the summaries that could prevent the users from perceiving included events. In the TRECVid 2008
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Figure 7.6: BU Length - IN/RE/TE Comparison

Figure 7.7: BU Length Effects on IN/RE/TE Scores
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Figure 7.8: Acceleration Effects on IN/RE/TE Scores

evaluation campaign, it was observed how systems which implemented acceleration mechanisms
obtained higher IN rates, but also smaller RE and TE results. Figure 7.8 shows measure predictions
for two on-line runs with identical generation parameters except for the acceleration, which was ap-
plied only in one of the approaches. The plots show a behavior analogous to the TRECVid evaluation,
where those runs where acceleration was applied obtained a better IN result but reduced TE and RE
predicted scores. The explanation for such effect is straightforward: accelerated video permits to
store more information in the same output summary length but also a higher amount of potentially
included repeated content and, of course, the tempo and rhythm of the summary is reduced with
respect to a summary played at normal speed.

7.3.2 Control of Summary Type

After describing how the on-line summarization system is able to cover the complete range of IN,
RE and TE predicted scores, this section focuses on analyzing how the proposed summarization ap-
proach allows to control the balance between such measures by making use of the defined weights
applied for the branch scoring and selection mechanisms. As it has been previously described, apart
from the depth of the summarization tree, maximum allowed branches, BU length and whether to
apply acceleration or not, the characteristics of the generated summaries are mainly guided by the
scoring weights (a complete description about the scoring and weighting mechanisms can be found
in chapter 5, section 5.5.3):

• wSize: Defining the weight of the generated summary size score, scSize, in the final score.

• wRedundancy: Defining the weight in the final score of the redundancy score, scRedundancy,
which measures the amount of repeated content in a generated summary.

• wContinuity: Determining the influence in the final score of the continuity score, scContinuity,
which measures the amount of consecutive BUs from the original video selected as part of the
video summary.

• wVariation: The variation score, scVariation, measures the amount of internal variation within
a given BU.
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Figure 7.9: Score Weighting and Results

It will be always considered that the weighting values are normalized, that is, the sum of all the weights
is equal to 1 (wSi ze +wRedund anc y +wConti nui t y +wV ar i ati on = 1) .

In the first place, it should be determined how well the defined weights (wSize, wRedundancy,
wContinuity and wVariation) can control the actual scores (scSize, scRedundancy, scContinuity and
scVariation) obtained by the generated summaries. For such purpose, 100 BT on-line runs were gen-
erated with a fixed BU length of 20 frames without the application of video acceleration. The rest of
the parameters were randomly generated, keeping a maximum tree depth of 200 levels and number
of branches of 1500.

Figure 7.9 shows how the normalized scores of the generated summaries vary with respect to
their corresponding weighting factors. The correlation between weights and obtained scores is clear:
0.88 for wRedundancy and scRedundancy, 0.92 for wContinuity and scContinuity, 0.72 in the case of
wVariation and scVariation and, finally, 0.67 for the size weight, wSize, and score, scSize. The results
demonstrate how the summarization tree approach carries out a proper branch selection process
which produces an increment in the summary characteristics with higher score weights.

The last step for determining how the proposed summarization approach can be configured for
obtaining different types of summaries, requires to analyze how the summaries scores, controlled by
the defined scoring weights, affect the IN, RE and TE measures. Table 7.1 summarizes the correlations
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Scores / Measures IN RE TE

scRedundancy 0.79 (p=0) -0.41 (p=0) -0.90 (p=0)
scContinuity -0.94 (p=0) 0.40 (p=0) 0.89 (p=0)
scVariation 0.25 (p=0.012) 0.02 (p=0.81) -0.22 (p=0.02)

Table 7.1: Summary Scores and Predicted Measures Correlations

Figure 7.10: Redundancy Score and IN/TE Measures Relation

found between the score weights (scRedundancy, scContinuity and scVariation) and the predicted
summaries measures (IN, RE and TE) together with their associated p-values (probability of getting a
correlation as large as the observed by random chance).

As expected, it has been found that the redundancy score, scRedundancy, is heavily related to
the IN measure (0.79 correlation) in a direct way, and to the TE measure (-0.9 correlation) in an in-
verse relation. On the other hand, the obtained continuity score, scContinuity, presents the opposite
behavior with negative correlation with the IN measure (-0.94 correlation) and positive with the sum-
maries TE measure (0.89 correlation). Figures 7.10 and 7.11 show graphically the relation between the
IN and TE measures and the scRedundancy and scContinuity scores.

As it can be noticed in Table 7.1, the relations of the RE measure are not as straightforward as those
for the IN and TE measures (results are graphically shown in Figure 7.12). The RE scores are slightly
correlated to scContinuity values (0.40 correlation). This fact can be explained because a summary
with a high continuity rate (contains more fragments located consecutively in the original video) is
more unlikely to contain repeated content in separated positions, condition that produces a strong
redundancy perception. The same reasons can be applied for explaining the RE measure and scRe-
dundancy score correlation (-0,41). Although a direct correlation could be expected between such
measures, high scCorrelation scores imply higher differences between all the BUs composing a sum-
mary. Such conditions imply that, in many cases, consecutive BUs are not included in the summary
because being too similar; and this fact produces negative effects on the RE and IN measures.

According to Table 7.1, the effects of the scVariation score are not as strong as the scRedundancy
or scContinuity ones. The selection of high variation BUs in the video summary implies a slight in-
crement of the IN measure (0.25 correlation) while, on the other hand, produces a reduction of the
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Figure 7.11: Continuity Score and IN/TE Measures Relation

Figure 7.12: Redundancy Measure and Scores Relation
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Generation Parameters Predicted Scores

wSize wRedundancy wContinuity wVariation BU Length IN RE TE
1.0 0.0 0.0 0.0 1 0.72 2.45 1.65
1.0 0.0 0.0 0.0 5 0.56 2.96 2.44
1.0 0.0 0.0 0.0 15 0.45 3.11 2.82
1.0 0.0 0.0 0.0 25 0.41 3.30 3.00
0.3 0.4 0.025 0.0 25 0.38 3.47 2.96
0.5 0.3 0.10 0.0 25 0.33 3.42 3.05
0.2 0.4 0.15 0.0 25 0.29 3.53 3.15
0.4 0.0 0.25 0.0 25 0.18 3.69 3.24

Table 7.2: Examples of Summarization Parameters and Obtained Scores

TE measure (-0.22 correlation). The results are coherent with what was expected: high variation BUs
include more information and, therefore, the IN measure is favored. Nevertheless, high activity frag-
ments produce a reduction in the summary TE values, probably because too many, and maybe short,
high activity consecutive fragments may produce unpleasant perception in the viewer.

Table 7.2 shows several examples of different combinations of generation parameters together
with the predicted scores for the corresponding generated video summaries. It can be observed how
the variation in the scoring weights as well as the BU length (no acceleration nor wVariation weight
are applied) produces video skims with different characteristics, that can be applicable for different
user preferences or scenarios.

7.3.3 Control of Summarization Quality

Apart from the possibility of covering the complete range of IN, RE and TE measures provided by the
proposed on-line summarization approach, the quality of the summaries should be taken into con-
sideration. As it has been previously discussed, a summary can be considered ’better’ than other as
long as the combined value of its IN, RE and TE measures improves the second summary results. For
example, given two summaries with equal IN and RE values, it seems reasonable to determine that
the summary with higher TE measure will be the best one. Of course, depending of the summary ap-
plication scenario, it could be possible to establish different priorities for the IN, RE and TE measures.
For example, in the case of a user browsing Internet videos in a portal like You Tube, summaries with
a balance between IN, RE and TE could be appropriate. On the other hand, in an application scenario
such as the checking of surveillance recordings, the IN measure could be prioritized, as the inclusion
of all the relevant events in the summary would be probably more relevant than the redundancy or
rhythm of the summary.

In this section, we will analyze the scalability capabilities of the proposed BT on-line summariza-
tion approach. The generation of video summaries by the application of summarization trees per-
mits to control the performance of the process, in terms of generation delay and processing speed,
by controlling the maximum tree depth and number of branches. For determining the quality of the
generated summaries, we define two possible scores: internalScore and qualityScore.

The internalScore is based in the scores obtained from the summarization process which were ap-
plied in the branch selection process. In the general case of i possible scores with their corresponding
weights, the internalScore value is defined as:
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internalScore =
∑

wi · scor ei

wi
(7.1)

were wi and scor ei correspond, respectively, to the ith weight and score. In the present case, only
four previously defined scores (scRedundancy, scContinuity, scVariation and scSize) and correspond-
ing weights are considered, and the internalScore value represents how adequately the summariza-
tion system was able to generate a summary prioritizing the different scores according to the defined
weights. As the applied scores are represented in different scales, all the values in the following exper-
iments are normalized prior to the calculation of the internalScore value.

The qualityScore will determine the ’subjective’ quality of the generated video summaries by mak-
ing use of the IN, RE and TE predicted measures. Although it could be discussed how to combine the
three measures for generating a single quality measure, in this case, the qualityScore will be defined
by the average of IN, RE and TE normalized values.

In this case, 20 summarization runs were used for carrying out the experiments, keeping fixed
the score weights, not using video acceleration, selecting BUs of 30 frames, and using summarization
tree depth values ranging from 10 to 100 levels combined with a maximum amount of 100 to 10000
nodes. For the experiments carried out, the individual internal scores and predicted measures are
normalized taking into consideration only the values obtained with the 20 summaries of the test set.

Figure 7.13, shows the effect of the tree depth variation on the internalScore and qualityScore val-
ues. In the case of the internalScore, it can be clearly observed how the increase in the depth of the
summarization tree increases the “quality” of the summary for the different number of nodes runs
except when reaching 100 levels depth. Such score reduction is caused because very deep trees imply
a huge amount of possible branches and, as in this case the number of branches is limited, too sparse
trees are generated. The experiments carried out show that this situation produces a negative effect
in the summary quality unless a high enough number of nodes is applied. Graphs for the qualityScore
show results with higher variations. Such variations may be caused for several reasons, probably as-
sociated to the error margin that the IN, RE TE prediction system implies. On the other hand, the cor-
relation between the internalScore and qualityScore measures is not perfect and, of course, increasing
internalScore measures do not imply the same behavior in the qualityScore. However, observing the
qualityScore average values, it can be noticed how the evolution of such values is quite similar to the
qualityScore ones, with a constant increment of the scores until the maximum depth level is reached,
and the summary quality decreases.

Figure 7.14 shows the runs information depicting, in this case, the evolution of the summaries
quality with respect to the number of nodes in the tree. The internalScore values clearly show a con-
stant increment as the number of nodes in the summarization tree increases. It should be noted how
the curve corresponding to the 100 levels depth tree maintains quality levels below the tree with 70
levels depth. The 10 levels tree curve stalls with values above 1000 nodes, effect caused because a
10-levels tree may have a maximum of 210 = 1024 nodes and, therefore, all executions with a higher
number of nodes produce the same result. Once more, the qualityScore graphs show a much higher
variation and unclear results. However, the average curve shows a slight increment as the number of
applied nodes grow.

The obtained results demonstrate how the implemented summarization algorithm provides a
functional scalability mechanism for the generation of higher quality summaries when increasing
the depth and number of nodes in the summarization tree, showing a clear increment of the inter-
nalScore values when the tree depth and number of nodes increase, until certain depth values are
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Figure 7.13: Effects of the Summarization Tree Depth on Summary Quality

Figure 7.14: Summarization Tree Node Limit Effects on Summary Quality
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Figure 7.15: Summarization Tree Nodes and Depth Effects on Processing Rate

reached; this show that a large number of nodes is required to obtain high quality results. The results
obtained with the predicted IN, RE and TE measures, with a similar evolution to the internal scores
results, allows to hypothesize that the internalScore increment implies higher qualityScore values. In
any case, the proposed summarization approach allows the implementation of any scoring measures
and, therefore, the application of new branch scoring mechanisms for the generation of a different
type or higher quality summaries is possible.

Of course, the increment in the tree complexity (in terms of number and depth of the generated
branches) implies an increment in the algorithm computation complexity: more processing time and
a higher delay is required for the generation of a video summary. Figure 7.15 shows the evolution of
the average number frames per second the system is able to process for the different combinations
of tree depth and number of nodes. All the executed runs are able to perform at least at 25 fps2 ,
maintaining the on-line requirements of the system.

7.4 Conclusions

In this section, a complete evaluation of the on-line approaches described in chapter 5 has been car-
ried out making use of the automatic evaluation framework described in chapter 6. Different aspects
related to the characteristics and quality of the generated summaries, as well as operative aspects of
the summarization algorithms, have been considered.

With respect to the first proposed algorithm, a ’sufficient content change’ approach, it has been
shown how the quality of the generated summaries is comparable to several off-line approaches. Nev-
ertheless, in case of dealing with constrained length summaries, the approach requires an off-line
processing stage when the on-line generated summary exceeds the length limit. Additionally, the
variability in the characteristics of the summaries that can be generated with such approach are very
limited.

In the case of the second algorithm, based on the generation of binary trees, the results show how
the proposed system is able to generate video summaries with different types of characteristics, that

2Hardware platform: Intel Xeon @2.83GHz with 24GB of RAM.
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is, with different combinations of IN, RE and TE predicted measures. The generated summaries cover
almost the complete range of IN, RE and TE values, and their possible combinations, obtained by the
off-line systems presented to the TRECVid 2008 BBC rushes evaluation campaign.

The different generation parameters for controlling the acceleration of the video and BUs length
have been analyzed, describing the effects of such parameters in the characteristics (IN, RE and TE
measures) of the generated summaries. Moreover, it has been demonstrated how the configurable
scoring weights guide the branch selection mechanism allowing to generate summaries with different
combinations of IN, RE and TE measures.

Finally, the scalability properties of the binary tree based summarization system were analyzed,
demonstrating how the increment in the number of summarization tree levels and nodes yields, as
expected, to the generation of higher quality summaries, as well as to an increase in the required
processing time and generation delay. Such scalability properties will allow the configuration of the
summarization system for different combinations of speed/delay and output quality according to
specific application scenarios. Such possibility, together with the mechanisms for generating dif-
ferent kind of summaries, constitutes a highly customizable on-line summarization approach with
results comparable to off-line approaches.
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Applications
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Chapter 8

On-line Video Abstract Generation of
Multimedia News

8.1 Introduction

The work presented in this chapter focuses on the on-line generation of news bulletins abstracts.
The process consists of the combination of news stories segmentation, video skimming and compo-
sition techniques operating as the original video is being broadcasted. The result of the process is
a video abstract in which, for each story found in the news bulletin, a visual composition is gener-
ated combining the anchorperson introduction and a video skim of the visual segments of the story.
The proposed system is able to generate the video abstract, not just in an efficient but also in a pro-
gressive way: at any given time instant in the news bulletin, the proposed method provides a partial
abstract of the already received news stories, without the need of the complete bulletin content. The
system is able to work with news bulletins composed by an arbitrary number of stories and without
assumptions about their length or shot composition. The on-line generation capability provided by
the module is specially interesting for this kind of content because the fast availability of the news
information is of highest relevance for both professional users, such as journalists, or regular users
interested in access to the latest news. In order to fulfill the requirements of this on-line generation
operation mode, a number of techniques for shot classification and video skimming, problems tradi-
tionally solved with off-line techniques, have been implemented in an on-line way.

The chapter is structured as follows: after this introduction, section 8.2 presents the state of the
art on existing news content abstraction approaches. Section 8.3 gives an overview of the proposed
abstraction system which combines different stages for the incoming content classification, video
skimming and abstract composition. Section 8.4 presents an overview of the characteristics of news
video bulletins (the developed techniques for on-line news segments classification are further de-
tailed in appendix B). Section 8.5 details the orchestration of the different modules composing the
system. The obtained results, in terms of objective and subjective evaluations, are summarized in
appendix C. Finally, in section 8.6, future work is foreseen and conclusions are drawn.
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8.2 Related Work

News content has been a popular subject of research interest in the last years, particularly, the tech-
niques for its analysis, understanding and abstraction. This is probably due to the huge amount of
available news broadcast video and the derived necessity of an easier access.

When considering the application of abstraction techniques for news content, one of the main
problems to deal with is the identification of story boundaries. In the TRECVid 2003 story segmen-
tation task, participants employed a wide variety of effective techniques, including text-based (the
original videos were provided with closed caption text) and audiovisual approaches. In [169] several
of the presented techniques are compared. The results show that the best results were obtained when
applying audiovisual or a combination of audiovisual+text (up to 0.77 F1 scores) techniques, while the
text-only based approaches obtained worse results. Some of the participants [170, 171] obtained up
to 80% accuracy in the detection of anchorperson and in [169] it is stated that just with a correct an-
chorperson detection rate close to 100% it would be possible to achieve a F1 measure of 0.62 in story
segmentation. The correct anchorperson detection is, therefore, of the utmost relevance for news ab-
straction. Face detection techniques have been a commonly applied for such purpose: for example,
in [172] a list of major casts (including anchorperson in news content) is generated by a clustering of
the content based on face detection and audio features. In [11] a system for news content browsing
making use of the same face detection technique [173] as this work is presented. [174] includes, as
part of the extracted feature set for story segmentation, a face detection algorithm based on flesh color
detection followed by a shape analysis. Such work assumes that each story begins with an anchorper-
son followed by a more detailed report. The video bulletin is divided into shots clustered using shot
length, distribution, motion activity and face detection features. Authors found that anchorperson
shots tend to be clustered together due to their high similarity and make use of a SVM for its classifi-
cation. In [12] it is proposed to make use of compressed-domain extracted features (motion activity
and DC-images) for the detection of the anchorperson based on color comparison in high motion
areas of the image. In this case, the anchorperson audio is kept and a summary is generated by its
combination with a summary of the following news report segment, constrained to a length equal to
the kept audio length. In [13] a system for the selection of news highlights based on the analysis of
closed-captions and its alignment with news bulletin audio is depicted. [38] deals with the presen-
tation aspects of video search in the news domain proposing, in this case, video collages as the tool
for fast browsing. Work described in [175] proposes the division of news bulletins in anchorperson
and news shots. Anchorperson shots are identified by calculating the difference between consecu-
tive frames and comparing those with small differences (anchorperson shots are almost static) with
a quite simple anchorperson model which defines certain areas, like head or body, where motion
should be found. Another off-line clustering-based approach can be found in [176], where face de-
tection is performed including the consideration of cloth color under the head. Shots with faces are
clustered based on this information and the largest cluster is assumed to correspond to the anchor-
person (it should be noted that this approach could fail in cases where, like in the content set we used,
there is more than one anchorperson during the news bulletin). Weather report shots are detected as
well by making use of color histograms (blue and green predominance can usually be found) and mo-
tion vector information. In cases where an anchorperson appears among two reports corresponding
to the same story, a merging process is carried out based on textual information analysis and visual
comparison allowing the fusion of segmented stories sharing the same topic. The usage of anchor-
person cloth color can also be found in [177] where faces are detected based on flesh-color analysis
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in images. Other systems consider a high number of possible shot categories: in [178] a decision tree,
based on low level (color histogram, motion activity, shot duration, etc.) and high level (face detec-
tion and text captions) features, is applied for differentiating between 13 possible shot categories. A
further HMM analysis is then applied to locate scene boundaries. A completely different approach
can be found in [179] where stories segmentation heavily relies on closed-captions, speech alignment
and commercial detection (the latter based on shot change rate and black frames detection).

In summary, the studied systems for video abstraction and their specific application for news
content include a high variety of extracted features and applied techniques, many of them focused
on the detection of anchorperson shots. For this purpose, face detection, color and shape analy-
sis algorithms are commonly applied. Nevertheless, although several of the existing techniques are
quite efficient, none of the existing approaches seem to work as an on-line system, providing instant
abstract availability in any moment during the broadcast or abstraction process. Most techniques
assume the complete availability of the original content and unlimited time for the generation of the
news bulletin abstracts. Even those systems which provide real-time browsing capabilities or a high
efficiency system rely on content analysis carried out with the availability of the complete original
content and should be, therefore, considered off-line approaches. When studying existing generic
video abstraction systems not necessarily focused on news content, it is possible to find several pro-
gressive generation systems. Nonetheless the complexity of the existing techniques and the type of
generated abstract are limited. In this chapter we describe a complete system able to carry out con-
tent feature analysis, classification, video skimming based on visual redundancy elimination and,
finally, output abstract composition and coding. The solution is able to operate on-line, that is, se-
quentially processing and outputting content. For this purpose, a set of novel techniques have been
developed, and existing ones have been adapted, focusing on their computational efficiency.

8.3 Overview of the News Abstraction System

In this section an overview of the news abstraction system architecture and functionalities is pre-
sented. The system is in charge of generating on-line multimedia abstracts of news bulletins by com-
bining efficient and progressive techniques for shot classification, news stories segmentation, video
skimming and video layout composition. The main challenge of the system is to build an abstraction
system running on-line, that is, while the content is being broadcasted (e.g., for making the content
available in an Internet portal simultaneously to the program creation), and finishing the abstraction
process with a negligible delay after the original video broadcast finishes. The application of on-line
algorithms to solve those problems is not a common approach and most studied works do not aim to
develop efficient progressive generation solutions. The development of such algorithms raise a num-
ber of technical challenges due to the high efficiency required for the different processes carried out
and because only partial information (the already received/broadcasted original content) is available
at any given instant during the abstraction process.

The developed techniques could be applied as well for fast video abstract generation from already
stored multimedia content (e.g., avoiding to store pregenerated video abstracts and requiring mini-
mal resources for their on-demand generation) or for personalization purposes (e.g., allowing to cre-
ate abstracts with different characteristics for each user, thus avoiding the need of storing thousands
of summary versions per video).

In order to enable the on-line abstract generation and reduce the complexity of frame/shot anal-
ysis and comparison algorithms, the input video is divided in short segments, never longer than 30
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Figure 8.1: News Abstraction System Modules

frames (slightly over the commonly accepted minimal perceptible size of 25 frames [64] in order to
increase the output smoothness in the video skimming stage), which are processed sequentially, be-
ing analyzed, classified, selected or discarded separately in the different stages of the abstraction
process. The length of the obtained video segments can be smaller than 30 frames in cases where
the segment contains a shot change. Such small granularity in the video processing enables to out-
put partial results from the abstraction process when the original video has not been completely re-
ceived. As depicted in chapter 3 taxonomy, most common approaches deal with visual classification,
skimming and composition problems without taking into account computational constraints such as
those needed for the on-line and real-time operation modalities.

As depicted in Figure 8.1, the system is divided in 4 modules:

• Analysis: The analysis stage is in charge of the extraction of low-level features from the original
video stream for their use in the following classification and video skimming stages. The origi-
nal video stream is divided in small segments and, for each, features such as the MPEG-7 Color
Layout, frame differences, color analysis and face detection are extracted (extracted features
are detailed in appendix B).

• Classification: In this stage each received video segment, annotated in the analysis stage, is
classified based on the information provided by a set of independently trained SVMs for the
different possible shot categories (see section 8.4). This stage works also at subshot level, with
small video segments composed by a maximum of 30 frames so, once each segment is classi-
fied it can almost immediately be discarded, selected for the composition stage or sent to the
skimming stage. The actions associated to each different video segment may vary depending
on the configuration of the system as will be described in the following sections.

• Skimming: The skimming module is in charge of generating video skims from the combination
of segments received after their classification. In this case, the binary trees algorithm described
in chapter 5, section 5.5 is applied for the on-line generation of the video skims. The result of
the skimming process is sent to the composition stage for its combination with other selected
video segments.

• Composition: In the composition stage the final abstract presentation is generated. The final
layout is a combination of resized video segments rendered in the foreground of the image to-
gether with full sized segments in the background plane. By default, the system generates video
abstracts with a foreground window including the anchorperson’s complete story introduction
(which is tipically the most visually redundant part of the news story) while, in the background,
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Figure 8.2: Layout for the News Video Abstract

a condensed video skim of the news report is presented (see Figure 8.2). The configuration of
the abstract presentation layout can vary depending on the desired abstract characteristics as
will be explained in section 8.5. The usage of the anchorperson’s audio introduction is similar
to the approach proposed in [12] although, in that case, the visual composition of the anchor-
person is not carried out. Moreover, the algorithm presented in [12] does not work on-line
(the whole video is needed to begin the process), it is applied for individual news stories that
must always begin with an anchorperson shot, and it does not provide flexibility in terms of
summary length, number of stories in the news bulletin and arbitrary number of anchorperson
appearances.

The system is prepared for on-line processing of arbitrary length news bulletins. This approach,
apart from the previously enumerated functionalities in terms of instant abstract availability, effi-
ciency and personalization potential, would be easily adaptable to continuous running of the ab-
straction process for 24-hour news broadcasting and to any other kind of broadcasting or recording
systems (e.g. video surveillance systems).

8.4 News Content Classification

The first stage in the abstraction process consists in the classification of the incoming video segments
in the different possible categories included in a news bulletin. The available corpus for develop-
ment and testing is constituted by 54 complete news bulletins, about 28 minutes long each, pro-
vided by Deutsche Welle to the IST-FP6-027685 Mesh project 1, totaling about 25 hours of news con-
tent. The basic structure of the news bulletins is quite similar to those identified in previous works
[174, 175, 12, 177] and consists of a number of concatenated news stories, each introduced by an an-
chorperson section and followed by a visual report with the details of the story. The assumption of
such a basic structure has been successfully applied for the segmentation of news stories but a fur-
ther refinement would be useful for a meaningful abstraction process: inside a news bulletin many
other types of shots, such as reporters, interviews, commercials, etc., can be found. By observing the
available content, the following types of shots have been identified:

1http://www.mesh-ip.eu
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• Anchorperson: In most of the observed cases the starting section of each news story consists
in the anchorperson reading an introduction about the incoming report. In several cases, it
is possible to find interleaved maps and graphics showing additional information about the
narrated events. This kind of shots are mainly low activity shots with frontal face appearance in
certain fixed locations in the image and static background.

• Animation: Synthetically generated animations which are used as transitions between sections
in the news bulletin or at the beginning or end of the TV program. As in the maps category, the
color palette is limited but, in this case, the shot activity is higher.

• Black: In some of the news bulletins, some completely black shots have been found in section
transitions. In [179], those kind of shots are used as a clue for the detection of commercial
sections.

• Commercial: Commercials are included in some of the news bulletins. The characterization of
this kind of content based only in visual features is very difficult, as it can include shots with
many different characteristics.

• Communication: The anchorperson maintains a conversation with a reporter or a relevant
character. The reporter and, in some cases, the anchorperson are shown in a split-screen layout
with several synthetically generated areas (maps, text information).

• Interview: As the reporter shots, one or more persons appear speaking outside the studio. It is
even more likely to contain non-frontal faces and camera movements than the reporter shots.

• Map: Static shots showing synthetic images with the localization of the narrated news, in the
DW news bulletin case, rendered with a limited color palette.

• Report: Once the anchorperson introduction has finished, the extended news report begins. It
is narrated by a different voice to the anchorperson one and it is mainly composed by natural
non-static shots. Nevertheless, the report can include interleaved shots with reporters, inter-
views, maps, etc.

• Reporter: Shots with a reporter providing further on-site explanations about the story. This kind
of shot includes the reporter frontal face but, in many cases, are recorded in outdoor localiza-
tions, shots are not static, face positions are not fixed and illumination conditions are more
variable than in anchorperson shots.

• Studio: Those are transition shots included in the DW news bulletins showing the TV set from
different perspectives at the beginning or end of the news bulletin.

• Synthetic: As the maps category, synthetically generated static images associated to the news
story which provides additional information (e.g. stock market information, sport classifica-
tions). The map category could be considered as a subset of this category.

• Weather: In the DW news bulletins the weather reports are mainly synthetic generated anima-
tions with predominant blue and green colors.
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Figure 8.3: News Shot Categories

Figure 8.3 shows a typical example for each of the defined categories (except Black and Commercial).
The most usual ones are the Anchorperson and Report categories, which can be found in almost every
news story. The Weather, Animation and Studio categories are not associated to news stories and
usually appear at the beginning or end of a news bulletin or as transitions between different parts
of it. The Map, Communication, Report and Synthetic categories are usually found interleaved with
other shot categories as part of a news story but may not appear at all.

The proposed system must process the original content and generate the output abstract progres-
sively as the content is broadcasted, the whole abstraction process must fulfill certain requirements
related to the efficiency and progressive operation. Small video segments will be the basic processing
unit in all the stages of the abstraction process allowing to provide the needed granularity for on-line
generation while reducing the complexity of shot analysis processes and comparisons dependent on
the video segment length. In addition, the small video segment approach reduces the dependency
on accurate shot boundary detection systems and enables the possibility of eliminating intra-shot
redundancies (other systems in which the basic unit is the shot do not allow to discard only short
portions for the reduction of visually steady segments length). This approach has been successfully
applied in our previous on-line video abstraction works [96, 57, 56].

The fragment classification process relies in the fast extraction of low-level features from the orig-
inal content which are feed to a SVM classifiers structure in charge of labeling each incoming video
fragment in one of the existing categories. The feature extraction and classification processes must
perform in a very efficient way due to the existing time constraints. A detailed description of the ex-
tracted features, training process and classification performance results can be found in appendix
B.

8.5 Abstraction Process

In this section the news story abstract creation process is detailed. It is assumed that the anchor-
person provides the essential audio information to allow the users to get an idea of what each news
story is about and that, in most cases, it is followed by a report section in which the introductory
information is extended. From this starting point three abstraction strategies are combined:
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• Video Composition: The simultaneous display of different video segments allows to reduce
the video abstract length, condensing the information presented. The anchorperson segments
contain compact and high-interest audio information but not relevant visual information while
the report sections include extended audio information together with relevant visual content. It
is possible to take advantage of this particularity of the news bulletins by presenting the anchor-
person segments, that provide a natural audio abstract of the news story, in a reduced window
with a full-size background composed of the most relevant visual information of each news
story.

• Video Skimming: The more relevant video segments from a visual point of view, those corre-
sponding to the news story report, are selected to be displayed in the full-size background of
the abstract layout. Any kind of video content usually contains redundant visual information
so the news reports length can be reduced with a video skimming process and for this purpose
the algorithm depicted in chapter 5, section 5.5 is applied.

• Segment Filtering: Segments which are included as part of the news story reports section but do
not provide relevant visual information can be directly eliminated. For example, if it is consid-
ered that reporter or interview segments being part of the news report do not provide additional
visual information about the news story, they can be discarded.

The selection of which video segment categories, from those defined in section 8.4, should be dis-
played in the small foreground window, which should be skimmed and presented in the background,
and which should be directly eliminated is easily configurable. In the same way, the presentation
layout could have different configurations, as shown in Figure 8.4 where different combinations of
foreground-window/background are presented, depending on which shot category is to be empha-
sized.

In the implemented system, the layout depicted in Figure 8.4 (A) has been applied: the initial
news introduction is completely kept (audio and images) and displayed in a reduced size window in
the top-left corner of the image together with other information such as maps or synthetic content.
This size reduction allows the full-size display of the more informative images from a visual point of
view, in this case the abstraction of the report section of each news story.

The on-line, and hence progressive, operation mode implies to solve the correct alignment of an-
chorperson and corresponding report sections of each news story as the incoming video segments
are received. Such sections can be of very different sizes and it is possible that, in some cases, one
of them may not exist (for example special reports where no anchorperson introductory section ex-
ists). The on-line abstract generation process has been implemented by the definition of a 3-state
machine and individual buffers for the temporal storage of foreground and background content. Fig-
ure 8.5 shows the 3-state machine diagram, temporal buffers and state change conditions (detailed in
Table 8.1). The overall abstraction process begins in the Start state where the incoming, already clas-
sified video segments, are received. Any kind of incoming content is discarded with the exception of
Anchorperson or Report segments which are accumulated until the conditions for changing to News
Intro or Report states are fulfilled (sufficient amount of Anchorperson or Report content accumulated
-see table 8.1-). In order to avoid undesired effects caused by incorrect segment classification all the
state change conditions require the accumulation of a minimum number of segments from a given
category, that is, a stable category classification. The News Intro state is reached when the incoming
video corresponds to an anchorperson section and, in this case, all Anchorperson, Map or Synthetic
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Figure 8.4: Abstract Composition Layouts

Condition Description

Anchorperson Detected 5 seconds of accumulated consecutive Anchorperson segments.
Report Detected 5 seconds of accumulated Report video segments.

Intro End 5 seconds of accumulated no Anchorperson, Map, Synthetic or Report content.
Report End 5 seconds of accumulated no Anchorperson, Interview, Map or Synthetic content .

Table 8.1: State Change Conditions

incoming video is stored in the Overlay Buffer which will be later displayed in the reduced-size inter-
face window. The Report state is reached from the Start or News Intro states when a number of Report
segments have been received. In this state the Interview, Reporter or Animation incoming segments
are discarded while the Report video segments are stored for a further video skimming. Both News
Intro and Report states return to the Start state if a few seconds of unexpected content categories are
received.

In a typical news bulletin structure the state machine will mainly switch between the News In-
tro and Report states. Each Report segment received in the Report state is skimmed by applying the
binary-tree based summarization approach, targeting 1/3 of the original size (which corresponds to
the average proportion between anchorperson and other kind of content in the news bulletins). The
result of the video skimming process is progressively presented in the output abstract background.
If the Overlay Buffer contains previously stored content it is presented simultaneously in the fore-
ground reduced-size window obtaining the anchorperson-report synchronization, otherwise, if no
foreground content is available, the overlay window is not displayed.

125



Figure 8.5: State Machine for Abstract Generation

Each time the News Intro state is reached the Overlay Buffer is flushed to the abstract output so,
if the report video skim of a news story is shorter than the anchorperson introduction, the abstract
corresponding to that story will finish with a full-screen anchorperson. Additionally, at the beginning
of the foreground/background composition, when the Report state is reached, the first seconds are
composed only by a full-screen anchorperson, taking out part of the Overlay Buffer content, before
making the foreground and background composition. This mechanism, besides providing a pleas-
ant edition effect, helps to avoid incorrect anchorperson-report alignment in situations when, after a
news report, the anchorperson makes a short comment about the preceding news story before start-
ing with the following one. For dealing with those cases in which the anchorperson section is too
long, a length limit has been defined for the Overlay Buffer. If such limit is exceeded the buffer begins
to be progressively displayed in full-screen size automatically, avoiding excessive delay in the abstract
outputting and memory consumption for the storage of too long video segments.

Figure 8.6 shows a simple example of the abstraction process for two consecutive news stories.
Both abstracts begin with the full-screen anchorperson followed by a simultaneous display of the
anchorperson and report skim sections in a composed layout. Finally, the first story ends with a full-
screen report skim while the second one, where the video skim is considerably shorter, finishes with
the news story in a full-sized layout.

The proposed model enables the sequential processing of the incoming video, and therefore the
on-line abstract generation with progressive output: each received video segment is immediately an-
alyzed, classified and processed with one of the defined actions according to the state in which the
abstract generation is and each news story abstract is finished with negligible delay once finished.

Table 8.2 summarizes the average time2 required by each abstraction stage and for the complete
abstraction process if considering a 28 minutes original news bulletin and a 30% length generated
abstract. The average amount of time required for a video abstract generation is below 1/3 of the
original news bulletin length.

2Hardware platform: Intel Core 2 Duo @2.53GHz with 4GB of RAM.
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Figure 8.6: Abstraction Example

Step Average Time (per second) 28 min. Bulletin

Decoding 120.3 ms 202.10 s
Feature Extraction 98.84 ms 166.05 s

Classification 2.6 ms 4.37 s
Skimming 3.12 ms 5.24 s

Composition 40.51 ms 68.05 s
Coding 42.168 ms 70.84 s.

Total 326.81 ms 516.65 s (~ 8’36”.)

Table 8.2: Average Abstraction Time (30% length abstract)
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8.6 Conclusions

In this chapter, a system for the on-line generation of complete multimedia news bulletin abstracts
has been described. The on-line operation mode requires the sequential processing of the incoming
video as well as progressive output generation and implies to work with only partial original content
information (the already broadcasted content at any given instant). Considering the on-line and effi-
ciency requirements, the individual way in which the different techniques for content classification,
video skimming and abstract composition have been applied and how such techniques have been
combined represents a novel way to deal with news abstract generation.

A validation of the system has been carried out with a set of user tests in which the quality and
representativeness of the proposed approach have been evaluated by the visualization of several of
the generated abstracts by different users. The user evaluation includes examples of incorrectly com-
posed news stories for the study of their impact in the users perception. Details about the validation
tests and obtained results can be checked in appendix C and demonstrate a very high acceptance
by the users with respect to the summaries representativeness and quality. The quality of the video
skimming approach, previously discussed in chapter 7 within the scope of the TRECVid 2008 BBC
rushes summarization task [133], is implicitly confirmed with the user tests carried out.

The generalization of the abstraction algorithm has been validated with its application to different
news content providers and the obtained results demonstrate that the developed system provides a
complete solution for instant news abstract availability during or at the end of the broadcast. The pro-
gressive abstract generation scheme allows the continuous abstract generation for 24-hour channels,
and provides new application possibilities such as its extension to other fields where continuous ab-
straction could be applicable (for example surveillance recordings). The proposed system approach
can be extended to real-time visualization systems where abstracts are generated on viewing time
and could allow many personalization and interactivity possibilities as described in the next chapter.
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Chapter 9

Real-Time Interactive Video Summaries
Player

9.1 Introduction

In this chapter, a novel application for the real-time generation and visualization of pre-stored videos,
named ’Real-time Interactive video Summaries Player’ -RISPlayer-, is presented. The real-time ab-
straction, as defined in chapter 4 section 4.2, consists in an abstraction operation modality in which
the video summaries are generated on-line and fast enough so that the results can be watched in
real-time, that is, while they are generated, without pauses and with a small delay. Furthermore, the
RISPlayer provides an interactive video abstract generation process, allowing to vary and control the
generation parameters of the algorithm on the fly and immediately watch the results of the parame-
ters modifications.

For the implementation of the enumerated features, the binary tree based on-line summarization
algorithm defined in chapter 5 section 5.5, including the fragment filtering functionalities defined
in chapter 5 section 5.6.2, has been integrated with a visualization and parameter control interface.
The application takes advantage of the functionalities provided by the algorithm in terms of type of
generated summary and balance between the generation computational performance and quality
control.

The rest of the chapter is organized as follows: section 9.2 overviews the developed application,
describing their basic functionalities and components. In section 9.3, the mechanisms for enabling
the real-time visualization of the video summaries, with adaptive process complexity control and
preventing pauses in the visualization, are discussed. Section 9.4 presents the application interface
and the different configurable parameters and mechanisms for user interaction during the summary
generation process. Finally, conclusions are presented in section 9.5.

9.2 RISPlayer Application Overview

Figure 9.1 shows an overview of the principal elements of the RISPlayer. The original video is decoded
and the extracted BUs (generated splitting the video at regular intervals) are inserted as selection or
discard leafs in a summarization tree -figure 9.1 (A)-. Once certain number of BUs have been decoded
and inserted in the summarization tree and such tree reaches a predefined depth, the root node ad-
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Figure 9.1: RISPlayer Components

vances progressively determining which of the incoming BUs are selected to be displayed and which
of them are discarded (see details of binary tree based on-line summarization in chapter 5 section
5.5). Instead of writing the selected BUs in a video file, the BUs are inserted in a visualization Buffer
-figure 9.1 (B)-. The application display is constantly extracting BUs from the visualization buffer
-figure 9.1 (C)- and displaying them at normal play rate.

It must taking into consideration that, when the visualization buffer is empty, the application dis-
play will not have any content to display and, therefore, the summary visualization will stop. In order
to avoid an empty visualization buffer, the summarization algorithm must decode the incoming BUs
fast enough, not just reaching the on-line processing of the original video but outputting the selected
BUs at a fast enough rate for enabling its real-time visualization. Such conditions implies that the
incoming video must be processed fast enough so the selected portion of the original video could
be displayed at normal play speed without interruptions. For example, in the case of generating a
1/10 length summary of an original video displayed at 25 frames per second, it must be processed, at
least, at a speed of 250 frames per second so the 1/10 length summary could be displayed at normal
speed (see chapter 4 section 4.3 for more details). Of course, the desired summary length ratio will
have a direct influence in the required summary generation speed. Moreover, depending on the lo-
cation of the selected BUs, even reaching the required processing rates, it is possible that, if no BUs
are selected for a long time interval, the visualization buffer could empty out. Several mechanisms,
described in section 9.3, have been implemented in the developed RISPlayer application to deal with
the mentioned issues and assure a continuous visualization of the generated summary.

Figure 9.2: RISPlayer Information Flow
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Figure 9.2 shows the different functional modules integrated in the system and the data and con-
trol flows between them. Depending on the mode in which the application is operating, there will be
a different data flow between the components:

• Normal play: The RISPlayer behaves as a normal video player, displaying the complete original
video at normal speed. In this case, the BUs travel directly from the original video to the visu-
alization buffer -figure 9.2 (a)- and from there to the application display -9.2 (b)-. In this mode
the summarization tree is not generated.

• User-controlled summarization: In this mode, the RISPlayer generates and displays a video
summary by applying the summarization tree algorithm. The original video BUs are inserted
in the summarization tree -figure 9.2 (b)- and, from there, the selected BUs are inserted in the
visualization buffer -figure 9.2 (c)-. The user can control the summarization tree parameters
(tree scoring, depth or number of branches) making use of the application interface controls
-figure 9.2 (e)-. This mode grants total control of the summarization parameters to the user
so, depending on their choices, the visualization buffer can empty out if the chosen summary
generation parameters are too computationally demanding (e.g. an excessive amount of nodes
in the summarization tree).

• Assisted summarization: In case of requiring a real-time visualization of the video summary
(that is, viewing the generated summary without pauses), it is possible to set this operation
mode. In this case, the application takes control over the summary generation parameters. The
system, based on the parameters established by the user -figure 9.2 (f)- and on the information
about the state of the visualization buffer -figure 9.2 (g)-, controls the summarization tree cre-
ation -figure 9.2 (h)- aiming to keep a constant flow of selected BUs for its visualization. Details
about the implemented mechanisms are provided in section 9.3.

The developed RISPlayer provides different functionalities for the fulfillment of different user require-
ments, being able to operate like a common video player or a summary viewer in which the user can
control the generation parameters (or let the system control them for real-time visualization of the
summaries). In the following sections, the mechanisms for enabling the real-time summaries gener-
ation will be described, as well as the interface and functionalities of the application.

9.3 Visualization Buffer Control Strategies

As mentioned in the previous section, one of the main functionalities of the RISPlayer is to offer real-
time video summarization. In the user-controlled summarization mode, summaries are generated
applying the user-defined generation parameters (see section 9.4 for details about the configuration
mechanisms). This may produce that a summary, even being on-line processed, could not be watch-
able in real-time due to the selection of parameters which may prevent the system from a processing
fast enough to avoid pauses in the summary visualization. In the case of the assisted summarization
mode, the RISPlayer provides automatic control of the summary generation parameters. Such au-
tomatic control focus in two fundamental aspects of the summary generation process: the speed of
the summarization tree and the visualization buffer filling ratio, which are described in the following
subsections.
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9.3.1 Summarization Tree Speed Control

The main mechanism for controlling the speed of the process is the variation of the summary tree
generation parameters. For such purpose, the tree depth and number of nodes (see chapter 5 sec-
tion 5.6.2 for a description of both concepts) can be modified achieving different computational
performances. In the evaluation of the binary tree summarization approach (see chapter 7 section
7.3.3), it was confirmed how the reduction in the tree depth and number of branches produced
an increment in the computational performance of the algorithm with the drawback of a reduc-
tion in the summaries quality. In the RISPlayer automatic control mode, the size of the summa-
rization tree is set according to the level of occupation of the visualization buffer. We will define
as bufferOccupation ∈ [0,1] the ratio of occupation of the visualization buffer (assuming that there
is a maximum defined occupation) and maxDepth, minDepth, maxLeafs and minLeafs as the maxi-
mum and minimum depth and possible leafs (i.e. possible branches) in the tree. On every iteration
of the process, that is, every time a new BU is received, the depth and number of branches for the
summarization tree are recalculated as:

treeNodes = minNodes+ (maxNodes−minNodes) ·bufferOccupation (9.1)

treeDepth = minDepth+ (maxDepth−minDepth) ·bufferOccupation2 (9.2)

In this way, the parameters of the tree vary according to the number of frames in the visualization
buffer: in case of a high occupation ratio there is time enough for a more time consuming summariza-
tion process and, therefore, the depth and number of leafs of the summarization tree are increased
aiming for a higher quality summary. In the opposite case, when the occupation ratio is low, the size
and branch population of the tree are reduced for a faster summary generation and, therefore, visu-
alization buffer filling. It must be pointed out that, as can be observed in equations 9.1 and 9.2, the
tree depth and nodes are not calculated in the same way: in the case of the treeDepth calculation,
the bufferOccupation value is squared, so the depth of the tree rapidly drops as the bufferOccupation
does. The reason for the different treatment is to favor higher treeNodes/treeDepth ratios, which, as
seen in chapter 7 section 7.3.3, produce better summarization results.

9.3.2 Visualization Buffer Filling Control

The described summarization tree speed control mechanism permits to avoid, in many cases, the
empty out of the visualization buffer (with the consequent pause in the summary visualization). How-
ever, it may not be possible in all cases: a too reduced output summary length or a non-uniform dis-
tribution of the selected BUs may produce such empty out. Assuming that, in the case of real-time
summarization, it is preferred to avoid pauses in the visualization than producing a exact length sum-
mary, a mechanism for preventing the visualization buffer from empty out has been implemented.
The most straightforward solution would consist in just forwarding not selected BUs to the visualiza-
tion buffer, but the summarization trees algorithm can provide more sophisticated solutions allowing
to control the impact in the characteristics of the generated summary. In the RISPlayer implemen-
tation two procedures have been adopted for controlling the occupation ratio of the visualization
buffer: selection of tree branches with a higher short-term probability of adding BUs to the visualiza-
tion buffer; and the conversion of ’discard’ nodes in ’inclusion’ nodes.
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Tree Branch Selection

The first approach consists in calculation of the distance from the first selected nodes contained in
each tree branch to the root node. If the bufferOcupation runs below a predefined value, the tree
summarization process is forced to keep the branch which contains the inclusion node closer to the
root, instead of keeping the branch containing the highest score nodes. In this way, by accepting a
negative effect in the generated summary quality, the probability of a fast addition of selected BUs to
the visualization buffer increases.

Node Type Conversion

Although the proposed mechanism allows to produce a more convenient distribution of the selec-
tion of BUs, the pauses in the summary visualization are still possible due to the summary length
constraints. For this reason, the second mechanism is applied when the visualization buffer empties
out. In such case, the root node of the summarization tree is marked as an ’inclusion’ node regardless
of its previous state. In this way, the corresponding BU will be automatically included in the visual-
ization buffer. Such state change will, of course, distort the calculated characteristics and scores of
the child tree branches appended to the node and, for this reason, all the nodes pending from the
modified one are reevaluated so the modification can be taken into account. With this mechanism
the scores associated to all the calculated possible summaries maintain the coherence with the gen-
erated summary modification that is introduced by the inclusion of the root node in the summary.

9.4 RISPlayer Application Interface

All the components and internal mechanisms described in previous sections have been integrated in
an application which serves as mock-up for the validation of the real-time summarization concept as
well as for the exploration of the binary tree based summarization possibilities. Figure 9.3 depicts the
interface elements of the RISPlayer application.

The main component of the application is the ’Display’ element, where the original video and
summarized versions are displayed. The ’Display’ contains the ’Play Information’ area where the
video time and play mode (’Play’, ’Pause’ or ’Summary’) are displayed. The ’Summary Information
Bar’ and ’Timeline’ components are located below the main ’Display’ component. Figure 9.4 shows
a more detailed view of both elements. The ’Timeline’ displays the current position of the video with
a slider which can be positioned in any desired position. The ’Summary Information Bar’ contains
several details about the generated summary: The blue filled bar and red line correspond to the cur-
rent display position in the original video; the yellow marks correspond to the positions of fragments
already selected for the video summary; the orange line locates the position of the root node of the
summarization tree and, therefore, the video fragments between the current display position (red
line) and root node (orange line), have been already selected or discarded to be part of the video
summary; finally, the green line represents the current position of the summarization tree leafs, that
is, the position of the last BUs decoded from the original video and appended to the summarization
tree. The distance between the orange and green line represents the summarization tree depth.

The ’Play’, ’Pause’ and ’Summary’ buttons included in the interface (see figure 9.3) allow to change
between the different display modalities. When the ’Summary’ button is clicked, a summarization
tree is generated starting from the current play position. In that mode, the RISPlayer displays only the
selected positions (corresponding to yellow marks in figure 9.4) skipping the rest of the original video

133



Figure 9.3: RISPlayer Interface Elements

Figure 9.4: RISPlayer Summary Information Bar and Timeline
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Figure 9.5: RISPlayer Summary Information Bar and Timeline

positions. If there are not available selected positions, the video play is stopped until the summariza-
tion algorithm marks more positions as included in the summary.

The ’Summary Characteristics Control’, shown in figure 9.3, allows to control the characteristics
of the generated summary making use of an implemented scoring mechanism which allows to as-
sign different weights to the length, redundancy, continuity and activity of the generated summary
(see details in chapter 5 section 5.5.3). The user may change the summary generation weights and
watch the results on the fly. Each time a weight parameter is changed, the summarization tree is re-
built starting in the last displayed video position. In the same way, when the time slider position is
changed, a summarization tree is rebuilt from the new position.

The ’Tree Nodes Control’ and ’Tree Depth Control’ components allow to define the applied tree
depth and number of leafs. In the case of automatic control of the tree depth and nodes (see previous
section), the value set in both sliders determine the maximum values for both characteristics and the
blue filled bar above the sliders show the automatically chosen values (see figure 9.5).

Finally, the ’Operation Mode Checkboxes’ shown in 9.3 allows to activate the assisted summariza-
tion, with the application of the automatic visualization buffer control depicted in section 9.3. The
’Automatic Control’ activates the automatic control of the summarization tree depth and number
of leafs. The ’Avoid Empty Buffer’ checkbox determines whether the mechanisms implemented for
avoiding the empty out of the visualization buffer are applied or not. Finally, the ’Junk Segment Filter’
enables the application of BU filtering implemented for the TRECVid campaigns, designed to avoid
junk content such as blank frames, color bars or clapboards (see 5 chapter section 5.6.2).

9.5 Conclusions

In this chapter we have described RISPlayer, a video player designed for the experimentation with the
interactive generation and visualization of on-line and real-time generated video summaries. The ap-
plication takes advantage of the configurable properties of the binary tree based summarization algo-
rithm for generating customized video summaries in real-time. The user is able to interactively con-
trol the different weights which guide the summarization process generating different types of video
summaries (see analysis in chapter 7) as well as for controlling the quality of the generated summaries
by varying the summarization tree depth and number of branches. Moreover, the RISPlayer includes
the possibility of automatically controlling the summarization process for assuring real-time visual-
ization of the summaries. Such automatic control mechanisms allow as well the self-adaptation of the
RISPlayer, which could automatically decrease its computational requirements for slow machines or
generate more computational demanding and precise summaries in fast machines.

The implemented application demonstrates the flexibility of the proposed summarization al-
gorithm and outlines future possibilities for user-oriented real-time interactive summarization and
video retrieval applications.
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Chapter 10

Conclusions

10.1 Main Contributions

In this thesis, a complete study of novel techniques for on-line and real-time video abstraction has
been carried out. The overall work analyzes the different possible aspects of the problem: study of ex-
isting works; establishment of an analysis framework; definition and previous analysis of the targeted
problem; proposal of specific solutions in terms of novel algorithms; analysis and evaluation of the
proposed solutions; and, finally, the application of the proposed solutions in real applications.

The main contributions of the present work are the following:

• An abstraction systems taxonomy and video abstraction architecture (chapter 3).

• An analysis and definition of the on-line and real-time abstraction modes as well as the impli-
cations and constraints related to the development of such systems (chapter 4).

• Proposal of novel algorithms for on-line and real-time video skimming (algorithm description
in chapter 5 and algorithm evaluation in chapter 7).

• Proposal of a novel system for the automatic evaluation of video abstraction approaches (chap-
ter 6).

• Development of an application for the generation of broadcasted news abstracts integrating
on-line techniques for segment classification video skimming and abstract presentation com-
position (chapter 8).

• Development of a novel application, RISPlayer, for the real-time interactive generation and vi-
sualization of video skims (chapter 9).

This work starts by providing an overview of existing abstraction approaches and classifications pro-
posed in the literature (chapter 2). Based on the study of such approaches, an unified framework
(chapter 3) constituted by a novel abstraction systems taxonomy and a generic architecture able to
model most existing abstraction techniques, has been proposed. The taxonomy classifies the video
abstraction approaches according to their external and internal characteristics and represents a novel
point of view convenient for the analysis of the operational characteristics of video abstraction sys-
tems. On the other hand, the proposed architecture describes how to characterize almost any ab-
straction approach by dividing the process in three basic conceptual stages (namely ’analysis’, ’scor-
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ing’ and ’selection’) and considering the abstraction process as a flow of BUs (fragments extracted
from the original video) trough the different stages.

The defined framework defines concepts and terms which have served for the analysis of existing
approaches and for the proposal of new ones. The on-line and real-time abstraction modes have been
defined and the computational constraints associated to each mode have been established (chapter
4). Moreover, an analysis of potential implications of on-line and real-time operation modes in the
underlying abstraction mechanisms has been performed.

Two novel on-line video skimming algorithms have been proposed taking into consideration the
previously defined constraints and limitations (chapter 5). Both algorithms were designed targeting
to their application for generic content abstraction. For this reason both of them rely in visual redun-
dancy removal mechanisms, although other aspects about the generated summaries (e.g. continuity,
pleasantness) have been taken into account. The two algorithms differ in their complexity level with a
first approach, based on a ’sufficient content change’ mechanism, providing less functionalities and a
second proposal, the binary tree based approach, with many customization possibilities. The binary
tree based approach provides a generic on-line abstraction framework with integrated mechanisms
for customized scoring, content filtering and scalability, in terms of computational performance, gen-
eration delay and summary quality. Two rushes abstraction systems, based on the proposed algo-
rithms, were submitted to the TRECVid 2007 and 2008 BBC Rushes Summarization Tasks obtaining
results comparable to the rest of participants (mainly submitting off-line approaches).

However, for a complete validation of the proposed algorithms, a more exhaustive testing was re-
quired. For such reason, a novel system for automatic summaries evaluation was proposed (chapter
6). The automatic evaluation system was developed making use of the submissions and correspond-
ing evaluations of all participants in the TRECVid 2008 BBC Rushes Summarization Task, training
individual predictors for several of the evaluation measures extracted in such campaign. The pro-
posed system allows approximating human assessments based on computable features calculated
from the video summaries. By making use of such system, the described on-line video skimming
approaches were in-depth evaluated, analyzing their functionalities and capabilities compared with
off-line approaches and demonstrating the possibility of the on-line generation of video summaries
with quality levels comparable to off-line techniques (chapter 7).

Two applications, integrating the binary tree based on-line abstraction algorithm, were developed
demonstrating the applicability of the proposed abstraction approaches. The first one is devoted to
the generation of on-line abstract of multimedia news bulletins (chapter 8). It combines several tech-
niques for the analysis and categorization of video segments (based on feature extraction and classi-
fiers training depicted in appendix B), video skimming (based on the binary tree algorithm proposed
in chapter 5) and layout composition. The complete system is able to process the original video in
an on-line manner, allowing the application of the system for news abstraction on broadcasting time.
The quality of the generated summaries was evaluated with both objective and subjective tests, car-
rying out a user validation campaign which obtained very good results (see details in appendix C).

The second application consists in a real-time interactive video summaries player -RISPlayer-
(chapter 9). It has been developed integrating the binary tree abstraction approach and allows the
real-time generation and visualization of video abstracts. The application provides the functionality
of a normal video player being also able of generating video skims (in such case, only the selected
portions of the original video are played). The application includes automatic mechanisms for con-
trolling the abstraction computational performance, based in the scalability properties of the binary
tree approach, and allows the user to interactively control the different weights for scoring and fil-
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tering the video summary. The RISPlayer demonstrates the potential of the real-time summarization
sketching the possibilities for future work on personalized and interactive video abstraction systems.

10.2 Future Work

Beyond the results achieved so far, there are several directions for the continuation of the work carried
out in this thesis, mainly focused in the following aspects of the presented work:

• Identification of new types of content and potential applications of on-line video abstraction:

– The generic on-line video skimming algorithms presented in this work are based in the
application of a redundancy removal approach, which has been proven to be applicable
for certain types of content (commercial movies, BBC rushes). The analysis of new types
of content (e.g. sports, television series) for the validation of the proposed approach could
be an interesting future direction.

– One of the presented abstraction algorithms is devoted to the abstraction of broadcasted
multimedia news, by combining specific algorithms for news content classification and
composition, together with the generic binary tree-based video skimming algorithm. The
identification of possible application scenarios for on-line systems and the development
of specialized techniques for dealing with such kind of content is one of the promising
future directions. Broadcasted content, continuous recording systems (e.g video surveil-
lance), Internet video providers, low computational power terminals for video recording
and storage (e.g. mobile terminal) are examples of potential application scenarios for on-
line video abstraction techniques.

• On-line abstraction algorithms improvement:

– The binary tree video skimming approach presented in this work provides a powerful
framework for future on-line abstraction systems development. However, there is room
for improvement, for example with the optimization of the computational efficiency of the
algorithm, development of ’intelligent’ strategies for improved branch selection and prun-
ing or the experimentation with new scoring mechanisms and different types of video
content.

• Real-time interactive abstract generation:

– One of the most interesting aspects of the presented work is the possibility of real-time in-
teractive abstract generation. Such kind of approaches will provide functionalities for al-
lowing the user to interact with the video abstract generation process, watching the results
of his actions on-the-fly and enabling the possibility of interactive navigation through
the content. The application presented in this work focuses in the validation and experi-
mentation with the possibilities of real-time and interactive abstract generation concepts.
However, further improvements for enabling the usage of such kind of applications by
non-expert users, the study of the possible interaction mechanisms with the application
and the development of more personalization aspects are fields of interest for future re-
search.
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• Automatic summary evaluation system:

– The development of automatic video summary evaluation mechanism has many poten-
tial applications and possibilities in the development and improvement of future video
abstraction approaches. The work carried out demonstrates the feasibility of such au-
tomation, at least under the conditions and type of content applied in the TRECVid 2008
BBC rushes summarization task. Future work in this are will be focused on the improve-
ment of the extracted features and prediction techniques as well as the validation of the
developed techniques with new types content and evaluation measures. A further valida-
tion of the proposed techniques could enable a better understanding about what makes a
video summary good and to improve existing video abstraction approaches.
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Appendix A

Example of Application of the Abstraction
Systems Framework

A.1 Introduction

Operative functionalities are a very relevant factor given the practical inconveniences for the imple-
mentation of complex abstraction systems in real environments. The huge amount and growth of
content in video repositories forces to consider the abstraction systems operative characteristics and
not only their output quality. It is not possible to find complex abstraction approaches in commer-
cial systems where efficient but limited functionalities (keyframes, subsampling...) abstraction ap-
proaches are applied. There is a need to balance the abstract quality and the operational functionali-
ties of the abstraction system itself. The first step is a clear definition of a set of common concepts and
abstraction systems capabilities for comparing approaches in terms of provided operational func-
tionalities. The taxonomy proposed in chapter 3 aims to define a standardized classification scheme
for operative characteristics of abstraction systems allowing a clear specification of a system capa-
bilities with independence of the underlying abstraction mechanisms, selection criteria or generated
abstracts quality. Given the number of existing approaches, similar in many cases, the operational
functionalities provide a different criterion for measuring the system’s quality and its possible appli-
cation scenarios.

The external abstract generation characteristics (defined in chapter 3, section 3.2.1) may have a
relevant impact in many aspects of an abstraction approach: the output abstract size -bounded, un-
bounded- will necessarily affect a possible abstract presentation interface, the time needed to watch
the abstract, etc. The system performance -linear, non-linear- can determine if an abstraction ap-
proach is applicable in real time, its integrability in a streaming video portal with hours of video be-
ing constantly uploaded or if it is most appropriate for an off-line processing scenario. A progressive
system, able to generate a summary while the content is being generated or received, will allow new
scenarios such as on-line abstraction of broadcasted content (for example making video abstracts of
several simultaneous sport events for presenting one-minute summaries in a carousel way), instant
surveillance recording reviewing and so on.

In the same way the internal video abstract characteristics (chapter 3, section 3.2.2) are relevant
due to their influence in the described external characterization of the system. The size and type
of BU will affect the quality and computational performance of the analysis, scoring and selection
stages. Intra-BU analysis, rating and selection would ease the construction of progressive abstraction
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systems as the scoring and selection of each BU do not depend on other previous or incoming BUs.
When dealing with inter-BU analysis, scoring or selection, the performance of the system (linear,
non-linear) will be influenced by the number of inter-BU comparisons, size of the BUs, etc.

The number of influences and dependencies between the different operations carried out within
an abstraction process are manifold and hence the proposed architectural decomposition in different
stages (see section chapter 3, 3.3.2) provides a mechanism for analyzing the behavior, functionalities
and performance (in terms of computational effort and output quality) of a given system in a modular
way. The research can be focused on the improvement of independent stages working on separate
abstraction aspects. The proposed modularity will enable as well the modification of abstraction
algorithms by exchanging those stages which make the system be classified in a specific category.

The following subsections provide practical examples of abstraction system analysis, classifica-
tion and modeling according to the proposed taxonomy and architecture. Section A.2 depicts several
examples of abstraction system decomposition while section A.3 provides a complete system classi-
fication, modeling and the formulation of different possibilities for providing it with alternative func-
tionalities.

A.2 Abstraction System Decomposition

This section is devoted to show different abstraction systems decomposition according to the archi-
tectural models depicted in chapter 3, section 3.3.2, specifying the tasks carried out on every different
abstraction stage.

The most simple defined abstraction model is the Non-Iterative architecture including a single
’selection’ stage. One of the video skimming systems depicted in [64], which simply subsamples the
original video frames at a given rate, is suitable to be modeled with such architecture. In this case
the system’s BUs are single frames and only a ’selection’ stage with the subsampling mechanism is
included. Figure A.1 (a) shows the abstraction system internal mechanisms mapped to the defined
architecture. The ’User Preferences’ are, in this case, the choice of the selected output length ratio.
The same architecture is valid for similar approaches, for example considering small video fragments
as BUs instead of individual frames or systems where the video abstract is generated just selecting a
fixed number of BUs from the beginning of the video (Open Video Project1). No ’analysis’ nor ’scor-
ing’ stages are present in the architecture and there are not dependencies between BUs easing the
implementation of those systems as on-line approaches.

In [39] a keyframe extraction system which can be modeled as a ’Non-Iterative’ system with ’anal-
ysis’, ’scoring’ and ’selection’ stages is presented. The approach consists on the extraction of one rep-
resentative keyframe per incoming video shot. In this case, the frame which accumulated motion
activity is half the value of the entire shot is selected. Figure A.1 (b) depicts the distribution of the ab-
straction system elements in the three stages. In the ’analysis’ stage a 64 levels RGB color histogram
and motion vectors, which standard deviation is calculated as motion activity measure, are extracted
from the incoming video stream. The ’scoring’ stage includes a shot change division which is probably
based in the extracted color histogram (authors do not provide details about the employed mecha-
nism) and the accumulated motion activity per frame within a given shot is calculated as well. Finally,
in the ’selection’ stage, the shot frame with accumulated motion activity value equal to half of the shot
total accumulated activity value is selected as keyframe. As authors point, this system is suitable for

1www.open-video.org
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Figure A.1: System Decomposition Examples

on-line operation mode although the size of the output abstract can not be controlled. Nevertheless,
a straightforward improvement could be the selection of a variable number of keyframes from each
shot depending for example on each shot length.

A ’Non-Iterative’ system with ’analysis’,’scoring’ and ’selection’ stages as well as a Metadata Feed-
back mechanism is depicted in [56]. Such system is an on-line ’sufficient content change’ video skim-
ming approach, that is, incoming video segments are included in the output summary only if they
have a high enough visual difference with respect to other included segments. In this case the sys-
tem also provides a filtering mechanism so segments too similar to the ones previously defined as
’junk’ are discarded. Figure A.1 (c) depicts the system architectural distribution. In the ’analysis’
stage the MPEG-7 Color Layout [144] is extracted in a per-frame basis. In the ’scoring’ stage, incoming
frames are grouped in fixed size segments with a variable step sliding window and the visual similar-
ity (based on the Color Layout descriptor) with previously included segments, which information is
stored in the ’Model Database’, is calculated. The visual similarity with pre-stored content is calcu-
lated as well providing a filtering mechanism for undesired content (in this case junk content such as
blank frames). The ’selection’ stage is in charge of selecting those video segments which similarity to
previous segments or the models in the database are over a user defined threshold. The Color Lay-
out of the selected fragments is included in the model database for further comparisons. The output
abstract size will be determined by the original video characteristics as well as the defined thresholds
and is not possible to control. The main reason is the system on-line operation mode, avoiding off-
line approaches, e.g. clustering, which would permit a precise control of the output abstract length.
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A.3 Abstraction System Classification and Modeling

For illustrating the complete application of the proposed classification taxonomy and modeling frame-
work to a real example we will consider a recently published abstraction approach [180] presented in
the last TRECVid BBC Rushes Summarization Task [133]. We will focus in the operative characteris-
tics of the algorithm under analysis without discussing the participant’s summarization evaluation
results.

The algorithm works as follows: in a first stage the input is segmented into shots by the applica-
tion of a combination of transition detectors (fade in, fade out, fast dissolve, dissolve, etc.) relying
on a number of extracted features. Such features are extracted in both intra-BU (color histogram,
edge and related statistical features) and inter-BU (motion intensity, histogram changes) analysis (if
we consider the frame as the BU in the first stage). After the shot boundary detection, the system
uses the shot (variable length) as BU. In the next step, junk frames (in the case of the BBC rushes
content they are clapboards, black frames, etc.) are eliminated considering the extracted visual as
well as audio features (in this case no details are provided in the paper to infer the kind of BU and
modality -intra or inter BU- of the audio analysis), and the shot boundaries are modified according
to the results. Next, the shots are subdivided in a fixed number of subshots depending on the original
shot length. A clustering process is then carried out computing each pair of shot distances as a com-
bination of color histogram difference and motion characteristics. The clustering process allows to
identify three more characteristics of the summarization process: it relays on an inter-BU based scor-
ing mechanism (the subshots are compared with other subshots), the computational performance
of the system is non-linear (as the clustering process complexity is non-linear and limits the overall
system computational performance), and the classification of the system, attending to the genera-
tion delay category, is off-line because the clustering algorithm needs the whole video information
to proceed. Once clustered, the subshots importance is determined according to an average frame
saliency value and visual difference with the previous frame (the difference is calculated based in the
same features as in the clustering process). The final summary is created by distributing the output
summary specified length among the different created clusters according to their accumulated im-
portance. Within each cluster, the available time is distributed again between subshots depending on
their importance value. As the output summary size is defined, it is possible to state that the approach
is classified as a bounded-size abstraction system.

Figure A.2 (a) depicts a possible distribution of the summary generation algorithm according to
the proposed abstraction architecture (see chapter 3, section 3.3.3). In the first step, all the analy-
sis algorithms applied for the extraction of low level features from the original video are included,
using a frame as BU: intra-BU features -color histogram, edge features, frame saliency-, inter-BU fea-
tures -motion intensity, histogram changes- and audio features -probably applied with an inter-BU
approach-. The feature extraction processes are independent from the rest of the summarization
process and they can be included in an autonomous stage. All the enumerated features can be ex-
tracted in a progressive way (there is no need to have the complete video available) so this analysis
stage does not constrain system generation delay. The second stage, scoring, includes all those pro-
cesses devoted video content ranking. There are two stages (’Shot Division’ and ’Subshot Sampling’)
for internal managing the BUs, transforming them from frames to shots and then subshots without
adding additional information suitable for the selection process. The ’Junk Detection’ stage can be
considered as a tagging process where undesired BUs are marked. The ’Clustering’ module, aimed for
redundancy elimination, classifies each BU in different clusters (once more this can be understood as
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Figure A.2: Abstraction System Modeling

a tagging process). Finally, the ’Importance Calculation’ ranks the BUs according to the measure de-
picted in the algorithm description. At this point it is possible to finalize the process in the ’Selection’
stage by picking as many BUs as the desired output size. The previous extracted information (mainly
BU division in subshots, cluster tags and subshot importance measure) is taken into account dis-
tributing the available output length between clusters/subshots according to the previously depicted
criteria.

Given the proposed algorithm separation in stages, it would be quite straightforward to explore
different possibilities for the abstraction process in a structured way. For example, the extracted low-
level features could be substituted by different ones, keeping the rating and selection stages of the
approach and allowing the study of this change effects in the output. In the same way the scoring and
selection algorithms could be substituted and benchmarked by their comparison with other equiva-
lent module implementations. If the modules and algorithms were developed following standardized
interfaces it could be even possible to build new summarization systems taking modules from differ-
ent algorithms.

One of the advantages of a clear modularization of an abstraction system and the consideration
of the process as a BU flow between different stages is to identify the system elements which limit the
system operational features. The studied system is able to perform in a non-linear, off-line manner.
Given the algorithm stage distribution depicted in Figure A.2 (a) it is possible to determine that the
limiting module is the clustering process which introduces a non-linear computational complexity
element in the process. The selection mechanism requires the complete content annotation, intro-
ducing another off-line constrained stage in the system. The rest of the processes in the abstraction
algorithm, given the available information, can be considered to work in an on-line way.

Figure A.2 (b) shows an alternative solution for the studied system in which the clustering pro-
cess is substituted by an on-line approach which compares each incoming BU with previously se-
lected BUs (an information flow from the selection to the scoring stage has been included in order to
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share such information). The selection stage is then able to select the BUs to be part of the output
abstract by considering the importance value (calculated as in the previous system) and the redun-
dancy scores obtained by the subshot comparison module. A simple thresholding mechanism would
be enough. The computational performance of the system will mainly depend on the subshot com-
parison mechanism. [57] presents a system in which a similar comparison and selection process is
carried out in an on-line, linear complexity way. The study of the effects in the output summary qual-
ity of this kind of modifications in the algorithm operational aspects is out of the scope of this work
but the proposed system classifications, architecture decomposition and modeling allow approach-
ing the study of this kind of issues in a systematic and structured way.
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Appendix B

News Content On-Line Classification

B.1 Introduction

The first stage in the news abstraction process described in chapter 8 consists in the classification of
the incoming video segments in the different possible categories included in a news bulletin. A news
bulletin is basically composed by a number of concatenated news stories, each introduced by an
anchorperson section and followed by a visual report with the details of the story. However, such basic
structure can be refined and a news bulletin may contain many other types of shots, such as reporters,
interviews, commercials, etc., can be found. By observing the available content (see chapter 8 for
details), the following types of shots have been identified: Anchorperson, Animation, Black(Frame),
Commercial, Communication, Interview, Map, Report, Reporter, Studio, Synthetic and Weather. The
fragment classification process, described in the following sections, relies in the fast extraction of
low-level features from the original content which are feed to a SVM classifiers structure in charge of
labeling each incoming video fragment in one of the existing categories.

B.2 Feature Extraction

The feature extraction process, part of the on-line news abstraction system segment classification de-
scribed in chapter 8, starts with the calculation of the MPEG-7 Color Layout descriptor [144] for each
decoded video frame. This descriptor is particularly suitable for the system purposes as it has been
designed as a fast solution for high-speed image retrieval. After its calculation, frames are grouped in
blocks of a maximum of 30 consecutive frames, depending on a simple threshold-based shot change
detection mechanism. Such mechanism has been previously experimented in [56] and it is imple-
mented by calculating the color layout distance between consecutive frames and splitting the video
segments when the difference exceeds an experimentally set threshold. This mechanism provides
only a slight improvement with respect to the fixed block separation, avoiding the mix of different
shots in a single video segment. Nevertheless, the performance of the overall abstraction algorithm
does not have a high dependency on this mechanism because the small video segment size minimizes
the possible impact of shot change location errors.

For the classification of each video segment in one of the defined categories, additional features
must be extracted segment by segment. Such extraction must be efficient enough so the classification
process, together with the execution of the rest of the abstract generation modules, can be completed
on-line. For the reduction of the required computational complexity, the features are not extracted in
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Figure B.1: Anchorperson Face Position Examples

a frame by frame basis but subsampled and averaged for each video segment. It is assumed that, given
the small length of the video segments and the subsampling rate, only small variations may occur in
the reduced time intervals between the feature extraction instants. The set of extracted features has
been selected trying to maximize their meaningfulness (given the different shot categories a news
bulletin can contain) while keeping low extraction complexity. The obtained classification results,
shown later, demonstrate the feasibility of applying the following ‘light’ descriptors for the category
classification:

• Face detection: The OpenCV library 1 provides a very fast method for arbitrary object detec-
tion based on Haar features [173, 157]. In our case a frontal face detection model, particularly
suitable for the anchorperson detection, always staring at the camera and with the face lo-
cated in particular positions (see Figure B.1), has been applied. The average number, size and
coordinates of detected faces as well as the variance of such features are calculated for each
independent video segment. These features are aimed to allow the differentiation between An-
chorperson, Reporter, Interview and the rest of possible categories (see chapter 8 section 8.4 for
categories definition).

• Color Variety: The color distribution varies between natural and synthetically generated images
and represents a good feature for their differentiation. To measure the number of representative
colors in an image, the Y, U and V channels histograms are calculated. For each of them, a
color representativeness threshold is experimentally defined as 1/3 of the maximum histogram
value. For each video segment we obtain a single color variety value by averaging the number of
colors in the histograms with a value over the defined threshold. Figure B.2 shows an example
of the calculation of the histograms and representative colors (colors over threshold) for both a
synthetic and a natural image.

• Frame Differences: As part of the Color Layout Descriptor extraction, an 8x8 thumbnail image is
generated for each decoded frame. For an estimation of the video activity, the average variation
for each video segment is calculated by subtracting consecutive frames thumbnails. In order to
differentiate between different activity types, for example local or global motion patterns, five
different activity areas, shown in Figure B.3 (A), have been defined.

• Shot Variation: In order to obtain an average segment variation measure, the Color Layout dif-
ference is calculated every three frames within the video segment and averaged. This provides
a different activity measure to that obtained with thumbnail subtraction.

1http://sourceforge.net/projects/opencvlibrary/
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Figure B.2: Representative Color Calculation

Figure B.3: (A) Frame Block Variation Areas; (B) DCT Coefficients Blocks

• DCT Coefficients Energy: The Color Layout descriptor consists in the DCT coefficients of each
color plane 8x8 thumbnail. Making use of those pre-calculated coefficients, it is possible to
characterize images with smooth or abrupt changes. Images with different variation charac-
teristics contain different energy distribution within the DCT coefficients. For example, high
variation images contain more energy in the DCT coefficients located in the lower right corner
of the Color Layout descriptor. In this case the descriptor coefficients have been divided in four
areas (see FigureB.3 (B)), which are added up and averaged within each video segment to obtain
four frequency measures.

• Image Intensity: Shots recorded in a TV set usually have constant and controlled illumination
conditions. In this case the mean and variance of the intensity of each frame are calculated and
averaged for each video segment.

The set of extracted features has been selected trying to keep both simplicity and discrimination
capacity. Several of the extracted features make use of the Color Layout descriptor associated infor-
mation, which is later used for shot comparison in the video skimming process, avoiding the need of
extracting new features which could slow down the process.

All the extracted features are based on visual information only. Several experiments where car-
ried out with the inclusion of simple audio features (audio energy, zero-cross rate, etc.) which did
not produce significant improvement in the classification process. This might be produced because
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Feature Avg. Extraction Time per Second. Extraction Frec. (every x frames)

Frame Decoding 120.3 ms. 1
Color Layout 12.4 ms 1

Face Detection 75.6 ms 7
Color Variety 1.5 ms 4
Frame Diffs. 8.7 ms 4

Shot Variation 0.6 ms 4
DCT Coeffs. Blocks 0.0045 ms 4

Image Intensity 0.018 ms 4
Total 219.1 ms —

Table B.1: Feature Extraction Average Time per Second of Video

in most of the news content the audio track contains only narrations; and ambient sound or music
in a minority of the shots which are already characterized by visual descriptors only (for example in
the case of the news bulletin introductory animations with music). On the other hand, the most rel-
evant categories such as anchorperson or reports are separable taking into consideration visual-only
features. Previous works devoted to audiovisual scene change detection [181] found out that news
is one of the genres in which the audio features are least effective. Moreover, in this case, the per-
formance constraints and lack of available information related to the on-line operation complicates
the inclusion of more sophisticated (e.g. speech recognition, prosodic analysis, speaker change) and
potentially effective audio analysis techniques.

Table B.1 summarizes the extraction times2 for each of the described features, together with the
decoding time. Values are averaged so the reported time represents the average feature calculation
time for every second of incoming video. The extraction frequency is included in the table as well. It
must be noted that, for the achievement of on-line performance, the average decoding, feature ex-
traction, classification, selection and coding steps required for each incoming video segment must
be smaller than its playing time. In this case, the average feature extraction time per second, includ-
ing the frame decoding, is 219.1 milliseconds, providing 780.9 milliseconds per second of video still
available for the rest of the abstraction processes.

B.3 Video Segment Classification

Once all the features have been extracted, each incoming block of frames must be classified in one
of the categories defined in chapter 8 section 8.4 . The chosen classifier is the broadly used SVMs
-Support Vector Machines- [182] which has proven to provide a good performance in different classi-
fication problems [183]. The libSVM library [184], integrated in the system, provides a fast and easy
to use SVM implementation.

For the training process, 10 complete Deutsche Welle (DW) news bulletins have been manually
annotated classifying each shot according to the defined categories. In order to feed the classifier
training process with a set of features extracted in the same way as in the abstraction process, the
annotated videos are split and features are extracted following the process described in section B.2.

2Hardware platform: Intel Core 2 Duo @2.53GHz with 4GB of RAM.

154



Category # Segments l og (C ) l og (g amma) Correct Classification (%)

Anchorperson 3124 3 -1.025 98.6
Animation 236 10.25 -3.87 99.6

Black 131 -1.37 5.75 100
Commercial 293 24.92 -18.55 84.6

Communication 128 6.55 -7.87 99.5
Interview 1466 -0.125 -0.9 82.8

Map 286 22.5 -17.75 98.8
Report 6212 4.5 -3 94.5

Reporter 821 21.3 -20.98 88.3
Studio 387 11.25 -4.35 97

Synthetic 317 -1 0.2 100
Weather 454 0.925 -0.2 100

Table B.2: DW Single Category Classification Results

This process results in a total of 13855 annotated segments available for the training and validation
process. Table B.2 summarizes the category distribution of those segments.

An independent binary SVM with RBF -Radial Basis Function- kernel classifier has been trained
for each category with a grid search of C and gamma parameters of the SVM. The numbers of pos-
itive and negative samples have been equalized for each training process. For each possible C and
gamma parameter combination a 5-fold cross validation is carried out with 90% of the training set.
The obtained classifier is used for the classification of the 10% remaining test samples for validation
purposes. Table B.2 summarizes the obtained C and gamma parameters and correct classification
rate for each each category classifier for the 10% validation samples.

It can be observed how the synthetically generated categories, Black, Weather, Synthetic, Anima-
tion and Communication are the ones with better classification rates due to the low variability in the
specific characteristics of this kind of content. The Map category classifier performs slightly under the
other synthetic categories, probably because the variability in the maps is higher and can eventually
contain animations. The Anchorperson classifier has a very high classification performance as well,
given the well defined characteristics (face presence and location, illumination conditions) of this
kind of shots in the DW content. The Reporter and Interview are two of the categories with lower clas-
sification performance because, in many cases, the classifiers are not able to differentiate between
them or, under specific circumstances, can consider a reporter or interviewed as an anchorperson.
The Commercial presents low performance as well, an expectable result because commercials con-
tain very different kind of shots easily mistakable with any other categories. For the proposed ab-
straction process the good results obtained with the Anchorperson classification are very important:
the correct identification of the anchorperson shots is of the highest relevance for the correct news
segmentation, extraction of relevant news stories introduction and correct overlapping with news
reports.

The individual SVM classifiers provide a very good starting point for the classification of the dif-
ferent kind of shots in the news bulletin. Nevertheless, the final decision about which category a shot
belongs to is not straightforward: the classification of a shot with the complete set of trained binary
classifiers produces, in many cases, a multiple positive situation, that is, the shot is simultaneously

155



Figure B.4: Global Classification Steps

considered to belong to more than one category.
Another point to take into consideration is the consistency in the category of consecutive video

segments. The proposed approach works at sub-shot level and, therefore, it is very likely to find con-
secutive video segments belonging to the same category.

Both situations have been solved by the training of an additional ‘global’ SVM which is fed with
the individual classifiers predictions in a five segments window (including a temporal dimension in
the classification data) and outputs a video segment category prediction in one of the 12 possible cat-
egories. Figure B.4 depicts the two steps in the classification process: in the first step a Classification
Vector for a given time instant is composed by the 12 individual classifications of the video segment by
the 12 binary SVMs. In the second step a Global Feature Vector for a given time instant is composed by
its corresponding extracted features (enumerated in section B.2) and the Classification Vector of the
two previous and two subsequent segments as well as its own Classification Vector. The original set
of extracted features are included again in the Global Feature Vector because they can provide useful
information, not taken into account in the binary classifiers, for the discrimination between two or
more specific categories. For example the anchorperson single category classifier is trained for the
discrimination between anchorperson and any other type of video shots (reporter, animation, maps,
etc.) and relies in those features which provide the best overall classification performance. Consid-
ering, for example, the situation of having the anchorperson and reporter binary classifiers activated,
the inclusion of the low level features in the Global Feature Vector would allow the global classifier
to ‘reconsider’, for that particular case, the features which better discriminate between anchorperson
and reporter, and that could be different if other binary classifiers are activated. The experiments dur-
ing the classifiers training showed that the overall classification rate improved if the original set of
extracted features were included in the Global Feature Vector.
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Table B.3: DW Global Classifier Confusion Matrix

Classification Step Classification Time

Binary Classifiers 1.111 ms
Global Classifier 1.114 ms

Total 2.226 ms

Table B.4: Average Classification Time per Second of Video

The global classifier has been trained with the same corpus an methodology as the individual
classifiers, with optimal log (C ) = 2.45 and l og (g amma) = −58.9 parameters obtaining an overall
92.79% correct classification rate. Table B.3 shows the confusion matrix values for the global classifier
when applied to the 10% validation samples. The behavior of the classifier is similar to the individual
classifiers performance: the best results are obtained for the Anchorperson, Map, Studio, Synthetic
and Black categories. The higher incorrect classification rates have been obtained between the Re-
porter and Interview categories and between the the Commercial and Report ones for the previously
exposed reasons.

Finally, in order to reduce possible classification mistakes, a temporal filtering of outliers is carried
out considering that video segment categories can not present many consecutive changes. For this
reason a video segment classified in a category a surrounded by two segments of a different category b
is assigned to belong to category b. For the same reason, a segment classified in a category a, preceded
by a segment belonging to category b and followed by segment with a different category c is classified
as b or c depending on which of the adjacent segments is more similar from a visual point of view (the
comparison is carried out making use of the Color Layout descriptor, with the same mechanism as
the one applied for the video skimming process described in chapter 5, section 5.5).

Table B.4 summarizes the average time3 per second of classified video consumed by the binary
and global classification stages. The total average classification time is about 2 ms which is negligible
and shows the high efficiency of the SVMs once trained.

3Hardware platform: Intel Core 2 Duo @2.53GHz with 4GB of RAM.
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Category # Segments log (C ) log (g amma) Correct Classification (%)

Anchorperson 1138 0.85 -0.8 99.2
Animation 74 -0.65 -3.35 99.9

Commercial 115 19.2 -11.45 98.1
Communication 122 -1.7 -1.5 99.9

Interview 625 4.55 -9.8 89.5
Report 2990 7.25 -3.25 93.0

Reporter 78 12.2 -7 99.6
Studio 139 3.3 -0.8 99.9

Synthetic 28 -8.85 0.4 99.9

Table B.5: CCTV Single Category Classification Results

B.4 Alternative Content Classification

For a further validation of the proposed descriptors and segment classification mechanism, the train-
ing and testing processes were repeated with a smaller set of alternative news bulletins. In this case
the steps followed in section B.3 were repeated making use of news broadcasts from the Chinese
channel CCTV available in the TRECVid 2005 content set. In this case ten news bulletins of about
10 minutes each were manually annotated for the training process. The CCTV news bulletins have a
similar structure to the DW ones but no maps, weather or black categories were found in the training
set. Moreover the content presents a smaller resolution and worse quality than the DW content. On
the other hand, the anchorperson shots are very stable, without changes of anchorperson nor back-
ground during a single news bulletin and this fact should ease the anchorperson classification.

A total of 5309 individual segments resulted from the annotation process and were used for the
feature extraction and training processes. Table B.5 summarizes the number of each segment cat-
egory used, optimal C and gamma parameters and obtained classification rates for 10% validation
samples. The obtained individual classification results are, in principle, better that those obtained
for the DW news bulletins. Nevertheless the DW results are more reliable for different reasons: the
amount of content is about three times higher than the applied CCTV, there is a higher number of
different anchorperson, camera and background combinations as well as different kinds of anima-
tions and maps in the DW content. Finally, it was found that the commercials segments in the CCTV
content are the same in all the bulletins and this fact explains the unusually good results obtained in
the CCTV commercial category classification. The worst results were obtained in the interview cat-
egory, behavior found in the DW content as well. It was observed that in several of the interviews,
people were recorded in a profile position, what tends to produce fails in the frontal face detection.
The reporter category obtained a surprisingly good result but the small amount of available reporter
annotated fragments makes this result unreliable. In the same way, the small amount of synthetic
content does not allow us to assure a so high classification precision.

The training process of the global classifier, following the same steps depicted in the previous
section, resulted in log (C ) =−11.5 and log (g amma) =−26.75 optimal parameters. Table B.6 shows
the confusion matrix obtained for the global classifier. In this case the categories with higher classi-
fication error are the interview and report ones. Most of the erroneous interview segments are mis-
classified as anchorperson which is expectable given both categories common characteristics. The
missclassification of interview segments as report or commercial may be produced by failures in the

158



Table B.6: CCTV Global Classifier Confusion Matrix

frontal face detection process. In the opposite case we can find report fragments incorrectly classified
as interview probably because in such segments, although not being interviews, frontal faces appear.
It should be expected that the obtained classification results could be improved with a bigger train-
ing content set. Nonetheless, apart from those specific issues, the overall results are coherent with the
results obtained with the DW bulletins and demonstrates the possible application of the extracted de-
scriptors and classification scheme for their application with different content to the one used during
the development of the system. In section C.2.2 additional evaluations of the CCTV content abstrac-
tion results are reported.
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Appendix C

On-Line News Summarization Evaluation

C.1 Introduction

This appendix presents the results obtained in the evaluation of the on-line news abstraction system
described in chapter 8. The evaluation has been carried from both objective and subjective points of
view.

The objective evaluation (section C.2) consists on the analysis of the correct identification of an-
chorperson and report sections of the news stories as well as their correct composition. The indi-
vidual video segment classification performance of the system has been previously evaluated and
described in appendix B. Such individual category classification results have a great influence in the
overall system performance because the correct news story identification and anchorperson-report
alignment depend on them (see chapter 8 section 8.4 for categories definition). The results obtained
in the Anchorperson classification are very important for the overall performance of the system while
the incorrect classification of Report, Interviews or Commercial segments have a very reduced impact
in the output abstract quality.

The subjective evaluation (section C.3) is based on the validation of the system by a set of user
tests in which the quality and representativeness of the proposed approach have been measured by
the visualization of several of the generated abstracts by different users. The user evaluation includes
examples of incorrectly composed news stories for the study of their impact in the users perception.

C.2 Objective Evaluation

For the evaluation of the system, the inclusion of each news story in the output abstract and the cor-
rect synchronization of its anchorperson (in case s/he exists) with the report video skim has been
taken into account. For reports without introductory anchorperson, the inclusion of the associated
video skim is considered as a correct news story inclusion and it is not computed for the correct
anchorperson-report alignment statistics. The inclusion of no relevant content has not been penal-
ized but, in order to have a reference to measure the length reduction performance (targeting to a 1/3
length ratio), the average relation between the anchorperson and the rest of the content in complete
news bulletins has been considered as an optimal result (it is the maximum possible reduction if all
anchorperson sections are kept).
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Video Original Length (min.) Abstract Length (min.) # Stories (#compound) # Inclusion #Alignment Process Time (min.)

321070_4_journal_spa 28 9.63 (34%) 17 (14) 17/17 (100%) 12/14 (85.7%) 7.9
327904_3_journal_spa 28 8.68 (31%) 21 (19) 17/21 (81%) 13/19 (68.4%) 7.4

326156_3_journal_eng_16 28 7.34 (26%) 12 (10) 12/12 (100%) 9/10 (90.0%) 7.6
326156_3_journal_eng_18 28 7.15 (25%) 14 (10) 14/14 (100%) 8/10 (80%) 7.9
326181_3_journal_eng_08 28 7.93 (28%) 16 (16) 14/16 (87.5%) 13/16 (81%) 8.0
327916_3_journal_eng_18 28 10.43 (37%) 19 (15) 18/19 (94.7%) 13/15 (86%) 8.2

Total 168 51.16 (30.4%) 99 (84) 92/99 (92.9%) 68/84 (80.9%) 47.0

Table C.1: DW Abstraction Results

C.2.1 DW Content

Table C.1 summarizes the results obtained for 6 complete DW news bulletins (different to those anno-
tated and used for segment classification training). The table presents the original video and obtained
abstract lengths, number of news stories in each original video, and how many of them are compound
ones, that is, composed of anchorperson and a report and therefore subject to a possible foreground
anchorperson/background video skim alignment. The obtained results are presented as the number
of stories included in the abstract (when the corresponding anchorperson introduction is included)
and the number of correct alignments between anchorperson and report skims when dealing with
compound stories.

The obtained results demonstrate the feasibility of obtaining good size reduction (close to the
‘optimal’ target of 1/3 of the original length) with news video content while retaining most part of the
news stories in the news bulletins (92.9%) and with a correct overlapping between the anchorperson
and the report sections in 80.9% of the cases. Most of the incorrect news story inclusions are due to
the incorrect classification of the anchorperson sections as interview or reporter ones. In the cases
where incorrect alignment occurs, it is usually because Interview fragments are misclassified as An-
chorperson, being overlapped over Report fragments, or when a Report fragment classification error
produces an incorrect state change (for example Report fragments classified as Commercial may pro-
duce a premature news story composition finalization). It is expectable to correct those situations
and improve the results with the development of more precise classification mechanisms. It should
be pointed out that all the introductory and end animations for the news bulletins, as well as the
studio shots, where correctly eliminated in all bulletins. A reduced part of the commercial sections
included in the news bulletin (those not correctly classified as Commercial content) are skimmed and
included in the output abstract, but heavily reducing the length of these sections.

The overall process is carried out in an on-line processing way and therefore, given the opera-
tive constraints, the classification, inclusion and alignment results can be considered as very good.
The total processing time1 is considerable below the original video duration and slightly under the
output abstract length, thus demonstrating the feasibility of the proposed approach for continuous
broadcasting processing and for real-time abstraction (displaying the output as it is being generated)
of already stored content.

C.2.2 CCTV Content

In section B.4 of appendix B, the feature extraction and classification processes were validated with a
content set different to the one used during the development of the system (the DW news bulletins).
In this section we carry out a simplified validation test of the complete abstraction process trying to
determine the whole abstraction system applicability to a different content set just by a retraining of

1Hardware platform: Intel Core 2 Duo @2.53GHz with 4GB of RAM.
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Figure C.1: CCTV News Abstract Composition Example

Video Original Length (min.) Abstract Length (min.) #Anchorperson Inclusion #Reports Inclusion #Alignment

20041101_110000_CCTV4_NEWS3_CHN.mpg 10:00 3:14 9/10 8/8 8/8
20041108_110000_CCTV4_NEWS3_CHN.mpg 9:40 4:56 6/7 5/5 4/5
20041109_110100_CCTV4_NEWS3_CHN.mpg 9:00 3:02 6/7 4/4 4/4

Total 28:40 11:12 (39%) 21/24 (87.5%) 17/17 (100%) 16/17 (94.12%)

Table C.2: CCTV Anchorperson-Report Inclusion Results

the segment classifiers.

The anchorperson overlapping window proportions were slightly modified for a better visualiza-
tion given the smaller resolution of the CCTV bulletins (see figure C.1). With respect to the overall
bulletin structure, the news bulletins are shorter (about ten minutes) than the DW ones (28 minutes)
but the anchorperson-report news stories structure is kept along the news bulletin. A commercial sec-
tion is included within the news bulletin but, as commented in previous sections, it is the same in all
the news bulletins used and, therefore, it is always correctly detected and eliminated. In this case, ex-
act alignment between the anchorperson speech and the background video skim was not evaluated2

and therefore only the correct inclusion of all the anchorperson sections and the following reports (if
applicable) were evaluated. Table C.2 summarizes the obtained results for 3 CCTV news videos de-
picting the original and abstract lengths, the number of existing and included anchorperson, and the
number of correct alignments (anchorperson overlapped over the following news report).

The anchorperson inclusion errors are produced in all cases because the news bulletins include
short anchorperson fragments under the established 5 seconds minimal length (see chapter 8 table
8.1). In two cases, this situation was produced at the finalization of the news bulletin and, therefore,
no relevant information was missed. Only one of the cases was produced in the middle of a news
story. All the reports were appropriately skimmed and included in the abstracts with a correct align-
ment in 16 out of 17 cases (the only exception is the no detection of the anchorperson within a news
story). The obtained abstract length is close to the ‘optimal’ 1/3 value (it is substantially higher in one
of the bulletins due to a long anchorperson appearance at the end of the video without being followed
by a news report).

The obtained results are quite good in general terms, even considering the relatively small amount
of data utilized in the training of the classifiers (see appendix B), and demonstrate the applicability of
the proposed approach for different news broadcast content.

2Due to the lack of knowledge about the chinese language.

163



Segment Test Original Video #Stories Original
Length
(sec.)

Abstract
Length
(sec.)

Output
Length
Ratio

Language Correct
Alignment

S1 1 327904_3_journal_spa 2 94 37 0.39 SPA No
S2 1 327904_3_journal_spa 2 123 92 0.75 SPA Yes
S3 1 327904_3_journal_spa 2 113 50 0.44 SPA No
S4 1 327904_3_journal_spa 1 83 27 0.33 SPA Yes
S5 2 327904_3_journal_spa 1 93 49 0.53 SPA Yes
S6 2 327904_3_journal_spa 2 111 37 0.33 SPA Yes
S7 2 327904_3_journal_spa 2 159 49 0.31 SPA Yes
S8 2 327904_3_journal_spa 2 129 64 0.5 SPA No
S9 3 327916_3_journal_eng_18 2 121 43 0.36 ENG Yes

S10 3 327916_3_journal_eng_18 1 38 13 0.34 ENG Yes
S11 3 327916_3_journal_eng_18 2 144 45 0.31 ENG Yes
S12 3 327916_3_journal_eng_18 1 174 81 0.47 ENG Yes

Table C.3: News Segments for User Evaluation

C.3 Subjective Evaluation

For the validation of the proposed abstraction approach from an subjective point of view, an user test
campaign was carried out. There were three principal aspects in which the tests were focused: the
representativeness of the proposed approach, the generated abstracts pleasantness, and the useful-
ness of the abstracts. The tests were carried out with a total of 27 users. Three different tests were
implemented, combining different news bulletin fragments from the DW content set, and each user
was asked to visualize and evaluate one of the tests (yielding a total of nine users per test). Each test
was composed of four different news bulletin summarized fragments and their corresponding origi-
nal video. Instead of evaluating complete bulletins, small fragments of one or two news stories were
presented to the users. This design decision was taken, because a complete 28 minutes bulletin would
have been too long to keep the users attention level and to allow the user remembering the details
about all the individual news stories. Nevertheless, some of the evaluated videos are composed by
two consecutive stories so that the user can check the individual story abstract concatenation. Table
C.3 summarizes the different news story fragments used in each of the three different tests, including
the number of stories that each segment contained, the original video duration, the summary length,
the news story language and the correct alignment (specifying if the anchorperson introduction was
correctly overlapped with the news report or news, or if there were overlapping errors). Most of the
segments are in Spanish because most of the evaluators were Spanish native speakers and the correct
understanding of the news stories has high relevance.

After the visualization of each pair of abstract/original video, the users were asked to rate their
level of agreement with several assertions (Q1-Q4) about each video abstract, and, at the end of the
test, they were asked to rate a final set of three general assertions (FQ1-FQ3). Table C.4 shows the dif-
ferent assertions. For each question the user was able to choose between 5 different levels of agree-
ment except for question Q4 (about the length of the abstract), in which the user had to indicate
his/her opinion about the length of the abstract. Finally, at the end of the questionnaire, the users
were able to make any desired comment about the abstraction method or the questions.

Table C.5 shows the evaluation results (average and standard deviation) per video for questions
Q1-Q4 (asked after the visualization of each news bulletin fragment). The obtained results are, in
general terms, quite positive for the validation of the proposed approach. Q1 results (’The summary
adequately represents the original bulletin’) obtained very good results with the values for most part
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VIDEO QUESTIONS
Question ID Assertion

Q1 The summary adequately represents the original bulletin...
Q2 The summary rhythm and composition are pleasant...
Q3 There is relevant/fundamental information

missing in the summary...
Q4 The summary length is...

GENERAL QUESTIONS
Question ID Assertion

GQ1 The proposed summarization technique is useful for news
video content...

GQ2 The displayed summaries are pleasant to see...
GQ3 The summaries provides a proper understanding about

the original news bulletin video...

POSSIBLE ANSWERS
Applied for Choices

Q1-Q3;
GQ1-GQ3

1 - Strongly Disagree, 2- Disagree, 3 - No Opinion,
4 - Agree, 5 - Strongly Agree

Q4 1 - Too Short, 2 - Short, 3 -Adequate,
4 - Long, 5 - Too Long

Table C.4: Test Questions

of the videos close or above the 4 (’Agree’) and an average value of 4.22. Q2 results (’The summary
rhythm and composition are pleasant’) present more variations. The average value, 3.76, is close to
the agreement value and therefore users tend to think that the summaries are pleasant. Nevertheless
some of the abstract obtained values closer to a neutral opinion (S3 and S7, with scores 3.22 and 3
respectively) or even to the disagreement score (S6, score 2.44). In the case of S3 there is a composi-
tion mistake in the video abstract which clearly affects the user perception. In the news segment S7
the main problem may be related to the anchorperson introductory narration which does not finish
before the visual report starts and, therefore, it is incomplete in the output abstract. The S6 abstract
presents the case of short visual reports fragments after the anchorperson finishes which may pro-
duce an unpleasant rhythm. Several of the users commented that the news report video skim, in the
cases in which it was longer than the anchorperson introduction, presented audio cuts which had a
negative influence in the abstracts pleasantness. Such issue is a typical problem in many video skim-
ming approaches and should be addresses in the future to enhance the abstracts pleasantness (for ex-
ample, selecting a continuous audio fragment from the report instead of the audio of each fragment).
Nonetheless, the average results are good and the representativeness of the abstracts is still high even
in abstracts with lower pleasantness score. The third question (’There is relevant/fundamental infor-
mation missing in the summary’) was aimed to determine if there was really important information
missed in the abstract and complements question Q1. The average obtained score was 2.42, between
the ’No Opinion’ and ’Disagree’ values, showing a slight tendency by the users to consider that there
is not really fundamental information lost in the abstracts. Of course, the complete news stories pro-
vide more information about the story than just the single anchorperson introduction, but, taking
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SEGMENT Q1 | Average : Deviation Q2 | Average : Deviation Q3 | Average : Deviation Q4 | Average : Deviation

S1 4.22 : 1.09 4.44 : 0.53 2.44 : 1.01 3.00 : 0.71
S2 4.33 : 0.50 3.77 : 1.20 1.78 : 0.97 4.00 : 1.00
S3 3.88 : 0.93 3.22 : 1.30 2.11 : 1.17 3.11 : 0.78
S4 4.66 : 0.50 4.66 : 0.50 1.89 : 0.93 3.22 : 0.44
S5 4.44 : 0.53 4.22 : 0.44 2.67 : 0.87 3.56 : 0.53
S6 3.55 : 1.01 2.44 : 1.13 3.00 : 1.00 2.89 : 0.33
S7 4.44 : 0.52 3.00 : 1.22 2.67 : 1.12 3.11 : 0.33
S8 4.11 : 1.17 3.67 : 1.12 2.67 : 0.87 3.33 : 0.50
S9 4.44 : 0.53 4.00 : 1.00 2.11 : 0.33 3.11 : 0.33

S10 4.11 : 0.78 4.67 : 0.50 3.11 : 1.45 3.00 : 0.50
S11 3.89 : 0.93 3.44 : 1.01 2.67 : 0.87 2.78 : 0.44
S12 4.55 : 0.53 3.66 : 1.12 1.89 : 1.05 3.33 : 0.70

Average 4.22 : 0.75 3.76 : 0.92 2.42 : 0.97 3.20 : 0.55

Table C.5: Evaluation Results per Video Segment

into consideration the combination of Q1 and Q3, it can be stated that the abstracts adequately rep-
resent the original video information. Several users pointed out that there was a high dependency on
how well the anchorperson introduction described the rest of the news with this possible lack of infor-
mation. For example, segment S10 obtained one of the worst results for Q3, 3.11, (which is, however.
a neutral result) while the scores for Q1,Q2 and Q4 (later analyzed) were quite good. These results can
only be explained by the specific content of such news story and the information they contain.

The last question presented to the user, Q4 (’The summary length is...’), was aimed to determine
if there was any users’ preference about the original and abstract lengths ratio. The average score
obtained was 3.22, which is very close to the ’Adequate’ length choice in the test. Therefore, in gen-
eral terms, the length of the generated abstracts seem to be correct. The abstracts lengths ratios are
depicted in table C.3 and a high correlation between such values and the obtained Q4 score can be
observed. Segments S2, S5, S8 and S11, with abstract length ratios of 0.75, 0.53, 0.50 and 0.47, ob-
tained Q4 scores of, respectively, 4.00, 3.55, 3.33 and 3.33, showing a long abstract perception by the
users. The abstracts with best Q4 scores, presenting an adequate length for the users, are those with
a length ratio of about 1/3.

Figure C.2 depicts the answer frequencies for questions Q1-Q4 for the whole set of segments in-
cluded in the 3 different tests carried out. Summarizing the results, in 87% of the cases, the users
agreed or strongly agreed with ’The summary adequately represents the original bulletin’. In 65.7% of
the cases, the users disagreed or strongly disagreed with ’There is relevant/fundamental information
missing in the summary’ against a 23.14% of the cases where the users considered relevant infor-
mation was missed (agreed or strongly agreed with Q3). ’The summary rhythm and composition are
pleasant’ for the users in a 71.29% of the cases while in the 20.3% of them, users disagreed or strongly
disagreed with such assertion. Finally, users considered the summary lengths as adequate in 66.6% of
the cases, somehow short or long in 29’6% of them, and too long or short in only 3.7% of the displayed
abstracts.

After watching and rating each individual abstract, the users were asked to specify their level of
agreement with three general questions (GQ1-GQ3, see table C.4). In this case, the users had to con-
sider the whole set of displayed abstracts and original videos in order to provide an overall impres-
sion about the proposed abstraction approach. Figure C.3 presents the results obtained for the 27
users which carried out the tests: 96.3% of the users agreed or strongly agreed in FQ1 “The proposed
summarization technique is useful for news video content”, 81.6% of the users considered that (FQ2)
“The displayed summaries are pleasant to see” and, finally, for question FQ3, “The summaries provide
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Figure C.2: Q1-Q4 Answer Frequencies

Figure C.3: FQ1-FQ3 Answer Frequencies

a proper understanding about the original news bulletin video”, 96% of the users agreed or strongly
agreed.

The obtained results validate the proposed news video abstraction approach in both the indi-
vidual evaluation of the abstracts and the general questions about the usefulness and quality of the
abstraction approach. The main purpose of the abstracts, to provide a representative short version of
the original news content, is, according to the obtained results, successfully achieved. It seems that
the pleasantness of the abstracts visualization, although validated by the users opinion, could be im-
proved if, as several users commented, the cuts in the audio track could be correct in the cases where
the report video skim is longer than the anchorperson introduction. In general terms, the obtained
user evaluation results are very good, specially considering the speed constraints of the processing
and progressive output generation (the latter limiting the amount of available information for the
abstract generation).
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Appendix D

Publications

List of published papers grouped by related topic and associated thesis chapter:

• Abstraction systems taxonomy and video abstraction architecture (chapter 3).

– V. Valdés, J. M. Martínez, “A framework for video abstraction systems analysis and mod-
elling from an operational point of view“, Multimedia Tool and Applications (Online Pub-
lished, 10 October 2009, DOI: 10.1007/s11042-009-0392-7 , ISSN: 1573-7721).

– V. Valdés, J. M. Martínez, “On Video Abstraction Systems Architectures and Modelling”,
Proceedings of the 3rd International Conference on Semantics and Digital Media Tech-
nologies, Lecture Notes in Computer Science, Vol. 5392, Springer Verlag, 2008, pp. 164-
177.

• Novel algorithms for on-line and real-time video skimming (chapter 5).

– V. Valdés, J. M. Martínez, “Post-Processing Techniques for On-line Adaptive Video Sum-
marization Based on Relevance Curves”, Proceedings of the 2nd International Conference
on Semantics and Digital Media Technologies, Lecture Notes in Computer Science, Vol.
4816, Springer Verlag, 2007, pp.144-157.

– V. Valdés, J. M. Martínez, “On-line Video Skimming Based on Histogram Similarity”, Pro-
ceedings of the ACM Multimedia 2007 Workshop on TRECVID Video Summarization, Augs-
burg, Germany, 24-29 September 2007, pp. 94-98.

– V. Valdés, J. M. Martínez, “On-line video summarization based on signature-based junk
and redundancy filtering”, Proceedings of the International Workshop on Image Analysis
for Multimedia Interactive Services, WIAMIS’2008, Klagenfurt, Austria, 7-9 May 2008. pp.
88-91.

– V. Valdés, J. M. Martínez “Binary Tree Based On-Line Video Summarization”, Proceedings
of the ACM Multimedia 2008 (TRECVID Video Summarization Workshop), Vancouver,
Canada, 27 October – 1 November 2008, pp. 134-138.

• Application for the generation of broadcasted news abstracts integrating on-line techniques for
segment classification video skimming and abstract presentation composition (chapter 8).
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– Á. García, J. Molina, F. López, V. Valdés, F. Tiburzi, J. M. Martínez, J. Bescós, “Instant Cus-
tomized Summaries Streaming: a service for immediate awareness of new video content”,
7th Workshop on Adaptive Multimedia Retrieval, Lecture Notes on Computer Science,
Springer Verlang, Madrid, 2009.
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Appendix E

Conclusiones

E.1 Contribuciones Principales

En esta tesis se ha llevado a cabo un estudio completo sobre técnicas de generación de resúmenes on-
line (en vivo) y real-time (en tiempo real). El trabajo, en su conjunto, analiza los diferentes aspectos
del problema: estudio de las técnicas existentes y antecedentes; definición de un marco de análisis;
definición y estudio previos del problema abordado; propuesta de soluciones en forma de algoritmos
novedosos; análisis y evaluación de las soluciones propuestas; y, finalmente, desarrollo de aplica-
ciones reales basadas en las soluciones y algoritmos propuestos. Las principales contribuciones de
este trabajo son las siguientes:

• Una taxonomía y arquitectura genérica para sistemas de generación de resúmenes (capítulo 3).

• Definición y análisis de los conceptos de generación de resúmenes de vídeo on-line y real-time
así como de las implicaciones y restricciones asociadas al desarrollo de dicho tipo de sistemas
(capítulo 4).

• Propuesta de nuevos algoritmos para generación on-line y real-time de resúmenes (descripción
de los algoritmos en el capítulo 5, evaluación de los mismos en el capítulo 7).

• Desarrollo de un sistema novedoso para la evaluación automática de sistemas de generación
de resúmenes de vídeo (capítulo 6).

• Desarrollo de una aplicación para la generación de resúmenes de telediarios en tiempo de
emisión, integrando técnicas on-line para clasificación de segmentos, generación de resúmenes
y vídeo-composición de la presentación de los mismos (capítulo 8).

• Desarrollo de una aplicación novedosa, RISPlayer, para la generación y visualización en tiempo
real de resúmenes de vídeo interactivos (capítulo 9).

Este trabajo comienza presentando una visión general sobre técnicas de generación de resumenes y
clasificaciones propuestas en la literatura (capítulo 2). Basándonos en el estudio de las soluciones
existentes, se propone un marco de estudio unificado (capítulo 3), constituido por una taxonomía de
métodos de generación de resumenes y por una arquitectura genérica que permite el modelado de
la gran mayoría de aproximaciones existentes. La taxonomía propuesta clasifica los métodos de gen-
eración de resúmenes de acuerdo con sus características externas e internas y representa un punto
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de vista novedoso muy apropiado para el análisis de las características operativas de los sistemas
de generación de resúmenes. Por otra parte, la arquitectura propuesta muestra como caracterizar
prácticamente cualquier sistema de generación de resúmenes mediante la división del proceso en
tres etapas básicas (’análisis’, ’puntuación’ y ’selección’) y considerándolo como un flujo de ’unidades
básicas’ (fragmentos extraidos del vídeo original) a través de las diferentes etapas.

El marco establecido define conceptos y términos aplicados para el análisis de las aproximaciones
existentes actualmente y la propuesta de nuevas soluciones. Se han definido las modalidades de gen-
eración de resúmenes on-line y real-time, estableciendo las limitaciones computacionales asociadas
a cada una de ellas (capítulo 4). Además, se ha llevado a cabo un análisis de las potenciales im-
plicaciones de ambas modalidades en los algoritmos subyacentes a las técnicas de generación de
resúmenes.

Considerando las limitaciones e implicaciones estudiadas anteriormente, se han propuesto dos
nuevos algoritmos para la generación de resúmenes de vídeo on-line (capítulo 5). Ambos algorit-
mos se han desarrollado con el objetivo de ser aplicados sobre contenido genérico y, por tanto, los
dos están basados en técnicas de eliminación de redundancia visual, aunque otros aspectos con re-
specto a los resúmenes generados han sido tenidos en cuenta (ritmo, continuidad y calidad visual
en los resumenes). Los dos algoritmos difieren en su complejidad, con una primera aproximación
basada en un mecanismo ’variación suficiente del contenido’ (’sufficient content change’), que pro-
porciona una menor cantidad de posibilidades de configuración, y una segunda propuesta, basada
en árboles binarios, que es muy flexible en términos de posibles configuraciones para la generación
de resúmenes. Esta última aproximación proporciona un sistema genérico on-line con mecanismos
integrados para personalizar el tipo de resúmens generados, filtrado de contenido y escalabilidad en
términos de complejidad computacional, retardo en la generación de los resúmenes y calidad de los
mismos. Dos sistemas para la generación de resúmenes de ’rushes’ (grabaciones sin editar), basa-
dos en los algoritmos propuestos, se enviaron a las campañas de evaluación TRECVid BBC Rushes
Summarization Task de los años 2007 y 2008, obteniendo resultados comparables con los del resto de
participantes (compuestos basicamente por aproximaciones off-line).

No obstante, para una validación completa de los algoritmos propuestos, ha sido necesario lle-
var a cabo una batería de pruebas más exhaustiva. Por esta razón, haciendo uso de los resúmenes
y resultados de todos los participantes en la campaña de evaluación TRECVid BBC Rushes Summa-
rization Task de 2008, se ha desarrollado de un sistema de evaluación automático basado en el entre-
namiento de predictores individuales para varias de las características evaluadas en dicha campaña.
El sistema desarrollado permite aproximar resultados de evaluaciones llevadas a cabo por personas
basándose en métricas extraidas de los resúmenes. Haciendo uso de dicho sistema, los algoritmos
descritos para generación de resúmenes on-line han sido evaluados en profundidad, analizando sus
funcionalidades y capacidades comparándolas con las de técnicas off-line (capítulo 7).

Se ha llevado a cabo el desarrollo de dos aplicaciones integrando el algoritmo para generación de
resúmenes on-line basado en árboles binarios y demostrando la aplicabilidad de los algoritmos y con-
ceptos propuestos. La primera aplicación consiste en un sistema para la generación de resúmenes
on-line de telediarios (capítulo 8) y combina diferentes técnicas para el análisis y clasificación en
categorías de los segmentos de vídeo (basada en un proceso de extracción de características y entre-
namiento de clasificadores explicado en el apéndice B), generación de resúmenes de dichos segmen-
tos (basada en el algoritmo de árboles binarios descrito en el capítulo 5) y composición de la pre-
sentación del resúmen. El sistema, en su conjunto, permite el procesado del vídeo original de forma
on-line, haciendo posible la aplicación del sistema para la generación de resúmenes de noticias en
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tiempo de emisión. Se ha llevado a cabo la evaluación de la calidad de los resúmenes generados desde
puntos de vista tanto objetivos como subjetivos, con una validación con usuarios reales en la que se
obtuvieron muy buenos resultados (consultar apéndice C para más detalles).

La segunda aplicación consiste en un reproductor de vídeo -RISPlayer- capaz de generar resúmenes
de vídeo en tiempo real y de forma interactiva (capítulo 9). Dicha aplicación ha sido desarrollada
integrando el algoritmo de generación de resúmenes basado en árboles binarios y proporciona las
funcionalidades de un reproductor de vídeo habitual así como las de generación de resúmenes (en
cuyo caso solamente los fragmentos del vídeo original seleccionados son reproducidos). El RISPlayer
incluye mecanismos para el control automático de rendimiento, en términos de complejidad com-
putacional, basados en las propiedades de escalabilidad del algoritmo de árboles binarios, y per-
mite la modificación por parte del usuario de los diferentes pesos que influyen en las características
de los resúmenes generados. La aplicación demuestra el potencial de las técnicas de generación de
resúmenes en tiempo real y esboza posibilidades futuras en cuanto a generación de resúmenes per-
sonalizados e interactivos.

E.2 Trabajo Futuro

Mas allá de los objetivos obtenidos hasta el momento, existen varias direcciones posibles para la
continuación del trabajo desarrollado en esta tésis, principalmente relacionados con los siguientes
aspectos:

• Identificación de nuevos tipos de contenido y aplicaciones potenciales de los algoritmos de
generación de resúmenes on-line:

– Los algoritmos genéricos de generación de resúmenes on-line presentados en este trabajo
están basados en la aplicación de mecanismos de eliminación de redundancia, una aprox-
imación cuya aplicabilidad ha sido demostrada para ciertos tipos de contenido (películas
y ’rushes’). El análisis de nuevos tipos de contenido (como deportes o series de televisión)
para la validación de los métodos propuestos constituiría una interesante línea de inves-
tigación futura.

– Uno de los algoritmos de generación de resúmenes presentado en este trabajo se cen-
tra en el procesamiento de telediarios, combinando algoritmos específicos para la clasifi-
cación y composición de contenido de noticias, junto con el algoritmo de generación de
resúmenes genéricos basado en árboles binarios. La identificación de nuevos escenarios
de aplicación de sistemas on-line junto con el desarrollo de técnicas especializadas para
el tratamiento de tipos de contenido específicos es una de las posibles lineas de investi-
gación futuras. Algunos ejemplos de posibles escenarios para la aplicación de las técnicas
de generación de resúmenes on-line serían la generación de resúmenes de distintos tipos
de contenido en tiempo de emisión, sistemas de grabación continua (como sistemas de
videovigilancia), vídeo en Internet o aplicaciones para terminales de baja capacidad com-
putacional (por ejemplo terminales móviles).

• Mejora de los algoritmos de generación de resúmenes on-line:

– El algoritmo basado en árboles binarios propuesto proporciona un marco de desarrollo
con muchas posibilidades para futuras implementaciones de sistemas de generación de
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resúmenes on-line. No obstante existen aspectos de dicho algoritmo potencialmente
mejorables, tales como su eficiencia computacional, el desarrollo de estrategias ’inteligentes’
para la selección de caminos en el árbol o la experimentación con nuevas fórmulas de
’puntuación’ de los resúmenes generados y nuevos tipos de contenido.

• Generación de resúmenes en tiempo real:

– Uno de los aspectos más interesantes del trabajo presentado es la posibilidad de gen-
eración de resúmenes en tiempo real. Este tipo de aproximaciones proporcionan las fun-
cionalidades necesarias para permitir al usuario interactuar con el proceso de generación
del resumen, visualizando los resultados de sus cambios sobre la marcha y permitiendo la
posibilidad de navegación interactiva por el contenido. La aplicación presentada en este
trabajo se centra en la validación y experimentación con las funcionalidades que ofrecen
dichas modalidades de generación de resúmenes. Sin embargo, futuras mejoras orien-
tadas a incrementar la usabilidad de dichas aplicaciones para usuarios no expertos así
como el estudio de posibles mecanismos de interacción con el usuario son aspectos de
interés para futuras investigaciones.

• Sistema de evaluación automática de resúmenes:

– El desarrollo de mecanismos para la evaluación automática de resúmenes tiene una gran
cantidad de potenciales aplicaciones en cuanto al desarrollo y mejora de los algoritmos de
generación de resúmenes existentes. El trabajo presentado demuestra la posibilidad real
de dicha automatización, al menos con el tipo de contenido y las condiciones de evalu-
ación aplicadas en la campaña ’TRECVid 2008 BBC Rushes Summarization Task’. El tra-
bajo futuro en este área se centrará en la mejora de las técnicas de extracción automática
de métricas de los resúmenes y los mecanismos de predicción, así como en la validación
de las técnicas desarrolladas con nuevos tipos de contenido y medidas de evaluación. La
validación de las técnicas desarrolladas podría permitir, en el futuro, una mejor compren-
sión sobre los aspectos que caracterizan a los buenos resúmenes y en la aplicación de
dicho conocimiento para el desarrollo de nuevas técnicas para su generación automática.
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