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Abstract

Nowadays, the users of multimedia services are overwhelmed with the huge amount of video

information available across di�erent networks. Current sources of multimedia content are nu-

merous: media networks, digital libraries, social networks, etc. This increasing amount of content

and the data intensive nature of video makes the mangement and browsing of video collections, as

well as their search and retrieval, increasingly di�cult. Video abstractions (or summaries) make

navigation easier, providing the user with a quick idea about the content. Another characteristic

of current multimedia systems is that the same content can be accessed from a wide variety

of terminals through di�erent networks. Adaptation of multimedia content is a key element

to provide the user with a suitable version of the content, according to the usage environment

(mainly terminal and network).

In general, video summarization and adaptation are time and resource consuming tasks. In

this thesis, e�cient methods are proposed to generate the output bitstream with a very low

delay and with low resource requirements. These methods are based on scalable approaches. A

bitstream is scalable if, selecting certain packets, a basic version of the content can be obtained,

while by including another set of packets an enhanced version can be obtained (e.g. higher

resolution).

The thesis explores the use of the temporal scalability of H.264/AVC for summarization pur-

poses, proposing a model to represent summaries (storyboards, fast forwards and video skims)

and an e�cient generation method, based on bitstream extraction. This approach is then ex-

tended to SVC, using other modes of scalability to adapt the summary to the requirements of

di�erent terminals and networks.

The idea of scalability is also integrated in the summary itself, which is represented, coded

and generated in a scalable fashion. Thus, the system can generate summaries of di�erent lengths

without analyzing the content again. The analysis is performed using an incremental algorithm

based on an iterative ranking. This method creates scalable storyboards and video skims in an

e�cient way. The idea of scalable summary is also studied in the context of comic-like summaries,

which are inspired by the structure of comic strips.

Finally, several applications of the methods developed in the previous parts are proposed,

such as customized summaries, storyboards that can adapt to the window size, multichannel TV

summaries or composite summaries.
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Resumen

Actualmente, los usuarios de servicios multimedia se ven abrumados por la ingente cantidad

de información presente en las diversas redes. Son numerosas las fuentes de contenido multime-

dia: medios de comunicación, bibliotecas digitales, redes sociales, etc. Esta creciente cantidad

de contenido y la propia naturaleza del video hace difícil su gestión y la búsqueda y acceso a con-

tenido especí�co. Las abstracciones de vídeo o resúmenes facilitan la navegación permitiendo al

usuario hacerse una cierta idea rápida del contenido. Otra característica de los sistemas actuales

de acceso a contenido multimedia es la diversidad y heterogeneidad de las formas en que se puede

acceder. Terminales de todo tipo se pueden utilizar a través de diferentes redes. La adaptación

del contenido multimedia es un elemento clave para proporcionar al usuario contenido adecuado

a su contexto de uso.

En general, la creación de resúmenes y la adaptación de contenido son tareas costosas y

que requieren bastantes recursos para procesarlos. En esta tesis se proponen métodos e�cientes

que permitan generar el bitstream con el menor retardo posible y consumiendo pocos recursos.

Estos métodos se basan en enfoques escalables. Un bitstream es escalable si seleccionando

ciertos paquetes se puede obtener una versión básica del contenido, mientras que incluyendo

otro conjunto de paquetes se puede obtener una versión mejorada (p.e. mayor resolución).

La tesis explora un uso de la escalabilidad temporal de H.264/AVC distinto al de adaptación

temporal, proponiendo un modelo de representación de resúmenes (storyboards, fast forwards

y video skims) y un método de generación e�ciente basado en la extracción de paquetes. Este

enfoque se extiende posteriormente a SVC, utilizando el resto de tipos de escalabilidad para

adaptar el resumen a las necesidades de diferentes terminales y redes.

La idea de escalabilidad tambien se integra dentro del propio resumen, que se representa,

codi�ca y genera de una forma escalable. Así el sistema puede generar resúmenes de diferentes

longitudes sin necesidad de volver a analizar el contenido. El análisis se realiza mediante un

método incremental basado en un ranking iterativo, capaz de obtener storyboards y video skims

escalables de forma también e�ciente. La idea de resumen escalable se estudia también en el

contexto de resumenes de tipo comic, inspirados en la estructura de las tiras cómicas.

Por último, se proponen una serie de aplicaciones de los métodos desarrollados en las partes

anteriores, como resúmenes personalizados, resúmenes adaptables al tamaño de ventana, resúmenes

de multiples canales de TV o resúmenes compuestos.
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Chapter 1

Introduction

1.1. Motivation

During the last years, the amount of video content in multimedia systems has increased

dramatically. In addition to a large number of commercial sources, each user has become a po-

tential contributor, sharing content through di�erent communication networks. Nowadays, we

can �nd video content in digital libraries (e.g. Internet Archive1, Open Video2), personal collec-

tions, social networks (e.g. YouTube3), web sites of media networks (e.g. BBC4, CNN5, ABC6,

TVE7), video on-demand services, optical storage discs (e.g. DVD, Bluray), digital television

broadcasting, and an endless list of sources. Thus, users are overwhelmed with an enormous and

increasing amount of video information, which often makes very di�cult its management and the

search and retrieval of speci�c content. In addition, video is, in nature, a time consuming media,

as it requires some time to be visualized. For those reasons, video abstractions are essential for

e�cient access and navigation[Pfei�er et al., 1996; Yeung and Yeo, 1997]. A video abstract is

a compact representation that can provide the user with a coarse idea of what happens in the

video sequence. In this thesis we focus on visual abstracts (i.e. non textual or audio abstracts)

using the term summary for them.

Last years have also witnessed the emergence of new devices capable of playing video content,

but also the convergence of services and networks. Now, the same piece of content can be accessed

from a wide range of heterogeneous terminals (e.g. personal computers, netbooks, PDAs, mobile

phones, interactive TVs) through a variety of networks (e.g. di�erent types of broadband, wireless

and mobile networks, TV broadcasting). The content is adapted to the speci�c requirements

of the usage environment (e.g. terminal, network), performing adaptation operations such as

spatial downsampling or bitrate reduction in order to accommodate the bitstream to the available

1http://www.archive.org
2http://www.open-video.org
3http://www.youtube.com
4http://www.bbc.co.uk
5http://www.cnn.com
6http://www.abc.go.com
7http://www.rtve.es
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screen size or network bandwidth[Vetro, 2004; Chang and Vetro, 2005]. This adaptation is often

addressed using pre-stored versions of the same content with di�erent encoding con�gurations.

Owing to the crucial role of both adaptation and summarization in pervasive media environ-

ments, there is an increasing interest in developing e�cient and e�ective methods. One of the

main objectives of video adaptation is the generation of the adaptation bitstream with low delay

and computational cost (e.g. e�cient transcoding[Xin et al., 2005]). An interesting approach

is scalable video coding, especially with the publication of H.264/SVC, the last standard for

scalable video coding[Schwarz et al., 2007]. Adaptation of scalable bitstreams is a simple and

extremely e�cient process.

Research on video summarization has primarily focused on the analysis of the content to re-

move semantic redundancies in order to obtain compact summaries. However, we believe that the

generation of the bitstream must be also taken into consideration as part of the summarization

process, as the summary is often delivered to the user in a compressed format. A long latency

due to the generation of the bitstream is not desirable, as the main goal of video summaries

is to make search and navigation livelier. Besides, low delay is also desirable in applications

requiring interactivity, such as customized summaries. Thus, some techniques used traditionally

for video adaptation, such as transcoding or scalable coding, could be also exploited for video

summarization. Moreover, the generation of the bitstream of a summary and its adaptation to

the usage environment are addressed usually as two independent operations. A joint approach

to both problems may be worth to explore, as the objective of both is the e�cient generation of

the output bitstream.

While scalable approaches have been explored in video coding for almost twenty years[Ohm,

1994, 2005; Schwarz et al., 2007; Anastassiou, 1994], scalability in the context of video sum-

marization has barely been considered. We have found very few works dealing with summaries

with multiple levels of detail[Zhu et al., 2004, 2005b; Benini et al., 2006]. Most of them create

hierarchical summaries, which can provide a certain scalability (few scales). Although useful for

hierarchical browsing, the utility of hierarchical summaries for adaptation is limited, where a

�ner granularity and more scales may be desirable. Besides, the term scalable summary has been

rarely used[Zhu et al., 2004]. In current multimedia systems, where a personalized presentation

for each user is desirable, we believe that scalable summaries may be useful to cope with the

diversity of preferences and characterisitcs of each user's usage context. They can also provide

di�erent levels of detail that can be easily adjusted for interactive navigation. However, a proper

analysis of the requirements, advantages, limitations and potential applications is required.

1.2. Objectives

The main goal of this thesis is to explore the use of scalability in the context of video

summarization. This goal can be further speci�ed in the following general objectives, which

roughly correspond to the central parts of the thesis:

To explore the use of the adaptation techniques used in scalable video coding in the context
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of video summarization, and how they can be used jointly for both summarization and

adaptation. The proposed techniques and results are described mainly in Part II.

To explore the idea of scalability as an intrinsic property of the summary. The concept of

scalable summary must be developed along with the analysis of the implications of having

multiple lengths in a summary. Besides, for practical applications an adequate framework

is required. The methods proposed are covered mainly in Part III.

To explore potential applications of the techniques developed previously, which are covered

in Part IV.

Apart from this central goal, the techniques described in this thesis have been also designed with

some additional objectives in mind:

Both analysis and adaptation methods should be e�cient. E�cient generation of adapted

summaries is essential to fully bene�t from scalable summaries. Besides, other applications

can also bene�t from e�cient processing, such as low delay and interactive summarization.

The proposed models and methods should be �exible and generic enough so they can be

applied to di�erent modalities of summaries (e.g. storyboards, video skims).

1.3. Structure of the thesis

The thesis has been organized in three main and two complementary parts. The three main

parts contain the contributions in terms of methods, frameworks and applications.

The �rst part introduces and overviews the related research areas. The second and third

part contain the main contributions of the thesis regarding new techniques and frameworks. The

following part describes several applications that take advantage of these techniques for improved

performance and enhanced functionalities. Finally, the last part draws the conclusions. These

parts are further structured in chapters:

Part I: Introduction and context

� Chapter 1: Introduction

� Chapter 2: Context and related work. This chapter provides the research context

related with the thesis, including a brief overview of related works and research areas.

Part II: Summarization and adaptation using scalable video coding

� Chapter 3: Generation of video summaries by bitstream extraction. This chapter

describes a model and an e�cient framework to generate video summaries using bit-

stream extraction. The framework is also evaluated in terms of quality and e�ciency.

� Chapter 4: Integrated summarization and adaptation. This chapter extends the pre-

vious framework in order to include adaptation to the usage context using scalable

video coding.
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Part III: Scalable summaries

� Chapter 5: Scalable storyboards and video skims. This chapter presents the concept

of scalable summary and its advantages and requirements. In addition, a framework

and an e�cient analysis algorithm to generate scalable storyboards and video skims

are described.

� Chapter 6: Scalable comic-like summaries. The idea of scalable summary is extended

in this chapter to comic-like summaries, along with methods to generate them.

Part IV: Applications

� Chapter 7: Applications of integrated summarization and adaptation. This chapter

describes several scenarios and applications that can bene�t from the frameworks

described in the second part of the thesis, including personalization and browsing.

� Chapter 8: Adaptation of scalable summaries. This chapter describes the application

of scalable summaries to resizable graphic interfaces and multichannel TV summa-

rization.

� Chapter 9: Combined scalabilities and composite summaries. Some applications com-

bining scalable summaries and scalable video adaptation are described in this chapter.

Part V: Conclusions

� Chapter 10: Conclusions and future work. This chapter concludes the document

summarizing the main results and contributions of the thesis.

The relationships among chapters and parts of the thesis are depicted in Figure 1.1.
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Chapter 2

Context and related work

This chapter introduces the main research �elds which have motivated the work described

in the thesis. The chapter provides a survey of the main concepts and technologies used. In

addition, some chapters include a section discussing works more closely related to that speci�c

chapter.

2.1. Scalability

Unfortunately, most de�nitions of the term scalability are not generic enough and often sub-

ject to interpretations. This term has been used in many research �elds with di�erent meanings,

but with the underlaying idea that something that is scalable can adapt itself adequately to

di�erent working conditions. [Hill, 1990] attempted to give a rigorous de�nition, in the context

of multiprocessor systems, but after failing in that purpose concludes his paper discouraging

from the use of that term. However, the research community has continued using the term.

According to [Bondi, 2000], �scalability is a desirable attribute of a network, system, or process.

The concept connotes the ability of a system to accommodate an increasing number of elements

or objects, to process growing volumes of work gracefully, and/or to be susceptible to enlarge-

ment�. Although not rigorous, this general de�nition is useful to get an idea of what is expected

from something that it is claimed to be scalable.

In this thesis, we use the traditional interpretation that the audio/video coding research

community has been using when refers to scalable bitstreams, but conveniently adapted to the

context of video summarizaton.

2.1.1. Time and space scalability in computational complexity

The theory of computational complexity studies the problems related to the resources re-

quired to execute some algorithm or task, such as memory requirements or execution time.

Thus, the time complexity is related with the number of steps required to solve a problem, and

it is usually referred to the size of the input data set. Similarly, the space complexity is related
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with the amount of space (e.g. memory) required during the execution of the algorithm. These

complexities are expressed using the �big O� notation which focuses on the growth rate rather

than on the exact values.

As an example, let us consider the problem of sorting an array of values. A large number of

methods have been proposed in order to perform that task faster and using less memory. One of

such methods is the insertion algorithm, which has an average time complexity of O
(
n2
)
and a

space complexity of O (1), meaning that the memory requirements are constant, independently

of the size of the array. However, the time required to sort the array grows quadratically, which

means that if the size of the array doubles, the average time required to sort it would be approxi-

mately four times longer. Another well-known sorting method is the Quicksort algorithm[Hoare,

1961; Sedgewick, 1978], which has an average time complexity of O (n log n) and a space com-

plexity of O (log n). Although both algorithms will need more time to sort a larger array, the

growth rate is slower in the case of the Quicksort, which means that it scales (in time) better

than the insertion method. However, the insertion algorithm scales better than the Quicksort in

space, as the latter requires more memory space while the former does not.

Clustering is another problem in which scalability is essential in many applications using

large data sets. Popular algorithms such as K -means[MacQueen, 1967] and hierarchical clus-

tering[Ward, 1963; Jain et al., 1999] have di�erent behaviours in terms of space and time com-

plexities. Hierarchical clustering has a time complexity of O
(
N3
)
(O
(
N2
)
in some implemen-

tations[Theodoridis and Koutroumbas, 2006]) while K -means has a time complexity of approx-

imately O (N). That makes K -means more suitable when fast clustering of large data sets is

required. However K -means also has several drawbacks. A number of algorithms especially

designed to process large data set have been proposed, such as BIRCH[Zhang et al., 1997b] and

O-cluster[Milenova and Campos, 2002].

2.1.2. Scalability in other �elds

As the amount of information grows, the problem of e�cient indexing and retrieval becomes

more and more di�cult. Databases have to deal with an increasing amount of transactions per

second, and scalable data management approaches are required[Delis and Roussopoulos, 1992;

Milliner et al., 1995]. Usually, the tables are partitioned and the workload is distributed in

several database servers. Web search engines are examples of large scale systems dealing with

huge amounts of information, processing millions of queries every day from millions of users. A

scalable distributed architecture has a decisive role in these systems[Brin and Page, 1998].

Other scenarios in which scalability is a desirable attribute are networked systems. A scalable

system should be able to cope with an increasing number of network nodes without a signi�cant

loss in performance. Examples of such systems are networked online games, in which low latency

and scalable architectures are essential to provide the players with the feeling of true real time

interactivity[Jiang et al., 2005]. Instant messaging and presence systems also need to to be able

to scale to millions of users[Schippers et al., 2010].
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Figure 2.1: Example of scalable video stream.

2.1.3. Scalability in video coding

In the �eld of video coding, the term scalability has been used with slightly di�erent meanings.

In a similar sense to that used in computational complexity, scalable algorithms have been

proposed to control the complexity of video encoding and decoding[Mietens et al., 2004; Yang

et al., 2005; Tan et al., 2010]. [Mietens et al., 2004] proposes a scalable architecture able to

reduce the complexity of MPEG encoding at the expense of some loss in quality. The scalability

is achieved by varying the number of computed Discrete Cosine Transform (DCT) coe�cients

and the number of evaluated motion vectors. Reduced complexity is very useful in mobile

devices in order to have an intelligent management of the limited resources by adjusting the

workload according to the device or the speci�c usage conditions. Similarly, a complexity scalable

architecture for H.264/AVC encoding is proposed in [Tan et al., 2010].

However, scalability has been also used in a di�erent sense as a property of video (or audio

[Brandenbrg, 1994; Homayounfar, 2003; Creusere, 2005; Kandadai and Creusere, 2008; Hansen

et al., 2009]) bitstreams. In that sense, scalability refers to �the removal of parts of the video

bitstream in order to adapt it to the various needs or preferences of end users as well as to

varying terminal capabilities or network conditions�[Schwarz et al., 2007]. Figure 2.1 shows an

example of a scalable bitstream. The bitstream contains a high resolution and high quality

version of a video sequence. The bitstream is structured into packets, which can be discarded

leading to di�erent versions of the same sequence but with di�erent resolution, quality or frame

rate. Scalable video coding has applications in �elds such as video adaptation and surveillance.

Although the popularity of scalable coding is relatively recent, some of the former video

coding standards, such as MPEG-2[ITU-T and ISO/IEC, 1994], H.263[ITU-T, 2000] and MPEG-

4[ITU-T and ISO/IEC, 1999], already included some coding tools for scalable coding. MPEG-2

already used the concept of layered coding. It provided tools for temporal, spatial and quality

(or SNR) scalability. MPEG-4 increases the number of tools for scalability, in addition to

temporal, spatial and quality. It includes �ne granularity scalability (FGS), which provides

a wide range of possible bitrates and qualities. FGS is achieved through bit-plane coding of

the transform coe�cients[Li, 2001]. H.264/AVC[Wiegand et al., 2003] supports, in principle,

temporal scalability, due to its �exibility to use any frame as reference, so scalable dependencies

can be de�ned in the coding prediction structure of frames.
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However, until the development of the scalable extension of H.264/AVC (also known as

SVC)[Wiegand et al., 2007], the scalable pro�les of previous standards were rarely used in prac-

tice. Some reasons can be found in the characteristics of traditional video systems, the loss in

coding e�ciency of some tools, such as those used for spatial and quality scalability, and the

availability of competing alternatives such as transcoding[Schwarz et al., 2007].

Wavelets have been also used extensively in image and video coding[Ohm, 1994; Hsiang and

Woods, 2001; Ohm et al., 2004; Ohm, 2005; Adami et al., 2007]. Wavelet transforms are usually

performed using subband decompositions, which make them very suitable for scalable coding.

The standard JPEG 2000[Christopoulos et al., 2000; ISO/IEC, 2004] for image coding is based

on wavelets providing functionalities such as spatial and quality (or SNR) scalability, and an

improved compression performance compared to the JPEG standard. For video coding, inter-

frame wavelet codecs [Hsiang and Woods, 2001; Ohm et al., 2004; Ohm, 2005] use hierarchical

subband decompositions to provide an embedded representation for spatial scalability. Temporal

scalability is achieved using a hierarchical subband decomposition of frames within each Group

of Pictures (GOP). This decomposition is combined with motion compensation[Ohm, 1994] in

order to improve the coding e�ciency. Depending on the order in which the temporal and spatial

transforms are combined, di�erent architectures have been proposed[Adami et al., 2007]. Dur-

ing the exploratory activity carried out by MPEG prior to the actual development of the SVC

standard, a large number of proposals were based on wavelets. However, the proposal adopted

as base model was an extension of H.264/AVC which showed better performance, in addition to

the advantage of being backward compatible with H.264/AVC.

2.2. Video coding

2.2.1. MPEG-1, MPEG-2 and MPEG-4

In the late 1980s, with the progressive digitization of communication technologies and the

maturity of compression techniques of digital image and video signals, international organizations

such as the ITU-T (with the name CCITT prior to 1993) and the ISO/IEC showed an interest

on the development of standards using those techniques. Following the success of the Joint

Photographic Experts Group (JPEG), which addressed coding of still images, the ISO/IEC

created in 1988 the Moving Pictures Experts Group (MPEG) to standarize the coding of digital

video. These standards de�ne the coded bitstream syntax and the decoding process, without

specifying any encoding functionality (e.g. motion estimation algorithms, rate control).

The �rst international standards for video coding were H.261[CCITT, 1992] of the CCITT

and MPEG-1[ITU-T and ISO/IEC, 1992] of the ISO/IEC, which use a hybrid coding scheme

in which motion compensation and transform coding are combined. This coding scheme, with

modi�cations, is still used in most video coding standards. In MPEG-1, the DCT is applied

independently to disjoint blocks of 8x8 pixels. The coe�cients are then quantized and encoded

using variable length codes (VLC). This method is valid for the so called intra pictures or I

pictures. The standard also uses the so called P and B pictures, which are encoded predictively
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using a previous picture as reference. A prediction of the new picture is obtained from the

reference picture using blocks (macroblocks) of 16x16 pixels that are displaced according to

motion vectors (also coded in the bitstream). The di�erence between the actual picture and its

prediction is also coded and transmitted. MPEG-1 was designed for storage of digital media

in CD-ROM at a rate of about 1.5 Mbps. Functionalities such as random access and fast

forward/reverse were already provided. Nowadays, MPEG-1 coded media can still be found

in many video repositories. Apart from video, MPEG-1 also standarized the coding of digital

audio[ITU-T and ISO/IEC, 1992]. MPEG-1 layer III (also known as MP3[Musmann, 2006]) is

probably the most successful audio coding format to date.

The MPEG-2 standard[ITU-T and ISO/IEC, 1994] was developed jointly by the ITU-T and

ISO/IEC, and can be seen as an extension of MPEG-1 to a much broader range of applications.

Based on the same coding algorithms of MPEG-1, MPEG-2 introduces new coding tools for

improved e�ciency, interlaced video and higher bitrates and resolutions than those MPEG-1 was

designed for. It also includes tools for spatial, temporal and quality scalable coding. MPEG-2

introduced the concept of pro�les, which specify di�erent sets of tools (usually including those

speci�ed in lower pro�les), and levels, which speci�es the range of parameters supported by that

implementation (e.g. frame size, frame rate)[Sikora, 1997]. The conformance of an encoder or

decoder implementation is speci�ed with the pro�le and level (e.g. MPEG-2 MP@ML, i.e. Main

Pro�le at Main Level). MPEG-2 is probably the most successful video coding standard to date

(maybe only comparable to the more recent H.264/AVC). MPEG-2 is widely used in digital

television and adopted by the corresponding broadcasting standards (e.g. DVB, ATSC). It is

also widely used in the distribution and visualization of video content in optical devices since

the DVD standard adopted MPEG-2 as main video coding format. Other consumer electronics,

such as digital video cameras, also use MPEG-2.

The next standarization e�ort was MPEG-4[Schafer, 1998; Battista et al., 1999, 2000], which

is a complex standard to code and represent audiovisual data for interactive applications and

services. The basic unit of MPEG-4 are the audiovisual objects, which are multiplexed and

combined into a scene. Each of these objects can be natural or synthetic audio or video. MPEG-

4 includes a large number of coding tools for natural video, natural audio, synthetic images and

video, synthetic audio, 3D meshes, etc. However, many tools remain almost unused due to the

lack of interest from industry or because the technologies to create the content are not mature

enough (e.g. reliable and accurate object segmentation). Regarding video coding, MPEG-4

Video[ITU-T and ISO/IEC, 1999] is similar to MPEG-2 including additional tools for improved

e�ciency and new tools for scalable coding[Li, 2001], and a bitstream syntax that supports both

rectangular and arbitrary shaped video objects.

2.2.2. H.264/MPEG-4 Advanced Video Coding

As most of the preceding standards, H.264/AVC[ITU-T and ISO/IEC, 2003a; Wiegand et al.,

2003; Sullivan and Wiegand, 2005] (released under the name H.264 by the ITU-T and MPEG-4
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Advanced Video Coding by the ISO/IEC) is also based on temporal prediction with block-

based transform coding. It uses the traditional types of slices, I, P and B, with intraframe and

interframe prediction. However, it includes major changes compared to previous standards and

new sets of coding tools which help to better exploit the redundancies in the sequence and to

signi�cantly improve the coding e�ciency.

The recommendation speci�es two di�erent layers: a video coding layer (VCL) which deals

with the e�cient representation of the samples and video content, and a network abstraction

layer (NAL) which deals with the format and header information in a suitable manner to be

used by a variety of network environments and storage media. The bitstream is composed of

a succession of NAL units, each of them containing payload and header sections with several

syntax elements. An access unit (AU) is a set of consecutive NAL units which results in exactly

one decoded picture.

H.264/AVC targets a broad range of applications[Wiegand and Sullivan, 2007] including ca-

ble, satellite and terrestrial broadcast, storage and distribution of high de�nition video, interac-

tive video applications, conversational video services and video distribution through wireless and

mobile networks. The industry has also shown a notable interest in the standard, including it in

a large variety of consumer electronic devices. Most digital television broadcast standards, such

as DVB, ATSC and ISDB have been updated to support H.264/AVC, and several countries are

already using this coding format for terrestrial digital television services. Other important appli-

cations include storage and distribution of video over online video repositories (e.g. YouTube),

in magnetic and optical devices (e.g. Blu-Ray disc system[Kelly et al., 2003; Kozuka, 2004],

TV video recorders) and mobile devices (e.g. iPod, iPhone). The recommendation has been

extended recently with additional functionalities to cover new applications, such as multiview

video coding[Smolic et al., 2007] and scalable video coding.

2.2.3. Scalable extension of H.264/MPEG-4 AVC

The recent SVC standard[Wiegand et al., 2007; Schwarz et al., 2007; Schwarz and Wien,

2008] is built as an extension of H.264/AVC, including new coding tools for the generation of

scalable bitstreams. SVC is based on a layered scheme, in which the bitstream is encoded into

a base layer, H.264/AVC compliant, and one or more enhancenment layers. Each enhancement

layer improves the video sequence in one or more of the scalability modes (mainly temporal,

spatial and quality).

Spatial scalability is achieved by using interlayer prediction from a lower spatial layer, in

addition to intralayer prediction mechanisms such as motion compensated prediction and intra

prediction. The same mechanism of interlayer prediction for spatial scalability can provide also

coarse grain scalability (CGS) for quality scalability. Quality scalability can be also achieved

using medium grain scalability (MGS), which provides quality re�nements inside the same spatial

or CGS layer. Temporal scalability in SVC is provided using hierarchical prediction structures,

already present in H.264/AVC. Each temporal enhancement layer increases the frame rate of the

decoded sequence.
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In SVC, versions at di�erent spatial and quality resolutions for a given instant form an AU,

and it can contain both base layer and enhancement layer NAL units. Each NAL unit belongs

to a speci�c spatial, temporal and quality layer. This information is stored in the header of the

NAL unit in the syntax elements dependency_id, temporal_id and quality_id. The length of

the NAL unit header in H.264/AVC is extended to include this information. In SVC, the base

layer is always H.264/AVC compatible. However, the extended NAL unit header would make

the bitstream non compliant with H.264/AVC. For these reason, NAL units at the base layer

have non extended headers, but they are preceded by additional NAL units containing only the

SVC related information. These units are called pre�x NAL units. If the stream is processed by

a H.264/AVC decoder, these pre�x NAL units and the other enhancement layer NAL units are

simply ignored, and the base layer can still be decoded.

Many scenarios can bene�t from the scalable properties of SVC, including video conferencing,

IPTV[Schierl et al., 2007], adaptive streaming[Wien et al., 2007], e�cient adaptation to hetero-

geneous terminals and networks[Schierl et al., 2007] and erosion storage of video surveillance

sequences (i.e. a lower quality/resolution version is kept for long-term storage after some legal

period in which the full quality and resolution version must be available)[Amon et al., 2007].

2.3. Video abstraction

Video is perhaps the type of content that requires more time to be consumed (i.e. visualized).

The duration of a clip may range from minutes to hours, and the only way that a user can access

to all the semantic information that the video is conveying is by its complete visualization.

However, in most applications this is not possible or extremely ine�cient. For that reason, a

surrogate or abstract is often used instead of the actual content. Notable examples of systems

using video abstracts are digital video libraries, such as YouTube, the Internet Archive or the

OpenVideo project[Marchionini et al., 2006]. Television networks often publish content in their

websites, such as the BBC, CNN, ABC, TVE. Search and browsing are much easier and e�cient

using abstracts than browsing actual video sequences. Usually, a single key image, the title and

a short description are used to represent a speci�c piece of content.

2.3.1. Trade-o� between information and browsing time

When an abstract is used as a surrogate of the content, the semantic information is dramati-

cally reduced. However the amount of time required to its visualization is dramatically reduced

too. In systems involving a large number of videos, it is very useful to present several abstracts

simultaneously so the user can quickly browse them. Usually, the less time required to visualize

an abstract, the less information or detail that it can convey. A reasonable trade-o� between

these two factors is desirable in a good abstract.

Some systems provide di�erent levels of abstraction so the user can access interactively to

more detailed abstracts. In order to illustrate this idea, we searched for the word shuttle in

the search interface of the Open Video project. Figure 2.2 shows the results using two di�erent
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(a) (b)

Figure 2.2: Search results for the word shuttle in the Open Video interface with di�erent layouts:
(a) keyframe and description, (b) keyframe and title. (Source: Reproduced with permission of
the Open Video project)

layouts. Figure 2.2a shows abstracts using mainly keyframe, title and description. The layout

shown in Figure 2.2b shows less detailed abstracts based on smaller keyframes and titles. The

�rst layout presents more information about each result. However, in approximately the same

area the �rst layout shows ten results, while the second one presents the 51 results. Thus, using

the second layout, the browsing of the results is faster, although with the �rst layout the user

has more information about each result.

In general, the trade-o� between information and browsing time will be also present in any

type of visual summary.

2.3.2. Modalities of video summaries

Although a keyframe with a title and an optional description is the most extended representa-

tion (see Figure 2.2), often a detailed abstraction is more convenient to represent the complexity

of video content, especially in the case of long videos. For that reason, other modalities of visual

abstractions have been proposed, in order to include more (audio)visual information. Although

the terms abstract and summary are often used interchangeably, in this thesis we will prefer the

term summary as a speci�c audiovisual abstract without any other associated information, such

as textual data.

A widely used representation is the image storyboard, which abstracts the content into a set
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of key images that are presented simultaneously. Figure 2.3 shows another example of the web

interface of the Open Video project. It depicts a storyboard summary in addition to a textual

description of the sequence. Compared to a single keyframe summary, a storyboard also shows

the temporal nature of video, providing some visual information about the events taking place in

the video sequence. Thus, the user can obtain a more detailed approximation of the underlying

content. However, following the discussion of the previous section, the storyboard is a more

detailed abstraction, but requires more browsing time and layout area than a single keyframe.

Figure 2.3: Example of summary (storyboard) in a digital library. (Source: Reproduced with
permission of the Open Video project)

When dealing with video content, often it is more useful and meaningful to present the

summary as a short video sequence, instead of independent frames. Segments provide dynamic

information about the events and actions in the video sequence, that isolated images cannot

provide. This representation, usually known as video skim, is obtained by selecting certain

segments of the original sequence. An additional advantage of video skims is that they can

include audio.

Between selecting single frames and selecting whole segments, there is still the possibility of

selecting a variable amount of frames per segment. A fast forward is obtained by accelerating the

sequence at a constant rate, which is useful to browse the content in a shorter time[Wildemuth

et al., 2003]. Figure 2.4 shows an example of how a fast forward summary is integrated in a

browsing interface.

Depending on how the summary is presented, the modalities are often classi�ed in two groups:

sequence-based summaries and pictorial summaries. The former includes video skims and fast

forwards, and they are visualized as video sequences, requiring video playing capabilities in the

browsing device. The later includes keyframes, storyboards and other representations such as

comic-like summaries[Calic et al., 2007] and video collages[Mei et al., 2009]. These summaries

consist of a set of representative frames which are combined in some spatial layout and presented

in a still format. Figure 2.5 shows how the source video sequence is transformed into video
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Figure 2.4: Example of fast forward summary and adapted versions of the content. (Source:
Reproduced with permission of the Open Video project)

Storyboard
Fast forward

Video skimComic-like

Pictorial (still images) Sequence (moving images)

Source video sequence

Figure 2.5: Modalities of video summaries.

summaries. It also depicts the di�erent modalities used in this thesis.

2.3.3. Approaches to video summarization

In general, a video summary is built from the source sequence selecting frames according to

some kind of semantic analysis of the content. Many algorithms have been proposed for keyframe

selection and video summarization, using di�erent criteria and abstraction levels. Recent sur-

veys[Kang, 2002; Truong and Venkatesh, 2007; Money and Agius, 2008b] provide comprehensive

classi�cations and reviews of summarization techniques.

At a low level, keyframe selection has been formulated as an optimization problem from both

the set theory [Chang et al., 1999] and the rate-distortion[Li et al., 2005] points of view. At a

higher semantic level, the sequence can be structured as a collection of shots, grouped into more

abstract units (e.g. scenes, chapters), obtaining a hierarchical representation of the content[Zhu

et al., 2003]. Many approaches use clustering algorithms to remove redundancy and select few
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representative keyframes according to the resulting clusters[Zhuang et al., 1998; Hanjalic and

Zhang, 1999; Gong and Liu, 2000; Mundur et al., 2006]. Usually, the set of keyframes is presented

to the user as a storyboard.

The dynamic nature of video skims often requires more complex analysis, and the use of ad-

ditional temporal features such as motion, audio or speech. If audio is included in the summary,

special care has to be taken in the boundaries. Several approaches have been used in video skim-

ming, including visual attention[Ma et al., 2005], image and audio analysis[Smith and Kanade,

1998; Li et al., 2006], highlight detection[Ekin et al., 2003] and high level semantics[Pfei�er et al.,

1996].

Fast forwards can be obtained easily just speeding up the sequence at a constant rate, with-

out any content analysis. Although easy and e�ective, constant fast forwards are limited and

therefore they are sometimes improved using a content-based approach. Often, there are parts

that can be sped up, because they do not convey relevant information, while more signi�cant

parts can be played at normal rate. Thus, a content-based fast forwarding can be obtained by

selecting frames based on some semantic clue. Motion activity and camera motion have been

used as clues to drive the selection of frames[Peker et al., 2001; Bescós et al., 2007]. [Peker et al.,

2006] proposes the use of face tracks as semantic clues.

In order to obtain better results, the domain of the content can be exploited by the summa-

rization method. For instance, sports video summarization tries to use prior knowledge, such

as the structure and characteristics of a speci�c sport game[Li and Ibrahim Sezan, 2001; Ekin

et al., 2003; Tjondronegoro et al., 2004; Zhao et al., 2006; Babaguchi et al., 2007]. Usually,

these approaches are based on the detection of some important events that must be included in

the summary (e.g. goals, end of game). Other typical scenarios are news[Zhang et al., 1997a;

Maybury et al., 2004; Lie and Lai, 2005; Peker et al., 2006; Damnjanovic et al., 2007], which is

a highly structured and edited video content, surveillance[Damnjanovic et al., 2007] and home

videos[Peng et al., 2008]. Additionally, metadata or auxiliar information can be provided for

higher level understanding of the content[Smith and Kanade, 1998; Fonseca and Pereira, 2004].

Recently, an intense research in rushes summarization has been motivated by the TRECVid

rushes summarization task[Over et al., 2007, 2008]. This type of content is signi�cantly di�erent

from other video sources, as rushes are unedited footage containing retakes, being much more

redundant than other types of video content. This content also contains undesirable junk seg-

ments such as blank frames, clapboards, etc. The participants in the task adapted their systems

to cope with the speci�c characteristics of this content[Dumont and Merialdo, 2007; Valdés and

Martínez, 2008; Ren and Jiang, 2009].

2.3.3.1. Evaluation of video summaries

Perhaps the most debatable aspect in video summarization is the evaluation of the results.

A consistent and widely accepted evaluation framework is still unavailable, and the evaluation

methodology varies from publication to publication. Not only the metrics used di�er, but also

the evaluation criteria.
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The most accepted methodology is the subjective evaluation or user study. A number of

subjects are required to visualize a number of video summaries and then they have to answer

some questions. These questions try to assess the agreement of the subject according to some

criteria, such as informativeness, pleasantness, coherence, concisness or ease of view[Ngo et al.,

2003; Zhu et al., 2004; Jansen et al., 2008]. Another variation is to pose some speci�c questions

about the objects and events in the video to estimate how well the summary covers the semantic

information in the video[Santini, 2007]. Sometimes the evaluation is more application-oriented,

and the subject is required to perform some speci�c task (e.g. search for a speci�c event or

object), while some parameters are measured (e.g. time required to perform the task, number

of clicks on the interface).

The main problem with subjective evaluations is that they must involve a large number of

human individuals and visualization tests to be statistically signi�cant, which leads to a very

time consuming task. Sometimes the users are required to view the original sequence before,

which also increases notably the time cost of the evaluation. Another major problem is that, once

the evaluation is performed, it is not replicable nor reusable. If the summarization algorithm is

modi�ed or changed, the evaluation has to be repeated. Subjective evaluations are also in�uenced

by other human factors which may not be easy to conceal, such as di�erent pro�les of users,

interface issues, fatigue in long sessions, etc.

Several objective metrics have been proposed for video summary evaluation. For storyboard

evaluation, a �delity (or error) metric can be computed from the set of keyframes and the

original sequence[Liu et al., 2004]. For video skims, the inclusion of relevant segments can be

measured (i.e. precision and recall), according to a manual annotated ground truth[Chang et al.,

2002; Ariki et al., 2003]. In order to avoid subjective biases in the ground truth, some works

use highlights or replays, produced by third parties, as reference. However, there is no clear

evidence that these metrics map well to the goodness of a summary from a subjective point of

view[Truong and Venkatesh, 2007].

The dataset used for the evaluation has a crucial impact on the results. The access to

suitable content to evaluate video summaries is often di�cult due to legal restrictions. Some

commonly used datasets are the rushes from the TRECVid evaluation. However, although

valuable information can be obtained, the main drawback is that rushes are much more redundant

than the video content used in most applications, which makes the results di�cult to extrapolate

to other domains.

Another problem of the evaluation of the TRECVid rushes summarization task is that it

cannot be replicated. It is not useful to evaluate and compare with other approaches. For that

reason, several approaches to automatic assessment of video summaries have been proposed re-

cently[Huang et al., 2004; Ren et al., 2008; Dumont and Merialdo, 2010; Valdés, 2010]. However,

these approaches are still only valid to compare approaches in the context of the previous dataset

(i.e. rushes).
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2.3.3.2. Other trends in video summarization

Most research in video summarization has been focused on the analysis of the video sequence,

with techniques trying to get some insight about the underlying content. However, current

research in video summarization also addresses new functionalities and enhanced applications.

Some examples are:

Customization and personalization. Di�erent users have di�erent preferences. Personal-

ized summaries are more e�ective, as they can provide each user with more interesting

information according to a personal pro�le[Tseng et al., 2004]. A customized summary

can be also generated from a query formulated by the user with the requirements for the

summary[Fonseca and Pereira, 2004].

Online summarization. As the processing delay of most summarization algorithms is very

large, summaries are usually generated o�ine. The objective of online summarization is to

process the data as it arrives, with no need for future data, generating the output summaries

with a minimal delay[Valdés, 2010]. In principle, some methods can be considered online,

such as those based on highlights[Ekin et al., 2003]. Camera information or motion activity

can be also used to generate summaries online, as they can be obtained without future

information[Bescós et al., 2007].

Hierarchical summaries. These approaches analyze the sequence and create a hierarchi-

cal abstract, structured with di�erent levels of detail, such as frames, shots, groups and

scenes[Zhu et al., 2003; Meessen et al., 2006]. Users can interact with the summary and

navigate through di�erent abstraction levels.

New types of presentation. Other appealing and intuitive formats have also been ex-

plored, such as comic-like summaries[Yeung and Yeo, 1997; Uchihashi et al., 1999; Calic

et al., 2007], video booklets[Zhu et al., 2005a], video collages[Mei et al., 2009] and video

trees[Jansen et al., 2008].

Multi-view and multi-document summarization. In multi-view video systems, many cam-

eras record the same scene simultaneously. Multi-view video summarization[Fu et al., 2010]

exploits the correlation among the di�erent views and presents a single summary with the

important events combining information from the di�erent views. A similar approach is

multi-document summarization[Wang and Merialdo, 2009], which tries to avoid presenting

redundant information of related video documents using a single multi-document summary

instead of several single-document summaries.

2.4. Video adaptation

2.4.1. Universal Multimedia Access and MPEG-21

Nowadays, multimedia information can be accessed from a diverse set of devices using het-

erogeneous networks. In this scenario, the concept of Universal Multimedia Access (UMA)[Vetro
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et al., 2003a; Vetro, 2004] proposes the access to multimedia information from any device and

independently from the usage conditions. However, this information must be provided in a

suitable format according to the usage environment (e.g. terminal, network, preferences). Con-

tent adaptation is a main requirement to e�ectively bring the content from service providers to

the actual users, handling the enormous variability of resource constraints such as bandwidth,

display capabilities or processing power[Chang and Vetro, 2005]. Especially important is the

case of mobile devices, such as PDAs and mobile phones, where other issues such as limited

computational resources and low power consumption requirements become very important.

The MPEG-21 standard[ITU-T and ISO/IEC, 2001b; Bormans et al., 2003; Tseng et al.,

2004] aims at developing a normative open framework for multimedia delivery and consumption,

based on the concepts of Digital Item (DI) as basic unit of transaction, and Users as entities that

interact with DIs. The objective is to enable a transparent and augmented use of multimedia

data across a wide range of networks and devices. The description of the usage environment

in which the multimedia content is consumed is essential to be able to adapt the content to

each case in the UMA paradigm. The Usage Environment Description (UED) tools of MPEG-

21 DIA[ITU-T and ISO/IEC, 2003b; Vetro, 2004; Vetro and Timmerer, 2005] can be used to

describe, among others, the terminal capabilities, network characteristics and user characteristics

with a standardized speci�cation. The following example shows how some basic, but important,

characteristics of the terminal and the network can be described using the TerminalCapability

and NetworkCharacteristics elements. It describes the context of a user who accesses multimedia

content using a PDA (with a resolution of 480x352 pixels) through a 384 kbps network.

<DIA>

<Description xsi:type="UsageEnvironmentPropertyType">

<!-- Network description -->

<UsageEnvironmentProperty xsi:type="NetworksType">

<Network xsi:type="NetworkType">

<NetworkCharacteristic xsi:type="NetworkConditionType"

maxCapacity="384000"/>

</Network>

</UsageEnvironmentProperty>

<!-- Terminal description -->

<UsageEnvironmentProperty xsi:type="TerminalsType">

<Terminal id="pda">

<TerminalCapability xsi:type="DisplaysType">

<Display>

<DisplayCapability xsi:type="DisplayCapabilityType">

<Mode>

<Resolution horizontal="480" vertical="320"/>

</Mode>

</DisplayCapability>

</Display>

</TerminalCapability>

22



2.4. Video adaptation

</Terminal>

</UsageEnvironmentProperty>

</Description>

</DIA>

2.4.2. Content-blind adaptation

Dealing with di�erent terminals and networks, it becomes evident that in constrained en-

vironments a high quality version is not suitable. Quite likely, such a version would not be

delivered properly (e.g. the network cannot ful�ll the bitrate requirements, the terminal cannot

decode high quality video) or the quality of the version is somehow wasted (e.g. the terminal has

a small display so the resolution of the video is reduced signi�cantly). Delivering a lower bitrate

version with a suitable resolution and frame rate is more useful and makes better use of the

limited resources. A �rst approach is content-blind adaptation, which deals with the adaptation

of the audiovisual signal (e.g. resolution downsampling, bitrate adaptation), but does not take

into account the content itself.

Considering a source bitstream and its adaptation and delivery as a modi�ed bitstream, the

whole process often implies decoding, adaptation to the target usage environment and encoding

of the adapted content. This adaptation method is known as transcoding[Ahmad et al., 2005],

and it can be computationally very demanding. Simpli�ed architectures have been proposed in

which encoding and decoding are not performed completely up to the pixel domain, reusing part

of the information (e.g. motion vectors, macroblock coding modes, DCT coe�cients) in order to

avoid complex processing[Acharya and Smith, 1998; Vetro et al., 2003b; Ahmad et al., 2005; Xin

et al., 2005; Lefol et al., 2006]. This architectures introduce some quality loss compared to the

full decoding-encoding cascade, although it can be controlled. As performing a transcoding every

time a user requests a video can be extremely demanding, an alternative is the preencoding of

several versions (i.e. variations), so the user (or the adaptation engine) can select only among the

available versions. Figure 2.4 shows an example of adapted versions available as o�ine variations

(e.g. MPEG-1, MPEG-2, etc.). The user then can decide which version is the most suitable

according to codec capabilities, display resolution, network capacity or storage requirements.

However, if the adaptation engine has knowledge about the terminal and network (e.g. using

the associated UED), it can deliver the most appropriate version, transparently to the user.

Another approach to content-blind adaptation is scalable coding. With scalable bitstreams

the problem of adaptation is addressed at the encoding stage, in a way that simpli�es the

adaptation process. A scalable video stream contains embedded versions of the source content

that can be decoded at di�erent resolutions, frame rates and qualities, simply selecting the

required parts of the bitstream. Thus, scalable video coding enables a very simple, fast and

�exible adaptation framework to a variety of terminals and networks, with di�erent capabilities

and characteristics.
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2.4.3. Content-based adaptation

In contrast to content-blind adaptation, content-based adaptation takes advantage of a cer-

tain knowledge of what is happening in the content (i.e. semantics) to perform a better adap-

tation. For example, in a video surveillance application, if the adaptation engine detects which

segments do not contain objects of interest (e.g. people, vehicles), it can remove them from the

adapted version in order to save resources. Note that what the adaptation engine is actually

doing is discarding useless information, creating thus a summary. Indeed, in [Chang and Vetro,

2005], video summarization is considered a special type of structural adaptation, in which the

summary is an adapted version of the original content.

Content-based adaptation, often also known as semantic adaptation, includes personaliza-

tion[Tseng et al., 2004; Maybury et al., 2004], video foveation[Lee and Bovik, 1999, 2000; Itti,

2004], region of interest[Bae et al., 2006; De Schrijver et al., 2007] and object-based adap-

tation[Cavallaro et al., 2005; Cheng et al., 2007]. The knowledge about the content can be

extracted automatically or provided as metadata[van Beek et al., 2003; Magalhaes and Pereira,

2004] from previous automatic analysis or manual annotation. This knowledge ranges from very

low level (e.g. shot changes, color and motion features) to high level (e.g. events, objects,

actions).

2.5. Summary and conclusions

This thesis involves frameworks and applications integrating several research �elds, namely

video summarization, adaptation, scalable approaches and video coding. In this chapter we

have provided a brief overview of these related technologies, along with some review of recent

works and trends. We have focused especially on the concept of scalability and its use and

interpretation across di�erent �elds. Scalable approaches in other �elds inspired many of the

ideas developed in this thesis.
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Chapter 3

Generation of video summaries by

bitstream extraction

One objective of this thesis is to develop new applications of video summarization where the

generation and delivery of the summary must be fast. Most works on video summarization do not

consider the problem of the generation of the bitstream as an integral part of the summarization

process, assuming that it is a non-critical o�ine process. Here we tackle the problem of e�ciency

in the generation of the bistream as an integral part of the summarization process.

Alternatively to conventional generation based on transcoding, this chapter presents a dif-

ferent approach based on bitstream extraction. The bitstream extraction framework is used

extensively along the rest of this thesis as the last stage of the summarization process. It is

based on processing directly the packets of the bitstream. Both transcoding and extraction

architectures are compared in terms of e�ciency and rate-distortion performance.

Part of this chapter is based on the publications: [Herranz and Martínez, 2009c, 2010b].

3.1. Related work on bitstream customization

Adaptation in the bitstream domain has been tackled and standarized at some extend in

the Bitstream Syntax Description (BSD) tools[Devillers et al., 2005] of MPEG-21 Digital Item

Adaptation (DIA), aimed to generic adaptation of coded sequences directly operating with the

bitstream. Particularly, the adaptation of H.264/AVC along the temporal axis using MPEG-21

BSDL is detailed in [De Schrijver et al., 2006]. [Gang et al., 2004] describes a system using frame

dropping based on the perceived motion energy. However, most of these works are used from a

content-blind adaptation point of view, where the bitstream extraction is guided by constraints

in the usage environment. If we consider video summaries as semantic constraints to be applied

to the source sequence, we can use the same framework for summarization. Following a similar

approach, a semantic adaptation framework is described in [De Bruyne et al., 2007], combining

BSD tools and semantic metadata to perform shot-based adaptation.
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In the context of a wavelet-based scalable video codec, [Herranz, 2007] uses an activity

measure to change dynamically the frame rate in order to obtain a content-driven fast forward

of the input sequence. The adaptation is performed e�ciently using bitstream extraction.

3.2. H.264/MPEG-4 AVC and hierarchical prediction struc-

tures

An H.264/AVC bitstream is composed by a succession of NAL units, each of them containing

a syntax structure. Some of such structures are the parameter sets. In particular, the Sequence

Parameter Set (SPS) and the Picture Parameter Set (PPS) are essential for the decoder in order

to be able to reconstruct the sequence. They convey important header information such as

frame resolution, pro�le, frame rate, etc. The information present in these parameter sets is

used by the decoder to decode all the pictures following them, although it is not �xed and can

be modi�ed during encoding if necessary, sending new parameter sets.

In H.264/AVC, a picture (frame or �eld) is divided into slices. Each slice contains a number

of macroblocks and it is usually packed into a NAL unit. An Access Unit (AU) is a set of

consecutive NAL units which results in exactly one decoded picture. For the sake of simplicity,

we will assume frame coding and one slice per frame, using interchangeably frame, picture, slice

and access unit. Frames are also structured in Groups of Pictures (GOPs) related by temporal

prediction, though frames from di�erent GOPs can be also related by prediction.

One of the key features of H.264/AVC to increase the compression performance is the possi-

bility of specifying much more �exible prediction structures. In prior standards, there is a strict

dependency between the ordering of frames for motion compensation prediction (coding order)

and the ordering for presentation. For instance, in MPEG-1/2/4, P frames are predicted only

from the preceding I or P frame, and B frames are not used as references and are predicted only

from the preceding and succeeding I or P frames (see Figure 3.1a). In contrast, in H.264/AVC

any frame can be marked as reference and used for prediction of subsequent frames. One of such

family of prediction structures are hierarchical prediction structures, where a set of frames is

coded at a base level (level 0) and at each step a new set of frames is coded using previously

coded frames. The process is repeated with additional sets of frames adding new levels to the

hierarchy. In [Schwarz et al., 2006], the impact of hierarchical prediction in the coding e�ciency

is studied and experimental results showed that these structures have a good coding e�ciency,

which usually improves when the length of the structure is increased. Hierarchical prediction

implicitly generates temporal scalable bitstreams. Each set of frames from each temporal level

forms a new enhancement layer. Thus, selecting only the part of the bitstream correspond-

ing to the frames of the base layer, a low frame rate version of the bitstream can be decoded,

and can be re�ned adding enhancement layers. Some typical hierarchical structures are those

using dyadic decompositions, where the number of frames is doubled with each enhancement

layer. Figures 3.1b and 3.1c show two typical hierarchical structures with 4 dyadic stages (3

enhancement layers):
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Figure 3.1: Prediction structures: (a) MPEG-2 structure, (b) hierarchical structure in
H.264/AVC using P frames (structural delay 0), (c) hierarchical structure in H.264/AVC us-
ing B frames (structural delay 8).

I0P3P2P3P1P3P2P3 (see Figure 3.1b). This structure does not use backward prediction,

being compliant with the H.264 baseline pro�le, as only I and P frames are necessary. All

the predictions are from past frames in display order, and thus the structural delay (as

the maximum di�erence between the presentation and decoding indexes of a frame) is 0

frames.

I0B3B2B3B1B3B2B3(I0) (see Figure 3.1c). This structure uses also backward prediction

and B frames are necessary. In this case, the structural delay is 8 frames but the coding

e�ciency is higher than in the previous structure.

In addition to arbitrary frame referencing, H.264/AVC also supports multi-frame motion

compensation, which means that several prior coded frames can be used as reference. In order

to handle the complexity of these new prediction structures, H.264/AVC speci�es the operation

of the decoded picture bu�er (DPB), which is a bu�er containing previously decoded frames

which can be used as references. Frames used as reference are signalled according to the current

state of the bu�er and the order in which decoded frames are stored in the bu�er. The DPB of

the decoder must replicate the status of the multiframe bu�er of the encoder, according to the

memory management control operations (MMCO) included in the bitstream.

An instantaneous decoding refresh (IDR) access unit is a special type of access unit containing
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Figure 3.2: Methods for the generation of summaries: (a) conventional approach, (b) proposed
approach for H.264/AVC bitstreams with online summarization analysis, (c) proposed approach
for H.264/AVC driven by metadata

an intracoded frame, but also signalling that the decoding of the subsequent frames does not

require any reference frame prior to that intracoded frame. Thus, the DPB can be �ushed and

the decoding process of subsequent frames is independent from previous ones. IDR access units

prevent from propagating errors due to the use of incorrectly decoded frames as reference. In

H.264/AVC, conventional I frames do not prevent completely from error propagation as erroneous

frames may remain in the DPB after an I frame, and eventually used as reference. IDR access

units are also important to provide random access points.

3.3. Summarization approach

Every summarization system has two di�erent stages: analysis and generation. The analysis

stage, using the term analysis in a wide sense, includes all the processes addressed to charac-

terize and to represent the content in order to remove semantic redundancies, and the selection

of the frames to be included in the summary. Feature extraction, shot boundary detection,

high level structuring, keyframe selection, personalization, clustering or optimization algorithms

are examples of operations that can be included in the analysis stage. Most works in video

summarization[Truong and Venkatesh, 2007] deal only with this stage, but the generation stage

is barely studied. However, in many scenarios, the generation of the bitstream is critical for

e�cient summarization. The generation stage obtains the coded bitstream of the summary from

the input bitstream, once the sequence has been analyzed and the frames to be included in the

summary have been determined. The analysis and generation stages are connected by some

kind of summary description with the frames to be included in the summary. Both analysis and

generation are not required to be done at the same time, as the summary description can be

stored as metadata.
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In general, the generation of the output summary requires the decoding of the frames to be

included and the subsequent encoding stage (see Figure 3.2a). Most of the frames are encoded

predictively from previous frames, and all the referenced frames must be also decoded prior to

decode a given frame. The whole transcoding process may have an important computational

cost, especially when the summary is in the form of a video sequence (e.g. video skim).

If the bitstream is encoded in such a way that the transcoding process can be replaced by

a simple selection of parts of the input bitstream, the generation of the summarized bitstream

will be much more e�cient. In that case, we use the term embedded summary to point out the

fact that the summary is already available in the input bitstream. An example of embedded

summaries is the case of uncompressed video (e.g. in YUV format), in which it is possible to select

each frame independently and build a new sequence just concatenating the values of the samples

of each selected frame. Another example is the case in which all the frames are intracoded (e.g.

MJPEG), as they can be decoded independently and easily concatenated operating directly over

the compressed format, perhaps with some minor header updating. In all of those cases, the

summary can still be described with the indexes of the frames of the source sequence that must

be included, and the frame is still the basic unit for summarization.

However, in most video coding formats, frames are coded in groups rather than individually,

in order to exploit temporal redundancy. For that reason, it is more convenient to refer the

output of the analysis stage to these groups rather than to single frames. The frame-based

model to describe summaries can still be used, but a number of constraints must be applied

depending on each case and the coding structure. For convenience, we introduce a di�erent

model to describe summaries, based on coding units as basic units for summarization - we use

the term summarization unit (SU) -. Particularly, we use temporal scales rather than individual

frames, which is specially suitable for H.264/AVC with hierarchical prediction structures.

The model relies on the assumption that the only allowed selection of frames in each SU is

the selection of those frames belonging to the same temporal level, and the selection of all the

frames in that level. The summary is described using a function called summarization constraint

(de�ned in the next section), which is the only information that the bitstream extractor needs

to generate the summary. The architecture with the main modules is shown in Figure 3.2b. The

analysis for summarization is completely detached from the generation, and it would even be

possible an architecture where analysis is performed previously (e.g. at encoding time) and the

description (i.e. the summarization constraint) is stored as metadata (see Figure 3.2c).

Selecting subsets of frames from the SUs rather than individual frames has the drawback of

losing the exact location of each frame in time. Therefore, in general, it is not possible to select

a given frame of the bitstream, but a neighbouring frame within the SU. However, as frames are

very similar to their neighbours (except when a shot change occurs), if the length of the SU is

small enough and the analysis stage is designed carefully to prevent from including problematic

units, there should not be any noticeable di�erence.
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3.4. Summarization model

In the following, we introduce the basic de�nitions and concepts of the extraction-oriented

summarization model, in the context of H.264/AVC with hierarchical prediction structures, but

that can be easily extended to other coding formats and coding structures.

3.4.1. Basic model for extraction

In H.264/AVC each frame is coded in an integer number of NAL units. For simplicity, we will

consider that each frame is coded into one slice, which in turn is a single NAL unit, and it also

corresponds to a single AU. However, building the summary as a concatenation of those NAL

units containing the frames of the summary will probably lead to a non-decodable bitstream, as

most of them are encoded predictively with respect to previous frames in the source bitstream.

The source sequence V with N frames can be described as a sequence of consecutive AUs

(each AU representing also a frame)

V = (AU0, AU1, . . . , AUn, . . . , AUN−1) (3.1)

where n ∈ IV ' = {0, 1, . . . , N − 1} is the frame index.
We de�ne the summarization unit (SU) Um =

(
AUn, AUn+1, . . . , AUn+LUm−1

)
(of length

LUm) as a set of consecutive AUs related by the prediction coding structure without references

to other AUs not belonging to the summarization unit. Thus, the source sequence V , can be

structured into M summarization units, denoting the set of indexes of the SUs of the sequence

as IV = {0, · · · ,M − 1}.
We de�ne an embedded summary S ⊆ V as a subset of the sequence V in which all the AUs

(once assembled into the bitstream) are decodable. It implies that any AU used as reference to

decode any other AU in S must also belong to S. The summary is then perfectly described by

the set IS ⊆ IV ′ , which contains the indexes of the AUs belonging to the summary.

Alternatively, an embedded summary can also be obtained from a subset of SUs, which

ultimately is another subset of AUs. As it is more convenient, we will use this approach to

analyze and generate the summary. In this case, the summary is described by the set IS ⊆ IV

with the indexes of the SUs belonging to the summary.

Figure 3.3 illustrates the concept of summarization units and embedded summaries. As it can

be seen, intracoded frames can be included directly in the summary, which is especially useful in

modalities based on isolated and separated images (e.g. storyboards). A closed GOP is a valid

summarization unit (see Figure 3.3). As shown in Figure 3.4a, for a given index m, multiple SUs

can be extracted. For convenience, we consider only two possibilities: the intracoded AU and

the whole unit. These two possibilities within the same coding unit can be considered implicitly

as two temporal scales or levels (note that with P and B frames is even possible to de�ne up to

three temporal levels without using hierarchical structures; see Figure 3.1a).

We say that two summarization units Ui and Uj are overlapped if they share one or more

AUs, i.e. Ui

⋂
Uj 6= ∅, i 6= j. Figure 3.3b shows an example of overlapped SUs in which the last
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Figure 3.3: Summarization units and embedded summaries: (a) closed GOP, (b) open GOP
(overlapped SUs).

33



CHAPTER 3. GENERATION OF VIDEO SUMMARIES BY BITSTREAM EXTRACTION

U
3
0

U 2
0

U
1
0

U0
0

U
3
1

U2
1

U
1
1

U0
1

I
0
0 P

3
1 P

2
2 P

3
3 P

1
4 P

3
5 P

2
6 P

3
7 I

0
8 P

3
9 P

2
10 P

3
11 P

1
12 P

3
13 P

2
14 P

3
15

L  = 83
0

L  = 42
0

L  = 21
0

0
0L  = 1

U
3
0

U2
0

U1
0

U0
0

U3
1

U
2
1

U
3
2

U
2
2

U
0
2

U
1
1

U1
2

U
0
1

I
0
0 B

3
1 B

2
2 B

3
3 B

1
4 B

3
5 B

2
6 B

3
7 I

0
16I

0
8 B

3
9 B

2
10 B

3
11 B

1
12 B

3
13 B

2
14 B

3
15

L  = 93
0

0
0L  = 1

L  = 52
0

L  = 31
0

(a) (b)

Figure 3.4: Examples of summarization units: (a) low delay structure with hierarchical P frames,
(b) overlapped SUs using hierarchical B frames (display order).

B frame of each GOP is predicted from the I frame of the next GOP. In that case, that I frame

must be included in order to be able to decode the B frame.

This model, although described in the context of H.264/AVC, is also valid for other coding

formats using conventional I, P and B frames, such as MPEG-1, MPEG-2 and MPEG-4. In

these coding formats, the I frame is a random access point where the decoder can resume the

decoding.

3.4.2. Extended model with hierarchical prediction structures

In the case of hierarchical coding structures, the previous model can be extended to an

arbitrary number of temporal levels. If the sequence V is encoded using hierarchical structures

with T temporal decompositions (which means T+1 temporal levels), an AU can be also denoted

as AU tn, where t ∈ {0, 1, . . . , T} is the temporal level. For simplicity, we assume that level 0 is

composed only of intracoded AUs.

For each temporal level, a subsampled version can be decoded, as there are no breaks in the

prediction chain (as shown in Figure 3.1). For this reason, there are several valid SUs for each

index m, depending on the temporal level. U t
m denotes the summarization unit at temporal

level t and index m. The SUs satisfy

U0
m ⊂ U1

m ⊂ · · · ⊂ U t
m ⊂ · · · ⊂ UT

m (3.2)

An example of SUs obtained from a low delay structure, such as the structure

I0P3P2P3P1P3P2P3, is shown in Figure 3.4a. As the �gure shows, the length of the SU de-

pends on the temporal level. The most important characteristic of this structure is that it does

not require the use of B frames. As a �rst advantage, it can be decoded by a baseline pro�le

decoder. A second advantage is that this structure only uses forward prediction, so it is suitable

for low delay applications, having a structural delay of 0 frames. And regarding the proposed
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Figure 3.5: Summarization units using hierarchical B frames (coding order).

model of SUs, it enables the structuring of the bitstream in non-overlapped SUs, which is also

very desirable. However, the main drawback of this structure is the lower compression e�ciency

compared to structures using B frames. Another drawback is the appearing of temporal artifacts

due to the di�erent prediction paths followed to code each frame of the structure[Schwarz et al.,

2007], accumulating prediction errors in a non-equal manner.

On the other hand, adding backward and bidirectional prediction to the coding structure

increases notably the compression e�ciency, and reduces signi�cantly temporal artifacts. It is

achieved using B frames in the prediction structure. A typical example of this structure providing

the same functionality as Figure 3.4a in terms of temporal scalability is I0B3B2B3B1B3B2B3(I0)

(see Figure 3.4b), where the length of the GOP is also of 8 frames, but also needs an additional

I frame from an adjacent GOP. Adding bidirectional prediction has e�ects on the coding order,

increasing the structural delay: frames used as references for backward prediction must be

coded before frames referencing them. Figure 3.5 shows the coding order of the frames from

the previous example. The two I frames must be coded before all the frames between them,

leading to a structural delay of 8 frames. SUs using B frames can be overlapped when they share

references from di�erent GOPs. Most of the resulting SUs from the previous example are always

overlapped, except for temporal level 0, where no prediction is used.

3.4.3. Other coding structures

Although the coding structures described in the previous subsections are the most used in

practice, H.264/AVC is �exible enough to allow many other possible structures. In contrast

to previous coding formats, H.264/AVC includes tools such as arbitrary referencing, multiframe

motion compensation and long term prediction that overcome some of the limitations of previous

coding formats and improve the coding e�ciency.

Compression e�ciency can be further improved using long term prediction in the base layer

instead of coding the frames only as I slices. The structure of Figure 3.6a is the result of replacing

a number of I frames of the base layer of Figure 3.4b by P frames, which are predicted from the

previous I or P frame in the base layer. Note that it will increase coding e�ciency, but it will

also increase the length of the SU. A larger SU brings a decreasing of the precision in selecting
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Figure 3.6: Other coding structures: (a) summarization unit using long term prediction, (b)
streaming oriented coding structure, (c) unsuitable coding structure.

single frames at a given instant. There is always a trade-o� between coding e�ciency with long

SUs and precision in selecting frames using this model. Anyhow, the tolerable maximum length

of the SUs depends on the context and the application.

In some cases, the complexity and variety of tools make di�cult to de�ne appropriate sum-

marization units, mainly because temporal prediction dependencies extend along the entire bit-

stream. In those cases, the proposed model is not applicable and partial or full transcoding

would be necessary to generate the summary. Figure 3.6b shows a coding structure with a single

intracoded frame at the beginning of the bitstream. It is impossible to decode any of the last

frames without having decoded the chain of I and P frames used as reference, only being able to

de�ne a single SU covering the entire bitstream. Such structure is not suitable for the proposed

summarization approach. Although that is the extreme case, very long coding structures are

sometimes used in streaming or broadcasting applications because the bitstream is not going to

be browsed. Few random access points (e.g. IDR access units) are provided only for error and

network resilience, but the SUs may be too long to build suitable summaries. Even if regular

intracoded frames are provided, in H.264/AVC it is possible to use coding structures with frames

bypassing I frames and using previous frames as references (I frames do not �ush the decoding

frame bu�er), as shown in Figure 3.6c. Such coding structures are not suitable either.

3.5. Summary description

3.5.1. Conventional model for transcoding

In order to emphasize the di�erence between transcoding and extraction, we �rst introduce

a simple model to describe summaries and to to guide a transcoding-based generation stage.
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Using a transcoder in the generation stage, the result of the analysis stage is a description of

the summary in terms of the input frames. For a sequence with N frames, any summary can be

described with the following binary function:

include (n) =

{
1 n ∈ summary
0 otherwise

n = 0, 1, . . . , N − 1 (3.3)

The transcoder decodes all the frames and for each of them decides either to include or to

discard it according to include (n). Every frame is independent of other frames so the resulting

sequence of frames is always valid and it can be encoded using a suitable format, even di�erent

from the input format.

3.5.2. Summarization constraint

Besides the concept of summarization unit, we also de�ne the summarization constraint as

a function tlevel (m) : IV → {−1, 0, . . . , T} with m ∈ IV . The summarization constraint is the

description of the summary in this model, guiding the extraction process. For each index m, the

constraint indicates the scale of Um that must be included in the summary, or if Um must not

be included at all (when the value is -1).

Finally, we de�ne (bitstream) extraction E (V ; IS′) as the operation in which the summariza-

tion units from the input sequence V are selected and combined according to the AU indexes

IS' to form the summary S. For convenience, bitstream extraction can be reformulated using

SUs and the summarization constraint tlevel (m) as

S = E (V ; tlevel (m)) =
(
Ũ0, Ũ1\Ũ0, . . . , Ũm\Ũm−1, . . . , ŨM−1\ŨM−2

)
(3.4)

where Ũm is the adapted SU and \ is the set di�erence operation. The notation Ũm\Ũm−1

means that for the index m, all the AUs in Ũm must be included in the summary except those

that were included previously in Ũm−1, in order to avoid duplicated AUs in overlapped SUs.

The adapted summarization unit Ũm is obtained as

Ũm = Ũm (tlevel (m) ;Um) =

{
U tlevel(m)

m tlevel (m) ≥ 0

∅ tlevel (m) = −1
(3.5)

Note that (3.4) provides a method to generate summaries, taking advantage of the hierarchi-

cal arrangement into temporal levels. The process of extraction guided by the summarization

constraint is depicted in Figure 3.7. The potential summaries that can be generated with this

approach are a subset of the potential summaries generated using arbitrary frames, as the former

are constrained by the coding structure. Nevertheless, this constraint is not very important in

practical applications using common hierarchical structures with reasonable SU length and the

analysis designed conveniently. Designing the analysis stage properly and adapted to this model

helps to avoid possible artifacts. For instance, the analysis stage can detect shot boundaries in

order to avoid the inclusion of those SUs having frames from di�erent shots, which can lead to
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Figure 3.7: Bitstream adaptation guided by summarization constraint.

artifacts in some cases.

In the case of non scalable structures, a virtual hierarchy can be de�ned using the intracoded

frames as level 0 and the whole coding unit as level 1. In the case of joint use of I, P and B

frames, a three level hierarchy can be de�ned, using the P frames as intermediate level (as in

Figure 3.1a).

3.5.3. Modalities of video summaries

There are di�erent video summarization modalities that can be easily adapted to the pro-

posed model. Depending on the values that tlevel (m) takes for the SUs, we distinguish several

modalities of video summaries (see Figure 3.8):

Storyboard : built by selecting a few independent and separated frames to represent the

content in few images. Within the proposed model, for convenience, we restrict the po-

tential selected frames to be I frames (belonging to the lowest temporal level). We also

assume that the lower temporal resolution has only one I frame. There is no noticeable dif-

ference in practical applications, and actually most storyboard summarization algorithms

use temporal subsampling to speed up the analysis. With this assumptions, the storyboard

is characterized as follows

tlevel (m) =

{
0 keyframe in Um

−1 otherwise
(3.6)

Video skim: the adapted sequence is shorter than the input sequence, obtained by select-

ing certain segments of the input sequence. In this case, the valid options for each SU are

either not constraining its temporal level or skipping it. Thus, if the maximum temporal

level is T the video skim can be characterized as follows

tlevel (m) =

{
T Um ∈ skim
−1 otherwise

(3.7)

Fast forward : this modality is based on the acceleration and deceleration of the sequence,
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Figure 3.8: Summarization curves (left) and frame selection (right) for di�erent types of video
summarization.

driven by a certain content based criterion, in order to visualize it in a shorter time. In this

case, the number of frames of each SU is variable depending on the required frame rate at

each SU. Thus, there are no constraints on the values of tlevel (m). Frames are presented

with a constant frame rate, with a constant interval between frames τm = τfforward,

usually the same as in the source sequence.

Frame dropping : similarly to the previous modality, the number of frames of each SU varies

according to some analysis of the semantic or perceptual relevance of the frames, dropping

those considered less relevant than the others, in order to accommodate the bitstream

to constrained environments. There are no constraints on the values of tlevel (m), but

the duration of the sequence is preserved, following the timing of the source sequence.

The interval between frames varies with the temporal level tlevel (m) selected, keeping

the duration of each SU constant. In the common case of dyadic structures the interval

between frames can be computed as

τm = τsource2
T−t (3.8)

Note that the last one is not strictly a summary, as the duration of the sequence is preserved.

However, content based frame dropping is used frequently for adaptation purposes and can be

included easily in the proposed model, as a fast playback with modi�ed timing.

3.6. Generation of the summary

3.6.1. Architecture based on transcoding

Transcoding is frequently used in (non content-based) bitstream adaptation to constrained bi-

trate conditions. Figure 3.9 shows a conventional summarization architecture using a transcoder

for the generation stage. A transcoder can be easily obtained from the cascade of a decoder

and an encoder. This is the approach used in most of video summarization systems, because
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Figure 3.9: Summarization architecture using transcoding (decoder-encoder cascade).

of its straightforward implementation from general-purpose decoders and encoders. Besides, it

is simple to separate the analysis from the generation, as the analysis stage usually creates a

summary description referred to uncompressed frames as basic units. However, the information

in the coded bitstream (e.g. motion vectors, coding modes, ...) could be still exploited for faster

analysis.

The transcoder shown in Figure 3.9 has an architecture with all the stages of a conventional

decoder (entropy decoding, dequantization, inverse transform and motion compensation), and a

conventional closed-loop encoder (motion estimation and compensation, transform, quantization

and entropy coding). The link between them is the frame selector, which is also the entry point

for summarization. After a frame with index n is decoded, the frame selector discards it if

include (n) = 0 according to the summary description. Thus, only frames belonging to the

summary are encoded into the summary bitstream.

Summary generation using transcoding is very ine�cient, specially for long summaries, such

as video skims. The complexity of the coding format also in�uences the complexity of the

generation (e.g. H.264/AVC is usually much more complex than MPEG-2). The generation

delay depends on these factors and the number of frames to be included in the summary. The

most demanding part of the whole process is motion estimation. However, limited search ranges

or simpli�ed search algorithms, used to speed up encoding, lead to a degradation of the rate-

distortion performance. Additionally, many transcoding architectures have been proposed in

this context[Xin et al., 2005; Lefol et al., 2007; De Cock et al., 2007], trading o� rate-distortion

performance and e�ciency.

Besides ine�ciency, transcoding su�ers from an inherent drawback related to the additional

quantization (Q2) introduced by the transcoder. A �rst loss of information occurred before the

transcoding, when the input sequence was lossy encoded with a �rst quantization (Q1). When

comparing transcoding architectures, the decoder-encoder cascade with full range search is the
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optimal architecture which gives the best end to end rate-distortion performance, and it is used

as reference in most transcoding comparisons[Xin et al., 2005; De Cock et al., 2007; Lefol et al.,

2007].

3.6.2. Architecture based on extraction

If the coding format is the same for both input and output bitstreams, an alternative approach

for the generation of the bitstream of the summary is bitstream extraction (see Figure 3.10).

Similar to the extraction approach used in scalable bitstream adaptation guided by context con-

straints, the extraction for summarization is guided by the summary description. The whole

transcoder of Figure 3.9 is replaced by an extractor which basically consists of a packet selec-

tor. The packet selector selects only those packets containing the required frames, i.e. AUs in

H.264/AVC, and discards those not required.

This approach has two inherent advantages. Extraction is a very simple operation which

requires few resources and that can be done very e�ciently. Besides, the frames themselves are

not modi�ed, so the quality of each frame is the same as in the input bitstream. Particularly,

compared to transcoding, there is no quality degradation due to an additional quantization stage.

However, as discussed in Section 3.4, the use of extraction is not always possible if the coding

structure does not satisfy some requirements. If extraction is not possible, transcoding is required

to generate the summary.

Bitstream extraction consists basically of the copy of chunks of the input bitstream to the

output bitstream. However, the output bitstream may be non-decodable by a compliant decoder,

due to mismatches between the expected and the actual decoding status. It must be emphasized

that the original bitstream was encoded using prediction dependencies according to the frames

encoded previously. When the bitstream of the summary is decoded, all the syntax elements

are referred to the decoding status of the original bitstream, which is di�erent from the actual

decoding status, as some parts were removed. For this reason, the extractor must also ensure

that the decoding status, and particularly the DPB, is valid, �xing headers as appropriate, so

the bitstream can be decoded correctly. In the following, we describe two mechanisms to obtain

a decodable bitstream, in the context of H.264/AVC.
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Figure 3.11: Low level extraction process with IDR access units (no header updating).

3.6.2.1. Extraction using IDR access units

In H.264/AVC, the DPB stores decoded frames that may be used as references by following

AUs. The indexes of the references signalled in the header are referred to the current status of

the DPB, according to the decoding process, that includes and discards frames from the bu�er

dynamically. In general, discarding some SUs introduces discontinuities in the status of the

DPB.

Using an IDR access unit as the �rst access unit of a SU is the simplest mechanism to

obtain a valid bitstream that can be decoded correctly. The IDR access unit �ushes the DPB so

the decoding of each SU begins with an empty DPB. The numbering of frames for referencing

purposes (e.g. syntax element frame_num) must be consistent with the new sequence of AUs.

With this mechanism, the numbering is also reset at the beginning of each SU, so the sequence

can be decoded properly starting from any SU. Thus, the status of the decoder for a given AU

is the same for both the source and summary bitstreams. The use of IDR access units in SUs

leads to non-overlapped SU.

The process of extraction in this case is depicted in Figure 3.11. It shows an example of

IDR based SUs of length 4, with AUs shown in coding order. Firstly, the parameter sets are

copied without any modi�cation to the output bitstream. After that, NAL units encoding AUs

belonging to the summary are included, while the rest are discarded. In the example, the

summary begins with IDR0
64, which is the �rst AU included. After that AU, the rest of the AUs

are included, conforming a valid bitstream. Note that no modi�cation is done to any NAL unit,

and thus the extraction process is extremely simple in this case.

3.6.2.2. Extraction using I access units

In contrast to the previous case, I access units do not reset the status of the decoder. The

DPB still contains previous frames, some of them marked as reference, and the numbering is not

reset. For this reason, I access units do not ensure that the status of the decoder at a given AU

be the same for both the source and summary bitstreams. Therefore, headers must be checked

and updated in order to correct the discontinuities in the decoding status due to those AUs

removed from the bitstream.

Whenever a gap is found in the decoding process, in order to preserve a valid status of the

DPB, the extractor updates the header of NAL units (see Figure 3.12 for an example of the
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extraction process and Figure 3.13 for header modi�cations) in two cases:

Transformation of I access units to IDR access units. In H.264/AVC, the �rst AU must be

an IDR access unit. If the �rst AU is removed from the bitstream, it will not be compliant

anymore. Therefore, the very �rst I access unit must be converted to an IDR access unit,

which implies a major update of the header, changing the values of nal_reference_idc,

nal_unit_type, and removing some syntax elements while including others (see Fig-

ure 3.13). The value of frame_num may be also required to be updated, according to

the numbering mechanism speci�ed in the standard[ITU-T and ISO/IEC, 2003a]. Apart

from the �rst frame, whenever a new gap appears, the �rst AU after the gap must be also

converted to an IDR access unit.

Updating of MMCO commands. MMCO commands control how the references are man-

aged in the multiframe bu�er. These commands are coded in the header and are referred

to the current status of the bu�er. A reference frame in the multiframe bu�er is identi�ed

by the value of picNumX, which is derived di�erentially from the current frame (picture)

number as[ITU-T and ISO/IEC, 2003a]:

picNumX = CurrP icNum− (difference_of_pic_nums_minus1 + 1) (3.9)

where difference_of_pic_nums_minus1 is the value of the syntax ele-

ment difference_of_pic_nums_minus1 of the MMCO command and

CurrP icNum is the value of the syntax element frame_num of the current

frame. Both MMCO commands and frame numbers must be �xed, updat-

ing the value of memory_management_control_operation and the value of

difference_of_pic_nums_minus1.

In the example shown in Figure 3.12, the SU consists of a four frame dyadic coding unit

I0B2B1B2(I0), which is an open GOP (overlapped SUs). Both I0 and B1are used as references,

while the two B2 are not. According to the results of the analysis stage, the �rst frame of the sum-

mary (a video skim in this example) is I064. As the SU is overlapped, it requires also I068 to decode

the rest of the frames, so these two frames must be included �rst. As shown in Figure 3.13, the

header of I064 is modi�ed to convert the frame to an IDR access unit, IDR0
64. As the frame B

1
62,

used as reference in the source bitstream, is not included in the summary bitstream, the value
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NALU len 19, nal_ref_idc 3, nal_unit_type 7 (SPS)

NALU len 4, nal_ref_idc 3, nal_unit_type 8 (PPS)

NALU len 1024, nal_reference_idc 3, nal_unit_type 5 (IDR)

NALU len 1189, nal_reference_idc 2, nal_unit_type 1 (I)

...............

NALU len 29985, nal_ref_idc 2, nal_unit_type 1 (I)
first_mb_in_slice 0
slice_type 7
pic_parameter_set_id 0
frame_num 31

pic_order_cnt_lsb 128

adaptive_ref_pic_buffering_flag 1
memory_management_control_operation 1
difference_of_pic_nums_minus1 0
memory_management_control_operation 0
slice_qp_delta 2

NALU len 7429, nal_ref_idc 2, nal_unit_type 1 (B)

NALU len 6608, nal_ref_idc 0, nal_unit_type 1 (B)

NALU len 7607, nal_ref_idc 0, nal_unit_type 1 (B)

NALU len 28168, nal_ref_idc 2, nal_unit_type 1 (I)
first_mb_in_slice 0
slice_type 7
pic_parameter_set_id 0
frame_num 33
pic_order_cnt_lsb 136
adaptive_ref_pic_buffering_flag 1
memory_management_control_operation 1
difference_of_pic_nums_minus1 0
memory_management_control_operation 0
slice_qp_delta 2

NALU len 9238, nal_ref_idc 2, nal_unit_type 1 (B)
first_mb_in_slice 0
slice_type 6
pic_parameter_set_id 0
frame_num 34
pic_order_cnt_lsb 132
direct_spatial_mv_pred_flag 1
num_ref_idx_override_flag 1
num_ref_idx_l0_active_minus1 0
num_ref_idx_l1_active_minus1 0
ref_pic_list_reordering_flag_l0 0
ref_pic_list_reordering_flag_l1 0
adaptive_ref_pic_buffering_flag 1
memory_management_control_operation 1
difference_of_pic_nums_minus1 2
memory_management_control_operation 0
slice_qp_delta 3

NALU len 10217, nal_ref_idc 0, nal_unit_type 1 (B)

NALU len 4691, nal_ref_idc 0, nal_unit_type 1 (B)

NALU len 28697, nal_ref_idc 2, nal_unit_type 1 (I)
...............

NALU len 19, nal_ref_idc 3, nal_unit_type 7 (SPS)

NALU len 4, nal_ref_idc 3, nal_unit_type 8 (PPS)

NALU len 29984, nal_reference_idc 3, nal_unit_type 5 (IDR)
first_mb_in_slice 0
slice_type 7
pic_parameter_set_id 0
frame_num 32
idr_pic_id 0
pic_order_cnt_lsb 128
no_output_of_prior_pics_flag 1
long_term_reference_flag 0

slice_qp_delta 2

NALU len 28169, nal_ref_idc 2, nal_unit_type 1 (I)
first_mb_in_slice 0
slice_type 7
pic_parameter_set_id 0
frame_num 33
pic_order_cnt_lsb 136
adaptive_ref_pic_buffering_flag 0

slice_qp_delta 2

NALU len 9239, nal_ref_idc 2, nal_unit_type 1 (B)
first_mb_in_slice 0
slice_type 6
pic_parameter_set_id 0
frame_num 34
pic_order_cnt_lsb 132
direct_spatial_mv_pred_flag 1
num_ref_idx_override_flag 1
num_ref_idx_l0_active_minus1 0
num_ref_idx_l1_active_minus1 0
ref_pic_list_reordering_flag_l0 0
ref_pic_list_reordering_flag_l1 0
adaptive_ref_pic_buffering_flag 1
memory_management_control_operation 1
difference_of_pic_nums_minus1 1
memory_management_control_operation 0
slice_qp_delta 3

NALU len 10217, nal_ref_idc 0, nal_unit_type 1 (B)

NALU len 4691, nal_ref_idc 0, nal_unit_type 1 (B)

NALU len 28697, nal_ref_idc 2, nal_unit_type 1 (I)
...............

Figure 3.13: Example of modi�cation of headers in the extraction process. Left: original bit-
stream, right: summary bitstream

of frame_num of IDR0
64 must be updated from 31 to 32 to preserve the continuity of the num-

bering of references. The MMCO command is also removed from I068, as it is no longer required

because the frame it is referred to is no longer in the bu�er. The header of B1
66 is also updated

to obtain the correct picNumX according to (3.9) (difference_of_pic_nums_minus1 is

changed from 2 to 1). The status of the frames used as references in the multiframe bu�er

for both the source and summary bitstreams are shown in Table 3.1, along with the MMCO

commands used. Note the di�erences between the status of the decoder for each AU in both

cases. While containing the same visual data, headers must be referred to the each particular

decoding status.

The resulting bitstream is correctly decoded by the JM reference decoder[Tourapis et al.,

2007]. However, headers may be further modi�ed if required, for example, to number summary

frames starting from 0, or to change dynamically the frame rate.
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Frame (frame_num) Reference di� MMCO command References in DPB

B2
59(31) No I060(29) B

1
58(30)

I064(31) Yes 0 B1
58(30=31-(0+1)) marked as �unused for ref� I060(29) I

0
64(31)

B1
62(32) Yes 2 I060(29=32-(2+1)) marked as �unused for ref� I064(31) B

1
62(32)

B2
61(33) No I064(31) B

1
62(32)

B2
63(33) No I064(31) B

1
62(32)

I068(33) Yes 0 B1
62(32=33-(0+1)) marked as �unused for ref� I064(31) I

0
68(33)

B1
66(34) Yes 2 I064(31=34-(2+1)) marked as �unused for ref� I068(33) B

1
66(34)

B2
65(35) No I068(33) B

1
66(34)

I072(35) Yes 0 B1
58(34=35-(0+1)) marked as �unused for ref� I068(33) I

01
72(35)

B1
70(36) Yes 2 I068(33=36-(2+1)) marked as �unused for ref� I072(35) B

1
70(36)

(a)
Frame (frame_num) Reference di� MMCO command References in DPB

IDR0
64(32) Yes (Flush bu�er) IDR0

64(32)
I068(33) Yes IDR0

64(32) I
0
68(33)

B1
66(34) Yes 1 IDR0

64(32=34-(1+1)) marked as �unused for ref� I068(33) B
1
66(34)

B2
65(35) No I068(33) B

1
66(34)

B2
67(35) No I068(33) B

1
66(34)

I072(35) Yes 0 B1
58(34=35-(0+1)) marked as �unused for ref� I068(33) I

01
72(35)

B1
70(36) Yes 2 I068(33=36-(2+1)) marked as �unused for ref� I072(35) B

1
70(36)

(b)

Table 3.1: Detail of the DPB management with I access units: (a) input bitstream, (b) summary
bitstream.

3.6.2.3. Presentation schemes

The way the frames in a summary are presented in the terminal can be modi�ed in order

to obtain a di�erent e�ect. For instance, it can be used to control the delay between slides if

the set of frames in the summary is presented as a slideshow. The di�erence between a content-

based fast forward and content-based frame dropping is also the presentation scheme. Thus, the

possibility of adjusting the presentation of the frames is also a desirable feature and it should

be also considered in the generation of the summary.

We consider two presentation schemes: constant frame rate and variable frame rate. In a

constant frame rate presentation, each frame is presented after the previous one with the same

constant delay. On the other hand, if the frame rate varies throughout the sequence, the delay

between frames also varies, and must be signalled in the bitstream. Constant frame rate does

not require any special processing, unless specifying a di�erent frame rate, if necessary, at the

beginning of the summarized bitstream.

Although variable frame rate can be managed at the system layer, we propose two methods

to achieve such variable frame rate behaviour at the coding layer (see Figure 3.14):

1. Signalling the changes of frame rate. A SPS is required to be sent before each frame with

a frame rate di�erent from the previous frame. The value of num_units_in_tick and

time_scale are set according to the frame rate. Note that only a single SPS, modi�ed

dynamically, is necessary and the identi�er seq_parameter_set_id in the slice header

is not changed. This method can �t to a larger variation of frame rates.

2. Using a prede�ned set of SPSs. If the possible frame rates are restricted to a �xed

number of possibilities K, it would be more useful to de�ne K SPSs with di�erent

45



CHAPTER 3. GENERATION OF VIDEO SUMMARIES BY BITSTREAM EXTRACTION

τ0

U 0
0 U1

1 U1
2 U 0

3

τ1 τ1 τ1 τ1 τ0

τ

U1
0 U1

1 U1
2 U1

3

τ τ τ τ τ τ τ

U0
0 U1

1 U1
2 U0

3

τ τ τ τ τ τ

SPS_0
num_units_in_tick=10

PPS_0
sps_id=0

I
pps_id=0

I
pps_id=0

P
pps_id=0

I
pps_id=0

P
pps_id=0

I
pps_id=0

SPS_0
num_units_in_tick=10

PPS_0
sps_id=0

I
pps_id=0

P
pps_id=0

I
pps_id=0

P
pps_id=0

I
pps_id=0

P
pps_id=0

I
pps_id=0

P
pps_id=0

SPS_0
num_units_in_tick=20

PPS_0
sps_id=0

I
pps_id=0

I
pps_id=1

P
pps_id=1

SPS_1
num_units_in_tick=10

PPS_1
sps_id=1

I
pps_id=1

P
pps_id=1

I
pps_id=0

SPS_0
num_units_in_tick=20

PPS_0
sps_id=0

I
pps_id=0

I
pps_id=0

P
pps_id=0

I
pps_id=0

P
pps_id=0

I
pps_id=0

SPS_0
num_units_in_tick=10

SPS_0
num_units_in_tick=20

Source
sequence

Constant
frame rate

Variable
frame rate (1)
Variable
frame rate (2)

τ=10

τ1=20      τ0=10

Figure 3.14: Constant and variable frame rate presentation schemes.

values of num_units_in_tick and time_scale and include them at the begin-

ning of the bitstream, with seq_parameter_set_id varying from 0 to K − 1. It

will be necessary to send K PPSs, each of them referring to one of the SPSs using

pic_parameter_set_id=seq_parameter_set_id from 0 to K-1. In each header

slice, the value of pic_parameter_set_id needs to be modi�ed to use the correspond-

ing SPS via the PPS.

3.7. Experimental evaluation

The proposed generation framework was tested in several experiments[Herranz and Martínez,

2009c, 2010b], including e�ciency, subjective evaluations and rate-distortion performance.

3.7.1. Summarization algorithms

In order to study properly the generation framework, we used some algorithms as analysis

stage for testing purposes. We describe some simple and widely used summarization techniques,

which have been adapted to �t into the proposed framework and representation model. It must

be noted that the analysis itself is outside of the scope of this chapter, which is focused on

the representation and generation of the summaries. More complex and speci�c content-based

analysis algorithms could be used to obtain better summaries in terms of semantic coverage.

The algorithms were tested with the sequence Sun-Earth Connection, a video downloaded

from the Open Video Project's repository[Marchionini et al., 2006] in MPEG-2 format, and

transcoded to H.264/AVC using the JM 12.4 reference implementation[Tourapis et al., 2007].

The sequence has 11593 frames of 720x480 pixels at 30 frames per second. In order to study the

in�uence of the GOP length and frame type, the sequence was encoded with di�erent hierarchical

structures, which di�er in the GOP length (from 1 to 32 frames) and in the use of either P or

B access units. In the experiments we assume a base layer with only IDR access units , so each

GOP corresponds to a SU. In the case of B access units, I access units are used, in order to have

overlapped SUs.
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Figure 3.15: Summarization constraint in the case of a 7 keyframes storyboard with a SU length
of 8 frames.

Figure 3.16: Examples of storyboards with 4, 7 and 16 keyframes.

3.7.1.1. Image storyboard

Storyboards are represented by few independent frames, trying to cover the semantics in

the sequence. For this reason, a widely used criterion is the distance between frames in some

feature space. Clustering algorithms have been successfully used to group similar frames into

clusters. Then, a few of them are selected as representative of the clusters [Mundur et al., 2006;

Zhuang et al., 1998] to build the storyboard summary. In order to test the proposed framework

in this case, a simple clustering approach is used, based on the K-means algorithm. Each

frame is decoded in the YUV color space and divided into 2x2 subimages in order to have some

information about the spatial distribution of colours what can not be done with only one global

feature vector. Each subimage is represented with a 32-bin histogram for the Y component and

two 8-bin histograms for the U and V components. Each frame is then represented by a 192-D

feature vector. The feature vectors from all the frames are clustered using theK-means algorithm

with the Euclidean distance, resulting in K centroids. For each centroid, the closest frame from

its cluster is selected as keyframe. Temporal subsampling is often used in summarization to

reduce the computational burden without degrading the quality of the summaries[Mundur et al.,

2006], due to the redundancies between consecutive frames. This temporal subsampling can be

achieved in the summarization model processing only frames at the lowest temporal resolution

of the bitstream (U0
m ). Besides, selecting the same temporal level in analysis and in adaptation

prevents from problems derived from the lack of exact temporal localization in the model (e.g.

when shot changes occur in a SU). The output of the algorithm for 10 clusters corresponds to

the summarization constraint shown in Figure 3.15.

The resulting summaries for di�erent values of K are shown in Figure 3.16.
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3.7.1.2. Video skim

One of the most interesting summarization applications is the generation of video skims, sim-

ply selecting video segments according to some semantic criteria. Depending on the application,

the selection technique can vary, for instance, from video trailers with the most active parts of

the sequence to video skims with the parts with a given person. In this experiment, we assume

that the segments with more semantic relevance are those with a person speaking. This criterion

may be useful in many domains, such as broadcast video programs[Peker et al., 2006].

The face detection method of Viola and Jones[Viola and Jones, 2001] is used to mark the

frames with at least one face detected (see Figure 3.17a). The minimum size of the face is

set to 88x72 pixels. If the number of frames with a face detected in a SU is greater than the

number of frames without any detection, the SU is marked to be included in the video skim. In

order to cope with false detection and to reduce undesirable short segments or gaps, a moving

median �lter is used to obtain a smoother curve. In the experiments we used a window of 11

frames for the median �lter. Then, the highest level of each selected SU is included in the skim.

Figure 3.17b represents the summarization constraint obtained for 16 frames per GOP. As we

use a dyadic decomposition, it is possible to build a summary with the same frames using a

submultiple of 32 as GOP length, which is useful to compare the same summary generated with

di�erent GOP lengths. For example, Figure 3.17c shows the equivalent summarization curve of

Figure 3.17b for 2 frames per GOP.

3.7.1.3. Fast forward

The test algorithm for semantic fast forwards is based on the method proposed in [Herranz,

2007]. In this method, activity is used as semantic clue guiding the playback of the sequence.

The temporal levels are selected according to this assumption in order to approach to the target

frame rate. Skipping is also used to achieve a lower virtual frame rate along several SUs.

A widely used measure of activity is the MPEG-7 intensity of motion activity descrip-

tor[Jeannin and Divakaran, 2001], which has been successfully used in indexing, fast brows-

ing[Peker et al., 2001] and video rate control[Lotfallah et al., 2006]. The basic assumption in

[Herranz, 2007] is that the instantaneous frame rate in the output sequence should be propor-

tional to the measure of activity. A similar approach is used in other works in the context of

scalable video coding[Bescós et al., 2007; Mrak et al., 2009]. We use a variant of the MPEG-7

intensity of motion activity without quantization (in order to have the �exibility provided by the

use of a continuous range), and adapted to the variable block size motion vectors of H.264/AVC.

An advantage is that it can be computed directly in the compressed domain with minimum cost,

avoiding most of the decoding process. Besides, as the activity is computed in a SU basis, we use

only frames of the �rst enhancement level (P1 or B1, depending on the coding structure), without

having to process the rest of the frames of the SU. Figure 3.17 shows some of the summarization

constraints for this case.
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Figure 3.17: Details of the results for video skim: (a) face detection, (b) summarization constraint
(16 frames per GOP) and (c) summarization constraint (2 frames per GOP).
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Figure 3.18: Details of the results for fast forward: (a) summarization constraint (32 frames per
GOP) and (b) summarization constraint (4 frames per GOP).
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Figure 3.19: Subjective evaluation results: a) visual distortion, b) semantic distortion.

3.7.2. Subjective evaluation

In the proposed model, frames are selected in groups rather than individually, which leads

to a lack of accuracy in the selection of arbitrary frames when the length of the SU increases.

In this �rst experiment we studied this e�ect and how it is perceived. The experiment tries

to quantify the e�ect over the skims and storyboards obtained from the test sequence. Firstly,

the sequence is analyzed with frame precision and a set of frames to be included is obtained at

the �nest scale (i.e. GOP length of 1 frame). For each GOP length, a di�erent summarization

constraint is obtained by subsampling the previous one. For storyboards, the closest I frame of

the corresponding SU at a given scale is selected. For skims, in a �rst approach (skim 50% in

Figure 3.19), a SU is included at a given scale if half of the frames belonging to it are included

in the summary at the �nest scale.

Ten people were asked to assess the distortion that they perceived for the sequence Sun-Earth

Connection. The summary obtained with frame precision is used as reference (no distortion).

Two criteria were used: visual distortion, which measures if the subsampled summary is visually

similar to the reference one and if annoying artifacts are included in it; and semantic distortion,

which measures if the subsampled summary is equivalent to the reference one and if important

information is lost by the e�ect of the subsampling.

In the case of storyboard, almost every assessor agrees that no signi�cant distortion is per-

ceived for both visual and semantic points of view. In the case of skims, there is no semantic

distortion perceived, as most of the information of the summary is still present in the summaries

with coarser scales. However, visual distortion increases with GOP length, being important at 32

frames per GOP. The approach used for subsampling has the drawback of including new frames

at the boundaries of previous segments, which leads to temporal artifacts, mainly when some

frames from adjacent shots are included. However, this problem can be lessened if the approach

used in analysis is designed carefully with the generation model in mind, in order to avoid in

advance the inclusion of problematic SU (for example, SU including shot boundaries). In the

experiment we also used a slightly di�erent approach for subsampling, selecting a SU at a scale

50



3.7. Experimental evaluation

only if all the frames are included at the �nest scale (skim 100% in Figure 3.19). Now the prob-

lem is that some frames can be lost at the boundaries, but we avoided the problem of including

new frames at the boundaries. Figure 3.19 shows that this alternative subsampling approach

can reduce signi�cantly the visual distortion, and only a small semantic distortion is perceived

(note that audio is not considered, and a di�erent approach would be probably necessary in that

case).

3.7.3. E�ciency

The main advantage of the proposed approach is its e�ciency, which depends on the coding

structure, and particularly on the GOP length. A longer GOP may help to improve coding

e�ciency, and the size of the bitstream may be reduced. That has impact on the performance

of the generation of the summary. This section provides some experimental measures in order

to assess the performance of the system in terms of processing time.

In order to have a comparison with a coding scheme not using the hierarchical prediction

structures of H.264/AVC, we have also implemented the generation of video skims and story-

boards for MPEG-2 coded sequences. For storyboards only the selected I frames are preserved

in the output bitstream, and for video skims complete GOPs are preserved. In order to compare

the systems under the same conditions, the test sequence was reencoded in MPEG-2 with the

same GOP lengths as for H.264/AVC and for two GOP structures: one with only P frames

(IPPP. . . ) and another with P and B frames (IBPB. . . ). The summaries were generated using

the same summarization constraints as those used for H.264/AVC.

For each coding format, the test sequence was encoded with the same con�guration in both

cases (quantization parameters, motion estimation parameters, etc.), except that one structure

uses P frames and the other uses B frames. Figure 3.20 shows the mean bitrate of the sequence

coded using di�erent GOP lengths and compared to the same sequences coded with MPEG-2.

As expected, the size of the bitstream drops as the GOP length increases, although, for this

sequence, it does not decrease for GOPs larger than 8 frames with H.264/AVC. It must be noted

that the original sequence was already lossy encoded in MPEG-2 when obtained, so it is not

very appropriate for rate-distortion comparisons (e.g. PSNR).

In the experiment, the time required for the generation of the bitstream is compared to

that required using a conventional approach with a transcoder generating the same frames1.

The transcoders used in these experiments consist of simple cascades of decoder, extractor of

frames (in uncompressed YUV) and encoder. The encoder uses the same con�guration used

for the encoding of the input bitstream. However, a comparison of di�erent approaches in

terms of processing time is highly dependent on the speci�c implementation of a codec and

its degree of optimization. Table 3.2 provides complementary information to the experimental

curves, describing brie�y some key aspects of the implementation of each module used in the

experiments.

In contrast to the previous subjective experiments, we must only compare the generation of

1Experiments performed in an Intel Core 2 at 2.83 Ghz (2 GB of RAM)
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Figure 3.20: Comparison of the coded sequences.

Module Based on Optimization Uses bitstream description

Extractor H.264 Some parts of JM 12.4 Medium Yes
Transcoder H.264 Decod+Encod JM 12.4 Very low -
Extractor MPEG-2 - Medium No
Transcoder MPEG-2 FFmpeg Medium-high -

Table 3.2: Details of the software implementations used in the experiments.

the summarized bitstream, independently of the analysis and the GOP length. We performed the

analysis at the coarsest scale (32 frames per GOP) and then reconstructed the equivalent sum-

marization constraints to scales with higher accuracy (see Figure 3.15b and c and Figure 3.17b

and c). Thus, the summary is �xed and it includes the same frames in all cases. Figure 3.21

shows the results for video skim, storyboard, fast playback and frame dropping. In all of them,

bitstream extraction performs signi�cantly faster than transcoding for both H.264/AVC and

MPEG-2, with a factor between 50 and 1000 times. The use of P or B frames does not a�ect

signi�cantly the performance in the tests.

As expected, summaries with more frames, such as skims, require more extraction time than

storyboards, with fewer frames. In the case of storyboards, H.264/AVC extraction performs

better than MPEG-2 extraction. This fact is due to the use of bitstream descriptions by the

H.264/AVC extractor, which provides e�ective information about the localization and boundaries

of the packets in the input bitstream. The bitstream description is generated by the encoder

and stored along with the bitstream. Thus, most of the header parsing is avoided. In contrast,

the MPEG-2 extractor does not use any extra information so it needs to parse each header in

order to detect the boundaries of each packet.

Although the generation process is speci�ed for each SU (or GOP), the basic unit of the

bitstream is the NAL unit. In this sense, the generation time is approximately independent of

the GOP length, as the number of NAL units does not vary signi�cantly (although the relative

amount of NAL units with I slices and NAL units with P/B slices does). However, the curves

in Figure 3.21b show that the processing time decreases as the GOP length increases. This fact

52



3.7. Experimental evaluation

4 
kf

 1

4 
kf

 2

4 
kf

 4

4 
kf

 8
4 

kf
 1

6

4 
kf

 3
2

8 
kf

 1

8 
kf

 2

8 
kf

 4

8 
kf

 8
8 

kf
 1

6

8 
kf

 3
2

16
 k

f 1

16
 k

f 2

16
 k

f 4

16
 k

f 8
16

 k
f 1

6
16

 k
f 3

2

0.1

1

10

100

1000

Pr
oc

es
si

ng
 t i

m
e 

(s
ec

)

Number of keyframes and GOP length

H.264 Pextraction
H.264 P transcoding
H.264 Bextraction
H.264 B transcoding
MPEG-2 Pextraction
MPEG-2 P transcoding
MPEG-2 Bextraction
MPEG-2 B transcoding

1 2 4 8 16 32

1

10

100

1000

P
ro

ce
ss

in
g 

tim
e 

(s
ec

)

GOP length

 H.264 P extraction
 H.264 P transcoding
 H.264 B extraction
 H.264 B transcoding
 MPEG-2 P extraction
 MPEG-2 P transcoding
 MPEG-2 B extraction
 MPEG-2 B transcoding

(a) (b)

1 2 4 8 16 32

1

10

100

1000

P
ro

ce
ss

in
g 

tim
e 

(s
ec

)

GOP length

 FP H.264 P extraction
 FP H.264 P transcoding
 FP H.264 B extraction
 FP H.264 B transcoding
 FD H.264 P extraction
 FD H.264 P transcoding
 FD H.264 B extraction
 FD H.264 B transcoding

(c)

Figure 3.21: Processing time: (a) storyboard, (b) video skim, (c) fast forward and frame drop-
ping.
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is explained considering that the storage and parsing of the summarization constraint by the

extractors were not optimized for these experiments and parsing consisted of reading plain text

�les. Note that for shorter GOPs these text �les have more values than for longer GOPs, and

thus with this implementation the parsing time of these �les becomes more dominant as the

GOP length decreases. In the case of fast forward and frame dropping (see Figure 3.21c) there

are no signi�cant di�erences, as both lead to almost the same bitstream, di�ering only in the

few additional packets of frame dropping.

The performance of the implementations used in these tests can be further improved for both

transcoding and extraction (especially for H.264/AVC transcoding), and thus the processing

time can be further reduced. However, bitstream extraction provides a simple way of adaptation

which is intrinsically faster than transcoding, and in the same conditions, should outperform

transcoding in terms of processing time.

3.7.4. Rate-distortion performance

The second main advantage of the extraction framework compared to transcoding is the ab-

sence of requantization. For this reason, a better rate-distortion performance is expected. In this

set of experiments, we compared experimentally the rate-distortion performance of transcoding

and extraction approaches, in the context of H.264/AVC with hierarchical B-frames.

The optimal transcoding architecture in terms of rate-distortion performance is the cascade

of decoder and decoder with full range search. However, that is computationally very intensive

in practice. With this architecture, quality and e�ciency can be traded o� via the motion

estimation strategy. Five variations were tested, depending on the algorithm (full search or

EPZS) and search window size (64, 8 or 0 pixels): FULL64, FULL8, EPZS64, EPZS8 and

ZERO (only zero vectors are evaluated). Due to the large number of possible summaries that

can be obtained from a given sequence, for these experiments we consider only, without any loss

of generality for rate distortion measures, the generation of a summary including all the frames,

which is equivalent to the original sequence.

Rate-distortion must be measured using appropriate test sequences. We encoded the se-

quence stefan (300 frames of 352x288 pixels -CIF-) and the sequence foreman (300 frames of

352x288 pixels -CIF- and 176x144 pixels -QCIF-) with the JM 12.4 encoder with full search

(64 pixel window size) and di�erent values of GOP length and quantization parameter. The

coding structure was a dyadic structure with B frames and IDR access units. For each test,

the transcoder uses the same GOP length and the same quantization parameter as the encoder,

as the purpose of transcoding in this work is the generation of the summary and not bitrate

adaptation.

Figure 3.22 and Figure 3.23 show the rate-distortion curves for all the approaches and the im-

pact of quantization parameter and GOP length. As expected, extraction outperforms transcod-

ing, as the quality is not degraded by an additional quantization stage. Besides, as the GOP

length increases, the degradation of the transcoding approach is more signi�cant, suggesting that

requantization a�ects more to motion predicted frames, and the quantization error is propagated
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Figure 3.22: Comparison of average PSNR for extraction and transcoding with di�erent values
of QP and sequences: (a) stefan CIF, (b) foreman CIF, and (c) foreman QCIF.

and accumulated in other intercoded frames. In the transcoding experiments, FULL64 has the

best quality, with EPZS64 close to it. The other con�gurations degrade very fast as the GOP

length increases. However, even using only intracoded frames (i.e. GOP=1 in Figure 3.23), in

which no motion estimation is used, the quality is still notably better in the extraction approach.

The e�ect of motion estimation is better shown in Figure 3.24. Although the transcoder

uses a closed-loop drift-free architecture, a progressive loss of quality within the GOPs is evident

in the plots. In this example the degradation propagates backwards (the intracoded frame is

the last frame in the GOP) until a new intracoded frame is found. Obviously, this degradation

is higher for longer GOPs, and the average PSNR decreases, as shown in Figure 3.23. For

extraction, the absence of requantization avoids this problem, and the quality loss is due only

to the source encoder.

3.7.4.1. Comparison with other architectures

In general, e�ciency and quality are traded o� in transcoding architectures[Xin et al., 2005;

Lefol et al., 2007; De Cock et al., 2007]. In order to have a better comparison, we also measured
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Figure 3.23: Comparison of average PSNR for extraction and transcoding with di�erent GOP
lengths and sequences: (a) stefan CIF, (b) foreman CIF, and (c) foreman QCIF.

0 10 20 30 40 50
30

31

32

33

34

35

36

37

38

39

40

 stefan CIF@30 (QP=25, GOP=16)

E
xt

ra
ct

io
n

Frame

 Extraction
 Full 64
 EPZS 64
 Full 8
 EPZS 8
 Zero

Figure 3.24: Comparison of average PSNR per frame of sequence stefan CIF.
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the e�ciency of each of the experiments. This measures are complementary to those shown

in Section 3.7.3. Figure 3.25 shows the average frames per second obtained in the case of the

processing of the whole sequences. Although simpli�ed architectures and optimized implemen-

tations can greatly improve the performance of transcoding, extraction seems to remain as the

best option when high e�ciency in the generation is required.

Extraction works mainly as a selective packet forwarding operation, and the only factor

having some noticeable in�uence in the performance is the bitrate. The larger the bitstream,

the more time required to copy the packets. An inverse linear trend is observed, with slower

processing as packets become larger.
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Figure 3.25: Comparison of run time of extraction and transcoding: (a) stefan CIF (di�erent
GOP lengths), (b) foreman CIF (di�erent QP), and (c) foreman QCIF (di�erent QP).

The e�ciency of transcoding is highly related to the motion estimation strategy, ranging

from 15% of the total transcoding time with ZERO to 98% with FULL64, in the worst cases.

EPZS and small search areas speed up the transcoding, although still below real time processing.

In contrast to extraction, transcoding is faster for shorter GOPs, as motion estimation is used

in fewer frames, and particularly fast when only intracoding is used.

Experiments show better results for extraction than transcoding using a decoder-encoder

cascade. Although this transcoder is not the most suitable for many applications due to its
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high complexity, it is the most used because its straightforward implementation, and it also

provides a useful reference to compare other architectures with. Particularly, the cascade with

full search range provides the optimal rate-distortion performance for transcoding. For the

sequence used in the experiments, FULL64 uses a search range large enough to be considered a

close approximation.

Open-loop architectures such as requantization[Xin et al., 2005; De Cock et al., 2007] are

computationally e�cient, since they operate directly on the transformed coe�cients, requan-

tizing them with a di�erent quantization parameter. However, they su�er from a progressive

quality degradation (i.e. drift), due to the mismatch between the predictions used in decoding

and encoding, which cannot be recti�ed without a closed loop architecture. A cascaded pixel-

domain transcoder (CPDT) consists of a concatenation of a decoder and a simpli�ed decoder,

similar to Figure 3.9, which reuses motion vectors and other information extracted from the

input bitstream. Avoiding motion estimation, CPDT is more e�cient than the decoder-encoder

cascade, with an e�ciency comparable to ZERO (slightly better, as in ZERO motion estimation

still consumes the 15% of processing time in the worst case) but with a quality signi�cantly lower

than the decoder-encoder cascade for H.264/AVC bitstreams[Lefol et al., 2007], due the large

number of new coding tools introduced by this standard. Recently, in the context of H.264/AVC

coding, [Lefol et al., 2006] proposed a Mixed Requantization Architecture (MRA) which per-

forms 35% faster than CPDT but with a PSNR 3 dB lower than CPDT. [De Cock et al., 2007]

proposed another requantization architecture, improving about 2 dB the MRA.

3.8. Summary and conclusions

If the video coding structure satis�es certain conditions for random access, extraction is an

interesting alternative to transcoding for the generation of the bitstream in video summarization.

In this chapter we have studied the use of bitstream extraction for video summarization. We

have introduced some concepts, such as summarization units, and a model for representing video

summarization results taking advantage from coding structures and particularly from the hier-

archical prediction structures of H.264/AVC. This representation enables the generation of the

bitstream using a bitstream extraction framework. This approach has two inherent advantages:

e�ciency, derived from the simplicity of the adaptation method, and quality preservation, due

to the quantization-free architecture in contrast to transcoding, which introduces an additional

loss of quality.

The framework was tested with some application examples and used to simulate summaries

with some simple analysis algorithms. The proposed model is generic enough and independent

of the analysis stage, so it can take advantage from more complex analysis algorithms (other

analysis algorithms using this model are described in next chapters).

We compared experimentally both transcoding and extraction frameworks. Di�erent encod-

ing con�gurations at the transcoder are studied for faster transcoding but with an additional

loss in rate-distortion performance. The size of the summarization unit (the GOP in the experi-

ments) is an important parameter that has e�ect not only on the precision of the summarization
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analysis, but also on the rate-distortion performance and e�ciency of the generation process.
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Chapter 4

Integrated summarization and

adaptation

This chapter extends the bitstream extraction framework described in the preceding chapter

to include adaptation to the usage environment. This adaptation is performed using scalable

video coding (speci�cally MPEG-4 SVC). The summarization-adaptation framework also uses

metadata tools from the MPEG-21 standard to describe the characteristics of the terminal and

network. The main advantage is the simplicity and e�ciency of the process, especially when

it is compared to conventional approaches such as transcoding. The framework is evaluated

experimentally in terms of e�ciency and rate-distortion performance.

The framework described in this chapter uses three types of scalability: spatial and quality

for context adaptation, and temporal for both context and semantic adaptation. Most of this

chapter is based on the publications: [Herranz, 2007; Herranz and Martínez, 2008b, 2009b].

4.1. Motivation

Most works in video adaptation only address the adaptation of the original pieces of content.

However, video summaries are also pieces of content (e.g. images, video sequences) that are

consumed in the same speci�c usage conditions (e.g. terminal, network), and should be also

adapted to them. Additionally, video summarization has been described as a speci�c type of

adaptation, in which the structure of the content is modi�ed[Chang and Vetro, 2005]. The

conventional approach to the generation summaries adapted to the usage environment is to

consider summarization and adaptation as two independent stages, in which the summaries are

subsequently adapted (e.g. transcoded).

Adaptation of scalable bitstreams are based on lightweight techniques, such as bitstream

extraction[Devillers et al., 2005; Panis et al., 2003; Sprljan et al., 2005; Thang et al., 2006;

Paridaens et al., 2007], which enable fast and e�cient adaptation. As we have shown in the

previous chapter, bitstream extraction can be also used for the generation of video summaries.
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SVC input
sequence

SVC bitstream
extractor

Adapted SVC
stream

Environment constraints
(MPEG-21 DIA)

Figure 4.1: Adaptation in the SVC framework.

Combining both, this chapter describes an integrated framework using only bitstream extraction

to generate adapted summaries.

4.2. Integrated summarization and adaptation framework

in MPEG-4 SVC

The advantage of SVC relies on its e�cient adaptation scheme. Using SVC, the adaptation

engine is a simple module (i.e. bitstream extractor) which modi�es the bitstream selecting only

the parts required according to some constraints (see Figure 4.1). The constraints (resolution,

bitrate, etc.) are imposed by the usage environment. The extractor selects the appropriate

layers of the input bitstream satisfying the constraints. The output bitstream is also compliant

with the SVC standard so it can be decoded with a suitable SVC decoder.

In the proposed framework, each user is linked at least to one UED description. Each user

may use di�erent terminals or networks depending on the situation. The summarization and

adaptation engine must know this information in order to deliver an approapriate version of the

sequence or the summary.

4.2.1. Summarization units in MPEG-4 SVC

In SVC, versions at di�erent spatial and quality resolutions, for a given instant, form AUs. An

AU can contain NAL units from both the base and enhancement layers. Each NAL unit belongs

to a speci�c spatial, temporal and quality layer. This information is stored in the header of

the NAL unit in the syntax elements dependency_id, temporal_id and quality_id. The length

of the NAL unit header in H.264/AVC is extended to include this information. In SVC, the

base layer is always H.264/AVC compatible. However, the extended NAL unit header would

make the bitstream non compliant with H.264/AVC. For this reason, each base layer NAL unit

has a non extended header, but it is preceded by an additional NAL unit containing the SVC

related information. These units are called pre�x NAL units. If the stream is processed by an

H.264/AVC decoder, these pre�x NAL units and the other enhancement layer NAL units are

simply ignored, and the base layer can still be decoded.

In SVC, the concept of SU, introduced in the previous chapter, can be extended, in order

to include the additional versions given by spatial and quality scalabilities. Thus, it is possible

to de�ne more SUs, only with NAL units from the base layer, or including NAL units from
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Figure 4.2: Coding structures and summarization units in SVC.

enhancement layers. Thus, versions of each SU are obtained for di�erent spatial resolutions and

qualities. Figure 4.2 shows an example of coding structures and SUs in SVC. Discarding the

enhancement layer, it is still possible to �nd more SUs in the base layer.

4.2.2. Extraction process in MPEG-4 SVC

The extraction process in SVC is non-normative, with the only constraint that the out-

put bitstream, obtained from discarding enhancement layers, must be compliant with the SVC

standard. The JVT provides the Joint Scalable Video Model (JSVM), including a software

implementation of SVC. In this section we brie�y describe the basic extraction process in the

JSVM.

The extractor processes NAL units using the syntax elements dependency_id, temporal_id

and quality_id to decide which ones must be included in the output bitstream. Each adaptation

decision is taken for each access unit AUn, where n is the temporal instant. Each layer (base or

enhancement) in AUn can be denoted as L (d, t, q;n). An operation point OPn = (dn, tn, qn) is

a speci�c coordinate (d, t, q) at temporal instant n, representing a particular resolution (spatial

and temporal) and quality, related, respectively, to the syntax elements dependency_id, tempo-

ral_id and quality_id. If we denote the extraction process as E (OP,AU), the result of adapting

an access unit AUn with a particular operation point OPn can be de�ned as the adapted access

unit ˜AUn = E (OPn, AUn), containing all the layers and data necessary to decode the sequence

at this particular resolution and quality. For each AUn, the extractor must �nd the operation

point OPn satisfying the constraints and maximizing the utility of the adaptation. In a typ-

ical adaptation scenario, the terminal and the network impose constraints that can be �xed

(display_width, display_height and display_supported_rate) or variable (available_bits (n)

related to the available network capacity). Thus, the adaptation via bitstream extraction can

be formulated as an optimization problem:
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Figure 4.3: Prioritization of NAL units in the JSVM extractor (adapted from [Amonou et al.,
2007]).

for each instant n �nd OP ∗n = (d∗n, t
∗
n, q
∗
n) maximizing utility

(
˜AUn

)
subject to

frame_width (dn) ≤ display_width
frame_height (dn) ≤ display_height
frame_rate (tn) ≤ display_frame_rate
bitsize

(
˜AUn

)
≤ available_bits (n)

In this formulation, utility
(

˜AUn

)
is a generic measure of utility or quality of the resulting

adaptation. It should be computed or estimated for all the possible adapted AUs, in order to

select the most appropriate. The actual values of resolution and frame rate can be obtained

indirectly from d and t, and the size of any AU can be obtained just parsing the bitstream.

The JSVM extractor solves the problem using a prioritization approach. The NAL units in

an AU are ordered in a prede�ned order and selected in this order until the target bitrate or size

is achieved. In Figure 4.3 each block represents a NAL unit containing a layer L (d, t, q;n). The

base quality layer (q = 0) of each spatial and temporal level are placed �rst in the priority order.

Then, NAL units including quality re�nements are placed in increasing order of their temporal

level. Spatial enhancement layers are placed next. The extractor just drops those NAL units

with a priority lower than the required one.

However, this prioritization scheme does not ensure the optimality of the extraction path in

terms of utility. For this reason, besides the basic extraction method, SVC provides additional

tools for improved extraction, namely the optional syntax element priority_id, which signals

explicitly the priority of each NAL unit, based on any other (non-normative) criteria[Amonou

et al., 2007].
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Figure 4.4: Integrated summarization and adaptation of SVC.

4.2.3. Including summarization in the framework

The constraints imposed to the adaptation engine are external, due to the presence of a

constrained usage environment (environment constraints). Adaptation modi�es the resolution

and quality of the bitstream, but the information in the content itself does not change. However,

there is no restriction on the nature of the constraints. As discussed in the previous chapter,

summarization can be seen as a modi�cation of the structure of the bitstream, in order to remove

semantic redundancies in the temporal axis, in a constrained situation where the number of

frames must be reduced considerably. For this reason, we use the model to describe summaries

introduced in the preceding chapter. The summarization constraint can modify the value of

the temporal resolution. If both environment and summarization constraints are used together

in the extraction, the result is an integrated summarization and adaptation engine which can

generate summaries adapted to the usage environment using only SVC tools (see Figure 4.4).

The adaptation process, as described previously, is performed on an AU basis. However, in

the proposed summarization model, the summaries are referred to the SU index with the sum-

marization constraint tlevel (m), so it must be harmonized with the adaptation process. When

a sequence is partitioned into SUs, each of them contains one or more AUs and, for simplicity,

we assume that each AU belongs only to a single SU. Then we de�ne a new summarization

constraint t̃level (n) for each AUn associated to a certain Um:

t̃level (n) ≡ tlevel (m) , AUn ∈ Um,∀n ∈ {0, . . . , N − 1} (4.1)

The problem of adaptation in the extractor, including the new summarization constraint,

can be now expressed as

for each instant n �nd OP ∗n = (d∗n, t
∗
n, q
∗
n) maximizing utility (E (OPn, AUn))

subject to

frame_width (dn) ≤ display_width
frame_height (dn) ≤ display_height
frame_rate (tn) ≤ display_frame_rate
bitsize (E (OPn, AUn)) ≤ available_bits (n)

t ≤ t̃level (n)

The last constraint makes the extraction process content-based, constraining directly the

temporal level. The problem can be solved using the same tools described in the previous
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Figure 4.5: Bitstream adaptation guided by summarization and environment constraint.

section, including the prioritization scheme of the JSVM. Implicitly d, t and q are assumed to

be positive (or zero). Thus, if t̃level (n) takes a negative value for a certain n, the problem has

no solution, as the new summarization constraint cannot be satis�ed. In that case, we assume

that the extractor will skip that AU not including any of its NAL units in the output bitstream.

The summarization algorithm can take advantage of this to signal when a certain SU must not

appear in the output bitstream.

As in the model for H.264/AVC, all the SUs must be independently decodable for all the

possible adapted versions. Again, the simplest solution is the use of IDR Access Units. In SVC,

IDR Access Units only provide random access points for a speci�c dependency layer. For this

reason, enhancement layers must also have an IDR Access Unit at the beginning of each SU, in

order to guarantee the independence of the SUs for all layers.

4.3. Experimental evaluation

This section describes some experiments to evaluate the main advantage of the framework,

which is the e�cient generation of the bitstream of adapted summaries. For comparison, we also

provide experimental results with an alternative approach based on transcoding.

4.3.1. Test scenario

For these experiments we assume a test scenario with users accessing content via two types

of terminals capable of decoding H.264/AVC and SVC: a terminal with a high resolution display

in a broadband network, such as a PC or a TV, and a terminal with a medium resolution display

in a medium-low capacity network, such a PDA or mobile phone.

The experiments target both e�ciency and rate-distortion measures. However, it is di�cult
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Layer Number Spatial resolution Temporal resolution Quality resolution (QP)

0 CIF 30 Hz 39
1 CIF 30 Hz 30
2 4CIF 30 Hz 40
3 4CIF 30 Hz 29

Table 4.1: Settings of the layers for SVC encoding

to �nd test sequences suitable for both purposes simultaneusly. On the one hand, video sum-

marization itself and the measure of processing time require sequences with a certain length, in

order to create meaningful summaries. On the other hand, evaluation of rate-distortion perfor-

mance in video coding requires test sequences available in uncompressed formats, such as YUV.

These sequences are usually very short sequences with a single shot, being not suitable as test

sequences for video summarization. For these reasons, we created a longer test sequence using

six commonly used YUV sequences (city, crew, harbour, ice, soccer and foreman) concatenated

in a single YUV sequence.

We used the reference software JSVM 9.18 in the simulations. The test sequence (1729 frames

at 4CIF and 30 frames per second) was encoded in SVC with 2 spatial levels and 2 quality levels,

using MGS for quality scalability. The details of these layers are shown in Table 4.1. Dyadic

hierarchical structures were used for temporal scalability with GOP lengths from 1 to 32 frames

(1 to 6 temporal levels). In order to compare the approach with a non scalable approach, two

additional versions were also encoded in H.264/AVC with the settings of layer 1 (CIF) and layer

3 (4CIF) in Table 4.1.

Given the test scenario, we considered two target conditions to test the performance of the

framework:

4CIF@30. Both spatial and temporal resolutions do not change with respect to the original

bitstream. Therefore, neither spatial nor temporal adaptation will be required, and only

e�ciency in the generation of summaries is studied. This is the adaptation path for the

PC or TV case.

CIF@15. In this scenario there is adaptation in both spatial and temporal resolutions.

Both generation of the summary and adaptation to the target conditions are studied. This

is the adaptation path for the PDA or mobile phone case.

The summaries were generated and adapted to the test conditions with the following methods

(see Table 4.2 ):

AVC transcoding. The sequence is �rst decoded to YUV format. The summary is gen-

erated and adapted (if required) into another YUV sequence, which is �nally encoded

to H.264/AVC. For the case CIF@15 there are two possibilities, depending on which

H.264/AVC version is used as input bitstream (4CIF or CIF).

SVC extraction. It uses the SVC bitstream extractor to select the required packets and to

generate the adapted summary.
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Method Spatial resolution Temporal resolution
(resolution) (input/output) (input/output)

Adaptation to 4CIF@30
AVC transcoding (4CIF) 4CIF/4CIF 30/30 Hz
AVC extraction (4CIF) 4CIF/4CIF 30/30 Hz
SVC extraction (4CIF) 4CIF/4CIF 30/30 Hz

SVC extraction (4CIF low) 4CIF/4CIF 30/30 Hz
Adaptation to CIF@15

AVC transcoding (4CIF) 4CIF/CIF 30/15 Hz
AVC transcoding (CIF) CIF/CIF 30/15 Hz
AVC extraction (CIF) CIF/CIF 30/15 Hz

AVC hybrid 4CIF/CIF 30/15 Hz
SVC extraction (CIF) 4CIF/CIF 30/15 Hz

SVC extraction (CIF low) 4CIF/CIF 30/15 Hz

Table 4.2: Methods and cases used in the experiments.

AVC extraction. The same bitstream extractor is used in this case (either from 4CIF

version or CIF version). This method can be used only when neither spatial nor quality

adaptation are required.

AVC hybrid. This method complements the previous one, as the summary is �rst generated

using extraction from the 4CIF H.264/AVC bitstream, and then it is transcoded to the

adapted version of the summary in CIF. Note that, compared to transcoding from the

4CIF version, only a few frames (depending on the length of the summary) are processed,

as most of them were discarded during extraction.

For AVC transcoding and AVC hybrid methods, the settings of the encoder were modi�ed

to reduce signi�cantly the computational burden due to encoding. Thus, a fast search method

was used with a smaller search range (8 pixels).

For the purpose of these experiments, the summarization algorithm itself is out of the scope,

and it could be any algorithm. In this case we used a simple method consisting of sampling the

sequence at constant intervals, selecting single frames for storyboards, and segments of 64 frames

(2 seconds) for video skims. Although extremely simple, this method is very suitable for the

test sequence used in the experiment, as the shots have similar lengths and they are distributed

regularly in the sequence, so it is very likely that the algorithm creates summaries covering most

of the shots.

4.3.2. E�ciency

As in the previous chapter, we compared transcoding and extraction for di�erent SU lengths

(GOP length in the experiments). Figure 4.6 shows the results for a video skim (20% of the

total length) with the di�erent methods tested. In this case we used the processing speed (as

the number of frames of the input sequence divided by the processing time), measured in frames

per second1. As expected, transcoding is much slower than methods based on extraction. Both
1Experiments performed in an Intel Xeon at 2.83 Ghz (24 GB of RAM)
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Figure 4.6: Dependency of the processing speed with the GOP length: a) 4CIF 30 Hz and, b)
CIF 15 Hz.

SVC extraction and AVC extraction have very good performance, over 1000 frames per second.

The latter is faster for both 4CIF and CIF as it needs to parse a lower number of NAL units,

due to the absence of enhancement layers and the smaller size of the bitstream.

The length of the coding unit has di�erent e�ects on transcoding and extraction. In the

case of extraction, longer GOPs result on smaller bitstreams, which are processed faster, as

extraction basically is a selective packet forwarding operation. On the contrary, encoding using

longer GOPs requires more computational e�ort on motion estimation. Thus, the e�ciency of

transcoding decreases as the GOP length increases.

In the case of transcoding to CIF there are three possibilties. Transcoding from the CIF

version is faster than transcoding from the 4CIF version, due to the faster decoding of lower

resolution sequences. The hybrid method combining extraction and transcoding is also faster

than pure transcoding from 4CIF. However, their performance is still quite far from that of

extraction approaches.

The di�erent methods were also compared for several modalities and summary lengths, rang-

ing from the empty to the whole sequence, using a GOP length of 8 frames. Methods based

on extraction also have an almost constant performance for all the summary lengths, slightly

degraded for long summaries. Methods based on transcoding are more sensitive to the length of

the summary. For short summaries (e.g. storyboards), most of the processing time in transcod-

ing is due to decoding, as encoding complexity was reduced and only a few frames are encoded

in contrast to the decoding of all frames. However, a signi�cant increment of the processing

time can be observed for longer summaries. The hybrid method reduces the number of frames

to be decoded, increasing the performance dramatically for short summaries, although it is still

degraded for long summaries due to transcoding.

The generation of a summary with the 0% of the frames in the sequence (an empty summary)

is very useful to have a reference of the time used in initialitation and other processes independent
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Figure 4.7: Processing speed for di�erent modalities. Note that half of the vertical scale is
linear and the rest is logarithmic.

of the length of the summary. In transcoding, this time is due to the decoding of all frames, and

it is the most important contribution to the overall processing time. In the case of extraction,

the JSVM extractor performs the extraction in two passes. In the �rst pass, all the NAL headers

are parsed in order to obtain a description of the bitstream, which is then used to perform the

actual extraction. As it can be seen in the �gure, most of the extraction time is used in this

�rst pass. The use of bitstream descriptions (as those used in the AVC extractor described in

Chapter 3) reduces signi�cantly the time required for this �rst pass, which in that case would

consist of parsing the bitstream description instead of parsing the whole bitstream.

As experiments showed, a simple solution based on extraction has better performance than

others based on transcoding, for the purpose of video summarization and adaptation. A hybrid

solution based on both extraction and transcoding can also be useful when no spatial nor quality

scalability are available, especially for short summaries such as storyboards.

4.3.3. Rate-distortion performance

As shown in the preceding chapter, AVC extraction outperforms AVC transcoding in rate-

distortion performance. In general, for a single layer it is always true, as transcoding implies

an additional quantization stage. However the multilayered approach of SVC has a penalty in

coding e�ciency compared to a single layer version. In the case of the experiment, the 4CIF SVC

version of the test sequence is encoded predictively from the other 3 versions while the 4CIF AVC

version is encoded directly in a single layer, which is more optimal in terms of rate-distortion

performance. Although the penalty due to scalability is small in MPEG-4 SVC, each additional

layer increments the overall penalty compared to a single layer version. Thus, although SVC

extraction avoids the additional quantization stage, its performance was degraded previously

compared to the AVC version by the use of multiple scales.

We studied the rate-distortion performance of a video skim (20%) extracted from the original
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Figure 4.8: Comparison of average PSNR: a) 4CIF 30 Hz and, b) CIF 15 Hz.

bitstream coded with a GOP length of 8 frames. Figure 4.6 shows the rate-distortion curves

obtained for the two test scenarios. In both cases AVC extraction has the best results, as it is a

single layer and does not need to re-encode the sequence.

Transcoding curves were obtained varying the quantization parameter. It outperforms SVC

extraction in the middle of the bitrate range. Figure 4.6b also shows that transcoding from a

higher resolution version (4CIF) works better.

SVC extraction works better at the low and high ends of the bitrate range, as they correspond

to the operation points represented in Table 4.1, while the intermediate points are obtained by

discarding transform coe�cients. Rate-distortion performance at these points is signi�cantly

worse.

However, both AVC transcoding and SVC extraction performances can be improved using

di�erent con�gurations. Transcoding can be improved using a larger search range for the motion

estimation algorithm, at the cost of less e�cient processing, as shown in the preceding chapter.

Using fewer enhancement layers (e.g. removing layers 0 and 2 from Table 4.1 to remove quality

scalability) also improves the rate-distortion performance of the remaining operation points. Al-

ternatively, quality scalability in SVC bitstreams can be slightly optimized using rate-distortion

analysis and priority identi�ers[Amonou et al., 2007].

4.4. Summary and conclusions

In this chapter we have extended the summarization model and framework described in the

preceding chapter to include adaptation using the layered approach of MPEG-4 SVC. We also

compared experimentally several summarization-adaptation frameworks, based on transcoding

and extraction, for di�erent types of summaries and adaptation scenarios. As in the single layer

case (preceding chapter), extraction approaches are signi�cantly faster than other approaches.

However, rate-distortion performance is not necessarily better in extraction than in transcoding,
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as spatial and quality layers introduce a penalty in coding e�ciency which is comparable to that

due to requantization in transcoding.
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Scalable summaries





Chapter 5

Scalable storyboards and video

skims

In this chapter we deal with summaries with a speci�c functionality: they are scalable.

However, the concept of scalability is used in the context of video summarization, but in a

di�erent way to that used in the previous chapters. In this case, the scalability is not a property

of the bitstream which is exploited for e�cient generation or adaptation, but an intrinsic property

of the summary.

In contrast to most algorithms, designed to generate a single summary with a speci�c length,

the creation of scalable summaries involves multiple target lengths. In this chapter we discuss the

concept of scalable summaries, their requirements and we propose an adequate framework. The

framework is also designed for e�cient processing, which makes it very suitable for applications

requiring e�cient and low delay summarization.

Part of this chapter is based on the publications: [Herranz and Martínez, 2008a, 2009a, 2010a]

5.1. Motivation

Scalable approaches have been very useful in many contexts and particularly in video cod-

ing. In that context, scalability allows to remove parts of the bitstream while the remaining

bitstream is still valid, containing a completely decodable version of the same video, but with

lower resolution, quality or frame rate. In scalable coding, encoding is performed once, while

many versions can be extracted from the bitstream, according to the speci�c needs of each case.

In previous chapters we have used the properties of scalable video bitstreams in the context

of video summarization for fast generation and adaptation of summaries. However, the concept

of scalability can be also used in video summarization in a completely di�erent sense, as a new

property of the summaries themselves[Zhu et al., 2004]. In this case, the scale is related to the

length of the summary (e.g. duration, number of images). Depending on the case, a summary of

a suitable length can be obtained without any further analysis. As in video coding, we can �nd
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many applications in adaptation and personalization. For instance, depending on the terminal

capabilities (e.g. display size), the length of the summary can be easily adjusted. Video retrieval

systems can also bene�t from this scalability. For example, a search interface using storyboards

provides the user with a number of search results, with a storyboard representing each item.

However, for constant display area, the more images that each individual summary has, the

fewer summaries that can be browsed. In this interface there is also a trade-o� between the

length of the summary and the time spent in visualizing it. A longer summary means more

information, but it also requires more time to be visualized. With scalable summaries, the user

can easily decide a suitable length for each case.

5.2. Related work

Video summarization has been addressed by many researchers with multiple approaches[Truong

and Venkatesh, 2007; Money and Agius, 2008b]. However, most methods follow a single scale

approach, that is, the output is always a single summary. Realizing that sometimes a single

scale may be insu�cient, hierarchical summarization approaches[Zhu et al., 2003, 2004; Benini

et al., 2006; Bescós et al., 2007] exploit the narrative structure of video sequences to provide the

users with a set of summaries with di�erent levels of detail, according to a narrative hierarchy

(e.g. chapters, scenes, shots, frames). Each level of this hierarchy is in fact a di�erent scale,

with summaries with increasing length across the scales, although the summaries are not scal-

able within each level. These scales provide a very coarse grain scalability, which is exploited in

hierarchical browsing applications, where di�erent levels of detail can be selected in these parts

that the user is more interested in.

A common strategy in summarization is the use of clustering algorithms to group frames,

shots or other units into similar clusters. Then each cluster is represented by a single image

in the summary. Hierarchical clustering has been used also in summarization[Hasebe et al.,

2005; Benini et al., 2006] as it can generate clusters at di�erent levels leading to summaries with

di�erent scales, not necessary related with narrative structures.

In general, we use the term scalable summaries for the case of summaries with a length that

can be adjusted with some accuracy without running again the summarization algorithm. Simi-

larly to scalable coding (encode once, decode many versions), the objective is to process the se-

quence once and generate di�erent summaries depending on the length constraints (analyze once,

generate many versions). Although hierarchical summarization creates scalable summaries, it

targets hierarchical browsing and summaries with few scales corresponding to di�erent narrative

structures, while, in general, scalable summarization could target a larger number of scales to

adapt the summary in constrained situations in which the length of the summary must be limited

to a speci�c value. Nevertheless, [Zhu et al., 2004] introduces the idea of scalable summaries in

a hierarchical summarization system. The system obtains a hierarchical representation of the

sequence, and the summaries at the highest levels are based on this hierarchy. However, at the

lowest levels, the number of frames of the summaries can be adjusted dynamically.
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Apart from those based on hierarchical approaches, very few techniques create scalable de-

scriptions of summaries. [Albanese et al., 2006] describes a representation of video sequences

based on a priority curve. When this curve is computed, a summary of any desired length can

be created easily. However, the main disadvantage of this method is that it needs a prior manual

annotation stage of the sequence.

5.3. Properties of video summaries

In this section we describe two desirable properties of a good summary: semantic coverage

and visual pleasantness. We also discuss the e�ect of the length of the summary on story-

boards and video skims. These considerations motivate the proposed scalable summarization

methodology.

5.3.1. Semantic coverage

Summaries are compact representations of a given content that can be visualized in a much

lower amount of time than the content itself. However, they should preserve as much semantic

information as possible even though their length has being reduced. A good summarization

algorithm should aim at both preserving as much representative information as possible while

discarding as much redundant information as possible.

5.3.2. Visual pleasantness

A summary must be not only informative but also comfortable and pleasant for the user

when he or she visualizes it. Often, the summary is a result of an editing process of the source

sequence, process that may introduce undesirable e�ects. But a summary is not useful if it

contains artifacts which may annoy or even stress the user. As an example, let us imagine a

summary made by replacing each shot with a single frame, and that is presented as another

sequence played at normal playback speed. The result is a highly condensed summary and its

semantic coverage is very high. However, it will be also very unpleasant because this editing

operation generates temporal artifacts due to the fast changes between shots. Besides, the user

will not be able to retain almost any of the semantic information conveyed by the summary.

A better approach is to use a summary less informative but easier to view for the user. Thus,

a good summarization approach should avoid to include frames or segments containing artifacts,

but it should also avoid to create new artifacts resulting from editing operations.

5.3.3. Properties in the context of storyboards and video skims

The approach described in this chapter deals with both storyboards and summaries, which

are the most used modalities of video abstracts. For storyboards, it is usually enough to focus

on optimizing the semantic coverage. This representation does not give many chances to include

unpleasant e�ects. However, some frames belonging to transitions (e.g. fades, wipes, dissolves)
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are usually unsuitable as they contain mixed and incomplete information from two shots, so it

could be better to avoid including them in the storyboard. For the same reason, blurred images

could be also considered unsuitable.

However, the editing operation involved in video skims may lead to artifacts, so both semantic

coverage and visual pleasantness must be balanced in order to obtain informative summaries

while avoiding annoying artifacts. Short segments belonging to shot changes are examples of

unsuitable segments for video skims.

5.3.4. In�uence of the length of the summary

Video summarization is motivated by the fact that video visualization is a time consuming

task, due to the length (i.e. duration) of video sequences. For this reason, length plays an

essential role in summarization. It must be signi�cantly reduced but the summary must preserve

as much information as possible. However this is not an easy task, because in general, the longer

the summary is the more information it can convey, and thus, the better semantic coverage it

can have. But if the length is severely constrained, the summarization algorithm should try to

preserve relevant information and discard redundant information.

As described before, the length also a�ects the visual aspect of the summary, especially in

video skims. If the skim is very short, but trying to include too much information, it will become

annoying and quite probably useless.

Depending on the application, there may be also constraints in the length. For instance, a

search result page in a digital library retrieval interface may contain several but short story-

boards. However, if the user requests more information about one result, a longer storyboard

can be presented. Most algorithms are designed for speci�c lengths, but in some cases the

performance might be degraded when the required length is not in the expected range. For

instance, the TRECVid 2008 rushes summarization task[Over et al., 2008] speci�es summaries

with a duration of 2% of the original, so most algorithms were designed and tuned for this target

length.

Although primarily discussed for storyboards and video skims, other modalities of summaries

are inevitably in�uenced by its length or duration, as information and length must be traded o�

(e.g. comic-like summaries; see next chapter).

5.4. Scalable summarization framework

Based on the analysis of the requirements of scalable summaries, we designed a generic

framework for scalable summarization. This framework includes an e�cient generation stage,

a scalable representation and an analysis methodology to generate scalable summaries, based

on the idea of incremental growing. In order to di�erentiate this scalability from other video

scalabities (i.e. spatial, temporal and quality), we will use the term length scalability when

required.
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5.4.1. E�cient generation of the summary

As discussed in Chapter 3, we can identify two stages in a summarization system: analysis

and generation. Although most research e�orts are devoted to the analysis stage, in some

applications, such as highly scalable summarization, the generation stage is critical.

A scalable summary contains implicity multiple single-scale summaries. As any digital con-

tent, each of these summaries is usually delivered in a compressed format. When the amount of

scales is low, each summary could be stored independently, and just selected and delivered when

required. However, if the number of versions is large, storing every scale independently is not

possible. In that case, the summary must be generated from the original content on demand.

Using a transcoder or the bitstream extraction approach described in Chapter 3 are the two

main options to generate summaries on demand. However, in order to take full advantage of a

scalable representation of a summary, an e�cient generation stage is critical. If the bottleneck to

summarize a content is the generation stage, there is no point in having a scalable representation,

as the analysis stage could be run every time a summary is requested with less cost than the

generation stage. In those cases, the delay would be probably unacceptably high. Thus, an

e�cient generation stage is key for low delay on demand summarization.

We use bitstream extraction in our framework. Note that variations or transcoding could

still be reasonable solutions for short summaries such as storyboards, as the delay required to

transcode few images could be acceptable (see Figure 3.21). But for long summaries, such as

video skims, the generation delay using transcoding is too high. Bitstream extraction is a more

suitable solution in this case, having little delay in general.

5.4.2. Scalable summaries

As in the framework described in Chapter 3, we use summarization units as basic units for

any kind of processing. For simplicity, we assume that the summarization unit is the GOP,

which is also the basic unit for analysis and representation of the summary, and for that reason

we use the term GOP instead of summarization unit for both analysis and generation in this

chapter.

Thus, the source sequence V is coded in M GOPs. Let fm denote the I frame belonging to

the GOP Um. This frame can be decoded independently of the other frames of the sequence, so

it constitutes another summarization unit, used in keyframe based summaries. In this context,

let us recall the concept of embedded summary from Section 3.4, which is a sequence of arbitrary

GOPs (see Figure 5.1a). The bitstream of the embedded summary S is obtained from the input

sequence V using the extraction operation, which combines the summarization units into a valid

bitstream.

Di�erent lengths can be addressed using di�erent embedded summaries. However, the con-

cept of scalability can be also used. Thus, we introduce scalable summarization as a special

case of embedded summarization (see Figure 5.1b) with an important additional restriction. A

scalable summary is a set of embedded summaries SS =
{
S(1), · · · ,S(q), · · · ,S(Q)

}
, with q ∈ N

denoting the summarization scale and Q denoting the number of scales, and with each embedded
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Figure 5.1: Embedded (a) and scalable (b) summaries.
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summary S(q) satisfying

S(1) ⊂ S(2) ⊂ · · ·S(q) ⊂ · · · ⊂ S(Q) ⊆ V (5.1)

In embedded summarization, summaries are described by a set of summarization units (GOPs

in this chapter). However, for scalable summarization we introduce the ranked list as a di�erent

tool to describe the whole set of summaries.

5.4.3. Ranked lists

A ranked list listSS is a sequence with the indexes of the GOPs sorted by their relevance for

summarization representing the scalable summary SS. A ranked list listSS of length M ′ ≤M
satis�es

listSS = (m0, · · · ,mi, · · · ,mM ′−1|mi ∈ IV ,mi 6= mj ,∀i 6= j) (5.2)

where IV is the set of indexes of the GOPs in the sequence V , and m is the index of the GOP

Um.

A summary of length MS GOPs, embedded in SS contains the GOPs with the �rst MS

indexes in listSS. Note that for each embedded summary a di�erent set must be speci�ed,

but for scalable summaries, the ranked list contains all the summaries in a single compact

representation. Thus, in scalable summarization, the objective of the analysis algorithm is to

determine the ranked list.

5.4.4. Architecture

As in scalable coding frameworks, the analysis stage is detached from the lightweight gen-

eration/adaptation stage. The whole framework is shown in Figure 5.2. The analysis stage is

performed once for every sequence, and consists of a cascade of feature extraction, clustering

and ranking algorithms, as described further on. The result of the analysis is a scalable repre-

sentation of the sequence as a ranked list. Whenever a summary of the sequence is requested

with a speci�c length, the generation stage parses the ranked list and determines which GOPs

must be included in the summary. Then, the bitstream extractor processes the bitstream of the

sequence to generate the bitstream of the summary.

5.4.5. Scalable summarization by incremental growing

For scalable summarization we target a single representation with satisfactory results in a

wide range of lengths. The length of the summary is selected on demand for each speci�c case, but

no extra analysis is required, as the scalable representation has enough information to determine

which packets of the source bitstream are the appropriate to build the required summary. To

address the problem of di�erent lengths we propose a generic incremental approach, which

sistematically creates longer summaries based on a shorter one of the same scalable summary:
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Figure 5.2: Proposed architecture

1. Set scale q = 0. Set S(0) = ∅.

2. Set q = q + 1.

a) Compute the score score(q)
(
Um|S(q−1)

)
for every GOP Um /∈ S(q−1).

b) Get the index m∗ with maximum score(q)
(
Um|S(q−1)

)
and set S(q) = S(q−1)�Um∗

(� denotes the operation of inserting an element in the corresponding temporal order).

3. Go to step 2 and repeat until the desired length or scale is achieved.

This approach follows an incremental procedure which improves at each step the previous sum-

mary trying to select the GOP Um∗ that improves more the previous summary. With this

procedure, it is straightforward to obtain a representation of the scalable summary as a ranked

list. Note that the score is computed a posteriori given the current summary. Approaches re-

lated to the priority curve formulation[Albanese et al., 2006; Truong and Venkatesh, 2007] also

give a score to each summarization unit, although this score is computed a priori. The score

can be obtained from some kind of feature analysis, such as activity[Divakaran et al., 2002], face

detection[Peker et al., 2006] or attention[Ma et al., 2005], but it is independent from the rest of

the summarization analysis.

5.5. Keyframe and feature extraction

In our system, the analysis module parses the input bitstream and structures the sequence

into suitable units. The subsequent ranking algorithm processes these units to obtain the ranked

list. Compressed domain data is used for e�cient feature extraction and processing. The �rst

stage preprocesses the sequence in order to structure and represent it in a set of keyframes and

their feature vectors.
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Figure 5.3: Analysis structures.

5.5.1. Structure and notation

As described previously, the original sequence is composed by frames, but the main summa-

rization unit is the GOP. We assume that the original sequence is composed by M GOPs. Each

GOP Um has one I frame fm, which is used for feature extraction in order to characterize the

GOP Um. The sequence is partitioned into R shots sr (this partition may be incomplete as

some GOPs may be discarded by analysis), which are further represented by P keyframes tp,

selected among the I frames. These keyframes are clustered into K clusters ck, and through

them, shots are also linked with clusters. These analysis structures are shown in Figure 5.3.

5.5.2. Shot change detection

The purpose of the shot change detection algorithm is both to structure the sequence into

shots and to discard GOPs with transitions, which may lead to unpleasant e�ects in the summary.

In this framework, which is GOP based, GOP precision is usually enough rather than frame

precision. For this reason and in order to make the algorithm faster we implemented a simple

cut detector based loosely on the thresholding approach described in [Nakajima et al., 1999], but

applied in a GOP basis by processing the DC image[Yeo and Liu, 1995] of each I frame fm.

A luminance histogram HY
m (y) is computed from the DC image of each frame fm. The

interframe luminance distance DY
m is computed using the histogram intersection distance as

follows

DY
m =

∑
y

min
(
HY
m (y) , HY

m−1 (y)
)

(5.3)

A two-dimensional chrominance histogram HUV
m (u, v) is also computed from the DC image

of each frame fm. The interframe chrominance distance DUV
m is computed using the same

histogram intersection distance as follows

DUV
m =

∑
u,v

min
(
HUV
m (u, v) , HUV

m−1 (u, v)
)

(5.4)
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The luminance distance must be below a �rst threshold to be considered a candidate for a

shot change

DY
m < th_min (5.5)

Most cuts appear as sudden peaks in the interframe distance. For this reason, the interframe

distances must also satisfy the following conditions[Nakajima et al., 1999]:

γSCD
Y
m < DY

m−1

γSCD
Y
m < DY

m+1

DUV
m < DUV

m−1

DUV
m < DUV

m+1

(5.6)

In the previous conditions, γSC is a factor to guarantee that small peaks due to noise are

�ltered. In the experiments, after some tests, we set the value of γSC to 0.6. If all the conditions

are satis�ed, a shot change is declared between Um and Um−1. For simplicity, we assume that

the I frame is the �rst frame of each GOP. In that case, the declared transition is contained in

the GOP Um-1. Analogously, if the I frame were the last frame of the GOP, the shot change

should be declared in Um.

Although no detector is implemented for gradual transitions, as the temporal distance be-

tween I frames increases, the e�ective length of the shot change decreases, and thus some of

the short gradual transitions become cuts. On the other hand, as the GOP length increases,

the feature distance between frames belonging to the same shot increases while the distance

between frames belonging to di�erent shots does not change signi�cantly. For this reason, the

detection of cuts becomes di�cult for long GOPs. In this case, a di�erent shot change detec-

tion algorithm processing all the frames may be necessary to achieve a better detection rate,

in exchange of some computational cost. There are many algorithms for e�cient shot change

detection in the compressed domain of MPEG-1/MPEG-2[Nakajima et al., 1999; Bescós, 2004]

and H.264/AVC[Zeng and Gao, 2005; De Bruyne et al., 2006].

After a shot change is declared, if the duration of the candidate shot is below a minimum, the

GOPs inside are marked as belonging to a too short shot, and discarded for subsequent analysis

(e.g. with a threshold of 3 GOPs, sr−1 would be discarded in Figure 5.3). If the candidate is

not discarded, the GOPs inside form a new shot.

5.5.3. Feature extraction

Although all the GOPs can be processed by the next stages, for long sequences the amount of

data would be very high. Sampling properly the sequence can reduce dramatically the amount

of data without signi�cant impact on the results. For this reason, each shot is represented

with few GOPs (selected by regular sampling), and their I frames are used as keyframes. The

number of keyframes may vary depending on the length of the shot, up to a �xed maximum of

Wmax keyframes per shot. For sequences with low activity and static segments, a low Wmax

is enough to represent the shot, and the amount of data is notably reduced. For sequences
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with more activity, a higher Wmax would be necessary. For each keyframe tp a feature vector is

then computed. In our experiments, we used the MPEG-7 colour layout, along with a suitable

distance[Kasutani and Yamada, 2001].

5.6. Clustering

At this point, the sequence is represented by P keyframes. The next step consists of removing

semantic redundancies between keyframes, grouping those with similar features into clusters.

The output of the clustering stage will be a set of K clusters {c1, c2, . . . , cK}. Any clustering

algorithm can be used and the clustering processing delay will also bene�t from the important

reduction of the data set, although low complexity in clustering is still desirable. Besides,

some algorithms may be more appropriate than others due to the fact that the data set is

not dense anymore after the previous stage. The number of underlying clusters may be high

compared to the size of the data set, and some algorithms are more sensitive to this fact than

others. In order to study the implications of the data reduction in the choice of the clustering

algorithm we compare the characteristics of the well known K -means and hierarchical clustering

algorithms[Jain et al., 1999; Theodoridis and Koutroumbas, 2006].

5.6.1. Comparison of K -means and hierarchical clustering

5.6.1.1. K -means

A widely used algorithm for clustering in video summarization is K-means[MacQueen, 1967]

because of its simplicity which makes it very attractive for large data sets. In the basic algorithm,

an initial partition ofK clusters is improved iteratively minimizing the total intracluster variance.

Each cluster is represented by a characteristic point called centroid, and each data point is

assigned to the cluster with the closest centroid. After each iteration, the centroid is recomputed

as the mean point of all the data points of the cluster, and then the points are reallocated

according to the new centroids. This scheme is iterated until the stopping criteria are reached

(e.g. no changes in the cluster membership). The initial partition is set randomly.

The complexity of K-means is O (NKq) where q is the number of iterations. It is usually

assumed that in practice K and q are much lower than N , so the complexity is approximately

lineal for large data sets. This is not the case of this work, as K is comparable to N , and the

complexity can be comparable to O
(
N2
)
.

However K-means has many drawbacks. The initialization is a critical step, as di�erent

initial partitions may lead to very di�erent �nal clusterings[Peña et al., 1999]. Many heuristics

and stochastic approaches have been proposed, but with a signi�cant cost in computational

complexity. A widely used heuristic is to run several times the algorithm with di�erent initial

partitions (picked randomly), and then keep the solution with minimum intracluster variance.

Another drawback is the sensitivity of the algorithm to outliers and noise.

In this algorithm, the number of clusters K must be speci�ed as an input parameter, and it

has a decisive in�uence in the results. A wrong value may lead to poor clusterings. Thus, the
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estimation of the number of clusters is critical. Several methods have been proposed, but again

with some penalty in the complexity.

Other partitional algorithms used in summarization, such as spectral clustering[Ng et al.,

2001; Odobez et al., 2003; Filippone et al., 2008], can estimate the number of clusters, although

instead of the explicit parameter K it is usually necessary to specify other model parameters

which are still di�cult to estimate and the results are very sensitive to small variations of their

values. They usually need a dense data set to be able to recover the underlying structure.

5.6.1.2. Hierarchical agglomerative clustering

Hierarchical clustering algorithms[Ward, 1963; Jain et al., 1999] generate a hierarchy of nested

clusterings rather than a single clustering. The most used are the agglomerative algorithms,

which start with an intial clustering in which every data point is a cluster. At each step the

distance between all the possible pairs of clusters is computed and the two clusters with less

distance are merged into one. The procedure continues until the �nal clustering, which con-

tains a single cluster. Di�erent distances between clusters lead to di�erent algorithms. The

most used algorithms of this family are the single linkage, complete linkage and average linkage

clusterings[Theodoridis and Koutroumbas, 2006].

The �nal clustering can be obtained by either specifying the number of clusters, or either

specifying a cut-o� distance in the accumulated cluster distance through the hierarchy. The

latter is a much more suitable criterion, as a threshold distance can be set independently of the

length of the sequence, and the problem of the estimation of the number of clusters is avoided.

The complexity of the agglomerative scheme is O
(
N3
)
although there are some e�cient

implementations that only require O
(
N2
)
[Theodoridis and Koutroumbas, 2006]. For large data

sets, this algorithm is usually unfeasible and lower complexity algorithms such as K -means

are preferible. However, in the case of the proposed analysis algorithm, the data was previously

reduced in order to avoid high complexity and the subsequent high processing time. As discussed

before, in this case the complexity is comparable to K -means. Besides, in contrast to partitional

algorithms, the agglomerative approach obtains good clusterings in the case of the non dense

data set obtained in feature extraction.

The characteristics of both clustering algorithms are summarized in Table 5.1, comparing the

advantages and drawbacks for both the common scenario (see Table 5.1a) and the speci�c sce-

nario of the proposed summarization algorithm, after the amount of data has been dramatically

reduced in the previous stage (see Table 5.1b).

5.6.2. Clustering in the proposed summarization algorithm

According to the previous analysis and comparison between both algorithms, we use the

hierarchical clustering algorithm. Particularly, the algorithm used is the agglomerative algorithm

with average linkage[Theodoridis and Koutroumbas, 2006], as it can recover clusters with non-

spherical shapes (in contrast to other algorithms such as K-means).
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K -means Hierarchical (agglomerative)

Complexity O (NKq) ≈ O (N) as usually
K � N, q � N (q: number of iterations)

O
(
N3
)

O
(
N2
)
(e�cient implementation)

Output K clusters Hierarchy of clusters
Advantages -Simple.

-Fast.
-Scalable to large data sets

- Able to recover complex-shaped
clusters.
- No need to specify the number of
clusters. Dendogram analysis can be
used instead.
- Hierarchical representation.

Drawbacks - K must be speci�ed. How to estimate
it?
- Results very dependent on the
(random) initializations. Di�erent
results from run to run
(non-deterministic).
- Only (hyper)spherical-shaped clusters.

- More complex.
- Slow with large data sets.

Comments - Heuristic and statistical approaches
can help to overcome these limitations,
although the algorithm becomes notably
slower.

(a)
K -means Hierarchical (agglomerative)

Complexity O (NKq) ≈ O (KN) if K ≈ N then
O (NKq) ≈ O

(
N2
) O

(
N2
)
(e�cient implementation)

Comments - Non-dense data set. K -means performs
worse with non-dense data sets.
- No so fast now.

- Complexity relies on the computation
of the distance matrix.

(b)

Table 5.1: Comparison of K-means and hierarchical clustering: (a) usual scenario, (b) after data
reduction.
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The �nal clustering is obtained by specifying a cut-o� linkage distance in the accumulated

cluster distance through the hierarchy. For each cluster ck, the keyframe with its feature vector

closest to the centroid is selected as the representative keyframe tk ∈ ck.
Note that we do not use the hierarchy generated by the algorithm for scalability, although it

could be used, as it is a scalable representation itself. Instead of that, we use a di�erent approach

based on iterative ranking to generate the scalable representation.

5.7. Iterative ranking

The ranking stage is motivated by the need to address the problem of generating suitable

summaries for a wide range of potential lengths, but created in a single process. The objective

is to obtain a compact scalable representation of storyboards and video skims. It follows the

incremental growing approach described in Section 5.4.5, returning two ranked lists: listsb for

storyboards and listvs for video skims. Note that, in contrast to conventional approaches,

this approach creates a set (with a high number of embedded summaries) instead of a single

summary. The objective is to �nd a good set of embedded summaries satisfying (5.1) and not a

single optimal summary.

In order to balance properly the coverage and pleasantness for short and long summaries,

the ranking is divided into two di�erent stages: cluster level ranking and shot level ranking.

5.7.1. Cluster level

When the length of the summary is very constrained (usually in storyboards and short

skims), the algorithm focuses on covering the basic semantics of the sequence with as few GOPs

as possible. We assume that clusters are a reasonably good representation of these semantics,

and that each cluster can be represented by a keyframe (for storyboards) and by a short excerpt

of Nexc consecutive GOPs (for video skims). Thus, �nding a representative keyframe or segment

for each cluster should be enough to have a suitable summary in these limited conditions. If the

length of the summary is even more constrained, some keyframes or excerpts must be discarded,

with an associated loss in coverage.

To provide the best set of keyframes for each summary length, clusters are ordered by their

relevance, using the following iterative ranking procedure in which the clusters are ranked and

selected incrementally:

1. Set scale q = 0. Set S(q) = listsb = listvs =∅.

2. Compute the score score(q) (ck) for every cluster ck. Select the cluster c∗ with maximum

score. Mark c∗ as selected including it in S(q). Grow previous summaries as follows

a) Includem∗ in listsb , wherem∗ is the index of the GOPUm∗ containing tk (keyframe

representative of c∗).

b) Include an excerpt b in listvs centered at the GOP with index m∗. The excerpt of

�xed length Nexc GOPs (with Nexc even) is de�ned as
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b =

{
m∗ − Nexc

2
, . . . ,m∗, . . . ,m∗ +

Nexc
2
− 1

}
(5.7)

3. Set q = q + 1. Set S(q) = S(q−1) . Go to step 2 and repeat until all clusters are selected.

The score at the scale q of each cluster is then given by

score(q) (ck) =


(1− αc)

score
(q)
dist(ck)

max
j
score

(q)
dist(cj)

+ αc
score

(q)
dur(ck)

max
j
score

(q)
dur(cj)

k /∈ S(q−1)

0 k ∈ S(q−1)

(5.8)

Note that clusters selected in previous iterations are no longer considered. Note also that

scores must be recalculated for each iteration, as there is not a global a priori score for each

cluster (as in other summarization algorithms[Truong and Venkatesh, 2007; Albanese et al.,

2006]), but a local a posteriori score for each iteration, conditioned by the summary obtained

in the previous iteration.

The scores are computed based on two criteria: distance and duration, combined in a weighted

sum. The duration score favors the selection of clusters with more contribution in terms of

duration of the sequence, assuming that longer clusters should be included at lower scales. The

score score(q)
dur (ck) is computed as

score
(q)
dur (ck) = L (ck) (5.9)

where the duration of ck is de�ned as L (ck) =
∑
p
L (sp), ∀sp ∈ ck, and L (sp) is the length of sp in

number of GOPs. A shot sp belongs to ck if any of its representative keyframes is member of ck.

The distance scores favours the selection of more dissimilar clusters than those already selected in

previous iterations. The distance d (ci, cj) between clusters is computed as the distance between

their representative keyframes (i.e., d (ci, cj) = d
(
t̄i, tj

)
). The score score(q)

dist (ck) is computed

as

score
(q)
dist (ck) =


0 q = 0 or k ∈ S(q−1)

min
j∈S(q−1)

d (ck, cj) q > 0, k /∈ S(q−1)
(5.10)

Figure 5.4 shows an example of clustering (each row representing a cluster), after ranking

(with αcluster = 1, i.e. ranked by duration). The input sequence was an excerpt of a news video.

Similar shots are clustered in the same cluster and clusters with longer duration are placed above

shorter ones. Note that, in some cases, due to the limitation to Wmax = 3 keyframes per shot,

clusters with a longer duration may have fewer keyframes than other clusters with a shorter

aggregated duration, but with more shots.

The scoring and selection mechanisms are illustrated in Figure 5.5. It shows the scores of

clusters across the di�erent iterations, when they are ranked either by duration or by distance.

For better visualization, the scores are shown normalized and ordered in such a way that the

scores of the cluster selected at a given iteration q are placed in the column q. Thus, the main

diagonal shows the maximum score of each iteration.
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Figure 5.4: Example of clusters after ranking (αcluster = 1, Wmax = 3).
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Figure 5.5: Cluster scores for each iteration: (a) αcluster = 1 (duration), (b) αcluster = 0.0001
(distance). Scores are normalized for each row (iteration) and sorted by order of selection.
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Figure 5.6: Example of scales of a scalable storyboard of news11 (αc = 0.5).

The iterative ranking procedure computes a di�erent score for each iteration. This score

is in�uenced by the summary resulting from the previous scale. The di�erence between scores

computed a priori and a posteriori (i.e. conditioned by the previous summary) can be also

observed in Figure 5.5. Although the duration score is computed for each iteration, it is based

on a feature (i.e. duration) that is independent of the other clusters. For this reason, the scores

in each column and row are smooth and monotonous in each row and column (see Figure 5.5a).

On the contrary, the distance score depends on the other clusters, and it is in�uenced by the

selection of speci�c clusters. When two clusters are very close in the feature space, if one of them

is selected, the distance score of the other will decrease signi�cantly in the subsequent iterations,

and the scores of other clusters will be boosted. It stimulates the inclusion of novelty in the

summary instead of redundancy. This e�ect can be seen in Figure 5.5b as sudden changes in the

scores motivated by the selection of another cluster in the previous iteration.

Figure 5.6 shows an example of the di�erent scales in a scalable storyboard. As it can be

observed, shorter summaries are included into longer ones. Also, clusters with long shots (head

shots of interviewees) are included at earlier stages, due to the contribution of the duration score

to the overall score.

5.7.2. Shot level

For longer skims, once a minimum semantic coverage is achieved and the length of the

summary increases, summaries can be improved not only from the semantic coverage point of

view, but also emphasizing other aspects. In this sense, segments with di�erent lengths can be

allowed in the summary, trying to create a more natural summary. At this level, the ranking is

performed iteratively for each GOP, computing scores for each shot. For each iteration, there

are two possible actions: including an additional excerpt from a new shot or growing an excerpt

included previously. The ranking algorithm continues after cluster ranking with the following
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steps:

1. Compute score(q) (sr) for each shot sr. Select the shot s∗ with maximum score. Grow

summaries as:

a) If s∗ was not selected previously, select the keyframe t∗ closer to the middle of the

shot s∗ and include an excerpt b, centered at the GOP containing t∗, in listvs. Mark

s∗ as selected and include it in S(q).

b) If s∗ was already selected, grow the selected excerpt with an additional GOP of index

m∗ (alternatively from left and from right bounds of the excerpt, until shot bounds

are found). Update listvs including m∗.

2. Set q = q + 1. Set S(q) = S(q−1) . Go to step 2 and repeat until all the GOPs in all shots

are selected.

As in cluster ranking, the score score(q) (sr) weights two di�erent criteria with αs controlling

the trade-o�.

score(q) (sr) =


(1− αs)

score
(q)
dist(sr)

max
j
score

(q)
dist(sj)

+ αs
score

(q)
dur(sr)

max
j
score

(q)
dur(sj)

r /∈ S(q−1)

0 r ∈ S(q−1)

(5.11)

The score score(q)
dist (sr) favours the inclusion of shots which are not well represented by the

current summary, and it is based on the Hausdor� distance from the unselected keyframes (t̃(q)

represents the set of selected keyframes at scale q) of the shot sr to the current summary. If all

the keyframes belonging to the shot sr were included previously, then the score is zero. Thus,

the score score(q)
dist (sr) is calculated as

score
(q)
dist (sr) =


max
tj∈sr
∀tj /∈t̃q−1

{
min
∀tj∈t̃q−1

d (tj , tk)

}
if ∃tj ∈ sr|tj /∈ t̃(q−1)

0 otherwise

(5.12)

The score score(q)
dur (sr) is calculated as

score
(q)
dur (sr) = e

−

 ρ(sr)

max
tj ,tk∈sr

d(tj ,tk)

λ
(5.13)

The duration criterion is based on the assumption that longer shots should be represented

with longer excerpts in the summary. This ad-hoc expression measures the relevance of the shot

according to ρ (sr) = 1− L(sr
⋂

list(q)vs )
L(sr) , which is the ratio between the duration of the shot not yet

selected at the scale q and the total duration of the shot. To avoid an excessive prominence of the

longest shots, we use an exponential function (in the experiments we used λ = 4). When ρ (sr)

reaches a su�cient value, the shot is considered well represented and score
(q)
dur (sr) decreases

rapidly. The ratio ρ (sr) is normalized by the distance between keyframes in the shot, promoting

the selection of more GOPs in shots with more internal variation.
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Figure 5.7: Distance score using the Hausdor� distance

5.7.3. Residual ranking

Finally, those GOPs initially discarded in the feature extraction stage can be included in the

ranked list if a complete scalable representation of the sequence is required. First, the GOPs

belonging to short shots are selected iteratively, from longer to shorter duration. After that, the

GOPs belonging to shot changes are �nally selected.

Note that, for most practical applications, this last ranking stage can be avoided, as it

would only have e�ect on summaries with length close to that of the full sequence (almost no

summarization at all). However, a complete scalable representation of the sequence, which could

be useful in some applications, requires all the GOPs to be included in the ranked list.

Figure 5.8a shows an example of ranked list and the length of the summary obtained at

each index. The cluster level ranking covers the shortest summaries, in a small range from the

beginning of the list. This range is the most useful, as summaries are usually required to be

short. The shot level ranking covers almost the rest of the range. As it can be observed, the

granularity is very �ne, being able to obtain a summary with a given target length almost with

GOP precision. At cluster level, the granularity is slightly coarser, limited by the value of Nexc,

which usually is not too large (see Figure 5.8b).

5.8. Generation

5.8.1. Generation via bitstream extraction

Once the scalable summary is represented by the ranked list list, any of the speci�c sum-

maries at any scale can be extracted from the bitstream of the original sequence. The extracted

summary will depend on the constraints imposed by the user or the context. Such constraints

must be related to a characteristic function h (m′) that depends on the index of the GOP in the

ranked list. In general we can assume that h (m′) is monotonically increasing with the index m′

(and also with the scale q). Examples of such functions are the number of images of a storyboard,
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Figure 5.8: Length of the summaries depending on the index of the ranked list: (a) whole
ranking, (b) cluster level ranking.

the duration in seconds of a video skim or even the �le length.

The �rst step is the selection of the indexes satisfying a given constraint h (m′) ≤ m′max.

The cut-o� index in the ranked list is

m′max = arg max
h(m′)≤hmax

0≤m′≤|list|−1

h (m′) (5.14)

The set IS with the indexes of the summary is obtained as the �rst m′max indexes

IS =
{
m0, · · · ,mm′max−1|mi−1 = list (m′) , 0 ≤ m′ ≤ m′max

}
(5.15)

Once the set with the indexes of the summary IS is determined, the actual bitstream of the

summary can be generated. The extractor implements the bitstream extraction operations S =

Eskim (V ; IS) for video skims and S = Estb (V ; IS) for storyboards and extracts the bitstreams

as described in Chapter 3.

The output bitstream consist of the selection of the adequate packets from the input bitstream

V . To generate a video skim, the packets of the whole GOP must be included, while for

a stroyboard only the packets of the I frame. Note that both summaries have the form of

a compressed video sequence. An appropriate video decoder is required in the client. For

storyboards, an intra decoder (for I frames) is necessary, and the decoded frames need to be

presented as a collection of images instead of being presented as a sequence.

5.8.2. Generation via set of images

Due to compatibility issues, the client may not be capable of decoding video or extracting

the frames presenting them as single images. If that happens, the browser will be unable to

display not only video skims, but also storyboards. An alternative to bitstream extraction is

the use of sets of images. In this case, at the analysis stage, each of the frames belonging to the
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storyboard is decoded and stored in a separate �le using a suitable format (e.g. JPEG). Note

that fast transcoding from MPEG-1/2 intra frames to some image codecs such as JPEG can be

achieved processing the bitstream directly in the compressed domain[Acharya and Smith, 1998].

An index corresponding to the GOP number is associated with each image (e.g. in the �le

name). Then, the generation consists of the selection of the appropriate image �les. No video

sequence is involved in this case. Thus, legacy decoders and conventional web browsers can be

used without any additional capability.

5.9. E�ciency and delay analysis

The whole summarization framework, and particularly the analysis stage were carefully de-

signed to be e�cient. For a full bene�t of scalable representations, e�ciency in the generation

stage is required, as discussed in Section 5.4.1. However, other characteristic of the algorithm,

such as compressed domain analysis, sampling, data reduction and fast clustering algorithm,

also lead to e�cient analysis. E�ciency in the analysis stage is not required, in principle, as it is

performed only once and the results (ranked lists) can be stored as metadata. However, in some

scenarios (e.g. broadcasting, live content), analysis cannot be done in advance, and e�cient

analysis is required for a number of applications, such as low delay summarization.

5.9.1. E�cient and low delay summarization

E�cient summarization of video content is a very di�cult task, due to the huge amount

of data that video sequences contain, compared to other media such as image, audio or text.

One of the benchmarks provided by the TRECVid BBC rushes summarization task[Over et al.,

2007, 2008] is the creation time. Although the implementations were not optimized and the

comparison of creation times was only orientative, this benchmark shows that the majority of

the approaches were very ine�cient.

E�cient summarization requires both e�cient analysis and e�cient generation of the bit-

stream. As discussed in Chapter 3, exploiting coding structure and processing the bitstream

in the compressed domain can increase signi�cantly the e�ciency of the generation stage. Re-

garding analysis, some e�cient approaches are based on clustering methods[Ferman and Tekalp,

1998]. They provide compact summaries by grouping similar frames or shots into clusters. How-

ever, some clustering algorithms may become very slow with long video sequences (e.g. movies,

TV news bulletins).

Low delay summarization is a challenging problem, and extremely e�cient algorithms are

required to keep reasonable the delay between the request and the delivery of the summary

itself[Valdés and Martínez, 2010]. For long sequences, much faster processing than real time

processing is required. For instance, considering a 10 minutes length video clip at 30 frames per

second, if the summary is required to be delivered with a maximum delay of 10 seconds, the

system must process the input sequence at 1800 frames per second (30 times real time). Longer

videos would require more processing capability for the same delay.
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An important limitation of video summarization is the inherent requirement to process all

the data �rst, in order to be able to generate a summary (e.g. a human can hardly summarize

a movie if he or she has not watched it completely). The online approach described in [Valdés

and Martínez, 2008] relaxes this requirement in order to create summaries with limited delay,

generating a video skim at the same time the video is being processed, being suitable for low

delay summarization. This algorithm also reported the lowest creation time (excluding the

baseline algorithm) in the TRECVid 2008 evaluation, processing about 400 frames per second.

The baseline algorithm used in the TRECVid 2008 evaluation, with a trivial analysis stage (the

video is simply presented at 50 times normal speed), reported a processing capability of 2300

frames per second.

5.9.2. Delay analysis of the algorithm

In the proposed framework, analysis and generation stages are chained in a sequential order,

so the total processing delay required is the sum of the delay of both stages:

ttotal = tanalysis + tgeneration (5.16)

Note that if the results of the analysis have been computed previously (and stored as meta-

data) the processing delay is simply tgeneration, as the analysis stage is not required anymore.

The analysis stage is composed by other three stages. Thus, the analysis delay tanalysis is

further decomposed in its stages:

tanalysis = tfeatures + tclustering + tranking (5.17)

The �rst stage includes bitstream parsing, shot change detection, keyframe sampling and

feature extraction.

5.10. Experiments

This section presents a series of experimental evaluations of the proposed framework, includ-

ing objective and subjective tests. For these experiments we implemented the framework for

MPEG-1/MPEG-2 coding formats. We have used sequences from di�erent data sets according

to the speci�c requirements of each evaluation. The MPEG-7 color layout was used as low level

feature, along with the distance proposed in [Kasutani and Yamada, 2001]. We used αC = 0.2

and αS = 0.2, after testing some values.

5.10.1. Shot change detection

In order to evaluate how the GOP length can in�uence the shot change detection, we tested

the proposed method with the sequence NASASF-TheTechnicalKnockout from the TRECVid

2005 shot boundary detection corpus [Over et al., 2007]. This sequence has 105661 frames that

were encoded using diferent GOP lengths. The original sequence has 604 cuts and 95 gradual
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Sequence Abrupt Gradual Total
GOP length #GOPs # FP M R P # # R P

1 105660 604 33 35 0.942 0.945 95 699 0.814 0.945
2 52829 607 45 36 0.940 0.926 92 699 0.816 0.926
4 26414 622 34 47 0.924 0.944 77 699 0.822 0.944
8 13206 629 36 52 0.917 0.941 68 697 0.827 0.941
16 6602 660 48 99 0.850 0.921 33 693 0.809 0.921

Table 5.2: Results of shot change detection experiment. FP: false positives, M: missed, R: recall,
P: precision.

transitions. The results are shown in Table 5.2 and were obtained using the ground truth and

the evaluation tool provided by TRECVid.

The algorithm has very good results for cuts, up to GOP lengths of 8 frames. For 16 frames

the recall drops, but still to an acceptable rate. The decrease in the recall with the GOP

length is due to the increase of the temporal distance between consecutive I frames, because the

interframe distance become noisier and then it becomes more di�cult to detect cuts. No gradual

shot change detector was implemented, but, as gradual transitions are less frequent than cuts

(of course, it depends on the sequence), the overall performance is acceptable. Another e�ect

of the use of longer GOPs is the shifting of detected transitions from gradual to cuts. It helps

to keep the overall precision and recall in similar rates, as some of these new cuts come from

gradual transitions not detected at shorter GOP lengths.

The results show a reasonable performance for all the GOP lengths studied in the experiment.

However, for longer sizes, GOP processing may not be enough for an e�ective detection of cuts,

and the decoding of the rest of frames (or DC images) would be necessary. If a better performance

is required, more sophisticated algorithms would be necessary in order to detect abrupt and

gradual transitions with frame precision, at the cost of some processing e�ciency.

5.10.2. Subjective evaluations

Quality assesment of summaries is a major issue in video summarization, usually requiring

long evaluation sessions involving a number of human assessors. It becomes even worse in scalable

summarization, as every summary must be evaluated at a number of scales. To evaluate our

approach, we conducted an experiment designed to evaluate summaries at several scales. We

used the subjective approach followed in many previous works[Zhu et al., 2004; Over et al., 2007,

2008; Ngo et al., 2003], in which some assessors are asked for visualizing the summaries and then

asked for answering questions according to some evaluation criteria. Previously, the assessors

were asked for visualizing the original sequence. The experiment includes a set of absolute

evaluations and another set of relative evaluations, in which two summaries are presented to be

compared.

In order to have a reference, we compared the scalable method with a baseline method

consisting of sampling the sequence at uniform intervals, selecting, at each sampling point, a

frame for storyboards or a short segment for video skims (the same method used in Chapter 4).
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Figure 5.9: Absolute evaluations (storyboards): (a) baseline, (b) scalable.

Although the method is very simple, the summaries are satisfactory enough for many practical

applications, particularly for edited content.

The evaluation data set consisted of three segments of 10 minutes each, selected from di�erent

corpora, in order to evaluate the method in di�erent contexts. The sequences contesting and

news11 belong to the MPEG-7 Content Set[ITU-T and ISO/IEC, 1998]. The sequence contesting

contains a typical question-answer TV show. The sequence news11 is a typical news programme,

with several news stories alternating with an anchorperson. The last sequence is a segment of

the BBC rushes from the TRECVid 2007 corpus[Over et al., 2007] (spec�cally from the sequence

MRS042538). In contrast to the other sequences, rushes consist of unedited footage with di�erent

takes of the same scene, so this type of content is much more redundant than edited content.

A total of 36 absolute evaluations results from the combination of all the possible summaries

in a four dimensional evaluation space. These four dimensions correspond to the sequence

(constesting, news11, BBC rushes), the modality (storyboard or skim), the scale (three scales)

and the method (baseline or scalable). The scales for storyboards are 5, 10 and 30 images for

contesting and news11, and 3, 6 and 10 images for BBC rushes due to its higher redundancy.

The scales for video skims are 6, 11 and 30 seconds for contesting and news11, and 6, 11 and 25

seconds for BBC rushes.

The experiment involves a large number of evaluations and the evaluation of summaries

of the same sequence at di�erent scales. In order to minimize the e�ects of the presentation

order and fatigue, we used an experimental design based on a 6x6 Latin square[Bailey, 1996],

covering the six possible presentation orders for the three scales and the two summarization

methods. Evaluations for each of the three sequences are interleaved in order to minimize the

e�ect of visualizing summaries of the same sequence in a row. Storyboards and skims are also

interleaved, so the summary of a given sequence with the given modality is not repeated in six

consecutive evaluations. According to this design, 18 volunteers were involved in the evaluation.

For each summary three questions were posed to the assessors. The questions aimed at

measuring the quality of the summary according to di�erent criteria, and were formulated as

statements. The response scale had �ve possible values in a typical Likert scale[Likert, 1932],
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Figure 5.10: Absolute evaluations (skims): (a) baseline, (b) scalable.

ranging from agreement to disagreement with the posed statement. The �rst question was related

to the semantic coverage, the second to the visual pleasantness and the third assessed the overall

satisfaction. In contrast to most summarization approaches, the length of a scalable summary

is variable and ultimately adjusted by the user, so each summary must be evaluated according

to its length. During the brie�ng session we emphasized this issue to the assessors, that were

asked to kept that in mind during the evaluation process. For instance, for information coverage,

the assessor is asked if he or she thinks that the information of the sequence is reasonably well

covered by the summary, provided that, for example, only the three frames shown are available.

In addition to the previous experiment, another 18 relative evaluations were carried out. A

similar experimental design with Latin squares and interleaved sequences was used. The assessor

had to visualize two summaries of the same sequence with the same modality and scale, generated

by the baseline method and the scalable method. For storyboards, both summaries are displayed

simultaneously. For video skims, they were displayed one after the other, not simultaneously,

although the assessor had the chance to visualize them again if necessary. Both the layout order

and the display order were random so the assessor could not know which one was generated

by each method. The items were reformulated to evaluate which of the summaries is preferred

according to the same criteria.

The results of the absolute evaluations (see Figure 5.9 and Figure 5.10) show that, in general,

the scalable approach generates more satisfatory summaries than the baseline for both semantic

and visual pleasantness criteria and also for the overall satisfaction. The results obtained for the

scalable method were positive for both storyboards and skims, with di�erent levels. The results

for the baseline method were satisfactory for skims, but not for storyboards. The di�erence

between both methods is notable for storyboards while the results for skims are similar, at least

in Figure 5.10. However, the relative evaluations (see Figure 5.11) con�rm a preference, in

general, for the scalable method, except for the sequence news11, for which the baseline method

is preferred at low scales.

As we can also observe, the results vary depending on the sequence. For the sequence

news11 the results are di�erent because news content is highly edited and structured, with news
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Figure 5.11: Relative evaluations: (a) storyboards, (b) skims.

stories distributed regularly along the sequence. In fact, the baseline method generates good

summaries for this kind of structured video, as sampling at regular intervals ensures that the

selected frames are not similar and they belong to di�erent news stories, which is especially

important at low scales. So implicitly, the baseline algorithm exploits the regular pace and

distribution of information within news content. The result is a good summary covering several

news stories with few images or video excerpts. For the other videos, representing unedited

content or edited but with a less regular structure and more redundancy than news content, the

scalable method generates better summaries.

5.10.3. E�ciency

We study the e�ciency of the algorithm with the sequences used in the previous experiment

(full length sequences, ranging from 15 to 32 minutes). In order to study the performance in a

high resolution scenario (e.g. digital television, DVD) we also included a high resolution sequence

(dn2002-0228, obtained from the Internet Archive, 720x480 pixels). The sequences were encoded

in MPEG-1 (dn2002-0228 in MPEG-2) with a GOP length of 13 frames. The sequence was

summarized with the proposed algorithm using Wmax = 3 and Nexc = 4, hierarchical clustering

with average linkage and a cut-o� linkage distance of 0.18. We also compared hierarchical

clustering and K -means clustering.

Table 5.3 shows the processing times for each of the test sequences for di�erent summaries and

lengths1. In general, the processing time with this framework is very low, being suitable for low

delay summarization, even for the high resolution sequence dn2002-0228, which is notably more

demanding. Compared to the creation times reported in TRECVid 2008, this framework, using

compressed domain, fast analysis and bitstream extraction, can generate summaries signi�cantly

faster (in TRECVid 2008 typical sequences have a resolution of 352x240 pixels and 29.97 frames

per second and were encoded in MPEG-1, and the target summarization rate was 2%; for an

approximate comparison, compare results for skims 1% and 5% in Table 5.3).

1Experiments performed in a Intel Pentium M 1.86 Ghz processor (2 GB of RAM)
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Figure 5.12: Number of keyframes for di�erent values ofWmax: (a)MRS042538 and (b) dn2002-
208.
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Figure 5.13: Clustering time for di�erent values of Wmax: (a) MRS042538 and (b) dn2002-208.

Both analysis and generation are very e�cient. Analysis delay is mostly due to the feature

extraction stage, more than 96% of analysis e�ort. Experiment also shows that clustering and

ranking are extremely fast when the data set is reduced properly. It must be noted that the

parsing and decoding steps are codec-dependent. DC images can be extracted in coding for-

mats such as MPEG-1 and MPEG-2. Other complex coding formats, such as H.264/AVC need

probably complete decoding of frames, which may also lead to less e�cient results.

The e�ciency of the clustering and ranking stages depends mainly on the amount of data

to be processed. Feature extraction e�ectively reduces the set of data allowing fast clustering

and ranking. An important parameter in such data reduction is the number of keyframes per

shot Wmax. Figure 5.12 shows the relation between the number of total keyframes and the

number of keyframes per shot. Figure 5.13 shows how this number of keyframes has e�ect

on the clustering time, for both hierarchical and K -means clustering. In order to lessen the
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Figure 5.14: Clustering time for di�erent numbers of clusters: (a) MRS042538 and (b) dn2002-
208.

dependency on the random initialization, we included in the comparison a variation which runs

K-means ten times and selects the solution with lower clustering error. That results in better

and more stable clusterings, although it also implies an important increase in the processing

time. Processing time increases aproximately linearly, although K-means grows faster than

hierarchical clustering. The number of clusters is another important parameter with e�ect on

the clustering e�ciency. Figure 5.14 shows the clustering time for di�erent number of clusters.

With hierarchical clustering, processing time remains almost constant, independently of the

number of clusters, while with K-means it increases, being signi�cantly slower when the number

of clusters is high. In general, hierarchical clustering is more suitable in this case.

Finally, Figure 5.15 shows how the generation time increases for two sequences. The results

are similar to those presented in previous chapters. High resolution sequences usually are en-

coded in larger bitstreams, requiring more time to process the packets, which results in a higher

generation delay (see Figure 5.15b). However, summaries are generated very fast, especially

compared to the duration of the sequences (about half an hour in both cases).

5.11. Summary and conclusions

This chapter has introduced the concept of scalable summaries, in which the length of the

summary can be accommodated to certain speci�c constraints. We have discussed the role of

length in video summaries, as well as its e�ect over some properties such as semantic coverage

and visual pleasantness. The problem of scalable summaries is adressed using an incremental

growing approach, in which the summary at each scale is obtained by improing the previous one.

This incremental growing approach is implemented using hierarchical clustering and iterative

ranking. Addressing also e�cient processing, compressed domain analysis is used, in addition

to a bitstream extraction framework for MPEG-1/2. Fast generation of the bitstream is crucial

to fully bene�t from the advantages of scalable representation.
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Figure 5.15: Generation time for di�erent lengths of the summary (in GOPs): (a) MRS042538
and (b) dn2002-208.

Subjective evaluations showed reasonably good results at di�erent scales and for di�erent

types of sequences. We also studied the e�ciency of both analysis and generation, with en-

couraging results for low delay summarization, in which conventional summarization techniques

cannot be applied due to their high processing burden.
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Chapter 6

Scalable comic-like summaries

In this chapter we extend the idea of scalable summaries, developed for storyboards and

video skims, to a more complex modality: comic-like summaries. This type of summary is based

on the popular format of comic strips, which can be exploited to create more intuitive and easily

readable summaries. The presence of a non-trivial layout in this modality (which changes with

scales) makes the layout algorithm the most critical part of the whole system. We also explore

some undesirable e�ects that appear due to the variable size nature of this modality, and some

techniques to make the summaries more pleasant.

6.1. Related work

Although traditionally research in summarization is related to storyboards and video skims[Truong

and Venkatesh, 2007; Money and Agius, 2008b], there are some recent works proposing new types

of presentation in order to create more intuitive summaries. We review some of these works,

focusing especially on comic-like summaries.

6.1.1. Advanced pictorial summaries. Beyond storyboards

In contrast to sequence-based summaries such as video skims and fast forwards, pictorial

summaries represent video sequences in a static visual abstraction, in which several images are

presented simultaneously in a spatial layout according to certain storyline. Among pictorial

summaries, the most simple but also most representative is the storyboard, which is basically

built with some �xed-size keyframes displayed in a trivial layout. However, other approaches

have been proposed to enrich this pictorial information with more e�ective and visually appealing

formats. Composition techniques can be used to create more compact representations which

enhance the information of interest. In this section we review some of these approaches (see

Figure 6.1).

One of the characterisitcs of storyboards is the �xed size of the images which suggests that

each one coveys equally relevant information. Keeping the size constant, video snapshots[Ma
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and Zhang, 2005] display the keyframes in a grid layout, which is decomposed into several groups

containing related keyframes. Thus, the user has a compact and structured representation of

the video sequence. However, the use of di�erent frame sizes have been studied[Yeung and Yeo,

1997; Uchihashi et al., 1999; Calic et al., 2007; Jansen et al., 2008; Ren and Calic, 2009] to

present the salient information in larger images. In [Yeung and Yeo, 1997], the video sequence

is summarized as a set of posters, each of them containing a relevant event represented in a

variable size template with few images. A similar approach, but containing the whole sequence

in a single representation, is the comic-like summary[Uchihashi et al., 1999; Girgensohn, 2003;

Calic et al., 2007]. Representation of large sets of keyframes (from long sequences) in a single

represntation.

Related approaches using variable frame size images[Huynh et al., 2005; Ren and Calic, 2009]

have been used in the context of image and video search and browsing (see Figure 6.1f for one

example). After selecting a set of keyframes and extracting some video structure, most of these

methods can be also used for video abstraction and browsing. Video browsing is closely related

to video abstraction, but usually includes some degree of interactivity to move and zoom into

some speci�c parts of the sequence. However, speci�c image-based methods to browse video

content have been developed, such as video trees[Jansen et al., 2008], which summarize the

video sequence into a hierarchical layout where few important large images are displayed on the

top and which is �lled in a top-down fashion with progressively downsized images, temporally

related to their neighboors (see Figure 6.1d). The user can zoom into one of the smaller images

to obtain another local video tree with detailed information.

Another trend in summarization is the use of regions of interests (ROIs) to obtain more

compact summaries[Chiu et al., 2004; Pritch et al., 2008; Mei et al., 2009]. In these methods,

salient regions are detected and extracted from the keyframes. The ROIs are combined into

a single pictorial representation containing all the salient information from the sequence. The

�nal image can be obtained by �tting the irregular shapes of the ROIs into a layout, as in the

stained-glass approach[Chiu et al., 2004], shown in Figure 6.1b. ROIs can be combined in a

more appealing way by blending their borders, as in the video collage approach[Mei et al., 2009],

shown in Figure 6.1e. ROI-based summarization can be also used in sequence-based summaries

to create very compact summaries, as in video synopsis[Pritch et al., 2008], which combines

several temporally separated moving ROIs (spatiotemporal tubes) in a single and very compact

sequence.

6.1.2. Comic-like summaries

Exploiting the narrative structure of comics, comic-like summaries have been proposed as

a user-friendly and easily-readable representation of video summaries[Calic et al., 2007]. Be-

ing de�ned as �spatially juxtaposed images in deliberate sequence intended to convey informa-

tion�[McCloud, 1994], comics are able to use spatial relations of their imagery to convey the

notion of time. In contrast to conventional storyboards, the narrative structure of comic-like

video summaries is more complex and utilizes images of di�erent sizes, laid out so that the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Advanced pictorial summaries: (a) video poster (from [Yeung and Yeo, 1997]), (b)
stained-glass summary (from [Chiu et al., 2004]), (c) video snapshot (from [Ma and Zhang,
2005]), (d) video-tree (from [Jansen et al., 2008]), (e) video collage (from [Mei et al., 2009]), and
f) Free-eye interface (from [Ren et al., 2010])
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Figure 6.2: Comic-like video summary (from [Calic et al., 2007])

position and scale relate to an estimated frame importance.

The �rst related summarization approach was the video poster[Yeung and Yeo, 1997], pro-

posed as a pictorial representation (with variable image sizes) summarizing the most dramatic

incident taking place in a meaningful segment of the video (scene, dialog, action). Video posters,

however, do not follow necessarily the temporal structure of the video segment. The pattern of

the video poster is selected among a few prede�ned patterns, according to a set of prede�ned

rules. In addition, each video poster is limited to a maximum of 16 images (as reported in [Yeung

and Yeo, 1997]).

Addressing this limitation, a number of methods[Uchihashi et al., 1999; Girgensohn, 2003;

Calic et al., 2007] proposed more e�cient algorithms capable of generating larger layouts. The

problem of optimal image layout in a comic-like visual structure is usually posed as a combi-

natorial optimization problem. Full search methods can be used to �nd the optimal solution,

but they become impractical when the number of images increases[Uchihashi et al., 1999]. One

way of addressing this problem is to apply suboptimal algorithms based on heuristic simpli�ca-

tions[Girgensohn, 2003]. However, as proposed in [Calic et al., 2007], nearly optimal performance

can be achieved by utilizing a fast suboptimal algorithm suitable for large layouts due to its linear

complexity. Figure 6.2 shows an example of large comic-like summary.
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(a)

(b)

Figure 6.3: Trade-o� between information and compactness: (a) compact summary (storyboard),
(b) detailed summary with information about temporal evolution (comic-like).

6.2. Motivation

As described previously, a storyboard is a sequence of images of the same size, displayed in a

temporally ordered manner by their spatial layout (typically from left to right and from top to

bottom). The majority of storyboarding algorithms attempt to select as few images as possible,

while covering most of the information present in the video sequence. This results in the removal

of redundancy by minimizing repetition of similar images.

However, repetition of similar images, specially if frames are sampled regularly, can provide

extra information such as the duration or activity of a speci�c event (e.g. a shot is long if

many images from that shot are shown, even if they are very similar). In some cases, this

extra information is very useful and it is preferred to a more compact summary, providing more

intuitive coverage of every part of the video sequence. In this context, comic-like summaries

are very useful, as they can adapt the size of the displayed images according to their relevance.

Thus, a salient image (e.g. a keyframe) representing a shot may be surrounded by other smaller

auxiliar images which provide additional information about the temporal evolution of that shot.

On the one hand, the storyboard summary provides a compact representation of the dominant

content while the repetitive comic-like summaries, on the other hand, can generate overwhelm-

ingly detailed summaries of the video sequence. Figure 6.3 illustrates both cases. The two

summarization approaches are therefore complementary. Here, we propose an approach that

utilizes scalable comic-like summaries, providing arbitrary levels of detail and length, so that the

users can select their desired scale.

We distinguish between two types of applications of scalable comic-like summaries. The

�rst type is the adaptation to some speci�c constraints, mainly the length of the summary.

These constraints may result from di�erent user's preferences or usage contexts. Each user
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only visualizes one scale of the summary. The other type includes progressive visualization and

interactive navigation. In these applications users visualize multiple scales in a progressive basis,

usually from coarse to �ner scales. The transition between two scales may result disturbing and

uncomfortable if the delay between them is not enough to follow the changes in the layout.

6.2.1. Proposed framework

In the proposed video summarisation framework, we conceive comic-like summaries as an

extension of conventional storyboards. The coarsest scale of the summary, with the lowest level

of detail (few images), is a conventional storyboard, which can be seen as a special case of

comic-like summaries with a constant size and a trivial layout. The most important images

are selected to form this storyboard. As new images are included in subsequent scales, the

summary is enriched with new details completing the �ow of temporal events. These images are

conveniently scaled according to their importance and laid out into a spatial structure, which

becomes more complex as the scale increases.

We de�ne a comic-like summary C = {Y ,V } as a pair of layout Y and keyframes V =

(f1, f2, . . . , fN ). For convenience, we introduce IV = {1, 2, . . . , N} as the set of indexes of V .

The layout Y will be de�ned further on as a sequence of indexes of panels. Similarly, each scale

q of a scalable comic-like summary consists of a comic-like summary C(q) =
{
Y (q),V (q)

}
with

a speci�c layout Y (q) and keyframes V (q), with the corresponding set of indexes IV (q) ⊆ IV ,

arranged in temporal order. In order to use the same set of keyframes V for all the scales, in

the mathematical expressions we will use IV (q) rather than V (q).

A scalable comic-like summary is a set of comic-like summaries

CC =
{
C(1), · · · , C(q), · · · , C(Q)

}
(6.1)

The scalable comic-like summary can be alternatively described as a pair CC = {Y Y ,V V }
of a scalable layout

Y Y =
{
Y (1), · · · ,Y (q), · · · ,Y (Q)

}
(6.2)

and the corresponding scalable set of keyframes

V V =
{
V (1), · · · ,V (q), · · · ,V (Q)

}
(6.3)

with the sets with the indexes of the frames selected for each scale. Keyframes and indexes

satisfy

V (1) ⊂ V (2) ⊂ · · ·V (q) ⊂ · · · ⊂ V (Q) ⊆ V (6.4)

IV (1) ⊂ IV (2) ⊂ · · · IV (q) ⊂ · · · ⊂ IV (Q) ⊆ IV (6.5)

The scheme of the proposed scalable comic-like summarization framework is shown in Fig-

ure 6.4. The images of the summary are �rst extracted as the set of keyframes V from the input
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Keyframe
extractor

Sampling
(scale q)

Layout

Cost
estimation

Composition/
rendering

C

V

C(q)

Y(q)

Y(q-1)

IV(q)

Input
sequence

Comic-like
summary
(scale q)

Figure 6.4: Architecture of the proposed framework.

video sequence. The importance of each keyframe is estimated and stored in the cost function

C. The cost must be proportional to the expected area covered by the keyframe in the sum-

mary. Based on the cost function and the scale q, the sequences of keyframes and cost values are

sampled into the subsets V (q) and C(q). The layout algorithm then computes the layout Y (q)

for that scale. Finally, with this information, the summary can be composed and rendered.

6.2.2. Keyframe extraction

The objective of the initial keyframe extractor is to obtain the set of images to be used in the

rest of the system, as comic-like summaries are created from a set of images. Although keyframe

extraction for summarization has been extensively studied[Truong and Venkatesh, 2007], we

assume a uniform sampling of the input sequence, as we are not interested on removing semantic

redundancies at this stage, while we are interested on covering regularly all the sequence. This

eventual oversampling is not important as redundant details (frames) will be removed by the

subsequent stages, and included progressively as the scale increases.

6.3. Estimation of frame sizes

In comic-like summaries, the area covered by a keyframe in the layout represents its summa-

rization signi�cance, which is estimated and stored in the cost function, de�ned as

C = (Cn|n ∈ IV ) (6.6)

where Cn ∈ [0, 1]. The cost is estimated using the method proposed in [Calic and Campbell,

2007].

In order to evaluate the cost function in a way that will support the user's visual experience

of the �nal layout, a clustering algorithm based on perceptual similarity is used. Although we

could have used any of the clustering algorithms used in the preceding chapter (K-means or

hierarchical clustering), we used the same clustering algorithm as [Calic and Campbell, 2007],

which was already used in the context of comic-like summaries with satisfactory results. The

algorithm is an e�cient graph based method described in [Felzenszwalb and Huttenlocher, 2004],

initially proposed for image segmentation. This approach enables unsupervised analysis of the

inherent structure of the keyframes and it copes well with nonlinearity of cluster shapes. The

clustering algorithm represents the set of keyframes as a graph G = (V ,E), in which the vertices
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v ∈ V are the keyframes, while the keyframe di�erences are assigned to edges (vi, vj) ∈ E as

weights w (vi, vj). Here, we calculate the keyframe di�erence as the chi-square di�erence of

18Ö3Ö3 HSV colour histograms, though the algorithm is invariant to other di�erence metrics.

An important characteristic of the method is its ability to preserve detail in low variability

clusters while ignoring detail in high variability sets. This algorithm runs in time nearly linear

to the number of graph edges, and though we have taken into consideration a fully connected

keyframe set, due to the relatively small number of keyframes, the processing is very fast. The

algorithm starts with all vertices comprising their own cluster component ai, iterating over all

the edges (sorted in non-decreasing order), and evaluating if the components linked by a given

edge can be merged. This is decided by comparing the inter and intra cluster di�erences. Once

there is no merging of the components between consecutive iterations, the resulting components

serve as data clusters.

When evaluating an edge (vi, vj), the condition to merge two components ak and am, ak

containing vi and am containing vj , is that they were not merged before (i.e. ak 6= am), and

that they satisfy w (vi, vj) ≤ ∆min (ak, am). The minimum internal di�erence ∆min (ak, am) is

de�ned as

∆min (ak, am) = min (∆ (ak) + τ (ak) ,∆ (am) + τ (am)) (6.7)

where ∆ (ak) is the internal di�erence of the component ak, de�ned as the largest weight in the

minimum spaning tree of the component. The threshold function τ (ak) = γ
|ak| , where γ is a

constant parameter and |ak| denotes the size of ak, controls the degree to which the di�erence

between the two components must be greater than their internal di�erences. For more details

about the clustering algorithm, the reader is referred to [Felzenszwalb and Huttenlocher, 2004].

In order to visualize the dominant content of the selected section of video, each cluster is

represented with the frame closest to its centroid. Therefore the highest cost function Cn = 1

is assigned to dn = 0, where dn is the distance of the keyframe closest to its centroid and σn is

the cluster variance of the nth keyframe. Other members of the cluster are given values

Cn = α

(
1− e−

d2n
2σ2n

)
(6.8)

By doing this, cluster outliers (i.e. cutaways, establishing shots, etc.) are presented as more

important and attract more attention of the user than keyframes concentrated around the cluster

centre. The value of α controls the balance between the importance of the cluster centre and

the outliers. In our experiments we chose α = 0.7, after some preliminary tests.

This grouping around cluster centroids is due to common repetitions of similar content in

video sequences, often adjacent in time. To avoid the repetition of content in the �nal summary,

a set of similar frames is represented by a larger representative, while the others are assigned a

lower cost function value. It �ts very well into the approach of comic-like summaries as enhanced

storyboards (in this case composed of the representatives of each cluster, i.e. frames with cost

Cn = 1).
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6.4. Single scale layout

Following the model of a typical narrative structure of a comic strip, the time �ow of the video

sequence is re�ected by ordering the keyframes in a left-to-right and top-to-bottom fashion. For

simplicity, we consider only single row layouts. If the summary becomes too long for a single row,

the browsing device splits it into several rows. In this section, some basic units and notations

are introduced, along with the methods addressing the problem of layout generation given a cost

function.

6.4.1. Panel template generation

Following the de�nition of comics as a sequential art where space has the same role as time has

for �lm[McCloud, 1994], this work intuitively transforms the temporal dimension of videos into

the spatial dimension of the �nal summary by following the rules of comic narrative structure.

The panel is the basic spatial unit of comics, and therefore, of comic-like summaries. It

distinguishes an ordered pictorial sequence conveying information from a set of images. The

summary is composed by laying out the images following a sequence of panels, each of them

based on a panel template. Panels in the summary layout also need to follow the basic rules of

comic narrative structure (e.g. time �ows from left to right, and from top to bottom).

Let denote a panel as a pair P = {p, IP }, where p indicates the number of panel template

and IP the sequence of indexes of the keyframes in the panel. The panel template is a sequence

of frame sizes T p = (Ω1,Ω2, . . .), where Ωn ∈ {1, 2, . . . , h} is the (normalized) size of the nth
keyframe of the panel, and h is the height of the panel. Let |T p| denote the length of the panel

template p, and |T | the number of available panels. The set of panel templates for a given height
h is �nite, and must be computed prior to the layout [Calic and Campbell, 2007]. Table 6.1

shows all the possible panel templates of height h = 4.

6.4.2. Optimal solution using full search

The main task of the layout algorithm is to �nd a layout that optimally follows the values of

the cost function using only sizes available in panel templates. Each panel template generates a

vector of frame sizes that approximates the cost function values of corresponding frames.

A layout is a sequence of M panel templates Y = (p1, p2, . . . , pM ) following a temporal

structure, which is read according to comic narrative rules. Unfolding the layout, the sequence

Ω of frame sizes is obtained as

Ω = Ω (Y ) =

 T p1︷ ︸︸ ︷
Ω1,Ω2, . . . ,Ω|T p1 |,

T p2︷ ︸︸ ︷
Ω|T p1 |+1, . . .,Ωn,

T pM︷ ︸︸ ︷
. . . ,ΩN

 (6.9)

�tting the N frames of the summary. The indexes of the keyframes of each panel IPm are also
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Table 6.1: Panels templates for h = 4
Template T p Ω Length Width Area Layout

T1 (1, 1, 1, 1) 4 1 4

T2 (2, 2) 2 2 8

T3 (2, 1, 1, 1, 1) 5 2 8

T4 (1, 1, 2, 1, 1) 5 2 8

T5 (1, 1, 1, 1, 2) 5 2 8

T6 (3, 1, 1, 1) 4 3 12

T7 (1, 1, 1, 3) 4 3 12

T8 (4) 1 4 16

selected as a partition of the initial set of indexes IV according to panel lengths

IV =


IP1︷ ︸︸ ︷

1, 2, . . . , |T p1 |,

IP2︷ ︸︸ ︷
|T p1 |+ 1, . . ., n,

IPM︷ ︸︸ ︷
. . . , N

 (6.10)

The layout optimization problem consists of �nding a layout minimizing the layout error for

a given a cost function Cn

Y ∗ = arg min
Y
ε (Y ) (6.11)

The (normalized) panel error is computed as

ε (P ) =

|T p|∑
i=1

(
Cn0+i−1 −

Ω2
i

h2

)2

(6.12)

where n0 = min
n∈IP

n is the index of the �rst frame of the panel.

The layout error is then computed from individual panel errors as

ε (Y ) =

M∑
m=1

ε (Pm) (6.13)

The full search algorithm explores all the possible combinations of panels making up valid

layouts. Note that the number of panels M is unknown until the optimal solution is found. The

basic algorithm comprises the following steps:

1. Generate all possible panel templates of height h.

2. Set current keyframe n = 1, current layout Y 0 = ∅, accummulated error ε0 (Y ) = 0 and
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minimum error εmin =∞

3. For every available template T k, k = 1, . . . , |T | do

a) If n > N discard this solution and stop the recursion for this branch.

b) Compute the error εm (Y ) = εm−1 (Y ) + ε (P ), using the template T k and n as the

�rst keyframe of the panel.

c) Store the candidate layout Y m = (Y m−1, k)

d) Set n = n+ |T k|

e) If n = N + 1 (all keyframes selected).

1) If εm (Y ) < εmin, then set εmin = εm (Y ) and set Y m as the current solution.

2) Stop the recursion for this branch.

f ) Repeat recursively the loop of step 3.

The search space is a tree in which every node has |T | child nodes. The main problem of full

search is that, as N increases, the number of potential layouts grows exponentially, becoming

impractical for more than few dozens of frames.

6.4.3. Optimized full search

Search algorithms in tree structures can be optimized using some simple strategies. Here, we

present two optimized versions of the search algorithm.

The �rst version uses branch pruning, evaluating εm (Y ) at each node (not only at leaf

nodes). If εm (Y ) ≥ εmin then the recursion is stopped for that branch. In the worst case,

the number of combinations does not change, but in most cases the recursion is stopped early,

reducing dramatically the number of tested layouts.

The second version uses also a look-up-table (LUT), in order to avoid most of the operations

in computing ε (P ). The panel error for each combination of keyframe fn and template T k is

precomputed as

ε (n, k) =


∑|T k|
i=1

(
Cn+i−1 − Ω2

i

h2

)2

, n+ |T k| ≤ N

∞, otherwise
(6.14)

with n = 1, . . . , N and k = 1, . . . , |T | (e.g. |T | = 8 in the case of h = 4). Thus, instead of using

(6.12), the error of each panel can be evaluated directly as ε (P ) = ε (n0, p). The number of

the evaluations of the panel error in (6.12) becomes linear NLUT = |T |N . For large layouts,

where Nfull � NLUT , LUT can reduce signi�cantly the amount of operations in panel error

evaluations.

Unfortunately, the number of potential layouts still grows exponentially, even using pruning

and LUT, so this optimized algorithm still becomes impractical for a large number of frames.

Figure 6.5 shows the result of an experimental comparison of the analyzed layout methods1.

1Experiment performed on an Intel Pentium M at 1.8 Ghz (2 GB of RAM).
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Figure 6.5: Comparison of layout methods: (a) processing time, (b) di�erence to the optimal
layout error, and (c) number of panel evaluations.
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The complexity of the di�erent full search methods can be estimated empirically by exponential

regression from Figure 6.5a, with full search, full search with pruning and full search with pruning

and LUT complexities being O (2.14n), O (1.3034n) and O (1.3031n), respectively.

6.4.4. Suboptimal solutions

Many problems in combinatorial optimization become intractable when the size of the data

set increases. The majority of algorithms proposed to solve these problems are based on heuristics

and do not o�er optimal solutions, yet o�ering satisfactory results in practice. Therefore, we

describe two suboptimal algorithms based on taking early decisions and we will show that the

deviation of the achieved results from the optimal solution is negligible. However, with these

suboptimal algorithms, the solution can be computed in linear time instead of exponential time.

The local search algorithm selects each panel looking for the local minimum of the panel

error for each tree level. The algorithm comprises the following steps:

1. Generate all possible panel templates of height h.

2. Set current layout as Y 0 = ∅, m = 1, and n = 1

3. While n ≤ N do

a) Set k∗ = arg min
k
ε (Pm), testing all the available templates T k and using n as the �rst

keyframe of the panel.

b) Store the solution Y m = (Y m−1, k
∗)

c) Set n = n+ |T k∗ |

d) Set m = m+ 1

In contrast to full search, the decision about a candidate solution is not global and taken at leaf

nodes, but local and taken at each tree level. The main drawback is that panels are condidered

independently.

Taking into account adjacent panels, the suboptimal solution approximates better the optimal

solution, while still keeping the algorithm very e�cient. Thus, the second suboptimal method

extends the search space from one to two adjacent panels. This method is equivalent to the

dynamic programming method described in [Calic et al., 2007]. To implement this method,

step 3a in the previous algorithm must be replaced by

(a) Set k∗ = arg min
k

[ε (Pm) + ε (Pm+1)], testing all the combinations of available templates

and using n as the �rst keyframe of the panel.

In this method, all the possible combinations of two panels Pm and Pm+1 are tested to decide

which is the optimal (i.e. lowest error), and the panel template of the �rst panel of the optimal

combination is selected as local solution for that level. For instance, for h = 4, the local search

method tests 8 possible panels, while the dynamic programming method tests 64 combinations.
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As Figure 6.5b shows, suboptimal methods have a penalty in terms of layout error compared

to the optimal method. However, both methods perform reasonably well, and the layout error

di�ers by around 25% for the local search method. For the dynamic programming method this

di�erence is reduced to around 7%, and in practice, the layout is very similar to the optimal.

In contrast, as shown in Figure 6.5a, both suboptimal methods are extremely fast and grow in

linear time, so they can handle large input sets. Thus, dynamic programming provides a very

fast layout algorithm with little penalty in the layout error.

6.5. Multiscale layout

6.5.1. Independent layouts

The simplest approach to generate scalable summaries is to assume that each scale is inde-

pendent from the rest. The only constraint we assume is that the images in a given scale q are

present in the following scales q′ > q. In general, the scalable layout algorithm has two stages:

keyframe sampling and layout computation. In this case, the layout algorithm is directly the

single scale layout algorithm, applied independently over each scale.

The keyframe sampling algorithm selects a subset of indexes from IV and their cost values

according to some sampling strategy. The cost function is also sampled to match IV (q) , i.e.,

C(q) = (Cn|n ∈ IV (q)). Then, the layout algorithm is applied in this subset to obtain the layout

Y (q). We use a simple cost-based sampling strategy: those indexes with the N (q) highest cost

values are selected, where N (q) is the number of images in the scale q.

At this point, an example may be useful to illustrate the di�erent elements of a mul-

tiscale comic-like summary. Let us consider an initial set of keyframes with 20 im-

ages and the two scales represented in Figure 6.6. The scale q is described by the

layout Y (q) = (T2,T8,T2,T8), with frame sizes Ω(q) = Ω
(
Y (q)

)
= (2, 2,4,2,2, 4),

and indexes of keyframes IV (q) = (2, 3, 8, 12, 15, 19). In the next scale, the values are

Ω(q+1) = Ω
(
Y (q+1)

)
= (2, 2,2,2,4,1,1,1,1, 4), Y (q+1) = (T2,T2,T8,T1,T8) and IV (q+1) =

(2, 3, 8,11, 12, 15,16,17,18, 19).

The layout problem is analogous to the single scale case, but using the data resulting from

keyframe sampling (IV (q) and C(q)) instead of the whole set.

Y (q) = arg min
Y
ε (Y ) (6.15)

ε (Y ) =

M∑
m=1

ε
(
P (q)
m

)
(6.16)

ε
(
P (q)

)
=

∣∣∣T
p(q)

∣∣∣∑
i=1

(
C

(q)
n0+i−1 −

Ω2
i

h2

)2

(6.17)

with n0 = min
n∈I

P (q)

n.
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Figure 6.6: Example of transition between two consecutive scales.

Note that the layout problem must be solved for every scale, so the algorithm has to compute

Q layouts. For this reason, an e�cient method to solve each individual problem would be

desirable. In order to balance both e�ciency and limited layout error we use the dynamic

programming search method described in Section 6.4.4[Calic et al., 2007].

This �rst approach to scalable layouts is enough for a number of scenarios in which the user

interacts with a single scale of the summary. Summary adaptation is an example of application

using independent scales, as the user gets a scaled version of the summary according to user's

preferences or constraints in the usage environment (e.g. limited display area in the screen).

6.5.2. Disturbance

In some applications (e.g. progressive visualization or interactive browsing across scales),

users have to visualize several scales in short time intervals. We observed that the main problem

in these applications was to follow the changes in transitions between scales. Transitions between

consecutive scales might become disturbing and uncomfortable, as some images may change their

position and size in the new layout, and new panels may appear or disappear (see the example

in Figure 6.6). Even if some panels are not modi�ed, they can be pushed by others so they su�er

a displacement, which may be also unpleasant if it is large or involves row changes. If these

changes are scattered all over the summary and the delay between scales is too short, it becomes

di�cult to follow them. These undesirable e�ects may also distract users from tracking the new

information (new images) added in the new scale, which should be the main objective. We call

this annoying e�ect layout disturbance.

6.6. Heuristic approach to multiscale layout

As discussed before, layout disturbance is a major problem in applications requiring tran-

sitions between scales, and minimizing it is key to bene�t from scalable comic-like summaries

in these applications. In this section we propose a heuristic algorithm, based on the concept of

anchor keyframes, which can create more pleasant transitions between scales.
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6.6.1. Anchor keyframes

This heuristic algorithm is based on the idea of comic-like summaries as enhanced story-

boards. From that point of view, the main summary is the storyboard, covering the main

semantics in few images. The rest of the images are complementary, adding more information

about the temporal evolution of the sequence and the duration of events. We call the keyframes

belonging to the original storyboard (i.e. those with cost Cn = 1) anchor keyframes.

In the heuristic algorithm, we use this idea to add some conditions to the sampling and layout

algorithms:

Anchor keyframes are considered especially relevant and must not change their size across

scales, being always h and thus presented in a single-image panel.

The layout algorithm is not applied to the whole sequence of keyframes, but only to

segments between those anchor keyframes with new keyframes in-between.

Note that these conditions also help to limit the disturbance, as the number of changes from one

scale to the next are restricted by design to a part of the layout.

6.6.2. Temporally constrained sampling

The problem of cost-based sampling is that when a number of keyframes are sampled for a

new scale, they can be located at any position in the sequence, and consequently new images

(and panels) can appear at any place in the layout, far from each other. That is the main source

of disturbance, as it is more di�cult to follow changes in the layout when they are spread all over.

A sampling strategy that takes into account the temporal order of keyframes is more suitable

to avoid disturbance. The objective of the temporally constrained sampling is to include new

batchs of keyframes not only based on the cost function but also on a temporal neighborhood.

Thus, changes can be localized in a temporal window which results in a small spatial area in the

summary.

At each scale q, M (q) new keyframes are sampled and included in the new summary

M (q) =

N (q) q = 1

N (q) −N (q−1) q 6= 1
(6.18)

The sampling algorithm tries to select a batch ofM (q) keyframes in a relatively short temporal

interval, but all of them having a reasonably high cost. Anchor keyframes are the boundaries of

these intervals. The �rst scale always returns the set of anchor keyframes. For the subsequent

scales, the set of indexes IV is divided into L intervals, and a bin Hk is assigned to each interval

k. Figure 6.7 depicts the sampling strategy, which comprises the following steps:

1. Initialize histogram as Hk = ∅, k = 1, . . . , L.

2. Sort the set of unselected keyframes at scale q by cost and let IV ∗ be the sequence of their

indexes in decreasing cost order.
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Figure 6.7: Illustration of the temporally constrained sampling algorithm.

3. Loop over IV ∗ until no more indexes are available. Let n∗ be the �rst index in IV ∗

a) Find the interval k∗ corresponding to n∗ and set Hk∗ = Hk∗
⋃
n∗

b) If |Hk∗ | = M (q) then go to step 6.

c) If any available index in IV ∗ , let n∗ be the next index in IV ∗ and continue to step 3a.

4. Combine pairs of consecutive intervals so the histogram bins are H ′k = Hk +Hk+1

a) If any |H ′k| ≥M (q) then k∗ = arg min
k
|H ′k| and go to step 6.

5. If there is no interval satisfying |H ′k| ≥M (q), then continue combining intervals in increas-

ing number (three intervals, then four, etc.)

6. Set IV (q) = IV (q−1)

⋃
Hk∗ and C(q) = (Cn|n ∈ IV (q))

Intuitively, the algorithm selects keyframes according to their cost in descending order, and

tracks the number of keyframes selected from every interval. If one of the intervals reaches the

number of required keyframes, the keyframes sampled in that interval are selected. If, after that

�rst loop, there is not any interval with enough keyframes, adjacent intervals are combined and

checked again.

6.6.3. Anchor based layout

As the changes in the layout only happen in a segment bounded by two consecutive anchor

keyframes, the layout algorithm is run only in that segment. Thus, the rest of the layout remains

unchanged, and the only change the user may perceive is the possible displacement due to other

panels pushing them. Without loss of generality, the layout Y (q−1) can be expressed as

Y (q−1) =
(
Yl

(q−1),T anchor,Ym
(q−1),T anchor,Yr

(q−1)
)

(6.19)
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(a)

(b)

(c)

Figure 6.8: Examples of comic-like summaries: (a) scale 1 (basic and anchor), (b) scale 8 (basic),
(c) scale 8 (anchor). New panels are highlighted.

where Yl
(q−1), Ym

(q−1) and Yr
(q−1) are the partial layouts at left, in-between and right of the

anchor keyframes bounding the segment with new keyframes sampled at current scale q. These

partial layouts are separated by two panels T anchor, which represents the panel template of

height h (e.g. for h = 4, T anchor = T8 from Table 6.1), containing the anchor keyframes. If

C̃ denotes the associated cost function to the keyframes between both anchor keyframes, and

Y = layout (C) denotes the operation of computing the layout for a cost function C, the new

layout at scale q is composed as

Y (q) =
(
Yl

(q−1),T anchor,Ym
(q),T anchor,Yr

(q−1)
)

(6.20)

where Ym
(q) = layout

(
C̃
)
. Thus, a signi�cant part of the summary is reused in the transition

between scales q − 1 and q.

The previous formulation is only valid in the case of a single segment bounded by two

consecutive anchor keyframes. If changes are spread in several segments, the layout algorithm

is run independently for each of the segments bounded by consecutive anchor keyframes.
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Table 6.2: Characteristics of the data set and summaries.
Sequence Summary

Name Duration Redundancy #kf #scales Step #clusters

Trec 34m17s High 74 8 10 5
Franc 34m54s Medium 255 13 20 10
Quest 20m14s Low-medium 270 12 20 50

6.7. User interface

For the presentation and browsing of the summaries, we developed a prototype of interface

based on web technologies. Instead of using images as main units for composition, the interface

uses panels. Thus, it is easy to compose the summary and render it laying out the panels from

left to right and top to bottom (as a storyboard of panels). Besides, it is more �exible when the

window of the browser is resized than a �xed structure (e.g. using tables for the layout).

Each panel is composed previously and stored as a single image using its �le name as a unique

identi�er. The �le name contains the identi�er of the panel (i.e. k from template Tk), and the

indexes of the keyframes. Thus, each comic-like summary can be represented as a sequence

of these unique identi�ers (e.g. panel_2_kf_002003, panel_8_kf_008, panel_2_kf_012015,

panel_8_kf_019 represents the �rst layout of Figure 6.6). The inclusion of new keyframes (e.g

change of scale) implies changes in the panelled layout, with some of the panels removed from

the layout and other new ones included, as shown in Figure 6.6.

The user interface should be simple and intuitive. Some preliminary tests with users showed

that a suitable user interface was critical for the success of the proposed abstraction approach.

In order to make the changes of panels easier to follow, we included an option in the interface

which highlights those panels which were not present in the layout displayed before a transition.

When that option is enabled, new panels are highlighted by enlarging them (to 130% in our

system) and by emphasizing its boundaries with red frames (see Figure 6.8).

6.8. Experimental results

6.8.1. Experimental setup

We tested the proposed approach for both single scale (independent summaries) and mul-

tiscale (dependent summaries) scenarios, using the two algorithms described in this chapter:

basic algorithm (basic) and anchor based algorithm (anchor) with h = 4. The experiments were

conducted over three sequences extracted from di�erent video data sets (Trec: high redundancy

clip from TRECVID BBC rushes corpus, Franc: medium redundancy clip from TRECVID BBC

rushes corpus [Kraaij et al., 2006] and Quest : low redundancy clip from TURNER Broadcasting

corpus [Calic et al., 2007]), in order to cover di�erent levels of semantic redundancy and di�erent

number of keyframes. Table 6.2 shows the characteristics of the test sequences and the scalable

summaries.
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Figure 6.9: Span of the layout change in images (a, c, e) and panels (b, d, f).
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6.8.2. Objective Evaluation

As we discussed previously, the main motivation of the anchor algorithm was to reduce the

e�ect of the disturbance, mainly due to uncontrolled changes between scales. We computed

some measures related to how changes from consecutive scales are distributed over the layout.

Figures 6.9a, c and e show the span of the change in terms of distance between the �rst and the

last image added in the new scale. Clearly, the temporally constrained sampling approach used

in the anchor method helps to reduce this span for most scales. The last scale includes all the

remaining keyframes, so the span is considerably larger. After computing the layout, this span

can be also measured in panels. Figures 6.9b, d and f show the span of the change in panels,

which show a similar trend.

The temporally constrained sampling approach cedes some of the keyframes with high cost

in exchange for a more compact temporal distribution of sampled keyframes. Figures 6.10a, c

and e show the accummulated cost of the sampled keyframes at every scale. It shows that most

of the cost is usually covered by the �rst scale (initial storyboard), and that the penalty in the

accummulated cost is small in Trec and Quest, while it is more notable in Franc.

Finally, we compared the number of inserted and removed panels for every scale. In the basic

algorithm, the inclusion of new images (even only one) may cause changes in all the subsequent

panels. However, the anchor algorithm restricts this e�ect only to a part of the layout, with a

smaller number of new and removed panels, as shown in Figures 6.10b, d and f. However, the

number of total panels in the layout is very similar for both methods and scales.

6.8.3. User evaluation

The summaries were also evaluated by a total of 14 assessors according to some subjective

criteria, in two di�erent scenarios. For the evaluation, we used the web interface shown in

Figure 6.8. The summaries were displayed on a large screen (1920x1200 pixels).

6.8.3.1. Scenario 1: Interactive summaries

In the �rst scenario, the assessors were free to interact with the interface and navigate across

the scales of the summaries. In order to avoid biases, the name of the algorithm was hidden and

the order of evaluation randomized. Results are shown in Table 6.3. The satisfaction criterion

was posed as an a�rmative statement (�In general, the summary represents adequately the

original content.�) and evaluated using a typical Likert scale (1: Strongly disagree; 3: Nor agree

nor disagree; 5: Strongly agree)[Likert, 1932]. In general, the results were very similar for both

algorithms, and users were satis�ed with the summaries. The assessors were also asked for their

preference between both algorithms, with no clear preference except for a very slight preference

for the basic algorithm in Trec and Franc sequences. Finally, the assessors were also asked about

the utility of the interface (�The user interface helps to follow the changes across scales.�), with

a positive evaluation.
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Figure 6.10: Comparison of basic and anchor algorithms: (a, c, e) accummulated cost, (b, d, f)
inserted and removed panels.
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Table 6.3: Subjective results for the interactive scenario.
Trec Franc Quest

Satisfaction
Basic 4.4 4.0 3.9
Anchor 4.4 3.9 4.0

Preference (5: Anchor - 1: Basic) 2.9 2.9 3.0
User interface 4.4 4.3 4.3

Table 6.4: Preference of the algorithms in the progressive scenario: basic (B), anchor (A) and
anchor with highlighting (A+H).

Trec Franc Quest

% 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

B 28.6 14.3 57.1 14.3 28.6 57.1 21.4 14.3 64.3
A 14.3 71.4 14.3 14.3 57.1 28.6 21.4 57.1 21.4

A+H 57.1 14.3 28.6 71.4 14.3 14.3 57.1 28.6 14.3

6.8.3.2. Scenario 2: Progressive summaries

In this second scenario, the summary progressively includes more frames, which consequently

changes the layout, and users are not allowed to interact with the summary. In the evaluations,

the assessors had to visualize summaries presented in a progressive manner, from the coarsest

to the �nest scale, and at a �x rate of one scale per second. Three variations were evaluated:

the basic method, the anchor method and the anchor method with new panels highlighted. The

assessors were asked to sort them according to their preference (from higher to lower preference).

Results (see Table 6.4) show a clear preference for the anchor method with highlighting, and,

in second place, for the anchor method without highlighting. These results con�rmed that

the anchor algorithm can e�ectively reduce the disturbance, improving the utility of scalable

comic-like summaries in this scenario, and also the importance of appropriate interface elements.

6.8.3.3. General evaluation

At the end of the evaluation, some general statements were posed to the assessors in order to

evaluate the global opinion about the proposed summarization approach. The criteria and the

statements were the following:

Utility of comic-like summaries (�Comic-like summaries are useful and e�ective represen-

tations of video content.�)

Utility of scalability (�Scalability, i.e. multiple levels of detail, is a useful feature in video

summaries.�)

Browsing interface (�The interface provides a useful way to browse summaries of video

content.�)

Utility of highlighting (�Highlighting feature is helpful in tracking changes across scales.�)

Overall system (�The proposed system is useful for browsing video content.�)
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Figure 6.11: General assessments.

The results of this last part of the subjective evaluation are shown in Figure 6.11. In general,

most of the assessors agreed with these statements, supporting the proposed scalable comic-like

summaries as an e�ective and �exible approach to video summarization.

6.9. Summary and conclusions

In this chapter we have investigated the use of scalability in the context of comic-like sum-

maries as a �exible and intuitive abstraction format based on the narrative structure of comics.

In contrast to scalable storyboards, the need of a non-trivial visual structure makes the compu-

tation of comic-like summaries more di�cult, and e�cient methods are required. In our case, a

suboptimal fast algorithm is used with satisfactory results.

We �rst explored the case of independent scales, suitable for applications that require the

adaptation of the summary to a target length or size. The case of dependent scales, required for

progressive and interactive visualization, was more complex, including an annoying e�ect due

to the transition between scales when there are too many changes in the layout during a short

amount of time. The term disturbance was used to refer to this e�ect. When this e�ect appears,

the user feels uncomfortable and confused. Based on some previous observations, a heuristic

algorithm is developed to localize these changes in limited areas. After some tests with users,

we realized that the user interface is a key element in the whole system, and must be carefully

designed to minimize disturbing e�ects and make the proposed abstraction approach appealing

and pleasant. Elements driving the attention to the main changes are particularly useful (e.g.

the highlighting feature in our system).

Experimental evaluation con�rms the value of application of scalable comic-like summaries for
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video retrieval and browsing. Models of disturbance, which can be included in the summarization

process, as well as improved user interfaces, can be helpful to provide more appealing and user

friendly summaries.
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Applications





Chapter 7

Applications of integrated

summarization and adaptation

In this chapter we describe some potential applications of the extraction-based framework

proposed in the second part of the thesis. As discussed previously, the main advantages of this

framework are its simplicity, its e�ciency and low resource requirements. These characteris-

tics make this approach very suitable for a number of applications in which other generation-

adaptation methods may be unsuitable. We also compare the approach with other alternatives,

such as transcoding and variations.

7.1. Customized summaries

Current research in video summarization is shifting to a more user-centred approach[Tseng

et al., 2004], in order to make easier the use of browsing and retrieval systems and also to

enhance the experience of each individual user, according to his or her interests. There are several

applications which enable a high level of personalization, such as sport portals[Babaguchi et al.,

2007; Jaimes et al., 2002] and news portals[Maybury et al., 2004], where di�erent users have

di�erent interests, and personalized summaries can be provided according to them. Recently,

[Money and Agius, 2008a] studied some physiological responses to video summaries, which vary

considerably among individual users, suggesting that summaries can be highly personalized based

on the incorporation of external information, such as contextual data. However, personalization

often means the generation of the summary on demand, once the speci�c preferences or user

characteristics are known.

Personalization usually refers to a process of adaptation that is performed at the server

according to some pro�le with user's preferences and usage environment. However, the user can

be given even more freedom to built its own summary selecting which segments are included in

the �nal digest. That kind of summaries is what we call here customized summaries.

In both personalized and customized summaries, the potential number of summaries is high,
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Figure 7.1: Customized summaries using extraction.

requiring the summary to be built on demand. The generation of these summaries often requires

an adaptation process for each user, performed via transcoding, with signi�cant computational

cost or large processing delay. The proposed extraction framework is an e�cient alternative

which can also enable customization, in both server-side summarization-adaptation services and

client-side browsing applications.

As an example of customized video summarization, let us consider the system shown in

Figure 7.4, which depicts a simple application enabling personalized access to video summaries

of broadcast news. Broadcast news data usually have a speci�c structure, which roughly consists

of sequences of news items, and sometimes, with some commercials between them. Each news

item generally consists of an introductory anchor segment and the news story segment. With

this simple structure in mind it is possible to annotate a simple description of the segments

and store it along with the sequence. Using the proposed summarization model, each SU is

tagged with a category (anchorperson, story or commercial) and whether it must be included

in the summary (e.g. keyframes for storyboards) or not. When a user request a summary, the

client sends a query to the server with the preferences of the user and the type of summary.

The server processes the preferences and generates a set of appropriate values for tlevel (m) (see

Section 3.5.2) including the SUs tagged as belonging to the preferred categories and belonging

to the summary, which is generated using the bitstream extractor. Thus, the summary delivered

to the user includes only information matching his or her preferences. Although very simplistic,

this example illustrates how video summaries can be generated on demand and delivered to the

user with low delay using the proposed framework.

7.1.1. Audio extraction and multiplexing

Until this section, we have only considered the visual signal contained in an audiovisual

stream. However, in practical applications, audio must be also considered. The audio stream

must be edited according to the summarization model and multiplexed with the video stream.

The audio extraction process is similar to the video one. Audio streams are coded into
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packets, which once decoded result in a number of audio samples. The length of the sample

depends on the coding format, and other parameters such as the audio rate, the number of

chanels and the bitrate. We have implemented an audio extractor for MPEG-1 layer III (also

known as MP3)[ITU-T and ISO/IEC, 1992; Musmann, 2006; Pan, 1995]. It can be extended also

to other MPEG-1 layers and standards such as MPEG-2 Advanced Audio Coding (AAC)[ITU-

T and ISO/IEC, 2007; Noll, 1997] and MPEG-4 AAC[ITU-T and ISO/IEC, 2005; Herre and

Dietz, 2008], as the coding principles and structures are similar. The duration of each frame in

MPEG-1 layer III is �xed, and it depends on the number of samples per frame (1152 samples),

the sampling rate Fs and the number of channels Nchannels as

taudio_frame =
1152

Fs·Nchannels
(7.1)

Considering a frame rate of 22050 Hz and two channels, the duration of each audio frame is

26.12 milliseconds, which corresponds to an audio frame rate of 38.28 frames per second. The

frame size is also �xed, depending also on the bitrate Raudio and the number of channels, given

(in bytes) by

saudio_frame =
144Raudio

Fs + padding_bit
(7.2)

where padding_bit is a parameter (a bit speci�ed in the header of the frame) used, if necessary,

to add extra data in order to adjust the bitrate. A bitstream description is used to specify the

exact size of each packet.

The extraction process must be guided by the same summarization constraint tlevel (m),

which is computed using the video stream as reference. Packets containing video frames (NAL

units) have also a �xed duration. For instance, for a video frame rate of 29.97 frames per second,

the duration of each video frame would be 33.37 milliseconds. The duration of audio and video

frames di�ers, and the duration of a SU may not match an integer number of audio frames. In

that case the extractor must decide either to include or to drop the last audio frame in order to

select an integer number of audio frames.

Figure 7.2 shows an example of mismatch between audio and video frames, and how it

results in a non synchronized video when they are multiplexed. The inclusion or dropping of

audio frames at the boundaries of a new segment must be decided based on the instantaneous

delay between both audio and video streams, in such a way that the delay is compensated. If it

is done properly, the maximum delay should not be larger than taudio_frame/2. In the previous

example it would be 13.06 milliseconds (26.12 milliseconds in the case of a single audio channel),

which is almost imperceptible. However, if a better synchronization is required, a solution may

be the dynamic adjustment of time stamps at system level. Thus, whenever a new segment of

frames is included, the time stamp of both streams must be adjusted.

We evaluated experimentally1 the e�ciency of both transcoding and extraction with an audio

�le with a frame rate of 22050 Hz, a bitrate of 64 kbps and two channels. As shown in Figure 7.3

1Experiment performed in an Intel Core 2 at 2.83 Ghz (2 GB of RAM)
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Figure 7.2: Audio extraction and multiplexing.
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Figure 7.3: Processing speed of audio extraction and transcoding.

(the processing speed is measured in video frames per second, according to the corresponding

video stream), with any of the two approaches, the generation can be perfomed much faster than

real time, although extraction is notably faster. The performance degrades slightly as the length

of the summary increases, but still being very e�cient. However, in an audiovisual stream, the

bottleneck for e�cient processing is still the generation-adaptation of the video bitstream.

7.1.2. Web based demo

In order to demonstrate the utility of customized summaries in a practical application, we

implemented a demo interface based on web technologies (see Figure 7.4) and H.264/AVC and

MPEG-1 layer III. The semantic structure of the video, which is assumed to be available as

metadata, is presented to the user as a list of video segments. The user can create a customized

summary by selecting segments according to his or her preferences (e.g. news anchorperson, news

story, commercials). Then, the user requests the customized summary and the server generates

the bitstream using video and audio extraction. The audio and video bitstreams are multiplexed,

into a suitable format (in this demo, Flash Video using H.264/AVC and MP3) for the embedded

player, prior to its delivery to the client. As shown in the example of Figure 7.4, the summary
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Figure 7.4: Demo web interface for customized summaries.

is generated with a delay of approximately one second. The stream is delivered only after both

streams are completely generated and multiplexed. The delay can be further reduced with a

parallel implementation of the extractors and the multiplexer, streaming the video as soon as

the �rst frames are available.

7.2. Local browsing

Image organizers are very useful to browse through personal and professional photo li-

braries[Shneiderman et al., 2006]. Many interfaces for image gallery navigation have been pro-

posed with great success. Most of them are based on the idea of thumbnail (a reduced-size

version) as an abstraction of the original image. Dozens of thumbnails are usually displayed

together to reduce the time required to browse the contents of certain image gallery. The user

can view a detailed version of an image by just selecting its thumbnail.

With the emergence of high capacity data storage devices, video has become an important

source of content and personal video libraries are growing very fast. However, browsing large

video libraries is much more time consuming than image browsing[Wildemuth et al., 2003]. For

this reason, an e�ective abstraction is even more critical[Truong and Venkatesh, 2007]. Browsers

and organizers speci�cally designed for video content can make easier the task. In video browsing,

video summaries play a similar role as thumbnails in image browsing, as they e�ectively reduce

the time the user needs to get an idea of what happens in the video.
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Figure 7.5: Architecture of a player capable of presenting a preview of the content based on
summaries.

Video browsers and organizers can also bene�t from the bitstream extraction approach for

video summary generation, due to its low delay and �exibility. In a typical video library browser,

thumbnails or short storyboards can be shown as a �rst coarse abstraction of the contents. If

the user is interested on a speci�c piece of content, a video skim could provide a more detailed

abstraction. Figure 7.5 shows a possible architecture of a module which can extract and display

the summaries using the proposed summarization model. Extraction and decoding run in the

same module. The summarization parameters (the di�erent values of tlevel (m)) are stored

as metadata together with the video sequence. Using the corresponding values, the extractor

builds the summarized bitstream which is then decoded. Thus only the required parts of the

bitstream are processed by the decoder. Decoded frames are then presented in a suitable way

(e.g. a set of still images for storyboards or a video sequence for video skims or fast forwards).

Additional constraints can be used in extraction to obtain better performance or results. For

instance, if di�erent spatial scales are available, the lowest spatial one may be more suitable

when thumbnails are required, saving some decoding e�ort.

Other applications, such as interactive video navigation or hierarchical video browsing[Bertino

et al., 2003], can use the same approach with di�erent combinations of summaries that can also

be described with di�erent values of tlevel (m).

7.3. Comparison of architectures for summarization and adap-

tation

7.3.1. Application scenarios

In video retrieval and browsing, there are a number of scenarios in which summaries and

adapted versions are very important for an e�cient access and interaction with multimedia

content. We brie�y describe two representative scenarios.

7.3.1.1. Multiple summaries and Universal Multimedia Access

The objective of the so called Universal Multimedia Access is to provide each user with a

suitable version of the content according to the speci�c network, terminal and user's preferences.

138



7.3. Comparison of architectures for summarization and adaptation

Summarization/
adaptation engine

4CIF@30(Summary oradapted video)CIF@30(Summary oradapted video)QCIF@15(Summary oradapted video)4CIF@30(Source)
Figure 7.6: Access to video content from heterogeneous terminals and networks.

Usually, this access is carried out through search and browsing interfaces, in which video ab-

stractions are required for e�cient navigation. As ancillary content, summaries must be also

adapted to the specic usage conditions.

An example is shown in Figure 7.6, in which users access video content from di�erent termi-

nals such as computers, mobile phones or TV set-top boxes. Users navigate through the content

available in the video library. Eventually, a user may request a video summary of any of those

clips. The server selects or generates the summary according to the request and it must be

adapted to the speci�c usage environment (e.g. reduced resolution for mobile phones, lower

quality for low-capacity networks). Note that the format of the summary itself may be also

conditioned by the usage environment (e.g. if the terminal does not support video, a storyboard

would be more suitable than a video skim). When the user selects a clip, the original video itself

must be also adapted.

7.3.1.2. Web-based video library

Adapted versions include low resolution images and video clips. Most web interfaces to access

video libraries use these lightweight representations (e.g. thumbnails, embedded clips) to provide

e�cient navigation. Usually, these images and clips are stored as separated �les (following the

variation approach described in the next section). They are embedded into web pages at di�erent

points, according to a convenient web design, in order to provide an appealing and usable visual

interface. Di�erent types of summaries provide di�erent levels of abstraction of the same piece

of content. As they navigate, users can request more detailed summaries if required. Note that,

in contrast to the preceding case, there is only one user, using an appropriate browser, who

consumes di�erent summaries and versions of video content as navigates through the web site.

Figure 7.7 shows a simple example of web-based video library. The entry point is a home page,

in which the user can �nd news and information about the library. At that point, the interface

may show some recommended videos (represented by a low resolution image or video skim). A

139



CHAPTER 7. APPLICATIONS OF INTEGRATED SUMMARIZATION AND
ADAPTATION

Bla bla bla…Bla bla bla…Bla bla bla…Video library Recommended videoIntro pageSearch Result 1Result 2Result 3Result 4Result 5Search results(storyboards)Result 1 Result 2Result 3 Result 4Result 5 Result 6Search results(video skims/fast forwards)
Result 6

View video
Figure 7.7: Example of web-based video library using di�erent types summaries.

form enables text-based search. Search results are presented in di�erent formats according to

navigation pro�les. The �gure shows two cases in which one user prefers a storyboard with three

images and the other prefers that each result is represented by a single image so the interface

shows more results per page (when an image is clicked, it may also play an embedded video skim

or fast forward). Finally, the user can play the original video in a dedicated page.

7.3.2. Summarization-adaptation architectures

Summaries and adapted versions can be provided using di�erent approaches in which they are

created at di�erent points of the interaction process between client and server. We distinguish

among three di�erent basic architectures to provide adapted summaries and videos.

7.3.2.1. Variations

A �rst approach is the use of a �le for each of the versions (summaries and adapted versions).

Following the nomenclature of MPEG-7 Multimedia Description Schemes (MDS)[ITU-T and

ISO/IEC, 2001a], these versions are called variations. MPEG-7 MDS de�nes the Variation

description scheme to describe each of these elements (e.g. di�erent bitrate, spatial or temporal

resolution)[van Beek et al., 2003; Böszörményi et al., 2003; Libsie and Kosch, 2004]. Each

variation is created and encoded prior to the interaction with the users (see Figure 7.8a). A

summary is a type of semantic adaptation of the content, and it can be considered as another

variation, which in turn, may have di�erent variations (e.g. bitrate, resolution). Typically, the

content is analyzed and a number of summaries are created from the source video. Each of these

summaries and the source video itself are adapted to a target pro�le (e.g. mobile phone, PDA,

computer), with di�erent temporal and spatial resolutions and bitrates.
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Figure 7.8: Architectures for summarization and adaptation: (a) variations based, (b) transcod-
ing based, and (c) extraction based.

The advantage of variations is that, once the �les are created and stored, the adaptation

process is very simple, as the server only has to select the most appropriate variation, according

to the request and the usage environment, and deliver it to the user. The most critical and time-

consuming task, which is the generation and adaptation of summaries, is completely carried out

prior to the interaction with users. However, it requires a signi�cant amount of storage space

and the potential adapted versions are restricted to those available as variations.

7.3.2.2. Transcoding

The transcoding approach, already described in Chapters 2 and 4, is based on the creation of

summaries and transcoding content when the user selects a speci�c version, with speci�c target

parameters (see Figure 7.8b). Thus, the only �le required is the source video.

The main advantage of transcoding is its �exibility, as it can cope any possible adaptation

(only limited by the actual capabilities of the transcoder). In contrast, transcoding video content

is usually a very time consuming process.

7.3.2.3. Extraction

As shown in Chapters 2 and 4, under certain conditions, transcoding can be replaced by

extraction, in order to achieve e�cient generation of both summaries and adapted videos (see

Figure 7.8c). In some sense, extraction has features of both variations and transcoding ap-

proaches, as each SVC �le has embedded multiple summaries and versions of the same video

content (as in the variations approach), which can be created on demand (as in transcoding) by

selecting the appropriate packets of the bitstream.
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Approach Variations Transcoding Extraction

E�ciency Very high
Low-very low (see
Figures 3.21, 3.25, 4.6 and
4.7)

Very high (AVC, see
Figures 3.21, 3.25)
High (SVC, see Figures 4.6
and 4.7)

Quality

Best (if the source is
uncompressed)
Good (with high quality
transcoding)

Medium-poor (depending
on encoding parameters; see
Figures 3.23, 3.24 and 4.8)

Best (AVC, see Figures 3.23
and 3.24)
Good-medium (SVC, see
Figure 4.8)

Storage requirements High Low Low
Precision Frame Frame SU/GOP
Delay Very low High Low-very low

Support
Any (but must be available in
the stored versions)

Any supported by the
transcoder

AVC/SVC or other scalable
codec

Coding New codecs
Yes (requires reencoding and
extra storage space)

Yes (requires to include the
codec in the transcoder)

No

Potential
adaptations

Any (but must be available in
the stored versions)

Any (supported by the
transcoder)

Those available in the
coded bitstream
Usually dyadic
decompostions (e.g. 4CIF,
CIF, QCIF, 15 Hz, 30 Hz)

Cost of a new
version

Encoding and additional
storage space

No additional cost
No additional cost if
already embedded in the
bitstream

Flexibility
Cost of a new
summary

Encoding and additional
storage space

No additional cost No additional cost

Customized
summaries

No Yes Yes

Table 7.1: Comparison of summarization-adaptation architectures.

7.3.2.4. Hybrid architectures

In a practical framework, it is not necessary to use strictly only one of the previous archi-

tectures. Hybrid architectures, combining pre-stored variations with transcoding or extraction,

may be more suitable, and will depend on the speci�c scenario and requirements.

One example of hybrid architecture would be a transcoding architecture with caching. In

that case, summaries and adapted versions are generated by transcoding the source content on

demand. However, the server stores all the previously generated �les, as variations. Thus, if the

user requests any variation that was requested previously, the server just delivers the cached �le.

Caching trades o� e�ciency and storage space.

Another example is the combination of di�erent approaches for images and video �les. Image

based summaries, such as storyboards, require much less storage space than video based sum-

maries. Thus, image based summaries can be stored as variations, while video based summaries

are generated via transcoding or extraction.

A third example is the use of variations of the source �le (e.g. store 4CIF, CIF and QCIF

versions), and generate the rest of sub-variations by extraction or transcoding.

Transcoding and extraction can also be combined using a �rst extraction stage followed by

a transcoder. That reduces signi�cantly part of the cost of transcoding. This case was already

studied in Chapter 4.

7.3.3. Comparison of architectures

The di�erences between the three approaches are summarized in Table 7.1.
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7.3.3.1. E�ciency

E�ciency of transcoding and extraction is extensively studied in Chapters 3 and 4. Here we

just recall the results of the experiments shown in Figures 3.21 and 3.25 for H.264/AVC, and

Figures 4.6 and 4.7 for SVC. This experiments showed that extraction is notably more e�cient

than transcoding, mainly because of the simplicity of the generation-adaptation process. In

a server based on variations, the process is even simpler, i.e. select and forward a suitable

pre-stored bitstream, which would be slightly faster than extraction.

Extraction and variations have also the advantage of consuming little computer resources

such as memory and CPU usage, in contrast to transcoding, which is extremely demanding,

especially for high resolution sequences. Thus, a single computer which could serve tens of

clients using extraction and variations, could serve just a few using transcoding.

Closely related to e�ciency, the generation-adaptation delay is another important factor

which may be decisive in some applications. The delay would depend on the processing load

which would also depend on the number of connections. In some applications, such as customized

and scalable summaries, a low delay is critical for a satisfactory user experience.

7.3.3.2. Rate-distortion performance

Studied in Chapters 3 and 4, rate-distortion performance is also a relevant factor. Although

not critical, in the sense that the content would reach the user even with lower quality, providing

the user with the best video quality is important for a good user experience.

For single layer H.264/AVC, used when nor quality nor spatial adaptation are required,

extraction preserves the original quality, while transcoding has some degradation (due to a

second lossy stage, i.e. requantization). This degradation also depends on the con�guration of

the encoder (see Figures 3.23 and 3.24). Usually, e�ciency and rate-distortion performance are

traded o�, although transcoding has always some quality loss (except for some special cases,

such as idempotent coding[Zhu and Lin, 2010]). Using variations, if they are generated from the

original uncompressed sequence, they have the same quality as those versions obtained using

extraction. However, if the variations are generated from a previously coded bitstream (e.g.

decoding and re-encoding), there would be a second quantization stage that would degrade the

quality compared to the original uncompressed sequence. Using a transcoder with a high quality

con�guration (large motion estimation search window, advanced coding tools) to generate the

variation would help to lessen the quality loss, although the encoding process would be very

demanding and slow at the preprocessing stage.

For SVC, there is some quality loss compared to the single layer case (i.e. H.264/AVC).

This quality loss is due to the coding penalty associated with layered coding. Thus, only the

base layer does not degrade. However, the other enhanced versions may have worse quality

than transcoding, depending on the operation point (see Figure 4.8). In this case, variations

generated from the uncompressed original sequence provide the best quality, as they do not have

requantization and each of them is a single layer bitstream.
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7.3.3.3. Storage requirements

The main drawback of the use of variations is that each one must be stored in a separated �le.

Thus, systems using a large number of variations (due to a large number of summaries, adapted

versions of summaries and/or adapted versions of the main video) may require large storage

resources, especially for high resolution sequences. In contrast, transcoding and adaptation only

require the storage of one �le. Due to the coding penalty of layered coding, given the same

quality (i.e. PSNR), extraction could require slightly more space.

As discussed in Chapter 5, a scalable summary is a special case in which the number of

potential summaries may be very large, and each of them must be stored separately. While for

storyboards may be feasable, for video skims the storage requirements could be unacceptable.

7.3.3.4. Coding

Variations and transcoding can provide codec adaptation. In principle, variations may be

stored in any coding format supported by the encoder. Thus, the system can deliver di�erent

versions with the same characteristics but with di�erent coding formats (e.g. MPEG-1, MPEG-

2, H.263, H.264/AVC), useful in heterogenous scenarios in which the di�erent terminals have

di�erent decoding capabilities (e.g. codecs, pro�les). Transcoders may also adapt the content

to any coding format, in principle. However, extraction relies on a speci�c scalable codec, either

H.264/AVC for temporal scalability, or SVC for extended adaptation. All the terminals must

support SVC decoding. There are two special cases in which H.264/AVC decoding would be

enough. The �rst one is the case in which only the base layer is required. The second one is the

use of SVC-to-AVC rewritting[Segall and Zhao, 2008; De Cock et al., 2008], in which the SVC

bitstream is converted to an H.264/AVC single layer bitstream. However, the latter is closer

to lightweight transcoding than to extraction. Adaptation to other codecs is not possible with

extraction using SVC.

A similar capability is the adaptation to arbitrary resolutions and bitrates. Variations and

transcoding may support any arbitrary spatial and temporal resolution and bitrate, provided that

an appropriate encoder or transcoder is used. The transcoder would perform the adaptation on

demand, while the system using variations must have created the variation previously. However

extraction only supports those versions embedded in the original bitstream, which are typically

encoded using dyadic decompositions in temporal (e.g. 15, 30 frames per second) and spatial

dimensions (e,g, 4CIF, CIF), and possibly several bitrates.

7.3.3.5. Flexibility

Transcoding is the most �exible of the three approaches, as the inclusion of new summaries

or versions not considered in an initial design do not require any additional processing (other

than the description of the summary). The new version is generated on demand with the same

cost of any other version. Extraction is still a �exible approach, although limited by the versions

available in the source bitstream and a lower precision to describe summaries (i.e. the length of

the summarization unit, in contrast to frame precision in variations and transcoding). However,
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in most cases that �exibility is enough. In contrast, the use of variations does not provide any

�exibility, as any version not considered initially cannot be generated.

7.4. Summary and conclusions

In this chapter we have explored the use of the extraction-based framework described in the

second part of the thesis in di�erent applications. Customized summaries and local browsing

are two examples of applications that can bene�t from the e�cient and low delay generation of

summaries.

Besides, we also explored the extension of the framework to video sequences with audio.

Extraction can be also used for audio adaptation and can be integrated with the video extraction

framework. However, both streams must be multiplexed carefully to avoid any noticeable delay

between both streams.

Finally, we compared three architectures to provide access to video summaries and versions,

adapted to di�erent usage contexts. The same approaches can be used in web-based user inter-

faces to video libraries. Depending on the requirements of the application, some of them may

be more appropriate. While variations are useful if few adapted versions and summaries are

required, transcoding is a much more �exible approach with the drawback of being computa-

tionally expensive. Extraction is a �exible yet e�cient approach that may be suitable for many

applications, such as customized and scalable summaries. Often, these three basic approaches

can be combined in hybrid architectures.
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Chapter 8

Adaptation of scalable summaries

This chapter describes two applications of the methods proposed in the third part of the

thesis, using mainly storyboards. Scalability is exploited by the proposed graphical user interface

so the summary can automatically �t into an area that can be interactively resized by the user.

Besides scalability, the method proposed in Chapter 5 has the advantage of being very e�cient.

This feature is used in a broadcast scenario in which the system must generate summaries of

multiple channels.

8.1. Resizable pictorial summaries

8.1.1. Introduction

Most of the graphical user interfaces of current operating systems are based on resizable

windows. Each window covers a certain visual area (typically rectangular) displaying the visual

components of processes. Giving the user the freedom to change the size of the windows is a

very useful feature to organize visual information, so multiple documents and applications can

be easily accessible in the same interface.

Similarly, pictorial summaries try to represent the content of video sequences as a combination

of still images, laid out over a limited visual area. Conventional pictorial summaries represent

this information in a �xed size summary[Pfei�er et al., 1996; Yeung and Yeo, 1997; Chiu et al.,

2004; Calic et al., 2007; Mei et al., 2009]. The amount of information depends on the available

visual area. If this area is not large enough, the user has to resize it, scroll across the window or

downscale the images in order to visualize the whole summary.

As described in Chapter 5, scalable summaries can adjust their length and level of detail

on demand, without almost any further processing. The area covered by a pictorial summary

is usually related with the amount of information conveyed by the summary (e.g. number of

images in a storyboard). Thus, changing the scale of the scalable summary, the area covered

can be adjusted to the available area in a window or canvas.
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(a) (b)

(c) (d)

Figure 8.1: Example of window resizing using a scalable storyboard: (a) 44 images (full story-
board), (b) 18 images, (c) 32 images and (d) 4 images.

8.1.2. Resizable storyboards

In order to demonstrate the utility of scalable summaries for this application, we have de-

signed a web interface in which the images are laid out in a resizable window. The user can

resize the window, and consequently the canvas in which the storyboard is laid out. The number

of images of the storyboard is computed from the available area in the canvas and the size of

each individual image (which can be modi�ed in the interface by adjusting a zoom factor).

If a conventional storyboard is displayed in a web page, and the area available is not large

enough, the interface will show only images from the initial part of the video. If the user wants to

have information about the end of the video, he or she would have to scroll across the storyboard

or resize it. In contrast, using a scalable storyboard, the images cover the whole video, and if

the area is constrained, only those considered more relevant are displayed. The user can interact

with the interface to change the number of images in the storyboard [either changing the size of

the window (see Figure 8.1a and b) or changing the size of each individual image (see Figure 8.1b

and c, where the zoom factor is changed without changing the available area)].

8.2. Summarization of live TV streams

In this section, we describe a very challenging scenario and an application involving multiple

channels and low delay. The objective is to provide the user with a quick summary of what was

being broadcasted on several channels (e.g. favorite channels) when the user switchs the TV

on. For instance, the user would like to know what was on TV during the previous hour. If the

terminal has proper recording resources to store the signal, the user could also view that content

if desired.
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8.2.1. Summarization in a multichannel broadcast scenario

The digital television broadcast scenario has several speci�c characteristics, compared with

the typical o�ine scenario (i.e. content stored as �les in a local repostory) assumed in most

summarization related literature[Truong and Venkatesh, 2007].

In �rst place, the content is broadcasted continuosly. That implies that the system must be

capable of processing the incoming amount of data at an adequate rate so that no information

is lost. The data received from the input stream is stored in a temporary bu�er which is being

continuously fed with new data. An adequate size of the bu�er and its management are critical.

The amount of data conveyed by a broadcast television channel is higher than in other

sources of video, such as video available in multimedia libraries (e.g. YouTube). The bitrate

required for each TV channel varies typically from 3 to 6 Mbps. Although high resolution content

is becoming available in multimedia libraries, the resolution of broadcasting networks is also

increasing due to the availability of High De�nition channels. Most works in video summarization

and available data sets deal with content in a lower resolution (e.g. TRECVid[Over et al.,

2007, 2008] and MPEG-7 content set[ITU-T and ISO/IEC, 1998] use CIF or similar resolution

sequences). Decoding and processing high resolution content requires signi�cantly more e�orts

than a lower resolution version (see, for instance, Table 5.3). For this reason, e�cient algorithms

are required to process the content.

In addition, if the system must process several channels simultaneously, the requirement for

e�cient processing is even more critical, as the same processing must be performed in parallel

for every channel. These particular characteristics of the scenario and application described

previously make the summarization of multichannel TV broadcasts a very challenging problem.

8.2.2. Online architecture

A simple adaptation of the architecture shown in Figure 5.2 is the use of a storage drive

that stores the data received for certain period of time (e.g. the last one or two hours of every

channel) and that is updated continuosly. Then, when the user request the summary, the system

can process, o�ine, the channels required. That approach has two drawbacks: the enormous

storage capacity required to store several channels and a signi�cant processing delay, as the

content is processed completely only after the user requests the summaries.

However, observing how the data is processed by the analysis algorithm described in Chap-

ter 5, part of the processing does not require to have all the content available and it can be

performed in advance as the content arrives (i.e. online processing). The other part requires all

the content to have been processed (i.e. o�ine processing). Thus, we propose the architecture

depicted in Figure 8.2, which combines both online and o�ine processing trying to process as

much data as possible as it arrives, in order to reduce the analysis delay. A �rst stage includes

partial decoding to extract DC images, feature extraction and shot detection. This stage can

process data in a GOP basis, so a bu�er storing the last GOP is enough at this level. Once

the shot boundaries are detected, the last shot, which has been kept in a di�erent bu�er, is

processed to select the keyframes. The GOPs containing the keyframes are then forwarded to
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Figure 8.2: Architecture of the multichannel summarization system.

a last bu�er. Additionally, the keyframes could be also transcoded to a more suitable format

(e.g. JPEG) during the online stage to simplify the composition of the storyboards in the user

interface. The last stage (clustering and ranking) is performed o�ine when the user request

a summary. It only requires the feature vectors of the keyframes, which are already available

from previous stages. Finally, the results from all the channels being processed are combined

and presented to the user, who eventually may interact and change the amount of information

shown (as in the application described previously).

Note that the system can be continuously processing the streams, extracting the feature

vectors and storing the results (features and images in memory bu�ers or storage devices).

Thus, the user can select the span to be summarized (e.g. 30 minutes, two hours, 24 hours).

The only limitation would be the available storage space.

8.2.3. Delay analysis

With most of the computational e�ort shifted to an online stage, the actual delay perceived by

the user is due to those processes which cannot be performed in advance. Assuming a bitstream

withM GOPs and R shots, and including explicitly the delay due to demultiplexing and parsing,

the delay due to analysis [adapted from Equation (5.17)] is

tanalysis = tGOP_level + tshot_level + tclustering + tranking

=

N−1∑
n=0

tparsing (fn) +

M−1∑
m=0

tGOP (Um) +

R−1∑
r=0

tshot (sr) + tclustering + tranking (8.1)

where tparsing (fn), tGOP (Um) and tshot (sr) are the delays due to parsing the frame fn, pro-

cessing the GOP Um and processing the shot sr. In the online architecture, assuming that the

frames are processed at a higher rate than the input rate, when the user requests the summary

the delay is due to all the processing that could not be performed in advance. That is mainly

the processing of the last units (frame, GOP and shot) and the o�ine analysis:
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Sequence
Parsing and feature extraction Clustering and

ranking
Total delay

O�ine (fps) Online O�ine Online

dn2002-0228 87.85 (593.65) 0.01 0.02 87.87 0.03
Happy go lovely 82.72 (630.46) 0.01 0.01 82.73 0.02

Young man's fancy 70.66 (738.07) 0.01 0.01 70.66 0.02
BBS 84.82 (614.84) 0.01 0.01 84.83 0.02

All 326.05 (639.80) 0.04 0.05 326.09 0.09

Table 8.1: Processing times and delays for the o�ine and online architectures (in seconds). Note:
the precision to measure times was 10ms.

tanalysis ≈ tparsing (fN−1) + tGOP (UM−1) + tshot (sR−1) + tclustering + tranking (8.2)

We also assume that the keyframes are already available as JPEG images, so the delay due

to the generation is negligible (there is no generation, only selection of the corresponding JPEG

images).

8.2.4. Experimental results

For the experiment carried out, we selected four public domain sequences from the Internet

Archive and multiplexed them into a single MPEG-2 transport stream. The sequences cover

news content (dn2002-0228 ), movies (Happy go lovely), sitcom (Young man's fancy) and docu-

mentrary (BBS ). All the sequences were encoded in MPEG-2 with a resolution of 720x480 pixels

and a frame rate of 29.97 frames per second, using a GOP size of 13 frames. The sequences

were shortened to 29 minutes (52152 frames), which is the duration of the shortest sequence (the

sitcom).

Table 8.1 shows the processing time1 for each of the test sequences in the transport stream,

and the delay due to analysis since the user requests a summary (of the the last 29 minutes in

this simulation). Clustering and ranking are common for both architectures, as they must be

performed o�ine, once the feature vectors and shots have been extracted. Parsing (including

demultiplexing and partial decoding) and feature extraction (including shot detection) can be

performed either online or o�ine. In the online architecture, the same processing as in the o�ine

architecture is carried out, although most was already performed before the interaction of the

user. As we can observe, the processing speed is very high, around 600 frames per second per

each channel. Even processing the four channels simultaneously, the system is still �ve times

faster than real time, which guarantees the feasibility of the online architecture.

The delay with the online architecture is extremely low (around 90 ms in the experiment).

However, deferring the processing burden to a completely o�ine stage leads to a very high delay

(more than 5 minutes for 29 minutes of broadcast), which probably would be unacceptable for

a practical application.

1Experiments performed in a Intel Core 2 Quad 2.83 Ghz processor (3.25 GB of RAM), but using only one
processing core.
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8.2.5. User interface

The purpose of the summarization user interface is to provide the user with as much in-

formation as possible, but in a appealing and easily understandable way. For this application

we combined scalable storyboards and resizable canvases in a web interface that shows the four

channels simultaneously (see Figure 8.3). The user can change the size of the images (changing

the zoom factor) and automatically the scalable storyboard is adjusted to �ll the canvas with

the corresponding images (see Figure 8.3a and b). The user can also change the relative area

given to each channel in order to have more detail of speci�c channels (see Figure 8.3c and d).

8.3. Summary and conclusions

In this chapter we have presented two applications of scalable summaries, focusing primarily

on scalable storyboards and how they can be exploited in graphical user interfaces. With the

proposed interfaces, the user has the freedom to adjust interactively the amount of detail and

information.

Besides, the e�cient analysis algorithm presented in Chapter 5 is used in a broadcast scenario

for the problem of summarizing multiple TV channels. The architecture was adapted to perform

most of the processing online so the delay perceived by the user is very low.

Although the analysis algorithm is generic and based on simple features, the results are

satisfactory. However, more sophisticated analysis addressing the di�erent types of content (e.g.

news, sports, TV shows, movies), but still generating scalable summaries, would be very helpful

to provide the user with a more structured and useful information.

The application of scalable summaries is not limited to the scenarios and applications pre-

sented in this chapter. Scalable video skims could be also obtained with the same system and

presented in a multichannel interface. The applications described in the preceding chapter can

be easily enhanced including scalable summaries with adjustable length or scale. We believe

that the underlying idea and adaptation mechanism of scalable summaries is powerful enough

to be exploited in many applications involving browsing, adaptation and personalization.
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(a)

(b)

(c)

(d)

Figure 8.3: User interface with resizable windows for multichannel summarization: (a) equally
sized canvases (zoom factor 2), (b) equally sized canvases (zoom factor 4), (c) resized canvases
(zoom factor 2) and (d) resized canvases (di�erent zoom factors).
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Chapter 9

Combined scalabilities and

composite summaries

In previous chapters, we described applications using primarily either coding scalabilities (see

Chapter 7) or scalable summaries (see Chapter 8). However, both techinques can be combined

in order to obtain a highly scalable bitstream. In this chapter we brie�y describe how to add

a length scalability (from scalable summaries) to SVC bitstreams that are already scalable. In

addition, we describe the application of these highly scalable bitstreams to composite summaries

of news content.

9.1. Length scalable SVC bitstreams

9.1.1. 4-D scalable bitstreams

Scalable video bitstreams, and particularly MPEG-4 SVC, usually deal with bitstreams that

support three basic scalabilities: spatial, temporal and quality scalability. In the case of scal-

able summaries, their length is adjustable, according to the requirements at the the time of

adaptation. The original sequence is obtained as the summary with full length (highest scale).

For convenience we will term this scalability as length scalability. Note that both temporal and

length scalabilities change the number of frames, although using di�erent methods. Temporal

scalability changes the amount of frames per second without changing the duration of the se-

quence, while length scalability changes the duration of the sequence without changing its frame

rate.

In both cases, adaptation is performed using a bitstream extractor. Thus, both adaptations

can be integrated and performed in a single step, enabling bitstreams with four adaptation

dimensions (i.e. spatial, temporal, quality and length). Figure 9.1 shows an example of a 4-D

scalable bitstream and its adaptation. Conventional scalability is provided by using SVC with

one base layer and three enhancement layers (in the example, two spatial scales, four temporal

scales and two quality scales). Conceptually, length scalability is provided by arranging the
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Ranked list (GOP number)

Figure 9.1: 4-D scalable bitstreams and the adaptation process.

GOPs (or SUs) in ranked order, according to a ranked list, so only a number of GOPs from the

beginning are selected. In practice, it is not necessary to rearrange the GOPs, as the extractor

can use the information in the ranked list to select or discard a GOP.

Spatial, temporal and quality scalabilities are enabled by the SVC syntax and information

in SVC headers. However, additional information (i.e. ranked list) must be provided to enable

length scalability.

9.1.2. Coding of ranked lists

The ranked list (or ranked lists if di�erent sets of summaries are provided) is a simple list of

indexes, which can be provided as metadata in text or binary formats. A binary format is more

e�cient in terms of compression, and it can be a simple list of unsigned integers (e.g. bytes or

long integers, depending on the number of elements in the list). Although the amount of bits

spent in coding the ranked lists is very low compared with the rest of the bitstream, we can

easily exploit some properties of ranked lists to save some bits, especially for long lists.

For simplicity, we assume that the ranked list list is complete, i.e. M ′ = M in (5.2). In that

case, the list is a permutation of IV . Consequently, the entropy is log2M , as the distribution

of values in list is uniform. Figure 9.2a shows an example of ranked list (news12 from the

experiment described in Section 5.10.3), and the corresponding probability density function is

shown in Figure 9.2b). The uniform distribution is the worst case in terms of source compression.

However, ranked lists are usually highly correlated. For example, using the algorithm described

in Chapter 5, a typical ranked list for video skims would be
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Figure 9.2: Lists and probability distributions after di�erent transformations for news12 : (a)
and (b) original ranked list, (c) and (d) di�erential, (e) and (f) rank transformation, (g) and (h)
rank transformation plus di�erential.
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Test sequence Source Di� Ranked Ranked+di�
Name #GOP S16 EN LH SH EN LH SH EN LH SH EN LH SH

MSNBCNEWS13 3781 7.385 11.82 11.92 5.50 6.93 6.96 3.21 9.36 9.38 4.33 4.94 4.95 2.29
contesting 1735 3.389 10.76 10.82 2.29 6.85 6.88 1.46 8.53 8.56 1.81 4.74 4.79 1.01

dn2002-0228 4146 8.098 12.02 12.02 6.09 8.05 8.07 4.08 10.21 10.23 5.18 4.99 5.08 2.57
MRS042538 3683 7.193 11.85 11.89 5.34 8.14 8.17 3.67 9.33 9.35 4.21 4.83 4.89 2.20
news12 2130 4.16 11.06 11.08 2.88 6.57 6.59 1.71 8.64 8.66 2.25 4.64 4.65 1.21

Table 9.1: Coding results for ranked lists. S16: size of the list in KB using �xed-length integers
(16 bits), EN: entropy, LH: mean length of the Hu�man code, SH: size of the list in KB using
Hu�man.

1160, 1161, 1162, 1163,

Nexc︷ ︸︸ ︷
63, 64, 65, 66, 371, 372, 373, 374, 789, 790, 791, 792, 532, 533, 534, 535, . . .

741, 720, 742, 719, 656, 651, 657, 650, 658, 649, 191, 648, 186, 192, 647, 185, 646, 1164, 1159, 1165, . . .
(9.1)

where we can identify groups of several GOPs, that represent video excerpts from the cluster

ranking stage. The indexes of GOPs included during the shot ranking stage also exhibit a strong

correlation (see Figure 9.2a, especially when a shot is grown), as well as those included during

the last stage.

With little extra cost, we can process the list to exploit these correlations and obtain a

better coding e�ciency. As many values are consecutive, coding the symbols di�erentially is very

helpful to concentrate most of them in few low values (see Figure 9.2c and d). Another useful

transformation is the rank encoding of a permutation. This transformation replaces each symbol

in the permutation by its rank among the remaining symbols[Albert et al., 2003]. For example,

the rank encoding of 341562 is 331221. The range of possible values is reduced progressively as

the number of remaining symbols decreases (see Figure 9.2e). Combining both methods, almost

half of the transformed symbols are zero (see Figure 9.2h).

We have tested these di�erent coding options with the ranked lists obtained for the experi-

ment of Section 5.10.3. Table 9.1 shows the experimental results, comparing the entropy, mean

length and total size required to store each ranked list using Hu�man codes for entropy cod-

ing. Both transformations (ranked and di�erential encoding) helps in e�ectively compressing

the list information, by exploiting the properties of permutations. The best coding performance

is achieved combining both.

9.2. Composite summaries

9.2.1. Introduction

As we have discussed in other chapters, the main objective of video summarization is to

provide the user with a quick and informative representation of the content. A good trade-o�

between visualization time and amount of information is crucial for e�ective browsing, along

with an intuitive and pleasant presentation format. Displaying several parts of the content (e.g.
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frames, clips) at the same time reduces visualization time, and thus the summary is more com-

pact. However, if the combination is not done properly, the user may become overwhelmed

with an excessive amount of information, especially with moving images, resulting in useless

summaries. We use the term composite summary to denote a summary which presents simulta-

neously information from di�erent parts of the video.

Storyboard summaries could be considered as composite summaries of still images. Comic-

like summaries and video trees are other examples. An example using moving images is described

in [Dumont and Merialdo, 2007], which splits the frame into four windows presenting simulta-

neously four shots of the same video.

The structure of news content has been exploited to combine information from the anchor-

person and the news story. In [Lie and Lai, 2005], the audio of the anchorperson is combined

with a summary of the same length of the subsequent news story. This idea was extended in

[Garcia et al., 2009; Valdés, 2010], including the video of the anchorperson overlaid in a small

window. In both systems the summary is composed and created at the server.

9.2.2. Composite summaries of news video

Structured video content is usually composed of several segments in which some of them

provide di�erent types of information, either in the video or audio tracks. Sometimes, this

structure can be exploited for a better and more compact abstraction. In this work, we focus

primarily on news sequences, structured as an anchorperson introducing a subsequent news story.

In most of the cases, this introduction is in fact a good, high level, summary of the news story. In

that case the audio and video of both segments can be combined and presented simultaneously

as they provide complementary information. Thus, the length of the abstract is reduced while

the summary is more informative.

In our approach (see Fig. 9.3) we assume that the location of the anchorperson segment and

the story segment are known, either by manual annotation or by automatic analysis[Avrithis

et al., 2000; Lie and Lai, 2005; De Santo et al., 2006; Liu et al., 2009]. The anchorperson

segment (both audio and video) is combined with a summary of the story with the same length

and presented simultaneously. Anchorperson frames are reduced and overlaid in a small window

over the summary of the story.

9.2.2.1. Server side

Although summarization is performed at the server, the composition of the summary is

performed at the client, in contrast to [Garcia et al., 2009; Valdés, 2010]. Thus, the cost of

decoding, pixel domain composition and encoding at the server is avoided. Besides, the properties

of scalable bitstreams and scalable summaries are used for e�cient summarization. Although

the approach is valid for non-scalable bitstreams, spatial scalability can be used to adapt the

segment of the anchorperson, as only a smaller version is required at the client for composition,

saving network bandwidth and decoding e�orts at the client. Additionally, the summary of

the story segment is obtained using lightweight summarization techniques, such as simple fast
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Figure 9.3: Overview of the composite summarization process.

forward or scalable summaries, which can create summaries of a speci�c length in adaptation

time without additional summarization analysis. To avoid generation cost, bitstream extraction

is used for the generation of both bitstreams, which are streamed to the client simultaneously.

9.2.2.2. Client side

The client application was developed using web technologies. The composite summary is

presented in a web page with two embedded players (one for each bitstream). Client side

composition is much more dynamic and �exible than server side composition. Both videos can

be laid out according to the preferences of the user and even changed dynamically (for example

to uncover a part of the background video). The main di�culty is the synchronization of both

streams, due to unequal bu�ering of both video streams (a spatially reduced anchorperson stream

usually requires a much lower bitrate than the summary of the story).

To the best of our knowledge, SVC is not currently supported by any embeddable player,

so for the subjective evaluation we emulated the client side functionality with two independent

H.264/AVC streams (two spatial resolutions).

9.2.3. Summarization approaches

In the proposed approach, the news story segment, of length Lstory, must be condensed to

a summary of length Lanchor, the length of the anchorperson segment. In most summarization

algorithms, the length of the summary either cannot be adjusted to a target length or must be

known prior to the analysis[Truong and Venkatesh, 2007]. We tested two di�erent summarization

techniques that can adjust the length of the summary without analyzing the content again.
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(a) (b) (c)

Figure 9.4: Di�erent composition layouts in the web interface.

9.2.3.1. Fast forwards

A fast forward summary is just the original source sequence played at a higher frame rate.

This method does not require any analysis as it is not content-based. The compression (summa-

rization) rate must be r = Lanchor/Lstory, and thus, the speed-up must be R = Lstory/Lanchor =

1/r. The summary can be easily obtained including one every R frames and played at the original

frame rate. However it requires transcoding to generate the bitstream.

In contrast, we used a two step method based on temporal scalability. We �rst discard unnec-

essary temporal enhancement layers to avoid unnecessary consumption of network bandwidth

and decoding at the client. Assuming a dyadic coding structure with hierarchical B-frames with

T layers, the highest Tdiscard = blog2Rc temporal layers are discarded. If Tdiscard ≥ T − 1, only

frames from the lowest temporal level (i.e. intra frames) are selected, but skipping some of them

in order to achieve a lower e�ective frame rate. Finally, as H.264/AVC and SVC allow arbitrary

frame rates, we adjust more accurately the frame rate to F̃ = rF2Tdiscard , where F is the frame

rate of the original sequence.

9.2.3.2. Scalable video skims

Scalable summaries can easily adapt their length depending on the requirements. We used

the algorithm proposed in Chapter 5, which generates scalable video skims with �ne granularity.

At any time a video skim of a given length Lskim is requested, the generation stage computes

the number N of GOPs corresponding to that length. The �rst N values of the ranked list are

selected and sorted in increasing order. The GOPs corresponding to those indexes are extracted

from the original bitstream, obtaining the requested summary.

In the case of composite summaries, we assume that the ranked list for the news story

segment is available. Then, the summary is generated with a target length of Lanchor. Due to

the granularity of the scalable skim, the length of the skim Lskim might not be exactly Lanchor.

It can be adjusted accurately modifying the frame rate to F̃ = Lskim
Lanchor

F . This adjustment is

unnoticeable, as typically this mismatch is lower than 1%.
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Test sequence Summary Fast forward Video skim

Name Duration Duration Rate IN RT OV
GT
(sec)

IN RT OV
GT
(sec)

news1_TVE 17m42.8s 40.2s 3.93% 4.2 2.4 3.2 8.37 4.5 4.6 4.4 8.42
news8_CCTV4 4m14.6s 11.6s 4.77% 3.5 2.1 2.6 0.91 3.6 4.2 3.5 0.89
news5_NBC 2m03.8s 9.6s 8.43% 3.8 2.3 3.1 1.23 3.8 4.3 3.9 1.22
news6_NBC 2m25.0s 16.6s 12.96% 4.3 3.1 3.6 0.81 4.3 4.5 4.4 0.81
news3_TVE 2m34.6s 24.2s 18.62% 4.4 2.8 3.6 1.00 4.4 4.5 4.4 1.01
news2_TVE 1m50.8s 19.5s 21.41% 4.6 2.9 3.7 1.17 4.6 4.6 4.5 1.16

news9_CCTV4 1m39.8s 19.7s 24.78% 4.1 3.2 3.5 1.17 4.2 4.5 4.2 1.16
news4_NBC 1m36.6s 19.1s 24.84% 4.5 3.2 3.6 2.06 4.4 4.5 4.3 2.08
news7_NBC 35.9s 13.1s 58.74% 4.4 3.8 3.9 0.81 4.4 4.4 4.1 0.83

Table 9.2: Results sorted by summarization rate. IN: Informative; RT: Rhythm; OV: Overall
satisfaction; GT: Generation time

9.2.4. Experimental results

We conducted a subjective evaluation of the proposed abstraction approach, in the con-

text of news videos. A total of nine clips extracted from di�erent data sets (MPEG-7 and

TRECVID 2005) were encoded in SVC using the JSVM 9.18 encoder with two spatial layers

(352x240/176x120 or 352x288/176x144) and a GOP length of 16 frames (5 temporal scales), and

audio using MPEG-1 layer 3. These videos cover di�erent TV sources, lengths and summariza-

tion rates (ratio between the lengths of the original video and its summary). Two composite

summaries were generated for each video (i.e. using fast forward or video skim to summarize

the news story), and were evaluated by 17 assessors. Three evaluation criteria (good informa-

tion coverage, pleasant rhythm and overall satisfaction) were posed as a�rmative statements

and evaluated using a Likert scale (1:Strongly disagree; 3: Nor agree nor disagree; 5: Strongly

agree)[Likert, 1932].

Table 9.2 shows the test videos sorted by summarization rate and the results. Figure 9.5

shows the scores obtained for information coverage, rhythm and overall satisfaction plotted in

graphs for easier visualization. In general, results are satisfactory for both types of summaries.

The results are better for video skims, which are also preferred to fast forward when the assessors

were asked for their explicit preference (see Figure 9.6). As expected, very low summarization

rates are very challenging, with degraded results, slightly for video skims and signi�cantly for

fast forwards, in which the dramatic speed-up makes the rhythm and consequently the summary

more stressing and unpleasant.

Table 9.2 also shows the generation time (total extraction time of both video bitstreams and

the audio bitstream) of the summaries1, supporting its suitability when e�ciency or low delay

are required. For video streams a modi�ed JSVM 9.12.2 extractor was used. The extractor was

not optimized so the generation time could be signi�cantly reduced.

Finally, we asked the assessors (using the same Likert scale) about their satisfaction with the

interface and dynamic layouts. The mean score was 4.53 out of 5 in overall satisfaction.

1Experiments performed in an Intel Core 2 Duo at 1.8Ghz (2GB of RAM)
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Figure 9.5: Subjective evaluation results: (a) information coverage, (b) rhythm, and (c) overall
satisfaction.
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Figure 9.6: Preference between video skims and fast forwards in composite summaries.
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9.3. Summary and conclusions

In this chapter we have described two applications which combine most of the ideas proposed

in the thesis. A highly scalable video framework combining scalable summaries and conventional

coding scalabilities has been described. In that framework, a single bitstream embeds multiple

versions of the content, but also embeds multiple summaries. These ideas are combined also in the

context of news video summarization. Exploiting the structure of news videos, the information

is presented in a compact but appealing composite format, and it is generated using bitstream

extraction and scalable summaries.
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Chapter 10

Conclusions and future work

This thesis has proposed a novel integrated approach to video summarization and adaptation

based on the idea of scalable bitstreams. Most of the techniques described in the thesis were

inspired by the simplicity and �exibility of the adaptation of bitstreams in scalable video cod-

ing. The concept of scalable bitstream is applied in a novel way to obtain scalable summaries,

which can be also adapted easily without any further content analysis. The use of a scalable

representation format is a powerful tool in applications in which the content must be adapted.

In this chapter we summarize the main results and conclusions yielded from the thesis.

10.1. Summary and conclusions

Chapter 1 introduced the main motivation and objectives of the thesis, which mainly are

the exploration of scalable representations and their applications in video summarization and

adaptation. Chapter 2 described the research and technology context in which the rest of the

thesis was developed. A brief overview of the related video coding, summarization and adaptation

techniques was provided, along with some review of scalable approaches in other di�erent areas,

as scalability was rarely used in the context of video summarization.

The next two chapters deal with how scalable video coding, an already available technology,

can be used in a new context, namely video summarization. For convenience, in the summa-

rization architecture proposed in Chapter 3, analysis and generation processes were decoupled.

In contrast to most works in video summarization, the emphasis was laid on the generation

of the bitstream, as a key part for applications such as low delay summarization and scalable

summaries (as discussed later in Chapter 5). Analysis, generation and the description model

are based on coding units (summarization units) rather than on single frames, which enables

e�cient processing using bitstream extraction. Experiments showed that, with this framework

and model, extraction can generate the bitstream much faster than the alternative transcoding

approach, and without any loss of quality.

Since extraction is also the main tool in scalable video adaptation, the summarization frame-

work was extended in Chapter 4 to include adaptation. Using a single bitstream extractor, a
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summary adapted to the usage environment is generated in a single and e�cient step. Exper-

iments showed that extraction is still much more e�cient than transcoding, although there is

some loss of quality in enhanced versions due to layered coding (as shown in Chapter 7).

The next two chapters of the thesis proposed a novel use of the concept of scalability as an

intrinsic property of the summaries, in a di�erent sense of that used in the previous part. With

scalable summaries, the length (or duration), which is the most important characteristic of a

summary, can be adjusted without any further processing. Chapter 5 discussed how the length

of the summary can in�uence two important properties of a summary: semantic coverage and

visual pleasantness. Based on these observations, a suitable representation and framework were

proposed for scalable storyboards and video skims. The analysis algorithm is based on a novel

iterative procedure which combines clustering and ranking to increase gradually the length of

the summary including new visual information. This method enables a much �ner granularity

than hierarchical summaries and a very compact representation as a ranked list. The results of

the evaluations were encouraging, and showed that even video skims can be generated with very

low latency. Scalable summaries enable an easy and fast adaptation of summaries, which make

them useful in many applications, such as customization, personalization or browsing.

The concept of scalable summaries was extended in Chapter 6 to comic-like summaries.

These summaries were posed as enhanced storyboards, which enable the user to navigate across

di�erent scales with increasing level of details. In contrast to storyboards, the problem of laying

the images out in a comic-like layout is not trivial, with implications in e�ciency and visual

disturbing e�ects in the transition between scales. Two layout algorithms were proposed: a

basic method and an enhanced method to reduce the disturbing e�ects. Results showed that

the enhanced method e�ectively reduces the changes in the transition, making the navigation

across scales more comfortable.

The following three chapters described several applications of the previous methods. Chap-

ter 7 extended the comparison of transcoding and extraction, including also variations, and

describing how these architectures can be used in di�erent application contexts. The problem

of including and multiplexing audio was also discussed in this chapter, along with applications

such as customized summaries and browsing.

Chapter 8 described two applications which can bene�t from scalable storyboards. The �rst

one is the use of storyboards that automatically adjust their size to the size of a window or

canvas, which is very e�ective to dynamically adjust the amount of visual information. The sec-

ond one combines the high e�ciency of the analysis algorithm described in Chapter 5 with the

previous application. The system is able to process a multiplex with several TV channels with

an extremely low delay using an online architecture. The resulting storyboards are presented

in an integrated manner, in which the user can distribute the amount of information of each

chanel using the dynamic user interface and the scalability of the storyboards. This last appli-

cation shows the potential of scalable summaries and low delay summarization in a demanding

environment (i.e. multiple high resolution channels).

Finally, Chapter 9 presented two applications combining all the scalabilities described in the

thesis. Scalable summaries can be combined with scalable video coding, to obtain bitstreams
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that can be scaled in four dimensions: spatial, temporal, quality and length. Such bitstreams

can be very useful in browsing and adaptation systems. A second application summarizes news

stories in composite summaries. The segment with the anchorperson introducing the story is

combined with a summary (video skim or fast forward) of the segment with the story. They are

obtained using di�erent scalabilities, and composed at the client. Evaluations showed that this

composite format e�ectively condenses the information in an appealing way.

Scalable representations have been the main objective of the thesis. The techniques and

frameworks proposed in the di�erent chapters have shown a number of advantages and potential

applications of scalable bitstreams. Browsing, personalization, adaptation and user interfaces

can bene�t from easily adaptable videos or summaries.

E�ciency has also played an important role in the thesis. One of the requirements to fully

bene�t from scalable summaries is that the generation of the summary, once a certain scale is

requested, must be very fast. Besides, although not strictly required by scalable summaries,

fast analysis techniques were proposed. They can be useful in other demanding scenarios in

which large amounts of data need to processed and the summary must be presented without a

considerable delay. An example is the proposed application to multichannel summarization of

TV streams.

10.2. Main results and contributions

We can summarize the main results and contributions of the thesis as the following:

A framework for e�cient generation of summaries using bitstream extraction, and a suit-

able model to represent the summaries.

The integration of the previous framework and scalable video into a joint framework that

can generate the bitstream of summaries adapted to the usage environment.

Study and comparison of the proposed frameworks to alternative architectures (i.e. transcod-

ing and variations).

Analysis of the applicability of the idea of scalability in video summarization and analysis

of the requirements for practical utility. From that analysis, a suitable description (ranked

list) and framework were proposed to generate scalable summaries.

A suitable analysis algorithm to generate scalable storyboards and video skims. The algo-

rithm was also designed to be very e�cient.

Method and architecture to generate scalable comic-like summaries. Analysis of the prob-

lem of disturbance and a heuristic layout method to lessen its e�ect.

Novel applications of the proposed methods, such as low delay and customizable summaries,

resizable interfaces using scalable storyboards, composite summaries of news content with

client side composition, and e�cient summarization of multichannel TV broadcasts.
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Task/application
Video coding scalabilities

Summarization
scalability Summary description

Temporal Spatial Quality Length

Adaptation (SVC) A A A
Summarization
(Chapter 3)

S Summarization curve

Adapted summaries
(Chapter 4)

A,S A A Summarization curve

Scalable summaries
(Chapter 5)

X Ranked list

Scalable comic-like
summaries (Chapter 6)

X
Multiscale layout description

or panelled description
Customized summaries
(Chapter 7)

S Summarization curve

Resizable summaries
(Chapter 8)

X Ranked list

Multichannel scalable
summaries (Chapter 8)

X Ranked lists

Adapted scalable
summaries (Chapter 9)

A,S A A X Ranked list

Composite summaries
(Chapter 9)

A,S A,S A X
Summarization curves or

ranked lists

Table 10.1: Use of the di�erent scalabilities along the thesis. A: used for adaptation, S: used for
summarization.

10.3. Scalability in the di�erent proposed techniques

As discussed previously in Chapter 2, the term scalability has di�erent interpretations de-

pending on the �eld. Within the thesis, we have also used the word scalability with slightly dif-

ferent meanings. In this section we analyze how di�erent scalabilities have been used throughout

the thesis. We can distinguish between non-semantic (or content-blind) and semantic scalabil-

ities. The former are the scalabilities that scalable video coding enables for video adaptation,

and which some techniques in the thesis used for semantic purposes (i.e. summarization). In

this thesis we also introduced a semantic scalability, namely the length scalability of scalable

summaries.

Table 10.1 compares di�erent techniques and indicates which scalabilities are used. Conven-

tional adaptation of scalable video coding uses temporal, spatial and quality scalabilities. In

Chapter 3 and the customized summaries of Chapter 7, temporal scalability is exploited also for

summarization. In Chapter 4, temporal scalability is used for both summarization and adap-

tation purposes, while spatial and quality scalabilities are used only for adaptation. Length

scalability is used for scalable storyboards and video skims, in Chapter 5, scalable comic-like

summaries, in Chapter 6, and resizable summaries and multichannel summaries, in Chapter 8.

Adapted scalable summaries and composite summaries, described in Chapter 9, use the four

scalabilities.

10.4. Future work

Several research directions come up from the work developed in this thesis:
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Improving the analysis algorithms with a more advanced processing and higher level fea-

tures. The thesis has focused mainly on generation and representation, providing a frame-

work to generate scalable, fast and �exible summaries. However, the analysis algorithms

have been based on low level characteristics and they can bene�t from ideas from other

works in video summarization[Truong and Venkatesh, 2007; Money and Agius, 2008b]. The

following aspects may improve the semantic quality of the summaries:

� Enhanced scoring approaches for scalable summaries. Additional features and criteria

can be included in the scoring and ranking methods.

� Speci�c analysis for di�erent types of content (e.g. news, movies, sport), so the

di�erent scales can be created with a more intuitive distribution of information. Cus-

tomized summaries and composite summaries can also bene�t from an automatic

structuring method.

Extension of the analysis algorithms developed for MPEG-2 to H.264/AVC. Due to the

complexity of H.264/AVC, the resulting analysis may be slower, so speci�c methods for

e�cient processing of H.264/AVC would be also convenient.

Currently, the disturbance is the main drawback of the scalable comic-like summaries. A

better study of these e�ects may be very helpful to better understand how to avoid it.

Higher level semantic analysis can be also helpful to obtain a more meaninful distribution

of images across panels (e.g. panels representing scenes).

Studying of new ways of integrating scalable summaries into user interfaces. The easy and

fast adaptation of scalable summaries can be a more dynamic alternative to conventional

representations in browsing and adaptation interfaces (e.g. keyframes, thumbnails).

Exploring new applications of low delay summarization.

An e�cient evaluation methodology for scalable summaries. One of the main handicaps of

scalable summarization is that the number of summaries is much higher than in conven-

tional summarization, which makes very desirable a better evaluation framework.

10.5. Published work

Part of the work in this thesis has also yielded some publications. In this section we classify

these publications by chapter and research topic.

Integrated summarization and adaptation

Chapter 3. Generation of video summaries by bitstream extraction

L. Herranz, J.M. Martínez, "On the use of hierarchical prediction structures for e�cient

summary generation of H.264/AVC bitstreams", Signal Processing: Image Communica-

tion, vol. 24, no. 8, pp. 615-629, September 2009
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L. Herranz, J.M. Martínez, "On the advantages of the use of bitstream extraction for video

summary generation", International Conference on Multimedia Modeling, Lecture Notes

on Computer Science, vol 5916, pp. 755-760, Springer Verlag, Chongqing, China, January

2010

Chapter 4. Integrated summarization and adaptation

The initial development of the integrated summarization and adaptation model was carried

out in the context of a non-standard wavelet-based scalable video codec. However, the main

framework is an early version of that described in this thesis. The following publications are

from that early stage:

L. Herranz, "A framework for online semantic adaptation of scalable video", Proc. IEEE

International Workshop on Semantic Media Adaptation and Personalization, pp. 13-18,

Athens, Greece, December 2006

L. Herranz, "Integrating semantic analysis and scalable video coding for e�cient content-

based adaptation", Multimedia Systems, vol. 13, no. 2, pp. 103-118, August 2007

L. Herranz, J.M. Martínez, "Use cases of scalable video based summarization within

MPEG-21 DIA", International Conference on Semantic and Digital Media Technology,

Lecture Notes on Computer Science, vol 4816, pp. 256-259, Springer Verlag, Genoa, Italy,

December 2007

The following publications present the framework adapted to the standarized scalable extension

of H.264/AVC:

L. Herranz, J.M. Martínez, "Integrated summarization and adaptation using H.264/MPEG-

4 SVC", Proc. International Conference on Visual Information Engineering, pp. 729-734,

Xi'an, China, July 2008

L. Herranz, J.M. Martínez, "An integrated approach to summarization and adaptation

using H.264/MPEG-4 SVC", Signal Processing: Image Communication, vol. 24, no. 6,

pp. 499-509, July 2009

L. Herranz, J.M. Martínez, �Using MPEG Tools in Video Summarization�, The Handbook

of MPEG Applications: Standards in Practice, Ed. Marios C. Angelides and Harry Agius,

John Wiley & Sons, 2011 (in press)

Scalable summaries

Chapter 5. Scalable storyboards and video skims

L. Herranz, J.M. Martínez, "Generation of scalable summaries based on iterative GOP

ranking", Proc. International Conference on Image Processing, pp. 2544-2547, San Diego,

California, October 2008
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L. Herranz, J.M. Martínez, "An e�cient summarization algorithm based on clustering

and bitstream extraction", Proc. International Conference on Multimedia and Expo, pp.

654-657, New York, New York, July 2009

L. Herranz, J.M. Martínez, "A framework for scalable summarization�, IEEE Transactions

on Circuits and Systems for Video Technology, vol. 20, no. 9, pp. 1265-1270, September

2010
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Appendix A

Conclusiones y trabajo futuro

En esta tesis se ha propuesto un enfoque integrado a la creación de resúmenes (video sum-

marization) y a la adaptación de vídeo (video adaptation) basado en la idea de bitstreams (�ujos

de bits) escalables. La mayoría de las técnicas descritas en la tesis están inspiradas por la sim-

plicidad y �exibilidad de adaptación de los bitstreams obtenidos mediante codi�cación de vídeo

escalable. El concepto de bitstream escalable se aplica de una forma novedosa para obtener

resúmenes escalables, los cuales pueden ser adaptados fácilmente sin necesidad de ningún análsis

adicional del contenido (a diferencia de algoritmos convencionales no escalables, que deberían

ejecutarse con diferentes parámetros cada vez que se necesita obtener un resumen adaptado). El

uso de una formato de representación escalable es un potente herramienta en aplicaciones en las

cuales el contenido debe ser adaptado. En este capítulo se recogen los resultados y conclusiones

principales obtenidos de esta tesis.

A.1. Resumen y conclusiones

El Capítulo 1 introduce la motivación y objetivos principales de la tesis, que fundamental-

mente son la exploración de representaciones escalables y su aplicación a la creación y adaptación

de resúmenes. El Capítulo 2 describe el contexto tecnológico y de investigación en el cual se en-

marca la tesis. El capítulo también recoge una breve visión general de las técnicas relacionadas

de codi�cación, generación de resúmenes y adaptación de vídeo, junto con la revisión de la apli-

cación de la idea de escalabilidad en diferentes áreas, ya que raramente se ha aplicado en el

contexto de resúmenes de vídeo.

Los siguientes capítulos exploran como la codi�cación de vídeo escalable, una tecnología ya

establecida y utilizada para adaptación de vídeo, puede utilizarse en un nuevo campo, el de los

resúmenes de vídeo. Por conveniencia, la arquitectura propuesta en el Capítulo 3 distingue entre

dos etapas en el procesado: análisis del contenido y generación del bitstream. A diferencia de

la mayoría de trabajos en este campo, el énfasis se pone en la generación del bitstream como

parte crucial para ciertas aplicaciones como pueden ser la generación de resúmenes con bajo

retardo y los resúmenes escalables (como se verá posteriormente en el Capítulo 5). El análisis,
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la generación y el modelo de descripción están basados en unidades de codi�cación (utilizan-

do el término summarization units) en lugar de imágenes (frames) individuales. Esto permite

procesar e�cientemente el vídeo utilizando extracción de bits (es decir, el bitstream de salida se

obtiene seleccionando ciertos paquetes del bitstream de entrada, sin necesidad de decodi�car y

volver a codi�car). El sistema propuesto es �exible y permite representar storyboards (guiones

grá�cos hechos con imágenes estáticas), video skims (similares a los trailers de películas, creados

mediante la concatenación de segmentos del vídeo original) y fast forwards (obtenidos medi-

ante la aceleración de la secuencia original de forma que se reduce su duración). Los resultados

experimentales muestran que, mediante la arquitectura basada en extracción, el bitstream se

genera mucho más rápido que utilizando una arquitectura alternativa basada en transcodi�-

cación. Además, mediante extracción no se pierde calidad de imagen en el proceso, a diferencia

de la transcodi�cación que sí la deteriora.

Dado que la extracción de bits es también la herramienta fundamental en la adaptación de

vídeo escalable, la arquitectura se extiende en el Capítulo 4 para incluir adaptación. Mediante

un único extractor de bits, se puede obtener un resumen adaptado a las condiciones de uso del

usuario en un único paso y de forma muy e�ciente. Los emperimentos muestran que la extracción

continúa siendo mucho más e�ciente que la transcodi�cación, aunque en este caso sí se pierde

algo de calidad en las versiones distintas a la básica, debido a la codi�cación de vídeo escalable

(como se estudia en el Capítulo 7).

La siguiente parte de la tesis propone un uso novedoso del concepto de escalabilidad, en un

sentido distinto al utilizado en la parte anterior. En este caso, la escalabilidad es una propiedad

intrínseca de los resumenes. Utilizando resúmenes escalables la longitud (o duración), que es

la característica más importante de un resumen, se puede ajustar si necesidad de procesado

adicional del contenido. El Capítulo 5 analiza como la longitud del resumen puede in�uir en

dos propiedades importantes: cobertura semántica (es decir, que cubra su�ciente información

semántica) y agrado visual (es decir, sin que el resumen tenga artefactos visuales no deseables

o sea incómodo de ver). Basado en este análisis, se propone una representación y una arquitec-

tura adecuada para obtener storyboards y video skims escalables. El algoritmo de análisis está

basado en un proceso iterativo que combina clustering y ranking para incrementar progresiva-

mente la longitud del resumen incluyendo nueva información visual. Este método permite una

mayor granularidad que los resúmenes jerárquicos, y una representación muy compacta (lista de

índices). Los resultados de las evaluaciones muestran que los resúmenes se pueden generar con

un retardo muy bajo. Los resúmenes escalables permiten una adaptación secilla de la longitud

de los resúmenes, lo cual les hace útiles en numerosas aplicaciones, tales como personalización o

navegación.

El concepto de resumen escalable se extiende en el Capítulo 6 a resúmenes de tipo comic. En

el capítulo, estos resúmenes se proponen como storyboards mejorados, que permiten al usuario

navegar mediante diferentes escalas con un creciente nivel de detalle (más imágenes). A diferencia

de los storyboards, el problema de distribuir las imágenes en una estructura de tipo cómic no es

trivial, con implicaciones sobre la e�ciencia y efectos visuales desagradables en las transiciones

entre escalas. Se proponen dos algoritmos: un método básico y otro mejorado para reducir los
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efectos visuales molestos. Los resultados muestran que el método mejorado permite reducir

efectivamente la cantidad de cambios entre las transiciones, haciendo la navegación más cómoda.

Una última parte de la tesis propone diferentes aplicaciones de los métodos descritos en

capítulos anteriores. El Capítulo 7 extiende la comparación entre transcodi�cación y extracción,

incluyendo además una arquitectura alternativa basada en variaciones, y describiendo cómo estas

arquitecturas se pueden utilizar en diferentes aplicaciones. El problema de incluir y multiplexar

audio se estudia también en este capítulo, junto con aplicaciones tales como resúmenes person-

alizados y navegación.

Chapter 8 describe dos aplicaciones que pueden utilizar storyboards escalables. La primera es

el uso de storyboards cuyo tamaño se ajusta automáticamente (cambiando el número de imágenes

que se muestran) al tamaño de la ventana, permitiendo al usuario ajustar dinámicamente la

cantidad de información visual. La segunda aplicación combina la e�ciencia del algoritmo de

análisis descrito en el Capítulo 5 con la aplicación anterior. El sistema es capaz de procesar un

múltiplex con varios canales de televisión digital con un retardo extremadamente bajo, utilizando

una arquitectura online. Los storyboards resultantes se presentan de una forma integrada, en la

cual el usuario puede distribuir la cantidad de información visual de cada canal dinámicamente

utilizando el interfaz y la escalabilidad de los storyboards. Esta última aplicación muestra el

potencial de los resúmenes escalables y la generación de resúmenes con bajo retardo en un

entorno especialmente exigente (i.e. múltiples �ujos de vídeo de alta resolución simultáneos).

Por último, el Capítulo 9 presenta dos aplicaciones combinando todos los tipos de escala-

bilidad descritos en la tesis. Los resúmenes escalables se pueden combinar con codi�cación de

vídeo escalable para obtener bitstreams que se pueden escalar en cuatro dimensiones: espacial,

temporal, calidad y longitud. Tales bitstreams pueden ser muy útiles en sistemas de visualización

y adaptación. Una segunda aplicación genera un resumen de una noticia de un informativo en

forma de resumen compuesto. El segmento con el presentador introduciendo la noticia se combi-

na con un resumen (video skim o fast forward) del segmento con el reportaje. Ambos se obtienen

utilizando diferentes escalabilidades, y se componen en el cliente. Las evaluaciones subjetivas

muestran que el formato compuesto condensa e�cazmente la información en una forma atractiva

para el usuario.

Las representaciones escalables han sido el objetivo principal de la tesis. Las técnicas y

arquitecturas propuestas en los diferentes capítulos han puesto de mani�esto una serie de ventajas

y aplicaciones potenciales de los bitstreams escalables (en el contexto de resúmenes y adaptación).

La personalización y adaptación de video, así como los interfaces de uso y herramientas de

navegación y visualización pueden bene�ciarse de vídeos y resúmenes fácilmente adaptables.

Por otro lado, la e�ciencia también ha desempeñado un papel importante en la tesis. Uno

de los requisitos para que los resúmenes escalables sean realmente útiles en la práctica es que la

generación del resumen (bitstream), una vez que se solicita una escala, debe ser muy e�ciente.

Además, aunque no siendo estrictamente necesario para los resúmenes escalables, se han prop-

uesto técnicas de análisis e�ciente. Estas técnicas pueden ser útiles en otros escenarios en los que

grandes cantidades de datos de vídeo deben ser procesados o los resúmenes presentados con un

retardo pequeño. Un ejemplo es la obtención de resúmenes de múltiples canales del televisión.
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A.2. Resultados y contribuciones

Los principales resultados y contribuciones de la tesis son los siguientes:

Una arquitectura para la generación e�ciente de resúmenes utilizando extracción de bits,

y un modelo de representación adecuado para representar los resúmenes.

La integración de la arquitectura anterior y la codi�cación de vídeo escalable en una ar-

quitectura conjunta que puede generar bitstreams de resúmenes adaptados al contexto de

uso.

Estudio y comparación de la arquitectura propuesta con otras arquitecturas alternativas

(transcoding y variaciones).

Estudio de la aplicabilidad de la idea de escalabilidad en el contexto de resúmenes de

vídeo, y análisis de los requisitos necesarios para que tengan utilidad práctica. A raíz de

tal estudio, una descripción adecuada (ranked list) y una arquitectura se proponen para

generar resúmenes escalables.

Un algoritmo de análisis adecuado para generar storyboard y video skims escalables. El

algoritmo es además muy e�ciciente.

Método y arquitectura para generar resúmenes de tipo cómic escalables. Análisis del prob-

lema de efectos no deseados y un método de layout heurístico para reducir su impacto.

Nuevas aplicaciones de los métodos propuestos, tales como los resúmenes personalizables

y de bajo retardo, resúmenes adaptables al tamaño de la ventana, resúmenes compuestos

y la obtención rápida de resúmenes de mútiples canales de televisión.

A.3. Trabajo futuro

Varias líneas de investigación surgen a raíz del trabajo desarrollado en la tesis:

Mejora de los algoritmos de análisis con procesamiento más avanzado y características

de más alto nivel. La tesis se ha centrado fundamentalmente en la parte de generación y

representación, proponiendo un marco de trabajo para la generación rápida y �exible de

resúmenes escalables. Sin embargo, los algoritmos de análisis se han basado en característi-

cas de bajo nivel y podrían verse bene�ciados por las ideas desarrolladas en otros trabajos

en el campo de la abstracción de vídeo[Truong and Venkatesh, 2007; Money and Agius,

2008b]. Los siguientes aspectos podrían mejorar la calidad semántica de los resumenes:

� Métodos de puntuaciones (scores) mejorados en el algoritmo de análisis para resúmenes

escalables. Caracteristicas y criterios adicionales pueden incluirse en el cálculo de pun-

tuaciones y ranking.
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� Análisis especí�co para diferentes tipos de contenido (p.e. noticias, películas, de-

portes), de forma que las diferentes escalas se pueden crear con una distribución

de información más intuitiva, de acuerdo con el tipo de contenido. Los resúmenes

personalizados y compuestos también se pueden bene�ciar de un método automático

para estructurar el contenido.

Extensión de los algoritmos de análisis desarrollados para MPEG-2 a H.264/AVC. Debido

a la mayor complejidad de H.264/AVC, el análisis resultante puede resultar más lento, por

lo que algoritmos especí�cos para H.264/AVC pueden ser convenientes.

Actualmente, el problema de los efectos visuales molestos es el mayor problema de los

resúmenes de tipo cómic escalables. Un estudio más en profundidad de estos efectos podría

ser muy útil para entender mejor como evitarlo. Métodos de análisis semántico de más alto

nivel pueden ser también útiles para obtener una distribución de imagenes en los paneles

más intuitiva (p.e. paneles representando escenas).

Estudio de nuevas formas de integrar resúmenes escalables en interfaces de usuario. La

simple y rápida adaptación de los resúmenes escalables puede ser una alternativa más

dinámica a representaciones convencionales utilizadas en interfaces de visualización, nave-

gación y adaptación (p.e. imágenes clave, miniaturas).

Explorar nuevas aplicaciones de la generación de resúmenes con bajo retardo.

Una metodología e�ciente de evaluación de resúmenes escalables. Uno de los mayores prob-

lemas de los resúmenes escalables es que el número de instancias a evaluar es mucho mayor

que en los métodos convencionales, lo que hace muy conveniente un marco de evaluación

más adecuado y e�ciente.
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Glossary

ATSC Advanced Television Systems Committee

AU Access unit

AVC Advance Video Coding

BSD Bitstream Syntax Description

BSDL Bitstream Syntax Description Language

CGS Coarse grain scalability

CIF Common intermediate format (352x288 pixels)

DCT Discrete Cosine Transform

DI Digital Item

DIA Digital Item Adaptation

DPB Decoded picture bu�er

DVB Digital Video Broadcasting

DVD Digital Versatile Disc

EPZS Enhanced Predictive Zonal Search

FGS Fine grain scalability

GOP Group of pictures

IDR Instantaneous decoding refresh

IEC International Electrotechnical Commission

ISDB Integrated Services Digital Broadcasting

ITU International Telecommunication Union

JPEG Joint Pictures Experts Group



Glossary

MDS Multimedia Description Schemes

MGS Medium grain scalability

MJPEG Motion JPEG

MMCO Memory management control operations

MPEG Moving Pictures Experts Group

NAL Network abstraction layer

PDA Personal digital assistant

PPS Picture Parameter Set

PSNR Peak signal-to-noise ratio

SNR Signal-to-noise ratio

SPS Sequence Parameter Set

SU Summarization unit

SVC Scalable Video Coding

UED Usage Environment Description

UMA Universal Multimedia Access

VCL Video coding layer

YUV Color space including a luminance (Y) and two crominance (U and V) channels
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