
 
 
 
 

 
 

 
 

Repositorio Institucional de la Universidad Autónoma de Madrid 
 

https://repositorio.uam.es 
 

Esta es la versión de autor del artículo publicado en: 
This is an author produced version of a paper published in: 

 
Pattern recognition 43.3 (2010): 782-795 

 
DOI: http://dx.doi.org/10.1016/j.patcog.2009.09.018  

 
Copyright: © 2010 Elsevier B.V. 

 
El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 

https://repositorio.uam.es/
http://dx.doi.org/10.1016/j.patcog.2009.09.018


Normality-Based Validation for Crisp Clustering

Luis F. Lago-Fernández∗,a, Fernando Corbachob
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Abstract

We introduce a new validity index for crisp clustering that is based on the
average normality of the clusters. Unlike methods based on inter-cluster and
intra-cluster distances, this index emphasizes the cluster shape by using a
high order characterization of its probability distribution. The normality
of a cluster is characterized by its negentropy, a standard measure of the
distance to normality which evaluates the difference between the cluster’s
entropy and the entropy of a normal distribution with the same covariance
matrix. The definition of the negentropy involves the distribution’s differ-
ential entropy. However, we show that it is possible to avoid its explicit
computation by considering only negentropy increments with respect to the
initial data distribution, where all the points are assumed to belong to the
same cluster. The resulting negentropy increment validity index only requires
the computation of covariance matrices. We have applied the new index to
an extensive set of artificial and real problems where it provides, in general,
better results than other indices, both with respect to the prediction of the
correct number of clusters and to the similarity among the real clusters and
those inferred.
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1. Introduction

Cluster analysis, also known as unsupervised classification or exploratory
data analysis, pursues the automatic partition of a data set into a finite
number of natural structures, or clusters [1, 2, 3]. The goal of any clustering
algorithm is to divide the data into different groups or categories, gener-
ally searching for homogeneity within each cluster and heterogeneity among
different clusters, according to some similarity measure. That is, elements
inside a cluster must be similar, while elements belonging to different clus-
ters must not. Clustering algorithms are usually divided into crisp and fuzzy
methods. In crisp clustering, each data point is uniquely assigned to a single
cluster. On the contrary, fuzzy clustering allows each point to belong to any
of the clusters with a certain degree of membership.

A common problem to both approaches is the lack of a general framework
to measure the validity of the outcomes of a particular clustering method.
Note that in cluster analysis the data have no labels which can guide the
algorithms or inform about the reliability of the final results and, in general,
different algorithms provide quite different results when applied to the same
data set. Even worse, the same method may provide different data partitions
depending on the initialization conditions, the data presentation order or the
parameter values. Determining whether a certain partition is better or worse
than another is not an easy task, and so the development of techniques that
allow to assign a validity measure to the outcomes of clustering algorithms,
known as cluster validation [4], has become a central issue in the field. The
objective of cluster validation is to provide a quality measure, or validity
index, that allows to evaluate the results obtained by a clustering algorithm.
There is a large literature that deals with cluster validation from different
approaches [5, 6, 7, 8, 9, 10, 11, 12], both for crisp and fuzzy clustering.

In this paper we deal with cluster validation for crisp clustering. In this
context, validity indices are generally based on some measure that relates
the cluster diameters to the inter-cluster distances [13, 14, 15, 16]. The
data set is assumed to be well-partitioned if the former are small compared
to the latter. This kind of criteria can give a general impression of the
separation among clusters, but they ignore much of the information regarding
how the data are distributed. Implicitly, these distance based criteria assume
that the clusters are (hyper-)spheres, and so they can lead to error when
the data distributions are very elongated (see Fig. 1). A few recent works
take into account the cluster shape [17, 18, 19, 20], in general searching
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for normally distributed clusters. Most of these works assume a Gaussian
Mixture Model to describe the data. Validation, and in particular inference
of the number of clusters in Gaussian mixtures has been the subject of much
research [21, 22, 23, 24, 25, 26]. Nevertheless, Gaussian mixtures assume a
probabilistic (fuzzy) model for the data, and so these approaches can not be
directly applied to the validation of a crisp partition. Finally, some recent
techniques based on stability criteria measure the reproducibility of clustering
solutions on a second sample [27, 28, 29]. They have been applied to cluster
validation mainly for gene expression data sets.
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Figure 1: Distance-based validity indices fail when the clusters are very elongated. A. In
spite of being clearly separable, the two clusters are merged if one considers their diameter
relative to the inter-center distance. B. Spherical equivalents of the clusters in panel A,
showing the presumed overlap derived from the sphericity assumption.

We believe that, even in the case of crisp clustering, the normal distri-
bution is optimal as a cluster’s shape. First, human vision tends to asso-
ciate single clusters to Gaussian structures. When the data is described by
no more than three attributes, no artificial clustering algorithm appears to
perform better than visual inspection. This human ability is exploited in
projection pursuit techniques [30, 31, 32], whose aim is to find “interesting”
projections of the data onto a low dimensional space, such that a human
analyst can visually determine the data intrinsic structure. In this context,
the normal distribution is generally considered to be the least interesting, be-
cause it provides no information about possible hidden sub-structures (note
that multimodal distributions showing some clustering structure are far from
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normality). Second, from an information theoretic point of view, the normal
distribution is the one with largest entropy for a given covariance matrix [33],
and so the less structured (more uncertain) one. This means that a normally
distributed cluster can not be expected to contain additional sub-structures.
Both points of view emphasize the relation between a cluster and a normally
distributed set.

We propose a new validity index for crisp clustering that is based on
the average normality of the clusters. In this case the main difficulty is the
evaluation of the normality of a distribution in a multi-dimensional space.
Many tests for multivariate normality have been proposed in the literature
[34, 35, 36, 37]. They are mainly based on the multivariate generalization of
skewness and kurtosis [38, 39], on the empirical characteristic function [40,
41], or on estimations of the sample entropy [42, 43]. The sample entropy has
been widely used to measure normality in the context of projection pursuit
and independent component analysis [31, 32, 44]. It is known that, among all
the distributions with the same covariance matrix, the Gaussian is the one
with the largest entropy [33]. This fact is used to test the normality of any
given distribution by comparing its differential entropy to that of a normal
distribution with the same covariance matrix. The difference between both
quantities, known as the negentropy, is an accepted measure of distance to
normality [44, 45]. The negentropy of a probability distribution is always
positive, and vanishes if and only if the distribution is Gaussian.

So we hereby use the negentropy to measure the normality of the clusters.
Given two partitions of a data set, we will prefer the one whose clusters have
lower negentropy on average. The negentropy is difficult to estimate, as it
involves the computation of the differential entropy. Some approximations
have been suggested, which include the use of cumulant based approximations
[32], the maximum entropy principle [44], or the Edgeworth expansion [46].
Here we avoid the computation of differential entropies by considering only
measures of negentropy relative to the initial distribution. We show that,
by subtracting the negentropy of the initial distribution from the average
negentropy of a given partition, we obtain a normality index that has all
the advantages of the negentropy but avoids the explicit computation of
differential entropies. We call this index the negentropy increment associated
to the partition.

To test the negentropy increment as a cluster validity index, we have used
it as the fitness function of a genetic algorithm that searches the partitions
space. We have applied this method to an extensive set of synthetic clustering

4



problems, as well as to data sets from public databases, comparing our results
with those obtained by other crisp validity indices in the literature. For most
of the problems considered the negentropy increment outperforms the other
indices, both with respect to the prediction of the number of clusters and to
the similarity among the real clusters and those inferred.

2. The negentropy increment as a measure of cluster validity

Our goal is to find a cluster validity index that is based on the average
normality of the clusters. We consider that a normally distributed cluster
is optimal, in the sense that it seems unnatural to our visual perception to
perform additional partitions on it. From a more theoretical point of view,
a normally distributed cluster is the most uncertain, or less structured, one
for a given covariance matrix, which suggests that no additional structures
can be found on it. So we will focus on finding data partitions for which
the resulting clusters are as normal as possible. Note that all the partitions
considered throughout this paper are crisp partitions, that is, each data point
can belong only to one of the partition regions. The normality based valida-
tion of a crisp partition summarizes into the following assumption:

Assumption 1. Let A and B be two partitions of a given data set. The
partition A is better than the partition B if and only if the average normality
of the clusters in A is higher than the average normality of the clusters in B.

The negentropy of a probability distribution is a well accepted measure
of distance to normality [44, 45]. For a random variable x with probability
density function f(x), the negentropy is given by:

J(x) = Ĥ(x) − H(x) (1)

where Ĥ(x) is the differential entropy of a normal distribution with the same
covariance matrix as x, and H(x) is the differential entropy of x:

H(x) = −

∫

f(x) log f(x)dx (2)

The negentropy of a probability distribution is always equal to or greater
than 0, with equality holding if and only if the distribution is Gaussian. The
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lower J(x), the more Gaussian the distribution is. So our previous assump-
tion can be rewritten as:

Assumption 2. Let A and B be two partitions of a given data set. The par-
tition A is better than the partition B if and only if the average negentropy of
all the clusters in A is lower than the average negentropy of all the clusters
in B.

We will use this assumption to derive our cluster validity measure as
follows. Imagine that some clustering algorithm provides a crisp partition of
the space into a set of k non overlapping regions {Ω1, Ω2, ..., Ωk} (see Fig. 2).
We will use the region Ω0 to refer to the original space with no partitions.
We can use the average negentropy over all the regions, which we call J̄(x),
as the validity index for the partition:

J̄(x) =
k

∑

i=1

piJi(x) (3)

where pi is the a-priori probability of x falling into the region Ωi, and Ji(x)
is the negentropy of x in the region Ωi. The expression in (3) is the for-
malization of assumption 2. The lower J̄(x), the better (more Gaussian on
average) the partition is. We can add any constant to J̄(x) without affecting
this result so, instead of (3), we will consider the index:

∆J = J̄(x) − J0(x) (4)

where J0(x) is the negentropy of x if one single region Ω0 is considered, which
is a constant for the problem. We call this index the negentropy increment
after the partition. It measures the change in negentropy when we make a
partition on the data set. If ∆J < 0 then we are gaining normality (losing
negentropy) with the partition, while if ∆J > 0 we are losing normality
(gaining negentropy). Given two different partitions of a data set, we will
select the one for which ∆J is lower.

As an example, let us consider the data shown in Fig. 3. Panel A shows
a data set consisting of 250 normally distributed points in two dimensions.
We have performed different partitions of this data set by using vertical sep-
arators, at positions xc, that divide the plane into the two nonoverlapping
regions {x < xc} and {x ≥ xc}. For each of these partitions we have com-
puted the negentropy increment ∆J , which is plotted in panel B versus xc.

6



Ωk

4Ω

Ω3

Ω2

Ω1

Ω0

Figure 2: Partition of the data set into k non overlapping regions.

Note that ∆J is positive or zero for all the considered partitions, which indi-
cates that none of them contributes any gain in normality. So, according to
the negentropy increment criterion, it is better to consider one single cluster
for this data set. In panel C we show a second data set that consists of
two different groups of 250 normally distributed points each. We have per-
formed the same kind of partitions by vertical separators, and computed the
negentropy increment as before. The resulting plot of ∆J vs xc is shown in
panel D. Now the negentropy increment takes negative values for some parti-
tions, which are then preferred, in terms of normality, to the initial situation
with no partition. Note that the minimum value of ∆J (maximum gain in
normality) corresponds to partitions that separate between the two original
clusters.

The results obtained using the negentropy validity index are in accordance
with the observation of one single cluster in Fig. 3A and two different clusters
in Fig. 3C. The measure appears as a good candidate index of cluster validity.
There is only a technical issue left, related to the calculation of the differential
entropy, which we tackle in the next section.
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Figure 3: Illustration of the negentropy increment criterion for cluster validation. Panels A
and C show two different data sets in two dimensions. For each data set, different partitions
are performed by vertical separators that divide the plane into the two nonoverlapping
regions {x < xc} and {x ≥ xc}. Panels B and D show the plots of ∆J versus xc for the
data sets in A and C respectively. The dotted lines show the correspondence between an
example partition in A (C) and the value of ∆J plotted in B (D).

3. Computation of the negentropy increment

The computation of the negentropy in (1) requires the evaluation of the
differential entropy H(x). The precise evaluation of H(x) is in general a dif-
ficult task, as it needs the estimation of probability distributions. As soon as
the dimension increases, the estimation of a probability distribution becomes
impossible unless we have an infinite amount of data (curse of dimensional-
ity). To overcome this problem some approximations to the negentropy have
been proposed [32, 44, 46] in the context of projection pursuit and indepen-
dent component analysis.

Here we follow a different approach, which avoids the explicit computa-
tion of the differential entropy by using a validity measure that discounts the
negentropy of the original data set from the average negentropy of the parti-
tion being evaluated (∆J index in (4)). When we expand the expression for
∆J all the differential entropies, except those for normal distributions, cancel
out. For a crisp partition, the negentropy increment can then be expressed
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as:

∆J =
k

∑

i=1

piĤi(x) − Ĥ0(x) −
k

∑

i=1

pi log pi (5)

where Ĥi is the entropy of a normal distribution with the same covariance
matrix as x in the region Ωi. A full derivation of this expression can be
found in appendix A. Note that it is not an approximation, but the exact
expression for the negentropy increment of a crisp partition.

As shown in (5), the negentropy increment is a contribution of three
terms. First, the average differential entropy of x over all the regions gen-
erated by the partition, assuming normality. Second, the negative of the
differential entropy of x considering one single region Ω0, and also assuming
normality. And third, the discrete entropy that is introduced as a conse-
quence of the partition. It can be shown that, under the assumption of nor-
mality for x, the previous expression is equivalent to the overall increment
in entropy after the partition. So, the validity condition ∆J < 0 favours
partitions which decrease the overall entropy of the system, thus introducing
some kind of order. This is in apparent contradiction with the physical in-
tuition that the entropy can never decrease. However, under the normality
assumption, there is no contradiction: the normal distribution that explains
the data in the original space can have larger entropy than the set of normal
distributions that explain the data in each of the regions after performing
the partition.

The entropy of a normal distribution has a closed expression in terms of
the covariance matrix. This allows to rewrite (5) as:

∆J =
1

2

k
∑

i=1

pi log |Σi| −
1

2
log |Σ0| −

k
∑

i=1

pi log pi (6)

where Σi is the covariance matrix of x in the region Ωi. Note that to eval-
uate this final expression we only need to compute the determinants of the
covariance matrices for each region. Additionally, the prior probabilities pi

are approximated by the fraction of points that fall into each region. This
index can be applied as a general tool to validate the outcome of any crisp
clustering algorithm, and also to compare solutions provided by different al-
gorithms for a single problem. The rest of the paper is dedicated to show the
performance of ∆J , in comparison with other cluster validity measures, on a
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variety of test data sets. A brief analysis of the behavior of the new index in
cases of noise and reduced number of data points is provided in appendix B.

4. Clustering algorithm

We want to test the ∆J cluster validity measure against other crisp va-
lidity indices that are frequently used in the literature. In particular, we
consider the Davies-Bouldin (DB) index [14], the Dunn index [13, 15], the
PBM index [16] and the SIL index [47]. The DB and the Dunn indices were
found among the best in a study that compared 23 validity indices on 12
data sets that consisted of bivariate Gaussian mixtures [48]. On the other
hand, the PBM index was shown to outperform the other two in [16]. The
SIL index is qualitatively different from the others and is included here as
an additional reference. We use a genetic algorithm to search for the parti-
tion Γ that optimizes a particular validity index I(Γ) for the problem being
solved. The partitions we consider consist of convex non overlapping regions
delimited by linear separators, such as those sketched in Fig. 2. The outline
of the genetic algorithm follows (details on the implementation, including a
comparison of the execution times for the different indices, can be found in
appendix C).

Let us consider a clustering problem in d dimensions, and a partition of
the parameter space into k non overlapping regions, Γ = {Ω1, Ω2, ..., Ωk}.
We will consider only partitions that can be seen as a d-dimensional Voronoi
diagram around k centers. That is, any partition is fully characterized by
the set of centers {p1,p2, ...,pk}, and the region Ωi consists of all the points
that are closer to pi than to any other center. In the genetic algorithm
implementation we codify each region center as a set of 10 × d bits (10 bits
per coordinate), and so the full partition can be coded as a binary string of
length 10 × d × k. We use the PGAPack genetic algorithm library [49] with
the default mutation and crossover operators. In all the trials performed the
population size is set to 500 individuals, each one representing a different
partition, which are randomly initialized. The evaluation of any partition Γ
is done by using the validity index I(Γ) as fitness function. The algorithm
is run for 250 iterations, and the best partition at the end is used as the
solution for a particular run. In general (unless otherwise specified) we make
20 different runs for each k, and select the solution that provides the best
index value.

The following validity indices are considered:
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4.1. Davies-Bouldin (DB) index

The Davies-Bouldin index measures the relation between within-cluster
scatter and inter-cluster separation [14]. Let k be the number of clusters,
|Ci| the number of samples in cluster Ci and pi the center of cluster Ci. The
scatter is defined, for each cluster, as:

Si =
1

|Ci|

∑

x∈Ci

||x− pi|| (7)

It represents the average euclidean distance to the cluster center. For each
cluster, a measure of the overlap with other clusters is also defined as:

Ri = max
j 6=i

Si + Sj

dij

(8)

where dij is the euclidean distance between the cluster centers, dij = ||pi −
pj||. The Davies-Bouldin index is defined in terms of Ri as:

DB =
1

k

k
∑

i=1

Ri (9)

The best partition is the one that minimizes DB. Note that, as far as
we use euclidean distances, this index is assuming that all the clusters are
spherical. This assumption may lead to poor results when the clusters are
very elongated (recall Fig. 1).

4.2. Dunn index

The Dunn index is defined as a ratio between minimum inter-cluster dis-
tance and maximum cluster diameter [15]:

V =
mini6=j δ(Ci, Cj)

maxi ∆i

(10)

where δ(Ci, Cj) is the distance between clusters Ci and Cj and ∆i is the
diameter of cluster Ci. There are a variety of Dunn’s indices depending on
how these quantities are defined [13]. We consider here the V33 index, where
the cluster diameter is defined as:

∆i =
2

|Ci|

∑

x∈Ci

||x − pi|| (11)
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and the inter-cluster distance is defined as:

δ(Ci, Cj) =
1

|Ci||Cj|

∑

x∈Ci,y∈Cj

||x− y|| (12)

The best partition is the one that maximizes the index. Note that, as
before, the use of euclidean distances implies the same assumption about
sphericity.

4.3. PBM index

The Pakhira-Bandyopadhyay-Maulik index [16] is constructed to ensure
the formation of a small number of compact clusters with a large separation
between at least two of them. It is defined as:

PBM =

(

1

k
·
E0

E
· D

)2

(13)

The variable E measures the total within-cluster scatter:

E =

k
∑

i=1

|Ci|Si (14)

where Si is the scatter for cluster Ci as defined in (7). The variable E0 is the
total scatter considering all the samples belonging to one single cluster:

E0 =
∑

x

||x − p|| (15)

where p is the average of all x. Finally, D is the maximum distance between
cluster centers:

D = max
i6=j

||pi − pj|| (16)

This index is maximized in order to find the best partition. An important
difference with the previous indices is that the PBM index uses the maximum
inter-cluster separation. Once a partition into compact and well separated
clusters has been found, D remains almost constant with further partitioning
while the quotient E0/E can increase. This makes necessary the introduction
of the factor 1/k to compensate for this growth in the index. Overall, the
three factors compete with each other critically. The PBM index also assumes
that the clusters are spherical.
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4.4. SIL index

The Silhouette index [47] is based on the concept of silhouette width,
which measures the confidence on the membership of each single data point
with respect to its cluster. The silhouette width for the data point x is
defined as:

s(x) =
b(x) − a(x)

max(a(x), b(x))
(17)

where a(x) is the average distance between x and the rest of points within its
cluster, and b(x) is the minimum (across clusters) average distance between
x and all the points belonging to any of the other clusters. The silhouette
width is close to 1 when the point is well clustered, it is about 0 when the
point lies in between two clusters, and it is almost −1 when the point is
assigned to a wrong cluster.

By averaging the silhouette width over the whole data set, we obtain the
SIL validity index as:

SIL =
1

nx

∑

x

s(x) (18)

where nx is the number of points in the data set. The best clustering partition
is selected by maximizing the SIL index.

4.5. Negentropy index

The last validity index we consider is the negentropy increment ∆J , as
defined in (6).

5. Test data sets

We have performed different experiments on both synthetic and real data
sets. The synthetic examples are composed of randomly generated Gaussian
clusters in two and three dimensions. The real data correspond to three
well known machine learning problems from the UCI database [50]. In the
following we include a brief description of each problem.
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5.1. Gaussians 2D
As a first test we consider a set of 500 randomly generated problems in

2 dimensions. In every problem the number of clusters, n, is between 1 and
5, each cluster consisting of 200 points randomly extracted from a normal
distribution whose parameters are also randomly selected. The set of points
(x, y) belonging to a particular cluster are generated as follows. First, two
random numbers, µx and µy, are extracted from a uniform distribution in
the interval (0, 10), and other two, σx and σy, are extracted from a uniform
distribution in the interval (0, 1). Then x is extracted from the normal dis-
tribution N(µx, σx) and y is extracted from N(µy, σy). Finally a rotation by
an angle θ, with center at (µx, µy), is applied to the points (x, y). The angle
θ is randomly selected from a uniform distribution in (0, 2π). There are 100
data sets for each value of n. Fig. 4 shows some of the data sets for n = 3,
n = 4 and n = 5. Note that, as the number of clusters increases, the overlap
among them is higher in general. This fact makes the problems more difficult
for higher n.

Figure 4: Some examples of the 2D data sets generated to test the cluster validity measure.
The top row shows some sets with tree clusters (n = 3). The middle row shows sets
consisting of four clusters (n = 4). The bottom row shows data sets with five clusters
(n = 5). The clusters have been randomly generated and present different shapes, sizes
and orientations. Note that in some cases two or more clusters can overlap, which increases
the difficulty of the problem.

5.2. Gaussians 3D
The second group of artificial data sets is an extension of the previous one,

which increases the difficulty of the problems in the following terms. First,
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the dimension is increased to three. Second, the data sets can be made of up
to 8 clusters. And third, the number of points per cluster is reduced to 100.
The reduction in the number of points, together with the dimension increase,
makes the estimation of normality a more difficult task. On the other hand,
by increasing the number of clusters we increase the overlap among them,
which also increments the problem complexity. The number of clusters, n, in
each of the data sets is between 2 and 8, and each cluster contains 100 points.
As before, the coordinates x, y and z of the points belonging to a cluster are
extracted from a normal distribution whose parameters are randomly chosen
in the following ranges: µ ∈ (0, 10), σ ∈ (0.5, 1). To provide an arbitrary
orientation for the clusters, a random rotation is applied to each of them, as
for the 2D case. We have generated 20 different sets for each n, which makes
140 data sets in total.

5.3. UCI database problems

The three real data sets we consider are the Iris data set [51], the Wis-
consin Breast Cancer data set [52], and the Wine data set [53]. Although
they are essentially supervised classification problems, we will use them here
in an unsupervised manner (no information about the classes is available to
the clustering algorithm). In order to test the quality of our results on these
problems, the real classes will be considered as the best possible clustering
partition.

5.3.1. Iris

The Iris data set consists of 150 points in a 4-dimensional attribute space.
The four attributes are real-valued, and represent the petal and sepal lengths
and widths of iris plants belonging to three different species. There are 50
instances of each class. It is known that one of the classes is linearly separable
from the other two, which are not linearly separable from each other.

5.3.2. Wisconsin Breast Cancer

This data set consists of 699 samples of cytological analysis of breast
tumors belonging to two classes, benign or malignant. Each sample is char-
acterized by a set of 9 integer attributes that describe different cell properties.
We consider here only the 683 patterns without missing values. Of these, 444
are of class benign and 239 are of class malignant. We have reduced the di-
mension of the problem by using only the first 4 principal components, which
account for the 85.27% of the total variance.
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5.3.3. Wine

The last data set we consider contains data from chemical analyses of
wines from three different classes. There are 178 samples characterized by 13
continuous attributes that represent the quantities of different constituents
found in the wines. There are 59 samples of the first class, 71 samples of
the second class, and 48 samples of the third class. We have performed a
PCA transformation in order to reduce the dimension to the first 6 principal
components, which account for the 85.10% of the total variance.

6. Results

We have run several trials of the clustering algorithm for each of the
problems and each of the validity indices. The results are evaluated using
two different error measures. First, we compare the actual number of clusters
in the problem with the number of regions in the best partition provided by
the algorithm. For the problems that consist of a collection of data sets
(Gaussian data in 2D and 3D), we also compute the percentage of sets for
which the algorithm obtains the correct number of regions. A good result
in this sense does, however, not guarantee a good correspondence between
the partition and the real clusters. So we use as a second error measure the
discrepancy between the real clusters and the predicted regions, given by the
entropy distance [54]:

DH = H(c|r) + H(r|c) (19)

This distance is computed as a sum of two entropies. The first one measures
the uncertainty in the cluster given the region. The second one measures the
uncertainty in the region given the cluster. Both of them are sources of error
and should be minimized in any good partition. Note that, when there is
a perfect correspondence between clusters and regions, the entropy distance
DH is 0.

The steps we follow and the kind of tests we perform are essentially the
same for all the problems considered. So we will provide a full description
only for the Gaussian data in 2D, and we will summarize the results for the
rest of data sets. We describe in detail the analysis for the ∆J validity index.
Equivalent analyses are performed for the rest of indices.
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6.1. Gaussians 2D
For each of the 500 data sets, we have performed 20 different runs of the

algorithm for each value of k, ranging between 1 and 9 regions. In Fig. 5A
we show the results for a particular data set with 4 clusters. The graphic
plots the value of ∆J versus the number of regions k. Every point in the
plot represents the best (minimum) value obtained over 20 runs of the genetic
algorithm. The optimal number of regions is selected as that which minimizes
∆J . For this particular example, kopt = kmin = 4 is obtained. In Fig. 5B
we show the corresponding partition. If we perform the same analysis for
all the data sets, selecting for each one the partition with minimum ∆J , we
can compute on average the predicted number of regions, kmin, given the real
number of clusters, n. This is shown in Fig. 5C, where each point has been
calculated as the average over the 100 data sets with the same n. Note that
the number of regions slightly overestimates the number of clusters, more
clearly as this number increases.

Fig. 5D provides a hint to understand why this overestimation is pro-
duced and how to avoid it. It plots ∆J versus k for a different data set, for
which the algorithm fails to find the correct number of regions. The data set
presents 5 clusters, but the algorithm detects 8 regions. Note, however, that
the graphic presents an elbow at k between 4 and 5, which could be used
to predict the correct number of regions with more accuracy. By choosing k
close to this elbow, we can get almost the same ∆J with a simpler partition.
We do this by selecting kopt as the minimum number of regions for which ∆J
lies within a 95% of the absolute minimum. In Fig. 5D, the point marked as
kmin corresponds to the minimum of ∆J , which gives rise to 8 regions. The
point marked as kopt corresponds to the simpler partition with ∆J within the
95% of the minimum, which gives rise to 5 regions. In Fig. 5E we show this
partition (solid line), which is seen to detect quite accurately the clusters in
the data set. For the sake of comparison, the figure also shows the partition
into kmin = 8 regions (dotted line). In Fig. 5F we plot again the average
number of regions versus the number of clusters, with the previous correc-
tion. Now the prediction is more accurate, and the number of clusters is no
longer overestimated. In fact there is a slight underestimation as n grows,
but this can be expected because more clusters imply more overlap. For the
rest of the paper we will use this method to select the optimal number of
regions, kopt. In Fig. 6 we show the selected partitions for all the data sets
shown in Fig. 4. Note that the algorithm performs quite well even in cases
where two clusters are partially overlapping.
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Figure 5: Results obtained with the ∆J index for two different problems with n = 4 and
n = 5 from the Gaussians 2D set. A. ∆J versus k for the problem with n = 4. Each point
shows the minimum ∆J obtained in 20 runs of the genetic algorithm. The point marked
as kmin represents the number of regions that provides the lowest ∆J . B. Partition of the
data set into kmin = 4 regions. In spite of the partial overlap among three of the clusters,
the partition is able to separate all the 4 clusters in the data set. C. Average kmin versus
number of clusters n. Each point has been calculated as the average over the 100 data sets
with the same number of clusters. D. ∆J versus k for the problem with n = 5. Each point
shows the minimum ∆J obtained in 20 runs of the genetic algorithm. The point marked
as kmin represents the number of regions that provides the lowest ∆J . The point marked
as kopt represents the minimum number of regions that provides a ∆J within a 95% of
its minimum. E. Partitions of the data set into kmin = 8 regions (dotted line) and into
kopt = 5 regions (solid line). F. Average kopt versus number of clusters n. Each point has
been calculated as the average over the 100 data sets with the same number of clusters.

The same kind of analysis has been performed for the rest of validity
indices. In Fig. 7 we show the number of regions, kopt, versus the actual
number of clusters, n, for each of them. The following conclusions can be
extracted from this figure:

• Our index is the only one which provides the correct partition for data
sets with one single cluster. All the other methods tend to generate
two or more regions, inventing artificial clusters.

• For data sets with two clusters all the methods, except the PBM, pro-
duce a satisfactory solution. This could be expected, as there is in
general enough space not to have much overlap (so the problems are
quite easy to solve). However the PBM index fails, tending to pro-
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Figure 6: Selected partitions, according to ∆J , for all the data sets shown in Fig. 4.
Partitions marked with a tick are correct. Those marked with a cross are wrong. The
partitions identify the correct clusters in 11 of the 15 sets.

duce on average more than two regions. The reason may be that for
such a small number of clusters the factor 1/k can not compensate the
increase in the index produced by making an additional partition.

• For data sets with 3, 4 and 5 clusters all the methods tend to un-
derestimate the number of clusters. This is due to a higher overlap,
which increases with the number of clusters. The indices PBM and ∆J
behave similarly and beat the others for these problems.

• Our index is the only one that shows a good performance for the full
range of n.

To quantify these observations we have computed, for each index and
each number of clusters n, the percentage R of data sets for which the al-
gorithm predicts the correct number of clusters (kopt = n). The results are
summarized in table 1 (left side). Our validity index provides the best results
for all the cases except n = 2, for which the SIL index obtains the highest
score (98%). Note, however, that in this case the ∆J , DB and Dunn indices
also reach values over 90%. The high accuracy of the indices for n = 2 was
previously observed in Fig. 7, and is presumably due to the low overlap. Also
note that the ∆J index finds the correct solution for 98% of the problems
with one single cluster, while the other indices always produce partitions into
two or more regions.
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Figure 7: Average number of regions versus number of clusters in the data set for all the
validity indices considered. A. ∆J index. B. DB index. C. Dunn index. D. PBM index.
E. SIL index.

Finally, in order to measure the discrepancy between the real clusters
and the predicted regions, we have computed the entropy distance DH (19)
between regions and clusters. In Fig. 8A we plot the average DH versus the
number of clusters n for each of the validity indices. Each point in the plot is
an average over 100 data sets. The ∆J index shows the lowest values for the
full range of n. Note that this is true even for the case (n = 2) where other
indices provided a higher accuracy predicting the correct number of clusters.
We may conclude that the proposed cluster validity index not only predicts
the number of clusters with high accuracy, but also the regions it produces
are more similar to the real clusters than those generated by any other of the
considered indices.

6.2. Gaussians 3D

For this set of problems we have performed 10 runs of the genetic algo-
rithm for each data set, each validity index (except the SIL index1), and each
k. We consider k values ranging from 1 to 9. The procedure for selecting

1The SIL index has been excluded from this analysis because its execution time was
excessive (see Appendix C). The results obtained for the 2D case and for the UCI database
problems seem sufficient to provide a fair comparison to the other indices.
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Table 1: Percentage of data sets for which the number of clusters is correctly predicted by
the algorithm, using the different validity indices. Left side: Gaussian data in 2D, each
value is calculated using 100 data sets. Right side: Gaussian data in 3D, each value is
calculated using 20 data sets. Values in bold are the best results for a given n.

Gaussians 2D Gaussians 3D

n ∆J DB Dunn PBM SIL ∆J DB Dunn PBM

1 98% - - - - - - - -

2 91% 91% 93% 66% 98% 100% 100% 100% 95%

3 87% 60% 61% 74% 60% 95% 75% 80% 90%

4 66% 31% 29% 57% 35% 70% 20% 25% 60%

5 47% 14% 12% 45% 30% 35% 15% 20% 55%

6 - - - - - 10% 20% 20% 25%

7 - - - - - 10% 5% 10% 20%

8 - - - - - 15% 5% 5% 15%

the number of regions kopt and evaluating the different indices was described
before for the 2D case. The results are summarized in table 1 (right side)
and Fig. 8B. We have not evaluated the indices on single cluster problems
(n = 1) because, as shown for the 2D case, only the ∆J index can deal with
them. In table 1 (right side) we show the values of R obtained with the four
considered indices for each of the different problems. The ∆J index shows
the best performance for data sets with up to 4 clusters, and the PBM index
is the best for problems with more than 4 clusters. If we look at the sim-
ilarity between clusters and partitions, however, our validity index slightly
outperforms the PBM . Fig. 8B plots DH versus n for the 4 validity indices.
We observe that the ∆J and the PBM indices behave similarly, displaying
the lowest values for all n. As before, our validity index provides the best
results for most of the data sets, both with respect to the number of clusters
and to the similarity between clusters and regions. However in this case the
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results provided by the PBM index are comparable, and in some cases even
better. It seems that the dimension increase and the reduction in the number
of points per cluster affect the ∆J index more dramatically than the others.
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Figure 8: Entropy distance between clusters and partitions, DH , versus number of clusters,
obtained with the validity indices considered in the paper. A. Gaussian data in 2D. All
the points are averages over 100 data sets. B. Gaussian data in 3D. All the points are
averages over 20 data sets.

6.3. UCI database problems

Finally we present the results for the Iris, the Wisconsin Breast Cancer
and the Wine problems. For all of them we consider partitions with k ranging
from 1 to 9, and run the genetic algorithm 20 times for each k and each
validity index. The selection of the optimal partition is done as before. The
selected partitions are evaluated by comparing with the real classes in terms
of number of regions and entropy distance. Table 2 summarizes the results.
Note that the ∆J index is the only one which predicts the correct number
of regions for the three problems. Additionally, it provides the lowest DH in
all the cases, which implies a higher correlation between the real classes and
the predicted regions.

To add some visual intuition to the results regarding DH , we show in
figures 9, 10 and 11 the class distributions for each region in the optimal
partition obtained with each of the indices. For the Iris problem (Fig. 9)
only the ∆J and the PBM indices predict the correct number of regions
(kopt = 3). Both of them find one region that completely corresponds to
one of the classes (the one which is linearly separable from the other two).
However the other two regions are better related to the real classes for the
∆J index.
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Table 2: Entropy distance DH between clusters and partitions, and number of predicted
regions kopt, provided by the different validity indices for the Iris, Cancer and Wine prob-
lems. A DH value shown in bold is the minimum across indices for a given problem.
Values of kopt in bold are matches with the actual number of clusters in the problem.

Problem ∆J DB Dunn PBM SIL

Iris DH = 0.19 DH = 0.46 DH = 0.76 DH = 0.52 DH = 1.10

3 classes kopt = 3 kopt = 2 kopt = 2 kopt = 3 kopt = 2

Cancer DH = 0.39 DH = 0.78 DH = 0.74 DH = 0.39 DH = 0.78

2 classes kopt = 2 kopt = 3 kopt = 2 kopt = 2 kopt = 2

Wine DH = 0.56 DH = 0.67 DH = 0.63 DH = 0.62 DH = 1.24

3 classes kopt = 3 kopt = 3 kopt = 3 kopt = 2 kopt = 3
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Figure 9: Iris data set. Class distributions for the problem (marked as REAL), and for
each region in the final partition obtained with each of the considered validity indices. The
∆J and PBM indices find the correct number of regions (kopt = 3). However the regions
seem to be more correlated with the real classes for the ∆J index. The DB, Dunn and
SIL indices find partitions of only two regions.

For the Wisconsin Breast Cancer problem (Fig. 10), all the indices except
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the DB find the correct number of regions (kopt = 2). In all the cases the two
regions mix samples from both classes (note that the problem is not linearly
separable), but the partitions derived from ∆J and PBM appear to be better
in terms of DH .
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Figure 10: Cancer data set. Class distributions for the problem (marked as REAL), and
for each region in the final partition obtained with each of the considered validity indices.
The ∆J , Dunn, PBM and SIL indices find the correct number of regions (kopt = 2). The
regions seem to be more correlated with the real classes for the ∆J and the PBM indices.
The DB index finds a partition with three regions.

Finally, we show in Fig. 11 the class distributions for the Wine problem.
Now they are the ∆J , DB, Dunn and SIL indices which predict the correct
number of regions (kopt = 3). The partition derived from ∆J is the only one
for which all the regions mix samples belonging to two different classes only,
and this gives the highest correlation with the real classes according to DH .
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Figure 11: Wine data set. Class distributions for the problem (marked as REAL), and
for each region in the final partition obtained with each of the considered validity indices.
The ∆J , DB, Dunn and SIL indices find the correct number of regions (kopt = 3). The
PBM index finds a partition with only two regions.
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7. Discussion

In this paper we have introduced a new crisp cluster validity index that is
based on the average normality of the clusters. The normality of a cluster is
measured by means of its negentropy, i.e., the difference between the cluster’s
entropy and the entropy of a normal distribution with the same covariance
matrix. To avoid the explicit calculation of differential entropies, we subtract
the negentropy of the original data distribution, where all the points are as-
sumed to belong to the same cluster. We show that, for crisp partitions (no
overlap among clusters), the final form of the validity index only requires the
computation of the determinants of the covariance matrices and the prior
probabilities for each partition region. Application of the index to an ex-
tensive set of artificial and real problems shows that it provides in general
better results than other frequently used crisp cluster validity measures, both
with respect to the prediction of the number of clusters and to the similarity
among the real clusters and the partition regions. In the artificial problems,
when the number of clusters increases and the available space is kept con-
stant, the performance of all the indices decreases. This is due mainly to a
higher overlap, and not just because of the larger number of clusters. The
∆J index seems to be less sensitive than the others. In particular, the results
regarding the entropy distance between the real and the predicted clusters
show that the clusters assessed by the new index are more closely related to
the real ones than those obtained by any of the other indices.

The idea of using normality as a measure of a cluster’s quality underlies
the Gaussian Mixture Model, where many studies address the problem of
cluster validation, in particular the assessment of the number of clusters
[21, 22, 23, 24, 25, 26]. In general these approaches use validity indices
that combine the log-likelihood with some measure that penalizes the model
complexity. Unfortunately, due to their probabilistic nature, these validity
indices can not be easily applied to crisp partitions.

The use of the negentropy for cluster validation has been explored in some
recent works. For example, Geva et al. [18] used a cluster validity index
based on the negentropy calculated along single dimensions; and Ciaramella
et al. [19] calculate the negentropy along Fisher’s projection to determine
whether two clusters must be merged. A similar normality measure, based
on multivariate skewness and kurtosis, has been used by Song and Wang [20]
to discover cluster pairs that can be combined into a less complex normal
cluster. Note that all these works avoid the direct estimation of normality
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via the negentropy, either by reducing the problem to one single dimension or
by using less precise estimators such as the skewness and the kurtosis. Our
contribution directly tackles the problem, and solves it by considering the
difference in negentropy between two different partitions. As we have shown,
the terms which involve differential entropies cancel out and only covariance
matrices need to be computed.

One frequent deficiency of crisp validity indices is that they are not appli-
cable to single clusters. As they are usually based on inter-cluster distances,
they need the presence of at least two clusters to be evaluated. The negen-
tropy increment index does not present this problem. By discounting the
negentropy of the initial data distribution (all the points belong to the same
cluster), we are setting the zero of the measure at the single cluster solution.
Then only partitions with a negative value of the index are preferred to the
trivial single cluster case.

Although here we have restricted our analysis to crisp clustering, it is
possible in principle to extend the results to fuzzy clustering. In this case,
a new term measuring the uncertainty in the cluster given the data appears
in the expression of ∆J . Work in progress deals with the extension of the
negentropy increment validity index in this direction, as well as with the
sensitivity analysis on how the performance of the index degrades with the
variation of parameters such as the number of clusters, the overlap among
them, or the dimension. The analysis of the behavior of the new index in
problems where more than one clustering partition is compatible with the
data will also be addressed in future research.

A. Derivation of the expression for ∆J

Let us consider the random variable x with pdf f(x) in the space Ω0, and
a crisp partition of Ω0 into k nonoverlapping regions {Ω1, Ω2, ..., Ωk} (Fig.
2). The differential entropy of x in Ω0 is:

H0(x) = −

∫

f(x) log f(x)dx (20)

The differential entropy of x in the region Ωi, i 6= 0, is:

Hi(x) = −
1

pi

∫

Ωi

f(x) log
f(x)

pi

dx (21)

where pi is the normalization constant:
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pi =

∫

Ωi

f(x)dx (22)

The negentropy of x in Ω0 is:

J0(x) = Ĥ0(x) +

∫

f(x) log f(x)dx (23)

And the negentropy of x restricted to the region Ωi, i 6= 0, is:

Ji(x) = Ĥi(x) +
1

pi

∫

Ωi

f(x) log
f(x)

pi

dx (24)

where Ĥi(x), i = 0, 1, ..., k, is the differential entropy of a normal distribution
with the same covariance matrix as x in the region Ωi. We can rearrange the
last expression as:

Ji(x) = Ĥi(x) +
1

pi

∫

Ωi

f(x) log f(x)dx − log pi (25)

If we compute the negentropy increment ∆J as defined in (4), the integrals
in (23) and (25) cancel out, and we obtain:

∆J =
k

∑

i=1

piJi(x) − J0(x)

=

k
∑

i=1

piĤi(x) − Ĥ0(x) −

k
∑

i=1

pi log pi (26)

Finally, we can substitute in (26) the expression for the entropy of the normal
distribution:

Ĥ(x) =
1

2
log |Σ| +

d

2
log 2πe (27)

where d is the dimension of x and |Σ| is the determinant of its covariance
matrix. We get:

∆J =
1

2

k
∑

i=1

pi log |Σi| −
1

2
log |Σ0| −

k
∑

i=1

pi log pi (28)

where Σi, i = 0, 1, ..., k, is the covariance matrix of x in the region Ωi. This
is the expression that appears in (6).
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B. Behavior of ∆J in cases of noise and reduced number of data

points

We include in this appendix a set of additional tests that were performed
in order to evaluate the robustness of the new index in problems with noise
and unbalanced clusters. First, to check the behavior of ∆J when the num-
ber of data points in one of the clusters is reduced, we run the following
experiments.
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Figure 12: Average number of predicted clusters versus inter-center distance l. Two
spherical clusters with n1 and n2 points and centered at (0, 0) and (l, 0) respectively are
partitioned by a vertical separator at x = l/2, and the partition is evaluated using ∆J to
determine whether one or two clusters should be considered. Each point in the plots is an
average over 500 different datasets generated for a given triplet {n1, n2, l}.

We generate two spherical clusters in 2D. The data points in each cluster
follow normal distributions with covariance matrices equal to the identity
matrix. The first cluster is centered at (0, 0), and the second one at (l, 0).
Both the number of points in each cluster, n1 and n2, and the inter-center
distance, l, are varied across the experiments. For any data set we consider
the crisp partition resulting from application of a vertical separator at x =
l/2, and compare it in terms of ∆J with the case of no partition performed.
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We expect that for large l the partition into two clusters is preferred, while
one single cluster results for small l. The number of points in each cluster is
selected from the set {10, 20, 40, 80}, and the inter-center distance is varied in
the range [0, 6]. Then, for each triplet {n1, n2, l} a total of 500 different data
sets are generated, and the number of sets for which the ∆J index indicates
one and two clusters are computed. The average number of resulting clusters
is plotted versus the inter-center distance in Fig. 12. Note that, when one of
the clusters has a sufficient number of points (80), reduction of the number
of points in the second cluster does not noticeably affect the results. Only
when the number of points in both clusters is reduced, the ∆J index tends
to prefer partitions into two clusters even in cases of large overlap.
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Figure 13: Average number of predicted clusters versus inter-center distance l. Two
spherical clusters with 80 points each, centered at (0, 0) and (l, 0) respectively and subject
to different noise level p, are partitioned by a vertical separator at x = l/2. The partition
is evaluated using ∆J to determine whether one or two clusters should be considered.
Each point in the plot is an average over 500 different datasets generated for a given pair
{p, l}.

A second set of experiments was performed in order to evaluate the ro-
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bustness of the new index in the presence of noise. We used the same kind
of experiments as before, but with a fixed number of points in each cluster,
n1 = n2 = 80. For any given problem, we introduce noise in the following
way. With probability p, we replace each point in the data set by a new
point randomly drawn from a uniform distribution in the rectangular area
given by the opposite vertices (−2,−2) and (l+2, 2) (note that the standard
deviation of the cluster distributions is 1 both in x and y). As before, we
perform the partition by a vertical separator at x = l/2 and compare it in
terms of ∆J with the single cluster case. The results are shown in Fig. 13,
where each point is an average over 500 repetitions of the experiment for a
given pair {p, l}. Note that for a noise level of up to 0.25 there is no no-
ticeable change with respect to p = 0. When the noise level increases from
this point, the algorithm starts to fail even in the limit cases of small and
large l. Finally, when the noise level is 1, the algorithm provides always the
same results regardless of l. The top panel in the figure shows an example
of the data sets for each one of the 5 noise levels considered, for l = 6. The
rectangular area shown in these plots represents the domain of the uniform
distribution used to generate the noise.

C. Details on the genetic algorithm implementation and execution

times

In this appendix we give a complete description of the genetic algorithm
used to search for the clustering partitions that optimize any of the validity
indices. We also include a comparison of the execution times for each index.
Let d be the dimension of the data space, and k the number of regions
or clusters in the partition. The genetic algorithm searches for partitions
that can be expressed as a d-dimensional Voronoi diagram around k centers.
That is, any partition is fully characterized by the set of cluster centers
{p1,p2, ...,pk}, and the region Ωi consists of all the points that are closer to
pi than to any other center.

Each individual in the GA population consists of a binary string that
codes the position of each of the cluster centers for a given partition. We
use b bits to code each coordinate of each cluster center, so the full string
consists of b× d× k bits. Fig. 14 illustrates this coding scheme for a simple
case with d = 2, k = 2 and b = 3. Note that the domain of each coordinate is
discretized into 2b bins, so that each b bits of the binary string represent the
bin associated to a given coordinate of a given cluster center. Cluster centers
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are always located in the middle of the bins. We used the value b = 10 in all
the GA implementations of this paper. Note that this space discretization is
used only to code the cluster centers, but the points in any of the data sets
are generated continuously.

Figure 14: Coding scheme used in the GA implementation for an example case with d = 2,
k = 2 and b = 3. Each individual in the population is a binary string of b × d × k = 12
bits. The first 6 bits code the position of the first cluster center. The last 6 bits code the
position of the second cluster center. Given the cluster centers p1 and p2, the region Ωi

consists of all the points that are closer to pi than to the other center.

In all the trials performed the population size is set to 500 individuals,
each one representing a different partition as shown before. The fitness func-
tion is given by one of the validity indices described in section 4. The binary
strings are randomly initialized, each bit being set to 1 with a probability
of 0.5. Then the GA is run for 250 iterations, and the best partition at the
end is used as the solution for a particular run. At each iteration, a new
population is generated from the old one according to the following steps:

1. Population replacement: The 90% of the individuals with highest fitness
function are copied to the new population without changes. Only 10%
of the new strings are generated by recombination of the old ones.
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2. Selection: The strings that will undergo reproduction by recombina-
tion are selected on the basis of their fitness using binary tournament
selection.

3. Crossover: The two parents are crossed using 2-point crossover with a
rate of 0.85.

4. Mutation: Only in the cases where crossover was not performed, each
bit is inverted with a mutation rate which is the reciprocal of the string
length. That is, on average only one bit per string is changed.

The scheme described above was applied to all the validity indices, chang-
ing only the fitness function. Note that our objective is not to provide a GA
based clustering algorithm, but to illustrate the ability of the different indices
(in particular ∆J) to evaluate the quality of a clustering partition.

The execution times varied considerably depending on the validity index
used as fitness function. In Fig. 15 we show, for each validity index, the
total time necessary to run the 250 iterations of the GA for the Gaussians
2D problems in a AMD Opteron Dual Core NetPro 64 processor at 2,6 GHz.
The x-axis represents the number of real clusters in the data set, that is the
size of the problem. The y-axis shows the execution time in seconds. In all
the cases the GA is searching for a partition into 4 regions. All the points
shown in the plots are averages over 2000 trials (100 different problems and
20 executions of the GA for each problem). The PBM, ∆J and DB indices
display a similar behavior, with execution times that grow linearly with the
problem size. The execution times for the SIL and Dunn indices grow faster
than linearly. In particular, for the SIL index the time diverges very fast,
which makes it inappropriate for some of the problems presented in this
paper.

Acknowledgments

This work has been partially supported with funds from MEC BFU2006-
07902/BFI, CAM S-SEM-0255-2006 and CAM/UAM CCG08-UAM/TIC-
4428.

References

[1] B. Everitt, S. Landau, M. Leese, Cluster Analysis, Hodder Arnold, Lon-
don, 2001.

32



1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

# clusters

ex
ec

ut
io

n 
tim

e 
(s

)

Dunn

SIL

∆J
1 1.5 2 2.5 3 3.5 4 4.5 5

1

2

3

4

5

6

7

# clusters

ex
ec

ut
io

n 
tim

e 
(s

)

∆J
DB

PBM

Figure 15: Execution time versus problem size for the different validity indices considered
in the paper.

[2] A. Jain, R. Dubes, Algorithms for Clustering Data, Prentice-Hall, En-
glewood Cliffs, N.J., 1988.

[3] R. Xu, D. Wunsch II, Survey of Clustering Algorithms, IEEE Trans.
Neural Networks, 16, 3 (2005) 645-678.

[4] A.D. Gordon, Cluster Validation, in: C. Hayashi, N. Ohsumi, K. Yajima,
Y. Tanaka, H.H. Bock, Y. Baba (Eds.), Data Science, Classification and
Related Methods, Springer-Verlag, New York, 1998, pp. 22-39.

[5] G. Celeux, G. Soromenho, An Entropy Criterion for Assessing the Num-
ber of Clusters in a Mixture Model, J. Classification, 13, 2 (1993) 195-
212.

[6] Y. Ding, R.F. Harrison, Relational Visual Cluster Validity (RVCV),
Pattern Recognition Letters, 28, 15 (2007) 2071-2079.

[7] R.J. Hathaway, J.C. Bezdek, Visual Cluster Validity for Prototype Gen-
erator Clustering Models, Pattern Recognition Letters, 24, 9-10 (2003)
1563-1569.

[8] N.R. Pal, J. Biswas, Cluster Validation Using Graph Theoretic Con-
cepts, Pattern Recognition, 30, 6 (1997) 847-857.

[9] M. Rezaee, B. Lelieveldt, J. Reiber, A New Cluster Validity Index for
the Fuzzy c-Mean, Pattern Recognition Letters, 19, 3-4 (1998) 237-246.

33



[10] H. Rhee, K. Oh, A Validity Measure for Fuzzy Clustering and its Use
in Selecting Optimal Number of Clusters, Proc. 5th IEEE Int’l Conf.
Fuzzy Systems, 2 (1996) 1020-1025.

[11] W. Wang, Y. Zhang, On Fuzzy Cluster Validity Indices, Fuzzy Sets and
Systems, 158, 19 (2007) 2095-2117.

[12] X. Xie, G. Beni, A Validity Measure for Fuzzy Clustering, IEEE Trans.
Pattern Analysis and Machine Intelligence, 13, 8 (1991) 841-847.

[13] J.C. Bezdek, R.N. Pal, Some New Indexes of Cluster Validity, IEEE
Trans. Systems, Man and Cybernetics B, 28, 3 (1998) 301-315.

[14] D.L. Davies, D.W. Bouldin, A Cluster Separation Measure, IEEE Trans.
Pattern Analysis and Machine Intelligence, 1, 4 (1979) 224-227.

[15] J.C. Dunn, A Fuzzy Relative of the ISODATA Process and its Use in
Detecting Compact Well-Separated Clusters, J. Cybernetics, 3, 3 (1973)
32-57.

[16] M.K. Pakhira, S. Bandyopadhyay, U. Maulik, Validity Index for Crisp
and Fuzzy Clusters, Pattern Recognition, 37, 3 (2004) 487-501.

[17] M. Bouguessa, S. Wang, H. Sun, An Objective Approach to Cluster
Validation, Pattern Recognition Letters, 27, 13 (2006) 1419-1430.

[18] A.B. Geva, Y. Steinberg, S. Bruckmair, G. Nahum, A Comparison of
Cluster Validity Criteria for a Mixture of Normal Distributed Data,
Pattern Recognition Letters, 21, 6-7 (2000) 511-529.

[19] A. Ciaramella, G. Longo, A. Staiano, R. Tagliaferri, NEC: A Hierarchical
Agglomerative Clustering Based on Fisher and Negentropy Information,
Lecture Notes in Computer Science, 3931 (2006) 49-56.

[20] M. Song, H. Wang, Detecting Low Complexity Clusters by Skewness
and Kurtosis in Data Stream Clustering, Proc. 9th Int’l Symp. Artificial
Intelligence and Mathematics, 2006.

[21] C. Biernacki, G. Celeux, G. Govaert, An Improvement of the NEC Cri-
terion for Assessing the Number of Clusters in a Mixture Model, Pattern
Recognition Letters, 20, 3 (1999) 267-272.

34



[22] H. Bozdogan, Choosing the Number of Component Clusters in the
Mixture-Model Using a New Information Complexity Criterion of the
Inverse-Fisher Information Matrix, in: O. Opitz, B. Lausen, R. Klar
(Eds.), Data Analysis and Knowledge Organization, Springer-Verlag,
Heidelberg, 1993, pp. 40-54.

[23] M.A.T. Figueiredo, A.K. Jain, Unsupervised Learning of Finite Mixture
Models, IEEE Trans. Pattern Analysis and Machine Intelligence, 24, 3
(2002) 381-396.

[24] C. Rasmussen, The Infinite Gaussian Mixture Model, in: S. Solla, T.
Leen, K.-R. Müller (Eds.), Advances in Neural Information Processing
Systems 12, MIT Press, 2000, pp. 554-560.

[25] R.M. Neal, Markov Chain Sampling Methods for Dirichlet Process Mix-
ture Models, J. Computational and Graphical Statistics, 9, 2 (2000)
249-265.

[26] S. Richardson, P. Green, On Bayesian Analysis of Mixtures with Un-
known Number of Components, J. Royal Statistical Soc. B, 59 (1997)
731-792.

[27] A. Ben-Hur, A. Elisseeff, I. Guyon, A Stability Based Method for Discov-
ering Structure in Clustered Data, in: R. Altman, A. Dunker, L. Hunter,
T. Klein, K. Lauderdale (Eds.), Pacific Symposium on Biocomputing 7,
World Scientific, 2002, pp. 6-17.

[28] T. Lange, V. Roth, M.L. Braun, J.M. Buhmann, Stability-Based Vali-
dation of Clustering Solutions, Neural Computation, 16, 6 (2004) 1299-
1323.

[29] A. Bertoni, G. Valentini, Model-Order Selection for Bio-Molecular Data
Clustering, BMC Bioinformatics, 8(Suppl 2): S7 (2007)

[30] J.H. Friedman, J.W. Tukey, A Projection Pursuit Algorithm for Ex-
ploratory Data Analysis, IEEE Trans. Computers, C-23 (1974) 881-890.

[31] P.J. Huber, Projection Pursuit, The Annals of Statistics, 13, 2 (1985)
435-475.

35



[32] M.C. Jones, R. Sibson, What is Projection Pursuit?, J. Royal Statistical
Soc. A, 159 (1987) 1-38.

[33] T.M. Cover, J.A. Thomas, Elements of Information Theory, John Wiley,
New York, 1991.

[34] A.W. Bowman, P.J. Foster, Adaptive Smoothing and Density Based
Test of Multivariate Normality, J. Am. Statistical Assoc., 88, 422 (1993)
529-537.

[35] N. Henze, T. Wagner, A New Approach to the BHEP Tests for Multi-
variate Normality, J. Multivariate Analysis, 62, 1 (1997) 1-23.

[36] J.L. Romeu, A. Ozturk, A Comparative Study of Goodness-of-Fit Tests
for Multivariate Normality, J. Multivariate Analysis, 46, 2 (1993) 309-
334.
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