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Las poblaciones y comportamientos de los animales silvestres están 

regulados por multitud de complejos factores bióticos y abióticos. Uno de 

los principales factores bióticos lo conforman los parásitos. A pesar de ser 

ignorados en muchos estudios del funcionamiento de los ecosistemas, los 

parasitos representan una importante fracción de la biomasa de los 

ecosistemas (Kuris et al. 2008), con importantes efectos sobre la regulación 

de las poblaciones de sus hospedadores (Hudson et al. 1998; Hochachka y 

Dhondt 2000). Ante la necesidad de sobrevivir y reproducirse en sus 

ambientes, los animales silvestres han desarrollado una gran variedad de 

mecanismos de defensa frente a estos (Clayton y Moore, 1997). Las 

interacciones hospedador-parásito han cobrado un creciente interés en 

los estudios de ecología evolutiva durante las últimas décadas. En líneas 

generales, esta disciplina se ha interesado en los posibles costes de la 

función del sistema inmune para la eficacia biológica y de los conflictos de 

estos con otras necesidades concurrentes del organismo (Sheldon y 

Verhulst, 1996; Zuk y col. 1996; Schmid-Hempel y Ebert, 2003). Estos 

conflictos se han estudiado generalmente como una respuesta plástica 

individual, bien referida al coste del uso del sistema inmune (Moret y 

Schmid-Hempel, 2000), o bien a un patrón de co-variación genética 

traducida en el coste de tener el sistema inmune (Kraaijeveld y Godfray, 

1997). En la primera línea, ha surgido un gran volumen de investigación 

analizando los factores que limitan la inversión de los organismos en el 

sistema inmune (Norris y Evans, 2000; Segerstrom 2007; McKean y col. 

2008). Uno de los aspectos más estudiados de las interacciones parásito-

hospedador en las aves es su impacto sobre la selección sexual mediante 

su influencia en la expresión de ornamentos (Hamilton y Zuk, 1982; 

Andersson, 1994; Hill 2002). Aunque los parásitos han llegado a ser el foco 

de un gran interés científico, muchos aspectos de las interacciones entre 

parásitos y sus hospedadores aún no son bien conocidos. El objetivo de 

esta tesis ha sido ahondar en el conocimiento de las relaciones ecológicas 

hospedador-parásito en aves silvestres en el medio natural. Para ello se 

han estudiado las consecuencias de la parasitación por diversos grupos de 

parásitos sobre la fisiología y la expresión de ornamentos en aves 
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silvestres muestreadas en el medio natural. Dentro de este marco, se ha 

prestado una atención especial al estudio de las relaciones ecológicas 

entre el virus del Nilo occidental (WNV, por sus siglas en inglés) y las aves 

silvestres, por ser este un patógeno aviar con potencial zoonósico y por 

tanto con relevancia en la salud pública. Se trata de un virus endémico en 

la cuenca mediterránea que ha causado un gran impacto en la dinámica 

poblacional de muchas aves en América del Norte (LaDeau y col. 2007) y 

cuyo impacto en las poblaciones locales no se había estudiado. 

 

1.a Parásitos y aves 

Un parásito se puede definir como un organismo que vive en o 

sobre otro del que obtiene parte o todos los nutrientes orgánicos, 

sufriendo normalmente algún grado de cambio estructural y causando 

algún grado de daño en el hospedador (Price 1980). Bajo esta definición se 

engloba un amplio abanico de organismos que comprende desde virus 

hasta organismos superiores. Aunque la presión evolutiva de los parásitos 

en los hospedadores es grande, la susceptibilidad del hospedador a la 

patogenia persiste a lo largo del tiempo. Asumiendo una relación lineal 

entre intensidad de infestación y eficacia biológica del hospedador, se 

postuló que la única explicación de este hecho era la ventaja evolutiva de 

los parásitos sobre los hospedadores derivada de su menor periodo 

intergeneracional (May y Andersson, 1990), aunque algún estudio reciente 

sugiere que la eficacia biológica puede ser máxima a niveles medios de 

parasitación (Stjernman y col. 2008). Para mantener este equilibrio, los 

hospedadores presentan mecanismos de defensa para luchar contra las 

rápidas adaptaciones de los parásitos, y así, en una escala de tiempo 

evolutiva, las interacciones entre hospedadores y parásitos pueden 

considerarse escaladas armamentísticas sin fin (Morse 1994; Ewald 1994; 

Poulin 2007).  

 

Las aves en la naturaleza están sometidas a la infección por multitud 

de parásitos, algunos de los cuales aparecen y desaparecen cíclicamente 
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(Clayton y Moore, 1997). Generalmente se asume que las infecciones 

parasitarias son costosas para las aves, pero esos costes son difíciles de 

cuantificar en la práctica y además no son constantes entre diferentes 

grupos parasitarios (Booth y col. 1993). Los parásitos pueden tener efectos 

negativos en la eficacia biológica de las aves como consecuencia de 

diferentes procesos: (1) afectando su capacidad reproductora (p.ej. 

Korpimäki y col. 1993; Hudson y Dobson, 1997; Marzal, 2005; Spencer y col. 

2005; Tomás y col. 2007; Potti 2008; Bischoff y col. 2009), (2) afectando 

otras funciones vitales (Brown y col. 1995; Harper 1999; Dawson y 

Bortoloti, 2000; Navarro y col. 2003; Garvin y col. 2006) y (3) originándole la 

muerte (Wojzinski y col. 1987; Hunter y col. 1997; Petersen y Roehrig, 2001; 

Höfle y col. 2004; Chen y col. 2005). 

 

Los principales parásitos aviares pueden clasificarse en los 

siguientes grupos: 

 a. Virus 

 b. Bacterias 

c. Protozoos: 

  c.1. Hemosporidios 

  c.2. Coccidios 

 d. Helmintos 

 e. Ácaros 

 f. insectos 

Los distintos grupos de parásitos presentan distintos ciclos vitales y 

vías de transmisión que pueden determinar la distinta exposición de las 

aves a grupos diferentes de parásitos en función de su ecología. De este 

modo, se ha descrito una mayor exposición a ectoparásitos y parásitos 

sanguíneos en especies coloniales (Tella 2002; Rekasi et al. 1997), mayor 

exposición a parásitos sanguíneos en especies migratorias (Figuerola y 

Green 2000) y en las que viven en ambientes de agua dulce (Figuerola 

1999) o mayor prevalencia de ácaros de las plumas en especies que viven 

en grupo durante el invierno (Figuerola 2000). 
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1.c Los ornamentos en las aves 

 

Entre los ornamentos exhibidos por las aves, aquellos basados en la 

coloración son los más comunes (Andersson, 1994). Dentro de estos, se 

distinguen los siguientes grupos principales de ornamentos:  

1.c.1 La muda parcial: Numerosas especies de aves ostentan 

plumajes juveniles diferentes al de los adultos, y la mayor parte de 

estas realizan una muda postjuvenil parcial, que provoca la 

ostentación de un plumaje en parte adulto y en parte juvenil 

durante el primer año de vida (Svensson, 1984; Cramp y Perrins, 

1994).  

1.c.2. coloración: Los dos principales grupos de pigmentos que 

colorean el plumaje y los tegumentos de las aves son: 

a. Carotenos: 

b. Melaninas 

 

1.d Relación entre ornamentos, parásitos y variables fisiológicas 

Para explicar la evolución de ornamentos extravagantes masculinos, 

Darwin (1871) propuso la teoría de la selección sexual. Darwin razonó que 

los machos con ornamentos grandes se podrían haber favorecido con la 

selección sexual si las hembras seleccionasen positivamente estos machos 

como pareja. No obstante, Darwin no propuso una explicación de cómo 

las hembras se podrían beneficiar con esas preferencias. Posteriormente 

han surgido numerosas teorías tratando de explicar este hecho 

(Fisher1930, Zahavi 1975; Grafen 1990). La teoria del handicap de Zahavi 

propone que los ornamentos masculinos son costosos de desarrollar y/o 

mantener, y por tanto sólo los machos de mejor calidad deberían ser 

capaces de afrontar ese coste. Siguiendo este razonamiento, si la calidad 

de los machos y la extravagancia de los ornamentos se relacionan 

positivamente, y esta calidad es heredable, las hembras se beneficiarían 

en su elección consiguiendo una mayor supervivencia de su progenie. 

Hamilton y Zuk (1982) ampliaron los modelos del handicap y sugirieron 
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que los ornamentos masculinos expresaban la capacidad de resistencia 

frente a parásitos. Así, los individuos con ornamentos más desarrollados 

tendrían menor carga parasitaria que los que tuvieran ornamentos más 

discretos. Esta hipótesis colocó a los parásitos en un punto central de la 

investigación de la selección sexual.  

 

Hasta la fecha, un gran número de estudios en aves y otros animales 

han demostrado que los ornamentos masculinos pueden expresar 

información de la carga parasitaria individual en la línea expuesta por 

Hamilton y Zuk (Andersson 1994; Hamilton y Poulin, 1997). Aunque su 

teoría ha recibido mucho apoyo empírico, la idea de Hamilton y Zuk ha 

sido controvertida. Se ha argumentado que la hipótesis es imposible de 

falsificar, ya que hay varios factores que pueden explicar la asociación 

predicha (Read 1990). Por ejemplo, se puede argumentar que los taxones 

cruciales de parásitos no se incluyeron en el modelo. Igualmente, la 

asumida transferencia a la descendencia de la resistencia frente a 

parásitos no se ha estudiado. Aunque las hembras seleccionasen machos 

libres de parásitos a través de los ornamentos, los beneficios que estas 

obtuviesen podrían ser igualmente directos, tales como un mayor 

esfuerzo de alimentación de la progenie en machos con mejor condición 

física (Hoelzer 1989). De manera alternativa, las hembras también podrían 

elegir los machos más ornamentados para beneficiarse de la producción 

de una progenie más atractiva (Fisher 1930; Jones y col. 1998). Algunas 

pruebas de la hipótesis de Hamilton y Zuk han recibido críticas por la 

disparidad y elección oportunista de evaluar la inmunocompetencia con 

parámetros, en ocasiones, poco precisos (Siva-Jothy 1995; Sheldon y 

Verhulst, 1996; Penn y Potts, 1998).  
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2. Planteamiento de trabajo 

En esta tesis se ha abordado el estudio de las relaciones 

hospedador-parásito en aves silvestres para profundizar en el 

conocimiento de los costes fisiológicos de la parasitación y la señalización 

intra- e inter-específica de estos costes. Dentro de los parásitos 

estudiados, se ha profundizado en el estudio de la ecología del WNV en las 

aves silvestres del sur de la Península Ibérica. 

2.a Premisas metodológicas 

Como el grupo parasitario más prevalente en las aves estudiadas 

han sido los coccidios, y debido a que estos presentan ciclos circadianos 

de eliminación de ooquistes, el primer paso de este estudio ha sido el 

diseño de una metodología que permitiese analizar correctamente tanto 

la prevalencia como la carga de coccidios en relación a otras variables. Así, 

el primer capítulo (López y col. 2007) sienta las bases para trabajar con 

datos repetibles y estimas no sesgadas en los análisis de los capítulos 

siguientes que incluyen estos parámetros. 

2.b Costes fisiológicos de la parasitación y su relación con la 

ornamentación 

El capítulo 2 estudia cómo se relaciona la extensión de la muda 

parcial postjuvenil (como posible señal no basada en intensidad de 

pigmentación) con variables hematológicas indicadoras de estatus 

fisiológico en lavanderas blancas (Motacilla alba) silvestres muestreadas en 

el medio natural. El capítulo 3 explora cómo se relaciona la coloración de 

la máscara facial del jilguero (Carduelis cardualeis), como ornamento del 

plumaje basado en carotenoides (y por tanto implicado en la selección 

sexual), con variables hematológicas indicadoras de estatus fisiológico y 

con prevalencia y carga parasitaria de endoparásitos (hemoparásitos y 

parásitos intestinales). El capítulo 4 estudia la relación entre la coloración 

carotenoide del pico del mirlo común (Turdus merula), como ornamento 

dinámico de una estructura tegumentaria, indicadores de estatus 

fisiológico (variables hematológicas y bioquímicas) y prevalencia y carga 
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parasitaria de endoparásitos (hemoparásitos y parásitos intestinales). Por 

último en este bloque, el capítulo 5 explora la relación entre los valores de 

carotenoides séricos circulantes y la parasitación con endoparásitos 

(hemoparásitos y parásitos intestinales), con objeto de estudiar cómo la 

parasitación afecta la disponibilidad de carotenoides para la 

ornamentación y/o otras necesidades fisiológicas y las relaciones entre 

distintos grupos de parásitos. 

2.b Ecología del virus del Nilo occidental 

Debido, en primer lugar a la relevancia para la salud pública que 

tiene WNV, y en segundo a la baja seroprevalencia encontrada frente al 

virus en las aves muestreadas, este ha recibido una atención diferenciada 

del resto de parásitos en esta tesis. En primer lugar, los tamaños 

muestrales necesarios para realizar estudios de ecología han debido 

ampliarse notablemente con respecto a los del resto de parásitos 

considerados en los demás trabajos. El capítulo 6 explora la prevalencia de 

WNV en relación con la condición migratoria de las aves, con objeto de 

comprobar si el virus se halla presente en el sur de la Península ibérica de 

forma endémica o es vehiculado por especies de aves migradoras. El 

capítulo 7 estudia diversas variables ecológicas y evolutivas (tales como 

grupo taxonómico, tamaño, colonialidad, gregarismo invernal, época del 

año, etc) en relación con seroprevalencia frente a WNV en 72 especies de 

aves muestreadas en el área de estudio. Por último, en el capítulo 8 se 

estudia si el WNV es una causa de mortalidad o morbilidad en las 

poblaciones de aves silvestres del área de estudio en un periodo de 

circulación documentada del mismo. 
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2.a CAPÍTULO 1: La hora del día, la edad y los hábitos alimenticios 

influencian la eliminación de ooquistes coccidianos en las aves 

paseriformes 

Resumen:  

Los protozoos del orden Eucoccidia son uno de los grupos de parásitos 

intestinales más frecuentes en aves. Las técnicas ordinarias de detección y 

cuantificación de coccidios han mostrado ser imprecisas para los 

paseriformes silvestres debido a la existencia de marcados ritmos de 

eliminación de ooquistes a lo largo del día. Estudios previos han sugerido 

que estos ritmos deberían tenerse en cuenta al analizar datos de carga y 

prevalencia coccidiana, pero su patrón y magnitud son aún mal 

conocidos. En este estudio caracterizamos los ritmos de eliminación de 

ooquistes en el medio natural analizando 406 muestras de heces de dos 

especies de paseriformes con diferente dieta: El verdecillo (una especie 

granívora) y la curruca mosquitera (una especie insectívora). Tanto la 

prevalencia como la carga de coccidios presentaron un ritmo bimodal, 

presentando máximos al principio de la tarde. La eliminación de ooquistes 

permaneció consistentemente alta en la segunda mitad del día, mientras 

que la prevalencia presentó un pico al principio de la tarde y disminuyó 

durante el final de la misma. Este patrón se halló en ambas especies. 

Encontramos una alta repetibilidad en prevalencia y en carga cuando las 

diferencias entre mañana y tarde se controlaron estadísticamente. Por 

ello, recomendamos que se tengan en cuenta estas variaciones en la 

eliminación de ooquistes para definir el periodo de muestreo en análisis 

de prevalencia o carga coccidiana, y de este modo se limite el muestreo al 

principio de la tarde o bien se realice control estadístico de este factor. 
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Abstract

Protozoan coccidia are one of the most common intestinal parasites in birds. Ordinary coccidian detection and quantification tech-
niques have proved to be inaccurate for wild passerines due to the existence of marked oocyst shedding rhythms throughout the day.
Previous studies have suggested that these rhythms should be taken into account when analysing coccidian load and prevalence data,
but their pattern and magnitude still remain poorly known. In this study we characterised shedding rhythms in the field by means of
406 samples of faeces taken from two species of passerines with different diets: the European Serin (a granivorous species), and the
Garden Warbler (an insectivorous species). Both coccidian prevalence and load were two-phased, with maximums occurring in the
afternoon. Oocyst elimination remained consistently high during the second half of the day, whereas prevalence peaked during the after-
noon, lowering throughout the evening. This pattern was found in both species. We found a high repeatability of prevalence and intensity
when differences between the morning and afternoon were statistically controlled. As a result, we suggest that sampling periods used in
the analysis of coccidian prevalence and/or load studies should take into account these differences in times of shedding and be limited to
the afternoon, otherwise a statistical control of this factor will be required.
� 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Avian; Circadian rhythm; Isospora; Parasite; Bird; Coccidiosis; Protozoa
1. Introduction

Parasitism is widespread in nature and its importance in
the ecology and evolution of organisms is well known
(Thomas et al., 2005). Host-parasite relationships in avian
passerine species have become a common focus of research
over the last decade. Many studies have centred on ecto-
and blood parasites, whereas due to the lack of an accurate
quantification method, rather fewer have focused on endo-
parasites. Coccidian protozoa are intestinal parasites that
are found in most vertebrate species and which have been
shown to be involved in many ecological avian processes
(McGraw and Hill, 2000; Hill, 2002). Most (families Eimer-

idiidae and Cryptosporidiidae) are monoxenous, the trans-
mission between individuals taking place via infective
0020-7519/$30.00 � 2007 Australian Society for Parasitology Inc. Published b

doi:10.1016/j.ijpara.2006.12.014
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oocysts released in faeces. The only non-invasive method
of determining the presence and burden of these coccidians
is to detect and count oocysts in host faeces (Watve and
Sukumar, 1995). This is, however, an inaccurate method
for field studies, in which only one sample can usually be
taken at a time, because circadian variation in oocyst
shedding has been observed in many species. For example,
variation is known to occur in some species of the genus
Eimeria that infect domestic chickens and partridges
(Clarke, 1979; Willliams, 1995; Villanúa et al., 2006).
Passerines are mainly infected by species belonging to the
genus Isospora (reviewed by Giacomo et al., 1997; McGraw
and Hill, 2000), in which a host-dependent circadian varia-
tion in oocyst shedding has also been observed (Boughton,
1933). Although previous studies with passerines have sug-
gested that oocyst discharge is much greater in the after-
noon than in the morning, knowledge of this process is
still deficient and indeed many of these studies have only
y Elsevier Ltd. All rights reserved.
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focused on prevalence (Brawner and Hill, 1999; Hudman
et al., 2000; Brown et al., 2001). Other studies have
assumed, but not tested, the existence of alternative morn-
ing/afternoon states (Schwalbach, 1961; Hudman et al.,
2000; Misof, 2005 . Eurasian Blackbirds (Turdus merula)
and their gastrointestinal parasites: A role for parasites in
life-history decisions? ULB, Bonn.), or have been per-
formed on birds kept in captivity for days or weeks at a
time (Boughton, 1933; Brawner and Hill, 1999; Dolnik,
1999a). Moreover, the effect that diet and the natural activ-
ity rhythms of hosts may have on oocyst shedding rhythms
has never been analysed. Since digestive physiology varies
with feeding habits (Sturkie, 1986), oocyst shedding may
well also be influenced by these variables. Thus, knowledge
of patterns occurring in circadian rhythms with different
feeding habits will help researchers to collect, analyse,
and interpret data correctly. In this paper, we describe coc-
cidian oocyst shedding rhythms in the field over the whole
day in two species of passerines with different feeding pat-
terns. Our goal was to achieve an accurate coccidian detec-
tion and quantification method in order to establish the
best sampling period to use in field studies. We analysed
oocyst presence and burden in faeces of both a seed-eater
and an insectivorous species of free living passerines.

2. Materials and methods

2.1. Field work

Because of their abundance and diet specificity, Europe-
an Serins (Serinus serinus, Linnaeus 1766) and Garden
Warblers (Sylvia borin, Boddaert 1783) were chosen as
models of seed-eater and insectivorous birds, respectively.
Birds were trapped during daylight between March and
May in 2004 and 2005 in a tree nursery in the city of Seville
(37�23 01100N, 5�57 04600W), with mists nets placed amongst
bushes. Birds were individually marked with numbered alu-
minium rings, sexed and aged (as juveniles or adult birds)
according to Svensson (1996). Capture and handle of the
birds were carried out with animal ethics approval by the
Spanish Environment Ministry. Whereas S. borin is strictly
migrant in the study area, S. serinus is a common breeder.
Consequently, juveniles were only present in the samples of
S. serinus. Birds were kept individually in cloth bags for
20 min to collect faecal samples and were then released.
Of the total trapped birds 49.9% of S. serinus and 84.2%
of S. borin produced faeces during the 20-min capture peri-
od. Between 0.5 and 1 mg of faeces were placed in individ-
ually marked vials containing 5% formol and the collection
time was recorded for each sample. Because urine does not
contain oocysts and given that its mass would have affected
the sample mass, we only analysed the intestinal compo-
nent of the dropping and rejected the part corresponding
to urine. When the two fractions could not be separated,
the sample was excluded from the study. A total of 406
samples (252 from S. serinus and 154 from S. borin) were
included in the analysis.
2.2. Laboratory method

Samples were filtered through a double piece of cotton-
lint cheesecloth (which oocysts easily pass through) and
then homogenized to obtain a dilution. This was scanned
for coccidian oocysts in a McMaster chamber (Williams,
1973). This method of quantification is the most widely
used method in passerine coccidia research (Hõrak et al.,
2004; Misof, 2004; Hõrak et al., 2006). Since the low con-
centration of faecal debris made it easy to find oocysts, no
oocyst concentration method (such as flotation) was used,
in order not to affect oocyst density. The scanning area of
the McMaster chamber contains 300 ll of sample, and it is
divided by nine parallel lines into 10 rectangular sections.
Two scanning areas were examined for each sample. Subse-
quently, 200 ll of the same dilution was taken from the
chamber and dried out in a 54 �C heater; the extract was
then weighed to the nearest 0.0001 g in an Ohaus Voyager
precision weight (Ohaus, Switzerland). Coccidian load val-
ues (expressed as the number of oocysts per milligrams of
dry extract of faeces) were obtained by dividing the number
of oocysts counted in the chamber by the estimated mass of
the scanned sample. Prevalence was calculated as the per-
centage of individuals releasing oocysts in faeces out of
the whole group of sampled birds. Unlike chicken Eimeria

oocysts found in faeces, most of the oocysts in our sample
were already sporulated, allowing identification to genus
level. Based on size and number of sporocysts, oocysts were
identified as Isospora-like. The repeatability of coccidian
load values was estimated by blindly counting the load
of 10 individuals twice and calculating the intra-class
correlation (Lessels and Boag, 1987). Repeatability of
coccidian load estimates from the same samples was very
high (97%). This gave confidence to the accuracy of oocysts
counts.

2.3. Statistical analysis

Because daylight length varied by 2 h and 36 min dur-
ing the sampling period, hourly data from different days
were not comparable. To obtain comparable hourly data,
this variation was controlled by comparing the hourly
data to total day length. The time of sample collection
was transformed in the following way: relative hour =
(time of sample collection � time of daybreak)/(time of
sunset � time of daybreak). Values for the relative hour
ranged from 0 to 1. As coccidian load and prevalence
does not necessarily change linearly with time, relative
hourly values were standardized by rounding off to the
next decimal point. Thus, the standardized hour was
analysed as a 10-level factor. Coccidian prevalence and
load data did not fit a normal distribution, so traditional
parametric statistical methods based on variance analysis
could not be performed. Generalized linear models
(GLMs) were performed instead. GLMs allow a more
versatile analysis of correlation than standard methods,
since the error distribution of the dependent variable
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and the function linking predictors can be adjusted to the
characteristics of the data.

The effects of standardized hour, species and year on
coccidian load and prevalence were analysed as indepen-
dent factors. To test for differences between species in the
hourly patterns of oocyst shedding, the interaction between
the standardized hour and species was included in the
initial models. The coccidian load was analysed with a
negative binomial distributed error and a log link, while
prevalence was analysed by means of a binomial distrib-
uted error and a logit link. Models were fitted using the
GENMOD procedure with the III type of sum of squar-
es and backwards stepwise selection procedure using the
SAS 9.1 statistical package (Littell, R.C., Milliken, G.A.,
Stroup, W.W., Wolfinger, R.D., 1996 SAS System for
Mixed Models. SAS Institute Inc. Cary, NC, USA).
The least significant variable was excluded from the
model and the model was refitted to the data until all
of the remaining variables contributed significantly to
the fit (as judged by partial P-values < 0.05). To test
the effect of age on oocyst shedding patterns, a separate
analysis using only data for S. serinus was carried out,
since no yearlings of S. borin were captured. In this
analysis, the standardized hour, year, age (expressed
as yearling/adult) and the age*hour interaction were
included as factors.

Because preliminary analysis suggested the existence of a
morning/afternoon dichotomy regarding load and preva-
lence, the repeatability of both batches of data was calcu-
lated with and without taking into account the morning/
afternoon factor (defined as the first and second half of
the day). For these analyses, 48 samples of 23 individuals
(nine S. borin and 14 S. serinus), captured at different hours
and on different days, were used. A random factor control-
ling for individuals was included in the model using the
GLIMMIX procedure in SAS 9.1. The repeatability of
prevalence data was calculated using the latent variable
approach described by Browne et al. (2005). We are not
aware of a similar approach for variance decomposition
and repeatability calculation for variables with a negative
binomial distribution and so the repeatability of the cocci-
dian load data was calculated with log transformed values
and a normal distribution error. Given that 14 individuals
were captured both in the morning and the afternoon on
different days (10 S. serinus and four S. borin) we used a
Table 1
Models analysing the effects of year, standardized hour and species, as well as

Factor Prevalence

Estimate F d.f.

Standardized hour �2.525 to 1.704 142.36 9
Species 0.08 1
Year 0.17 1
Standardized hour*Species 9.86 8

Model selection followed a backwards stepwise selection procedure. For va
significance are given. For variables not included in the final model the statist
Wilcoxon non-parametric test to compare the coccidian
load during these two periods.

3. Results

3.1. Effects of hour, species and age on coccidian prevalence

Standardized hour was the only variable significantly
related to coccidian prevalence in our model (Table 1).
No significant differences in prevalence were found either
between species or between yearling and adult S. serinus

(v2 = 0.21, d.f. = 1, P = 0.649). The test of mean differenc-
es in the minimum squares showed that prevalence was
similar and peaked in periods 6, 7, 8 and 9. This means
that coccidian elimination in infected individuals takes
place mainly between 1/2 and 9/10 of the daylight period
(Fig. 1). The repeatability of coccidian prevalence was
low when morning/afternoon was not taken into account
(5.26%), but when this factor was controlled for, the
repeatability was very high (90.19%).

3.2. Effects of hour, species and age on coccidian load

Both standardized hour and species, as well as the inter-
action between these two factors, were significantly related
to coccidian load (Table 1). No differences in coccidian load
were found between years. The test of differences in mini-
mum squares identified two homogeneous periods in the
day in both species (standardized hour periods 1, 2, 3, 4
in one group, and 6,7, 8, 9 in the other group; neither of
the groups was significantly different from each other in
hour period 5). This result shows that oocyst elimination
was homogenously low during the first 2/5 day and homog-
enously high during the second half of the day (Fig. 2).
Lower oocyst discharge occurred in S. borin (minimum
squares mean ± standard error in log scale: 4.29 ± 0.21;
n = 49) than in S. serinus (4.49 ± 0.15; n = 109). The test
of differences in minimum squares showed that this
difference was limited to period 2 (v2 = 4.27, d.f. = 1,
P = 0.04) and to the afternoon periods 6 (v2 = 75.22,
d.f. = 1, P < 0.0001), 7 (v2 = 9.54, d.f. = 1, P = 0.002),
and 8 (v2 = 4.21, d.f. = 1, P = 0.04). In S. serinus, the
oocyst load was greater in yearlings (5.38 ± 0.24, n = 64)
than in adults (4.48 ± 0.21, n = 41; v2 = 7.66, d.f. = 1,
P = 0.005). Twelve out of 14 individuals trapped both in
their interactions, for both coccidian prevalence and load

Load

P Estimate F d.f. P

<0.0001 �2.591 to 3.374 78.68 8 <0.0001
0.772 0.658 5.66 1 0.017
0.683 2.51 1 0.113
0.277 �5.357 to 1.432 43.56 8 <0.0001

riables included in the final model, parameter estimates and statistical
ical significance when added to the final model is given.



Fig. 1. Estimated coccidian prevalence (expressed as the percentage of individuals releasing oocysts in faeces) throughout the daylight period showed
higher values during the second half of the day. Lines represent the S.E.M. for each period.

Fig. 2. Estimated coccidian load (expressed as number of oocysts released in each milligram of dry extract of faeces) throughout the daylight period
showed a peak during the late afternoon. Mean ± standard error of log transformed (log(value + 1)) load values are represented.
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the morning and the afternoon showed higher oocyst
discharges during the afternoon; in the other two birds no
shedding occurred in either of the periods (Wilcoxon Test,
Z = �3.59, P = 0.002; Fig. 3). Coccidian load estimates
were only repeatable after controlling for the morning/
afternoon factor (0% without control, 41.92% after



Fig. 3. Differences in coccidian load between morning and afternoon for
14 individuals sampled in both periods. Load values were higher during
the afternoon for all individuals except for two, which presented no oocyst
shedding in either period (and so their lines overlap). Solid lines represent
Serinus serinus (n = 10) and dashed lines Sylvia borin (n = 4). Coccidian
load data are presented log transformed (log (value + 1)) in order to get a
better idea of the differences between individuals.
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controlling for the factor). Since recaptures were usually
separated by several days (range 0–66 days), it is possible
that oocyst loads had changed during this time. For this
reason much higher repeatability estimates were found
when using data from individuals recaptured within fewer
than 6 days (76.35%, controlling for morning/afternoon).
4. Discussion

This research shows that coccidian oocyst shedding in
free-living passerines presents clear circadian rhythms,
which strongly affect the estimates of both coccidian prev-
alence and load based on oocyst-counting in chamber. In
the wild, these findings are not affected by changes in diet
or in the typical activity patterns of birds kept in captivity.
We believe this study is the first report of the existence of
differences in coccidian load between species with different
feeding habits. It also suggests that coccidian load is relat-
ed to age in wild passerines. The results indicate that prev-
alence is not related to bird age, a finding that agrees with
previous work (Dolnik, 1999a; Hudman et al., 2000; Misof,
2005). Yearling S. serinus exhibited greater oocyst dis-
charge in their faeces than adults. This is to be expected
given immune system physiology, since the presence of coc-
cidia leads to the acquisition of immunity (Rose and Hesk-
eth, 1982; Lillehoj and Trout, 1996) and so hosts will
increase their immune response in cases of consecutive
exposure to parasites (Guzman et al., 2003; Ding et al.,
2004). This would explain the drop in coccidian load as
birds age. Both coccidian load estimates and prevalence
estimates revealed circadian bimodal cycles with oocyst
discharge peaks in the afternoon. These patterns agree with
previous results obtained from captive populations (Dol-
nik, 1999a; Brawner et al., 2000). The two species studied
did not differ with respect to prevalence estimates, but
did with respect to load estimates, a fact that indicates that
different physiologies possess different oocyst elimination
patterns. This difference was not caused by the presence
of yearling S. serinus in our sample because excluding year-
lings from our model did not change the results (results not
shown). It is known that coccidian oocyst shedding is con-
trolled by host physiology (Boughton, 1933; Dolnik,
1999a,b), and the physiological differences between feeding
habits is probably responsible for this difference. The
mechanisms underlying this process, however, are still
unclear. A variation in the amount of faeces produced
according to time of day could influence these rhythms.
Nevertheless, researchers must be aware that highly reli-
able estimates of both prevalence and load can be obtained
if, and only if, time of day is taken into account. Estimates
of prevalence and load made without considering time of
day were not repeatable, but were highly repeatable when
a factor coding for morning/afternoon was included.
Another good method for obtaining accurate data seems
to be to restrict the sampling period. Coccidian load sam-
pling should be restricted to the second half of the total
daylight time, whereas in the case of prevalence, samples
should be taken at between 1/2 and 4/5 of the daylight
time. This more restrictive period should thus be
considered as the best period for obtaining reliable data
for both coccidian prevalence and load because even
heavily infected individuals could not release oocysts
during the morning.
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Relaciones eco-fisiológicas hospedador-parásito en aves silvestres 

3.a CAPÍTULO 2: Las lavanderas blancas que muestran muda parcial 

más extensa están más estresadas. 

Resumen: 

Los individuos jóvenes de muchas especies de aves paseriformes realizan 

una muda parcial postjuvenil en la que reemplazan la mayor parte de las 

plumas coberteras y un número variable de cobertoras y plumas de vuelo. 

Esta muda genera diferencias de coloración perceptibles en muchas 

especies, que pueden actuar como señales de estatus. En este estudio 

analizamos cómo la extensión de la muda parcial se relaciona con 

diferentes estimadores de condición. Para ello, analizamos 43 individuos 

juveniles de lavandera blanca (Motacilla alba) capturados en un dormidero 

urbano de la ciudad de Sevilla. La extensión de la muda parcial estuvo 

positivamente relacionada con la razón heterófilo/linfocito (H/L) circulante 

(estimador de estrés), pero no lo estuvo con abundancia de leucocitos ni 

con la masa corporal. Los individuos con plumaje más similar al de los 

ejemplares adultos pueden estar expuestos a niveles superiores de estrés 

debido a la agresividad de los adultos territoriales. En consecuencia, el 

incremento de H/L en nuestro estudio es, probablemente, consecuencia 

de la extensión de la muda más que una explicación a la variación 

intraespecífica en la extensión de la muda. 
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INTRODUCTION

The functions of avian plumage in animal commu-
nication have attracted the attention of evolution-
ary biologists for many years (Darwin 1871,
Butcher & Rohwer 1989, Zahavi & Zahavi 1997).
Plumage characteristics may convey information
such as (1) the capacity to care for young
(reviewed in Andersson 1994), (2) the ability to
escape from predators (Papeschi & Dessì-Fulgheri
2003), (3) genetic quality (Fitze et al. 2003,
McGraw & Ardia 2003) or (4) social status
(Badyaev & Ghalambor 1998, Senar et al. 2000,
Velando et al. 2001). Additionally, many plumage
characteristics have been shown to act as reliable

indicators of health status (McGraw et al. 2002,
Papeschi & Dessì-Fulgheri 2003), parasite load in
the blood (Merilä et al. 1999, Figuerola et al.
1999), ectoparasite abundance (Doucet & Mont-
gomerie 2003) and the functioning of the immune
system (Lindström & Lundström 2000, Saks et al.
2003).

Juvenile birds of many species present drab
plumages, usually similar to those of females.
Although different functions have been proposed
for this delayed maturation of plumage, the most
widely accepted hypothesis suggests that it may
reduce aggression from adults (McDonald 1993,
Muehter et al. 1997). Many passerines perform a
partial post-juvenile moult with great intraspecific

White Wagtails Motacilla alba showing extensive
post-juvenile moult are more stressed
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Motacilla alba showing extensive post-juvenile moult are more stressed.
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variation in extent (Gosler 1991, Smith 1992,
Jenni & Winkler 1994). Although this partial moult
has been shown to be relevant in social communi-
cation (Senar et al. 1998b), little is known about
the factors that influence its extent. Patterns of
post-juvenile moult have been studied in some
passerine species which showed that there is a cor-
relation between the extent of moult among most
feather tracks (Jenni & Winkler 1994, Deviche
2000). Furthermore, the extent of moult is related
to the intensity of colour (Jenni & Winkler 1994).
Intraspecific differences in the extent of partial
moult are little studied and are mainly considered
to be dependent on energetic or time constraints
(Jenni & Winkler 1994). This point of view is
based on the assumption that partial moult is ‘the
best of a bad job’, that is, individuals aim to moult
as much of their plumage as they can. However,
partial moult generates age-related patterns of col-
oration that seem to have implications for sexual
selection and social behaviour (Savalli 1995) and,
consequently, the optimal extent of moult may
depend on individual condition. 

Numerous condition and health indices have
been used in ornithology (Hõrak et al. 2002). Size-
corrected body mass is commonly used as an esti-
mator of condition (Gosler et al. 1998); other
indices, based mainly on leukocyte variables, are
also good indicators of physiological/health status
(Ots et al. 1998). Leukocytes are important compo-
nents of the immune system, becoming altered in
quantity and composition when an organism is
exposed to pathogens or stress (Campbell 1995).
Consequently, values for the total number of
leukocytes (TLC) have been interpreted as an indi-
cation of an individual’s current investment in
immune defence (Ots et al. 1998, Nunn et al.
2000). In particular, high TLC values are character-
istic of the inflammatory processes that occur in
response to microbial infections and injuries
(Hõrak et al. 2002, Thrall et al. 2003). Heterophils
and lymphocytes are the most numerous cellular
lines in the immune system and they are usually
responsible for the change in the total number of
leukocytes. Heterophils act as the first defence bar-
rier (Thrall et al. 2003), whereas lymphocytes lead

the specific defence in the immune system. Given
that heterophils and lymphocytes are found so pro-
fusely in immune systems, their ratio (H/L) has
been widely used as an estimator of stress in birds
(Totzke et al. 1999, Thrall et al. 2003). In avian
species, stress generates a decrease in circulating
lymphocytes and an increase in circulating hetero-
phils (Davison et al. 1983), leading thus to an
increase in the H/L ratio. H/L acts as a reliable
indicator of stress in passerines (Groombridge et
al. 2003). Furthermore, in birds H/L is a useful
measurement of stress caused by long-term
changes in the environment, social rank, or the
action of chronic stressors (Gross & Siegel 1983,
Davis et al. 2000), and is even more useful than a
single measurement of plasma corticosterone lev-
els (Vleck et al. 2000). It is therefore a good indica-
tor of health for use in behavioural studies in free-
ranging birds (Gross & Siegel 1983).

The White Wagtail Motacilla alba is a partial
migrant passerine which winters in Iberia in large
numbers. At the end of summer, first-year birds
replace part of their juvenile plumage and show
great inter-individual variation in the extent of
moult. This species shows both flocking and terri-
torial behaviour during winter (Davies 1976):
while some individuals (mainly adult males)
defend feeding territories, most juveniles and
adult females form larger flocks (Zahavi 1971,
Davies 1982). Individuals with young-looking
plumage are allowed by owners to feed in their
territory (Davies 1981a, b), a fact that suggests
that partial post-juvenile moult may play a role in
communication in this species. In this study, the
relationship between the extent of moult and dif-
ferent estimates of body condition in juvenile
White Wagtails is analysed as a means of testing
the hypothesis that moult extent is related to indi-
vidual health status.

MATERIAL AND METHODS

Fieldwork and measurements
A total of 43 young White Wagtails were trapped
in an urban roost in the city of Seville (37°23'N,
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5°57'W) in November 2003. The wagtails roost in
several types of ornamental trees between 5 and
10 m above the ground; the total number of wag-
tails using the roost has been estimated at over
500 000 birds (Vázquez et al. 2001). Birds were
caught between 18:00 and 20:00 h in Japanese
mist nests placed 8 m above ground level between
the trees where the birds spent the night. For each
individual, wing (to the nearest 0.5 mm, mean ±
SE: 88.35 ± 0.4) and tarsus length (to the nearest
0.1 mm, 23.32 ± 0.16) were measured. Body mass
was measured with a digital scale (to the nearest
0.1 g, 21.51 ± 0.23) and age was determined from
plumage characteristics (Svensson 1992). Sub-
sequently, the number of moulted greater wing
coverts (GC) on the right wing was counted in all
the individuals. Given that the extent of post-juve-
nile moult in White Wagtails is correlated with the
number of moulted GC and most of the rest of
feather tracks (Jenni & Winkler 1994), this mea-
surement was used as an indicator of the global
moult appearance. All measurements were made
by the same person (NV). 

Sampling protocol
After measurement, a 0.25 ml sample of blood was
taken from the jugular vein with 29 G sterile
insulin syringes. A drop of blood was used to pre-
pare a smear on a microscopy slide (Bennett
1970), which was air-dried and properly fixed and
stained using Diff-Quick solution. The rest of the
blood sample was placed into a vial without antico-
agulant and then after several hours centrifuged
for 10 minutes at 6000 rpm in an Eppendorf
Minispin centrifuge to separate serum from cells.
Both sera and cells were kept frozen at –20º C until
subsequent analysis. All data was collected in the
hour after capture and the time each bird was han-
dled (less than five minutes) was almost the same
in all cases, and so no important differences in cir-
culating heterophils should have been provoked.

Molecular sexing
The cellular fraction of the blood sample, which
was obtained without anti-coagulants, was used to
sex the birds. Sex was determined from blood cell

DNA, using polymerase chain reaction (PCR)
amplification of the CHD genes (Ellegren 1996,
Griffiths et al. 1998). All the birds were success-
fully sexed by this method; in 98% of individuals
these results agreed with sexing in the field based
on plumage characteristics.

Blood smear analysis
TLC was estimated by the method of Lane (1996),
that is, by counting the number of leukocytes on
twenty 400x light microscope monolayer fields
and selecting those with a similar cell density. The
total number of white blood cells per microliter
was calculated by multiplying this value by 100.
This method of estimation is well correlated with
estimates obtained by counting in chambers
(Wiskott 2002). For each smear, the cellular type
(heterophils, lymphocytes, eosinophils, monocytes
and basophils) of 100 leukocytes was identified
according to Campbell (1995), and the H/L was
calculated as the ratio of the numbers of het-
erophils and lymphocytes (Fig. 1). Blood parasites
(intraerythrocytic protozoa and circulating proto-
zoa and nematodes) were searched for at low
(100x; 5 min), medium (400x; 10 min) and high
(1000x; 10 min) magnification (Deviche et al.
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Figure 1. Blood smear of White Wagtail showing abun-
dant erythrocytes and a single lymphocyte (in the middle
of this photo by G. López). Stress was estimated from the
ratio of numbers of heterophils (not in this picture) and
lymphocytes.



2001). In the case of intraerythrocytic protozoa
infection, a total of 1500 erythrocytes were
counted, getting the genus identification and the
intensity of infection. Only one individual (2.3%)
was infected by the intraerythrocytic haematozoan
Haemoproteus sp., with an infection intensity of
0.03% of erythrocytes; the exclusion of this indi-
vidual from subsequent analyses had no qualita-
tive effect on the results. The repeatability of leu-
cocite variables was estimated by counting the
smears of ten individuals twice and subsequently
calculating the intra-class correlation (Lessells &
Boag 1987). Repeatabilities were very high for
both TLC (r = 0.95, F9,10 = 35.31, P < 0.0001)
and H/L (r = 0.90, F9,10 = 18.87, P < 0.0001).

Statistical analyses
In order to discover the effects that the extent of
partial moult could have on different condition
indices, a MANOVA was used with TLC, H/L and
body condition as dependent variables, sex as a
factor and number of moulted GCs as a covariate;
the interaction between sex and number of
moulted GCs was also included. We followed a
stepwise backwards selection procedure until all
the independent variables increased significantly
the fit of the model. We chose tarsus instead of
wing length as a measure to standardise body
mass for bird size because of its independence
from moult processes; the tarsus grows in the nest
long before the post-juvenile moult takes place.
Nevertheless, results did not change qualitatively
when using body condition estimated in relation to
wing length. Body condition was estimated as the
result of the regression of body mass on tarsus
length (r2 = 0.44). We used the Shapiro-Wilk test
to test the fit of the different variables to a normal
distribution. Body condition, TLC and log trans-
formed H/L were normally distributed. The distri-
bution of the number of moulted GCs could not be
normalised and analyses were done using ranked
values (see Conover & Iman 1981). Ranks were
assigned to each value as a consecutive number
from 1 to 43, from lower to higher values, and
whenever identical values occurred we assigned
the average of the ranks to each one.

RESULTS

The number of moulted GC did not differ between
males and females (mean ± SE: 6.56 ± 0.47;
males: 7.67 ± 0.41, n = 15; females: 5.96 ± 0.66,
n = 28; t41 = 1.29, p = 0.20). An overall relation-
ship between the number of moulted GCs and the
indices of condition (F3,35 = 5.25, P = 0.004) was
found. There were no significant effects of sex
(F3,34 = 0.6, P = 0.62) or of the interaction
between sex and the number of moulted GCs
(F3,33 = 1.28, P = 0.29). Univariate a posteriori
tests suggest that H/L (1.63 ± 1.3) was signifi-
cantly correlated with the number of moulted GCs
(r2 = 0.243, F1,37 = 12.01, P = 0.01, Fig. 2), which
indicates that individuals with a larger extent of
post-juvenile moult had an increased presence of
heterophils in relation to lymphocytes. The num-
ber of moulted GCs was not significantly related to
TLC (F1,37 = 3.06, P = 0.09) or to body condition
(F1,37 = 0.78, P = 0.38).

DISCUSSION

In this study a correlation was found between the
extent of partial moult and H/L. Interestingly, this
correlation was positive and contrary to the
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hypothesis that the individuals in best condition
invest more in moulting. There are at least two
possible explanations for this correlation between
an indicator of stress and the extent of partial
post-juvenile moult. Firstly, individuals in worse
condition may invest a relatively greater amount
of energy in moulting. Secondly, individuals with
more extended moult suffer increased levels of
stress during the winter. Contrary to the first
explanation, feather moult is directly related to the
amount of resources available (Grubb 1991,
Carrascal et al. 1998). On the other hand, Senar et
al. (1998a, b) demonstrated that juvenile Siskins
Carduelis spinus with adult-like plumage received
greater aggression from adults than those with
delayed moult. As in Siskins, the demonstrated
higher permissiveness of territorial adult White
Wagtails towards juveniles (Davies 1981b) could
explain the increased levels of stress that individu-
als with more complete moults seem to suffer,
since H/L has been shown to correlate better with
social stress than with any other estimator (Gross
& Siegel 1983). These data suggest that the extent
of post-juvenile moult may not only be regulated
by energetic or time constraints, but also by social
interactions, which could greatly reduce the poten-
tial benefits of larger moult extension. Several
melanin-derived badges of status are under social
control and birds displaying experimentally
enlarged badges are exposed to increased levels of
aggression and/or mortality (Senar et al. 1993,
Veiga 1993). Since H/L responds rapidly to food
deprivation (Gross & Siegel 1986), both social
rank stress and alimentary stress generated by
adult intolerance could be responsible for in-
creases in the H/L. Nevertheless, the negative
effect of advanced partial moult derived from
stress may be the cost paid for obtaining benefits
during the breeding season. Accordingly, females
prefer to pair with adult individuals rather than
with juvenile-looking ones (Samson 1976, Middle-
ton 1979). Consequently, the extent of moult in
juveniles could suffer a trade-off between stress

derived from social interactions during the winter
and pairing success in the next breeding season.

Under this scenario, the correlation between
stress and the extent of moult should be negative
or not significant at the time of moult.
Unfortunately, similar data during the start of
moult could not be obtained from our study area
because birds come from a variety of different
European breeding areas (Belgium, Germany, The
Netherlands, Czech Republic and United Kingdom,
according to ringing recoveries and subspecies
assignment). Nonetheless, a similar study on
Siskins showed that the correlation between the
extent of moult and body condition was positive
just after moult, but negative at the end of the
winter (Senar et al. 1998b).

The other two estimators, TLC and body mass,
have been described as reliable indicators of condi-
tion in passerines (Ots et al. 1998, Hõrak et al.
2002), although no correlation between these fac-
tors and the extent of partial moult was found in
our study. In the case of TLC, it is known that
interstitial liquid variations may strongly alter this
value (Campbell 1995, Thrall et al. 2003) and that
numerous factors may modify the interstitial liquid
volume (Sturkie 1986). Another possibility could
be the proliferation of certain cellular lines due to
injuries, parasites or infections (Campbell 1995).
Body mass is also affected by many factors and
this could explain the lack of correlation with
other variables. For instance, current nutritional
status, distances covered to spend the night in the
roost, or exposure during the day to different lev-
els of predator abundance (Adriaensen et al. 1998,
Gosler 1996, Vázquez et al. 2001) could be respon-
sible for these changes.

In conclusion, our results suggest that intraspe-
cific variation in the extent of post-juvenile moult
is related to health status well after moult comple-
tion. Further understanding on how social interac-
tions may affect the costs of moult should clarify
the cost-benefit balance faced by juvenile passer-
ines.
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SAMENVATTING

Veel jonge zangvogels ruien voor de winter een deel van
de lichaamsveren. De mate waarin dit gebeurt, verschilt
sterk van individu tot individu – ook binnen een soort –
zonder dat bekend is wat deze variatie veroorzaakt en
wat de gevolgen ervan zijn. Er wordt wel verondersteld
dat de ruitoestand in de winter te maken heeft met
beperkingen in beschikbare energie of tijd tijdens de rui.
Individuen die toegang hebben tot meer of beter voedsel,
zouden minder last van stress hebben en daardoor in
staat zijn meer veren te vervangen dan individuen die in
minder gunstige omstandigheden leven. Als dit zo is, dan
zou de ruitoestand van jonge vogels een negatief verband
moeten laten zien met de mate waarin ze in stress verke-

ren. Resultaten in de vogelwereld zijn niet eenduidig,
want onderzoekers hebben zowel positieve als negatieve
trends gevonden.

Om meer duidelijkheid omtrent dit probleem te
scheppen vingen de auteurs overwinterende Witte Kwik-
staarten Motacilla alba op een grote slaapplaats in
Sevilla, Zuid-Spanje. Daartoe werden mistnetten op 8 m
hoogte tussen de bomen gespannen. Van de gevangen
vogels werden biometrische gegevens verzameld en het
aantal geruide grote dekveren werd bepaald als maat
voor de ruitoestand. Verder werden bloedmonsters geno-
men om de aantallen te bepalen van witte bloedlichaam-
pjes, waaronder die van heterofielen en lymfocyten. De
verhouding van deze twee typen cellen (H/L) wordt wel
gebruikt als maat voor de stress waaronder dieren leven
(hogere ratio meer stress). In de Witte Kwikstaarten
bestond een positief verband tussen de mate van rui en
de H/L verhouding, terwijl er geen verband aantoonbaar
was tussen de ruitoestand en het totaal aantal witte
bloedlichaampjes of het gewicht van de vogel. De verkla-
ring voor de waarnemingen wordt gezocht in het effect
van de ruitoestand van de dieren op hun sociale status.
Jonge vogels die nog het meest het juveniele kleed heb-
ben, worden het minst door oude vogels lastig gevallen.
Jonge vogels die in de winter al het adulte kleed hebben,
profiteren daar mogelijk van als ze terugkeren in het
broedgebied (onder andere Nederland), maar de prijs
daarvoor is een stressvol bestaan in de winter. (CB)
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Relaciones eco-fisiológicas hospedador-parásito en aves silvestres 

3.b CAPÍTULO 3: Las máscaras carotenoides de los jilgueros (Carduelis 

carduelis) reflejan información diferente en machos que en hembras 

Resumen:  

La selección sexual puede jugar un papel importante en la evolución de 

señales basadas en caroteno. Según la hipótesis de la selección sexual 

mediada por parásitos, la salud del organismo, la resistencia a parásitos y 

la expresión de ornamentos estarían interrelacionados. Mientras algunos 

estudios han analizado la expresión de ornamentos masculinos basados en 

carotenos en relación a parásitos y capacidad del sistema inmune, pocos 

se han fijado en los parches de coloración carotenoide expresados en 

ambos sexos. Nosotros analizamos las relaciones entre la carga de 

endoparásitos (hemoparásitos y parásitos sitémicos), valores 

hematológicos y las componentes de color de la máscara roja en jilgueros 

silvestres, especie que muestra la máscara roja en ambos sexos. Se exploró 

la calidad inmune y la expresión de color en machos y hembras. La 

coloración de la máscara facial mostró dimorfismo sexual, presentando los 

machos máscaras menos naranjas que las hembras. La componente 

amarilla de la máscara mostró menos intensidad en hembras infectadas 

con el hemoparásito Haemoproteus. El recuento total de leucocitos 

mostró correlación inversa con la componente amarilla de la máscara en 

las hembras, sugiriendo que el color de la máscara refleja el estatus 

inmunitario de las hembras en la temporada de cría. La infección por el 

coccidio Isospora se asoció con una menor reflexión ultravioleta de la 

máscara facial en las hembras. 
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INTRODUCTION

Carotenoid pigments are responsible for many of
the brightest colours and most conspicuous signals
in birds (Hill 1999, Hill 2002). However, birds are
not capable of synthesizing carotenoids from basic
biological precursors (Goodwin 1984), and there-
fore, the expression of carotenoid pigments as

colour signals requires the ingestion of carotenoids
with food, as well as its absorption, transport,
sometimes metabolism and incorporation into the
feathers, all processes that are generally consider-
ed costly to individuals (Hill 2002, McGraw et al.
2005, McGraw et al. 2006). Scarcity of carotenoids
in the food, or even the energetic cost of enzyme
production and manipulation of carotenoids,
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remain unclear. Carotenoids are also involved in
metabolic pathways related to host immunity and
a trade-off between the ornamental and health
functions of carotenoids has been proposed (Hõrak
et al. 2004a, Møller et al. 2004). According to this
hypothesis, signals based on carotenoid pigments
are costly and therefore act as honest indicators of
an individual’s quality. 

The features that each carotenoid-based orna-
ment reflect have been mainly studied in males of
very dimorphic species. Carotenoid-based orna-
ments have been shown to be related to body con-
dition (McGraw et al. 2002, Saks et al. 2003,
Jawor & Breitwisch 2004, Jawor et al. 2004), sex-
ual selection (Collias et al. 1979, Hill 1991,
Drachman 1997) and even parasite loads
(Figuerola et al. 2003, Hill et al. 2004, Hõrak et al.
2004). In the case of parasites, studies have
reported variously negative (Thompson et al.
1997, Brawner et al. 2000, Figuerola et al. 2003,
Hõrak et al. 2004b), positive (Burley et al. 1991,
VanHoort & Dawson 2005) and non-significant
(Seutin 1994) relationships between parasites and
the expression of a carotenoid-based ornament.
The potential causes of these contradictory results
could stem from varying methods of study (e.g.
correlational vs. experimental, ranges or doses of
experimental treatments used), different impacts
on parasites on their hosts and environmental-
dependent effects of parasites on host condition
(Figuerola et al. 2003). Work published up to now
has generally focused on a single type of parasite,
above all blood parasites, and analysis of the rela-
tive and combined impact of different types of par-
asites on ornament expression is still lacking.

Haematozoan parasites are blood-cell parasite
protozoa transmitted by blood-sucking arthropods
that are quite prevalent in wild passerines
(Deviche et al. 2001). Coccidian protozoa are
widespread intestinal epithelium parasites with a
direct biological cycle; transmission results from
the ingestion of oocysts liberated in the faeces of
an infected individual. Passerines are mainly
infected by genus Isospora (Hill 2002, Hõrak et al.
2006). Both haematozoan and coccidian parasites
affect their hosts in a condition-dependent way

(Merino et al. 2000): they have little impact when
resources are abundant (Weatherhead & Bennett
1992, Friend & Franson 2001), but affect nega-
tively the host when resources are scarce (Ots &
Hõrak 1998, Ilmonen et al. 1999). The mecha-
nisms leading Coccidia to limit the expression of
carotenoid-based ornaments may work in at least
two different direct ways. First, they may reduce
the absorption of carotenoids through the intestine
(Tyczkowski et al. 1991, Allen 1992) and, second,
they may reduce the release of high-density
lipoproteins (Allen 1987), which are responsible
for the transport of carotenoids in the bloodstream
to the tissues. Moreover, a third indirect mecha-
nism related to body condition – to which both
carotenoid ornamentation and immunity have
shown to be linked – may also be at work (see
Smith et al. 2007). The mechanisms through
which Haematozoa may limit the expression of
carotenoid-based ornaments are still unknown.

Most of the relationships described up to now
between parasites and the expression of orna-
ments have been made focusing on conspicuous
male ornaments, but little attention have been tra-
ditionally paid to such a relation in female orna-
ments. Roulin (2001), for instance, conducted an
experimental study by comparing the degree of
female Barn Owl Tyto alba ornamentation (eume-
lanin-based spottiness) with parasite resistance in
their offspring raised by foster parents. He found
that in females ornamentation positively reflects
parasite resistance ability. Some observational
studies have also demonstrated that the expression
of ornaments is negatively related to the parasite
load in female birds (Hõrak et al. 2001, Piersma et
al. 2001).

The aim of this study was to explore the rela-
tionship between the colour of the carotenoid-
based red mask of European Goldfinches, and a
number of indices of condition (haematological
parameters and different parasite loads) in both
sexes, paying attention to possible inter-sex differ-
ences. The study was carried out with free-living
birds during the breeding season, just after mate
choice had occurred, when individuals were going
through the costly task of raising young, because
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under these conditions we expected the effect of
parasites on their hosts to be maximal. To our
knowledge, this is the first study done analysing
the relationship between plumage coloration in
both sexes and several groups of parasites at a
time.

METHODS

The European Goldfinch is a 12-cm long, seed-eat-
ing finch that has a unique colour pattern on its
head. The front of the face has a conspicuous crim-
son patch, which is known to be composed of four
carotenoid pigments (Stradi et al. 1995): a) ε,ε-
carotene-3,3'-dione, b) 3-hydroxy-ε,ε-carotene-3'-
one, c) 4,4'-dihydroxy-ε,ε-carotene-3,3'-dione (iso-
astaxanthin), and d) 4-hydroxy-ε,ε-carotene-3,3'-
dione.

Although ε,ε-carotene-3,3'-dione and 3-hydroxy-
ε,ε-carotene-3'-one are very common yellow pig-
ments in cardueline finches, isoastaxanthin and 4-
hydroxy-ε,ε-carotene-3,3'-dione have not yet been
found in any other species studied to date. These
two pigments provide the red colour in the mask
together with the keratin bond arrangement the
pigments have in the feathers (Stradi et al. 1995).
Although both sexes are superficially similar
(Cramp & Perrins 1994), small differences in the
size of the patch exist, being larger on average in
males (Svensson 1996). To our knowledge, differ-
ences between the sexes in mask colour have
never been investigated. 

Fieldwork
In the springs of 2004 and 2005, we trapped 13
adult female and 44 adult male goldfinches in a
tree nursery in the Spanish city of Seville (37°23'
N, 5°57'W) where these finches are common resi-
dent breeders. Birds were captured between sun-
rise and sunset in 20 twelve-metre long mist-nets.
Individuals were marked with numbered alu-
minium rings. Sex was determined by the presence
of a brood patch (only present in females) or a
cloacal protuberance (only present in males), and
by the colour of the lesser wing-coverts (see

Svensson 1996). We also measured body mass (to
the nearest 0.1 g) and wing length (maximum
chord). Birds were kept individually in clean ring-
ing bags for 20 minutes to collect faecal samples.
Faeces were immediately placed in individually
marked vials containing 5% formol, and the time
of collection was recorded for each sample. To con-
trol the mass of faecal samples, we avoided taking
the urine-based part of the excretion and only col-
lected the intestinal-based portion. We drew 0.1
ml of blood from the jugular vein using 29 G ster-
ile insulin syringes and prepared smears on a
microscopy slide as per Bennett (1970), which
were air-dried, fixed and stained using Diff-Quick
solution. To confirm field sexing an analysis of the
cellular fraction of a drop of blood was performed.
Sex was determined from blood cell DNA via a
polymerase chain reaction (PCR) amplification of
the CHD genes (Ellegren 1996, Griffiths et al.
1998). After blood extraction, we took two colour
measurements of the frontal area of the red mask
in the 57 trapped birds using a MINOLTA CM-
2600d spectrometer, which measures the charac-
teristics of reflected light by illuminating the
feather surface under standard light conditions.
We obtained the reflectance curve of the mask,
that is, the light reflection from the UVA (360 nm)
to the end of the visible spectrum (740 nm), mea-
sured at 10 nm intervals (39 intervals). The UVA
reflection is visible to birds and has important
implications in sexual selection in some passerine
species (Saetre 1994, Siitari et al. 2002, Pearn et
al. 2003). Although 700 nm has been shown as a
maximum wavelength for avian visual sensitivity,
we included 700–740 nm interval within the
analysis because birds indeed present variability in
visual spectrum among different species (Bow-
maker et al. 1997) and, to our knowledge, this
spectrum has never been studied in the Eurasian
Goldfinch.

Blood smear analysis
For each blood smear, we estimated the total
leukocyte count (TLC) by counting the number of
leukocytes on twenty 400x light microscope fields
of similar density and multiplying this value by
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100 (Wiskott 2002). The differential leukocyte
count was made by identifying (according to
Campbell 1995) the cellular type (heterophils,
eosinophils, basophiles, lymphocytes or mono-
cytes) of 100 leukocytes at 1000x magnification.
The heterophil-lymphocyte ratio (H/L) was calcu-
lated as the percentage of heterophils divided by
the percentage of lymphocytes. A total of 15 000
erythrocytes were scanned for blood parasites at
low (400x) and high (oil 1000x) magnification
(Godfrey et al. 1987) and in infected individuals,
the blood parasite load was estimated as the per-
centage of infected erythrocytes. Prevalence was
calculated on the basis of the percentage of in-
fected individuals. Only Haemoproteus spp. (preva-
lence: 23.7%) and Plasmodium spp. (7.9%) were
found in the 38 samples analysed. The repeatabil-
ity of all variables was estimated by counting twice
the smears of ten individuals and calculated as the
intra-class correlation (Lessells & Boag 1987).
Repeatabilities were high for TLC (95%), H/L
(90%), and blood parasite infection (92%).

Coprology
In the laboratory, faecal samples were passed
through a double lint filter and mixed to obtain a
homogeneous dilution, which was then analysed
for coccidian oocysts and other endoparasite eggs
using a McMaster chamber. This method only pro-
vides an estimation of the real parasite load,
although it has been described as the only possible
non-invasive method of research on the intestinal
parasite of wild animals (Watve & Sukumar 1995).
Samples were scored as positive, when coccidian
oocysts were observed, and negative, when not.
Only protozoan coccidia were found in the sample.
Based on size and the number of sporocysts, the
oocysts were identified as Isospora-like (Baker et
al. 1972, Grulet et al. 1982). Repeatability of coc-
cidian infection estimated from samples of 10 indi-
viduals scored twice was very high (97%), giving
confidence in the accuracy of oocyst counts.

Colour characteristics
Reflectance curves were analysed by a Principal
Component Analysis of reflectances at the 39 dif-

ferent wavelength intervals. Four relevant compo-
nents (Eigenvalues > 1) were obtained that
together summarised 99.97% of variance (Fig. 1).
The first component (PC1) summarised reflection
in the visible spectrum, mainly between 400 and
530 nanometers (within violets and blues). PC2
was more positive for individuals with more reflec-
tion at 650–740 nanometers (reds) and less reflec-
tion at lower wave lengths. PC3 was negatively
related to reflection in the 550–590 nanometers
intervals (yellows), so this component represents
the yellow carotenoids reflection. PC4 was mainly
influenced by reflection in the non-visible-to-
humans portion of the spectra, between 360 and
390 nanometers (UVA radiation). The repeatability
of the colour measurements was calculated as the
intra-class correlation of the principal components
from ten individuals measured twice (Lessells &
Boag 1987). The repeatability was very high for all
components (PC1: 98%; PC2: 96%; PC3: 97%;
PC4: 96%) because of the great accuracy of the
spectrometer method (see Figuerola et al. 1999).

Statistical analyses
TLC was log-transformed to fit a normal distribu-
tion. H/L did not fit normality by any common
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Figure 1. Factor loading of the four principal components
calculated from light reflectance at 10 nm intervals
between 360 and 740 nm. PC1 represents the blue-violet
component, PC2 the red one, PC3 includes the yellows,
and PC4 represents the UVA reflection.



transformation so ranked values were used in the
analyses (Conover & Iman 1981). We analysed
sexual dimorphism in colouration (PC1, PC2, PC3
and PC4), haematological values (TLC and H/L),
and parasite (Haemoproteus and Isospora) load
with ANOVAs including sex as a factor. We
analysed the effects of Haemoproteus and Isospora
infections (presence/absence) as factors, and the
effects of TLC and ranked H/L on PC1, PC2, PC3,
PC4 as dependent variables in two MANOVAs.
Due to circadian rhythms affecting coccidian pre-
valence in passerines (López et al. 2007), morn-
ing/ afternoon factor was included in the model
including Isospora infection. All the two-way inter-
actions among covariates and sex and morning/
afternoon factor were included in the models, and
stepwise backwards selection procedure was fol-
lowed until all the independent variables remain-
ing in the model increased significantly the fit of
the model. 

RESULTS

The coloration of the red mask in the European
Goldfinch was sexually dichromatic. Sexes differed
in reflectance along the whole visible spectrum
(PC1, PC2 and PC3), especially within the yellow
region (PC3), but not in the UV (PC4) (Table 1).

Reflectance curves showed that males were on
average much more red and less yellow than
females (Fig. 2). No differences in haematological
values or parasite infection were found between
sexes (Table 1). None of these variables were
related to PC1 or PC2 (Tables 2 and 3). Haemo-
proteus infection, TLC, and their interaction with
sex were related to PC3 (Tables 2 and 3, Fig. 3A
and B). Isospora infection, its interaction with sex,
and the interaction between sex and Haemoproteus
infection were related to PC4 (Tables 2 and 3, Fig.
3C).
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Figure 2. Mean reflection curves of the red mask of the
Goldfinch along the UV and the whole visible spectrum
by sex.

Males Females

mean SE n mean SE n F P

PC1 –0.174 0.173 33 0.573 0.261 10 4.64 0.05
PC2 0.178 0.172 33 –0.588 0.260 10 4.93 0.03
PC3 0.248 0.132 33 –0.820 0.407 10 10.80 <0.01
PC4 0.016 0.156 33 –0.051 0.426 10 0.03 0.86
Isospora 1.300 0.231 37 1.020 0.282 12 2.37 0.13
Haemoproteus 0.030 0.013 31 0.002 0.002 7 0.92 0.35
TLC 3.771 0.03 31 8.838 0.080 7 0.87 0.36
H/L 0.856 0.040 31 0.704 0.033 7 3.25 0.08

Table 1. Mean, SE and sample size for males and females for the colour, parasites and haematological variables analy-
sed. Differences between sexes were tested by one-way ANOVA.  



DISCUSSION

Colour dichromatism has not been reported before
in the masks of the European Goldfinch. Our
results show that hues differ between sexes: males
reflect reds more strongly than females, but reflect
yellows and oranges with lower intensity than
females. The carotenoids expressed in the mask,
are qualitatively the same in both sexes (Stradi
1995). McGraw et al. (2002) also found that male
American Goldfinches Carduelis tristis artificially-

fed with ad libitum canthaxantin were more
colourful than females, due to a higher carotenoid
concentration in the feathers. The larger accumu-
lation of red pigments in males than in females
seems thus to be the most plausible option for
explaining colour differences in European Gold-
finches. Testosterone, by means of its capacity to
upregulate lipoprotein status, has been proposed
as the responsible agent for such differences in the
American Goldfinch (McGraw et al. 2006), but
there are also studies showing opposite outcomes
in House Finches Carpodacus mexicanus (Stoehr &
Hill 2001). Diet differences between sexes, health
variations or the effect of other hormones should
not be discarded to explain this sexual dichroma-
tism. Even a differential selection of ornaments
between sexes could also be an underlying factor
regarding the dichromatism. Unfortunately, no
information is available on any of these aspects in
the Eurasian goldfinch.
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Source Dependent F1, 32 P
variable

Sex PC1 7.21 0.014
PC2 3.09 0.092
PC3 0.03 0.872
PC4 32.91 <0.001

Morning/afternooon PC1 0.18 0.675
PC2 1.64 0.214
PC3 0.45 0.508
PC4 1.81 0.192

Haemoproteus PC1 0.47 0.499
PC2 0.88 0.358
PC3 9.80 0.005
PC4 1.72 0.204

Isospora PC1 1.85 0.187
PC2 2.64 0.118
PC3 1.37 0.254
PC4 20.38 <0.001

Sex x Haemoproteus PC1 0.60 0.446
PC2 0.26 0.614
PC3 8.91 0.007
PC4 4.89 0.037

Sex x Isospora PC1 2.00 0.171
PC2 1.38 0.253
PC3 0.26 0.616
PC4 28.54 <0.001

Table 2. Results of stepwise backwards selection proce-
dure MANOVA analysing parasite infection over colour
components of the red mask of the Eurasian Goldfinch. 

Source Dependent Df F P
variable

Sex PC1 32 0.81 0.551
PC2 32 0.58 0.783
PC3 32 10.38 0.002
PC4 32 8.24 0.498

Log (TLC+1) PC1 32 0.49 0.616
PC2 32 0.01 0.201
PC3 32 6.36 0.017
PC4 32 9.69 0.807

Sex x Log (TLC+1) PC1 32 0.83 0.633
PC2 32 0.63 0.741
PC3 32 11.84 0.001
PC4 32 8.30 0.546

Ranked H/L PC1 31 0.21 0.651
PC2 31 1.28 0.266
PC3 31 2.46 0.127
PC4 31 0.02 0.885

Table 3. Results of stepwise backwards selection proce-
dure MANOVA analysing haematological values over colour
components of the red mask of the Eurasian Goldfinch. 



When interpreting our results relating col-
oration to health it is important to consider that
the study was carried out in the spring. European
Goldfinches moult their masks in late summer
(Jenni & Winkler 1994), around six months before
reproduction takes place. The health status of indi-
viduals is expected to change during this time,
although the signals involved in sexual selection
act in the early spring at the time of mate choice
(Cramp et al. 1994). The red of the mask is not
fully developed at the time of the moult and is
only completed during the spring due to the abra-
sion of melanin derived feather tips (Svensson
1996). We sampled birds at the time of the year
when the expression of the ornament is at its

fullest, just when the indicator function of a sexual
selection signal should be at work.

We found a relationship between presence of
different parasites and different colour compo-
nents of red masks. However, these effects were
sex-dependent and only significant for females.
Female European Goldfinches infected with
Haemoproteus blood parasites and those with
higher TLC values were more orange, that is with
a higher yellow component, than those uninfected
or with lower values. A higher intensity in yellow
component may be due to 1) a decrease in the
intensity of red pigments, or 2) an increase in the
intensity of yellow ones. Because red pigments are
predominant in the red mask, we think that the
first option is more plausible than the second one.
In this way, the red of the mask may reflect
Haemoproteus parasitemia or infection resistance
in females. Also, female European Goldfinches
with higher TLC values were more orange (with a
higher yellow component) than those with lower
values. Since high TLC values are linked to chronic
or acute infections (Campbell 1995), the red of the
mask may reflect immune levels or infection resis-
tance in females. In this way, the most infected
females would have less red ornaments, a finding
that suggests that red masks act as an honest indi-
cator of general infection in female European
Goldfinches. This relationship is not significant in
males, probably due to the different reproductive
role of each sex, since egg-laying and incubation, a
very expensive process, is carried out only by
females (Cramp et al. 1994). UV reflection was
higher in Isospora non-infected females than in
infected ones in our study. This result seems to
indicate that UV reflection acts as an honest indica-
tor of Isospora infection in females. Finally, our
results suggest that double-infected animals (with
Haemoproteus and Isospora) reflect violets with a
higher intensity that those non-infected. This fact
could be due to the lack of red and yellow pigments
(carotenoids) that those individuals have in their
feathers. Although H/L has shown to be related
with some aspects of stress and condition in passer-
ines (Ots et al. 1998, Groombridge et al. 2004), it
was not related to any colour variables in our study. 
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Figure 3. A) Scatter graph of log-transformed TLC over
the PC3 values, by sex. B) Mean PC3 in relation to
Haemoproteus infection state by sex. C) Mean PC4 in rela-
tion to Isospora infection state by sex.



How is it possible that breeding roles had an
effect on the relationship between coloration and
parasites if plumage was developed several
months before breeding? We suggest that under
the stress derived from breeding activities females
in worst condition or with a less active immune
system are less able to control already present
infections and/or exclude new infections when
exposed to pathogens. A similar process was ex-
perimentally demonstrated to work in male Green-
finches Carduelis chloris experimentally infected
with Sindbis virus (Lindström & Lundstrom 2000).

In conclusion, our study shows that (1) sexual
dichromatism exists in the colour of the mask of
the European Goldfinch, and (2) the red colour of
the mask reflects different signals in both sexes
and may be a reliable indicator of parasite infec-
tion during the breeding season, at least in
females.

240 ARDEA 96(2), 2008

REFERENCES

Allen P. 1987. Effect of Eimeria acervulina infection on
chick (Gallus domesticus) high density lipoprotein
composition. Comp. Biochem. Physiol. 87: 313–319.

Allen P. 1992. Long segmented filamentous organisms in
broiler chickens: Possible relationship to reduced
serum carotenoids. Poultry Sci. 71: 1615–1625.

Baker J.R., Bennett G.F., Clark G.W. & Laird M. 1972.
Avian blood coccidians. Adv. Parasitol. 10: 1–30.

Bennett G.F. 1970. Simple technique for making avian
blood smears. Can. J. Zool. 50: 353–356.

Bowmaker J.K., Heath L.A., Wilkie S.E. & Hunt D.M.
1997. Visual pigments and oil droplets from six
classes of photoreceptor in the retinas of birds. Vision
Res. 37: 2183–2194.

Brawner W.R., Hill G.E. & Sundermann C.A. 2000.
Effects of coccidial and mycoplasmal infections on
carotenoid-based plumage pigmentation in male
House Finches. Auk 117: 952–963.

Burley N., Tidemann S.C. & Halupka K. 1991. Bill colour
and parasite levels in zebra finches. Oxford
University Press, Oxford.

Campbell T.W. 1995. Avian Hematology and Cytology.
Iowa.

Collias E., Collias N., Jacobs C., McAlary F. & Fujimoto J.
1979. Experimental evidence for facilitation of pair
formation by bright color in weaverbirds. Condor 81:
91–93.

Conover W.J. & Iman R.L. 1981. Rank transformations as
a bridge between parametric and nonparametric sta-
tistics. Am. Stat. 35: 124–129.

Cramp S. & Perrins C.M. 1994. Handbook of the birds of
Europe, the Middle East and North Africa. The birds
of the Western Palearctic. Oxford University Press,
Oxford.

Deviche P., Greiner E.C. & Manteca X. 2001. Interspecific
variability of prevalence in blood parasites of adult
passerine birds during the breeding season in Alaska.
J. Wildl. Dis. 37: 28–35.

Drachman J. 1997. Sexual selection in the Linnet. Dep.
Ecology and Genetics. University of Aarhus.

Ellegren H. 1996. First gene on the avian W chromosome
(CHD) provides a tag for universal sexing of non-
ratite birds. Proc. R. Soc. Lond. B 263: 1635–1641.

Figuerola J., Senar J.C.& Pascual J. 1999. The use of a
colorimeter in field studies of blue tit Parus caeruleus
coloration. Ardea 87: 269–275.

Friend M. & Franson J.C. 2001. Field manual of wildlife
diseases: General field procedures and diseases of
birds. Biological Resources Division. U.S. Geological
Survey.

Godfrey R.J., Fedynich A. & Pence D. 1987. Quantifica-
tion of hematozoa in blood smears. J. Wildl. Dis. 23:
558–565.

Goodwin T.W. 1984. The biochemistry of carotenoids.
Chapman & Hall, New York.

Griffiths R., Double M.C., Orr K. & Dawson R.J.G. 1998.
A DNA test to sex most birds. Mol. Ecol. 7: 1071–1075.

Groombridge J.J., Massey J.G., Bruch J.C., Brosius C.N.,
Okada M.M. & Sparklin B. 2004. Evaluating stress-
levels in a Hawaiian honeycreeper, Paroreomyza mon-
tana, following translocation using different con-
tainer designs. J. Field Ornithol. 75: 183–187.

ACKNOWLEDGEMENTS

The Spanish Health Ministry via its Thematic Research
Net ‘EVITAR’ funded our research. Alberto Álvarez, Alicia
Cortés, Ángel Mejía, Ara Villegas, Beatriz Fernández,
Carmen Gutiérrez, Chari Terceño, Cristina Sánchez, Elena
Fierro, Enrique Sánchez, Esteban Serrano, Francisco
Miranda, Grego Toral, Inma Cancio, Joaquín Díaz, José
Antonio Sánchez, Mari Carmen Roque, Olga Jiménez,
Pedro Sáez, Rafael Reina, and Samuel del Río helped
with fieldwork. Beatriz Sánchez helped with fieldwork
and provided moral support. Cuqui Rius helped with the
design, statistical models, and focusing. Francisco
Jamardo, Manuel Sánchez, Manuel Vázquez, Miguel
Carrero, and Oscar González helped with the bird ringing
and taking of samples. 



López et al.: GOLDFINCH RED MASK IMPLICATIONS 241

Grulet O., Landau I. & Baccam D. 1982. Isospora from the
domestic sparrow; multiplicity of species. Ann.
Parasitol. Hum. Comp. 57: 209–235.

Hill G.E. 1991. Plumage coloration is a sexually selected
indicator of male quality. Nature 350: 337– 339.

Hill G.E. 1999. Mate choice, male quality, and carote-
noid-based plumage coloration. In: Adams N. &
Slowtow R. (eds). Proc 22 Int. Ornithol. Congr.
University of Natal, Durban.

Hill G.E. 2002. A red bird in a brown bag: The function
and evolution of colorful plumage in the House
Finch. Oxford University Press, Oxford.

Hill G.E., Farmer K.L. & Beck M.L. 2004. The effects of
mycoplasmosis on carotenoid plumage coloration in
male house finches. J. Exp. Biol. 207: 2095–2099.

Hõrak P., Saks L., Karu U. & Ots I. 2006. Host resistance
and parasite virulence in greenfinch coccidiosis. J.
Evol. Biol. 19: 277–288.

Hõrak P., Saks L., Karu U., Ots I., Surai P.F. & McGraw
K.J. 2004a. How coccidian parasites affect health and
appearance of greenfinches. J. Anim. Ecol. 73:
935–947.

Hõrak P., Surai P.F., Ots I. & Møller A.P. 2004b. Fat soluble
antioxidants in brood-rearing great tits Parus major:
relations to health and appearance. J. Avian Biol. 35:
63–70.

Hõrak P., Ots I., Vellau H., Spottiswoode C. & Møller A.P.
2001. Carotenoid-based plumage coloration reflects
hemoparasite infection and local survival in breeding
great tits. Oecologia 126: 166–173. 

Ilmonen P., Hakkarainen H., Koivunen V., Korppimäki E.,
Mullie A. & Shutler D. 1999. Parental effort and
blood parasitism in Tengmalm’s owl: effects of nat-
ural and experimental variation in food abundance.
Oikos 86: 79–86.

Jawor J.M., Gray N., Beall S.M. & Breitwisch R. 2004.
Multiple ornaments correlate with aspects of condi-
tion and behaviour in female northern cardinals,
Cardinalis cardinalis. Anim. Behav. 67: 875–882.

Jawor J.M. & Breitwisch R. 2004. Multiple ornaments in
male northern cardinals, Cardinalis cardinalis, as indi-
cators of condition. Ethol. 110: 113–126. 

Jenni L. & Winkler R. 1994. Moult and ageing of
European passerines. Academic Press, London.

Lessells C.M. & Boag P.T. 1987. Unrepeatable repeatabili-
ties – A common mistake. Auk 104: 116–121.

López G., Figuerola J. & Soriguer R. 2007. Time of day,
age, and feeding habits influence coccidian oocyst
shedding in wild passerines. Int. J. Parasitol. 37:
559–564.

McGraw K.J., Correa S.M. & Adkins-Regan E. 2006.
Testosterone upregulates lipoprotein status to control
sexual attractiveness in a colorful songbird. Behav.
Ecol. Sociobiol. 60: 117–122.

McGraw K.J., Hill G.E. & Parker R.S. 2005. The physio-
logical costs of being colourful: nutritional control of
carotenoid utilization in the American goldfinch
(Carduelis tristis). Anim. Behav. 69: 653–660.

McGraw K.J., Mackillop E.A., Dale J. & Hauber M.E.
2002. Different colors reveal different information:
how nutritional stress affects the expression of
melanin- and structurally based ornamental col-
oration. J. Exp. Biol. 205: 3747–3755.

Merino S., Moreno J., Sanz J.J. & Arriero E. 2000. Are
avian blood parasites pathogenic in the wild? A med-
ication experiment in blue tits (Parus caeruleus).
Proc. R. Soc. Lond. B 267: 2507–2510.

Møller A. P., Martin-Vivaldi M. & Soler J.J. 2004. Para-
sitism, host immune defence and dispersal. J. Evol.
Biol. 17: 603–612.

Ots I. & Hõrak P. 1998. Health impact of blood parasites
in breeding great tits. Oecologia 116: 441–448.

Ots I., Murumägi A. & Hõrak P. 1998. Haematological
health state indices of reproducing Great Tits:
methodology and sources of natural variation. Funct.
Ecol. 12: 700–707.

Pearn S.M., Bennett T.D. & Cuthill I. 2003.The role of
ultraviolet-A reflectance and ultraviolet-A-induced
fluorescence in Budgerigar mate choice. Ethol. 109:
961–970.

Piersma T.T., Mendes L.L., Hennekens J.J., Ratiarison
S.S., Groenewold S.S. & Jukema J.J. 2001. Breeding
plumage honestly signals likelihood of tapeworm
infestation in females of a long-distance migrating
shorebird, the bar-tailed godwit. Zoology 104: 41–48.

Roulin A. 2001. Female-and male-specific signals of qual-
ity in the barn owl. J. Evol. Biol. 14: 255–266.

Saetre G-P., Dale S. & Slagsvold T. 1994. Female pied fly-
catchers prefer brightly coloured males. Anim. Behav.
48: 1407–1416.

Saks L., Ots I. & Hõrak P. 2003. Carotenoid-based
plumage coloration of male greenfinches reflects
health and immunocompetence. Oecologia 134:
301–307.

Seutin G. 1994. Plumage redness in redpoll finches does
not reflect hemoparasitic infection. Oikos 70:
280–286.

Siitari H., Honkavaara J., Huhta E. & Viitala J. 2002.
Ultraviolet reflection and female mate choice in the
pied flycatcher, Ficedula hypoleuca. Anim. Behav. 63:
97–102.

Smith H.G., Råberg L., Ohlsson T., Granbom M. &
Hasselquist D. 2007. Carotenoid and protein supple-
mentation have differential effects on pheasant orna-
mentation and immunity. J. Evol. Biol. 20: 310–319.

Stoehr A.M. & Hill G.E. 2001. The effects of elevated
testosterone on plumage hue in male House Finches.
J. Avian Biol. 32: 153–158.



242 ARDEA 96(2), 2008

SAMENVATTING

Verondersteld kan worden dat de kleurenpracht van het
verenkleed bij vogels afhangt van de gezondheidstoe-
stand van het individu. Of dat zo is werd onderzocht aan
de hand van de markante koptekening van Putters
Carduelis carduelis. Bij vrouwtjes – niet bij mannetjes –
werden duidelijke verbanden gevonden tussen de kleur
van het rood op de kop en bloedwaarden en de aanwe-
zigheid van parasieten in het lichaam. Individuen die
geïnfecteerd waren met de bloedparasiet Haemoproteus
hadden een minder intensief gekleurde kop (vooral in het
gele deel van het spectrum). Daarnaast was de UV-reflec-
tie van de rode koptekening minder wanneer de vogels
geïnfecteerd waren door de coccidiose veroorzakende
protozoë Isospora. Bovendien bleek er een verband te
bestaan tussen de kleuring van de kop en de dichtheid
aan witte bloedlichaampjes, hetgeen een aanwijzing
vormt dat de kopkleur een indicatie is voor de aktiviteit
van het immuunsysteem. (BIT)
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Relaciones eco-fisiológicas hospedador-parásito en aves silvestres 

3.C CAPÍTULO 4: ¿Se relaciona la coloración del pico de los machos 

silvestres de mirlo (Turdus merula) con parámetros bioquímicos y 

con el parasitismo? 

Resumen:  

La regulación de la expresión de los ornamentos basados en caroteno ha 

llegado a ser un tema central en estudios de señalización de calidad y 

selección sexual en aves. Los ornamentos con coloración más brillante son 

preferidos en la selección de pareja, y se supone que señalan (1) 

resistencia a parásitos, (2) capacidad inmune y/o (3) status de salud. 

Mientras las plumas se pigmentan durante su crecimiento, las estructuras 

tegumentarias pueden mostrar coloración dinámica con potencial de 

reflejar cambios en la condición corporal del individuo. El pico de los 

machos de mirlo ha llegado a ser un modelo para el estudio de las 

implicaciones de los integumentos coloreados por carotenoides en aves. 

La coloración del pico del mirlo ha mostrado relacionarse con la habilidad 

reproductora y la respuesta inmune, aunque su relación con los 

parámetros y la fisiología permanece poco clara. En este estudio 

analizamos las relaciones existentes entre coloración del pico, 

endoparásitos (hemoparásitos y parásitos intestinales) e indicadores de 

salud (valores hematológicos y bioquímicos) en 54 machos de mirlo 

silvestres durante la temporada de cría en el sur de España. La coloración 

carotenoide del pico se relacionó con la condición corporal, status de 

salud, estrés y niveles de hidratación y de nutrición. Ni la prevalencia ni la 

carga de ninguno de los grupos parasitarios estudiados se relacionó con la 

coloración del pico. Asimismo, los parásitos no mostraron patrones de 

agregación claros, y sólo Isospora, un cestodo sin identificar y 

Haemoproteus se relacionaron con alteraciones de las variables 

bioquímicas. Nuestros resultados sugieren que la infección parasitaria no 

es la principal fuente de variación en la coloración del pico en el mirlo 

común, sino más bien otros limitantes fisiológicos. 
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Is bill colouration in wild male blackbirds (Turdus merula) 

related to biochemistry parameters and parasitism? 

Guillermo López, Ramón Soriguer and Jordi Figuerola 

 

Abstract 

The regulation of the expression of carotenoid-based ornaments has become a central topic in 

studies of signalling and sexual selection in birds. Brighter coloured ornaments are preferred during 

mate choice and are thought to signal (1) resistance to parasites, (2) immune capacity and (3) health 

status. As integuments have dynamic colouration, they have the potential for reflecting changes in 

individual condition. The bill of male blackbirds has become a model for the study of the implications 

of carotenoid-coloured integuments in birds. Blackbird bill colouration has been found to be related 

to reproductive ability and immune capacity; nevertheless, its relationship with parasites and health 

remains unclear. The relationships between bill colouration, parasites (blood and intestinal parasites) 

and health status indicators (standard haematological and plasma biochemistry variables) in free-

ranging male blackbirds were analysed during the breeding season. Bill colouration was related to 

body condition, health status, stress and hydration and nutritional status. The presence or load of the 

parasite groups studied was not found to be related to bill colouration. Moreover, parasites showed 

no clear aggregation patterns. Our results suggest that certain physiological constraints rather than 

parasite infection are the main cause of variability in colouration in male blackbird bills.  

 

Keywords: Carotenoids – Blackbird – Bill – Parasites – Birds – Colouration – Health – Biochemistry 

 

 

 

1. Introduction

Parasite-mediated sexual selection theory 

(PMSS) predicts an inverse relationship 

between the amount of parasites and the 

expression of male ornaments (Hamilton 

and Zuk 1982), thereby explaining the 

fitness benefits females acquire by 

selecting more evolved ornaments. 

Carotenoid-based ornaments in birds take 

the form of yellowish to reddish 

colouration in feathers and integuments 

and are known to play an important role in 

sexual selection (Andersson 1994; Hill and 

McGraw 2004). Besides ornamentation, 

carotenoids also have a number of 

physiological roles such as the protection 

and maintenance of the reproductive 

function, the scavenging of free radicals 

and the stimulation of the immune system 

(Lozano 1994; Olson and Owens 1998; 

Alonso-Álvarez et al. 2008). Given that they 

are ingested as part of the bird’s diet 

(Goodwin 1984), a trade-off between the 
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physiological and ornamental use of 

carotenoids has been proposed (Hill 1999; 

Alonso-Álvarez et al. 2008). Recently, 

however, a physiological cost of an excess 

of carotenoids has been found to exist 

(Huggins, 2008), which is linked to 

individual oxidative stress levels (Mougeot 

et al. 2010; Vinkler and Albrecht 2010). 

Carotenoids have been shown to be 

related to circulating levels of a number of 

biochemical indicators of physiological 

status (Huggins 2008). Unlike feathers, the 

expression of carotenoids in integuments 

is dynamic and may respond to changes in 

individual condition (Faivre et al. 2003a; 

Pérez-Rodríguez and Viñuela 2008). 

Predictions of PMSS have been tested in 

carotenoid-coloured integuments 

(Figuerola et al. 2005; Martínez-Padilla et al. 

2007; Baeta et al. 2008; Mougeot et al. 2010) 

and the colouration of ornaments has 

been found to be related to indicators of 

health (McGraw and Ardia 2003; Bertrand et 

al. 2006; Mougeot 2007a; Mougeot et al. 

2007b; Mougeot et al. 2009) and 

reproductive ability (Massaro et al. 2003; 

Peters et al. 2004; McGraw et al. 2005). 

 

The blackbird (Turdus merula), a common 

medium-sized Palaearctic passerine, has 

become a model for the study of 

carotenoids in birds. Males have melanin-

pigmented plumage and a carotenoid-

pigmented bill that graduates from pale 

dirty yellow to bright orange (Cramp and 

Perrins 1994). The bill colouration of male 

blackbirds has been found to be related to 

reproductive abilities (Faivre et al. 2001; 

Préault et al. 2005), survival (Gregorie et al. 

2004), physical development (Bright et al. 

2004) and immune status (Faivre et al., 

2003a; Faivre et al. 2003b). Baeta et al. 

(2008) showed that individuals with good 

access to carotenoids in their diets had 

more colourful bills and a slower 

replication of the intestinal parasite 

Isospora. However, no relationship has 

been found between blackbird bill 

colouration and the presence or intensity 

of parasites (Hatchwell et al. 2001; Bright et 

al. 2004). Most studies performed to date 

have focussed on a single parasite species 

and only a few have examined different 

species of the same class of parasites, while 

none, to the best of our knowledge, has 

ever investigated the combined patterns 

of a taxonomically diverse community of 

parasites. A possible explanation for this is 

the complexity of parasitic aggregation 

patterns, which hinders the identification 

of the potential relationships between 

colouration and parasites when studying a 

single group of parasites. Furthermore, 

none of the previous studies on 

carotenoid-based pigmentation have taken 

into account the biochemistry 

physiological variables that could interact 

with parasitation in the regulation of the 

expression of ornamental carotenoids. 

Plasma biochemical characterisation 

provides relevant information on the 

nutrition and condition of the organism or 

of different organs and, although widely 

used in clinical diagnosis, is employed only 

rarely in behavioural ecology (but see for 

example Alonso-Alvarez et al. 2002; Hegyi 

et al. 2010). 

The goals of this study were to examine (1) 

how biochemical parameters, 

haematological values and endoparasites 

(including both blood and celomic 

parasites) are related to bill colouration; (2) 
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how parasite richness and abundance are 

related to biochemical and haematological 

values; and to explore (3) possible patterns 

of parasitic aggregation in wild male 

blackbirds during the breeding season. 

 

2. Methods 

2. 1 Field work 

A total of 54 male blackbirds were trapped 

between March and May in 2004 and 2005 

in the city of Seville (37º 23’ 11’’ N, 5º 57’ 

46’’W). All birds were individually marked 

with numbered aluminium rings and their 

body mass (to the nearest 0.5 g) and wing 

length (maximum chord to the nearest 0.5 

mm) were measured. Birds’ ages were 

determined using Svensson (1984) as first 

years or adults. All individuals were 

manipulated in the same way in order to 

minimize potential differences in the 

Corticosterone-mediated alteration of the 

measured biochemical values (Müller et al. 

2006). Birds were kept individually in cloth 

bags for 20 minutes to collect faecal 

samples, which were collected from 42 

individuals. Droppings were immediately 

placed in individually marked vials 

containing 5% formol; the collection time 

was annotated for each sample. 

Subsequently, 500 µl of blood were taken 

from the jugular vein using 29 G sterile 

insulin syringes and birds were then 

released back into the wild. A drop of 

blood was smeared on a microscopy slide 

(Bennett 1970), air dried and stained using 

Diff-Quick solution. The rest of the blood 

sample was placed in a vial and a few hours 

later was centrifuged for 10 minutes at 

6000 rpm in an Eppendorf Minispin 

centrifuge to separate serum. Sera were 

frozen at –20º C for a maximum of one 

month until subsequent analysis. As well, 

the bill colour (curves between 360nm and 

740 nm) of all 54 individuals was measured 

using a MINOLTA 2600 spectrometer. 

 

2.2 Haematology and coprology 

methods 

Samples of droppings were filtered 

through a double lint cloth and then 

homogenized to obtain a dilution that was 

explored for parasite eggs and coccidian 

oocysts in a McMaster chamber (as per 

Williams 1973). Subsequently, 200 µl of the 

same dilution was taken from the chamber 

and dried in a 54º C heater; the resulting 

extract was weighed to the nearest 0.0001 

g. The number of parasite eggs or oocysts 

per mg of dry extract of faeces was 

obtained by dividing the number counted 

in the chamber by the estimated mass of 

the scanned sample (see López et al. 2007 

for details). The most prevalent parasites 

were protozoan coccidian Isospora 

(prevalence: 60%) and an unidentified 

species of cestode (23%), which were 

included independently in subsequent 

analyses. The remaining parasites (other 

cestodes, strigeids and Ascarididae, 

Spiruridae and Syngamidae nematodes) 

were found in prevalences of below 12% 

and were included together in the analysis 

as a variable coded as ’other parasites’. The 

blood slides were searched for blood 

parasites at high (oil 1000X) magnification. 

A total of 15,000 erythrocytes were 

explored in each sample (see Godfrey et al. 

1987). Haemoproteus spp., Plasmodium 

spp. and Leukocytozoon spp. were 
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detected with prevalences of 50%, 9% and 

19%, respectively. Infection intensity could 

only be estimated in the intraerythrocytic 

species Haemoproteus and Plasmodium. 

The White Blood Cell count (WBC) was 

estimated by counting the number of 

leukocytes on twenty similar-density 400X 

light microscope fields and multiplying this 

value by 100 (Wiskott 2002) in 41 blood 

smears. The cellular type (as per Campbell 

1995) of 100 leukocytes was estimated at 

1000X magnification. H/L, which is 

considered a reliable assessor of stress in 

birds (Davis et al. 2008), was calculated as 

the percentage of heterophils divided by 

the percentage of lymphocytes. 

 

2.3 Serum biochemistry  

Twelve different plasma biochemistry 

variables were measured from 33 sera 

collected in 2005. After defrosting the sera, 

we quantified Aspartate Aminotransferase 

(AST), Bile Acids (BA), Creatinine Kinase (CK), 

Uric Acid (UA), Glucose (Glu), Phosphorous 

(Phos), Calcium (Ca), total proteins (TP), 

Albumin (Alb), Globulin (Glob), Potassium (K) 

and Sodium (Na) using a Vetscan (Abaxis, 

Inc. California) dry and liquid biochemistry-

based analyser (see Table 1 for further 

information).  

2.4 Carotenoid chroma 

To calculate the bill carotenoid chroma of 

the bill colouration the difference 

between reflectance at 700 nm and 450 nm 

was divided by the reflectance at 700 nm 

(see Montgomerie 2006, 2008). This 

parameter only expresses the reflection in 

the orange section of the spectrum.  

 

2.5 Statistical analysis 

WBC, Na and AST were log-transformed -

Log (value + 1)- to fit a normal distribution, 

while H/L, BA and Ca were ranked because 

there were no common transformations 

that normalised the data (Conover and 

Iman 1981). Body condition was estimated 

as the residuals of the linear regression 

between body mass and wing length (see 

Schulte-Hostedde et al. 2005).  

 

A principal component analysis (PCA) was 

performed with the 12 biochemical 

variables to identify the principal axis of 

variation. Five components with 

eigenvalues >1 were obtained, which 

explained 76.8% of variance (Table 1). PCB1 

was mainly influenced by Glob and TP and 

so was considered as an indicator of 

general health status. PCB2 was mainly 

influenced by AST and CK and was thus 

considered as a variable related to 

muscular activity. PCB3 was mainly 

influenced by Na and K and was considered 

as an indicator of fluid balance. PCB4 was 

mainly influenced by Ca and Alb and was 

considered a variable related to cell 

hydration level. PCB5 was influenced by UA 

and Phos and was considered to be a 

negative indicator of nutritional status.  

 

Similarly, parasitation values were analysed 

using a PCA to identify the principal axis of 

variation in our sample. If there was a 

pattern of parasite aggregation we would 

expect to find a component that was 

significantly influenced by several groups 

of parasites. Three significant components 

were obtained, which explained 64.5% of 

the variance (Table 2): PCP1 was negatively 
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influenced by Leukocytozoon prevalence 

and positively influenced by 

Haemoproteus and the ‘other parasite’ 

loads; PCP2 was positively influenced by 

Isospora and the cestode loads; and PCP3 

was positively influenced by the 

Plasmodium load. 

 

Relationships between parasite and 

haematological variables, biochemistry 

variables and bill chroma were analysed 

using multivariate general linear models 

(SPSS 13.0 package). All the two-way 

interactions between covariates and with 

factors were included in the models, and 

stepwise backwards selection procedures 

were followed until all the independent 

variables remaining in the model increased 

significantly (p < 0.05) the fit of the model. 

Given the different sample size of our 

groups of variables, different MANOVAs 

were used to avoid losing cases. Due to the 

occurrence of circadian oocyst shedding in 

passerine Isospora, a morning/afternoon 

factor was included in all models that 

included Isospora load (see López et al. 

2007). First of all, we investigated how 

biochemistry components, parasite 

components, body condition and 

haematological values were related to bill 

carotenoid colouration. We conducted the 

following ANOVAs: (1) bill chroma was 

included as the dependent variable, with 

biochemistry components and body 

condition as covariates and age as a factor; 

(2) bill chroma was included as the 

dependent variable, with parasite 

components and body condition as 

covariates and year, morning/afternoon 

and age as factors; and (3) bill chroma was 

included as the dependent variable, with 

H/L, WBC and body condition as covariates 

and age as a factor. Secondly, we analysed 

the relationships between parasite 

components and biochemical components, 

body condition and haematological values. 

The following MANOVAs were performed: 

(1) parasite components were included as 

dependent variables, with biochemistry 

components and body condition as 

covariates and age and morning/afternoon 

as a factor; (2) parasite components were 

included as dependent variables, with H/L, 

WBC and body condition as covariates and 

age, year and morning/afternoon as 

factors. 

 

 

Table 2. Rotated component matrix (Varimax 

rotation with Kaiser normalization) of the 

principal component analysis performed on the 

parasite burdens/prevalence and haematological 

values of the sampled blackbirds. Variables 

which accounted more than 0.6 are marked in 

grey. 

3. Results 

3. 1 Patterns of parasitic aggregation 

Our results do not show any general 

pattern of aggregation in the different 

types of parasites in the individuals 

sampled. This means that the different 

parasite species analysed in this work were 

parasitizing different individuals. 

Component PCP1 PCP2 PCP3 
Log (Plasmodium 

burden + 1) 
0.05 -0.09 0.89 

Haemoproteus 
burden 

0.63 0.11 -0.23 

Leukocytozoon 
prevalence 

-0.64 0.26 -0.06 

Log (Isospora 
burden + 1) 

-0.42 0.64 0.41 

Log (Cestode 
burden + 1) 0.16 0.84 -0.21 

Log (Other 
parasite burden + 1) 0.67 0.16 0.36 
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Interestingly, haemoprotozoa 

Haemoproteus and the group ‘other 

parasites’ were related and positively 

accounted for PCP1, which might imply 1) 

the possibility that Haemoproteus affects 

host condition in a way that favours 

parasitation by other parasite species or (2) 

a possible association between 

Haemoproteus and one of the parasite 

species included in the second group. 

Unfortunately, our sample size did not 

allow us to investigate this relationship in 

greater depth. Moreover, Leukocytozoon 

prevalence was negatively related to both 

groups of parasites, indicating that 

individuals infected by Haemoproteus and 

‘other parasites’ were not infected by 

Leukocytozoon. PCP2 showed an 

aggregation trend between the intestinal 

coccidia Isospora and the common cestode 

found in our sample. This aggregation 

could be due to the fact that infection by 

one of the species favours infection by the 

other.  

 

Source Df, 
error 

F 1,21 p 

PCB1 1,21 0.01 0.94 

PCB3 1,21 0.02 0.88 

PCB4 1,21 0.37 0.55 

PCB5 1,21 0.88 0.36 

Body condition 1,21 6.37 0.02 

PCB1 * PCB4 1,21 5.50 0.03 

PCB3 * PCB4 1,21 13.36 0.00 

PCB3 * PCB5 1,21 23.86 0.00 
PCB1 * Body 

condition 
1,21 9.75 0.01 

PCB4 * Body 
condition 

1,21 11.56 0.00 

PCB5 * Body 
condition 

1,21 10.64 0.00 

PCB2 1,20 0.54 0.54 

Table 3. Results of the stepwise backwards 

selection procedure ANOVA analysing 

relationships between bill carotenoid chroma 

and biochemical components. 

3.2 Relationships between biochemical 

components and bill carotenoid chroma 

Body condition and the interactions 

between body condition and (1) PCB1, (2) 

PCB4 and (3) PCB5, as well as the 

interactions between (1) PCB1 and PCB4, 

and (2) PCB3 and PCB4 and PCB3 and PCB5, 

were significantly related to BCC (Table 3). 

Interestingly, none of the biochemical 

components independently showed a 

significant relationship with bill chroma. 

 

Source Df, 
error 

F 1,21 p 

Year 1,37 1.59 0.22 

Morning / Afternoon 1,37 1.76 0.19 

PCP1 1,37 0.07 0.80 

Body condition 1,37 0.69 0.41 

PCP2 1,34 0.04 0.85 

PCP2*Morning/Afternoon 1,26 2,13. 0.16 

PCP3 1,24 0.03 0.86 

 

Table 4. Results of the stepwise backwards 

selection procedure ANOVA analysing 

relationships between bill carotenoid chroma 

and parasite components.  

 

3.3 Relationships between parasite 

components and bill carotenoid chroma 

Contrary to expectations, none of the 

parasite components were related to the 

bill chroma (Table 4). 

 

3.4 Relationships between haematological 

values and bill carotenoid chroma 

The haematological value H/L was 

significantly related to bill chroma (F1,39 = 

4.44; p = 0.04). Individuals with high values 

of H/L had paler bills than those with low 

values of H/L. 
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Source Dependent 
variable 

Df 
(Error) F p 

PCP1 1 (22) 0.65 0.43 

PCP2 1 (22) 0.04 0.85 
Morning/ 

Afternoon 
PCP3 1 (22) 1.76 0.20 

PCP1 1 (22) 0.05 0.83 

PCP2 1 (22) 0.02 0.89 PCB2 

PCP3 1 (22) 3.02 0.10 

PCP1 1 (22) 0.44 0.51 

PCP2 1 (22) 2.20 0.15 PCB5 

PCP3 1 (22) 2.23 0.15 

PCP1 1 (22) 1.18 0.29 

PCP2 1 (22) 5.12 0.03 PCB2*PCB5 

PCP3 1 (22) 4.87 0.04 

PCP1 1 (21) 1.80 0.19 

PCP2 1 (21) 5.90 0.02 PCB1 

PCP3 1 (21) 0.30 0.59 

PCP1 1 (20) 2.40 0.14 

PCP2 1 (20) 2.97 0.10 PCB3 

PCP3 1 (20) 1.04 0.32 

PCP1 1 (18) 2.90 0.11 

PCP2 1 (18) 0.47 0.50 
Body 

condition 
PCP3 1 (18) 0.03 0.87 

PCP1 1 (16) 2.36 0.14 

PCP2 1 (16) 0.63 0.44 PCB4 

PCP3 1 (16) 1.38 0.26 

 

Table 5. Results of the stepwise backwards 

selection procedure MANOVA analysing 

relationships between parasite components and 

biochemical components. Significant 

relationships are highlighted in grey. 

 

3.5 Relationships between biochemical and 

parasite components 

The interaction between PCB2 and PCB5 

was significantly related to PCP2 and PCP3 

(Table 5) given that high values of PCB2 and 

PCB5 were related to low values of PCP2 

and PCP3; that is, parasitation by Isospora, 

the quantified cestode and Haemoproteus 

was related to lower muscular activity and 

poorer nutritional status.  

 

3.6 Relationships between haematological 

values and parasite components 

Haematological parameters did not show 

any significant relationship with parasite 

components (Table 6). 

 

Source Dependent 
variable 

Df 
(Error) 

F p 

PCP1 1 (40) 2.71 0.11 

PCP2 1 (40) 0.17 0.68 Age 

PCP3 1 (40) 0.02 0.88 

PCP1 1 (39) 2.83 0.10 

PCP2 1 (39) 0.60 0.44 
Morning/ 

Afternoon 
PCP3 1 (39) 1.11 0.30 

PCP1 1 (30) 0.01 0.93 
PCP2 1 (30) 0.12 0.73 

H/L 
ranked 

PCP3 1 (30) 0.00 0.97 

PCP1 1 (27) 0.39 0.54 

PCP2 1 (27) 0.47 0.50 
Log (WBC 

+ 1) 
PCP3 1 (27) 0.82 0.37 

PCP1 1 (24) 0.10 0.75 

PCP2 1 (24) 0.24 0.63 
Body 

condition 
PCP3 1 (24) 0.21 0.10 

 

Table 6. Results of the stepwise backwards 

selection procedure MANOVA analysing 

relationships between parasite components and 

haematological values. Significant relationships 

are highlighted in grey. 

 

4. Discussion 

Our results show for first time a 

relationship between biochemical 

indicators of health status and orange bill 

coloration in male blackbirds. The 

interaction between the components 

indicating general health status and the 

component indicating cell hydration level 

was negatively related to bill chroma. The 

orange in male blackbird bills decreased as 

biochemical indicators of both general 

health failure and cell dehydration 

increased. Similarly, the interaction 

between the component indicating cell 

hydration level and the component 

indicating fluid balance was negatively 
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related to bill chroma. The orange in bills 

decreased as general dehydration 

increased. Finally, the interaction between 

the component indicating cell hydration 

levels and the component indicating 

nutritional status was negatively related to 

bill chroma. In other words, when 

biochemical indicators of both 

malnutrition and cell dehydration 

increased, the orange in male blackbird 

bills decreased. The interaction between 

body condition and the components 

indicating general health status, cell 

hydration level and nutritional status were 

also related to bill chroma. This result 

suggests that the negative relationship 

between these biochemistry values and 

the orange in the bills of male blackbirds 

sampled in our study was body-condition 

dependent. This finding agrees with the 

handicap theory (Zahavi and Zahavi 1997), 

which predicts that only the best-

condition individuals can afford the cost of 

spending more carotenoids on ornamental 

functions. 

 

The predictions of the PMSS were not 

supported by our study since no 

significant relationship was found between 

bill chroma and any of the components 

accounting for the parasites evaluated. 

This result agrees with previous studies 

that failed to identify any relationship 

between parasites and bill colouration in 

male blackbirds (Hatchwell et al. 2001; 

Bright et al. 2004), possibly because of the 

different effects that different type of 

parasites have on host physiology. In this 

sense, we found that only Isospora, the 

unidentified cestode and Leukocytozoon 

were related to biochemistry values, all 

being related to low muscular activity and 

poor nutritional status. This finding 

suggests that, of the parasite species 

evaluated, these three species may be the 

only type of parasites affecting host 

physiology. Moreover, none of the 

parasites showed any relationship with the 

other biochemical values or with 

haematological values. In line with this 

finding, the parasites in our sample did not 

show any clear aggregation patterns other 

than those between Isospora and the 

unidentified cestode. This is an important 

result given the traditional focus on a 

single or small number of parasite species. 

Several studies have already pointed out 

that the intensity of infection by different 

species of parasites is not strongly 

correlated at intraspecific level (Møller 

1991; Weatherhead et al. 1993). Our results 

show that in many cases the parasitic loads 

of different groups of parasites are not 

related and so it is not possible to derive 

an ‘index of parasitism’ based on a small 

number of pathogens. Consequently, 

conclusions obtained for one group of 

parasites cannot be extrapolated for the 

full community of parasites. This limits our 

capacity to rigorously test parasite-

mediated selection hypotheses unless, that 

is, clear indications of the effects on host 

fitness exist for a significant fraction of the 

parasite community. We found a negative 

relationship between H/L and the orange 

colour in male blackbird bills. Given that 

the H/L ratio has been described as an 

honest indicator of stress (Davis et al. 2008), 

our results suggest that birds with greater 

stress levels have paler bills than those 

with lower stress levels. This finding 

supports evidence for a relationship 
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between the orange in bills and health 

constraints (Faivre et al. 2003a; Baeta et al. 

2008). Although high WBC values are 

thought to be related to the immune 

function, and despite previous studies that 

have demonstrated a link between 

blackbird bill colouration and the immune 

system (Faivre et al., 2003a; Baeta et al. 

2008), our study failed to find a 

relationship between these parameters. 

This result may be caused by the different 

sources of variability in the WBC besides 

the immune activation. 

 

In conclusion, our results support the idea 

that carotenoids are part of a trade-off in 

their use for ornamentation and for 

satisfying physiological needs, and that the 

colouration of male blackbird bills signals 

its immune and nutritional status. As a 

dynamic ornament, it is likely to be an 

honest indicator of the actual individual 

status. Following on from previous studies, 

our results failed to find a relationship 

between bill colouration and parasite 

burden or prevalence, probably due to the 

complex relationships between parasites, 

health status and carotenoid-based 

ornamentation. We conclude thus that 

biochemistry parameters related to 

different aspects of health status may help 

provide a better understanding of the 

regulation of ornament expression in 

birds. 
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3.e CAPÍTULO 5: Los niveles plasmáticos de carotenos se relacionan 

con la infección por parásitos intestinales en paseriformes silvestres 

Resumen:  

Los carotenos juegan un importante papel en la ornamentación y en la 

fisiología de las aves, y se ha propuesto la existencia de un dilema en los 

individuos en la asignación de estos compuestos entre las dos funciones. 

En este escenario, los parásitos pueden desempeñar un papel 

preponderante en el mantenimiento de la veracidad del plumaje como 

sistema de señalización, ya que estos pueden incrementar las demandas 

fisiológicas de carotenos y/o reducir su absorción en el intestino. Nosotros 

analizamos la relación entre concentración plasmática de carotenos y 

riqueza y abundancia de parásitos sanguíneos e intestinales en 22 especies 

de aves paseriformes muestreadas en las primaveras de 2004 y 2005 en 

Sevilla. La concentración plasmática de carotenos se relacionó 

negativamente con la abundancia de parásitos intestinales, pero no lo 

hizo con los parásitos sanguíneos ni a nivel intra ni interespecífico. 

Nuestros resultados sugieren un efecto negativo de los parásitos 

intestinales en los niveles de carotenos circulantes, mientras que 

confirman que las consecuencias ecológicas del parasitismo difieren 

diametralmente entre diferentes grupos de parásitos. 
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Plasma carotenoid levels in passerines are related to 

infection by parasites 

Jordi Figuerola, Guillermo López and Ramón Soriguer 

 

Abstract 

Plumage coloration plays an important role in intra and inter-sexual competition in birds. In addition 

to ornamentation, carotenoids are important for bird physiology and it has been proposed that a 

trade-off in their allocation to these two functions occurs. Under this scenario parasites may play a 

central role in maintaining the honesty of plumage as a signaling system by increasing the demands 

for carotenoids for infection control and/or by reducing carotenoid absorption in the intestines. We 

analyzed the relationship between (1) carotenoid concentrations in plasma and (2) blood and 

intestinal parasite richness and abundance in 22 species of passerines sampled in spring. Loads of 

different groups of parasites were unrelated so conclusions drawn from examining a particular group 

of parasites cannot be extrapolated to the whole community of pathogens and parasites inhabiting a 

host. Both at intra- and interspecific levels plasma carotenoid concentrations were negatively related 

to the abundance of intestinal parasites, but unrelated to blood parasites. Our results support the 

existence of a negative relationship between intestinal parasites and carotenoid levels in plasma and 

suggest that this group of parasites play an important role in the evolution and maintenance of 

carotenoid-derived sexually selected ornamentations 

 

Keywords: blood parasites – endoparasites – Haematozoa - honest signaling - host-parasite 

interactions - immune response - plumage coloration - sexual selection 

 

 

1. Introduction 

Hamilton and Zuk (1982) proposed that 

plumage coloration in birds may act as a 

reliable indicator of resistance to parasites. 

Most comparative analyses have supported 

this hypothesis by reporting a positive 

relationship between parasite prevalence 

or richness and interspecific differences in 

plumage coloration (e.g. Scheuerlein and 

Ricklefs 2004 and references therein). At 

intraspecific level positive, negative, and 

non-significant relationships between 

parasitism and plumage coloration have 

been reported (see Møller 1990, Read 1990, 

Zuk 1992 for a review). However, 

experiments performed up to now largely 

support the idea of a negative impact for 

ectoparasites (Figuerola et al. 2003) and 

coccidian endoparasites (Brawner et al. 
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2000, McGraw and Hill 2000, Hõrak et al. 

2004) on plumage brightness. Many of the 

colorations involved in sexual selection are 

derived from carotenoids (Badyaev and Hill 

2000), pigments that cannot be 

synthesized by birds and thus have to be 

incorporated from their diets (Olson and 

Owens 1998). Interestingly, carotenoids are 

not only used to confer color on feathers 

and skins, but also are involved in the 

synthesis of different vitamins and the 

control of oxidative stress (von Schantz et 

al. 1999, Blas et al. 2006 but see Constantini 

and Møller 2008). For this reason, it has 

been proposed that birds have to face a 

trade-off between investing carotenoids in 

showiness or in health-related functions 

(von Schantz et al. 1999, Peters 2007). 

Under this scenario, parasites and 

pathogens may play a central role in the 

regulation of the honesty of birds’ 

signaling systems. The mechanistic and 

physiological processes linking parasites, 

health and ornament expression are now 

the focus of intense debate and research. 

 Concentrations of carotenoids 

differ widely between individuals; 

individuals with higher concentrations of 

carotenoids in their blood usually develop 

brighter plumages (Figuerola et al. 1999) 

and have a more active immune system 

(Blas et al. 2006, Aguilera and Amat 2007). 

Studies of interspecific variation in 

carotenoids levels are less common. 

Recently, Tella et al. (2004) analyzed some 

ecological, morphological and evolutionary 

factors related to variations in carotenoid 

concentrations in the blood of 80 wild bird 

species. Phylogeny, body size, and the 

presence of carotenoid-dependent 

colorations were related to interspecific 

differences in carotenoids. Although Tella 

et al. (2004) have already suggested that 

some of the interspecific variation they 

found in carotenoid concentrations in 

plasma may merely reflect differences in 

the incidence of coccidian parasites 

between species, to our knowledge no 

study has ever analyzed the relationship 

between parasitism and interspecific 

variation in the circulation of carotenoids. 

At intraspecific level, Mártinez-Padilla et al. 

(2007) reported an increase in the 

concentration of carotenoids in the blood 

after experimentally reducing infection by 

nematodes in Red Grouse (Lagopus 

lagopus), while the reduction of coccidian 

loads has been reported to lead to 

increased plasma carotenoid levels in 

Greenfinches (Carduelis chloris) and 

growing chickens (Zhu et al. 2000, Hõrak et 

al. 2004). 

In this paper, we analyze the relationship 

of carotenoids and parasitism in 22 species 

of passerines in terms of two different 

groups of parasites: haematozoa and 

intestinal parasites. First of all we tested 

the relationship between the incidence of 

different parasite groups and the levels of 

plasma carotenoids in individual birds. 

Secondly, we tested the role of 

interspecific differences in the incidence 

of parasitism as a means of explaining 

interspecific differences in the 

concentration of plasma carotenoids. 

Overall, we provide evidence that levels of 

circulating carotenoids are negatively 

related to the loads of some 

endoparasites, both on an individual level 

and specific level of the host species. 
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2. Methods 

We captured 354 individuals of 22 

passerine species during the pre-breeding 

migration period (March-May) in 2004 and 

2005 in a tree nursery in a suburb of the 

Spanish city of Seville (37º 23’ 11’’ N, 5º 57’ 

46’’W). Twenty twelve-metre-long mist-nets 

were operated from sunrise to sunset. 

Between capture and ringing birds were 

kept individually in clean cloth bags to 

allow any droppings produced during this 

time to be collected. Each bird was marked 

with a numbered ring and wing length (to 

the nearest mm) and body mass (to the 

nearest 0.1 g) were measured. Whenever 

possible sex was determined on the basis 

of the plumage characteristics given by 

Svensson (1996). Subsequently, 0.5 ml of 

blood was taken from the birds’ jugular 

vein using 29 G sterile insulin syringes. A 

drop of this blood was used to prepare a 

smear on a microscopic slide (as per 

Bennett 1970), which was air dried and 

then fixed and stained using Diff-Quick 

solution. The rest of the blood sample was 

placed in a vial and after several hours 

centrifuged for 10 minutes at 6000 rpm in 

an Eppendorf Minispin centrifuge to 

separate serum from cells. Samples were 

then stored at –20º C to be used for other 

studies (see López et al. 2008). After blood 

extraction, birds were kept individually in 

the cloth bags for 20 minutes to collect 

faecal samples and were then released. 

Between 0.5 and 1 mg of faeces were 

placed in individually marked vials 

containing 5% formol and the collection 

time was annotated for each sample. 

 

 

Laboratory method 

Blood smears were scanned for blood 

parasites at low (400X) and high (oil 1000X) 

magnification: a total of 15,000 

erythrocytes were explored in each sample 

(Godfrey et al. 1987). Parasites were 

identified to genera level and when 

intraerythrocytic parasitemia occurred, 

the blood parasite load was estimated as 

the percentage of infected erythrocytes. 

Haemoproteus spp. (27.7% prevalence), 

Plasmodium spp. (16.4%), Leucocytozoon 

spp. (6.2%), and Trypanosoma spp. (0.8%) 

were detected in the blood slides. 

Droppings were filtered through a double 

layer of cotton-lint cheesecloth and 

scanned for endoparasites in a McMaster 

chamber. A known volume of the sample 

was dried and the dry weight of the faeces 

was used to estimate the number of 

oocysts or eggs per mg of dry faeces 

(following López et al. 2007). The most 

frequent parasite species found were 

Protozoan coccidia of the genera Isospora 

(45.5% prevalence), although some 

trematodes and nematodes were also 

found. Because most species could not be 

identified, parasites were grouped 

according to Order: Trematoda: Strigeida 

(3.1%); Nematoda: Spirurida (13.6%), 

Capilariida (4.8%), Ascarida (3.4%) and 

unidentified nematodes (6.2%). All 

screening of the samples was carried out 

by one of the authors (GL). 

 

Molecular sexing 

The cellular fraction of the blood sample 

was used to extract DNA for each bird and 

sex was determined using a polymerase 

chain reaction (PCR) amplification of the 
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CHD genes (Ellegren, 1996; Griffiths et al., 

1998) with the P2/P8 primers. 

 

Carotenoid quantification 

Pigments were extracted from plasma by 

adding acetone to the plasma samples at a 

ratio of 1:1 (v/v). The mixture was 

centrifuged at 13 000 r/min at 16 249g for 

10 min to precipitate the flocculant 

proteins (Negro and Garrido 2000). The 

supernatant was retained and stored at –

20 °C until high-performance liquid 

chromatography (HPLC) analysis. A Jasco 

PU-2089 Plus instrument equipped with a 

quaternary pump (Jasco Analítica Spain, 

S.L., Madrid) was used for carotenoid 

analyses, with a reverse-phase C18 column 

(Phenomenex Synergi 4 µ) and a pre-

column of the same material with a 

particle size of 5 µm. Samples were 

prefiltered using an OEM nylon filter, 0.45 

µm °— 4 mm) and later injected using a 

Rheodyne 7725i valve equipped with a 20-

µL loop (Rheodyne, Rohnent Park, 

California, USA). The eluent system is that 

described in Mínguez-Mosquera and 

Hornero-Méndez (1993), with the only 

difference being that the flow rate was 1 

mL•min–1. Data were acquired between 

195 and 650 nm with a multiwavelength 

detector (MD-2010 Plus, Jasco Analítica 

Spain, S.L.). 

Reference carotenoids were obtained 

from fresh green plants in J. Garrido’s 

laboratory, as per Mínguez-Mosquera 

(1997). Known reference dilutions of 

zeaxanthin, lutein and β-carotene were 

injected into the HPLC instrument to build 

a calibration curve at 450 nm. The 

concentration of individual carotenoids 

was calculated from HPLC areas recorded 

at 450 nm. The total carotenoid 

concentration (�g/ml) used in the analyses 

was obtained by adding together the 

values for zeaxanthin, lutein, β-carotene 

and other unidentified carotenoids for 

each individual. 

 

Statistical analysis 

In this paper we aim to explore 

intraspecific and interspecific patterns of 

variation in plasma carotenoid 

concentrations. Thus, the statistical 

relationships between carotenoids and 

parasites were tested using two different 

approaches. 

Firstly, patterns of variation between 

individuals were analyzed by using 

generalized mixed-effect linear models 

using the program JMP 5.0. In this analysis, 

species was included as a random effect 

and the existence of a relationship 

between carotenoids and parasites was 

tested while allowing for species-specific 

differences in the intercept (but not the 

slope) between parasites and carotenoid 

concentrations. In all the analyses sex (male 

or female), year (2004 or 2005), date of 

capture (days counted as from March 8) 

and time of capture (morning or 

afternoon) were included as fixed factors. 

The time of capture had an important 

effect on endoparasite abundance (F1,331 

= 223.24, P < 0.0001, see also López et al. 

2007) and for this reason an interaction 

coding for time of capture and parasite 

abundance was included in the analyses 

that included intestinal parasites with 

significant diurnal cycles in egg shedding 

(coccidians: F1,331 = 338.63, P <0.0001; 

Capilariida: F1,331 = 4.74, P = 0.03; F1,331 

< 2.05, P > 0.15 for all other parasite 
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groups). The amount of variance explained 

by the species factor was estimated from 

changes in the model deviance. 

Secondly, to investigate interspecific 

patterns of variation we first estimated for 

each variable and species the least-square 

means corrected for sex, time of capture, 

date, and year. Least-square means were 

then included in a generalized linear model 

to explore the covariates of plasma 

carotenoid concentration differences 

between species. In addition to parasites, 

the initial model included three other 

variables that are related to interspecific 

variation in carotenoid concentrations 

(Tella et al. 2004): mean body mass, the 

extent of carotenoid-derived coloration in 

plumage, and the extent of carotenoid-

derived pigmentation in non-feathered 

parts (following the scoring methodology 

used by Tella et al. 2004). Phylogeny 

explains a relevant amount of variance in 

the concentration of circulating 

carotenoids (Tella et al. 2004), but most 

variance occurred at Order level and for 

this reason we restricted our analyses to 

passerine species. 

 

Figure 1. Relationship between intestinal and blood parasite richness for 354 individual birds of 22 

different passerine species after controlling for the effects of time of capture (morning or afternoon) 

on intestinal parasite richness. Species were included in the model as a random factor to allow 

different intercepts for data from different species but also to provide a common slope for all 

species. 
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In all the analyses carotenoid 

concentrations were considered to be the 

dependent variable and parasite richness 

(number of parasite taxons per individual) 

and parasite abundance as independent 

variables. Carotenoid concentrations, 

parasite counts and mean body mass were 

log-transformed to attain normality. We 

followed a backwards selection procedure, 

starting with a model including all the 

variables (and in the case of intestinal 

parasites, its interaction with the factor 

‘time of capture’), removing the least 

significant variable and fitting the model 

again until all the variables in the model 

contributed with P < 0.10 to the fit of the 

model. Only variables with P < 0.05 were 

interpreted as significant. 

3. Results 

Richness and abundance of intestinal and 

blood parasites 

No relationship was found between the 

richness of intestinal and blood parasites in 

individuals (r2 = 0.01, F1,330 = 0.04, P = 

0.84, Fig. 1) or in species (r2 = 0.01, F1,20 = 

0.25, P = 0.63). Likewise, intestinal and 

blood parasite abundances were unrelated 

at either level (inter-individuals: r2 = 0.00, 

F1,330 = 0.69, P = 0.41; inter-specific: r2 = 

0.09, F1,20 = 1.98, P = 0.18). 

 

Factors related to carotenoid circulation 

In the analyses at individual level both year 

(larger concentrations in 2005 than in 2004, 

F1,330 = 18.26, P < 0.0001) and date 

(increases throughout the spring, F1,330 = 

16.11, P < 0.0001) were related to 

carotenoid concentrations; no differences 

were found in carotenoid concentrations 

in relation to either sex (F1,329 = 0.24, P = 

0.62) or time of capture (F1,329 = 0.01, P = 

0.92). Overall, species explained 42.78% of 

inter-individual variance carotenoid 

concentrations in plasma. 

 

Analyses of the relationships between 

plasma carotenoids and parasitism at 

individual level 

Between individuals, plasma 

concentrations of carotenoids were 

negatively related to the richness of 

intestinal parasites (-0.0767 � 0.0298, F1,327 

= 6.64, P = 0.01, Fig. 2a), but were not 

related to the richness of blood parasites 

or to the abundance of intestinal or blood 

parasites (F1,326 < 2.75, P > 0.10 for all 

variables). We repeated the analyses, taking 

into account separately coccidians and 

Spirurids, and also added data for the 

other parasite taxons with less than 5% 

prevalence in a group we named “other 

intestinal parasites”. This second set of 

analyses confirmed the negative 

relationship between carotenoids and the 

presence of “other intestinal parasites” 

(F1,329 = 7.51, P = 0.007, Fig. 2b) and a 

trend for a negative relationship with the 

presence of Spirurids (F1,328 = 3.53, P = 

0.06). When we repeated the analyses with 

abundance, both “other intestinal 

parasites” and Spirurids were negatively 

related to carotenoid concentrations 

(F1,328 = 5.95, P = 0.02, Fig. 2c; F1,328 = 

5.37, P =0.02, Fig. 2d). Presence and 

abundance of coccideans were not related 

to carotenoid concentrations (prevalence: 

F1,328 = 1.24, P = 0.27; abundance: F1,327 

= 0.87, P = 0.35). 
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Figure 2. Carotenoid concentrations and parasites. Relationship between carotenoid concentrations 

(µg/ml) in 354 individuals of 22 species of passerines and (A) intestinal parasite richness, (B) prevalence 

of other (less frequent) intestinal parasites, (C) abundance of other (less frequent) intestinal parasites 

and (D) abundance of the intestinal parasites of the Order Spirurida (see legend of Fig. 1 to identify 

the data from each species). 

 

 

Interspecific relationships between plasma 

carotenoids and parasitism 

Both the proportion of carotenoids in the 

plumage (0.0058 � 0.0019, F1,17 = 9.87, P = 

0.006) and in non-feathered parts (0.0806 � 

0.0323, F1,17 = 6.21, P = 0.02) were 

positively related to carotenoid 

concentrations. Carotenoid concentrations 

were unrelated to mean species body mass 

(F1,18 = 0.02, P = 0.88). In addition, a 

negative relationship between carotenoid 

concentrations and the abundance of 

intestinal parasites was found (-0.4925 � 

0.2350, F1,17 = 4.39, P = 0.05, Fig. 3). This 
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relationship was not due to the abundance 

of any particular intestinal parasite group 

(coccidians: F1,19 = 0.43, P = 0.52; 

Spirurids: F1,19 = 1.74, P = 0.20; other 

intestinal parasites: F1,19 = 0.05, P = 0.83). 

No relationship between intestinal parasite 

richness (F1,17 = 3.19, P = 0.09), blood 

parasite richness or abundance was found 

(F1,18 < 0.08, P > 0.78 for both variables). 

 
Figure 3. Carotenoid concentrations and 

parasites. Relationship between the abundance 

of intestinal parasites and carotenoid 

concentrations (µg/ml) at interspecific level (see 

legend of Fig. 1 to identify the data from each 

species). 

 

4. Discussion 

Traditionally, hypotheses concerning the 

relationships between host ecology and 

parasites have been tested by focusing on 

a particular group of parasites (e.g. 

Haematozoa, intestinal parasites, or 

ectoparasites). However, the failure to 

falsify a hypothesis may be due to a lack of 

success in identifying the group of 

parasites that most significantly affect host 

fitness (unless the abundance of the 

different groups of parasites is highly 

correlated). Several studies have already 

pointed out that the intensity of infection 

by different species of parasites is not 

strongly correlated at intraspecific level 

(Møller 1991; Weatherhead et al. 1993, but 

see Holmstad et al. 2008 for an exception). 

Our results indicate that species richness 

and abundance of blood and intestinal 

parasites are unrelated in analyses at both 

individual and species level. Consequently, 

conclusions obtained for one group of 

parasites cannot be extrapolated for the 

full community of parasites and so our 

capacity to rigorously test parasite-

mediated selection hypotheses is lessened 

unless clear indications of the effects on 

host fitness exists for a significant fraction 

of the parasite community. 

We believe that it is important to highlight 

that we did not analyze intestinal parasite 

fauna directly by killing and dissecting the 

birds. Rather, we used the release of 

parasite propagules in faeces as a 

surrogate method for estimating intestinal 

parasite abundance and richness. Although 

this is not a direct measurement of 

parasite load, concentrations of parasite 

oocysts in faeces do indicate parasite 

reproductive success (Chapman 1998) in a 

highly reliable fashion (Lopez et al. 2007). 

We cannot rule out the possibility that the 

correlation between blood and intestinal 

parasites was underestimated. However, 

the relationships found between intestinal 

parasites and carotenoid concentrations 

suggest that we obtained biologically 

relevant estimates of the composition of 

intestinal parasite communities. 



Relaciones eco-fisiológicas hospedador-parásito en aves silvestres 
 

 79

The second main result of our study is the 

finding of a negative correlation between 

intestinal parasite abundance or richness 

and carotenoid circulation in the blood. 

These relationships were detected 

between individuals and between species. 

There are several non-exclusive factors that 

can explain these results. Firstly, immune 

response to parasitism may require the 

mobilization of carotenoids as scavengers 

of free radicals released during an immune 

response, leading to the depletion of 

carotenoid stores and reduced carotenoid 

levels in the blood (Alonso-Alvarez et al. 

2004, Pérez-Rodriguez et al. 2008 but see 

Constantini and Møller 2008). Secondly, 

some intestinal parasites such as coccidians 

lessen carotenoid absorption in the 

intestines and thus reduce carotenoid 

incorporation into the blood (Ruff et al. 

1974, Augustine and Ruff 1983, Allen 1987, 

Tyczkowski et al. 1991). Lastly, food (prey) 

that is poor in carotenoids may have been 

more parasitized, thereby exposing 

individuals and species to a higher amount 

of parasites. We suspect that this is not the 

case in our results given that previous 

analyses by Tella et al. (2004) failed to find 

any effect of diet on interspecific 

differences in carotenoid concentrations 

between species of the same family. 

However, a lack of information exists on 

how the consumption of carotenoid-rich 

foods is related to exposure to parasites at 

intra- and interspecific levels. The negative 

relationship between carotenoids and 

intestinal parasite richness may have at 

least two potential explanations: 1) the 

synergistic or accumulative effects of 

parasites and/or 2) an effect due to only 

one or just a few parasite taxons and 

consequently more likely to occur in an 

individual with a richer parasite fauna. We 

cannot differentiate between these two 

possibilities, although when we repeated 

the analyses separately for the different 

intestinal groups we found independent 

negative relationships for Spirurids and for 

the group ‘other nematodes’. None of 

these groups of parasites is habitually the 

focus of studies of parasite evolution. In 

particular, Spirurida, an order of 

nematodes mainly transmitted by 

invertebrate vectors, were associated with 

reduced levels of carotenoids in analyses at 

individual level. Our results suggest that it 

would be worthwhile to include this group 

of parasites in future analyses and 

experiments on the physiology of 

carotenoids and on the evolution of 

carotenoid-derived signals. 

 In addition to intestinal parasites 

two other variables were related to inter-

individual variation in carotenoid 

concentrations in the blood: year and date 

of capture. Carotenoid concentrations 

were higher in 2005 than in 2004 and 

increased as spring progressed. As 

previously commented, carotenoids 

should be obtained from an animal’s diet 

and in the case of birds both invertebrates 

and fruit are important sources of 

carotenoids. Both of these resources 

undergo significant annual and seasonal 

oscillations in abundance (Herrera et al. 

1998, Jones et al. 2003) that may explain 

our results. Both the effects of year and 

season have been already reported in the 

case of the Great Tit Parus major, the only 

species in which seasonal and annual 

variation in plasma carotenoids has been 
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studied to date (Isaksson et al. 2007). Our 

results confirm that these factors are 

applicable to the passerine communities 

present in our study area. Despite the fact 

that some studies have reported a higher 

concentration of carotenoids in males than 

in females during molting periods (Hill 

1995, Figuerola and Gutierrez 1998), our 

results indicate that this is not the case 

during the spring, when no molting is 

occurring. Another potential reason for 

expecting sexual dimorphism in carotenoid 

circulation is the deposition of important 

quantities of carotenoids in eggs that may 

reduce female carotenoid stores (Saino et 

al. 2002, Royle et al. 2003). It is important to 

note, however, that the samples in our 

study were collected before the start of 

egg-laying in most of the species studied. 

 At interspecific level, the extent of 

carotenoid-derived coloration in feathers 

and skins was positively related to 

carotenoid concentrations in the blood, 

thus confirming the results reported by 

Tella et al. (2004). However, in contrast to 

this study, we failed to find any 

relationship between body mass and 

carotenoid concentrations, probably 

because of the smaller numbers and the 

lesser variation in body mass of the species 

analyzed in our study. 

 In conclusion, parasites are related 

to differences between individuals and 

species in the concentration of 

carotenoids in the plasma, suggesting that 

they may play an important role in the 

regulation of carotenoid levels. 

Interestingly, these effects are not 

generalized for parasites, but are specific 

to some groups, indicating the need for 

studies focusing on complete parasite 

communities and not just on a single 

group. Additionally, Spirurida were 

particularly related to reduced levels of 

carotenoids, suggesting that more 

attention should be paid to this group of 

parasites in future studies of host-parasite 

ecology. 
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4.a. CAPÍTULO 6: El tamaño importa: Anticuerpos neutralizantes 

frente al virus del Nilo occidental en aves residentes y migradoras 

en España. 

Resumen: 

La rápida expansión de WNV ha suscitado el interés de comprender la 

dinámica poblacional y los patrones dispersivos de las enfermedades 

infecciosas en la fauna silvestre. En este trabajo analizamos diferentes 

factores ecológicos y evolutivos relacionados con la prevalencia de 

anticuerpos neutralizantes frente a WNV en 72 especies de aves 

muestreadas en el sur de España. La prevalencia de anticuerpos fue 

máxima durante el otoño y el invierno en comparación con los meses de 

verano. La seroprevalencia estuvo directamente relacionada con la masa 

corporal y el comportamiento migrador. La mayor prevalencia de 

anticuerpos observada en migrantes estivales se puede explicar, entre 

otros factores, por la diversidad de localidades envueltas en sus ciclos 

vitales o por las áreas geográficas visitadas en las migraciones. La mayor 

prevalencia observada en especies grandes no se explicaba por la 

longevidad, ya que la relación permanecía significativa al analizar sólo aves 

de un año de edad, pero probablemente incluía también una mayor 

atracción de los vectores hacia las especies mayores. La colonialidad y el 

gregarismo invernal no estuvieron relacionados con la prevalencia de 

anticuerpos frente a este patógeno altamente generalista en cuanto a 

hospedador. Las relaciones evolutivas entre especies no estuvieron 

relacionadas con las diferencias en la prevalencia de anticuerpos. Nuestros 

resultados sugieren que las especies más grandes son buenas candidatas 

para realizar seguimiento de los cambios locales, estacionales y anuales en 

la seroprevalencia de WNV. 
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Abstract

The rapid range expansion of West Nile Virus has raised interest in understanding the population dynamics and dispersal

patterns of emerging infectious diseases by wildlife. We analyzed different ecological and evolutionary factors related to West

Nile Virus neutralizing antibody prevalence in 72 bird species sampled in southern Spain. Prevalence of antibodies reached its

maximum during the autumn and winter in comparison to summer months. Prevalence of antibodies was directly related to body

mass and migratory behaviour. The greater prevalence of antibodies observed in summer migrants can be explained, among

other factors, by the diversity of localities involved in their life cycles or the geographic areas visited during their migrations.

Greater prevalence in larger species was explained by their longevity because the relationship was already significant when

analyzing only first year birds, and probably also involved a high attraction to vectors by larger hosts. Coloniality and winter

gregarism were unrelated to the prevalence of antibodies against this highly host generalist pathogen. Evolutionary relationships

between species were unrelated to differences in the prevalence of antibodies. Our results suggest larger species as good

candidates for easy, faster and cheaper monitoring of local, seasonal and annual changes in WN virus serology.

# 2008 Elsevier B.V. All rights reserved.
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1. Introduction

West Nile Virus (WNV) is a member of the

Flavivirus genus (family Flaviviridae), transmitted by

mosquito bites. Humans infected by WNV may

develop a variety of signs ranging from mild fever

to more severe illnesses such as acute encephalitis,
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poliomyelitis, meningitis, or hepatitis and is fatal in a

small percentage (<1%) of cases (Hubálek and

Halouzka, 1999). WNV is widely distributed through-

out Africa, Asia, Europe, Australia (Kunjin virus). It

was first detected in New York in 1999, and in just 6

years has spread throughout all of North America

(CDC, 2005). It has been suggested that one of the

causes of this rapid expansion is the high mobility of

the virus’ avian reservoirs (Rappole and Hubálek,

2003) and its wide host range (already detected in

more than 285 avian species; CDC, 2005).

In Europe and Africa WNV infection is usually

non-fatal for birds (Hubálek and Halouzka, 1999); in

the New World, however, the virus has killed many

birds (Marra et al., 2004), and reduced populations of

more susceptible hosts by up to 45% since WNV

arrival (LaDeau et al., 2007). As an example of the

different epidemiology in Europe and North America,

while experimental infection with WNV of North

American birds usually result in high mortalities (i.e.

32.3% of 87 experimentally infected birds of 25

species, Komar et al., 2003), experimental infections

done in Europe have reported no apparent mortality

due to WNV (9 geese experimentally infected by

Malkinson and Banet, 2002). The reasons for this high

virulence in North America remain largely unknown;

nevertheless, the fact that species from the Nearctic

have never been exposed to the virus and the higher

pathogenicity observed in the introduced strain (Brault

et al., 2004) may explain these differences.

A number of ecological factors can be associated

with a higher prevalence or diversity of pathogens in

birds: migratory behaviour, coloniality or gregarism,

habitat use, mating systems, and immune system

capacity (Møller and Erritzoe, 1996; Clayton and

Moore, 1997; Figuerola, 1999, 2000; Figuerola and

Green, 2000; Tella, 2002). However, to our knowl-

edge, no study has focused on vector-borne generalist

pathogens. Despite the thousands of birds that have

been tested for WNV or its antibodies in North

America, analyses focusing on the relationship

between bird ecology and exposure to the virus are

still lacking but urgently needed. In this study we take

advantage of the differences in the impact of WNV in

Europe and in North America to analyze the

relationship between bird ecology and phylogeny

and prevalence of WNV neutralizing antibodies. The

relevance of this study is twofold, on the one hand, the

low host specificity of WNV makes this system

different from the pathogens used in previous studies

(mainly blood parasites and ectoparasites), and may

affect the relevance of different ecological factors. On

the other hand, given the relevance of WNV for human

health and wildlife conservation we also aim to

identify the characteristics of the species that can be

most useful for monitoring in Europe.

In this paper, we first analyze the relationship

between host evolutionary and ecological character-

istics and the prevalence of WNV neutralizing

antibodies in birds. Second, as we report important

differences in the prevalence of antibodies according

to host characteristics we used a statistical power

analysis to discuss the relevance of our results in

relation to WNV monitoring in Europe.

2. Materials and methods

Between January 2003 and February 2005 we

captured 1213 individuals belonging to 72 species (49

genera, 22 families, and 8 orders). Birds were captured

without damage using mist-nets and walk-in-traps in

the Guadalquivir and Odiel Marshes (SW Spain).

Blood samples were taken with syringes from the

brachial, femoral, or jugular vein, birds were marked

with numbered aluminum rings and released after

manipulation. The volume of blood extracted

depended on the size of the species and never

exceeded 1% of body mass (range 0.080–1 ml). Blood

was collected in eppendorf tubes, allowed to clot at

ambient temperature, and placed into coolers until

centrifugation during the same day. All samples were

obtained from adult (full grown) individuals to ensure

that the antibodies were not the result of the passive

transfer of maternal immunity (Gibbs et al., 2005).

When possible age was determined (471 first-year

individuals and 540 after first-year individuals)

according to Prater et al. (1977), Baker (1993) and

Svensson (1996).

WNV strain Eg101 and the E6 clone of Vero cells

used for virus propagation were obtained from Hervé

Zeller (Institut Pasteur de Lyon). The Usutu virus

(SAAR 1776 isolate) was obtained through the

Centre for Ecology and Hydrology, Oxford, UK,

and propagated in Vero cells (American Type

Culture Collection, Manassas, VA). Virus titers were
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determined by end-point titration following the

method used by Reed and Muench (1938). WNV-

Neutralizing antibody titers were determined by a

micro-virus-neutralization test (micro-VNT) in 96-

well plates, adapted from a previously described

method (Jiménez-Clavero et al., 2001). A recent study

shows that a micro-VNT assay and the standard

PRNT90 perform comparably in sensitivity at detect-

ing anti-WNV antibodies in birds (Weingartl et al.,

2003). Serum samples were inactivated at 56 8C for

30 min prior to the analysis. Dilutions of test sera

(25 ml) were incubated with 100 TCID50 of WNV

strain Eg101 in the same volume (25 ml) for 1 h at

37 8C in Eagle’s medium (EMEM) supplemented

with L-glutamine, 100 U/ml penicillin, 100 mg/ml

streptomycin, followed by the addition of 50 ml of a

suspension (2 � 105 cells/ml) of Vero E6 cells in the

same medium plus fetal calf serum to a final

concentration of 5%. The mixture was further

incubated for 6–7 days (37 8C in a 5% CO2 and

saturating humidity atmosphere) until cytopathic

effect (cpe) was observed in control wells containing

10 TCID50 of virus. The screening of samples was

performed at 1:10 and 1:20 dilutions of tested sera

(dilutions considered before the addition of virus, that

is, in a volume of 25 ml). Only samples yielding

positive neutralization (complete absence of cpe) at

1:20 were scored as positives and further titrated by

analyzing serial serum dilutions from 1:20 to 1:640.

Neutralizing serum titer was considered as the highest

value of the reciprocal serum dilution giving a

complete absence of cpe.

The specificity of the assay was assessed in two

ways. First, by analyzing a panel of sera from an

external quality assessment, consisting of serum

samples containing antibodies from other four

flaviviruses, that proved negative for neutralization

titers in our WNV assay, while duplicate testing of

all WNV antibody-positive serum samples proved

positive (>1:20) for neutralization titers (Niedrig

et al., 2007). Second, we also compared the

neutralizing antibodies titers of 18 samples tested

in parallel for WNV and Usutu virus (a closely

related JEV group avian virus). In none of the cases

showed higher antibody titers more specific to Usutu

than to WNV (see Figuerola et al., 2007a, for more

details). We cannot discard that the serology to

WNV observed in some of the samples, particularly

those from birds flying from Central Europe (e.g.

Turdus philomelos, Sylvia atricapilla) could be

attributed to cross-reacting antibodies to other flavi-

viruses (particularly TBEV) that can be prevalent in

Central Europe. However, this seems unlikely since

the technique has shown no cross reactivity to

TBEV-positive sera.

In a first model, we investigated the effects of

taxonomic relationships on West Nile Virus pre-

valence by using Generalized Linear Mixed Models

(GLMM). GLMM allows a more versatile analysis

of correlation than standard regression methods,

because the error distribution of the dependent

variable and the function linking predictors to it

can be adjusted to the characteristics of the data

(Littell et al., 1996). Our response variable was the

antibody status (1 present, 0 absent), and we used a

binomial distributed error and a logistic link function,

to ensure linearity, and statistics adjusted to model

dispersion. Binomial errors are adequate to analyze

binary response variables. Goodness-of-fit of the

model was assessed by checking the overdispersion

parameter and the Generalized Chi-Square statistic

(Littell et al., 1996). Period (a three levels factor,

summer: birds captured in June–August, autumn:

September–November and winter: December–

March) and age (first-year or adult bird, not including

unknown age birds in the analyses) were included as

fixed factors in the analyses. Species was included as a

repeated subject effect (i.e. observations of a same

species are correlated) and the interaction between

species and period was included as a random factor.

The statistical significance of each nested taxonomic

level (Genera, Family and Order) was tested using

Z-statistics for random effects using the macro

GLIMMIX for SAS 8.2 (Littell et al., 1996). As

age had no significant effect (F1,27 = 1.88, P = 0.18,

N = 957), we report the results of analyses excluding

this variable to include the full dataset and range of

species.

In a second model, we analyzed the relevance of

different ecological factors. Species body mass (log

transformed mean values to fit a normal distribution

as judged by checking the normal quantile plot),

migratory behaviour (resident or migratory species),

breeding sociality (solitary or colonial breeders), and

winter sociality (solitary or gregarious species) were

included as fixed factors in the analyses. Values for
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these variables were taken from literature (Cramp,

1982–1994) and were validated by four independent

ornithologists according to the ecology of the species

in Spain. For each individual we also included the

period of collection to control for seasonal differences

in the prevalence of antibodies. To test the relationship

between ecological factors and antibody prevalence

we followed a stepwise-backward selection procedure

starting from an initial model including all the two-

way interactions between factors.

We estimated the sample size necessary to detect

increases of 10, 20, 30 and 40% in WNV seropre-

valence with the program G-Power (Buchner et al.,

1997). Effect sizes were calculated for prevalences

between 1 and 55%, and sample size necessary to

obtain a power of 0.80 when using a Chi-Square test

was estimated. A power of 0.80 indicates that a

significant result (P < 0.05) will be obtained in 80%

of the analyses of datasets with statistical differences

of that magnitude, and is the threshold value usually

used in ecology (Bausell and Li, 2002).

3. Results

Of the 1213 individuals tested, 126 (10.4% of

individuals from 24 out of 72 species) had WNV

neutralizing antibodies, with titers ranging from 1:20

to over 1:640 (see Electronic Appendix A). Important

interspecific differences in the presence of WNV

neutralizing antibodies were found, with prevalences

ranging from 0 to 42.9%. However, taxonomic levels

were unrelated to these differences in prevalence

(Genera, Z = 0.80, P = 0.21; Family, Z = 1.11, P =

0.14; Order, Z = 0.58, P = 0.28).

Multivariate analyses indicate that antibody pre-

valence was unrelated to host sociality (Table 1).

Prevalence of antibodies changed seasonally (Table 1)

with significantly higher prevalences in autumn (mean

� S.E.: 10.29%� 12.71) than in summer (a test of

Least-Square means difference, 2.09 � 7.72, t29 = 2.46,

P = 0.02), and intermediate prevalences in winter

(3.27%� 9.12, contrast with autumn, t29 = 1.85,

P = 0.07; contrast with summer, t29 = 0.61, P = 0.55).

J. Figuerola et al. / Veterinary Microbiology 132 (2008) 39–4642

Table 1

Model analyzing the relationship between host ecology, period of capture and presence of West Nile Virus (WNV) neutralizing antibodies in the

blood of 1213 individuals birds captured in south-west Spain

Estimate � S.E. F d.f. P

Body mass 0.746 � 0.288 6.72 1,69 0.01

Migratory behaviour 2.032 � 1.084 0.71 1,69 0.40

Period 3.55 2,29 0.04

Summer 0

Autumn 2.194 � 1.286

Winter 2.287 � 1.133

Coloniality 0.67 1,68 0.42

Winter gregarism 2.82 1,68 0.10

Body mass �Migratory behaviour 0.71 1,68 0.40

Body mass � Period 1.21 2,1135 0.30

Body mass � Coloniality 0.65 1,68 0.42

Body mass �Winter gregarism 3.23 1,68 0.08

Migratory behaviour � Period 3.71 2,29 0.04

Migratory species in autumn �1.021 � 1.366

Migratory species in winter �3.653 � 1.431

Others 0

Migratory behaviour � Coloniality 1.63 2,67 0.20

Migratory behaviour �Winter gregarism 1.41 2,67 0.25

Period � Coloniality 1.28 3,26 0.30

Period �Winter gregarism 0.99 3,26 0.41

Coloniality �Winter gregarism 1.55 2,67 0.22

Final model was obtained after backwards variable selection. Only variables with P < 0.05 are interpreted as statistically significant and

parameter estimates are given. For variables not included in the model no parameter estimate is presented and the F and P values correspond to

the values when added to the final model.
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Although migratory behaviour was not directly related

to antibody prevalence (migrants, 5.23% � 7.41;

residents, 3.32% � 8.13), a significant interaction with

season was found (Table 1). Prevalence did not change

with season in resident species (F2,29 = 2.11, P = 0.14)

but only in migratory species (F2,29 = 6.15, P = 0.006).

When comparing migrant and resident species within

each period, in summer migrants (i.e. species wintering

in Africa) tended to have higher prevalences of

antibodies that residents (5.56%� 8.58 vs. 0.77% �
8.85; t29 = 1.88, P = 0.07). Winter migrants (i.e.

coming from central and northern Europe) tended to

have lower prevalences than resident species (1.48%�
10.49 vs. 7.06 � 12.16; t29 = 1.70, P = 0.09). Large

species (as estimated from their body size) had higher

prevalences of antibodies (Table 1, Fig. 1).

As age may affect the relationship between antibody

prevalence and body mass, the analyses were repeated

using only less than 1 year old birds (417 individuals),

confirming that the relationship between prevalence

and body mass was significant also when considering

only birds of the same age (F1,43 = 5.61, P = 0.02).

Power analyses indicate that the sample size

necessary to detect significant changes in seropreva-

lence depends dramatically on initial seroprevalence

(Fig. 2). For example, 4857 individuals are necessary

to detect a 40% increase in seroprevalence when initial

seroprevalence is 1% (i.e. in our study Passer

domesticus had a prevalence of 0%), but only 74

individuals are necessary when focusing in species

with 40% prevalence (i.e. Fulica atra, with 42.6%

prevalence or Larus ridibundus, with 42.9%).

4. Discussion

In Spain, clinical signs of WNV disease in birds has

only been reported recently (Höfle et al., 2008). WNV

neutralizing antibodies had been reported in horses

(Jiménez-Clavero et al., 2007), chicks of different

colonial breeding waterbirds (Figuerola et al., 2007a),

and the rapid seroconversion of common coots during

a capture–recapture study has also confirmed the local

circulation of WNV in the study area (Figuerola et al.,

2007b). Infections with clinical symptoms in humans

were reported in 2004 in Badajoz (Spain) and Algarve

(Portugal) (Esteves et al., 2005; Kaptoul et al., 2007),

overlapping with the collection of samples for this

study. Previous records give a seroprevalence of up to

30% in humans in some towns in the Ebro Delta

(Lozano and Filipe, 1998) and of 16.5% in northwest

Spain (González and Filipe, 1977), presumably

with maximum epidemic activity during the 1970s.
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Fig. 1. Prevalence of West Nile Virus (WNV) neutralizing anti-

bodies in relation to body size (grams) in resident (418 individuals)

and migratory (795 individuals) birds sampled in south-west Spain.

For illustration purposes a regression line has been plotted for

migratory and resident species. Open symbols and dotted line

correspond to migratory species and filled symbols and continuous

line to resident species. Only species with at least ten individuals

sampled have been included in the plot.

Fig. 2. Sample size necessary to detect with a Chi-square test and a

power of 0.80 increases by 10, 20, 30 and 40% in the prevalence of

West Nile Virus (WNV) antibodies.
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However, these results were obtained by haemagglu-

tination-inhibition, a technique burdened by its cross-

reactivity with a range of flaviviruses. Recent studies

with highly specific neutralization assays show that

the prevalence of WNV antibodies in humans living

around wetlands in Spain is currently very low (Bofill

et al., 2006).

The presence of serum antibodies neutralizing

WNV in adult birds indicates previous contact

(infection) with WNV or a closely antigenically

related flavivirus, and survival to the initial infection.

Consequently, for a wild bird population with low

pathogenicity WNV infection (such as those usually

found in the Old World, Zeller and Schuffenecker,

2004), the higher the prevalence of WNV neutralizing

antibodies, the higher the exposure to the virus. This

scenario is not applicable when WNV infection results

in high mortality, as observed in North America.

The results suggest that evolutionary relationships

are of little importance in explaining variations in

exposure to WNV. This contrasts with the initial

studies that identified Corvidae (McLean et al., 2001),

Mimidae, and Cardinalidae (Ringia et al., 2004) as

bird families that are particularly exposed to WNV

infection. In our study both Rallidae (6.7–42.6%) and

Laridae (25.0–42.9%) presented very high antibody

prevalence, although our results suggest that these

high prevalences were related to the ecology of the

species sampled (migratory species of medium and

large size), rather than to the birds’ taxonomy.

In North America, the American Crow appears to

be particularly susceptible to mortality by WNV

(Komar et al., 2003). This has led some researchers to

suggest that Corvidae in general might be very at a risk

for exposure to the virus. Interestingly, none of the 35

individuals of Corvus monedula (the only Corvidae

included in our study) had WNV antibodies, even

when captured together with individuals of other

species with high prevalences. It is important to note

that this low (zero) prevalence of antibodies in Corvus

monedula is not likely to result from the rapid death of

infected individuals, given that all attempts we have

done to the moment to detect the virus in several

hundreds dead water-birds had failed (data not

shown). We suggest that the high incidence of West

Nile in American Crow can result not only from the

transmission by mosquitoes but also from the con-

sumption of corpses of birds dying during the viraemic

phase of the infection. In this case the utility of

Corvids for monitoring WNV circulation in the wild

could be reduced in Europe.

No effect of winter or breeding sociality on

antibody prevalence was found. Although a high

prevalence of blood parasites had been reported

among social living species (Tella, 2002), the low

host-specifity of WNV may make the density of birds

the relevant parameter affecting risk of exposition,

regardless whether or not it consists of conspecifics.

Interestingly, migratory species showed higher anti-

body prevalence than resident species, but only when

comparing summer migrants with residents. Although

local circulation of the virus is taking place (since

resident species also have antibodies), this higher

prevalence observed in migratory birds suggest that

these birds spend part of their lives in areas in Africa

where the circulation of the virus may be higher than

in the surveyed area in Spain. For example, a recent

serosurvey in horses detected extremely high pre-

valences of antibodies (up to 97%) in some sub-

Saharan countries (Cabre et al., 2006), areas visited by

many European long distance migratory species. Our

analyses support the view that species of larger body

mass may have increased opportunity for exposure to

WNV. Given that we analyzed antibody prevalence in

free-living and apparently healthy individuals, this

conclusion is not merely a bias caused by the

difficulties in finding carcasses of smaller species

(Marra et al., 2004), a problem associated with studies

based only on dead birds. The direct relationship

between prevalence of WNV antibodies and body

mass can be explained by several non-exclusive

factors. Larger species live longer (Calder, 1984),

however we have demonstrated that the relationship

between seroprevalence and body mass is also

significant when analyzing only first-year birds. We

suggest that the larger prevalence of antibodies in

larger species is the result of their larger surface area

and higher CO2 production (Nagy, 1987), and can host

and attract a higher number of ectoparasites (Soliman

et al., 2001), mosquitoes, and other biting arthropods

that transmit the virus.

In conclusion, we suggest that migratory birds of

large body mass may provide a means for monitoring

WNV prevalence on a large geographical scale (e.g.

migratory flyways). Additionally, resident species of

large body mass may provide a better description of

J. Figuerola et al. / Veterinary Microbiology 132 (2008) 39–4644



Author's personal copy

local WNV prevalence. Further, the past allegations

regarding a greater probability of infection by WNV

by particular taxonomic groups should be more

carefully explored given our findings and the fact

that many of those studies were based on the

examination of only a few species, and on dead

birds, making difficult to separate the effects of

exposure, susceptibility and carcass detection prob-

ability. From a conservation standpoint, it perhaps

would be more beneficial to focus our attention on the

effects of WNVon species of greater body mass and on

migratory species.
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Special thanks to O. González, M. Vázquez, and E.

Garcı́a for all their help. Equipo de Seguimiento de

Procesos Naturales, Grupo Zamaya, and Gosur

assisted in the captures. P. Rodriguez and M. Adrian

allowed us to work on their properties. J.L. Arroyo, F.

Carro, J.J. Chans, L. Garcı́a, F. Ibáñez, B. Jáñez, M.
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Europeos. Sociedad Española de Ornitologı́a, Madrid.

Tella, J.L., 2002. The evolutionary transition to coloniality promotes

higher blood parasitism in birds. J. Evol. Biol. 15, 32–41.

Weingartl, H.M., Drebot, M.A., Hubálek, Z., Halouzka, J., Ando-
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Relaciones eco-fisiológicas hospedador-parásito en aves silvestres 

4.b CAPÍTULO 7: La prevalencia de anticuerpos neutralizantes frente 

al virus del Nilo occidental en España se relaciona con el 

comportamiento de las aves migradoras. 

Resumen: 

El virus del Nilo occidental (WNV) es un flavivirus aviar capaz de infectar 

caballos y humanos que se transmite por insectos chupadores. En Europa 

y África han surgido esporádicamente infecciones y brotes epidémicos 

que han causado enfermedad y muerte en humanos, y que han sugerido 

dos hipótesis no excluyentes acerca de la circulación de WNV en Europa: 

(1) la existencia de un ciclo selvático endémico que ocasionalmente 

provoca infección en humanos o equinos y (2) la introducción esporádica 

del virus por aves migradoras desde áreas de África (u otros 

emplazamientos) donde WNV es endémico que cause focos epidémicos 

locales que eventualmente produzcan infección en humanos o equinos. 

Para investigar estas dos posibilidades, usamos test de seroneutralización 

de micro virus para examinar la prevalencia de anticuerpos neutralizantes 

frente a WNV en 574 ejemplares de 25 especies de aves capturados en 

2004 en la ciudad de Sevilla. Las especies migradoras trans-saharianas 

presentaron prevalencia y títulos superiores a los presentados por 

especies residentes o migradoras de corta distancia. Este resultado 

sugiere que los migradores trans-saharianos pasan parte de su ciclo vital 

en áreas con mayor circulación de WNV (o de flavivirus muy próximos 

filogenéticamente) antes de su llegada a España. Por otro lado, las 

seroprevalencias halladas en aves residentes sugieren un bajo nivel de 

circulación del virus en el área de estudio. Aparte de la cuestión de la 

circulación local, parece por tanto que el riesgo de introducción de cepas 

africanas de WNV por aves migratorias en España merece un estudio de 

campo y experimental más profundo. 
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ABSTRACT

West Nile virus (WNV) is a bird flavivirus capable of infecting horses and humans that is transmitted by blood-
sucking vectors. In Europe and Africa, sporadic infections and outbreaks causing human illness and deaths have
occurred and have led to 2 mutually nonexclusive hypotheses regarding the circulation of WNV in Europe: (1) the
occurrence of endemic sylvatic cycles that occasionally result in human or equine infection, or (2) sporadic seed-
ing of WNV by migratory birds from areas where the virus is endemic in Africa or elsewhere that cause local epi-
zootic foci and eventually lead to infection in humans. To investigate these 2 possibilities, we used a micro virus-
neutralization test to examine the prevalence of WNV neutralizing antibodies in 574 individuals belonging to 25
species of birds captured in spring 2004 in Seville (southern Spain). Trans-Saharan migrant species had both higher
prevalences and antibody titers than resident and short-distance migrants. This result suggests that trans-Saharan
migrants spend part of their life cycles in areas with greater circulation of WNV, or a closely related flavivirus,
before their arrival in Spain. On the other hand, seroprevalences assessed in resident birds suggest a low level of
WNV circulation in the studied locality. Aside from the question of local circulation, it thus seems that the risk
for introduction of strains of WNV from Africa by migratory birds merits further field and experimental studies
in Spain. Key Words: WNV—Virus dispersal—Bird migration—Long-distance dispersal.

1

INTRODUCTION

WEST NILE VIRUS (WNV) is an arbovirus
(arthropod-borne virus) belonging to the

Japanese encephalitis group (family Flaviviri-
dae, genus Flavivirus). Virus transmission be-
tween hosts can occur both by means of a vec-
tor (usually mosquitoes or ticks, Chevalier et al.
2004, Lawrie et al. 2004) or, less commonly, by
direct transmission (Banet-Noach et al. 2003).
Although WNV causes illness and outbreaks of
disease in humans and equines (Autorino et al.
2002, Durand et al. 2002, Del Giudice et al. 2004,
Sanchez-Seco and Navarro 2005), the natural
hosts of the virus are wild birds, which act as
amplifying reservoirs (Zeller and Schuffenecker

2004). WNV normally causes an asymptomatic
infection in Eurasian birds (Petersen and
Roerigh 2001), and its presence in Eurasia has
been known since 1958 (Bárdos et al. 1959). This
situation differs greatly from the situation in the
Americas, where the introduction of WNV in a
single event in 1999 (Asnis et al. 2000) gener-
ated a fast and explosive spread over the whole
continent which caused numerous outbreaks
and mortality in humans, horses (Asnis et al.
2001, Blitvich et al. 2003), and wild native birds
(Kramer and Bernard 2001). Despite WNV’s ori-
gin in the Old World, it has been studied more
intensively in North America since its intro-
duction in 1999 than in Europe, as judged by
the number of papers included in the ISI Web

1Estación Biológica de Doñana, CSIC, Seville, Spain.
2CISA-INIA, Valdeolmos (Madrid), Spain.
3Laboratorio Central de Veterinaria, Algete (Madrid), Spain.



of Knowledge (129 vs. 693 up to November
2007). The intensity of circulation and the rapid
spread of WNV in America, as well as the sen-
sibility of American birds to the disease, are
thought to have converted migrant birds into
important vectors for the transport of the virus
throughout the continent. Peterson et al. (2003),
for instance, found that migratory birds could
explain the spread of WNV throughout North
America. However, Rappole et al. (2003, 2006)
did not find any basis to support this idea, as
the dispersal patterns of WNV in North Amer-
ica are better explained by short-to-medium-
distance dispersive movements of resident
birds. The known ecology and epidemiology of
WNV in Europe have provided 2 potential hy-
potheses to explain the disease’s outbreak dy-
namics (Hubálek 2000). First, a sylvatic circula-
tion cycle could exist locally, which would
maintain the virus in enzootic foci throughout
the year and, under proper conditions, cause
outbreaks in humans due to enhanced virus cir-

culation. Second, migrant birds may act as virus
carriers, repeatedly seeding the infection from
areas where the virus is endemic in habitats
suitable for the infection to progress in Europe
in differing areas and years (Hubálek 2000,
Malkinson et al. 2001, 2002, Malkinson and
Banet 2002). To assess whether long-distance
migrant birds are more exposed to WNV than
resident birds, which would support the second
of the 2 hypotheses, we carried out a sero-
prevalence study in small passerines. We hy-
pothesized that long-distance migrant birds
have a higher risk for exposure to WNV and
thus may show higher seroprevalence than
short-distance migrant or resident birds.

MATERIALS AND METHODS

We trapped 574 birds belonging to 25 differ-
ent species (mainly passerines; Table 1) during
prenuptial migration (March, April, and May)

LÓPEZ ET AL.2

TABLE 1. SPECIES, NUMBER OF SAMPLED INDIVIDUALS, AND TITERS FOR INDIVIDUAL BIRDS WITH WNV NEUTRALIZING

ANTIBODIES SAMPLED BETWEEN MARCH AND MAY 2004 IN SEVILLE, SPAIN

Titers

Sampled
Species (n) 20 40 80 160 320 640 Migratory statusa

Acrocephalus scirpaceus 5 T
Alectoris rufa 1 R
Carduelis carduelis 10 R
Carduelis chloris 26 R
Erithacus rubecula 1 M
Ficedula hypoleuca 19 T
Galerida cristata 2 R
Lanius senator 17 2 T
Luscinia megarhynchos 3 T
Merops apiaster 1 T
Muscicapa striata 5 T
Oriolus oriolus 1 T
Passer domesticus 79 R
Passer montanus 1 R
Phoenicurus ochruros 1 M
Phoenicurus phoenicurus 2 1 T
Serinus serinus 54 R
Streptopelia decaocto 23 R
Sturnus unicolor 1 R
Sylvia atricapilla 59 M
Sylvia borin 183 7 2 2 1 2 1 T
Sylvia communis 3 T
Sylvia hortensis 2 T
Turdus merula 74 3 1 R
Upupa epops 2 M

aEach species was scored as resident (R), short-distance migrant (M), or trans-Saharan migrant (T).



in 2004 in a forestry nursery near Seville city
(37° 23� N, 5° 57� W). We chose this place be-
cause of their proximity to human inhabited ar-
eas, where the potential for mosquito cofeed-
ing in humans and birds is likely to be high.
Additionally, passerines present high levels of
virosis when infected with WNV and may be
good candidates for virus amplification and
dispersal (Komar et al. 2003, Owen et al. 2006).
Birds were captured in 20 12-meter-long mist
nets operating from sunrise to sunset. Individ-
uals were marked with numbered aluminum
rings and their body mass (to the nearest 0.1 g)
was recorded. For each individual we drew a
blood sample from the jugular vein using 29 G
sterile insulin syringes (always less than 1% of
the body mass). The blood was placed in a vial,
kept for several hours at ambient temperature
(15°C–25°C) to allow clotting, and then cen-
trifuged for 10 minutes at 6000 rpm in an Ep-
pendorf Minispin centrifuge to separate the
serum from the blood clots. The sera were
frozen at �20°C until subsequent analysis. The
presence of WNV neutralizing antibodies was
determined in each serum by a micro virus-
neutralization test (micro-VNT) in 96-well
plates as previously described (Niedrig et al.
2006, Figuerola et al. 2007a). Serum samples
were inactivated at 56°C for 30 minutes prior
to analysis. Dilutions of test sera (25 �L) were
incubated for 1 hour at 37°C with 100 tissue-
culture infectious doses (TCID)50 of WNV
strain Eg101 in the same volume (25 �L) in Ea-
gle’s medium (EMEM) supplemented with L-
glutamine, nonessential amino acids, sodium
pyruvate, penicillin (100 U/mL), and strepto-
mycin (100 �g/mL). Then, 50 �L of a suspen-
sion (5 � 105 cells/mL) of Vero E6 cells was
added to the same medium, along with fetal
calf serum, to reach a final concentration of 5%.
The mixture was further incubated for 6 days
at 37°C until a cytopathic effect (cpe) was ob-
served in control wells containing 10 TCID50 of
virus. The screening of samples was performed
at 1/10 and 1/20 dilutions of the tested sera
(dilutions considered before the addition of
virus, i.e., in a volume of 25 �L). Samples yield-
ing positive neutralization (absence of cpe) at
one or both of the dilutions tested were con-
firmed and further titrated by analyzing serial
serum dilutions from 1/10 to 1/640. Controls

for cytotoxicity in the absence of virus were in-
cluded for every sample at 1/10 dilution. 
Cytotoxic samples were excluded from the
analyses. The neutralizing serum titer was con-
sidered to be the highest value of the recipro-
cal serum dilution giving a complete absence
of cpe. Birds were scored positive when neu-
tralization at 1/20 or higher dilutions occurred.
The specificity of the VNT employed in our
study has been analyzed previously using a
panel of sera with specificity for different fla-
viviruses (WNV, yellow fever virus, dengue
virus, and tick-borne encephalitis virus), and
titers of 10 or higher were only detected in sera
from WNV-infected individuals (Figuerola et
al. 2007a). Additionally, previous studies have
shown a higher specificity to WNV in neutral-
ization tests run in parallel against Usutu virus
(another bird Flavivirus), confirming that the
flavivirus causing the immune reaction is more
closely related to WNV than to other fla-
viviruses (Figuerola et al. 2007b). Each species
was scored as resident, short-distance migrant
(wintering in southern Europe or in Africa
north of the Sahara), or trans-Saharan migrant
(long-distance migrants wintering south of the
Sahara) as per Cramp and Perrins (1994). WNV
neutralizing antibody prevalence was analyzed
with the GENMOD procedure (SAS Institute
2000a) in the SAS 9.1 statistical package. De-
viances from the model were scaled with the
square root of the ratio deviance/degrees of
freedom to correct for overdispersion. Log-
transformed values of antibody titers from in-
dividuals with antibodies were compared us-
ing a t-test for unequal variance groups with
JMP 5.0 (SAS Institute 2000b).

RESULTS

For species with more than 20 individuals
sampled, the prevalences ranged from 0% (Car-
duelis chloris, 95% CI: 0%–13.2%; Passer domes-
ticus, 0%–4.6%; Serinus serinus, 0%–6.6%; Strep-
topelia decaocto, 0%–14.8%; Sylvia atricapilla,
0%–6.1%) to 8.1% (Sylvia borin, 4.7%–13.2%). In-
termediate prevalences were found in a resi-
dent species (5.4%, 1.5%–13.3%, Turdus merula),
suggesting that local circulation of WNV exists.

Antibody prevalence was related to migra-
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tion distance (�2 � 19.28, df � 2, p � 0.0001).
None of 63 sampled short-distance migrants
presented WNV neutralizing antibodies. Anti-
bodies to WNV were more prevalent in trans-
Saharan (18 of 240 individuals, 4.5%–11.6%)
than in resident birds (4 of 271, 0.4%–3.7%, a
posteriori least square means comparison, �2 �
10.23, df � 1, p � 0.001; Fig. 1A). Most of the
sera from trans-Saharan birds correspond to S.
borin, however, this is not likely to introduce a
bias in the analyses because the GLM method
used controls for differences in sample size and
because a trend for higher prevalence in trans-

Saharan species remains even when the analy-
ses are repeated without S. borin (�2 � 5.56,
df � 2, p � 0.06). Antibody titers were also
higher in trans-Saharan migrants than in resi-
dent birds (t17.54 � 2.90, p � 0.01; Fig. 1B).

DISCUSSION

Our results confirm that long-distance mi-
grants are exposed during their migratory jour-
neys and/or their winter stay in Africa to
higher levels of WNV circulation, or a closely
antigenically related flavivirus, than the levels
found in their breeding grounds in Europe. In
particular, species wintering south of the Sa-
hara (Figs. 1 and 2) presented higher sero-
prevalences than species wintering in northern
Africa and Spain. In addition, higher WNV an-
tibody titers were found among trans-Saharan
migrants, probably reflecting a recent (or re-
peated) exposure to the virus in individuals
with higher titers. Although some studies done
in captivity suggest that WNV antibodies re-
main detectable for more than a year (Gibbs et
al. 2005), detailed analyses of animal serology
both in the laboratory (Komar et al. 2003) and
in the field (Figuerola et al. 2007b, Cabre et al.
2006) suggest a rapid reduction in antibody
titers after exposure to the virus. In addition,
both trans-Saharan and short-distance mi-
grants captured in this study were on their
journeys toward their breeding grounds (some
in Spain, but also in northern Europe). There is
no a priori reasons to expect differences in the
geographical distribution of both groups dur-
ing the breeding season, and both groups of
species breed in sympatry and winter in al-
lopatry. For this reason, we favor the hypoth-
esis of a higher exposure to the virus in Africa
rather than during the previous breeding sea-
son in Europe.

Among resident species, the case of Passer do-
mesticus merits further discussion. Given the
anthropogenic behavior of this species, it has
often been proposed as a key species in the un-
derstanding of transmission to humans and as
a focal species for WNV monitoring (Komar et
al. 2001, Jourdain et al. 2007). However, none
of the individuals sampled in our study pre-
sented antibodies, unlike the case of another

LÓPEZ ET AL.4

FIG. 1. Mean prevalence � 95% confidence interval (A)
and mean and range of titers (B) of antibodies against
WNV in resident, short-distance migrant, and trans-Sa-
haran migrant bird species trapped during spring mi-
gration in Spain.



resident species of larger size, Turdus merula.
Interestingly, recent detailed analyses of the
dynamics of WNV in relation to bird ecology
identified the conspecific species Turdus migra-
torius as a likely key species in explaining the
transmission of WNV to humans in North
America (Kilpatrick et al. 2006). Probably, we
still lack the basic knowledge of the nature of
the WNV-vector-host interactions needed to
understand the regulatory factors of these in-
teractions; thus, interspecific comparative stud-
ies are still necessary to understand the eco-
logical factors regulating WNV-vector-host
interactions.

Malkinson and Banet (2002) compared WNV
strains isolated from birds in eastern Europe
that had arrived from Africa with others iso-
lated in Africa and suggested that migratory
routes can explain the occurrence of West Nile
foci in Europe. The winter distributions of the

3 species of trans-Saharan migrant passerines
that show seropositivity for WNV neutralizing
antibodies overlap in a region of Africa that in-
cludes parts of Liberia, Ivory Coast, Ghana,
Togo, Benin, Nigeria, and Cameroon. The high-
est seroprevalence (8.2%) was found for Sylvia
borin, a species with a geographically wide win-
ter distribution in Africa extending from 13°N
to 35°S. A recent serosurvey of horses in sub-
Saharan Africa reporting a high seroprevalence
of WNV neutralizing antibodies (up to 97% in
some countries, Cabre et al. 2006) further sup-
ports these conclusions. While it is true that
some birds may be infected while on migration,
the low seroprevalence of antibodies in short-
distance and resident birds suggests that ex-
posure to WNV occurs mainly south of the 
Sahara.

Do our results imply that there is a high risk
for infection by WNV caused by the arrival of
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FIG. 2. Wintering areas of trans-Saha-
ran migrant species captured with WNV
neutralizing antibodies between March
and May 2004 in Seville, Spain: Ficedula
hypoleuca (gray area), Sylvia borin (vertical
lines), and Lanius senator (horizontal
lines), based on Cramp and Perrins
(1994).



migratory birds? While this is a possibility, we
consider that it is highly unlikely. First, we
have previously shown that local circulation of
WNV occurs in Spain without necessarily lead-
ing to illness among humans (Figuerola et al.
2007b), thus supporting the hypothesis that
WNV—or a closely related cross-reacting fla-
vivirus—remains essentially undetected and
sylvatic in Europe. Second, for successful long-
distance dispersal of WNV by migratory birds,
a successive series of highly unlikely events
must occur over a short period of time: (1) a
WNV-infected mosquito must infect an im-
munologically naïve bird; (2) the bird then
must survive the infection, accumulate fat re-
serves, and cross the Sahara in a continuous or
intermittent flight of 40 hours over 2000 km of
inhospitable terrain (Schmaljohann et al. 2007);
(3) the bird must then be bitten after arrival by
a susceptible vector while still viremic (viremia
lasts less than 7 days in birds; see Komar et al.
2003); and, finally, (4) the infected vector must
then feed and infect other susceptible birds in
the new locality. Most of the parameters
needed to calculate the likelihood of this pro-
cess are still unknown. Recently, Owen et al.
(2006) have demonstrated that individuals of 
2 passerine species show migratory restless-
ness while still viremic, although no informa-
tion is available yet on the impact of WNV on
the capacity of birds to accumulate energetic
reserves and perform serious exercise while
viremic, or on the effect of the stress produced
by migration on viremia. The parameterization
of the different factors that affect transmission
rates of WNV at local and long-distance scales
is essential if we are to understand the real role
of migratory and resident bird species in the
dispersal dynamics of the virus.
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Relaciones eco-fisiológicas hospedador-parásito en aves silvestres 

4.c CAPÍTULO 8: Incidencia del virus del Nilo occidental en aves que 

ingresan en centros de recuperación en el sur de España. 

Resumen: 

El virus del Nilo occidental (WNV) es un flavivrus neurotropo transmitido 

por mosquitos que afecta a aves y secundariamente a otros vertebrados 

en Eurasia, África y América. WNV ha causado frecuentes episodios de 

mortalidad masiva de aves silvestres en su expansión por el continente 

americano, llegando a ser un factor regulador en la dinámica poblacional 

de muchas especies de aves silvestres. Por otro lado, a pesar de su bien 

documentada circulación por la cuenca del Mediterráneo, raramente se 

han descrito mortalidades relacionadas con WNV en aves silvestres en este 

área, y sólo se han descrito brotes esporádicos en caballos. Las causas que 

subyacen detrás de esta diferencia de patrón epidemiológico no han sido 

nunca adecuadamente descritas. Inicialmente se sugirió que las cepas de 

WNV circulando en el Mediterráneo y en América podrían tener diferente 

patogenicidad, mientras que una hipótesis alternativa propone que 

brotes y mortalidad originada por WNV podría haber pasado inadvertida 

en Europa. Para investigar estas hipótesis, muestreamos tejidos de 119 

cadáveres de aves silvestres y suero de otras 227 (para buscar anticuerpos) 

que llegaron a centros de recuperación entre 2004 y 2006 en Andalucía. 

No hallamos flavivirus en ninguna de las muestras de tejido analizadas. La 

seroprevalencia de WNV fue 2,2%, similar a la encontrada en 800 aves 

aparentemente sanas de las mismas especies muestreadas en el medio 

natural. Nuestros resultados sugieren que la circulación de WNV durante el 

periodo de estudio no tuvo repercusiones en términos de enfermedad ni 

mortalidad en las aves. 
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Incidence of West Nile Virus in Birds Arriving
in Wildlife Rehabilitation Centers in Southern Spain

Guillermo López,1 Miguel Ángel Jiménez-Clavero,2 Ana Vázquez,3 Ramón Soriguer,1

Concha Gómez-Tejedor,4 Antonio Tenorio,5 and Jordi Figuerola1

Abstract

West Nile virus (WNV) is a neurotropic mosquito-transmitted flavivirus that in Eurasia, Africa, and the
Americas primarily affects birds and secondarily other vertebrates. WNV has caused frequent massive episodes
of wild bird mortality during its expansion throughout the Americas, and has become a regulating factor in the
population dynamics of many wild bird species. On the other hand, WNV-related mortalities in wild birds have
rarely been reported in the Mediterranean Basin despite its well-documented circulation, and only sporadic
outbreaks in horses have been documented. The causes underlying this contrasting epidemiological pattern have
never been properly described. An initial suggestion is that Mediterranean and American strains possess dif-
ferent pathogenicities, whereas an alternative view proposes that WNV-related disease and mortalities may have
been overlooked in Europe. To test these hypotheses, between 2004 and 2006 in southern Spain we sampled
tissue from 119 wild bird carcasses to detect WNV and other flaviviruses, as well as blood from 227 wild birds
arriving in wildlife rehabilitation centers to test for WNV seroprevalence. No flavivirus was found in the tissue
samples. The prevalence of WNV-neutralizing antibodies was 2.2%, similar to that of 800 healthy birds of the
same species that were captured in the field. Our results suggest that WNV circulation during the study period
did not result in any detectable effects in terms of bird morbidity or mortality.

Key Words: Birds—Infectious disease—Mediterranean—Outbreak—Spain—West Nile Virus.

Introduction

West Nile virus (WNV) is a zoonotic mosquito-borne
flavivirus (family Flaviviridae) that belongs to the

Japanese encephalitis serocomplex. Birds are recognized as
one of major vertebrate hosts of WNV, although WNV also
has the potential to infect other vertebrates, including mam-
mals (Hayes 1989). WNV is a neurotropic virus that provokes
acute neurological disease in birds, which can cause a variety
of symptoms such as ataxia, disorientation, tremors, and
convulsions (Steele et al. 2000, Erdélyi et al. 2007, Beasley and
Barrett 2009). Humans and horses are considered accidental
dead-end hosts, and infection in these species is associated
with a febrile illness that can progress to a lethal encephalitis
with symptoms such as cognitive dysfunction and flaccid
paralysis (Sejvar et al. 2003, Castillo-Olivares and Wood 2004,
Hayes and Gubler 2006).

WNV is mainly maintained in nature in an enzootic cycle
between mosquitoes and birds (Komar 2003, Hayes et al.
2005), in which seasonality is linked to vector ecology (Zeller
and Schuffenecker 2004). Despite not being host-specific
(Beasley and Barrett 2009), WNV incidence and prevalence
differ among avian species and populations, and are pri-
marily determined by intrinsic ecological factors (Kilpatrick
et al. 2007a, Savage et al. 2007, Figuerola et al. 2008). Mosquito
species of the genus Culex are the most competent WNV
vectors participating in the maintenance of the cycle (Hamer
et al. 2008, Reisen et al. 2008), although a large number of
other mosquito species also have the potential for transmit-
ting the virus (Turell et al. 2005). Besides vector-mediated
transmission, direct bird-to-bird transmission has also been
documented (Banet-Noach et al. 2003).

Since WNV was first identified from a human case of febrile
illness in Uganda in 1937, it has been found to occur in Africa
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and Eurasia, and to produce some sporadic outbreaks in
horses and humans (Murgue et al. 2001a, Gubler 2007). Fur-
ther, since 1999, when it was first detected in the United States
(Gubler 2007, Artsob et al. 2009), WNV has rapidly expanded
throughout the Americas and caused recurrent outbreaks in
birds (Mostashari et al. 2003, Kilpatrick et al. 2007b), horses
(Trock et al. 2001), and humans (Lindsey et al. 2008, Artsob
et al. 2009), and is currently considered to be an important
emerging pathogen. Due to its pathogenicity, WNV has a
negative impact on the population dynamics of many resident
American bird populations (LaDeau et al. 2007). By contrast,
the sanitary impact of WNV in Europe and Africa seems to be
low, and most of the sporadic outbreaks in these continents
have been detected in horses (Murgue et al. 2001b, Autorino
et al. 2002, Schuffenecker et al. 2005, Cabre et al. 2006). In the
Mediterranean Basin, no massive WNV outbreaks have ever
been detected in wild birds (Zeller and Schuffenecker 2004).
Two major nonexclusive hypotheses are used to explain these
differing epidemiological patterns in WNV: (1) the pathoge-
nicity or resistance of birds to the virus strains currently
circulating throughout the Americas may be different in the
Mediterranean Basin; (2) avian mortalities caused by WNV
may have been overlooked given the traditionally low impact
of WNV on human health in Europe. In fact, WNV-related
avian mortality was not considered an indicator of viral ac-
tivity until the 1998 epidemics in Israel and subsequently in
North America (Malkinson et al. 2002, LaDeau et al. 2007).

In Spain, some authors have provided evidence of local
circulation of WNV in recent years (Bofill et al. 2006, Bernabéu-
Wittel et al. 2007, Figuerola et al. 2007a, 2007b, Kaptoul et al.
2007), and the virus has been detected in captive large eagles in
inland Iberia (Höfle et al. 2008, Jiménez-Clavero et al. 2008).
Despite this documented circulation in the area, no WNV
outbreak involving large numbers of dead or ill wild birds has
ever been detected in the Iberian Peninsula. To study the im-
pact of WNV on wild avian populations in southern Spain, we
sampled a large number of wild birds in rehabilitation centers
in Andalusia during a period of known WNV circulation in the
region. We analyzed birds of different taxons inhabiting both
wetland and dry inland areas (Fig. 1). To be sure that WNV was
circulating in the study area and, if so, whether this circulation
was provoking an increase in morbidity or mortality in local
birds, we conducted (1) molecular analyses to detect WNV and
other flaviviruses in the tissue of dead birds, and (2) serology
tests to detect WNV antibodies in living individuals. If circu-
lating WNV was a cause of morbidity or mortality in birds, we
would expect to find polymerase chain reaction (PCR)–positive
birds among the arrivals in the rehabilitation centers. Alter-
natively, if WNV was not a cause of increased morbidity or
mortality, we would only expect to detect serology-positive but
not PCR-positive individuals.

Materials and Methods

Between November 2004 and February 2006, we sampled
346 wild birds of 33 different species (see Table 1), both
alive (n¼ 227) and dead (n¼ 119), in the official network of
rehabilitation centers belonging to the Department of the
Environment of the Andalusian Regional Government (An-
dalusia, southern Spain). These rehabilitation centers treat
wild birds found injured or sick throughout Andalusia and
release them back into the wild. Thus, we expected to find a

higher WNV prevalence in these individuals than in healthy
wild birds. We divided the sampled species into six groups:
raptors (n¼ 72 alive, 0 dead), owls (n¼ 67 alive, 12 dead),
ducks (n¼ 34 alive, 32 dead), herons and storks (n¼ 28 alive,
26 dead), waders and gulls (n¼ 23 alive, 37 dead), and other
species (n¼ 3 alive, 12 dead). All groups included both
migratory and resident species.

A sample of about 1 mL of blood was taken from the bra-
chial or jugular vein of all living sampled individuals using
2 mL syringes with 25G needles. Subsequently, blood was
deposited in a vial without anticoagulant and 3 h later was
centrifuged in an Eppendorf� Minispin� centrifuge to sepa-
rate the serum from the blood cells. The sera thus obtained
were employed to run a micro-virus-neutralization test in
96-well plates. WNV strain Eg101 and the E6 clone of Vero
cells used for virus propagation were obtained from Hervé
Zeller (Institut Pasteur de Lyon). This technique, already de-
scribed in Figuerola et al. (2007a), provides high specificity for
WNV, and also can provide a light cross-reactivity with clo-
sely related flaviviruses. Blood cells were stored at �808C
until subsequent analyses. Additionally, we determined the
antibody prevalence in healthy wild birds captured in dif-
ferent localities of the Doñana National Park. Data for some of
these individuals have already been reported in Figuerola
et al. (2008). To ensure that the data from both sets of birds
were comparable, we only considered information from birds
of species analyzed in both the rehabilitation centers and
captured between November 2004 and February 2006
(n¼ 800 individuals belonging to seven species). The preva-
lence between wild (presumably) healthy and captured ill
individuals was compared with the GENMOD procedure of
SAS 9.2 (SAS Institute Inc. 2008) in a generalized linear model,
with the number of individuals with antibodies as the re-
sponse variable, the number of individuals analyzed as the
binomial denominator of the response variables, and species
as a repeated subject. A binomial error distribution with a
logit link was used for the analysis.

A total of 349 tissue samples from different organs collected
from dead birds were analyzed for RT-nested-PCR to detect
possible infection. To search for WNV, brain (n¼ 98), cardiac
muscle (n¼ 31), and feather pulp (n¼ 15) were the main tis-
sues sampled. However, other tissues were also sampled
when possible to detect (1) possible WNV infections (Steele
et al. 2000) and (2) potential infection by other flaviviruses
located in the different target organs. Thus, samples were also
collected from liver (n¼ 27), spleen (n¼ 22), lung (n¼ 27),
kidney (n¼ 27), ovary (n¼ 9), oviduct (n¼ 6), testicle (n¼ 12),
thyroid (n¼ 19), parathyroid (n¼ 14), pancreas (n¼ 21), blood
cells (n¼ 19), and the Fabricius bursa (n¼ 2). Tissue samples
were placed in liquid nitrogen at �1968C immediately after
collection and kept until analysis. The nucleic acid was ex-
tracted using Rneasy Mini Kit (Qiagen, Izasa, Spain) follow-
ing the manufacturer’s instructions. The extracted RNA was
analyzed using a generic RT-nested-PCR, which detects
both generic flaviviruses and specific WNV sequences
(Sánzhez-Seco et al. 2005). Both positive and negative controls
of the PCR functioned correctly.

Results

The overall WNV seroprevalence of our sample was 2.2%,
with 5 positive individuals out of the total of 227 analyzed
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birds (two white storks Ciconia ciconia, two common kestrels
Falco tinnunculus, and one black vulture Aegypius monachus).
Four positives had titers between 1:20 and 1:80, and a single
individual (a kestrel) had a titer of 1:320. Seroprevalence
in this sample was not significantly different from that
obtained from healthy birds captured in the field (w2¼ 2.93,
p¼ 0.09; rehabilitation center mean� standard error of the
mean: 2.78%� 13.81%; field: 15.23%� 13.04%). The appar-
ent large differences in the mean were due to one species,
the common coot Fulica atra, which was very prevalent
among the field samples (20%) but not in the rehabilitation
centers (0%), probably due to the different geographical
origin of the samples. If we exclude this species from the

analyses, the differences in antibody prevalence in the
rehabilitation centers (3.39%� 14.66%) and the field
(3.45%� 8.50%) is nil (w2¼ 0.00, p¼ 0.97). A further 12 of
these positive birds had titers of 1:10, probably due to either
a previous contact with the virus, a cross reaction with
another WNV closely related flavivirus, an incipient infec-
tion with WNV, or even an interindividual difference in the
immune response. The proportion of individuals displaying
titers of 1:10 or higher was 19% for white storks, 18% for
common kestrels, and 15% for common coots. Griffon vul-
tures, little owls, and mallards showed no prevalence despite
the large number of samples analyzed. Herons and storks
(14%) and raptors (11%) were the groups that had the highest

Table 1. Serology Results of the West Nile Virus Micro-Virus-Neutralization Test Performed

Between November 2004 and February 2006 on 227 Live Birds Sampled in the Andalusian Wildlife

Rehabilitation Centers, and on 800 Healthy Individuals Sampled in the Doñana Area

Rehabilitation centers Healthy birds in the field

Species R/M
Positive at

1:10/1:20 (n)
Prevalence at

1:20 (%)
Positive at

1:10/1:20 (n)
Prevalence at

1:20 (%)

Falco tinnunculus R 2/2 (22) 9
Gyps fulvus R 0/0 (16) 0
Falco naumanni M 1/0 (15) 0
Buteo buteo R 0/0 (4)
Milvus migrans M 0/0 (4)
Circaetus gallicus M 0/0 (3)
Milvus milvus M 0/0 (2)
Hieraaetus pennatus M 1/0 (2)
Circus aeruginosus R 0/0 (1)
Pernis apivorus M 0/0 (1)
Accipiter gentilis R 1/0 (1)
Aegypius monachus R 0/1 (1)
Total raptors 5/3 (72) 4

Athene noctua R 0/0 (20) 0
Bubo bubo R 2/0 (18) 0
Tyto alba R 0/0 (16) 0
Strix aluco R 1/0 (12) 0
Asio otus M 0/0 (1)
Total owls 3/0 (67) 0

Anas platyrhynchos R 0/0 (25) 0 6/4 (195) 2
Aythya nyroca R 0/0 (7) 0 0/0 (1)
Marmoronetta angustirostris R 0/0 (2) 1/0 (2)
Total ducks 0/0 (34) 0 7/4 (198) 2

Ciconia ciconia M 2/2 (21) 10 5/3 (21) 14
Bubulcus ibis R 0/0 (3) 1/1 (12) 8
Ardea cinerea M 0/0 (1) 0/0 (1)
Ardeola ralloides M 0/0 (1)
Platalea leucorodia R 0/0 (1)
Plegadis falcinelus R 0/0 (1)
Total herons and storks 2/2 (28) 7 1/1 (13) 8

Fulica atra R 2/0 (13) 0 264/114 (569) 20
Larus ridibundus M 0/0 (7) 0
Burhinus oedicnemus R 0/0 (1)
Himantopus himantopus R 0/0 (1)
Larus genei M 0/0 (1)
Total waders and gulls 2/0 (23) 0 264/114 (569) 20

Corvus corax R 0/0 (2) 0
Coturnix coturnix M 0/0 (1) 0
Total others 0/0 (3) 0
Total 12/5 (227) 2 272/119 (780) 15

Intraspecific prevalences are indicated when sample size was larger than five individuals. The migratory behavior of every species is
indicated (R, resident; M, migratory).
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seroprevalence, whereas there were no positive cases at all
in ducks.

Neither WNV nor any other flavivirus genomes were
found in any of the tissue samples analyzed. In other work
carried out on mosquitoes in the same region using the same
methodology as this study, flavivirus sequences have been
found (Aranda et al. 2009, Sánchez-Seco et al. 2009).

Discussion

WNV circulation in the Mediterranean Basin has only
rarely been associated with wild bird mortality (Dauphin et al.
2004, Zeller and Schuffenecker 2004, Jourdain et al. 2007), an
exception being the outbreak occurred in Israel that resulted
in detectable mortalities of up to 40% in some stork flocks
(Malkinson et al. 2002). Despite the fact that other studies
have reported a lack of detectable mortality in the field, this
study is the first to specifically analyze the presence of WNV
and antibodies against WNV in ill and injured birds arriving
in rehabilitation centers. As expected, we did find WNV an-
tibodies in the birds arriving rehabilitation centers, but their
prevalence was no higher than that found in healthy birds
captured in the field. This result confirms that the virus was
circulating in the avian population during the study period.
However, we found neither WNV nor any other related fla-
vivirus in the tissues of a large sample of wild birds with
health problems in southern Spain. The lack of WNV in tissue

suggests that WNV was not a cause of increased morbidity or
mortality in birds entering wildlife rehabilitation centers,
despite the circulation of WNV in the area. Although isolated
cases with related mortality were described during the same
period (Höfle et al. 2008, Jiménez-Clavero et al. 2008), our
results suggest that the WNV strains currently circulating in
the area are not likely to have any effect on avian population
dynamics, unlike the situation in the Americas (LaDeau et al.
2007). Recently, experimental infections have confirmed the
lower pathogenicity of these WNV isolates on mice under
laboratory conditions (Sotelo et al. in press), and similar
results have also been obtained using a new avian model for
wild birds (Sotelo et al. unpublished data). The 2.2% ser-
oprevalence obtained in our study is slightly lower than those
previously found in Spain (3.8%–10.4%; Figuerola et al. 2007a,
Figuerola et al. 2008, López et al. 2008) and in other European
countries, such as France (4.8%; Jourdain et al. 2008) and the
Czech Republic (5.9%; Hubálek et al. 2008). In contrast to the
findings in Europe, seroprevalences found in the Americas
have usually found to be higher: that is, 25.6% in Argentina
(Dı́az et al. 2008) or 1.8% to 95% in the United States (Medica
et al. 2007, Wilcox et al. 2007, Dusek et al. 2009, Nemeth et al.
2009).

The interspecific differences in seroprevalence observed in
this study, above all those found in species occupying the
same habitat (such as mallards and coots in the field, 2% vs.
20% antibody prevalence), could be due to intraspecific dif-

FIG. 1. Geographical origin of the wild live birds sampled in the Andalusian rehabilitation centers in this study. Raptors are
represented as squares, owls as circles, herons and storks as pentagons, ducks as crossed circles, waders and gulls as crosses,
and other species as dotted circles. Inside the study area, the Doñana wetland area is depicted separately. Bold symbols
represent West Nile virus–seropositive cases. Stars represent locations where West Nile virus circulation has been reported in
Spain: solid stars represent reports in humans (Kaptoul et al. 2007) and bold stars in birds and horses (Figuerola et al. 2007b,
Jiménez-Clavero et al. 2007, Höfle et al. 2008, Jiménez-Clavero et al. 2008).
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ferences in (1) susceptibility to WNV, (2) WNV-vector biting
preferences, and (3) differences in avian ecology that result in
a different exposure to the vectors (Kilpatrick et al. 2007a,
2007b). Identifying the causes of these interspecific differences
in our study is difficult due to the large geographical hetero-
geneity in the origin of the samples, which means that the
individual birds sampled would have been exposed to vary-
ing abundances of mosquitoes and different risks of contact
with the virus. However, the possibility that the lower prev-
alence of antibodies in mallards as opposed to coots was due
to an increased mortality in WNV-infected mallards could be
discarded given that (1) we failed to detect WNV in the brain of
32 dead mallards taken in this study and (2) the results of Marra
et al. (2004) described that none of 12 experimentally inoculated
mallards developed signs of clinical illness and that the infec-
tion cleared up in less than 7 days. In terms of the migratory
behavior of the individuals with antibodies, out of the five
seropositive cases, only white storks are partially migratory,
whereas kestrels and black vultures are both resident. More-
over, four out of five positives were found during winter
(December–February), including both white storks (which
suggest that they were resident). These results demonstrate
that the circulation of WNV took place in the study area and
allow discarding that the prevalence found in this study is only
due to infections in Africa of migrating birds. The spatial
distribution of the seropositive birds also suggests that WNV
has been circulating not only in Doñana, as has been previously
reported in southern Spain (Figuerola et al. 2007b), but also in
other localities in the Seville and Cádiz areas.

Conclusion

On the basis of birds arriving in the rehabilitation centers,
our results suggest that WNV circulation in southwest An-
dalusia has not led to any increased morbidity or mortality
among wild birds.
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1. Los ciclos circadianos de eliminación de ooquistes que presentan los 

coccidios del género Isospora en aves paseriformes Dificultan la 

cuantificación de las cargas parasitarias. Sin embargo, la máxima 

eliminación se produce durante la tarde, y para tener datos 

comparables de prevalencia o carga de coccidios basta restringir el 

muestreo a ese periodo o introducir en los modelos estadísticos un 

factor mañana/tarde. 

2. La extensión de la muda parcial postjuvenil en la lavandera blanca 

conlleva un coste en términos de estrés, estimado a partir de la 

composición leucocitaria, probablemente asociado a las presiones 

sociales derivadas de un mayor o menor grado de similitud con el 

plumaje adulto. 

3. La máscara facial carotenoide del jilguero presenta dimorfismo sexual, 

siendo más roja en los machos y más anaranjada en las hembras. 

4. Durante el periodo reproductor, el color de la máscara facial 

carotenoide del jilguero se relaciona con la capacidad inmune y con la 

carga de Haemoproteus e Isospora en las hembras, no presentando 

relación con las variables estudiadas en los machos. 

5. La coloración carotenoide del pico de los machos de mirlo común se 

relacionó con la condición corporal, status de salud, estrés y niveles de 

hidratación y de nutrición, pero no con la presencia ni la carga de 

hemoparásitos ni parásitos intestinales. 

6. Tanto a nivel intra- como interespecífico las consecuencias ecologicas 

del parasitismo dependieron del grupo de parásitos análizados. Los 

resultados generados con un grupo de parásitos no pueden ser 

extrapolados a la comunidad de parasitos y patogenos que explotan 

un huesped. 

7. Los niveles plasmáticos de carotenos están inversamente relacionado 

con la riqueza de parásitos intestinales en aves paseriformes a niveles 

intra- e interespecíficos. 
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8. El tamaño de las aves y el comportamiento migrador están 

directamente relacionados con la seroprevalencia del virus West Nile 

en el sur de España. Las especies de mayor tamaño presentaron 

mayores prevalencias independientemente de la edad de los 

individuos y se proponen como mejores candidatos para establecer 

programas de vigilancia frente al virus West Nile.  

9. Las especies de aves migradoras trans-saharianas poseen una 

seroprevalencia de WNV significativamente mayor que las residentes o 

las migradoras de corta distancia, lo que sugiere que pasan el invierno 

en zonas con mayor circulacion del virus West Nile que en Andalucía.. 

10. La comparación de las viremias y seroprevalencias en aves silvestres 

capturadas en el campo con las ingresadas en los centros de 

recuperación sugiere que la circulación del virus West Nile en 

Andalucía no tiene asociado incrementos en término de morbilidad o 

mortalidad. 
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