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Domı́nguez and especially my advisor Pablo Varona for his availability, patience and sup-
portive attitude. To my lab colleagues, in particular Srikanth Ramaswamy, Bóris Marin,
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Summary

This thesis belongs to the area of computational neuroscience, a discipline devoted to an

understanding of the functions of nervous systems from the perspective of information

processing through experimental recordings in living neurons, along with computer simula-

tions and mathematical analysis. In particular, this work focuses on the effects of intrinsic,

single-cell dynamics upon neural activity. This aspect has been investigated at different

levels of description of the nervous system with the aid of mathematical models.

In the first part of the thesis, the interplay between membrane voltage and intracellular

calcium concentration has been characterized in heart interneurons and motoneurons of

the leech Hirudo Medicinalis, a very well known model system in the study of rhythmic

motor generation. This analysis reveals a complex bidirectional interaction between these

coupled dynamics, which is only revealed if the correspondent time series are analyzed at

multiple time scales.

In the second part of this thesis, I describe how the interplay between intrinsic subthreshold

oscillations and after-spike refractoriness shape the input-output transformation between

trains of input pulses and evoked postsynaptic action potentials. The third part of the thesis

extends these results by defining a measure of the propensity to firing of a cell in a given

time. This measure evolves in time in a history-dependent fashion, allowing the quantitative

assessment of the mnemonic features resulting from intrinsic neuronal dynamics.

Finally, the fourth part of the thesis investigates the effects of the intrinsic properties of a

single neuron upon the weight dynamics of the connections impinging on it, subjected to

activity-dependent plasticity rules. These effects are particularly evident when an oscilla-

tory component is present in the input to the cell. In this case, its intrinsic properties will

bias its average phase and hence the weight dynamics arising from a temporally sensitive

plasticity rule.





Resumen

Esta tesis pertenece al campo de la neurociencia computacional, una disciplina dedicada a

la comprensión de las funciones del sistema nervioso desde la perspectiva del procesamiento

de información a través de registros experimentales, aśı como de simulaciones por ordenador

y análisis matemático. En particular, este trabajo se centra en los efectos de la dinámica

intŕınseca de las neuronas individuales sobre la actividad neuronal. Este aspecto se ha

investigado en diferentes niveles del sistema nervioso con la ayuda de modelos matemáticos.

En la primera parte de la tesis, se caracteriza la interacción entre el potencial de membrana

y la concentración intracelular de calcio en interneuronas y motoneuronas de la sanguijuela

Hirudo Medicinalis, un modelo experimental muy conocido en el estudio de la generación

de patrones motores ŕıtmicos. Este análisis revela una interacción bidireccional entre estas

dinámicas acopladas, que se hizo patente sólo con un análisis de las correspondientes series

temporales en múltiples escalas de tiempo.

En la segunda parte de la tesis, describo como la interacción entre oscilaciones subumbrales

intŕınsecas y las propiedades refractarias que siguen la generación de potenciales de acción

modulan la transformación entre los trenes de entrada y los potenciales de acción evocados.

La tercera parte de la tesis extiende estos resultados con la definición de una medida de

la propensidad al disparo en un cierto instante de tiempo. Esta medida evoluciona en el

tiempo de una forma dependiente de la historia, permitiendo un análisis cuantitativo de

las caracteŕısticas mnemónicas derivantes de las propiedades dinámicas intŕınsecas de las

neuronas individuales.

Finalmente, la cuarta parte de la tesis investiga los efectos de las propiedades intŕınsecas

de las neuronas individuales sobre la dinámica de los pesos sinápticos de las conexiones

que convergen a la neurona, bajo una reglas de plasticidad dependientes de la actividad.

Estos efectos son particularmente evidentes cuando la entrada a la neurona incluye una

componente osciladora. En este caso, las propiedades intŕınsecas de la neurona determinan

su fase promedio, y por consecuencia la dinámica de los pesos sinápticos subyacentes a una

regla de plasticidad sensible a la estructura temporal relativa de la actividad pre y post

sináptica.
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Chapter 1

Introduction

1.1 Behavioral demands span several time scales, and

so do neuronal dynamics

1.1.1 Evolutionary origin of neurobiology

Most animals are endowed with an effector system which allows them to move in their en-

vironment to escape predators, and find food and mates, in a quest for survival. Through

evolution, they have been pushed towards developing increasingly more sophisticated sen-

sors and effectors, and later, more sophisticated decision processes and survival strate-

gies. In contrast, plants and other non-moving organisms do not have this possibility, and

have not been evolutionarily pushed in that direction. Indeed, they do not possess a ner-

vous system, even if some plants and sponges are endowed with excitable cells displaying

sensory-evoked and spontaneous electrical activity, and are capable of intelligent behavior

in a formal sense (Baluska and Mancuso, 2009a,b). Nervous systems have evolved in order

to map sensory stimuli to convenient motor output. For this mapping to be evolutionary

advantageous, that is, for giving an individual the possibility of surviving and mating, it

needs to be highly flexible, modular, and modifiable in several meaningful ways.

Neurons are specialized cells of the nervous system that have evolved to perform, as a

network of connected elements, complex information processing aimed at directing behavior

in an effective way. Surviving in a highly competitive environment poses hard cognitive

challenges. In certain situations, a hundred millisecond delay in a motor response marks

the difference between life and death: hence, certain highly relevant information requires

an urgent response and needs to be processed in a direct, straightforward manner. This has

1
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to be implemented through neuronal loops involving fast-conducting, myelinated axons and

few synapses, because chemical communication through synaptic transmission is the time

bottleneck of information transfer in the nervous system. This neuronal architecture allows

high reaction speed, but limited flexibility. The reverberation of neuronal activity in large

neuron ensembles with the involvement of many, physically distant layers allows a more

flexible and modulable behavior, because information from different sensory modalities and

past experiences can be integrated and better informed decisions can be taken. Obviously,

information processing through multiple, recurrent loops is not as fast as in the former

case. In other situations, relevant information which could be salient for future behavioral

responses needs to be retained for a very long time, ideally, for the whole life span of the

individual. Different behavioral needs seem to cover the whole time span between these

two extremes.

Hence, behavioral needs pushed the nervous system to perform information processing

on multiple temporal scales. A solution adopted by the most recently evolved organisms

is to devote the tasks of information processing on short, intermediate and long temporal

scales to different anatomical structures. For example, involuntary reflexes and the gen-

eration of automatic, locomotive movements can be observed in spinal animals (Grillner

and Zangger, 1979). On the other extreme of the commonly accepted neuronal hierarchy,

the hippocampus is required for the acquirement of new long-term memories (which are

thought to be transferred and organized by a bidirectional dialogue with the neocortex),

but not for the retainment of information for short periods of time nor for the access to

already formed long-term memories (Scoville and Milner, 1957). In spite of this functional

specialization, neuronal microcircuits are also capable of bridging over multiple time scales

locally, due to the complex and distributed molecular machinary which determine their be-

havior. In fact, the interaction of fast and slow time scales is also observed at the single cell

level, and forms the basis of the generation and recognition of complex temporal patterns,

as we will show in the following chapters.

1.1.2 Neuronal dynamics on multiple time-scales

Behavioral demands span time scales from the millisecond range up to the whole life span of

the individual. Still, action potentials are commonly assumed to be the main information-

carrier events in the brain, and their duration is only a couple of milliseconds. In spite of

its extremely fast time course, a single action potential triggers a series of events which
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greatly outlast it. Indeed, along evolution, nervous cells developed a sophisticated molecular

machinery which bridges several of the time scales required for efficient behavior.

Apart from the opening of voltage-gated ionic channels, whose dynamics can last up

to a few hundred milliseconds in certain cases, action potentials result in calcium influx,

which can affect ionic channels and interfere with several intracellular processes through

molecular cascades (see (Berridge, 1998) for review). Calcium exchange between the intra-

cellular medium and the endoplasmic reticulum (ER) further enhances the computational

capabilities of single neurons. Indeed, the distributed morphology of the ER, the presence

of specialized receptors with complex dynamics on its surface, and of a positive feedback

in the dynamics of calcium flux through its membrane (calcium-induced calcium release)

suggest that it could be considered as a neuron-within-a-neuron, integrating the informa-

tion about the neuron input-output activity over longer time scales than the cytoplasmic

membrane. The concentration of calcium in the intracellular medium can be thought of

as a mnemonic trace of the recent activity of the cell. In fact, it allows the contextual-

ization of information at the local level by constraining the dynamics of the neuron in a

way which depends upon the previous activity and received inputs. Calcium signaling also

plays a key role in gene transcription and in the plasticity of ion channels and synaptic

machinery (Berridge, 1998), which are phenomena occurring at relatively long time scales.

Bridging over temporal scales is also accomplished through network mechanisms. In

particular, the interplay between nested oscillations (typically gamma-theta) and slow neu-

ronal dynamics like short term depression (Leibold et al., 2008) or adaptation (Kropff and

Treves, 2008) results in compression of information at behavioral time scales (for instance,

regarding a sequence of visited location in space) within each theta cycle, resulting in a

compression factor of about 10. Such fast replay of temporal sequences has also been ob-

served in the hippocampus (Nadasdy et al., 1999) and in the prefrontal cortex (Euston

et al., 2007) during slow-wave sleep. Nevertheless, the importance of single cell dynamics

interacting at multiple time scales, fostering complex information processing at the single

cell level, and its relationship to complex, modulable functionality at the network level is

only partially understood.
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1.2 Lessons from CPGs

The realm of neuroscience where the importance of intrinsic dynamical properties of single

neurons for network dynamics was first appreciated in detail is the study of small networks

of neurons. In particular, small networks of neurons exhibiting rhythmic, but complex,

behavior were studied in great detail by several groups starting from the sixties (reviewed

in (Marder and Calabrese, 1996)). These networks, commonly referred to as Central Pat-

tern Generators (CPGs), underlie the generation of rhythmic behaviors like respiration,

chewing and locomotion (walking, running, crawling, swimming, flying, and in general any

movement intended to propel the body in a certain direction in space). Invertebrate prepa-

rations were the most convenient for experimental analysis, because of the small number

of cells involved, and their size and resistance to electrode penetration which greatly eased

electrophysiological characterization.

For instance, it has been recognized that in some cases the oscillatory behavior of CPGs

derives from intrinsic bursting of some of their component neurons. In this case, the in-

trinsically bursting neurons are called pacemakers, and the other neurons in the network

which are not intrinsically bursting, but are entrained to burst rhythmically through net-

work interactions, are called followers. This arrangement is not the only possibility, nor

the most common: in many other cases, network oscillatory dynamics emerge from indi-

vidual elements which are not pacemakers themselves. In this case, network oscillations

arise through synaptic interactions.

In the most simple arrangement, a pair of tonically spiking neurons can produce rhyth-

mic out-of-phase oscillations when coupled through mutual inhibition. As inward currents

accumulate in one cell during its hyperpolarized phase, they will eventually exceed the to-

tal sum of synaptic and intrinsic outward currents thus starting the bursting phase, which

in turn results in the termination of their partner’s burst (alternation by escape). In this

case, some overlap between the bursting phases of the two neurons is observed, and burst

duration depends upon the intrinsic properties of the inhibited cell. Alternatively, burst

alternation can arise from the withdrawal of firing of the active cell due to the build-up of

adapting, outward currents. Its postsynaptic partner will then be released from inhibition

and will start its active phase (alternation by release). In this case, no overlap is observed

between the bursting phases of the two neurons, and burst duration is controlled by the

intrinsic dynamical properties of the active cell. In most practical cases, though, both
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dynamical mechanisms are interacting, and network period is controlled in part by both

neurons. In fact the time of alternation, when the inactive cell starts its bursting phase,

depends upon its intrinsic properties, the intrinsic properties of its partner neuron and the

dynamics of the intervening synaptic connection.

As new features of neuronal physiology were discovered, their impact on network dy-

namics was assessed and the state-of-the-art picture of CPG behavior now comprises a

wealth of dynamical mechanisms acting at several spatial and temporal scales, which all

intervene in a redundant fashion to guarantee the healthy physiological performance of the

network as a whole. For example, the precise phase relationship between the active phases

of neurons in the crustacean pyloric CPG, and its maintenance as the network period is

manipulated, have been attributed to fine differences in the dynamics of the h current

in different cell types, a hyperpolarization-activated inward current which mediates post-

inhibitory rebound spiking (Nowotny et al., 2008). Slow potassium currents could also be

involved (Hooper et al., 2009; Zhang et al., 2008). Electrical coupling between rhythmically

active neurons aids in their coordination with the correct phase relationships (Garcia et al.,

2008). As an additional example, short-term synaptic depression can implement a dynamic

switch between different functional network configurations (Nadim et al., 1999).

Second-messenger intracellular signaling mediates several dynamical phenomena, like

the activity-dependent regulation of gene expression (Dallman et al., 1998; Linsdell and

Moody, 1995), the modulation of ion channels on fast time scales in a homeostatic fash-

ion (Meech, 1978; Luthi and Mccormick, 1998), the modulation of synaptic transmis-

sion (Ivanov and Calabrese, 2003), and calcium exchange with the endoplasmic reticu-

lum (Berridge, 1998).

In particular, modeling work has shown that calcium exchange through the ER can

endow an otherwise regular burster with irregular, chaotic dynamics (Falcke et al., 2000),

which can be regularized by mutual interactions with other neurons (Varona et al., 2001).

Depending upon the parameters used,the bidirectional coupling between calcium influx and

calcium-dependent modulation of ionic conductances alters the phase space structure and

can result in regularization of the bursting trajectories (Baroni et al., 2005). Neuromod-

ulation (Warrick and Marder, 1991) can alter network dynamics in an activity-dependent

fashion, often mediating homeostatic effects (Thoby-Brisson and Simmers, 1998; Liu et al.,

1998), or reshaping functional connectivity in multifunctional networks (Briggman and

Kristan, 2008). Even if a defining feature of Central Pattern Generators is their ability
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to generate rhythmic dynamics in the absence of sensory information, in normal operating

conditions their activity if finely modulated by proprioceptive feedback (Borgmann et al.,

2009).

1.3 Large scale network dynamics

More complex networks are expected to operate on similar dynamical principles as

CPGs (Yuste et al., 2005). However, most theoretical approaches to network dynamics have

adopted very simplified descriptions of single-cell computation, typically relying upon non-

dynamical individual units which implement a fixed input-output transformation (Hopfield,

1982). This approach was justified by its simplicity, allowing both analytical treatment and

theoretical rigor in extracting results from minimal principles.

Only in the last few decades theoretical work in neuronal network dynamics began

considering simple dynamical models for the individual neurons (Amit and Brunel, 1997).

In particular, the Integrate and Fire (IF) has been by far the most widely used neuron

model in the theoretical investigation of large neuronal network dynamics. It is the most

simple dynamical model of neurons. It describes voltage fluctuations of the neuron mem-

brane with a linear differential equation, as in a RC circuit, with the addition of a fixed

voltage threshold and a spike reset. This model constituted an important step forward

in realism in network modeling, still allowing analytical treatment in many cases of in-

terest. For example, in the thermodynamic limit of an infinite network of identical cells

oscillating asynchronously, a neuron output and its input can be related in a self-consistent

manner, allowing the analytical calculation of the mean firing frequency and its standard

deviation. The inclusion of an oscillatory term eiωt in the model equations allows the an-

alytical assessment of the stability properties of the asynchronous state, and in particular

the identification of the boundaries of the asynchronous state where oscillatory instabilities

develop, and the frequency of the emerging oscillations (Amit and Brunel, 1997; Brunel,

2000).

1.3.1 Which model to use for individual neurons?

The main contribution of the IF neuron is the introduction of spike times in network

modeling, while network models based upon non-dynamic individual units could only pro-
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vide a spatial description of network activity, with the temporal dimension being blurred

by a rate description. Furthermore, IF neurons do not implement a static input-output

transformation as non-dynamical models like the perceptron, but one that is affected by

previous input-output dynamics. This feature results in history-dependent responses to

input stimuli at the single cell level. In addition to this, the after-spike reset of the voltage

variable and the possibility of including an absolute refractory period can account for the

effects of refractoriness. The inclusion of a non-linear term can account for the rapid acti-

vation of sodium channels (this version of the model is known as Exponential Integrate and

Fire, or EIF (Fourcaud-Trocmé et al., 2003)), while the addition of another linear dynam-

ical variable can account for subthreshold oscillations (this model is known as Generalized

Integrate and Fire (GIF) (Richardson et al., 2003; Schreiber et al., 2004), or Resonate

and Fire (Izhikevich, 2001)). In yet another variant, known as the Spike Response Model

(SRM), a spike-triggered kernel is added to the voltage equation, representing both action

potential shape and after-spike effects such as adaptation (Kistler et al., 1997). Similarly,

a spike-triggered kernel can be added to a dynamic threshold for spike generation, yielding

a formally equivalent model (Gerstner and Kistler, 2002). In another attempt for gener-

alization, the parameters of the IF neuron has been made voltage-dependent (Abbott and

van Vreeswijk, 1993). It should be noted that these extensions of the general IF formalism

greatly complicate the analytical treatment of the correspondent network dynamics.

Even when one restricts the analysis to a certain neuron model, network dynamics

depends critically upon the specific parameter set chosen. For example, the inclusion of

propagation delays along neurites, and synaptic delays in the chemical communication

between cells, deeply affect the dynamic repertoire a neuronal network can exhibit (Roxin

et al., 2005; Coombes et al., 2003). In addition to this, intrinsic single cell dynamics also

has a strong effect upon the resultant network behavior. Not only the adoption of different

models for the individual neurons deeply affect the resultant dynamics (Muresan and Savin,

2007), but also does the inclusion of mild heterogeneities in their intrinsic properties (White

et al., 1998). These aspects have not been throughly investigated. One of the main reasons

is the high dimension of parameter space that one needs to consider when addressing the

influence of intrinsic properties in network dynamics.

Depending upon the level of description one wishes to adopt, at least two parame-

ters for each cell (in the case of minimal, phenomenological models like the EIF and the

GIF) are needed, and the number of parameters can increase virtually without bound as
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conductance-based models, multicompartimental models, and models based on a molecular

description are considered. While the constrainment of single neuron parameters from bio-

logical experiments is feasible for phenomenological models based on very few parameters,

it starts posing important challenges even at the single compartment conductance-based

level. Actually, the complete characterization of the ionic channel complement of a given

neuron, which can be accomplished through a careful combination of voltage clamp pro-

tocols and pharmacological manipulations, as pioneered by Hodgkin and Huxley (Hodgkin

and Huxley, 1952), is not expected to result in a close match between the model and the bi-

ological behavior when all the acquired knowledge is put together in a single compartment

conductance-based model.

This failure is not only due to the known limitations of the conductance based ap-

proach, which does not account for ion concentration changes within the cell and in the

extracellular medium. The Goldman-Hodgkin-Katz formalism (Hille, 2001), based on ion

channel permeabilities rather than conductances, describes ion concentration changes but

does not improve much on the prediction side with respect to conductance-based models.

In fact, neurons are the cells with the greatest morphological diversity and complexity,

which deeply affect the exhibited behavior because of ion diffusion within the cell and in

the extracellular medium, and because of the non-uniform and non-random distribution of

ion channels along their morphology. Multicompartimental models are a strong computa-

tional tool in the description of neuronal behavior, but they require a very high number of

parameters whose constrain is hindered by overfitting. Nevertheless, they are the minimal

level of description one can adopt when trying to unravel the influence of morphology in

neuronal dynamics.

In addition to the bottom-up approach where conductance based neurons are built from

the detailed knowledge acquired from each of their ion channel types, the increased com-

putational power available in the last decade has allowed a top-down, brute force search

approach in parameter space (Prinz et al., 2004b). In this approach, millions of different

neurons are created by randomly sampling a convenient portion of the parameter space,

bounded by experimental results. These neurons are then probed with different levels of

injected current or other applied stimuli, and only neurons with the desired response are

selected. This approach has shown that the same neuronal output can be achieved with

widely different parameter sets. However, this approach, albeit increasingly feasible given

the great computational power available today, suffers from several problems (Nowotny
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et al., 2007). For example, there are no strongly grounded rules for choosing the sampling

strategy in parameter space. Neuronal output can be extremely sensitive (up to fractal

sensitivity (Komendantov and Kononenko, 1996)) in certain regions and along certain di-

rections in parameter space, and very little sensitive in others. More importantly, the

wide diversity of ion channel distribution in ”valid” neuron models obtained through the

data-base approach doesn’t seem to be reflected by an analogous diversity in biological

neurons. Indeed, pharmacological manipulations aiming at blocking specific ion channels

result in highly reproducible results across preparations, a result which doesn’t seem to

be consistent with a wide distribution of ion channels (but see (Grashow et al., 2009) for

an alternative explanation). Hence, parameter estimation using a database approach can

manage to constrain neuronal dynamics for certain input stimuli, but is likely to perform

poorly on predictions for other input stimuli which were not included in the fitness function.

Recently, new fitting procedures have been suggested, which aim at finding parame-

ter sets which correspond to valid and sufficiently robust dynamics, while at the same

time keeping the computational cost manageable. For example, Nowotny et. al. (Nowotny

et al., 2008) used a simulated annealing algorithm for parameter estimation, simulating

a gap junction between the model output and the target voltage and considering several

values of a DC input current in the fitness function. This work highlighted how different pa-

rameters are constrained very differently, with some parameters being tightly constrained,

and others being almost irrelevant for the enforced dynamics. Others have obtained similar

results with genetic algorithms (Tobin and Calabrese, 2006; Vanier and Bower, 1999). In

particular, axonal and dendritic recordings are expected to improve the parameter esti-

mation by constraining the model dynamics also in the spatial dimension, with respect

to somatic recordings only (Keren et al., 2005). Other authors have performed parameter

fitting using Kalman estimation (Ullah and Schiff, 2009). Another possibility for model

estimation, which has not been explored in detail so far, is real-time estimation, which con-

sists in actively probing the biological system with stimuli designed to reduce uncertainty

in the parameters.

Recently, a spike train prediction contest has been launched (Gerstner and Naud, 2009),

which allowed a quantitative comparison of neuron models. As expected, neither the de-

tailed conductance-based neurons, nor the simple IF or related models (EIF, GIF) per-

formed well. The best predictive power was obtained with a nonresetting leaky integrator

with a firing threshold adapting on multiple time scales (Kobayashi et al., 2009). The
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main advantage of this model neuron is the relatively small number of parameters (2 for

the leaky integrator as in the standard LIF model, and 2L+1 for the adapting threshold,

where L in the number of time scales considered, usually two or three), and the possibility

of accounting for adaptation of slow and fast temporal scales. Indeed, the best predictive

power was obtained with L=2.

Still, this model is not expected to faithfully reproduce, as its parameters are varied, a

broad range of neuronal dynamical classes. In fact, its adapting threshold makes a good

job in determining the output spike times, but the subthreshold dynamics is reduced to

a purely passive description and hence cannot reproduce the frequency preference and

other dynamical features of neurons with subthreshold resonances. This limitation was

not revealed in the spike train prediction context probably because of the limited data

set (three data sets in vitro and one in vivo) and the limited classes of inputs considered

(random current injection in the in vitro data sets, random optical stimulation of the retina

for the in vivo data set).

1.4 Original contribution of the present thesis

This thesis comprises four chapters, each of which resulted in a journal article. All of

them deal with the interaction of different dynamical mechanisms in single neurons and its

functional consequences for information processing in neural systems.

The first, titled “Time-scales in the interplay between calcium and voltage dynam-

ics” (Ramaswamy et al., 2007), has been a pioneer work in the study of the interactions

between membrane voltage and calcium dynamics. As discussed in the previous subsec-

tions, the interplay between membrane potential and intracellular calcium concentration

has been studied extensively. Nevertheless, most experimental protocols focused upon spe-

cific aspects of this interaction, used highly artificial experimental settings and did not

consider in detail the physiological, free evolution of the intact system as a whole. Accord-

ing to the dominant view in electrophysiology where neurons respond to input stimuli in

a stereotypical manner and do not “produce information” on their own, the wealth of in-

formation gathered in these experiments resulted in intracellular calcium being considered

as a mere integrator of membrane activity, basically following membrane dynamics with

a certain delay as calcium enters the cell through NMDA and voltage-sensitive calcium

channels, and is then absorbed into the ER, bound to other molecules or expelled into the
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extracellular medium.

In this chapter, we performed long simultaneous recordings of transmembrane potential

and intracellular calcium concentration in interneurons and motoneurons of the heart sys-

tem of the leech, a very well known model system (Calabrese, 1979; Calabrese et al., 1995).

We used an in vitro preparation comprising the first seven ganglia, thus retaining much of

the wiring and complexity of the intact system. We performed correlation analysis between

the two signals both at the temporal scale of the whole recording (comprising about ten

bursts), and at the scale of individual bursts. Linear correlation performed at different

temporal scales revealed that the interaction between voltage and calcium depends upon

the temporal scale considered. Importantly, this interaction is not always unidirectional,

with calcium responses lagging behind voltage deflections. At the single-burst scale, we

often observed voltage deflections lagging behind the corresponding calcium transients.

These experimental results constitute a stringent benchmark for existing models which

describe the interaction between calcium and voltage. In principle, they are not incompat-

ible with models where coupling between voltage and calcium results in irregular, chaotic

activity at the single cell level (Varona et al., 2001; Falcke et al., 2000). This variability

could be constrained but not eliminated by network interactions, resulting in irregular net-

work trajectories which might be more convenient for the exploration of phase space, and

ultimately for the proper physiological function of the CPG (Zhurov and Brezina, 2006;

Baroni et al., 2005; Baroni, 2005). In particular, this burst-to-burst variability could endow

the cardiac CPG with an ability to adapt to developmental or pathological changes in the

motor plant (Bucher et al., 2005). The temporal structure of bursting patterns depends

upon the interaction between slow and fast dynamics. This interaction is also responsible

for the modulation of bursting patterns on a cycle-by-cycle basis, allowing the reverberation

of the information about the previous history of activity and stimulation of the cell (Marin

et al., 2009). This local form of contextualization of information can form the basis for the

emergence of complex discrimination capabilities at the single cell level.

By systematically observing several features of the bursting dynamics in both the voltage

and calcium variables, we noticed that some features are strongly correlated, whereas others

seem to vary independently. These results have been confirmed in other CPGs, in particular

in the pyloric CPG of crustacean (Nowotny et al., 2008; Reyes et al., 2008), and might apply

quite generally in the nervous system. One of the possible interpretation of these results

is that some forms of variability and irregularity at several levels of the nervous system
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(from the genetic underpinnings to the resulting network dynamics) are not only inevitable

but also benificial, and that some built-in, distributed molecular machinery could act in a

homeostatic fashion to guarantee the production of a “good enough” network output even

in the face of variable circuit parameters, by strongly constraining variability in the task-

relevant subspaces and letting it accumulate in task-irrelevant subspaces (see also (Scholz

and Schöner, 1999; Todorov, 2004) for related ideas applied in motor control).

In the second chapter of this thesis (Baroni and Varona, 2007), we considered a simple,

conductance-based model neuron with subthreshold damped oscillations, and studied its

response to temporally structured inputs. As reported in the previous subsections, it has

been observed both in models and in real cells that intrinsic oscillations act as a band-pass

filtering mechanism, enhancing neuronal output when the input frequency matches the

intrinsic frequency of the cell (Izhikevich et al., 2003b). In this chapter we showed how the

interaction of neuronal dynamics at different time scales, namely the time scale of intrinsic

subthreshold oscillations and the time scale of after-spike refractoriness, endows even very

simple model neurons with complex input-output relationships which are better defined at

the fine temporal scale of individual EPSPs.

To our knowledge, this is the first work that relates intrinsic subthreshold oscillations

with the detection and production of precise temporal sequences of spikes. The motiva-

tion for studying the discriminability properties offered by subthreshold oscillations in a

temporal coding scheme arose from a wealth of experimental studies which reported the

non-random and informative nature of temporally precise firing sequences.

Oscillations in the membrane potential, either due to oscillatory inputs or to intrinsic

dynamical mechanisms, format the continuos flow of neuronal information, by dividing it in

chunks separated by peaks of inhibitory conductances which consistently bring the neuron

to a restricted portion of its phase space (Li et al., 2006; Schaefer et al., 2006). Furthermore,

oscillations offer a natural substrate for the emergence of informative temporal patterns

of firing. During each cycle, the membrane potential is periodically brought closer and

further from the firing threshold, resulting in periodical windows of opportunity for the

generation of action potentials. In addition to this, the interaction between a neuron’s

intrinsic properties and its inputs will determine the phase of firing in each given cycle,

which will then carry information about both neuron identity and its inputs (Hopfield, 2004;

Shamir et al., 2009). This phenomenon results in the self-organization of cell assemblies in

temporal coalitions, which would be maximally effective in firing their postsynaptic targets
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due to their precise synchrony (Wang et al., 2010).

The third and longer chapter which comprise this thesis stemmed from an attempt of

generalization of the results exposed in the previous chapter, with a focus upon subthresh-

old membrane dynamics (Baroni et al., 2010). Molecular dynamics in single neurons carry

information about the previous input-output history, and in turn modulates the output

responses to future stimuli. In particular, the state of activation/inactivation of ion chan-

nels, and the intracellular concentration of second-messenger molecules such as calcium,

reflects the recent activity of the neuron, and their joint dynamics will determine how

subsequent inputs will be processed and when, if at all, they will result in the genera-

tion of an action potential. This dynamical mnemonic trace allows the interpretation of

newly incoming information in the context of the previously received inputs, and hence the

discrimination of information at the single-cell level. Hence, this phenomenon can be con-

sidered as a single-cell, local form of transient memory, or information contextualization.

We suggested a formal definition of neuronal excitability as a measure of the propensity to

fire in any moment in time, linking the subthreshold history-dependent dynamics to spike

generation. By studying how the excitability trajectories depend upon the statistics and

temporal structure of input stimuli, we could assess the extent and characteristics of the

intrinsic memory for different single-neuron dynamics and input statistics. The chapter of-

fers a detailed analytical treatment in the case of the IF and GIF neuron with subthreshold

oscillations, and also gives precise indications for estimating history-dependent excitability

in general model and biological neurons. In particular, the contribution of specific ion

channels to single cell memory can be investigated with a combination of modelling and

dynamic clamp experiments. The presence of complex forms of local discrimination at the

single cell level is likely to be highly relevant for information processing in neural networks,

especially in the light of recent experimental accounts which revealed the highly dynamic,

transient nature of information processing in the nervous system. The recognition of these

cell-specific discrimination properties might further our understanding of neuronal network

computations and their relationships to the distribution and functional connectivity of the

different neuronal types found in the brain.

The fourth and last chapter is a first attempt to relate the intrinsic neuronal dynamics at

the single cell level to functional outcomes at the network level (Baroni and Varona, 2010).

In this work we showed that intrinsic neuronal dynamics interact with activity-dependent

synaptic plasticity. In particular, when an oscillatory component is present in a neuron
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input, typically as the result of emerging network oscillations (Buzsaki, 2006), the intrinsic

properties of the neuron will determine its average phase, and hence the direction and ex-

tent of plastic changes of the synapses impinging on it. In fact, a form of Hebbian learning

which is extremely sensitive to the relative timing of pre and post synaptic firing patterns,

known as STDP (Spike Timing-Dependent Plasticity), introduces a differential bias in the

weight dynamics which depends upon both the period of the oscillating input modulation

and the intrinsic properties of the post synaptic cell. For example, if the post-synaptic cell

tends to fire, on average, later than the peak of the oscillating modulation, synaptic weights

originating from the oscillating population will be biased towards potentiation. Conversely,

a bias towards depression will be observed if the cell tends to fire earlier than the oscil-

lating modulation. Such a phase advance is actually observed in cells displaying inductive

dynamics (Richardson et al., 2003; Narayanan and Johnston, 2008). This work suggests

that the distribution of intrinsic properties across a neuronal network strongly constrains

the possible wiring schemes which would emerge from activity-dependent plasticity rules.

Given the wide heterogeneity of intrinsic properties in the nervous system (Soltesz, 2005),

and the ubiquitos presence of network oscillations (Buzsaki, 2006), we believe that this

mechanism might be highly relevant for structure formation during both development and

mature life.

The last three chapters all deal with the computational consequences of intrinsic sub-

threshold oscillations, both at the level of local (single-cell) information discrimination, and

at the level of connectivity development in networks. The four chapters which comprise

this thesis offer only a glimpse of the functional complexity arising from intrinsic dynamics

at the single cell level.



Chapter 2

Time-scales in the interplay between

calcium and voltage dynamics

Abstract

The interaction between dynamics on multiple time scales increases the processing capa-

bilities of neurons. A proper understanding of this interaction has to take into account not

only the average behavior, but also the variability which is observed across bursting cycles.

We analyze simultaneous voltage and calcium recordings from spiking-bursting neurons,

and perform a statistical study of the correlation between both variables. We find a rich

repertoire of time scales and correlated and uncorrelated parameters. We interpret these

results as an outcome of the interaction between the intracellular slow dynamics and the

membrane fast dynamics. This interaction results in complex behavior, where cycle-to-

cycle variability is constrained in a highly non-random fashion. We expect our results to

be highly relevant for information processing based on multiple codes, where the slow os-

cillation envelope and fast frequency modulations within bursts may carry complementary

information. In particular, the slow calcium signal constitutes an informational inertia

which could be a substrate for the contextualization of information at the single cell level.

Keywords: Voltage-calcium correlation, leech heart CPG, calcium dye fluorescence.
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2.1 Introduction

The interaction between the fast dynamics of the membrane potential and the slow dy-

namics of intracellular ion concentration can result in complex neuronal dynamics. Of

particular importance is the calcium ion Ca2+, which controls excitability, neurotransmiter

release and plasticity (Berridge, 1998). Calcium entering from voltage-dependent channels

or released from internal stores controls conductances responsible for slow afterhypolariza-

tion or depolarizing afterpotentials following spikes (Meech, 1978; Luthi and Mccormick,

1998). These potentials, in turn, modify the neuronal firing. In effect, the slow dynamics

of calcium and its interaction with the neuron’s electrical responses is a form of short-term

memory (Loewenstein and Sompolinsky, 2003). This memory can be used, for example,

as a delay in the computation of motion detection (Barlow, 1996), to adapt to stimulus

statistics (Fairhall and Bialek, 2003; Arganda et al., 2007) or to intervene in synaptic in-

tegration by affecting the shape of backpropagating action potentials (de Polavieja et al.,

2005). Calcium is also a player in the global dynamics of the neuron. It contributes to

generate complex patterns of spiking bursting-activity and can also affect the reliability

of particular features of the electrical response (Baroni et al., 2005). These two effects,

short-term memory and a fundamental role in the single-neuron dynamics, make calcium

a mayor player in the network dynamics. We therefore expect calcium to play a role in the

regulation of rhythms in the inhibitory loops found in many central pattern generators, in

adaptation to statistics or more generally in the processing of recurrent circuits as predicted

by realistic conductance-based models (Falcke et al., 2000; Varona et al., 2001). The many

computational capabilities arising from the interaction between slow and fast dynamics are

best studied in the identified neurons of invertebrates.

The leech is an ideal system to study the roles of calcium in network activity. Calcium

imaging experiments in the leech have been used to study the role of calcium dynamics

in dendritic processing in the AP neuron (Wessel et al., 1999). The heart interneurons

HN, responsible for the CPG of heart beat control (Thompson and Stent, 1976), have

been the focus of intensive calcium imaging studies. The modulation of spike-mediated

synaptic transmission by presynaptic background Ca2+ (Ivanov and Calabrese, 2003) and

the relationship between the spatio-temporal patterns of Ca2+ changes and the slow wave

changes in the voltage dynamics (Ivanov and Calabrese, 2000) are the two main results of

these studies. In spite of several modelling efforts, the role of calcium dynamics in shap-
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ing membrane potential dynamics is still largely unknown. To further our understanding

of the interplay between calcium and voltage dynamics, we have performed a statistical

analysis of 50-100 s long recordings of simultaneous calcium and voltage activity in sen-

sory neurons, interneurons and motoneurons. The analysis reveals several time scales in

the bidirectional interaction between voltage and calcium, and reveals a complex scenario

where some features of this interaction are strongly constrained, while others are almost

independent.

2.2 Materials and methods

2.2.1 Experimental recordings

Medicinal Leeches (Hirudo medicinalis) were obtained from a German supplier (Zaug

GmbH) and maintained in artificial pond water at 15 deg. centigrade in natural light.

Standard techniques were used (Muller et al., 1981). In brief, ganglia 1st to 7th ganglion

were dissected from the anesthetized animal and pinned ventral side up in standard extra-

cellular solution. Relevant neurons were identified from their position in the ganglia and

firing characteristics. The neurons were visualised using 40x water immersion objectives,

under a Zeiss Axioskop FS 2 microscope. Intracellular recordings were made using a single

quartz microelectrode filled with 4M potassium acetate and potassium chloride, and pulled

to resistances of 40-80 Megaohms. Signals were amplified using an Axoclamp 1A amplifier.

Calcium Green-1 was delivered into the neuron using a hyperpolarizing current of 0.5nA

for about 5 min. Calcium images were acquired using a NeuroCCD system.

2.2.2 Data analysis

Spike detection was performed on the raw voltage traces by thresholding, and verified

by visual inspection. The resulting spike trains had a clearly biphasic Inter Spike Interval

(ISI) distribution, hence could be chunked into individual bursts without ambiguities. Each

burst was temporally defined as the time window between the first and the last spike of

the burst. For each burst, the time of maximal instantaneous frequency tν was defined as

the middle point between the spikes corresponding to the shortest ISI.

Calcium images were temporally and spatially low-pass filtered, and the pixels included

in a Region of Interest (ROI), located in the proximal portion of the primary neurite
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(Figure 2.1A), were averaged to obtain the scalar signal plotted in Figure 2.1B,C. The

maximum of the calcium signal in each burst was extracted. All temporal features were

defined with respect to the median spike of each burst, a time reference which corresponds

to the least standard deviation when computing cycle period in these cells. If ns is the

number of spikes in a certain burst, the median spike was defined as the spike with index

(ns − 1)/2 + 1 if ns is odd, and as the middle point between the spikes with indexes ns/2

and ns/2 + 1 otherwise. Normalized cross-correlation between the low-pass filtered voltage

and calcium signal was computed as

C(n) =

∑

m v(m)c(m + n)
√
∑

m v(m)v(m + n)
√
∑

m c(m)c(m + n)

where v(n) and c(n) are the time series for voltage and calcium, corresponding to each

recording (Figure 2.2A,B) or to each individual burst (Figure 2.2C,D). In each case the max-

imum of C (correlation peak) and its position (correlation delay) were extracted. Probability

densities have been estimated with a Gaussian kernel. Statistical analysis was performed

using custom-built software in Matlab programming language.

2.3 Results

Figure 2.1B shows the somatic voltage in interneuron HN and the simultaneous fluores-

cence changes obtained with the calcium dye Calcium Green-1 from the region of interest

indicated with a closed loop in Figure 2.1A. Eye inspection already indicates that the re-

lationship between calcium and voltage is complex compared to those found in sensory

neurons (sensory cells known as N cells, for example, show a clean one-to-one correspon-

dence between single spikes and calcium changes; data not shown).

To better understand the relationship between calcium and voltage dynamics, we cal-

culated the correlation function between the two variables. Figure 2.2 gives the probability

density for calcium-voltage correlation peak values and delays for the motoneuron HE

(solid line) and for interneuron HN (dashed line). To distinguish between interburst and

intraburst characteristics, we have calculated correlation peak values and delays for whole

recordings (top row) and single bursts (bottom row). Single burst correlations are com-

puted as the normalized cross-correlation between the calcium signal and the voltage trace

in a time window starting 1 s before the first spike and ending 1 s after the last spike for
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Figure 2.1: Simultaneous recording of calcium dye fluorescence and membrane potential
for the HN neuron. (A) single frame showing the calcium dye fluorescence. Black closed
loop indicates the region of interest in which we averaged the intensity pixel values for the
calculation of a signal proportional to local calcium. (B) Membrane potential (top trace)
and calcium (bottom trace). Symbols on top of the bursts indicate: ◦ median spike, �

frequency maxima, × calcium maxima . (C) Enlarged view of the middle burst in (B).
Lines on top of the voltage trace denote time intervals used in the analysis. ∆tCa is the
time difference between the calcium maximum and the median spike for each burst. ∆tν
is the time difference between the maximum frequency and the median spike.

each burst. Whole recording correlations take into account longer time windows comprising

2-10 bursts. Both signals are low-pass filtered before computing correlations. While whole

recording correlations contain slow frequencies corresponding to the biphasic rhythm driv-

ing the leech hearts, single burst correlations only comprise fast components corresponding

to spiking activity.

Ca2+ signals were spatially averaged in the proximal portion of the primary neurite, and

temporally low-pass filtered before being analyzed. The remaining burst-to-burst observed

calcium variability is thought to reflect the variability in the burst structure, i.e. in the

profile of the instantaneous firing frequency along the burst. This idea is supported by

the single burst correlation analysis, where much higher correlation peaks where observed

between corresponding Ca2+ and V low-pass filtered signals than when they were randomly

shuffled. Furthermore, Ca2+ rising slopes lagging the corresponding local increases in firing

frequency can be detected by the naked eye in recordings shown in Figure 2.1B. When a

softer low pass filter was applied to the Ca2+ signal, almost one-to-one correspondence of

Ca2+ peaks to individual spikes could be observed.

In general, HE cells show a stronger correlation between the voltage and the calcium

dynamics, especially when single burst correlations are considered, Figure 2.2A,C. This
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Figure 2.2: Probability density for calcium-voltage correlation peaks (A,C) and correspond-
ing delays (B,D) for HE (solid line) and HN (dashed line). Top row (A,B) corresponds to
whole recording correlations, while the bottom row (C,D) to single burst correlations. Cor-
relation delays are measured in seconds.

stronger correlation coexists with a more variable correlation delay (wider curve for HE

in Figure 2.2B,D). The correlation between calcium and voltage depends upon the length

of the traces: for instance, if single bursts are taken into account, the correlation peak

occurs at a shorter delay (compare panels B and D of Figure 2.2) than what observed when

longer traces are used. We interpret this phenomenon as evidence for the interplay between

calcium and voltage on multiple time scales: in the whole recording correlation analysis

the interactions between voltage and calcium due to different cell mechanisms add together

and the net result is a delay of calcium centered around 0.5 s for HE and 1 s for HN. On

the other hand when we restrict the analysis to the bursting phase the coupling between

V and Ca2+ is implemented with a different combination of cell mechanisms, resulting in a

faster interaction.



2.3. RESULTS 21
t

∆
ν

t∆ Ca

−5 0 5 10
−4

−2

0

2

4

0 10 20 30
0

5

10

15

0 10 20 30
0

5

10

15

20
CA B

max freq

m
ax

 C
a

m
ax

 C
a

burst duration

Figure 2.3: Correlated and uncorrelated parameters in the relationship between calcium and
voltage for HE and HN neurons. (A) Time for maximum calcium, ∆tCa, is not correlated
with time of maximum spike frequency ∆tν , p > 0.01. (B) Maximum calcium value is
correlated to maximum spike frequency, p < 10−13. (C) Maximum calcium value is not
correlated with burst duration, p > 0.1. Different symbols indicate different cell types: ◦
HE, × HN. p values and correlation values are computed regardless of the cell type since
no significant difference was found between them.

The correlation functions show the more general characteristics of the time-scales in

the relation between calcium and voltage. To find which are the key parameters that best

describe the correlation between calcium and voltage, we performed a large set of statis-

tical comparisons. Figure 2.3 shows some of the most representative findings. The time

corresponding to a maximum of calcium in a burst, ∆tCa, measured from the time corre-

sponding to the median spike (see Figure 2.1C), is not correlated to the time of maximum

spike frequency, ∆tν , also measured from the median spike, Figure 2.3A. This is particu-

larly interesting in view of the fact that the maximum value of the calcium correlates with

the maximum spike frequency, Figure 2.3B. Burst duration might be thought to have an

impact on the maximum value of calcium but it does not for these spiking-bursting neurons,

Figure 2.3C. For these bursting neurons the dynamics of voltage and calcium are surely

correlated, but with wide degrees of freedom. Our analysis reveals that the interdependence

between the two variables concentrates in some subspace, while in other subspaces they are

free to behave almost independently.
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2.4 Discussion

In this chapter we showed that the interaction between calcium and voltage is bidirectional,

and results in different trajectories in each cycle. Hence, spike bursting in these neurons is

not a stereotypical behavior, but one that varies from one burst to the next. Within this

variability, some of the parameters describing voltage and calcium trajectories, and their

interaction, vary in a strongly correlated fashion, while others vary almost independently.

Theoretical work suggests that these features are not incompatible with deterministic mod-

els (Falcke et al., 2000; Varona et al., 2001). Nevertheless, stochastic phenomena embedded

in a complex phase space, corresponding to chaotic dynamics, are also compatible with our

experimental results. We expect our results to constrain future modelling of spike bursting

behavior, and help to clarify the relationship between complex, chaotic dynamics and the

possible role of stochastic phenomena in the resulting behavior.

Modelling work suggests that calcium modulation of ion channels dynamics can regulate

the timing precision of action potentials in specific regions of the burst (Baroni et al., 2005).

In accordance with this theoretical predictions, experimental work by our group shows the

presence of regions of focalized timing precision in bursting activity (Campos et al., 2007).

Future work will test the relevance of calcium for this timing precision. In this work, we did

not consider spatial patterns of activity. We expect diffusion to influence the time scales

observed. Extension of the present analysis in the time domain to the full spatiotemporal

domain will clarify this issue.

Further experiments and analysis are needed to clarify more aspects of the relationship

between calcium and voltage. So far, it has been a daunting task to obtain long and

stationary calcium imaging recordings. In fact, the toxicity of calcium-sensitive dyes limits

the recording time to few hundred seconds. Nowadays, more physiologically compliant dyes

have been developed. The long simultaneous recordings of calcium and voltage which will

be possible with this technology will allow the application of non-linear analysis tools (such

as information and causality analysis), furthering our understanding of the relationship

between voltage and calcium (Levi et al., 2010).

Recent modeling results have shown that neural signatures, i.e. cell-specific interspike

interval distributions (Szücs et al., 2003), can be part of a multicoding strategy of bursting

neurons (Latorre et al., 2006) and convey information about input stimuli received during

the hyperpolarized phase (Marin et al., 2009). In this framework, the slow bursting en-
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velope and the fast modulations of the instantaneous firing frequency within bursts carry

different, complementary information. The analysis presented in this chapter suggests that

the interaction between slow and fast dynamics at the single cell level can constitute a

dynamical basis for the generation of a variable, informationally rich intraburst structure,

while preserving the regularity of the slow wave. As we will discuss in the following chapters,

the interaction between intrinsic dynamics at different time scales is also fundamental for

the recognition of temporally specific input patterns, hence qualifying as a key ingredient

in the complex information processing performed by neuronal cells.
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Chapter 3

Subthreshold dynamics and

refractoriness shape neuronal

input-output relationships

Abstract

The difference between resonator and integrator neurons relies upon a frequency prefer-

ence for the former, while the latter monotonically increase their spiking probability with

the frequency of a periodic input. In model neurons where dynamics on multiple time

scales are present (hence ubiquitously in real neurons) the concept of frequency preference

can naturally be broadened to take into account preference towards temporally specific

n-tuples of presynaptic inputs. As we show in this chapter, single neurons with dynamics

on multiple time scales can detect specific temporal patterns. In particular, the interplay

between damped subthreshold oscillations and refractory properties results in specific tem-

poral preferences in the input-output transformation performed by an individual neuron.

Keywords: input-output neuronal preference, sparse coding, neural signatures.
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3.1 Introduction

Traditionally, model neurons have been classified on the basis of their computational prop-

erties as integrators or resonators (Izhikevich, 2006). While integrator neurons are more

likely to fire a spike when they receive high frequency inputs, resonator neurons show some

preference to spikes with a certain interspike interval (ISI), in the sense that their firing

probability is maximum when the presynaptic ISI has a certain non-zero value. This prop-

erty depends on the kind of bifurcation of the stable equilibrium corresponding to the rest

state the neuron is near to. In general, integrator neurons are close to a saddle-node bi-

furcation (whether off or on a limit cycle) while resonators are close to an Andronov-Hopf

bifurcation. In the latter case the stable focus corresponding to the rest state is surrounded

by an unstable limit cycle (subcritical Andronov-Hopf bifurcation) or by large amplitude

trajectories which will eventually lead the phase point back to the stable focus (supercrit-

ical Andronov-Hopf bifurcation). In both cases a displacement of the current phase point

from the stable focus might give rise to a small amplitude oscillation, eventually leading

the phase point back to the stable focus, or a large amplitude oscillation, corresponding to

a spike. In this chapter we focused our analysis in a simple model neuron near a super-

critical Andronov-Hopf bifurcation. If we consider the response of the neuron to a pair of

inputs (a doublet), the effect of the second input will depend upon its timing with respect

to the first, and upon the amplitude of the first input. Indeed the first input will cause

a subthreshold oscillation of the phase point, at a frequency that depends upon the am-

plitude of the oscillation, hence upon the input amplitude. The second pulse might push

the phase point to regions of the phase space corresponding to large amplitude trajectories

(i.e. spikes), or might as well push the phase point closer to the stable focus, resulting in

a dampening of the subthreshold oscillations (e.g. Fig. 7.22 in (Izhikevich, 2006)). When

more than one resonant variable is added to the model, the phase space around the stable

focus might become very complex, and the frequency of oscillation might depend not only

upon the amplitude but also upon the current phase. In addition to this, action potential

generation results in activation (inactivation) of outward (inward) currents, globally result-

ing in a strong or even complete decrease in excitability, known as neuronal refractoriness.

This scenario leads to complex input-output relationships, where single neurons might have

evolved and developed so as to respond only to certain, precisely timed sequences of inputs.

Neuronal preference in terms of temporal structure of incoming inputs has been known for

a long time (Segundo et al., 1963), nevertheless few theoretical efforts have been made for
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the identification of the minimal ionic mechanisms which can implement it.

B

A

Figure 3.1: Example of input-output preference relationship. The two input patterns are
different permutations of the same set of ISIs, but the neuron responds only to input pattern
A.

3.2 Model

We argue that the traditional notion of frequency preference can be naturally broadened

to take into account n-tuples of presynaptic inputs (Fig. 3.1). The neurocomputational

property of frequency preference is based upon a resonance ionic mechanism. For instance,

a model neuron with a K+ activation variable or a Ca2+ inactivation variable could, with

an adequate choice of the parameters, display a phase portrait close to an Andronov-Hopf

bifurcation, and hence show resonant properties. Nevertheless real neurons display several

amplifying and resonant variables acting on comparable time scales, hence it is reasonable to

hypothesize that such an interaction might give rise to complex input-output relationships.

We prove this hypothesis by injecting triplets of presynaptic spikes with different ISIs in a

model neuron, and observing whether a triplet elicited a spike or not.

We study this phenomenon in a conductance-based model of a cortical neuron published

by Gutfreund et. al. (Gutfreund et al., 1995), and in a linear model with after-spike reset

exhibiting subthreshold oscillations, known as GIF (Generalized Integrate and Fire).

3.2.1 Conductance-based model

The model by Gutfreund et. al. produces subthreshold oscillations through an interplay of a

fast and persistent Na+ current, and a slowly activating K+ current. EPSPs are modelled

as exponentially decaying conductances with a time constant τsyn = 0.2. Postsynaptic

spikes are defined as the crossing of a threshold Vthr = −10mV with positive slope of the

membrane potential variable. The model is described by the following system of differential
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equations:

Cm
dv

dt
= −(INaP + IKs + INa + IK + IL + Isyn)

dh

dt
= (h∞(v) − h)/τh(v)

dn

dt
= (n∞(v) − n)/τn(v)

dnKs

dt
= (q∞(v) − nKs)/τKs

where the persistent Na+ current INaP and the slow K+ current IKs are responsible for the

subthreshold damped oscillations, and the fast Na+ and K+ currents, INa and IK , mediate

the generation of action potentials. The expressions for the currents are given by

INa = gNam
3
∞(v)h(v − ENa)

IK = gKn4(v − EK)

INaP = gNaP p∞(v)(v − ENa)

IKs = gKsnKs(v)(v − EK)

IL = gL(v − EL)

Isyn =
∑

ts

gSyne−(t−ts)/τsynH(t − ts)

where H(t) is the Heaviside function, gx is a membrane conductance, Ex is a reverse

potential, τx is a time constant (x = Na, K, NaP , Ks, L, syn), Cm = 0.37nF is the

membrane capacitance, φ = 26.12 is a temperature factor. See Tables 3.1 and 3.2 for a

complete definition of the remaining functions and parameters.

In general, response to synaptic inputs results in a deformation of the phase space. Even

in the case of the widely used synaptic model where each presynaptic spike triggers a

synaptic conductance with fixed reversal potential which is an alpha function of time, the

time constants of rise and decay of the synaptic conductance are comparable with the time

constants governing ion channels kinetics. Hence the dynamical response of the system

cannot be qualitatively analyzed unless the system is cast into a higher dimensional state
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Table 3.1. Gating variables and parameters for the currents of the Gutfreund neuron.
Current gx,µS Ex,mV Gating Variables τx,ms
INa 19.24 55 m∞ = αm/(αm + βm)

h∞ = αh/(αh + βh) 1/(φ(αh + βh))
IK 7.4 -90 n∞ = αn/(αn + βn) 1/(φ(αn + βn))
INaP 0.037 55 p∞(v) = 1/(1 + e−(v+51)/5)
IKs 2.59 -90 q∞(v) = 1/(1 + e−(v+34)/6.5) 6
IL 0.037 -60

Table 3.2. Values for the functions α and β used in the spike generating currents INa

and IK .
α β

m αm = −0.1(v+32)

e−0.1(v+32)−1
βm = 4e−(v+57)/18

h αh = 0.07e−(v+46)/20 βh = 1
e−0.1(v+16)+1

n αn = −0.01(v+36)

e−0.1(v+36)−1
βn = 0.125e−(v+46)/80

space, which additionally complicates the understanding of the dynamics. In this case

the values chosen for these parameters correspond to a very fast kinetics if compared to

the other variables of the system, hence the synaptic conductances in this model can be

considered as instantaneous current pulses which do not affect the vector field in the state

space, but only displace the current phase point to the right along the V axis (see Fig. 7.2

in (Izhikevich, 2006)).

3.2.2 Linear model with after-spike reset

The second neuron model we consider is the Generalized Integrate and Fire (GIF) model,

described by the following equations:

dv

dt
= −αv − βw + Isyn (3.1)

dw

dt
= v − w

The model is endowed with an after-spike reset mechanism, so that when v crosses a

threshold vthr from below a spike is emitted and the membrane potential is reset to a value
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vreset, and kept there for a refractory time trefr. The system (3.1) has proven particularly

useful in studying neuronal intrinsic oscillations (Richardson et al., 2003; Izhikevich, 2001;

Schreiber et al., 2004): in a certain parameter regime, it is mathematically equivalent to

a damped linear oscillator, and thus constitutes an analytically amenable model for the

description of neuronal intrinsic oscillations, i.e., oscillations generated by intrinsic ionic

mechanisms as the activation of a resonant current or the inactivation of an amplifying

current (Hutcheon and Yarom, 2000). The canonical GIF model that we used for most of

the thesis has α = 1 and β = 4, resulting in complex conjugate eigenvalues −1±2i (see the

Appendix). Given the wide frequency range of intrinsic oscillations observed in mammalian

brains, which spans at least two order of magnitude (from 0.5 Hz until 50 Hz (Hutcheon

and Yarom, 2000)), we preferred to keep this model dimensionless.

For the sake of simplicity, and for carrying out analytical calculations, we consider

Isyn =
∑

ts

Aδ(t − ts)

This approximation reduces the synaptic dynamics to an instantaneous and voltage in-

dependent shift in the voltage variable. If the considered intrinsic dynamics is slow with

respect to the synaptic dynamics, and if the membrane voltage stays in a narrow range

with respect to the distance from the synaptic reversal potential, this approximation is

reasonable. The model trajectories have been calculated with iterative formulae (see the

Appendix).

3.3 Results

3.3.1 Conductance-based model

We show that n-tuples of spikes with the same average frequency can elicit different response

patterns depending upon the precise temporal structure of the n-tuples. For visualization

purposes triplets of spikes were considered. Fig. 3.2 shows the input-output preference

relationship for increasing values of the injected current in the Gutfreund model neuron.

The neuron was set at its only stable point, and its response to triplets with different ISIs

was considered.

Each triplet of spikes (t1, t2, t3), corresponding to a pair of ISIs (t2 − t1, t3 − t2) =
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(ISI1,ISI2), is represented with a different colour depending upon the output pattern it

produced (see colorbar). In particular, we use shades of blue for input triplets that only

elicited one postsynaptic spike, shades of green for input triplets that elicited two post-

synaptic spikes, and red for input triplets that elicited three postsynaptic spikes, one in

response to each of the incoming EPSPs. Different shades of blue and green indicate differ-

ent output patterns (see colorbar). For example, light blue indicates triplets that resulted

in only one postsynaptic spike, which occurred in response to the first EPSP (between the

first and the second EPSPs); light green indicates triplets that resulted in two postsynap-

tic spike, which occurred in response to the second and third EPSP. Since more than one

postsynaptic spike can be produced in this setting, the input-output preference relation-

ship to triplets of spikes that we present here is not only shaped by the subthreshold ionic

properties of the model neuron, but also by its refractoriness.

For low synaptic efficacies, only triplets with a sufficiently short ISI1 or ISI2 can elicit a

spike, thus the neuron acts mainly as an integrator (Fig. 3.2A). Nevertheless specific values

for ISI1 can prevent the neuron from firing in response to the third spike, unless ISI2 is very

short (excitation-induced depression).

As gSyn is raised to 0.27nS (Fig. 3.2B), two new regions of preference in the (ISI1,ISI2)

plane appear: the first corresponds to a resonant ISI1 which results in a postsynaptic

spike after the second input pulse (middle blue vertical stripe); the second corresponds

to a resonant ISI2, which results in a postsynaptic spike after the third input pulse (dark

blue horizontal stripe). Note that if ISI1 is included in a certain region around 18ms, the

resonant region in ISI2 disappears and a postsynaptic spike is obtained only for very short

ISI2 (excitation-induced depression). The intersection between the horizontal and vertical

regions of preference, corresponding to a resonant ISI2 or ISI1, respectively, result in light

green regions of preference, indicating suprathreshold responses to both the second and

the third EPSPs. Note, though, that the contours of the horizontal regions of preference

(thus determined by ISI2) are modulated by ISI1, reflecting a fine history-dependence of the

input-output dynamics. In particular, the ISI2 coordinate in the light green region depends

on whether the first postsynaptic spike was produced by a short ISI1 or a resonant ISI1,

being slightly shorter in the former case.

Figure 3.2C shows the input-output preference relationships for gSyn = 0.28nS, a value

of the synaptic conductance which results in a postsynaptic spike in response to a single

EPSP. In this case, the neuron entrains 1:1 to the presynaptic input pattern if it is com-
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posed of ISIs close to its intrinsic period of oscillation (∼ 40ms), or sufficiently long to

bypass any refractory effect (ISI>30 ms), or inhibitory effects due to anti-resonant inter-

vals (52ms>ISI>68ms). For input ISIs which interact with neuronal dynamics, a complex

description of input-output mapping emerges, where EPSPs might or might not be trans-

mitted depending upon the previous input-output history. In particular, certain EPSPs are

blocked (they do not result in a postsynaptic spike) depending upon a complex interplay

between refractoriness and subthreshold damped oscillations, which result in excitation-

induced inhibition for certain input timing.

For even higher values of gSyn, the region of 1:1 entrainment broadens in the (ISI1,ISI2)

plane. For high enough values of the synaptic efficacy, inhibitory effects due to anti-resonant

input intervals are overcome and 1:1 entrainment is lost only for short ISI1 or ISI2, because

of refractoriness.

3.3.2 Linear model with after-spike reset

Similar results can be obtained with the GIF model. In this model, the effects of refractori-

ness can be reproduced by an appropriate choice for Vreset and tthr. In Fig. 3.3, we show

the same kind of input-output preference relationships as in Fig. 3.2, for different values of

the after-spike parameters Vreset and tthr. Some of the features observed in the Gutfreund

model are recovered in this simple, linear model with after-spike reset. In particular, we can

observe the neuron preference for short ISIs only when the synaptic efficacy is weak, and the

appearance of horizontal (vertical) stripes of preference corresponding to a resonant ISI2

(ISI1) when the synaptic efficacy is increased. We also observe excitation-induced inhibi-

tion when ISI1 ∼ 1.6, about half of the neuron intrinsic period π. Some history-dependent

modulation of the postsynaptic response to ISI2 is also observed, but it is more simple than

in the Gutfreund neuron due to the few time scales involved in the GIF dynamics.

In this model, the values of ISI2 which will result in a second postsynaptic spike (light

green regions) also depends on whether the first postsynaptic spike was produced by a short

ISI1 or a resonant ISI1. Contrary to the Gutfreund model, they are slightly longer in the

former case, at least for the range of parameters we considered. The refractory parameters

Vreset and tthr affect the regions in the (ISI1,ISI2) plane which correspond to two or more

postsynaptic spikes, and can be tuned in order to recover the input-output preference

relationships of living neurons or more realistic neuron models. In particular, if Vreset =
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Figure 3.2: Input-output preference relationship for the Gutfreund model neuron. Coloured
cells correspond to triplets of spikes that fire the neuron. Different colours correspond to
different output responses (see colorbar and main text for details). ISIs are expressed in
milliseconds. Panels A, B, C and D depict the preference relation for increasing values of
the synaptic efficiency gSyn: 0.26nS, 0.27nS, 0.28nS, 0.29nS respectively.

tthr = 0, the neuron doesn’t show refractory properties in response to suprathreshold inputs

and will entrain 1:1 to arbitrarily high input frequencies.

3.4 Discussion

This chapter shows how complex input-output relationships can arise even in a very simple

neuronal model: a triplet of inputs with a certain average frequency can elicit a postsy-

naptic spike, or not, depending upon the precise temporal structure of the triplet, as well

as upon the amplitude of each of the inputs. This input-output preference relationship

depends upon the parameters of the model neuron. Hence in the context of a network

of such neurons with a certain distribution of parameters, a presynaptic spike train can
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elicit spikes in a different postsynaptic cell at different times (Izhikevich et al., 2003a), thus

translating a temporal code into a spatiotemporal or purely spatial code. This observation

is highly relevant in the context of large networks describing different layers of information

processing. In the context of signal propagation, for instance, a large scale network of

model neurons with different subthreshold dynamics might display signal propagation to

one or another region of the network depending on the temporal structure of the external

signal, or could convey different information to different regions. Recent modeling results

have shown that neural signatures, i.e. cell-specific interspike interval distributions, can

be part of a multicoding strategy of bursting neurons (Latorre et al., 2006). The model

presented in this chapter can distinctively react as a reader of these neural signatures.

This study focuses on intrinsic neuronal dynamics and neglects the realistic dynamics

of synaptic transmission. Since the frequency of subthreshold oscillations depends upon

oscillation amplitude, the input-output temporal preference relationship outlined above is

expected to change when short term plasticity is added to the synapses. Synaptic con-

ductances modeled as instantaneous current pulses do not alter the phase portrait of the

system but only shift the current phase point to the right along the V axis; obviously the

inclusion of more realistic synaptic dynamics, with time constants comparable to ion chan-

nels kinetics, would lead to more complicated input-output relationships. Furthermore, in

the GIF neuron the dynamics of after-spike refractoriness and subthreshold oscillations do

not interact in a realistic fashion. In a real cell, after-spike effects are expected to affect

subthreshold dynamics in a complex way, which is shaped by the spatial distribution of

fast Na+ and K+ channels, underlying the generation of action potentials, and the slower

channels mediating INaP and IKs which are responsible for slow subthreshold oscillations.

These issues will be addressed in spatially extended models and through experimental

work. However we proved that a simple, linear neuron with subthreshold damped oscil-

lations and after-spike reset has the computational capabilities for implementing the well

known noncommutative summation observed experimentally (Segundo et al., 1963).

Many neural systems encode sensory information using a small number of simulta-

Figure 3.3 (facing page): Input-output preference relationship for the GIF model neuron.
Color code as in 3.2. ISIs are expressed in arbitrary units. Different columns represent
model neurons with different refractory properties. Efficacies of EPSPs increase along
rows.
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neously active neurons. In fact many areas of the brain are surprisingly very sparsely

active (Shoham et al., 2006). One of the proposed explanations to silent neural systems is

the presence of sparse stimulus selectivities, i.e. smart neurons that only respond to very

specific stimuli (Olshausen and Field, 2004). In this chapter we have explained a simple

dynamical mechanism for these preferred input-output relationships.

3.5 Appendix

3.5.1 Integration of the GIF model

The differential equations describing the GIF model can be solved analytically given the

initial conditions of the dynamical variables. In the absence of synaptic input (Isyn = 0),

the subthreshold dynamics (3.1) has as a general solution

~s(t) = e−µt(c1e
iωt~u1 + c2e

−iωt~u2) (3.2)

where µ = α+1
2

and ω =

√
4β−(1−α)2

2
. The parameter µ determines the membrane time

constant, while the parameter ω is the oscillation frequency (in 1/rad), related to the

intrinsic period of oscillations T = 2π
ω

. We chose to fix µ at a physiological value (µ = 1).

With this choice, ω =
√

β.

The coefficients c1 and c2 depends on the initial conditions and can be easily derived

analytically. Considering that ~u1 =

(

1 + λ1

1

)

and ~u2 =

(

1 + λ2

1

)

are eigenvectors

of the system (3.1) associated with the eigenvalues λ1 = −µ + iω and λ2 = −µ − iω,

respectively, by evaluating (3.2) at t = 0 and projecting on the v and w axis one obtains:

v0 = c1(1 + λ1) + c2(1 + λ2)

w0 = c1 + c2

where v0 and w0 are the general initial conditions for the voltage and the slow variable at

t = 0. By solving for c1 and c2 and substituting eiω = cos(ω) + i sin(ω) one obtains the

following expressions for the free evolution of the system (3.1) given the initial condition

(v0, w0):
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v(t) = e−µt

(

v0 cos(ωt) +
v0(1 − µ) − w0(1 − 2µ + µ2 + ω2)

ω
sin(ωt)

)

(3.3)

w(t) = e−µt

(

w0 cos(ωt) +
v0 − w0(1 − µ)

ω
sin(ωt)

)

Hence, if we model the EPSPs as instantaneous pulses along the v axis, it is possible to

compute analytically the response to a train of presynaptic pulses. The response of the

model neuron to a train of synaptic events at times (ts0, t
s
1, . . . , t

s
n−1) can be calculated by

iterating the following map:

• if vi−1+A < Vthr (EPSP is subthreshold), (vi, wi) are given by (3.3) with v0 = vi−1+A,

w0 = wi−1, t = ISIi

• else (EPSP is suprathreshold), (vi, wi) are given by (3.3) with v0 = Vreset, w0 =

Vreset + (wi−1 − Vreset)e
−tthr , t = ISIi − tthr

for i = 1, . . . , n− 1, where ISIi = tsi − tsi−1, A is the synaptic strength (assumed to be equal

among synaptic events), and (vi, wi) are the dynamical variables just before the arrival

of the synaptic event at time tsi . The voltage variable after the last spike of the train is

calculated as

vn = (vn−1 + A)

In all our simulations we set the initial conditions at the rest state (v0 = 0, w0 = 0).
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Abstract

In the previous chapter we showed how intrinsic neuronal properties, and in particular

subthreshold damped oscillations, result in a complex mapping between trains of input

pulses and postsynaptic spiking patterns. In particular, we showed how each input pulse

affects the neuron state, and will result in temporal windows of opportunity when the neu-

ron will be more excitable, that is, more likely to generate an action potential. The extent

and position in time of these windows depend upon the intrinsic dynamical properties of

the cell. In this chapter, we intend to explore in a systematic manner how intrinsic neu-

ronal properties in the subthreshold regime shape neuronal responsiveness as a function of

the previous input-output history. Neurons react differently to incoming stimuli depending

upon their previous history of stimulation. This property can be considered as a single-cell

substrate for transient memory, or context-dependent information processing. We propose

a formal definition of neuronal excitability as a measure of the propensity to firing in any

moment in time, linking the subthreshold history-dependent dynamics with spike genera-

tion. This definition allows the quantitative assessment of the intrinsic memory for different

single-neuron dynamics and input statistics. We illustrate the concept of history-dependent

excitability by considering two general dynamical mechanisms: the passive behavior of an

Integrate and Fire (IF) neuron, and the inductive behavior of a Generalized Integrate and

Fire (GIF) neuron with subthreshold damped oscillations. This framework allows us to

characterize the sensitivity of different model neurons to the detailed temporal structure

of incoming stimuli. While a neuron with intrinsic oscillations discriminates equally well

between input with the same or different frequency, a passive neuron discriminates better

between inputs with different frequencies. This suggests that passive neurons are better

suited to rate-based computation, while neurons with subthreshold oscillations are advan-

tageous in a temporal coding scheme. We also address the influence of intrinsic properties

in single-cell processing as a function of input statistics, and show that intrinsic oscillations

enhance discrimination sensitivity at high input rates. Finally, we discuss the generality of

this concept and its application to the study of information discrimination in more complex

models and living neurons.

Keywords: intrinsic neuronal dynamics, transient memory, subthreshold oscillations.
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4.1 Introduction

Since the beginnings of electrophysiology it has been observed that neuronal firing rate

in sensory systems carries information about the presented stimulus (Cooper and Adrian,

1923; De Valois et al., 1962). Still, it has long been recognized that the exact timing of

neural firing carries additional information beyond that provided by the mean firing rate.

Spike latencies among synchronously active neuronal assemblies have been demonstrated to

be highly informative in many sensory and motor systems (see, for example, (Meister et al.,

1995; deCharms and Merzenich, 1996; Wehr and Laurent, 1996; Ikegaya et al., 2004)). In

addition to electrophysiological studies based on a stimulus-response paradigm, precisely

timed spiking patterns have also been observed in the spontaneous activity of a variety of

preparations (Luczak et al., 2007; Mao et al., 2001; Cossart et al., 2003). In particular,

the observation of precise temporal structures in the activity of cultured slices (Beggs and

Plenz, 2003, 2004) suggests their emergence from a self-organized process (Beggs, 2008;

Plenz and Thiagarajan, 2007). While these results might not apply universally in the

nervous system (Oram et al., 1999; Baker and Lemon, 2000; Johnson and Buonomano,

2007), they are clearly advocating for an important role of precisely timed activity in

neural network processing.

The higher information capacity offered by precisely timed firing patterns is likely to

be exploited by the nervous system, given that neurons are sensitive to the exact timing of

applied stimuli (Ripley and Wiersma, 1953; Segundo et al., 1963), and muscle contraction

depends upon the temporal pattern of activity of its innervating motoneurons (Wiersma

and Adams, 1950; Zhurov and Brezina, 2006). Nevertheless the dynamical mechanisms

underlying the sensitivity to temporally structured inputs are not completely understood.

Many biophysical mechanisms have been proposed as feasible candidates in decoding

a temporal code. At the network level, a combination of delay lines (possibly tuned by

STDP1) and an array of coincidence detectors allow the recognition of certain sequences of

ISIs2 (Hooper, 1998; Abarbanel and Talathi, 2006). At the single-cell level, the interplay

between short-term synaptic dynamics and intrinsic neuronal oscillations results in selec-

tive transmission of input bursts with a frequency content that matches the synaptic and

intrinsic filtering properties (Izhikevich et al., 2003b).

1Spike Timing-Dependent Plasticity
2Inter Spike Intervals
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When dealing with temporally selective neuronal mechanisms, most attention has been

drawn on the role of short-term synaptic dynamics (Thomson and Deuchars, 1994; Tsodyks

and Markram, 1997; Abbott et al., 1997), based mostly upon mechanisms of vesicle deple-

tion and replenishment which in turn depend upon several pre and post synaptic factors (for

reviews see (Zucker and Regehr, 2002; Kavalali and Ege, 2007)). In particular, it has been

shown how the random but not independent synaptic transmission between subsequent

synaptic event conveys information (in the formal sense of uncertainty reduction) about

the timing of previous presynaptic spikes (Fuhrmann et al., 2002; Kleppe and Robinson,

2006).

The present study focuses on the other side of the engram (Zhang and Linden, 2003),

that is, on the history-dependent processing capabilities offered by intrinsic neuronal dy-

namics. These include ion channels activation - inactivation kinetics, intracellular second

messenger processes involving calcium up-take and release from intracellular stores, and in

general any non-synaptic neuronal process that could possibly alter the cell’s excitability

or input-output mapping.

The last decades have seen a renewed interest in intrinsic neuronal properties, and

in particular in intrinsic oscillations (Llinas, 1988; Hutcheon and Yarom, 2000). Most of

this interest has been motivated by the interplay between intrinsic properties and synaptic

connectivity in the generation of network oscillations, a widespread phenomenon in the

nervous system which has been correlated with several physiological and cognitive pro-

cesses (Buzsaki, 2006). A more theoretical line of research has focused on intrinsic oscilla-

tions as a neuronal band-pass filtering mechanism (Richardson et al., 2003; Schreiber et al.,

2004), although most of these studies focused on a rate-coding perspective and missed the

potentially important role of intrinsic oscillations in a temporal coding scheme.

Indeed, intrinsic oscillations shape the input-output relationship of single neurons (Ba-

roni and Varona, 2007). For example, a certain neuron will respond to a train of synaptic

events in a way that depends upon the precise temporal structure of the input train and

upon the neuron’s intrinsic properties. This study investigates more deeply into the re-

lationship between intrinsic single-cell properties (in particular, intrinsic oscillations) and

the encoding - decoding of a temporal code.

In any moment in time, a neuron carries information about its history of stimula-

tion through its dynamical variables. In particular, the history-dependence of ion channel
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dynamics has long been recognized as a single-cell substrate for transient memory (Tur-

rigiano et al., 1996; Marder et al., 1996; Egorov et al., 2002; Nayak and Sikdar, 2007;

Winograd et al., 2008). Certain specific ionic currents have been considered as molecular

basis for single-cell memory, due to their slow dynamics of activation or inactivation, or

the complex temporal profile of their responses (Nayak and Sikdar, 2007; Turrigiano et al.,

1996; Winograd et al., 2008). The interplay between calcium influx (through synaptic and

voltage-gated channels) and its diffusion and exchange through intracellular stores has also

been suggested as a candidate mechanisms for single-cell memory (Loewenstein and Som-

polinsky, 2003; Teramae and Fukai, 2005). The positive feedback required for persistent

activity can also be provided by a slow excitatory synapse of a neuron onto itself, i.e. an

autapse (Seung et al., 2000). Nevertheless, the context-dependent computational capabil-

ities of neurons might be better understood when all the intrinsic neuronal processes that

influence its excitability are taken into account, and represented in a dynamical system

framework. In the case of a biological neuron, the dynamical processes involved are very

diverse in nature and span several time scales, from few milliseconds in the case of fast

ion channels’ activation-inactivation kinetics, until days or months in the case of neurite

growth and protein synthesis. Computational models are extremely useful in taming the

enormous complexity arising from such a picture, allowing the theoretical measurement of

the discrimination capabilities of simple dynamical mechanisms which are general to several

neuron classes.

In this chapter we present a formal measure of the neuron’s state directly related to spike

generation, namely the intrinsic excitability, which lumps the different history-dependent

dynamical variables of an arbitrary model neuron to a single, scalar value that describes

its propensity to firing in any moment in time. This dynamical mnemonic trace allows

the interpretation of newly incoming information in the context of the previously received

inputs, and hence the discrimination of information at the single-cell level. The comparison

between the excitability trajectories arising from different input histories quantifies the

intrinsic discrimination capabilities of single neurons, and their dependence upon the input

statistics and the neuronal dynamics.

Since different physiological processes can yield similar dynamical effects, it is useful

to consider general, dynamical neuronal models which abstract from the specific molecular

mechanisms involved. In particular, we illustrate the concept of intrinsic excitability with

two very general dynamical mechanisms: the RC behavior of a passive membrane, captured
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by a simple Integrate and Fire model, and the inductive RLC behavior of a neuron with a

resonant current, described in its simplest (linear) form by a Generalized Integrate and Fire

model (see Methods). These models are based on analogies with linear electric circuits, a

formalism with a long and successful history in the phenomenological characterization of

neuronal dynamics (for some early examples, see (Lapicque, 1907; Hill, 1936; Cole, 1932,

1941)).

Before particularizing our analysis to these two simple cases, in the next section we will

present a general mathematical framework that allows the quantitative assessment of the

history-dependent modulation of intrinsic excitability for arbitrary neuron models.

4.1.1 History-dependent excitability

In the most general mathematical framework a neuron is described as a dynamical system:

d~x

dt
= ~f(~x, Isyn)

where Isyn is the sum of all synaptic currents flowing through the neuron’s membrane. Every

synaptic event will move the current phase point according to the intrinsic and synaptic

dynamics, while in between synaptic events, the phase point will evolve according to the

intrinsic dynamics only. Since the outcome of a synaptic event depends upon the intrinsic

state vector ~x(tsi ) at the time of the event, and ~x(tsi ) depends upon the state at the time

of the previous synaptic event ~x(tsi−1) and the time between events tsi − tsi−1, the neuron

acts as a dynamic encoder of its stimulus history. That is, the neuron state vector will

reflect the previous history of stimulation, and will itself determine the following evolution

of the neuron as a dynamical system. This property is particularly suited for the encoding

of precisely timed stimuli. In this chapter we analyze how the specific form of the system

vector field ~f will determine the computational characteristics of the dynamic encoding

mechanism, such as its efficiency in the presence of noise and its sensitivity to particular

features of the input.

The neuron’s state vector ~x encodes stimulus history in an implicit way: the actual

values of the dynamical variables are unknown, both to the experimenter and to other neu-

rons in the network. Their values can only be indirectly inferred through their influence

on membrane potential or intracellular calcium (the main physiological quantities directly
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measurable though standard experimental techniques) and, in particular, on spiking activ-

ity.

On the other hand the state vector ~x, containing all relevant information about the

neuron’s dynamic state, directly affects the way the neuron responds to incoming stimuli.

From the simplest point of view, input-output history modulates the neuron’s excitability,

or propensity to firing, as a function of time. More generally, input-output history can

affect single-cell processing by varying the output repertoire a neuron can exhibit, for in-

stance by augmenting the probability of short burst emission versus single spike emission

in a certain time window. This phenomenon allows for history-dependent information pro-

cessing: the neuronal input-output transformation is not a static map, but it is changing in

time in a history-dependent manner. The influence of the past history on the current input-

output transformation can be considered as a cell-based substrate for contextualization of

information in the nervous system, or short-term memory (Marder et al., 1996).

Depending on the local context that the neuron ’sees’ through the synapses impinging

on it in the immediate past, it will differently treat the information it receives. As we

will show in this chapter, this context-dependent processing is a very general property of

dynamical systems and it can be presented in its simplest form with linear models such as

the IF and GIF neuron models.

The state vector contains all relevant information about the dynamic state of the neuron,

hence it can be used to predict the neuron’s response to an arbitrary stimulus. Neverthe-

less, it is not easy to deal with directly. In a model neuron the state vector’s dimensionality

can be high, and obviously it depends upon the specific model considered, making the com-

parison between different neuron models difficult and somewhat arbitrary. In a real neuron

the state vector depends upon the description level one wishes to adopt, and even when

just a few channels’ activation-inactivation kinetics are taken into account, it is impossible

to measure experimentally. Hence, it is useful to introduce a lumped, functional and phys-

iologically motivated measure of the neuron’s state, directly related to spike generation.

To this end we propose a formal definition of neuronal excitability at any moment in time

as the minimal synaptic strength gthr of an excitatory synaptic event that can make the

neuron fire. This measure is obviously dependent upon the synaptic kinetics considered. In

this work our focus is on intrinsic neuronal dynamics, hence we decided to adopt the sim-

pler synaptic description: EPSPs3 will be modelled as instantaneous, voltage-independent

3Excitatory Post Synaptic Potentials
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shifts in the v variable, representing the membrane potential. Numerical simulations with

more realistic models, i.e. conductance-based model neurons with exponentially decaying

synaptic conductances, yield similar results. As we show in this chapter, the time evolution

of neuronal excitability gthr(t) carries information not only about the intrinsic properties

of the cell, but also about its input-output history.

4.2 Methods

4.2.1 Neuron models

The first neuron model we consider is the integrate and fire (IF), described by a single

linear differential equation:

dv

dt
= −µv + Isyn (4.1)

The model is endowed with an after-spike reset mechanism, so that when v crosses a

threshold vthr from below a spike is emitted and the membrane potential is reset to a value

vreset, and kept there for a refractory time trefr. Since this work focuses on subthreshold

dynamics, the spike generation mechanisms is disregarded. In its normal form (where time

has been properly scaled) this model is described by a single parameter µ, which is the rate

of the exponential decay to the rest state in the absence of stimulation (Isyn = 0). The

canonical IF model that we used for most of the chapter has a decay rate µ = 1, but this

parameter has been varied in the simulations represented in Figs. 4.3D,F; 4.4; 4.6B,E.

Another simple model that linearly describes the subthreshold dynamics, but with the

addition of another dynamical variable w, is the Generalized Integrate and Fire (GIF)

model, introduced in the previous chapter. The canonical GIF model that we used for most

of the chapter has α = 1 and β = 4, resulting in complex conjugate eigenvalues −1 ± 2i,

but these parameters have been varied in the simulations represented in Figs. 4.3D-F;

4.4; 4.6A,B,E,F; 4.7. Given the wide frequency range of intrinsic oscillations observed in

mammalian brains, which spans at least two order of magnitude (from 0.5 Hz until 50

Hz (Hutcheon and Yarom, 2000)), we preferred to keep our models dimensionless.

As in the previous chapter, we considered instantaneous synapses
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Isyn =
∑

ts

Aδ(t − ts)

This approximation reduces the synaptic dynamics to an instantaneous and voltage in-

dependent shift in the voltage variable. If the considered intrinsic dynamics is slow with

respect to the synaptic dynamics, and if the membrane voltage stays in a narrow range

with respect to the distance from the synaptic reversal potential, this approximation is

reasonable. The model trajectories have been calculated with iterative formulae, as in the

previous chapter (see the Appendix therein).

4.2.2 Generation of random trains of synaptic events

In the simulations, random trains of synaptic events have been generated by concatenating

two or more ISIs generated from an exponential distribution, using the Matlab routine

“random”. For each value of the ranged parameters, 1000 different trials have been sim-

ulated, and the corresponding results have been represented in Figs. 4.6C,D and 4.7. In

each block of simulations the random number generator has been initialized with a different

seed in order to avoid spurious correlations between the random realizations in different

trials.

4.3 Results

4.3.1 Example of single-neuron discriminability in minimal mod-

els

Traditionally the detection capabilities of neurons have been assessed by observing how

their output changes as a function of their input. For example, two stimuli are considered

to be indistinguishable as long as they both result in a single postsynaptic spike, or in the

lack of it. We show that this is not necessarily the case: two different input stimuli can still

be distinguished if they bring the neuron to a different internal state, and hence change its

response properties to future stimuli.

In the case depicted in Fig. 4.1, a GIF neuron with subthreshold damped oscillations

(see Methods) receives one of two different input trains, comprising the same constituent

ISIs, one long ISIl and one short ISIs (Fig. 4.1A). Both input trains evoke subthreshold
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responses only, hence no differential information about the input history is delivered to

other cells in the network. Importantly though, the information about which of the two

input trains has been received is contained in the state variables immediately after the

last spike of the train, and can be extracted from the subsequent free evolution of the

state vector. The voltage v variable after the last spike of the train is almost identical for

both inputs, because the internal variable w counteracts voltage changes, while in the IF

neuron the input with increasing frequency evokes a greater depolarization (Fig. 4.1C).

Nevertheless, the different histories result in different values of w, which in turn result in

a history-dependent free evolution to the rest state (Fig. 4.1D): the v variable decreases

smoothly and with a shallow, late sag after the (ISIs,ISIl) triplet, while it decreases more

abruptly and with a deeper, earlier sag after the (ISIl,ISIs) triplet. The black line in

Fig. 4.1A shows the correspondent evolution of the instantaneous intrinsic discriminability

(a measure of the difference in the excitability trajectories, see next section for a formal

definition), which increases and then decreases, showing a maximum at a certain time after

the last input spike.

This history-dependent free evolution of the model neuron allows for spike-mediated

discrimination between the two different histories by a synaptic event with proper time and

amplitude: a presynaptic spike with a time and an amplitude indicated by the black filled

diamond in Fig. 4.1A, upper panel, results in a postsynaptic spike after history (ISIs,ISIl),

but only produces a subthreshold oscillation after history (ISIl,ISIs) (Fig. 4.1B). In this

example the stimulus time has been chosen at the time of the maximal instantaneous

discriminability between the two input histories, and its amplitude as the middle point

between the two excitabilities gthr at that time. However, any input that lies in the space

between the two different excitability trajectories, corresponding to the two different input

histories, can in principle (disregarding the effects of noise) discriminate between the two

cases.

If the same input trains are delivered to an IF neuron with the same membrane time

constant, they are still distinguishable but in this case the absolute difference between the

two excitability trajectories decreases exponentially after the last spike of the train (Fig.

4.1C). Conversely, in the GIF model it first increases and then decreases, resulting in an

optimal time for intrinsic discriminability.

For these linear models, we are able to derive analytical expressions for the discrim-

inability between two input histories Hi and Hj, which we will use extensively in the rest
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of the chapter.
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Figure 4.1: Illustration of the history-dependent excitability concept. Response of
the GIF (A,B,D) and IF (C) model neurons to two different input trains, composed of the
same ISIs. A: Voltage (top) and excitability (middle) trajectories arising from two different
input trains (on top of the voltage traces). The instantaneous discriminability after the
last spike of the train (black line) first increases and then decreases, resulting in an optimal
time for discrimination based on intrinsic excitability (black diamond): a presynaptic spike
with the strength and the timing indicated by the black diamond will be suprathreshold
after the red input triplet, but subthreshold after the green input triplet. B: As in A, but
with the addition of a fourth presynaptic spike with the timing and amplitude indicated
by the black diamond in A. The intrinsic discriminability is not shown. C: The same as
in A, for the IF model neuron. For a purely passive neuron, the intrinsic discriminability
is an exponentially decreasing function of time. D: Trajectories in the phase plane (v, w)
corresponding to the two input triplets in panel A. The trajectories are shown in dashed
line before the last spike of the triplet, and in solid line after it. Circles are drawn every 0.25
u.t. A rightward triangle is drawn at the time of maximal discriminability (corresponding
to the black diamond in A). Digits in A, D indicate the ordinal number of EPSPs in the
train.
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4.3.2 Instantaneous and cumulative discriminability

Living neurons in vivo typically receive a synaptic bombardment from thousands of presy-

naptic cells. It seems that the synaptic strengths of the inputs converging to a given neuron

are not exponentially distributed, but might be better described by a log-normal distribu-

tion (Song et al., 2005): this corresponds to the presence of a few, strong inputs that

emerge from a multitude of much weaker connections (Sherman and Guillery, 1998). The

last observation, along with the fact that neurons are extremely sensitive to correlations in

their inputs (Salinas and Sejnowski, 2001; Moreno et al., 2002), led us to our operational

approximation.

In this study, we consider the linearization of the neuron’s dynamics around its “work-

ing point”, determined by its intrinsic properties and by the collective balance of the weak

and asynchronous synaptic events it receives. The synaptic events will be considered as

instantaneous, voltage-independent shifts in the v variable, representing the synchronous

arrival of many weak EPSPs, or equivalently the synchronous arrival of a few strong EP-

SPs. Hence, we consider the synaptic kinetics to be much faster than the membrane time

constant, or the resonant current activation rate (in the GIF model).

This approximation allows us to calculate the neuron’s response to a train of presynaptic

events with an iterative formula, and to calculate the discriminability based on intrinsic

properties analytically (see Appendix). The discriminability between two input histories

aims at measuring the difference in the corresponding evolutions of the intrinsic excitability.

The most natural definition is then the square difference between the two excitability

trajectories. In mathematical terms, we define the instantaneous discriminability between

the input histories Hi and Hj, resulting in the phase points (vi
0, w

i
0) and (vj

0, w
j
0) at time

zero (which we set for convenience immediately after the last spike time of the input train),

as

Di,j(t) =
(

gi
thr(t) − gj

thr(t)
)2

=
(

vj(t) − vi(t)
)2

where the last equality is due to the fact that in these linear models the firing threshold

depends upon the voltage variable v only. Substituting the analytical solutions in the case

of the IF and GIF models (see the Appendix for details) one obtains:



4.3. RESULTS 51

DIF
i,j (t) =

(

vj
0 − vi

0

)2
e−2µt

DGIF
i,j (t) =

(

aeλ1t + beλ2t
)2

where µ is the leak conductance in the IF model; λ1 and λ2 are the eigenvalues of the GIF

model, and a and b are coefficients that depend upon the model parameters and upon the

difference in initial conditions ∆v0 = vj
0 − vi

0 and ∆w0 = wj
0 − wi

0.

In the case of an IF neuron the instantaneous discriminability is an exponentially de-

creasing function of time, meaning that the intrinsic memory about the previous history

will quickly vanish, and practically be lost after a few membrane time constants. In the case

of a GIF model with real eigenvalues, the picture does not differ much, with the exception

that now the exponential decay is governed by more than one time constant. In the case of

a GIF model with intrinsic oscillations, that is a GIF model with complex conjugate eigen-

values λ1,2 = −µ± iω, the instantaneous discriminability can be written more conveniently

as

DGIF
i,j (t) = e−2µt

(

a2 + b2

2
+

a2 − b2

2
cos 2ωt + ab sin 2ωt

)

In this case, the instantaneous discriminability is an exponential decreasing function of

time multiplied by a sinusoid. This means that for certain input histories Hi and Hj, the

maximal instantaneous discriminability can be achieved for times greater than zero, as in

the example shown in Fig. 4.1.

The instantaneous discriminability is a measure of the square difference between two

excitability trajectories originating from two input histories Hi and Hj in any moment in

time. Its integral in time from zero to +∞, which we call cumulative discriminability, is

a measure of the information about the discriminability between the two histories Hi and

Hj that could be gathered by observing the instantaneous discriminability for an infinite

amount of time. This measure can be geometrically interpreted as the square area between

any two excitability trajectories like those depicted in Fig. 4.1.

D∞(i, j) =

∫ ∞

0

(

gi
thr(t) − gj

thr(t)
)2

dt (4.2)
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After some analytical calculations (see Appendix for details) we get

DIF
∞ (i, j) =

(vj
0 − vi

0)
2

2µ

DGIF
∞ (i, j) = −λ1λ2(A + B)2 + (Aλ2 + Bλ1)

2

2λ1λ2(λ1 + λ2)

If λ1 and λ2 are complex conjugate we can write the last expression as

DGIF
∞ (i, j) =

a2 + b2

4µ
+

µ(a2 − b2) + 2ωab

4(µ2 + ω2)

For both models the cumulative discriminability is a quadratic function of the difference in

the state variables at time zero.

It can now be appreciated that the discriminability between two input histories Hi and

Hj depends on the one hand upon the free evolution from the difference in initial conditions

(∆v0, ∆w0), and on the other hand upon the encoding properties of the model neuron, that

is, upon how the phase point (∆v0, ∆w0) depends upon the input histories.

In our analysis we considered two different measures of the intrinsic discriminability: the

cumulative discriminability and the maximal instantaneous discriminability. We did not

find important differences between these measures, hence we present our results using the

cumulative discriminability (which we will denote simply as D) for its analytical simplicity.

4.3.3 Discriminability between pairs of input trains

If the input history to a neuron can be considered as a sum of stereotypical synaptic

potentials, discriminability between pairs of input trains can be computed analytically in a

straightforward manner for the linear models considered in this study. If input history Hi

is composed of synaptic potentials evoked at times ti1, t
i
2, ..., t

i
ni

, with ti1 ≤ ti2 ≤ ... ≤ tini
= 0

(without loss of generality we set the time reference at the last spike of the input train),

the intrinsic discriminability between Hi and Hj can be written as

D(i, j) =

∫ ∞

0

(

ni
∑

h=1

k(t − tih) −
nj
∑

h=1

k(t − tjh)

)2

dt
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where k(t) is the PSP kernel, reflecting the interplay between intrinsic and synaptic prop-

erties. Hence, the only input spikes which play a role in the intrinsic discriminability are

those that do not occur simultaneously in the input histories Hi and Hj. An instructive

example is when the two input trains are equal in the number of spikes they are made of

(ni = nj), and in the spike times of each of their constituent events, except one. In this

case, the previous expression reduces to

D(i, j) =

∫ ∞

0

(k(t − ti) − k(t − tj))
2 dt (4.3)

where we reindexed the spike times for simplicity. In this work our focus is on intrinsic

neuronal dynamics, hence we describe synaptic potentials as instantaneous shifts in the

voltage variable. In this case the PSP kernels for the IF and GIF neurons are (see Appendix

for details)

kIF (t) = Ae−µtH(t)

kGIF (t) = Ae−µt

(

cos(ωt) +
1 − µ

ω
sin(ωt)

)

H(t)

with H(t) being the Heaviside functions, ensuring causality. Substituting the above expres-

sions in (4.3) yields:

DIF (i, j) =
A2

2µ

(

eµti − eµtj
)2

(4.4)

DGIF (i, j) =
A2

4µω2 (µ2 + ω2)

((

e2tiµ + e2tjµ
) (

(−1 + µ)2 + ω2
) (

µ2 + ω2
)

−

e2tiµµ
(

(−1 + µ)2µ + (−2 + µ)ω2
)

cos(2tiω)−

e2tjµµ
(

(−1 + µ)2µ + (−2 + µ)ω2
)

cos(2tjω)−

2e(ti+tj)µ
(

−µ
(

(−1 + µ)2µ + (−2 + µ)ω2
)

cos((−ti − tj)ω)+
(

(−1 + µ)2 + ω2
) (

µ2 + ω2
)

cos((ti − tj)ω)−

µω
(

−1 + µ2 + ω2
)

sin((−ti − tj)ω)
)

+

µω
(

−1 + µ2 + ω2
) (

e2tiµ sin(2tiω) + e2tjµ sin(2tjω)
))

(4.5)



54 CHAPTER 4. TRANSIENT MEMORY IN SINGLE NEURONS

Since we are considering linear neuron models, these results also hold if the inputs are

composed of the sum of the input trains considered above, plus any term which is equal

among different input histories. This situation comprises a number of illustrative cases,

which we detail below.

Intrinsic discriminability between input pairs

Let input history Hi be composed of a pair of synaptic potentials evoked at times ti1 ≤
ti1 + ISIi = ti2 = 0, and input history Hj at times tj1 ≤ tj1 + ISIj = tj2 = 0. In this case the

intrinsic discriminability is given by expressions (4.4) and (4.5), substituting ti = −ISIi,

tj = −ISIj.

Intrinsic discriminability between input triplets with the same total duration

Let input history Hi be composed of a triplet of synaptic potentials evoked at times ti1 ≤
ti1 +ISIi1 = ti2 ≤ ti2 +ISIi2 = ti3 = 0, and input history Hj at times tj1 = tj1 ≤ tj1 +ISIj1 = tj2 ≤
tj2 + ISIj2 = tj3 = 0. In this case the intrinsic discriminability is given by expressions (4.4)

and (4.5), substituting ti = −ISIi2, tj = −ISIj2.

Intrinsic discriminability between input trains that only differ in the their sec-

ond spike time

Let input history Hi be composed of a train of synaptic potentials evoked at times ti1 ≤
ti2 ≤ ... ≤ tin = 0, and input history Hj at times tj1 = tj1 ≤ tj2 ≤ tj3 = tj3 ≤ ... ≤ tjn = 0,

with ISI
(i,j)
k = t

(i,j)
k+1 − t

(i,j)
k for k = 1, ..., n − 1. Let T be the total duration of the input

trains: T =
∑n−1

k=1 ISIik =
∑n−1

k=1 ISIjk. In this case the intrinsic discriminability is given by

expressions (4.4) and (4.5), substituting ti = −T + ISIi1, tj = −T + ISIj1:

DIF (i, j) =
A2

2µ
e−2µT

(

eµISIi1 − eµISIj1

)2
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DGIF (i, j) =
A2

4µω2 (µ2 + ω2)
e−2µT

((

e2ISIi1µ + e2ISIj1µ
)

(

(−1 + µ)2 + ω2
) (

µ2 + ω2
)

−

2e(ISIi1+ISIj1)µ
(

(

(−1 + µ)2 + ω2
) (

µ2 + ω2
)

cos((ISIi1 − ISIj1)ω)−

µ
(

(−1 + µ)2µ + (−2 + µ)ω2
)

cos((ISIi1 + ISIj1 − 2T )ω)+

µω
(

−1 + µ2 + ω2
)

sin((ISIi1 + ISIj1 − 2T )ω)
)

−

µ
(

e2ISIi1µ
(

(−1 + µ)2µ + (−2 + µ)ω2
)

cos(2(ISIi1 − T )ω)+

e2ISIj1µ
(

(−1 + µ)2µ + (−2 + µ)ω2
)

cos(2(ISIj1 − T )ω)−

ω
(

−1 + µ2 + ω2
)

(

e2ISIi1µ sin(2(ISIi1 − T )ω)+

e2ISIj1µ sin(2(ISIj1 − T )ω)
)))

Hence, in these linear models the intrinsic memory about the input ISIs received further

back in the past decreases exponentially with time.

Figure 4.2 shows expressions (4.5) and (4.4) for our canonical GIF and IF neurons (see

Methods), as functions of ISIi=−ti and ISIj=−tj. It can be seen that the discriminability

decreases for longer and more similar input ISIs in both models. While this decrease is

non-specific for the IF neuron, a more complex structure is observed in the GIF neuron.

Indeed, a local maximum is observed for the GIF model at a certain value of (ISIi,ISIj).

The position of the local maximum (ISIopt
i ,ISIopt

j ) as a function of µ and ω cannot be

obtained analytically. We performed some numerical explorations varying µ or ω, one at a

time, between 20 and 500% of their initial values, starting from a few representative points

in the (µ,ω) plane (Fig. 4.2C). Our results show that µ and ω interact in a non-trivial

way in determining the location of the local maximum in the (ISIi,ISIj) plane. In general,

increasing µ shifts the position of the maximum towards the closer axis, in a direction

which doesn’t depend much upon ω. Decreasing the intrinsic frequency ω correspondingly

shifts the maximum to lower input frequencies. This shift follows straight lines in the

(ISIi,ISIj) plane, but it bends towards the closer axis if µ is high enough. This is consistent

with the intuition that a neuron with a high effective membrane rate constant will poorly

discriminate between low-frequency inputs. In particular, ISIopt
i scales linearly with the

intrinsic period of oscillations 2π/ω with a slope smaller than one, which decreases with

increasing µ (Fig. 4.2D).

The values of the discriminability on the bisectrix ISIi=ISIj is zero, since identical input



56 CHAPTER 4. TRANSIENT MEMORY IN SINGLE NEURONS

1 2 3 4 5

1

2

3

4

5

ISI
i

IS
I j

A

1 2 3 4 5

1

2

3

4

5

ISI
i

IS
I j

 

 

0

0.2

0.4

0.6

0.8

1B

0 10 20 30
0

2

4

6

8

10

12

14

16

T=2π/ω

IS
I op

t
DDD

2

1

2 41 3 5

IS
Iop

t
j

ISIopt
i

C

µ

ω

G
IF

 IF

Figure 4.2: Intrinsic excitability discriminates between input doublets. A, B:
Intrinsic discriminability between input doublets ISIi and ISIj for the GIF (A) and IF (B)
model neurons. Intrinsic oscillations enhance discriminability for input ISIs slightly shorter
than the intrinsic period π. Local maxima of D are indicated by red circles. Dashed lines
indicate the bisectrix ISIi=ISIj, and the lines of constant mean ISI <ISI>=1 and <ISI>=2,
along which D is plotted in Fig. 4.3B. D values have been passed through the sigmoidal
function 1/(1 + exp(5(0.5 − D))) to improve visualization. C: Local maximum of D as
µ or ω are varied, one at a time, between 20 and 500% of their starting values. Shades
from yellow to red indicate decreasing values of µ, shades from green to blue indicate
decreasing values of ω. Local maxima corresponding to starting values for the parameters
are indicated with circles. Brown Circle, (µ, ω) = (0.5, 3); Red Circle, (µ, ω) = (1, 2);
Orange Circle, (µ, ω) = (2, 1). D: ISI corresponding to the local maximum of D as ω is
varied. If (ISIopt

i ,ISIopt
j ) is the position of the local maximum and ISIopt

i > ISIopt
j , ISIopt

i is

drawn with a solid line, ISIopt
j with a dashed line. Color code as in C.

trains are not distinguishable. The evaluation of the intrinsic discriminability (4.5) and

(4.4) along lines departing orthogonally from the bisectrix is especially interesting, since it

denotes the discriminability between pairs of input trains with the same total duration, as

the second-to-last spike is slightly advanced or delayed (see Fig. 4.3A).
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The evaluation of (4.5) and (4.4) along (ISIi=<ISI>+∆ISI/2,ISIj=<ISI> −∆ISI/2)

for different values of the mean ISI is plotted in Fig. 4.3B. When the average input fre-

quency is high (with respect to the frequency of intrinsic oscillations), the discriminability

increases rapidly with ∆ISI in both models, but the slope is higher for the GIF neuron

(mean ISI≤1). When the input ISIs are so short, the post-synaptic effects of subsequent

spikes add almost linearly, and the dynamic encoding mechanisms provided by the neu-

ron’s intrinsic properties play little role. In this case, the difference in discriminability is

mainly determined by the free evolution of the model neurons. In this regime, higher input

frequencies evoke stronger depolarizations, which in turn result in free evolutions of greater

amplitude and hence greater discriminability.

For input trains with frequencies close to the GIF intrinsic frequency, the discriminabil-

ity increases faster for the GIF neuron, where it reaches a plateau or local maximum (Fig.

4.3B). After this plateau, discriminability will further increase only for very short ISIs,

which corresponds to almost linear summation of the postsynaptic effects. For sufficiently

long mean ISI (mean ISI>2) and long ISI difference, the intrinsic discriminability reaches

a maximum value (independent of the mean ISI and of the ISI difference) corresponding to

the difference in initial conditions corresponding to one and two EPSPs received at rest.

Indeed, when one of the constituent ISI is greater than a few membrane time constants,

the neuron has time to relax to its rest state almost completely and hence loses all the

information about its previous stimuli.

In order to understand these observations one needs to take into account the contribu-

tions of two different effects: 1) the dynamic encoding of input history, which determines

how subsequent presynaptic spikes affect the dynamic variables of the model in a history-

dependent manner, and 2) the free evolution of the system after the last spike of the train

(see also Fig. 4.7).

Both these ingredients are represented in Fig. 4.3C, where the trajectories in the

phase plane (∆v, ∆w) as the ISI difference is varied are represented together with the

cumulative discriminability isolines, for several values of the ISI mean. We have shown

before that the intrinsic discriminability between two input histories Hi and Hj is a func-

tion of the difference in the dynamical variables after the last spike of the input train

(∆v0, ∆w0) = (vj
0 − vi

0, w
j
0 − wi

0). Hence, the dependence of (∆v0, ∆w0) upon input fre-

quency and ISI difference determines the dynamic encoding properties of the neuron. When

the average input frequency is high, ∆w changes only slightly with the ISI difference, and
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the trajectories lie close to the ∆v axis: in this regime the dynamic encoding mechanisms

play little role. The greater the ISI difference, the greater ∆v and hence the cumulative

discriminability. When the average ISI is higher (mean ISI>1.5) these trajectories acquire

a curved shape, which indicates that the dynamical encoding mechanism is giving a signif-

icant contribution by modulating the slow variable w in a history-dependent manner: first

the phase point leaves the origin in a direction that depends upon the mean ISI, and then

moves tangentially to the discriminability isolines, which is consistent with the plateau in

discriminability observed in Fig. 4.3B. It is worth noting that the plateau level does not

depend upon the mean input frequency, but only on the synaptic strength and the neu-

ron’s intrinsic properties, and arises as soon as one of the constituent ISI is around half the

intrinsic period of the model neuron.

These results suggest that the dynamical encoding mechanisms provided by intrinsic

oscillations increase the sensitivity of short-long vs. long-short ISI discrimination. To

clarify this point, we made the hypothesis that D values above a certain threshold Dthr

allow a reliable discrimination between pairs of input trains, in spite of the several non-

deterministic phenomena observed in neurons (which we do not model explicitly). Hence,

we defined the intrinsic sensitivity ∆ISIthr as the minimum ISI difference such that D ≥
Dthr. This measure assesses the sensitivity of the intrinsic excitability in discriminating

between “accelerating” and “decelerating” triplets with the same average frequency (Fig.

4.3D-F).

In the case of the IF neuron, ∆ISIthr can be calculated analytically by inverting expres-

sion (4.4):

∆ISIIF
thr =

1

µ
ln





2A2 + 2Dthre
2<ISI>µµ +

√

−4A4 + (−2A2 − 2Dthre2<ISI>µµ)2

2A2





The corresponding expression (4.5) for the GIF neuron is not invertible, hence we set Dthr

arbitrarily at 0.5 (black horizontal line in Fig. 4.3B) and calculated ∆ISIGIF
thr numerically.

For the GIF neuron, discriminability curves as a function of ∆ISI are not always monotonic,

and for specific parameter sets the discriminability curves crossed the threshold Dthr more

than once. In these cases we did not define ∆ISIthr and they appear as blank spaces in Fig.

4.3D-F.

Decreasing µ results in shorter ∆ISIthr, and hence greater sensitivity in the discrim-
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ination between different input trains (Fig. 4.3D). This is an expected result since µ is

the rate of decay of the model variables to the rest state, and determines for how long

the information about previous stimuli will be available in the excitability trajectory. The

sensitivity is better in the GIF neuron for µ smaller than a certain value, which increases

with increasing input frequency. While the sensitivity always improves with decreasing µ

in the GIF neuron, it starts worsening at a certain, unrealistically low value of µ (which

increases with increasing input frequency) in the IF neuron. Indeed, when the effective

leak µ tends to zero, the IF neuron acts as a perfect integrator, and its membrane potential

(and hence its excitability) comes to reflect solely the number of spikes received, while the

precise timing of the received spikes becomes irrelevant. In this limit, ∆ISIIF
thr tends to

infinity. In the same limit, the GIF neuron acts as an undamped oscillator, resulting in

an infinitely high cumulative discriminability as soon as the input trains differ, and hence

a vanishing small ∆ISIthr (Fig. 4.4). At high values of µ, the post-synaptic effects decay

very fast, and significant discriminability values are achieved only when one of the two ISIs

is very small. Hence, ∆ISIthr tends to the higher possible value of twice the mean ISI.

The effect of the intrinsic frequency ω is somewhat more complicated (Fig. 4.3E). For

high input frequencies, the sensitivity improves with increasing ω, because of both the

increased discriminability based on the free evolution and the greater encoding capabilities

resulting from intrinsic oscillations (see also Fig. 4.7). When the intrinsic frequency ω

exceeds a certain threshold (which increases with increasing input frequency), the profile of

the intrinsic discriminability as a function of the ISI difference becomes oscillatory even at

high input rates and can result in very low values for specific input triplets, a phenomenon

conceptually remindful of destructive interference in classical wave theory (see also Fig.

4.4). For lower input frequencies, the minimal detectable difference ∆ISIthr as a function

of ω is oscillatory: it first increases until a certain value of ω (which depends only weakly

on the input frequency), then decreases, and then tends to stabilize through oscillations

of progressively smaller amplitude and higher frequency. As soon as the input frequency

is lower than a certain threshold, the neuron with intrinsic oscillations is less sensitive

than the IF neuron for every value of ω, suggesting that intrinsic oscillations improve the

intrinsic discriminability only for input trains with frequency close to, or higher than, the

intrinsic frequency of oscillations.

Note that as we increase the membrane rate constant µ or the oscillation frequency ω,

the damping coefficient Cdamp = e−2π µ

ω (defined as the ratio between the second and the
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first peak in the free evolution of the voltage variable from an initial condition different

than rest) also varies, and consequently the oscillating character of the neuron.

In order to separate the effects due to µ, ω and to the damping coefficient Cdamp,

we performed some additional calculations keeping a constant µ
ω

ratio of 0.5, as in the

canonical GIF model. The results of this analysis are shown in Fig. 4.3F. Varying µ and ω

proportionally (thus maintaining a constant damping coefficient Cdamp) has similar effects

on the sensitivity ∆ISIthr as varying µ while keeping ω fixed: the GIF neuron exhibits

a better sensitivity (smaller ∆ISIthr) than the IF neuron for µ smaller than a certain

threshold, which increases with increasing input frequency. When maintaining a constant

damping coefficient Cdamp, though, the increase in ∆ISIthr with increasing µ is smoother

and the sensitivity curves are generally below the correspondent curves in Fig. 4.3D, where

µ was varied while keeping ω fixed. This suggests that the steep increase in ∆ISIthr with

increasing µ observed in Fig. 4.3D is also due to the decrease in the damping coefficient

Cdamp, in addition to the decrease in sensitivity resulting from a faster convergence to the

steady state.

The results exposed in this section can be directly applied to the characterization of

biological neurons, and might be used to test the physiological relevance of the phenomenon

for different cell types and in different brain areas. For instance, from standard electro-

physiological measures such as a neuron’s (complex) impedance, we could obtain estimated

values for the neuron parameters µ and ω (see for example (Schreiber et al., 2004) for a

fitting procedure). On the other hand, the variance of the membrane voltage due to ran-

dom fluctuations could be directly related to a value of Dthr, above which discriminability

values are expected to be efficiently exploitable for contextualized information processing.

Such analysis could assess the robustness of the intrinsic discriminability as a function of

the input frequency, or the amount of coherence in the presynaptic population needed to

form a signal that could be efficiently encoded through the intrinsic dynamical mechanism

described.

4.3.4 Intrinsic discriminability between random input trains

In the previous section we analyzed the input discrimination capabilities based on intrin-

sic single-cell dynamics between some particular, well defined inputs. In this section we

wish to generalize the previous analysis and characterize the intrinsic discriminability as a
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function of input statistics and intrinsic properties for random input trains. In particular

we considered input trains composed of exponentially distributed ISIs. This distribution is

particularly significant in neuroscience, since neurons in many brain regions exhibit a firing

statistics that is well fitted by an exponential distribution with a refractory period (Shadlen

and Newsome, 1998).

The average discriminability between pairs of input trains that only differ in their second

to last spike can be easily calculated by integrating (4.3) over the exponential probability

density:

E[D] =

∫ 0

−∞

∫ 0

−∞
D(i, j)rie

ritirje
rjtjdtidtj

where ri is the mean firing rate of input history Hi. Solving yields:

E[DIF ] =
A2

2µ

(

ri

2µ + ri

+
rj

2µ + rj

− 2rirj

(µ + ri)(µ + rj)

)

(4.6)

Figure 4.3 (facing page): Sensitivity of intrinsic discriminability to temporally

precise inputs. A: Input trains (left) and correspondent excitability trajectories after
the last spike of the input train (right). As the input ISI difference ∆ISI increases, the
resultant excitability trajectories diverge and the cumulative discriminability D (yellow
shaded area) increases. Note that the total duration of the input train is held constant. B:
Intrinsic discriminability D as a function of ∆ISI for the GIF (solid line) and IF (dashed
line) neurons. The general trend is an increase in D with increasing ∆ISI, but an oscillatory
component is superimposed on this trend in the GIF neuron. Shades from brown to orange
indicate increasing mean ISI (see legend). The diamond indicates the pair of ISIs used in
Fig. 4.1. The threshold of putative physiological significance Dthr is depicted as a black
horizontal line. C: Trajectories in the phase plane (∆v, ∆w) corresponding to the solid
curves in B. Lines of constant discriminability are depicted as black ellipsis. D: Minimal ISI
difference ∆ISIthr corresponding to an intrinsic discriminability above a threshold Dthr =
0.5 as a function of µ, for fixed ω = 2. Colors and line styles as in B. E: ∆ISIthr as a
function of ω, for fixed µ = 1. F: ∆ISIthr as a function of ω, scaling µ in order to maintain
a fixed µ

ω
ratio of 0.5. Black arrows in D and E indicate the default parameter set; the

correspondent curve of discriminability vs. ∆ISI is depicted in panel B. The gray arrow in
D indicates the value of µ used in Fig. 4.4.
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E[DGIF ] =
1

2
A2

(

1

µ
− 1

ri + 2µ
− 1

rj + 2µ
− (2 + ri)

2

(ri + 2µ)3 + 4(ri + 2µ)ω2
+

− (2 + rj)
2

(rj + 2µ)3 + 4(rj + 2µ)ω2
+

−r2
i

(

−1 + r2
j

)

+ (rj + µ)2 + ω2 − ri (−2µ + rj (1 + (−4 + µ)µ + ω2))

µ ((ri + µ)2 + ω2) ((rj + µ)2 + ω2)

)

(4.7)

Expressions (4.7) and (4.6) are shown in Fig. 4.5 as a function of <ISIi >=1/ri and

<ISIj >=1/rj for our canonical GIF and IF neurons (see Methods). For the GIF neuron the

average discriminability between random input doublets with the same average frequency

is almost as good as between random input doublets with different average frequencies,

and seems to depend mainly upon the frequency of the faster input. Indeed, isolines

of constant discriminability are orthogonal to the bisectrix <ISIi >=<ISIj >, and then

run parallel to the main axes (Fig. 4.5A). This behavior corresponds to sensitivity to

input ISIs rather than average rates, given that input doublets with different rates are not

better discriminated than input doublets with the same rate. Conversely, the IF neuron

shows a greater sensitivity to input rate: pairs of input doublets with the same average

rate yield lower discriminability values than pairs of input doublets with different average

rate. In fact, for a purely passive neuron, the isolines of constant discriminability are

Figure 4.4 (facing page): Intrinsic discriminability in the GIF and IF models for

slow effective membrane rate constant µ. Top panel: Cumulative discriminability as
a function of ∆ISI for input triplets of fixed duration for the GIF (solid line) and IF (dashed
line) neurons. Shades from brown to orange indicate increasing mean ISI (see legend). The
threshold of putative physiological significance Dthr is depicted as a black horizontal line.
The symbols (red diamonds and red squares) indicate the pairs of ISIs used in the lower
panels, and the resulting cumulative discriminability. Lower panels: Voltage traces of the
GIF (top) and IF (middle) neurons in response to two different input trains, composed of
the same ISIs, and the evolution of their instantaneous discriminability (bottom; black line
for the GIF model and gray line for the IF model) after the last spike of the input train.
Note the different vertical scale for the excitability in each panel. The black diamond
indicates the time of maximal instantaneous discriminability in the GIF neuron, which
correspond to the time of greater separation in the voltage trajectories resulting from the
two different input trains. Parameter set: (µ, ω) = (0.1, 2). Note that, as the membrane
rate constant µ approaches zero, the IF neuron tends to reflect only the number of spikes
received, regardless of their timing. In the same conditions, the GIF neuron will continue
to oscillate indefinitely with a phase and amplitude that depend upon the precise timing
of the input train.
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approximately parallel to the bisectrix <ISIi >=<ISIj > (Fig. 4.5B). Rate sensitivity

decays for low frequency inputs, for which the average discriminability is mainly determined

by the frequency of the faster input. In this regime the GIF and IF neurons behave similarly.
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Figure 4.5: Average discriminability between random input doublets. Discrim-
inability between input doublets with ISI extracted from an exponential distribution with
mean values ISIi and ISIj, averaged over 10000 pairs. Isolines are drawn for D values of
1, 1.4, 1.5, 1.8, 2.8. In the range of input ISIs which interact with the intrinsic neuronal
dynamics, discriminability is higher between input doublets with different frequencies than
between doublets with the same frequency in the IF neuron. This is not observed in the
GIF neuron, where the discriminability is mainly determined by the frequency of the faster
input.

Evaluation of (4.6) and (4.7) along ri = rj returns the average discriminability between

input trains extracted from the same exponential distribution, which we plot as a function

of the mean ISI in a semilog scale in Fig. 4.6A. The black line indicates the IF model,

while lighter colors refers to GIF models with increasing values of the intrinsic frequency

ω (see caption).

For both models, the discriminability first increases and then decreases, showing a max-

imum at an intermediate value of the mean ISI. For the exponential distribution, the mean

equals the standard deviation: hence spike triplets with short ISIs are poorly discrimi-

nated because they are composed of very similar ISIs. Indeed, analogous calculations using

gaussianly distributed ISIs (see Appendix) with a very narrow (and constant) standard

deviation shows a decreasing trend for increasing mean input ISI (Fig. 4.6F), indicating

that the increasing trend at high input frequencies depends upon the standard deviation
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of the input.

The discriminability for long ISIs is poor too: for such distributions most of the ISIs are

longer than the time span of intrinsic excitability, the neuron relaxes almost completely to

its rest state and the dynamic trace reflecting its previous stimuli is lost. The maximum is

achieved when the variability is great enough, yet the mean ISI is not longer than the time

span of intrinsic memory.

As the intrinsic frequency ω increases, the intrinsic discriminability increases almost lin-

early for short input ISIs, and the peak of maximal discriminability shifts to higher input

frequencies. This effect is due to two different mechanisms: on the one hand an increase in

ω allows the intervention of the dynamical encoding mechanisms at higher input frequen-

cies, and on the other hand it allows a better discriminability based on the free evolution

of the model neuron (Fig. 4.7). As noted previously, the intrinsic discriminability between

two input histories Hi and Hj is a function of the difference in the dynamical variables after

the last spike of the input train (∆v0, ∆w0) = (vj
0 − vi

0, w
j
0 −wi

0). Hence, the distribution of

(∆v0, ∆w0) points is an indicator of the dynamic encoding properties of the neuron. Figure

4.7 shows the probability densities of (∆v0, ∆w0) for different input statistics and neuron

parameters. For high frequency inputs, the dynamic encoding mechanism plays little role,

and the (∆v0, ∆w0) points accumulate along a line. As the input frequency decreases, the

input trains interact with the intrinsic oscillatory dynamics and the (∆v0, ∆w0) points dis-

tribute over a larger area in the (∆v0, ∆w0) phase space. As the input frequency decreases

further, most input pairs result in (∆v0, ∆w0) values close to the origin. Indeed, if the input

ISIs are long compared with the membrane time constant, the phase point relaxes almost

completely to the rest state in between synaptic events and the intrinsic memory about

previous inputs is lost. In this low frequency input regime, the intrinsic discriminability

decreases slightly for increasing intrinsic frequencies, but saturates at approximately ω = 1,

so that an additional increase in the intrinsic frequency does not affect discriminability (Fig.

4.6A). Note that the input mean ISI that results in the greatest spread of points in the

(∆v0, ∆w0) phase space, which corresponds to the optimal input frequency for dynamic

encoding, decreases with increasing ω. This is consistent with the shift to higher input

frequencies of the peak in the discriminability as ω is increased (Fig. 4.6A). In addition to

this, increasing ω results in a greater average discriminability for (∆v0, ∆w0) points in a

circular region centered at the origin, denoting a greater discriminability based on the free

evolution of the model neuron.
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Increasing µ results in an overall decrease of the cumulative discriminability, which

is more pronounced at low input frequencies. The discriminability peak slightly shifts

to higher input frequencies (Fig. 4.6B). As in the sensitivity analysis carried out in the

previous section, this is an expected effect since µ is the rate of decay of the model variables

to the rest state, so that greater values of µ result in faster forgetting of the previously

received stimuli. This effect is more pronounced at low input rates, because the model

neuron has time to converge almost completely to its rest state in between synaptic events.

The standard deviation of the mean discriminability values depicted in Fig. 4.6A,B is

almost equal to the mean (not shown). Indeed, a closer inspection of the distribution of dis-

criminability values (estimated numerically, see Methods) reveals that most ISI pairs yield

very small discriminability values, while a certain subset clusters around a discriminability

value that corresponds to the plateau level in Fig. 4.3B (Fig. 4.6C). This phenomenon is

exclusive to the GIF neuron and it is not observed in the IF neuron, where the distribution

shows a peak at zero and a smooth decline for higher values of the discriminability (Fig.

4.6D).

We interpret this phenomenon as a form of modulation of the intrinsic discriminability

due to intrinsic oscillations: intrinsic oscillatory properties push the discriminability values

between certain input train pairs above a certain threshold. If the threshold corresponded

to a physiological limit of intrinsic discriminability, determined by the stochastic properties

of neurons, this phenomenon would increase the sensitivity of the intrinsic discriminability

between “accelerating” and “decelerating” input trains. This is a direct consequence of the

steep rise to a plateau in the discriminability as a function of the ISI difference depicted in

Fig. 4.3B.

Note that as we increase the membrane rate constant µ or the intrinsic frequency ω, the

damping coefficient Cdamp = e−2π µ

ω (defined as the ratio between the second and the first

peak in the free evolution of the voltage variable from an initial condition different than rest)

also varies, and consequently the oscillatory character of the neuron. In order to separate

the effects due to µ, ω and to the damping coefficient Cdamp, we performed some additional

simulations keeping the damping coefficient fixed, and ranging ω and µ accordingly. The

results of this set of simulations are depicted in Fig. 4.6E, where the membrane rate

constant µ and the intrinsic frequency ω has been changed proportionally, maintaining

a constant µ
ω

ratio of 0.5. Increasing the intrinsic frequency ω and the membrane rate

constant µ in a fixed ratio induces a slight increase in discriminability for high frequency
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inputs (due to the increase in ω), but also a substantial decrease in discriminability for

low input frequencies (due to the increase in µ). Also, it shifts the peak in discriminability

to higher frequencies. The value of the peak decreases substantially when the cumulative

discriminability is considered, but when the maximal discriminability is taken into account

the decrease is minimal.

Taken together, these results can be summarized as follows: 1. Increasing the intrinsic

frequency ω increases the discriminability between high frequency inputs. This happens

because a fast w variable has time to activate in between synaptic events even at high input

rates, enabling a dynamic encoding of input histories. In addition to this a fast intrinsic

frequency increases the discriminability based on the free evolution of the neuron model.

2. Decreasing the membrane rate constant µ increases the discriminability especially for

middle and low frequency inputs, because of the widening of the integration window of

the neuron, and because the slower exponential decay of the instantaneous discriminability

results in a stronger and longer-lasting memory of the immediate past.

4.4 Discussion

Neurons are dynamical entities which act on several time scales; this endows them naturally

with a capacity for short-term memory or context-dependent processing. The history of

inputs to a neuron is dynamically encoded in its state-dependent, time-varying properties:

each synaptic event induces some modifications in the neuron dynamical state which depend

Figure 4.6 (facing page): Intrinsic discriminability as a function of input statistics

for different model neurons. A: Mean discriminability between input triplets with
exponentially distributed ISIs, as a function of the input mean ISI, for the GIF and the
IF neuron. Shades from brown to orange indicate GIF neurons with increasing values of
the intrinsic frequency ω (see legend), while the black line indicates the IF neuron. The
membrane rate constant µ was fixed at its canonical value of 1. B: The same as in A, but
µ has been varied while ω was fixed at its canonical value of 2. Shades from brown to
orange indicate increasing values of µ (see legend). GIF neurons, solid lines; IF neurons,
dashed lines. C, D: Probability densities of the discriminability between input triplets
with exponentially distributed ISIs, as a function of the input mean ISI, for the GIF (C)
and the IF (D) neuron. E: The same as in A and B, but µ and ω have been scaled
proportionally in order to maintain a fixed µ

ω
ratio of 0.5. Lighter colors indicate greater

values of µ and ω. F: The same as in A, for gaussianly distributed input ISIs. Summarizing,
increasing ω increases the discriminability at high input rates, while decreasing µ increases
the discriminability especially for middle and low frequency inputs.
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upon the previously received stimuli and their timing. In order to map intrinsic neuronal

state to a physiologically, spike-related measure, we introduced the concept of history-

dependent neuronal excitability, which we define as the minimal strength of a synaptic event

that can cause the neuron to fire. As the neuron’s dynamics unfolds in a history-dependent

manner, the time evolution of the intrinsic excitability carries information about the history

of stimulation in the immediate past, allowing for context-dependent signal processing. This

framework allows us to compare the context-dependent processing capabilities of different

neuron types.

4.4.1 History-dependent discriminability for different subthresh-

old dynamics

For the sake of illustration we considered linear models with a fixed voltage threshold for

spike generation, namely the IF and (oscillating) GIF neuron models. Their simplicity is

useful in dissecting the relative contribution of very general dynamical mechanisms (such

as passive and inductive membrane dynamics) to the emergence and properties of history-

dependent processing. The IF neuron, described by a single dynamical variable with a

single time constant, is a standard model of a passive membrane. The GIF neuron is a

natural extension of the single variable IF model which includes an additional dynamical

variable that varies linearly with voltage, and comes to represent the (linearized) net effect

of voltage gated ionic currents. Of particular interest when dealing with temporally selective

Figure 4.7 (facing page): Intrinsic discriminability is determined by the interplay

of the dynamic encoding and the free evolution. Probability distributions of the
difference in the dynamical variables immediately after the last spike of the input train
(∆v0, ∆w0) for different values of the average input ISI, which increases along the rows
(0.1, 0.2, 0.5, 1, 2, 3, 5). The isolines of the cumulative discriminability as a function of
(∆v0, ∆w0) are represented as white lines. Isolines are drawn for discriminability values
of 1, 2, 4, 8, 32 and 64, starting from the center. Probability densities are normalized
to the peak value in each plot. For high frequency inputs, the dynamic encoding mech-
anism plays little role, and the (∆v0, ∆w0) points accumulate along a line. As the input
frequency decreases, the input trains interact with the intrinsic oscillatory dynamics and
the (∆v0, ∆w0) points distribute over a larger area in the (∆v0, ∆w0) phase space. Note
that the input mean ISI that results in the greatest spread of points in the (∆v0, ∆w0)
phase space, which corresponds to the optimal input frequency for dynamic encoding, de-
creases with increasing ω. In addition to this, increasing ω results in a greater average
discriminability for (∆v0, ∆w0) points in a circular region centered at the origin, denoting
a greater discriminability based on the free evolution of the model neuron.
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dynamical mechanisms is the oscillating GIF neuron, where the effect of the slow variable

is to counteract voltage changes and the model dynamics is characterized by a pair of

complex conjugate eigenvalues, thus exhibiting damped oscillatory responses to perturbing

inputs. These simple linear models allowed the use of iterative formulae for calculating

their response to input trains, and analytic expressions for the calculation of the intrinsic

discriminability between pairs of input trains. The consequences and possible drawbacks

of using these models are discussed in detail in the section “Limitations of the current

approach”.

Both the IF and the GIF neuron exhibit history-dependent processing capabilities,

which could allow the discrimination between different input trains even when they share

the same average frequency or even the same constituent ISIs. In fact, history-dependent

responses are a general feature of any dynamical system, and can be studied conveniently

with any dynamic description of neuronal behavior (for example, through a set of differential

equations). In this case, the neuron model does not implement a static input-output

transformation, but one that is modulated by its state variables, which in turn reflect the

previous history of stimuli and responses. The GIF model, though, is particularly sensitive

to the precise timing of input stimuli, while the IF neuron discriminates better between

inputs with different average frequencies (Fig. 4.5). This suggests that passive neurons

are better suited to rate-based computation, while neurons with subthreshold oscillations

are advantageous for information processing in a temporal coding scheme. Since context-

dependent processing is observed even in these simple, linear models, we expect it to be a

general feature of neuronal computation. Furthermore, we expect these history-dependent

processing capabilities to become more complex and modulable as more realistic model

neurons are considered, and as more time scales come into play.

One of the most important differences between the IF and the oscillating GIF model

is that the intrinsic discriminability between two different input histories decreases ex-

ponentially with time for the IF neuron, while intrinsic oscillations result in an intrinsic

discriminability that is an exponentially decreasing function of time multiplied by a sinu-

soid. This means that for certain input histories and neuron parameters, the instantaneous

discriminability can reach its maximum a few u.t. after the last spike of the input train

(Fig. 4.1A). Thus, when a certain neuron “decides” to transmit or block a certain piece of

information depending upon the current context in the immediate past, intrinsic oscillations

allow the reverberation of this information a few u.t. after the last spike of the input train
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which defines the context. Conversely, in passive neurons this information exponentially

wanes.

Another important difference between oscillating and non-oscillating neurons regards

the sensitivity to small differences in the input histories. For instance, when the discrim-

inability between an accelerating and a decelerating input triplet with the same constituent

ISIs is considered, the discriminability as a function of input ISI difference grows faster in

the oscillating GIF neuron than in the purely passive IF neuron (Fig. 4.3B). Hence, if dis-

criminability differences could be exploited as soon as they exceed a certain threshold, the

oscillating GIF would exhibit an increased sensitivity in the discrimination between accel-

erating and decelerating triplets. This increase depends upon the input statistics though:

the oscillating neuron discriminates better than the correspondent passive neuron between

input triplets with frequency higher than a certain value, which decreases as the membrane

rate constant µ decreases (Fig. 4.3D). These results suggest that while a passive neuron can

provide context-dependent processing capabilities in a broad frequency range (which nev-

ertheless depends upon the membrane rate constant µ), subthreshold oscillations enhance

discriminability at high input frequencies and short ISI differences. Considering that dis-

criminability differences below a certain threshold might not be physiologically exploitable

for context-dependent processing, subthreshold oscillations increase the sensitivity between

different input trains as a function of the difference between their constituent ISIs.

Finally, the theoretical framework provided by the neuronal excitability concept allowed

the assessment of the temporal extension of the intrinsic memory (section 4.3.3). As the

neuron receives successive EPSPs in a train, each EPSP drives the neuron’s dynamical vari-

ables so that they come to reflect mainly the last input ISI, and the relative contribution

of previous ISIs to the intrinsic excitability gradually wanes. In these linear models the

intrinsic discriminability of the first and second ISIs in a train decreases exponentially with

the train length, and the rate of decay is not influenced by intrinsic oscillations. The expo-

nential forgetting is a consequence of the small number of time scales interacting in these

simple linear models (one for the IF, two for the GIF neuron). It would not be surprising if

a subthreshold dynamics with multiple time scales might lead to a more gradual forgetting,

for instance a power-law forgetting, as it is observed in multiple time scale synaptic mod-

els (Fusi et al., 2005). Indeed, a neuron model with a multiple time-scale current efficiently

encodes input history over several time-scales (Gilboa et al., 2005). Power-law forgetting

curves could also arise from the interaction among many heterogeneous linear elements
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with exponentially decaying individual traces (Anderson, 2001; Sikström, 2002).

Computer simulations allow the assessment of history-dependent excitability for arbi-

trary neuron models, and with arbitrary accuracy. In the absence of an analytical descrip-

tion for the excitability, it can be computed numerically by generating, in any moment in

time, multiple branches of a given simulation, corresponding to different values of the con-

ductance of an applied synaptic event. This technique allows the numerical measurement of

the intrinsic excitability, defined as the minimal conductance of a synaptic event capable of

generating a spike, in a certain instant. Iterating this procedure over successive time steps

allows the reconstruction of the excitability trajectory with arbitrary temporal resolution.

The measurement of the intrinsic excitability in living cells is constrained by the stability

of the cell’s properties, which will inevitably posit some limit upon the achievable resolu-

tion. Nevertheless, we believe that the experimental confirmation of the ideas exposed in

this work is possible. In particular, an optimized dynamic clamp protocol (Prinz et al.,

2004a) can be established, which could be used to probe the intrinsic discriminability as

a function of input statistics, or simulated network state (Fellous et al., 2003), with the

minimum number of trials. These experiments will further our understanding of the rela-

tionships between single-cell properties, network state, and the temporal discriminability

properties of single neurons. If the neuron considered exhibits chaotic dynamics in the

subthreshold regime, the integral which defines the cumulative discriminability (4.2) might

not converge. In this case, the memory about the previously received inputs, intended as

the input-specific perturbation of the neuron’s trajectory, persists for an infinite amount

of time. This result is consistent with our interpretation of intrinsic discriminability as a

measure of the amplitude and temporal extension of the transient mnemonic trace.

4.4.2 Limitations of the current approach

Even if the computational mechanisms outlined in this work are general and apply to both

living and model neurons, and might be relevant even to non-neural systems with history-

dependent dynamics (Wolf et al., 2008), the detailed analysis were carried out with linear

models with one (in the case of the IF neuron) or two (for the GIF neuron) time scales.

These models arise from a linearized approximation around the stable state, and are useful

to describe the subthreshold response to weak inputs. Still, they might not be adequate

to study neuronal networks that can operate in different regimes, or that exhibit local

or global transitions between up and down states (Stern et al., 1997; Lampl et al., 1999;
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Cossart et al., 2003). For instance, when a real neuron (or a non-linear neuron model)

is clamped to different holding voltages with a proper injected DC current, the jacobian

matrix resulting from linearization around this new stable state is in general different from

that obtained at equilibrium and in the absence of external currents. This implies that

its resonant and passive properties will strongly depend upon the voltage the neuron is

held at, or, in more physiological conditions, on the state of the subset of the circuit

impinging on it (Destexhe et al., 2003). We predict that the computational consequences

of history-dependent intrinsic excitability could be especially relevant in the down state,

where the effective membrane time constant is slow and the membrane potential is far from

threshold. In particular, we can speculate that the proposed mechanisms might contribute

to the selection of the subset of neurons which will take part in the up state, depending

upon the present context.

Another simplification adopted is the spike generation mechanism, implemented as a

fixed voltage threshold in the IF and GIF models. It is possible that in certain conditions

this simplification might provide a biased estimate of the excitability (which depends on

both the synaptic dynamics and the spike generation mechanism). For instance, the inter-

play between the spike generation mechanism and the synaptic filtering properties can af-

fect single-neuron processing, especially at high input rates (Fourcaud-Trocmé et al., 2003).

Moreover, neurons that display intrinsic oscillations are likely to be dynamically close to

an Andronov-Hopf bifurcation, hence their firing threshold might be better described by a

curved manifold rather than by a fixed voltage threshold. This issue will be addressed in

future work, where the influence of the spike generation mechanisms and its interplay with

synaptic kinetics will be assessed by using computational models of increasing realism.

In this work we have assessed the influence of subthreshold damped oscillations aris-

ing from intrinsic neuronal dynamics upon information discrimination. In several brain

areas and functional conditions sustained oscillations of the membrane potential have

been observed. These oscillations are thought to arise mainly through network mecha-

nisms (Buzsaki, 2006), even if intrinsic oscillatory dynamics at the single cell level can

also play a role (Llinas, 1988). Since membrane oscillations arising from network mech-

anisms are the result of external oscillatory input currents, they do not affect intrinsic

discriminability in the linear subthreshold approximation considered here (see Section 2.3).

Sustained subthreshold oscillations can also arise from intrinsic mechanisms in the presence

of a subthreshold limit cycle or strange attractor. In this case intrinsic discriminability is
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expected to depend upon the state vector at the time of each applied synaptic potential,

and its characterization can be accomplished through numerical analysis.

In this chapter we considered an idealized scenario in which the neuron sits at its stable

point, receives a train of instantaneous EPSPs with constant amplitude, and it is then free

to evolve according to its intrinsic dynamics alone. The adoption of linear models guaran-

tees that the presented results also hold if the input histories include fluctuating currents

(”frozen noise”), as long as they are equal among different input histories. Furthermore,

intrinsic discriminability does not depend upon the neuron state at the moment of input

arrival in linear models. Nevertheless, it is not clear whether intrinsic discriminability could

still serve as a reliable indicator of the current context in a complex, non-linear neuron as the

input histories include unknown time-varying components. From a dynamical perspective,

the consistent encoding of incoming information could still be achieved if the neuron state

is driven to a restricted portion of its state space before receiving its temporally-structured

inputs. This task could be accomplished by network oscillations (Buzsaki, 2006; Schaefer

et al., 2006): periodic inhibition could format the continuous stream of incoming synaptic

events in blocks of fixed temporal duration, by driving the neuron to a restricted portion

of its state space at each peak of the total inhibitory drive (Li et al., 2006). This periodic

“reset” would allow the consistent contextualization of the EPSPs on a cycle-by-cycle basis.

Periodic excitation could play a similar role. For networks operating in an asynchronous,

irregular firing regime, results from random dynamical system theory (Arnold, 2003) re-

veal that in certain conditions a neuron injected with a pseudo-random stimulus will soon

forget its initial state and converge to a stochastic, time-varying attractor (Tateno and Pak-

daman, 2004; Pakdaman, 2002). Hence, temporally structured inputs time-locked to the

stochastic attractor might be consistently encoded through the proposed mechanism even

in non-linear neurons. In this case, the transient memory trace induced by the external

stimulus would gradually wane as the neuron trajectory converges to the stochastic attrac-

tor corresponding to a given noise realization. Nevertheless, more work is needed in the

field in order to clarify the interplay between sensitivity and reliability in neuronal network

dynamics (Legenstein and Maass, 2007; van Vreeswijk and Sompolinsky, 1996; Izhikevich

and Edelman, 2008).

One last remark regards the definition of neuronal excitability as the minimal excitatory

synaptic strength capable of firing the neuron. In the translation from the state vector to

a scalar, spike-related measure of the neuron’s propensity to firing, we defined neuronal
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excitability as the minimal excitatory synaptic strength capable of firing the neuron. While

such a translation is useful for the comparison between different neuron types, the exact

definition we propose might sound arbitrary. For instance, neurons receiving an intense

barrage of EPSPs and IPSPs might fire mostly because of a reduction in the total inhibitory

conductance, rather than because of an increment in the total excitatory drive (Rudolph

et al., 2007). A generalization of the intrinsic excitability that takes into account post-

inhibitory rebound spiking and more general threshold manifolds will be necessary to gain

insight into this issue. While the exact definition of intrinsic excitability is somewhat

arbitrary, the general concept presented is powerful enough to foster the study of single-

neuron discrimination properties, which has been largely disregarded in the literature.

4.4.3 Consequences at the network level

The presence of an intrinsic memory in each processing unit is likely to have profound

consequences at the network level, and to foster the emergence of complex functions in

biological circuits. It is now widely accepted that network function is not entirely spec-

ified by the network connectivity, but depends upon its neuromodulatory state, and its

history of activity and afferent inputs (see, for example, (Saideman et al., 2007; Proekt

et al., 2004; Fellous et al., 2003), reviewed in (Nadim et al., 2008)). Sometimes the same

network can produce the same output in different network states, which are only revealed

if specific electrophysiological or pharmacological manipulations are applied to the net-

work (Saideman et al., 2007; Kintos et al., 2008). On the other hand, the state of the

network shapes the input-output transformation performed by its constituent neurons, by

setting the statistics of the synaptic currents that a representative neuron in the network

receives (Fellous et al., 2003; Destexhe et al., 2003; Fontanini and Katz, 2008; Steriade,

2004). We believe that the presence of context-dependent processing capabilities at the

single-cell level, or even down to the dendritic domain level, coupled with the domain-

specific interneuron innervation (Klausberger and Somogyi, 2008), is a key feature in the

emergence of multifunctionality in neuronal networks.

Traditionally, neuronal network computations have been interpreted within a static

framework. For instance, in associative neural networks, the synaptic weights determine

the set of attractors toward which any initial network state will evolve, after a transient

which is thought to bear no relevant information (Hopfield, 1982). This framework has

been experimentally reinforced through working memory studies which revealed how clue-
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specific subset of neurons remained continuously active during the delay period in delayed

match-to-sample tasks (see (Funahashi and Takeda, 2002; Wang, 2001) for review). More

refined experimental paradigms which separated the clue and the target both in time and

space revealed a more dynamical network processing: individual neurons can shift their

tuning from a purely stimulus-driven sensitivity to the encoding of prospective actions,

during the course of the delay period or over the experimental session (Quintana and

Fuster, 1992, 1999; Rainer et al., 1999; Takeda and Funahashi, 2002; Baeg et al., 2003).

These experiments have shown that working memory cannot be clearly disentangled from

perception, expectation, prediction, and other cognitive computations, since they rely upon

largely overlapping neuronal networks. Instead, it seems that transient dynamics in the

brain underlie the joint representation of memory clues and what the brain does with them

(see also (Scheich et al., 2005)).

In the last few years new theoretical paradigms have been proposed, which are better

suited to the interpretation of transient and dynamical computation in neuronal networks

(reviewed in (Buonomano and Maass, 2009; Rabinovich et al., 2008, 2006; Durstewitz et al.,

2008; Destexhe and Contreras, 2006; Tsuda, 2001)). In particular, some authors have

proposed that the variety of time scales involved in neuronal network dynamics, and their

distributed nature among many constituent neurons and synapses, form a general purpose

computing substrate from which the useful information can be extracted at any given time

by properly trained read-out neurons (Maass et al., 2002; Buonomano, 2000; Karmarkar and

Buonomano, 2007). In these models (commonly referred to as “state-dependent networks”

or “liquid state machines”) the distributed synaptic dynamics encodes input history in

an analogous way as we discussed in this chapter for a single neuron: each input to the

network will have an effect that depends upon the previous network history. In contrast to

the linear, few dimensional single-cell models considered in this work, liquid state machines

retain some information about past stimuli for periods of time that are much longer than

the slower time scale in the system. This behavior is due to their lack of attractors and

“edge of chaos” dynamics (Bertschinger and Natschläger, 2004), and to the reverberation

of activity through positive feedback. These characteristics make them exquisitely sensitive

to small perturbations, whose contributions linger for a long time in the network dynamics.

We believe that the contributions of this work to the theory of state-dependent net-

works are twofold. On the one hand, the complex dynamical entities in these models are

the synaptic connections, while the intrinsic neuronal dynamics is commonly reduced to a
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purely passive description. We believe that intrinsic neuronal processes also play a part in

determining the complex dynamics of neural microcircuits: as we showed in this chapter,

the intrinsic properties determine the evolution of neuronal excitability as a function of the

previous history, and will eventually determine whether future stimuli will result in a post

synaptic spike or not. On the other hand, when the network state is considered and related

to network performance, only the voltage variable of each neuron and the strength of each

synapse are taken into account, while internal variables are disregarded (Karmarkar and

Buonomano, 2007). This chapter shows that the information contained in single-neuron

dynamics is not only that which is transmitted to other neurons in the network through

spike-mediated synaptic transmission, but also includes the intrinsic subthreshold dynamics

which affects the way a neuron responds to incoming stimuli. Hence, an assessment of their

information processing capabilities should take into account all the dynamical variables of

the model (synaptic and intrinsic), this being the only level of description that unam-

biguously defines the microcircuit high-dimensional input-output mapping to an arbitrary

spatiotemporal stimulus.

In addition to this, there is a substantial heterogeneity in the intrinsic properties of

individual cells in several brain regions, which goes beyond the categorization in neuronal

subtypes commonly accepted in the literature (Soltesz, 2005). Nevertheless, most theo-

retical approaches to neuronal network dynamics have considered the individual cells as

homogeneous, or divided in two or few homogeneous populations (for example, excitatory

and inhibitory populations (Brunel, 2000)). More recent studies have revealed that neuronal

heterogeneity might not be just an epiphenomenon, but might serve specific computational

purposes, like the improvement of information representation in a population code (Shamir

and Sompolinsky, 2006; Chelaru and Dragoi, 2008), or the generation of complex dynamics

in recurrent networks (White et al., 1998). Furthermore, intrinsic neuronal properties and

synaptic connectivity are expected to be correlated, given that intrinsic oscillations bias

weight dynamics under spike-timing dependent synaptic plasticity (Baroni and Varona,

2010). Hence we strongly encourage the inclusion of a realistic level of heterogeneity in the

intrinsic properties of individual cells, as it is likely to highlight new important roles for

the wide diversity of intrinsic and synaptic properties in the nervous system.
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4.5 Appendix

4.5.1 Integration of the IF neuron model

The differential equation describing the IF model can be solved analytically given the

initial conditions of the dynamical variables. In the absence of synaptic input (Isyn = 0),

the solution to (4.1) reads

v(t) = v0e
−µt

where v0 is the initial condition of the voltage variable at time t = 0. Hence, in the absence

of post synaptic spikes (see Methods), the response of the model neuron to a train of

synaptic events at times (ts0, t
s
1, . . . , t

s
n−1) can be calculated by iterating the following map:

vi = (vi−1 + A)e−µISIi

for i = 1, . . . , n−1, where ISIi = tsi −tsi−1, A is the synaptic strength (assumed for simplicity

to be equal among synaptic events), and vi is the voltage variable just before the arrival

of the synaptic event at time tsi . The voltage variable after the last spike of the train is

calculated as

vn = (vn−1 + A)

and will be used to calculate the discriminability (see the next section). In all our sim-

ulations we set the initial condition for the v variables at the rest state (v0 = 0). The

differential equations describing the GIF model have been solved as described in the pre-

vious chapter.

4.5.2 Analytical derivation of the discriminability

We define the neuronal excitability in any moment in time as the minimal synaptic strength

capable of firing the neuron. The instantaneous intrinsic discriminability between two

input histories is then defined, in any moment in time, as the square difference between

the excitabilities corresponding to the two input histories. That is,



4.5. APPENDIX 81

Di,j(t) =
(

gi
thr(t) − gj

thr(t)
)2

=
(

vj(t) − vi(t)
)2

(4.8)

where the last equality is due to the fact that in these linear models the firing threshold

depends upon the voltage variable v only. The main measures of intrinsic discriminability

we considered are the maximal instantaneous discriminability (maximal value of (4.8)) and

the cumulative discriminability, defined as the integral in time from zero to +∞ of the

instantaneous discriminability:

D∞
i,j =

∫ ∞

0

(

gi
thr(t) − gj

thr(t)
)2

dt =

∫ ∞

0

(

vj(t) − vi(t)
)2

dt

The instantaneous and the cumulative discriminability can be computed analytically for

the IF and GIF neuron, given the initial conditions for the dynamical variables.

Analytical derivation of the discriminability: IF neuron

For the IF model neuron the instantaneous discriminability can be written as a function

of the initial conditions for the voltage variable vi
0 and vj

0, corresponding to the neuron’s

state after input history Hi and Hj, respectively:

Di,j(t) =
(

vj(t) − vi(t)
)2

= (vj
0 − vi

0)
2e−2µt

This expression integrated from zero to +∞ gives the cumulative discriminability:

D∞
i,j =

∫ ∞

0

(

vj(t) − vi(t)
)2

dt = (vj
0 − vi

0)
2

∫ ∞

0

e−2µtdt =
(vj

0 − vi
0)

2

2µ

Analytical derivation of the discriminability: GIF neuron

For the GIF model neuron the instantaneous discriminability can be written as a function

of the initial conditions for the dynamical variables (vi
0, w

i
0) and (vj

0, w
j
0), corresponding to

the neuron’s state after input history Hi and Hj, respectively:

Di,j(t) =
(

gi
thr(t) − gj

thr(t)
)2

= e−2µt [(aj − ai) cos(ωt) + (bj − bi) sin(ωt)]2
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where we set ai,j = vi,j
0 and bi,j =

vi,j
0 (1−µ)−wi,j

0 (1−2µ+µ2+ω2)

ω
. Calculating the square product

of the bracketed expression and applying some trigonometric equalities one obtains:

Di,j(t) = e−2µt

[

(aj − ai)
2 1 + cos(2ωt)

2
+ (bj − bi)

2 1 − cos(2ωt)

2
+ (aj − ai)(bj − bi) sin(2ωt)

]

and finally

Di,j(t) = e−2µt

(

a2 + b2

2
+

a2 − b2

2
cos 2ωt + ab sin 2ωt

)

with a = aj − ai and b = bj − bi.

The above expression integrated from zero to +∞ gives the cumulative discriminability:

D∞
i,j =

a2 + b2

4µ
+

µ(a2 − b2) + 2ωab

4(µ2 + ω2)

where the indefinite integrals

∫

eax cos bx =
b

a2 + b2
eax sin bx +

a

a2 + b2
eax cos bx

∫

eax sin bx =
a

a2 + b2
eax sin bx − b

a2 + b2
eax cos bx

have been used. Thus, it is a quadratic function in ∆v = vj − vi and ∆w = wj −wi, whose

orientation and eccentricity are determined by the neuron’s parameters µ and ω.

Average discriminability in the presence of Gaussian inputs

The average discriminability in the presence of Gaussian inputs can be calculated as

E[D] =

∫ 0

−∞

∫ 0

−∞
D(i, j)

4

erfc
(

mi√
2σ

)

erfc
(

mj√
2σ

)

2πσ2
e−

(ti−mi)
2

2σ2 e−
(tj−mj)2

2σ2 dtidtj

where the factors erfc
(

mi√
2σ

)

and erfc
(

mj√
2σ

)

take into account the fact that ISIs cannot

be non-positive. The standard deviations are assumed equal for both distributions for

simplicity. If D(i, j) = DIF (i, j) solving yields:
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E[DIF ] =

(

A2

(

e2µ(mi+µσ2)erfc

(

mj√
2σ

)

erfc

(

(

2µ + mi

σ2

)

σ√
2

)

−

2eµ(mi+mj+µσ2)erfc

(

(

µ + mi

σ2

)

σ√
2

)

erfc

(

(

µ +
mj

σ2

)

σ√
2

)

+

e2µ(mj+µσ2)erfc

(

mi√
2σ

)

erfc

(

(

2µ +
mj

σ2

)

σ√
2

)))

/

(

2µerfc

(

mi√
2σ

)

erfc

(

mj√
2σ

))

In the case of the GIF neuron we further assumed mi = mj = m for simplicity, obtaining

E[DGIF ] =
A2e2mµ+σ2(µ2−5ω2)

8µω2 (µ2 + ω2) erfc
(

m√
2σ

)2

(

2e4σ2ω2
(

e−2i(m+µσ2)ωµ(−1 + µ − iω)2

(µ + iω)erfc2

(

m + σ2(µ − iω)√
2σ

)

−

2
(

(−1 + µ)2 + ω2
) (

µ2 + ω2
)

erfc

(

m + σ2(µ − iω)√
2σ

)

erfc

(

m + σ2(µ + iω)√
2σ

)

+

e2i(m+µσ2)ωµ(µ − iω)(−1 + µ + iω)2erfc2

(

m + σ2(µ + iω)√
2σ

))

+

2erfc

(

m√
2σ

)(

2eσ2(µ2+5ω2) ((−1 + µ)2 + ω2
) (

µ2 + ω2
)

erfc

(

m + 2µσ2

√
2σ

)

−

eσ2(µ2+3ω2)µ

(

e−2i(m+2µσ2)ω(−1 + µ − iω)2(µ + iω)erfc

(

m + 2σ2(µ − iω)√
2σ

)

+

e2i(m+2µσ2)ω(µ − iω)(−1 + µ + iω)2erfc

(

m + 2σ2(µ + iω)√
2σ

))))

Although the imaginary unit i appears in the above expression, it always evaluates to real

values if the model parameters are real.
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Chapter 5

Spike timing-dependent plasticity is

affected by the interplay of intrinsic

and network oscillations

Abstract

In the previous chapters, we studied the effects of intrinsic neuronal properties upon the

recognition and generation of temporally precise spike trains. In this chapter, we explore the

effects of intrinsic neuronal properties upon the weight dynamics arising from an activity-

dependent plasticity rule. In particular, we focus upon a form of Hebbian learning which

is sensitive to the precise timing of pre- and postsynaptic firing patterns, known as spike

timing-dependent plasticity (STDP). This form of plasticity has been reported in several

neuronal systems, and it is thought to underlie structure formation during development,

and learning and memory in later life. In this chapter we show that the intrinsic properties

of the postsynaptic neuron might have a deep influence on STDP dynamics by shaping

the causal correlation between the pre- and the postsynaptic spike trains. The cell-specific

effect of STDP is particularly evident in the presence of an oscillatory component in a cell

input. In this case, the cell-specific phase response to an oscillatory modulation biases

the oscillating afferents towards potentiation or depression, depending upon the intrinsic

dynamics of the postsynaptic neuron and the period of the modulation.

Keywords: STDP, single-neuron dynamics, intrinsic oscillations, network oscillations,

learning, self-organization.
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5.1 Introduction

Experimental results have revealed a form of Hebbian learning which is extremely sensitive

to the precise timing of pre- and postsynaptic firing patterns. In particular, in paired-

pulse experiments (where brief suprathreshold current pulses are injected in the pre- and

postsynaptic cell at a fixed temporal delay) LTP was observed when the evoked presynaptic

spike led the postsynaptic spike (thus contributing to postsynaptic firing), while LTD was

observed when the evoked presynaptic spike lagged behind the postsynaptic one ((Markram

et al., 1997; Bi and Poo, 1998); reviewed in (Dan and Poo, 2004; Bi and Poo, 2001)).

In the last few years, several theoretical works have stemmed from this experimental

observations, predicting an important role for STDP in self-organization of neural micro-

circuits (Lubenov and Siapas, 2008; Kang et al., 2008; Kempter et al., 2001; Song and

Abbott, 2001; Câteau et al., 2008), learning of input correlations (Song et al., 2000; Gütig

et al., 2003; Meffin et al., 2006), and output firing rate normalization (Song et al., 2000;

Tegnér and Kepecs, 2002; Rubin et al., 2001).

While the influence of different STDP rules upon the weight dynamics and the stationary

weight distribution has been studied extensively (reviewed in (Morrison et al., 2008; Kepecs

et al., 2002)), only recently there has been some attention drawn to the influence of single-

cell intrinsic properties in STDP dynamics (Câteau et al., 2008). The intrinsic dynamics

of the postsynaptic cell determine the integration of subthreshold stimuli and the spike

generation mechanism (see, for example, (Richardson et al., 2003; Schreiber et al., 2004;

Baroni and Varona, 2007; Gutkin et al., 2005)), thus directly affect the cross-correlation

between the input and the output spike trains. This consideration suggests that the intrinsic

postsynaptic dynamics can potentially have a great impact upon the weight dynamics

arising from a certain STDP rule.

In addition to shaping the input-output transformation performed, single-cell intrinsic

properties determine the response to oscillatory stimuli. Oscillations of multiple, inter-

acting frequencies are very common in the nervous system (Buzsaki, 2006; Buzsaki and

Draguhn, 2004), and the phase of the response of a neuron embedded in an oscillating

network is strongly biased by its intrinsic properties (Tateno, 2007; Netoff et al., 2005;

Narayanan and Johnston, 2008; Bland et al., 2005). In some neural structures, proteic and

morphological characteristics of single cells seem to be precisely tuned in order to produce

the observed network dynamics (Whittington and Traub, 2003; Gloveli et al., 2005). Since
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synaptic plasticity is highly sensitive to the precise timing of pre- and postsynaptic firing,

the presence of an oscillatory component in a cell input is expected to reveal cell-specific

biases in the STDP dynamics which would pass unnoticed in the absence of oscillations.

In this chapter we consider a feedforward neuronal architecture where one postsynaptic

cell receives a synaptic bombardment from several hundred presynaptic afferents, and com-

pare the stationary weight distributions arising from the same STDP rule and presynaptic

firing statistics, but different postsynaptic intrinsic properties. In particular, we compare a

purely passive Integrate and Fire (IF) model with an inductive Generalized Integrate and

Fire (GIF) model with subthreshold oscillations.

Our results suggest that the intrinsic properties of the postsynaptic cell quantitatively

affect the stationary weight distribution under different STDP rules when the input firing

patterns are uncorrelated. More interestingly, a sinusoidal modulation of the firing rate of

a subset of the presynaptic population reveals qualitative and important differences in the

weight dynamics between the IF and the GIF model, which are the focus of this chapter.

5.2 Methods

5.2.1 Neuron models

We considered the Integrate and Fire (IF) and the Generalized Integrate and Fire (GIF),

introduced in chapters 4 and 3, respectively. The numerical values of the parameters used

here are: vthr = 20, vreset = −4, trefr = 0.3, α = 1 and β = 4 (resulting in complex

conjugate eigenvalues −1 ± 2i, denoting subthreshold dampened oscillations with period

π), while the intrinsic rate constant of the IF neuron (denoted as µ in section 4) has been

set at 1. Given the wide frequency range of intrinsic oscillations observed in mammalian

brains, which spans at least two order of magnitude (from 0.5 Hz until 50 Hz (Hutcheon

and Yarom, 2000)), we preferred to keep our models dimensionless.

5.2.2 Synaptic description

In general, synaptic dynamics interact with intrinsic neuronal dynamics (Muresan and

Savin, 2007), both at the level of a single synaptic potential (in shaping the PSP profile),

as during an intense synaptic bombardment from many afferents (in determining the output

statistics). Calibration of the synaptic parameters in order to achieve similar PSP profile
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in different neurons is possible, but still involves a certain degree of subjectivity regarding

which features of the synaptic response should be made equal. In order to guarantee equal

postsynaptic effects in different neuron models, we modelled PSPs as instantaneous, voltage

independent shifts in the voltage variable:

Isyn =
N
∑

n=1

∑

tsn

gsyn
n δ(t − tsn) (5.1)

where N = 250 is the number of afferents, and gsyn
n is the synaptic strength of afferent num-

ber n. If the synaptic dynamics is fast with respect to the intrinsic neuronal dynamics, this

approximation is reasonable (see, for example, (Lubenov and Siapas, 2008)). Furthermore,

this choice guarantees a clear separation between the synaptic and the intrinsic dynamics,

and assures that the observed differences between the GIF and IF neuron are due to their

intrinsic dynamics only. We discretized the simulations in time steps of size dt = 0.01

u.t., and in each time step we generated a presynaptic input pattern in which each afferent

which is not in its refractory period has a probability pn of firing. Once an afferent fires, it

will not be able to generate another spike for trefr = 0.3 u.t..

We divided the afferent population into three subsets: Nexc = 170 Poisson excitatory

afferents with a constant firing probability pexc = 0.0033, corresponding to a mean ISI of 3

u.t.; Nosc = 30 Poisson excitatory afferents with a sinusoidally modulated firing probability

posc = pexc

(

1 + Asin sin
(

2π
T

t
))

with period T = π (except in Figure 5.4 and 5.6 where

it has been varied in a range, and in Figure 5.5 where T = 1.2743 or T = 7.8476) and

modulation amplitude Asin = 0.5; Ninh = 50 Poisson inhibitory afferents with a constant

firing probability pinh = pexc = 0.0033. The synaptic strengths of the excitatory connections

gsyn
n = gexc

synwn are obtained by multiplying the corresponding synaptic weights wn (which

are bounded in the interval [0,1] and subject to STDP) by a scaling factor gexc
syn = 4. The

synaptic strengths of the inhibitory connections are fixed at ginh
syn = 6.

At the beginning of each simulation the synaptic weights wn of the excitatory population

are homogeneously initialized at their maximal value of 1. These values result in fast and

regular postsynaptic firing at a frequency close to the maximal frequency allowed by the

refractory period. In this regime the STDP weight dynamics strongly depress most synapses

in a non-specific way due to the relative predominance of depression over potentiation

(Figure 5.1 and 5.2A, B), until the postsynaptic neuron sets in a lower frequency irregular

firing regime. The regular and the irregular firing regimes display large differences not only



5.2. METHODS 89

in their firing statistics, but also in their response to a sinusoidal modulation (Richardson

et al., 2003). Thus we disregarded the first 30 · 103 u.t. of simulation output and focused

our analysis on the subsequent evolution of the synaptic weights through STDP in the low

frequency, irregular firing regime, during which the mean and the standard deviation of

the output ISIs (Inter Spike Intervals) can be considered stationary, as well as the phase

of the response to the sinusoidal modulation. This irregular firing regime is more relevant

for neuronal physiology, since neurons in many brain areas exhibit highly irregular firing

patterns (Shadlen and Newsome, 1998).

All the simulations have been run for 5 · 106 u.t.. Convergence has been assured by

visual inspection of the output data and it has always been reached within 2 · 106 u.t. of

simulation time.

The sinusoidal modulation in the input rate induces a modulation of the firing probabil-

ity, which we fit to a sinusoidal function rout

(

1 + Ag sin
(

2π
T

t + φ
))

to obtain the modulation

gain Ag and phase φ plotted in Figure 5.4, 5.5 and 5.6.
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Figure 5.1: The initial parameters result in high frequency regular firing, and unspecific depres-
sion of synaptic strengths. A: Evolution of the mean ISI over time for the first 100000 u.t. of
simulation. Mean ISI and mean ISI ± standard deviation, calculated over non overlapping win-
dows of 100 u.t., are plotted for the GIF (black line) and IF (gray line) neuron. B: Evolution of
the average synaptic strengths over time for the first 100000 u.t. of simulation. Different colours
indicate different afferent populations, different line styles indicate different postsynaptic intrinsic
properties (see legend).



90 CHAPTER 5. STDP AND SINGLE-CELL INTRINSIC PROPERTIES

5.2.3 STDP model

The excitatory synaptic connections are plastic and evolve according to the STDP rule

described in (Gütig et al., 2003). In brief, every pair of a presynaptic and a postsynaptic

action potentials with time difference ∆t = tpost − tpre induces a weight change given by

∆w = G(∆t|w) =

{

−λf−(w)K(∆t) if ∆t ≤ 0
λf+(w)K(∆t) if ∆t > 0

(5.2)

where K(∆t) = e−|∆t|/τ is the STDP window function, λ is a learning rate, and f±(w)

describe the weight dependence of the STDP rule:

f+ = (1 − w)µ f− = αwµ (5.3)

where µ is a parameter included in [0,1] which determines the weight dependence of the

STDP rule. If µ = 0, G(∆t|w) results is the familiar weight independent (additive) STDP

rule like in (Song et al., 2000); if µ = 1 one recovers the multiplicative STDP rule like

in (Rubin et al., 2001). Note that if µ > 0 the effect of potentiation vanishes as w approaches

1, and so does the effect of depression as w approaches 0, preventing the synaptic efficacies

from leaving the allowed range [0,1]. We chose µ = 0.02, a weak weight dependence which

corresponds to symmetry breaking in the absence of correlations in the inputs (not shown).

The details of the STDP rule are not critical though: since our results depend on the

phase response of the model neurons, we expect any temporally asymmetric STDP rule

to yield similar results. The parameter α describes the asymmetry between depression

and potentiation; we set it at a value slightly greater than 1 (α = 1.05) to assure than

uncorrelated pre- and postsynaptic firing yield synaptic depression. The numerical values

for the other parameters are λ = 0.002 and τ = 0.8. In most simulations a higher value

of λ could be used, resulting in faster convergence to the steady state. Nevertheless, when

the phase response is close to zero or positive, small random fluctuations could have a

great effect upon the weight dynamics (see the next section). In this situation a small

learning rate λ assures a time scale separation between the intrinsic neuronal dynamics,

which determine the response to a sinusoidal modulation embedded in a random synaptic

bombardment, and the weight dynamics.
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5.3 Results

Over time scales shorter than 1/λ, the input-output correlation can be considered stationary

and the mean weight drift can be obtained from (5.2) by integrating over the time difference

∆t, weighted by its correspondent probability:

< ∆w >=

∫ ∞

−∞
G(∆t|w)Pt(∆t|w)d∆t (5.4)

The dependence upon the intrinsic neuronal properties of the postsynaptic cell is included

in the input-output correlation term Pt(∆t|w) =< ρpre(t)ρpost(t+∆t, w) >t where ρpre(t) =
∑

k δ(t − tpre
k ) and ρpost(t, w) =

∑

k δ(t − tpost
k ) are the pre- and postsynaptic spike trains,

and < · >t indicates averaging over time.

The postsynaptic intrinsic properties affect the integration of incoming stimuli, and

determine the input-output transformation performed. For instance, an EPSP evoked on

a regular spiking neuron at a certain point of its firing cycle can advance or delay its

phase depending upon the intrinsic properties of the postsynaptic neuron (Gutkin et al.,

2005; Galan et al., 2005; Oprisan and Canavier, 2002; Ermentrout, 1996). Furthermore,

the stimulus features which most effectively result in a postsynaptic spike depend upon the

type of excitability and the dynamical mechanism of spike generation (Mato and Samengo,

2008).

Intrinsic neuronal properties (in particular, intrinsic oscillations) affect the neuron’s

behavior in response to a sinusoidal modulation (Richardson et al., 2003). In the irregular

firing regime, a purely passive neuron like an IF always follows a sinusoidal modulation

with some delay, while a GIF neuron with intrinsic oscillations can synchronize to an

input modulation or even lead ahead of it, depending upon its intrinsic frequency and the

frequency of the modulation ((Richardson et al., 2003), see also Figure 5.4A).

When the synaptic afferents to a neuron are composed of two different populations,

one with a constant firing frequency and another with a sinusoidally modulated firing fre-

quency, the phase with which the postsynaptic neuron follows the sinusoidal modulation

determines if the oscillating population will differentiate from the non-oscillating popula-

tion, and in which direction, through the STDP dynamics. Indeed, an IF neuron which

follows a sinusoidal modulation with a phase delay will on average fire after most of the

neurons in the oscillating population (Figure 5.3B), leading to a selective strengthening of
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the synapses belonging to this group (Figure 5.2D). Conversely, the GIF neuron follows the

same sinusoidal modulation without any significant phase difference (Figure 5.3A), hence

its spikes will be symmetrically distributed with respect to the oscillating population (see

also Figure 5.3C, D), leading to no net potentiation nor depression with respect to the
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Figure 5.2: Intrinsic neuronal properties determine the dynamics and the equilibrium distribution
of the weights under STDP. Distributions of the synaptic weights for the GIF (left) and IF
(right) neuron model at the beginning of the low frequency, irregular firing regime (top) and at
equilibrium (bottom). For each afferent population, the diamond indicates the mean of the weight
distribution and the horizontal line its standard deviation. In the initial high frequency, regular
firing regime the synapses are depressed in a non-specific way and reach a unimodal distribution
where the oscillatory and non-oscillatory populations overlap (A, B). After learning, the weight
distributions are bimodal for both neuron types but while the two populations are still largely
overlapping for the GIF neuron (C), the oscillatory population is significantly more potentiated
for the IF neuron (D).
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Figure 5.3: Intrinsic neuronal properties determine the phase of the oscillating response, and
hence the input-output cross-correlation. A, B: The firing probability along the cycle at the end
of the simulation (black line) is plotted together with the sinusoidal modulation of the input firing
rate (gray). While the output is in phase with the input for the GIF neuron (left), there is a delay
for the IF neuron (right). Moreover, the gain in the IF neuron is increased due to potentiation of
the oscillating population. C, D: Pt(∆t) is plotted for the oscillatory (black) and non-oscillatory
(gray) population for the GIF (solid line) and IF (dashed line) neuron at the beginning of the
irregular firing regime (left) and at the end of the simulation (right). At the beginning of the
irregular firing regime the oscillating afferents are slightly more efficient in firing the postsynaptic
cell due to their common sinusoidal modulation. This can be deduced from the broader input-
output correlation and the higher peak. Note that the broadening of the input-output correlation
in the oscillating population has an important component for negative ∆t pairs in the GIF neuron,
while it mainly affects positive ∆t pairs in the IF neuron, reflecting the different phase responses
of the two neuron types. After learning the input-output correlation has clearly increased for the
oscillating subgroup in the IF neuron.

non-oscillating population (Figure 5.2C).

To quantify the degree of separation between the oscillating and the non-oscillating
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populations, we computed the ratio between the mean conductance in the two subgroups

R =< gosc > / < gconst >. Figure 5.4 shows the relationship between R and the phase

of the sinusoidal response: as expected from our theoretical considerations, the sign of

the phase lag determines if the oscillating subgroup will be potentiated or depressed. A

negative phase (the postsynaptic neuron lags behind the sinusoidal modulation) results in

relative potentiation of the oscillating subgroup of afferents (R > 1), while a positive phase

leads to relative depression of the oscillatory population (R < 1). This general relationship

does not hold for very short input periods T , for which a very negative phase results in no

differentiation or only slight potentiation of the oscillating subgroup: at very high input

frequencies a postsynaptic spike lagging behind a given cycle can also be considered as

leading ahead the next cycle, so that as soon as the STDP window becomes comparable in

width with the input oscillation period the effects of potentiation and depression tend to

cancel out. Measures of the separation between the two different populations which also

take into account the standard deviation of the two distributions yielded similar results.

In spite of this general tendency, there are some additional differences between the GIF

and the IF models which cannot be explained solely on the basis of the phase of the

sinusoidal response. For example, for a certain range of negative phase lags there is a

stronger potentiation of the oscillating subgroup in the GIF neuron (Figure 5.4B).

The cell-specific potentiation or depression of the oscillating population affects in turn

the postsynaptic firing statistics, and in particular the gain of the oscillatory component of

the postsynaptic response (Figure 5.5 and 5.6). In particular, a sinusoidal modulation which

results in negative phase lag (the postsynaptic cell lags behind the sinusoidal modulation)

leads to a selective strengthening of the oscillatory population, which in turn produces an

increase in the sinusoidal gain. The opposite trend is observed for modulation periods and

postsynaptic intrinsic properties which result in positive phase lag (the postsynaptic cell

leads ahead of the sinusoidal modulation). This dynamics is shown in Figure 5.5, where

the amplitude gain Ag and the separation index R are plotted for the GIF and IF neurons

along a typical simulation for two representative values of the modulation period T . For

short modulation periods (T = 1.2743 in the plotted example, the non-integer values are

due to the logarithmically spaced values for T ) both GIF and IF neurons lag behind the

sinusoidal modulation, their oscillating afferents are potentiated and their sinusoidal gain

is consequently increased (Figure 5.5A, C). For modulation periods slightly greater than

the intrinsic period π, the GIF and the IF neurons behave in a qualitative different way:
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Figure 5.4: The phase of the sinusoidal response determines the mean drift of the oscillating
population. A: Ratio between the mean oscillatory conductance and the mean non-oscillatory
conductance R =< gosc > / < gconst > and phase of the sinusoidal response φ for the GIF (solid
line) and IF (dashed line) models as a function of the period of the sinusoidal modulation. While
the IF neuron always lags behind, the GIF neuron can synchronize with or even lead ahead of
the sinusoidal input modulation. The sign of the phase determines the potentiation (R > 1) or
depression (R < 1) of the oscillating population with respect to the other afferents. The black
diamond indicates the intrinsic period for the GIF neuron considered, and the input period used
in the simulations plotted in Figure 5.2. The black and the gray arrows indicate the input periods
used in the simulations plotted in Figure 5.5. B: R ratio for the GIF (filled squares) and IF
(empty circles) models after learning is plotted versus the correspondent phase.

the IF neuron still lags behind the sinusoidal modulation, while the GIF neuron leads

ahead of it, resulting in an opposite trend in their separation index R and consequently in

their gain Ag (compare panels A and C). This cell-specific regulation of the sinusoidal gain

through STDP is also apparent in Figure 5.6, where the gain for the GIF (solid) and IF

models (dashed) is plotted at the beginning (light gray) and at the end (dark gray) of the

simulations, for input periods T spanning three orders of magnitude. For all tested input

periods, the difference in gain at the beginning of the simulations is rather small, but it

increases dramatically through the action of STDP for those input periods which result in

qualitatively different behavior in the GIF and IF neuron (with T in the interval (3, 10)

approximately, the phase is positive for the GIF neuron and negative for the IF neuron).

Conversely, the difference in gain between the two neuron models remains small for very

short or very long modulation periods, for which the two models display similar phase

shifts. Note the negative peak in Ag for the GIF neuron, which corresponds to maximal

phase advance and consequently maximal relative depression of the oscillating subgroup
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Figure 5.5: Evolution of some relevant quantities along a typical simulation for the GIF (solid
line) and IF (dashed line) model, for two different values of the input modulation period. A:
Sinusoidal gain Ag. B: Sinusoidal phase φ. C: R ratio. D: The relative potentiation of the
oscillating population is the main determinant of the change in the sinusoidal gain due to STDP.

(compare Figure 5.6 with Figure 5.4A).

To further clarify the relation between the R index and the sinusoidal gain, we lumped

all the data obtained with different T for the same neuron model, and plotted the percentual

change in sinusoidal gain Ag during learning versus R for the GIF (filled squares) and IF

models (empty circles) (Figure 5.5D). This figure shows that the relationship between the

sinusoidal gain change and the oscillating / non-oscillating ratio R is almost linear, with a

R value of 1 (indifferentiation between the two subgroup of afferents) resulting in no gain

change. This suggests that the evolution of the sinusoidal gain along a simulation is mainly
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Figure 5.6: Gain and phase of the sinusoidal modulation as a function of the period T of the
modulation. The gain is plotted at the beginning of the irregular firing regime (light gray) and
at the end of the simulation (dark gray).

driven by the relative potentiation or depression of the oscillating subgroup.

The effect of STDP on the phase lag of the different model neurons is somewhat more

subtle. When the postsynaptic neuron lags behind the sinusoidal modulation, the oscillating

afferents are potentiated with respect to the other afferents, and keep the postsynaptic cell

at a constant, negative phase. Conversely, when the postsynaptic neuron leads ahead of

the sinusoidal modulation, the oscillating afferents are depressed and their entrainment of

the postsynaptic cell is less efficient, resulting in low sinusoidal gain and variable, positive

phase (Figure 5.5C).

5.4 Discussion

In this chapter we considered a simplified framework, in which a single postsynaptic cell

receives a synaptic bombardment from several hundred presynaptic afferents in a purely

feedforward configuration. While the adoption of a simplified model is useful in dissecting

the minimal dynamical mechanisms required for the observed behavior, the introduction

of additional biological details might significantly alter, or extend, our results. In this

section we discuss the main assumptions of our model which are not expected to hold in

biological neural networks, discuss how they might affect our results, and suggest future

work which will further unravel the complex interplay between neuronal properties and



98 CHAPTER 5. STDP AND SINGLE-CELL INTRINSIC PROPERTIES

synaptic plasticity.

In our approach we did not take into account propagation delays along neurites. How-

ever, the effects of linear, frequency-independent propagation delays can easily be predicted

in the current framework. If we consider an axonal conductance delay τa from the soma

of the presynaptic neuron until the synaptic contact, and a dendritic conductance delay τd

from the synaptic contact until the soma of the postsynaptic cell (equal among afferents

for simplicity), we expect the phase response to be delayed by (τa + τd)/T , where T is

the period of the sinusoidal modulation. This will result in a shrinking of the frequency

range with positive phase response, suggesting a bias towards potentiation of the oscillat-

ing population. However, this latter effect depends upon the relative magnitude of the

axonal and dendritic conductance delays. Given that synaptic modifications depends upon

the relative timing of the pre- and postsynaptic activity as observed at the synaptic site

(more precisely, upon the time difference between the calcium influx through synaptically

gated postsynaptic channels and the postsynaptic depolarization due to a backpropagating

action potential (Markram et al., 1997)), we could substitute ∆t in equation (5.2) with

∆tsyn = tsyn
post − tsyn

pre = ∆t + (τd − τa). Since in most cases the propagation delay along the

axon is greater than along the dendrite, we would expect a rightward shift of the tempo-

ral dependence of STDP, with zero phase lag observed at the somae resulting in synaptic

depression, thus partially compensating for the downward shift in the phase response.

The adoption of a more realistic synaptic description, i.e. exponentially decaying synap-

tic conductances or alpha functions, is also expected to increase the phase lag, because the

synaptic current will peak a certain time after its onset. We performed some exploratory

simulations with exponential synapses, and indeed observed a general downward shift in

the phase response and consequently a bias towards potentiation of the oscillating popu-

lation (not shown). As the synaptic dynamics interacts with the intrinsic dynamics, the

differences between the IF and GIF neuron which could not be attributed to the phase

response are bigger than in the present case, and deserve further study which will be ad-

dressed in the future. The adoption of linear neuron models might also seem unrealistically

simple. However, these simple models with parameters obtained from linearization around

the steady state of realistic, conductance-based model neurons have proven to replicate

faithfully the response to a weak sinusoidal modulation of their realistic counterparts, even

when embedded in strong background noise (Richardson et al., 2003). Still, it is possible

that a more realistic spike generation mechanism might affect the neuronal response to a
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sinusoidal modulation, especially at high input rates (Fourcaud-Trocmé et al., 2003). This

possibility will be addressed in future work.

In our model, the oscillating population follows a sinusoidally modulated Poisson statis-

tics, without any additional temporal structure. Hence, if the postsynaptic cell is in phase

with the input modulation, one particular presynaptic neuron will sometimes lead, some-

times lag the postsynaptic response so that the mean synaptic drift it will experience is

zero. Conversely, if the oscillating population activity were temporally structured, a differ-

entiation of the oscillating population from the rest of the afferents could still be observed.

For instance, if a subset of the oscillating population were imposed to fire earlier on aver-

age than the other afferents of the oscillating population, this subset would be expected to

undergo potentiation.

Another assumption of our feedforward model which is not expected to hold in generic

neuronal networks is the independence between inhibition and excitation. Inhibition if often

correlated with excitation, either because of excitatory-inhibitory loops in the same brain

area, or because of common inputs from other brain areas which target both interneurons

and principal cells (Buzsáki, 1984; Pouille and Scanziani, 2001; Wang et al., 2007). This

interdependence might bias synapse strengthening in a cell-specific way. For example,

inhibition which shortly precedes excitation increases the responsiveness and reliability

of neurons with subthreshold oscillations, but not of purely passive neurons (Mato and

Samengo, 2008).

In our model inhibitory connections are fixed, and plasticity of excitatory synaptic

weights is the only mechanism responsible for adjusting the spiking statistics of the postsy-

naptic cell from the initial high frequency, regular spiking regime to the low frequency, ir-

regular firing regime which is commonly observed in the brain. This results in a dependence

of the output firing statistics after learning upon the initial values of the synaptic weights.

Even if most experimental and theoretical studies have focused on synaptic plasticity of

excitatory (typically glutamatergic) synapses, inhibitory connections are also known to un-

dergo activity-dependent plasticity (Gaiarsa et al., 2002), which, at least in some systems,

exhibits a high sensitivity to the relative timing of pre- and postsynaptic spiking (Haas

et al., 2006). Contrary to the anti-homeostatic effect of excitatory STDP, which tends to

strenghten the stronger synapses, the effect of inhibitory STDP is homeostatic, increasing

the inhibitory effect if it was not sufficient to prevent the postsynaptic cell from firing. It

will be worth exploring whether the interaction of these complementary mechanisms might
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result in robust self-organization of network dynamics and, in a feedforward network like

the one presented here, in convergence to a given output statistics from a broad range of

initial synaptic weights.

5.5 Conclusions

Intrinsic neuronal properties may affect the integration of incoming stimuli in a nontrivial

way. For instance, an EPSP evoked on a regular spiking neuron can advance or delay the

occurrence of the next spike, depending upon the intrinsic properties of the postsynaptic

neuron and the exact time in which it is delivered.

Intrinsic neuronal properties (in particular, intrinsic oscillations) affect the neuron be-

havior in response to a sinusoidal modulation embedded in a random synaptic bombard-

ment (Richardson et al., 2003). In the irregular firing regime, a purely passive neuron

like an IF always follows a sinusoidal modulation with some delay, while a GIF neuron

with intrinsic oscillations can synchronize to an input modulation or even lead ahead of it,

depending upon its intrinsic frequency and the frequency of the sinusoidal modulation.

The phase of the sinusoidal response determines the net drift that will affect the weights

of the oscillating population: if the phase is positive (the postsynaptic neuron leads ahead

of the presynaptic sinusoidal modulation) the oscillating population will experience a net

depressing effect (most postsynaptic spikes will lead the presynaptic spikes originating

from this population), while if the phase is negative (the postsynaptic neuron follows the

sinusoidal modulation with some delay) the oscillating population will be potentiated.

The net weight drift experienced by the oscillating population affects in turn the post-

synaptic firing statistics, and in particular the sinusoidal gain response. If the postsynaptic

neuron follows the sinusoidal modulation with some delay, as in the case of the passive IF

neuron, the oscillating population will undergo potentiation and will increase the gain of

the sinusoidal modulation. Conversely, if the postsynaptic neuron is synchronized with the

sinusoidal modulation, the net weight drift on the oscillating population will be the same

as the one experienced by the other afferents, hence the sinusoidal gain will stay constant.

Thus, it seems that STDP might have a regulatory effect upon the sinusoidal gain in the

presence of oscillatory inputs, by increasing the oscillatory input to target cells which fol-

low the modulation with some delay, while not affecting or even decreasing the oscillatory
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inputs to target cells which display intrinsic oscillations in resonance with the frequency of

the oscillatory modulation.

Since both network oscillations and intrinsic resonant neurons are widespread in many

brain areas, we believe that this mechanism might be highly relevant for structure forma-

tion during both development and mature life. For example, we could hypothesize that

the distribution of intrinsic neuronal properties in a certain brain area might impose some

restrictions upon the possible wiring schemes, thus contributing to the specification of net-

work connectivity and possibly decreasing the amount of information about wiring which

needs to be genetically encoded. This effect is expected to be especially relevant in higher

and evolutionarily more recent neural structures, where the heterogeneity of intrinsic prop-

erties is higher (Freund and Buzsáki, 1996; Markram et al., 2004; Somogyi and Klausberger,

2005). Intrinsic single-cell properties might tune incoming connections in order to enhance

responsiveness to neuronal assemblies which tend to fire at a certain phase of network os-

cillations, thus fostering specialization and multiplexing in network processing (Friedrich

et al., 2004). According to our numerical results, we expect passive neurons to be driven

mostly by synchronized presynaptic assemblies which fire at the peak of the oscillatory

input component, while neurons with subthreshold oscillations might more often develop

strong connections from neurons which tend to fire earlier than their other afferents.

Finally, single-cell processing is a distributed phenomenon. Single domains along the

neuronal morphology can be characterized by specific intrinsic properties (Johnston and

Narayanan, 2008), interneuron innervation (Klausberger and Somogyi, 2008) and local

plasticity rules (Froemke et al., 2005; Letzkus et al., 2006; Saudargiene et al., 2005). The

investigation about the complex interplay between network oscillations, the heterogeneity

of intrinsic neuronal dynamics, and the local nature of synaptic plasticity is likely to be of

key importance for understanding information processing in the nervous system.
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Chapter 6

Conclusions

6.1 Main results of the present thesis

The main results of this work can be summarized by chapter as follows:

Chapter 2 • Calcium and voltage dynamics are bidirectionally coupled; this interaction re-

sults in some features which are highly restrained, while others are free to evolve

almost independently.

• The bidirectional coupling between voltage and calcium is better described when

multiple temporal scales are taken into account. The interaction between dy-

namics on different temporal scales can be the basis for contextual information

processing in single neurons.

Chapter 3 • The interplay between subthreshold damped oscillations and after-spike effects

results in complex input-output mappings in single neurons.

• Simple linear models with after-spike reset can reproduce much of the observed

features of input-output relationships of detailed conductance-based models.

Chapter 4 • A formal definition of history-dependent excitability allows the quantitative as-

sessment of the mnemonic features of intrinsic neuronal dynamics.

• Subthreshold oscillations enhance single-cell information discrimination at high

input rates.

• Neurons with subthreshold oscillations are advantageous for information pro-

cessing based on a temporal coding scheme, while passive neurons are better

suited to computation based on a rate coding scheme.

103
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Chapter 5 • The intrinsic properties of the postsynaptic cell can have a deep impact upon

weight dynamics arising from activity-dependent plasticity rules.

• An oscillatory component in the input to a cell will impose a certain phase

which depends upon its intrinsic properties, which in turn will bias the weight

dynamics arising from a temporally sensitive synaptic plasticity rule.

Taken together, these results clearly point to a key role for the interaction between

dynamics on multiple time scales in the generation and recognition of precisely timed neu-

ronal patterns, as well as in structure formation mediated by activity dependent synaptic

plasticity rules.

The discriminability properties at the single cell level which we describe in sections 3

and 4 constitute a local form of information contextualization which could have profound

consequences at the network level. Though not formally demonstrated yet, a network

composed of complex and heterogeneous individual units, each of them capable of decisions

which depend in a non-trivial way upon the previous input-output history, will show a range

of collective behaviors which is not reproducible by networks of homogeneous units with

mainly passive intrinsic properties. Indeed, numerous experimental studies have reported

a high degree of neuronal heterogeneity in various brain areas, and have inspired several

theoretical works investigating the effects of heterogeneity in network computation, with

respect to both the generated dynamics and the coding capabilities. However, the range

of heterogeneities considered in these studies is quite restricted and does not encompass

the wide range of different active properties observed in real neurons, hence the effects of

neuronal heterogeneity in network information processing is only partially understood.

Some of the main results of this thesis constitute theoretical predictions that can be

verified experimentally. For example, in chapter 4 we provide clear guidelines for the design

of an experimental protocol aimed at characterizing the intrinsic discriminability properties

of neuronal cells. This protocol could be implemented in a dynamic clamp software, probing

the mnemonic features based on intrinsic single-cell dynamics in an automatized manner

and with the minimum number of trials. The impact of single cell neuronal properties in

network dynamics can now be tested experimentally with optogenetic techniques (Boyden

et al., 2005; Miller, 2006), which allow the modification of single-cell intrinsic properties of

a selected cell class in a highly controlled fashion.



6.2. CONCLUDING REMARKS 105

Even if we only considered a feed-forward architecture, our results about the effects of

intrinsic neuronal properties upon weight dynamics can be confirmed through the simulta-

neous analysis of intrinsic neuronal properties and the distribution of incoming connection

weights. Such data is difficult to obtain, especially in an amount which could lead to sta-

tistically significant results, but might become available in the near future thanks to the

technological advances in large scale multielectrode array and imaging recordings, combined

with sophisticated stimulation and analysis tools.

6.2 Concluding remarks

A single neuron is by itself a highly complex biological entity. When billions of them

are connected in a network by synaptic and neuromodulatory links which are themselves

dynamically complex, the concepts of causation, top-down and bottom-up information

transfer can only offer a partial description of the resulting behavior. In fact, the resulting

dynamics might be better understood in the framework of complex emerging phenomena.

This framework challenges the Aristotelian view of mechanistic sequences of “causes” and

“effects”, which is inevitably hard-wired in the common intuition of western society, while

it stresses the circular relationship between complex individuals and the complex dynamics

of the networks they belong to. Every individual is constrained by the activity of the

population, but even a single individual affects the emerging population outcome, especially

if the system is endowed with chaotic dynamical features.

From my personal perspective, I believe that a comparison with social sciences is useful

for understanding the relationship between reductionism and complexity in computational

neuroscience. Even if the wide diversity of personal characters, personalities, skills and

attitudes is a key ingredient in the evolutionary success of human societies, extremely simple

“social-physics” models (also known as human thermodynamics approaches, to highlight

the strong reductionism commonly applied to individuals in these models) can explain

and successfully predict a wealth of social phenomena, from political preferences, attitude

towards crime to the transfer and evolution of cultural traits (Ball, 2004).

As highly complex individuals embedded in topologically complex networks, neuronal

cells might seem all alike when viewed from a population perspective. Notably, when their

morphological, physiological and molecular complements are assessed in detail, they all look

quite different. In spite of the strong efforts towards defining a widely agreeable taxonomy
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of neuronal types, the variability observed within neuronal classes is so broad that such

taxonomies are becoming hard to justify. Within a neuronal class, which is usually defined

by the morphological characteristics of the cell, the neurotransmitter it releases and the

proteic complement it expresses, individual neurons differ in the precise distribution of ion

channels along their morphology (affecting the input-output transformation they perform),

and maybe more importantly, in the position they hold in the network: that is, in the

identity of their pre and post synaptic targets (Chou et al., 2010). Recent data revealed

that both the number of connection per neuron and their strength are scale-free (Song

et al., 2005). This means that a few strong connections emerge from a sea of weaker ones,

and that a small minority of cells constitute “hubs” of network computation, connecting

to a much greater number of neurons than the average. This heterogeneity is probably one

of the key ingredient in the emergence of complex functions in neuronal networks.

So far, reductionist approaches in computational neuroscience have obtained impor-

tant successes in explaining several biophysical and cognitive phenomena within simple

mathematical frameworks. At the single cell level, two-variable model neurons can ex-

plain the rapid up-stroke of membrane voltage during the generation of an action poten-

tial, and the subsequent refractory behavior (Fitzhugh, 1961; Morris and Lecar, 1981).

Three-variable neurons can reproduce, as parameters are varied, many different dynami-

cal classes of bursting behavior (Izhikevich, 2006). At the network level, relatively simple

mathematical models give satisfactory explanations of several cognitive phenomena, from

working memory (Wang, 2001) to dead-reckoning navigation (Maurer and McNaughton,

2007), from visual illusions (Bressloff et al., 2002; Schwartz et al., 2009) to time percep-

tion (Karmarkar and Buonomano, 2007), recently reaching hard to define concepts such

as consciousness (Dehaene and Changeux, 2005), often providing a close match with psy-

chophysical data.

In contrast, the inclusion of all the available biophysical knowledge in a neuronal model

is seldom, or hardly ever, justified. It is surely tempting to include a great level of realism

in neuronal simulations, in part as an effort towards “realistic” modelling, which allows the

direct association between mathematical variables in the model and experimentally mea-

surable quantities in the biology, and in part because of the strong interest from the general

media about artificial life in general, and artificial intelligence in particular. Nevertheless,

the more biophysical details are incorporated in a model, the more difficult is the inter-

pretation of the obtained dynamics. Not only the huge parameter space of these models is
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difficult or impossible to constrain. Even if we could constrain experimentally each of the

intervening parameters, it would be hard or impossible to identify the biophysical features

which are responsible for the given phenomenon under study. Indeed, it is possible that

these extremely detailed simulations would produce an output which is not statistically

different from one obtained from much simpler versions of the model.

Hence, it is useful to gradually increase the level of detail in models, with the awareness

that different biophysical mechanisms could have similar dynamical outcomes, and that

proper function in the nervous system is likely to rely upon a machinery of redundant bio-

physical mechanisms, whose relative contribution could be modulated by complex signalling

networks which could act in a homeostatic fashion to guarantee the correct physiological

performance of the system, and its robustness in the face of external (environmental) or in-

ternal (developmental, pathological) changes. Complementarily, it is also useful to simplify

existing models based on a great level of biophysical detail, in order to determine which

properties are key in order to reproduce each of the observed features of the biological

system.
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Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural Computation,
14(11):2531–2560.

Mao, B. Q., Hamzei-Sichani, F., Aronov, D., Froemke, R. C., and Yuste, R. (2001). Dynamics of
spontaneous activity in neocortical slices. Neuron, 32(5):883–898.

Marder, E., Abbott, L. . F., Turrigiano, G. g., Liu, Z., and Golowasch, J. (1996). Memory from
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