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Prologue

This Thesis develops recent work [1] [2] [3] [4] on the ‘Fast Scrambling
Conjecture’ [5] [6] [7]. According to this proposal, black holes are the
most efficient information scramblers in nature, with a characteristic
time scale that saturates parametrically the causality bounds.

In this work we review the original motivations of this conjecture
and present a number of new results, which might be considered as
supporting evidence. In particular we arrive to two main ideas.

The first observation is that standard local diffusion achieves fast
scrambling in spaces with hyperbolic geometry. This includes clas-
sical models such as chaotic billiards, as well as more sophisticated
constructions such as random walks on expander graphs or hydrody-
namic behaviour of Local Field Theories on Hyperbolic spaces.

The second observation is that the required hyperbolic structures
are naturally found in the Hamiltonian formalism for standard QFT
near a regular event horizon. We introduce a frame for the descrip-
tion of near-horizon bulk dynamics whose phase space is naturally
parametrized by a quantum system on a hyperboloid. The technical
specification of this frame introduces an operational definition of the
notion of ‘Stretched Horizon’ (SH).

Finally, we use these notions to build phenomenological models
for fast scrambling. In particular, the non-local dynamics of the SH
can be shown to be a fast scrambler if the system is endowed with an
ultrametric structure, a notion also found in the study of disordered
systems and spin glasses.

We conclude with a set of ideas and speculations regarding the ab
initio approach to find a proof of the conjecture in systems with high
non-locality such as matrix quantum mechanics, which is the stan-
dard baseline model for a fast scrambler as suggested by holographic
constructions.

V



VI Prologue

The first chapter contains two parts. It begins with an introductory
review to some problematic aspects of Quantum Black Holes. They
will provide the specific context in which this work has been devel-
oped. The second part will deal with the origins of the so-called “Fast
Scrambling Conjecture” [5] [6] [7]. It will review the three heuristic ar-
guments leading to the conjectured time scale, namely the no-cloning
bound, the diffusion of charged densities in the SH and the non-local,
completely connected, dual Matrix Models of Black Holes. We show
how the two first heuristic arguments have a geometrical origin, and
depend solely on the free fall time to the SH.

The second chapter delves deeper into the geometrical aspects of
this free fall time scale, which we explore in different types of Black
holes and Black Branes. We show that Fast Scramblers must be
small. The thermal length β of the Black Brane should exceed what-
ever compact tranverse length is characterizing the system. This is
an expectable result when embedding these type of considerations in
holographic frameworks. Indeed, in cases when the opposite is true,
and the transverse compact directions exceed the thermal length, the
free fall time will depend solely on the properties of a single thermal
length, signalling that Fast Scrambling only occurs within a thermal
cell, consistent with causality bounds in the dual theories. In the last
part, we will show how T-duality constructions lead us to an effective
Matrix Model description of this thermal cell.

The third chapter focuses on a search for simple examples of Fast
Scramblers. At first, this time scale will be defined. Two main lines of
attack will be drawn: a more fundamental type and a pragmatic one,
based on diffusion. During the thesis, the main results will come from
this last approach, and some justifications will be given in order to
understand the connection to the first one. Using the diffusion frame-
work, we will show how Fast Scramblers can be local under the condi-
tion that the diffusion process occurs in an effective hyperbolic geom-
etry, or in their discrete counterparts, the so-called expander graphs.
In view of these results, an application of the fundamental approach to
these types of systems will be considered, leading to various insights.

The fourth chapter focus specifically on the gravitational descrip-
tion of Black Holes and Black Branes. The central observation will
be the mapping between the near horizon physics and a thermal field
theory defined on a hyperbolic geometry. In turn, the specifics of this
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mapping provide us with a definition of the SH. The size of this hy-
perbolic space, naturally cut-off by the SH, will be equivalent to the
flight time of a null ray as it crosses the near horizon region. With this
construction in mind, we propose two models of Black Hole Fast scram-
bling that depend on the specific dynamics of the Hyperbolic Theory,
either strongly coupled or weakly coupled. Finally, these considera-
tions suggest a specific model of Fast Scrambling for the Planckian
SH, which is of an Ultrametric type and saturates stability bounds.

We conclude the thesis by summarizing our results.
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Chapter 1

Black Holes and Quantum
Information

Fast scramblers find their raison d’etre in the quantum physics of
black holes. We thus begin with an outline of the broader context of
quantum black hole physics as developed in the last few decades.

1.1 Quantum Black Holes

In classical physics, black holes are absolute absorbers of mat-
ter, which in turn implies they are absolute absorbers of information.
The discoveries of the 70’s, prompted by the ground-breaking results
of Bekenstein and Hawking [8] [9], completely altered this view. In
particular, it was suggested that black holes have a finite number of
degrees of freedom, signified by the finiteness of the black hole entropy:

S =
AH
4G

(1.1)

where AH is the area of the event horizon and G is Newton’s con-
stant. Associated to this entropy, there is a natural temperature

T =
1

8πGM
(1.2)

for a Schwarzschild black hole of mass M in four dimensions. Since
the black hole radius is R = 2GM , one finds that the characteristic
temperature is set by the size of the hole, T ∼ 1/R, and the entropy

1



2 BLACK HOLES AND QUANTUM INFORMATION

is the horizon volume (area) in Planck units, two statements that do
generalize to arbitrary space-time dimensions.

Up to numerical constants, the Newtonian potential of a mass M at
distances of order R scales asGM/Rd−2 in d+1 dimensions. Therefore,
the size of a black hole is parametrically related to its mass through

Rd−2 ∼ GM (1.3)

It follows that, in any dimension, the entropy defined by the Bekenstein–
Hawking formula (1.1) measures the number of minimally gapped
quanta of energy 1/R that would account for the mass of the hole
while still fitting inside:

S =
AH
4G
∼ Rd−1

G
∼ M

1/R
∼M R (1.4)

These quanta are precisely the Hawking particles, emitted in the
evaporation process with typical frequency ω ∼ 1/R. Since about one
quantum is emitted every time interval of order R, the whole set of S
quanta accounting for the total mass of the hole will be emitted in an
evaporation time of order

Γ−1 ∼ RS (1.5)

where Γ can be interpreted as a decay width of the black hole,
understood as an intermediate resonance in a scattering experiment.

A black hole is called semiclassical when S � 1. The reason for
this definition is as follows. The low-energy effective field theory in the
Schwarzschild metric has curvature of order 1/R2. Hence, quantum
corrections to General Relativity (GR) on this background are of order
G/R2 or, more generally of order λ = G/Rd−1 in d + 1 space-time
dimensions, which serves as the expansion parameter of local effective
field theory. One notices that, as a general rule in any dimensionality

S ∼ 1

λ
(1.6)

so that the semiclassical domain λ � 1 is equivalent to the ‘large
black hole’ limit S � 1 and the quantum loop expansion of the effec-
tive QFT in the black hole background is an expansion in powers of
1/S.
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Large-entropy black holes can be thought of as extremely narrow
resonances, since

Γ

M
∼ 1

S2
� 1 (1.7)

so that, for time scales much shorter than the evaporation time

tev ∼ Γ−1 ∼ RS (1.8)

we can neglect Γ and regard them as stable states diagonalizing
an effective Hamiltonian with eigenvalues given by the spectrum of
black hole masses. The density of states of such effective Hamiltonian
is however rather exotic, since the dimension of the effective Hilbert
space is

dimHeff ∼ exp(S) ∼ exp(G
1
d−2M

d−1
d−2 ) (1.9)

The very strong growth at high energies, making the entropy func-
tion concave, is responsible from the thermodynamical instability of
black holes (negative specific heat) and more generally complicates the
task of identifying a model for the effective Hamiltonian of a quan-
tum black hole. In fact, such a radical growth of states with energy
is incompatible with local dynamics in time, as shown in [10]. This
suggests that we should somehow cut-off the growth of (1.9) in order
to find more standard descriptions.

One possibility is to enclose the system in a spatial box of size
L. It is easy to see that in such a finite system a small amount of
Hawking radiation can come to equilibrium with a sufficiently large
black hole (cf. for example [11]), rendering the state stable. Its mass
should then be a true eigenvalue of a Hermitian Hamiltonian, still with
the exotic density of states (1.9), but now cutoff at a maximal energy
corresponding to the largest black hole fitting inside the box, i.e. one
with Schwarzschild radius R ∼ L.

The simple arguments advanced so far have a startling conse-
quence. The states with largest energy which can be said to be lo-
calized within a region of size L are typically black holes with a size
of order L. On the other hand, their entropy (log of the density of
states) scales like the volume of the bounding region. Therefore, we
conclude that a hypothetical description with local degrees of freedom
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on the boundary of the region has enough states to account for any
state fitting in the interior. One possible interpretation of this fact
would be to admit that local QFT is a vastly redundant description
of the full quantum physics within the size L. In particular, once
the states are massive enough to look like black holes, a description
based on boundary degrees of freedom becomes more natural. Since
high-energy states (black holes) have vastly more entropy than lower
energy particle-like QFT states, we may entertain the possibility that
the boundary variables are the more fundamental ones, with QFT
arising as an effective description for sufficiently ‘dilute’ states not
containing black holes.

The previous paragraph is the statement of the famous Holographic
Principle [12,13]. In order to make progress we would need to guess the
Hamiltonian written in ‘boundary variables’. This looks rather like an
impossible task, since the density of states was pointed out to be com-
pletely exotic, not featuring in ‘textbooks’, i.e. qualitatively different
from any other Hamiltonian previously encountered in nature.

This impasse was jumped over by Maldacena with his famous dis-
covery of the AdS/CFT correspondence [14, 15]. From the point of
view of the present discussion, the AdS/CFT correspondence offers
an ‘ultraviolet completion’ of the boxed black hole system, by the use
of a clever type of box: Anti de Sitter space-time.

It is well known that the maximally symmetric space-time of neg-
ative curvature, denoted AdSd+1, acts as a soft box with a confining
gravitational potential of a simple harmonic form at large distances:

Veff (r) ∼
( r
L

)2

(1.10)

for r � L and L interpreted here as the radius of curvature of
AdS. 1 Hence, we have the physics of a box, but black holes with
R� L are still possible, except that they behave very differently from
Schwarzschild black holes with R < L. In particular, their entropy is
a convex function of the energy, ensuring positive specific heat:

SR�L ∼ S1/d
∗ (ML)

d−1
d (1.11)

1The radial coordinate r is defined so that r = constant spheres have volume
|Sd−1|rd−1.
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with S∗ = Ld−1/G the crossover entropy at the threshold mass
separating small and large black holes, given by

M∗ ∼
Ld−2

G
(1.12)

The crucial insight is to recognize (1.11) as the ordinary entropy
of a massless QFT (more precisely a CFT) in d space-time dimensions
and with S∗ particle degrees of freedom (in spin, color, flavor, etc).
Thus we can guess that the complete quantum gravitational theory in
AdSd+1 can be captured at the quantum level by a CFT in one dimen-
sion less, defined in a spherical box of size L, but with no dynamical
gravity.

This guess is the substance of the celebrated AdS/CFT correspon-
dence. Additional evidence comes from the fact that the asymptotic
isometry group of AdSd+1 is SO(2, d), which matches the conformal
group in d space-time dimensions, as well as a plethora of more de-
tailed tests in more specific versions of the correspondence with larger
(super)symmetry structures.

The AdS/CFT correspondence implies that large AdS black holes,
with R� L, are equivalent to typical high energy states in the finite-
volume CFT, like for instance high-temperature quark-gluon plasmas.
Such systems have canonical thermodynamics with entropy

S ∼ S∗ (LT )d−1 (1.13)

where we see how S∗ acquires the interpretation of particle-like
degrees of freedom. Small Schwarzschild-like black holes, with R� L,
are not so easy to identify as states in the CFT, since their very
existence relies on the S∗ → ∞ limit. At any rate, the AdS/CFT
correspondence provides an embedding of all the classic problems of
quantum black hole physics in terms of a comparatively controlled
system: a CFT without gravity in the limit of parametrically large
number of degrees of freedom S∗ � 1.

1.1.1 Crisis... What Crisis?

The fully quantum mechanical description of black holes implied by
the holographic ideas is fundamentally non-local in the original space-
time. A tension between unitarity and locality was evident from the
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very early results by Hawking and his famous ‘information paradox’
[?].

At a technical level, the derivation of black hole radiance relies on
the assumption that the QFT state of low-energy fields in the near-
horizon region is well approximated by the vacuum. This is required
by the Equivalence Principle (EP), since such a state can be measured
by a small infalling observer entering the black hole. It follows that,
to a good approximation, the Hawking quanta remain maximally en-
tangled with degrees of freedom left behind in the hole, and thus the
entropy of the Hawking quanta measured at infinity is very close to
maximal (i.e. thermal) for all quanta emitted while the black hole is
still semiclassical (i.e. satisfying S � 1). This condition is only vio-
lated when S ∼ 1, which corresponds to a Planck-sized black hole of
the order of the Planck mass. Hawking’s information paradox is the
statement that unitarity must be violated because quantum purity of
the Hawking radiation cannot be restored by the final Planckian burst
of particles, accounting only for a tiny fraction MPlanck � M of the
initial mass.

This paradox is a clash between the two founding principles of XX
century physics: unitarity and locality. Despite the original proposal
by Hawking himself that unitarity was the culprit, the opposite option
has been gathering consensus in the last couple of decades. In partic-
ular, holographic ideas point very definitely towards the breakdown
of standard locality. The success of the EP is tied to the success of
local QFT which, as argued above, is an expansion in powers of 1/S
in the black-hole spacetime. Therefore, salvaging the EP requires the
locality violations to be invisible to all orders in the 1/S expansion.

We can estimate the size of the required locality violations by a
kind of ‘fluctuation-dissipation’ argument. Let Oin and Oout local
observables associated to ‘infalling’ and ‘outgoing’ degrees of freedom,
with spacelike separation in the smooth black hole metric, so that they
commute to all orders in the 1/S expansion. We can guess that the
size of the commutator in the black hole state can be estimated by
the size of out-out correlations at the time where information must be
returned, i.e. the evaporation time:

〈[Oin,Oout]〉bh ∼ 〈Oout(0)Oout(tev)〉 (1.14)

The right hand side decreases with time as exp(−t/R), according to
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the classic no-hair theorem, so that its value at t = tev = RS is of order
e−S = e−1/λ. The required locality violation is then non-perturbative
in the expansion parameter of low-energy effective QFT, explaining
why Hawking’s argument did not see the restoration of unitarity. More
abstractly, any low energy QFT treatment is an expansion around
S =∞, but the information is never returned in the S =∞ case, the
evaporation time being infinite. On the other hand, the quasinormal
behavior of quantum correlations

〈Oout(0)Oout(t)〉 ∼ e−t/R (1.15)

can only be exact in the strict S =∞ limit. At finite S, the spacing
of energy levels of the black hole Hamiltonian is of order T e−S, so that
any correlation function of type (1.15) suffers from ‘quantum noise’ at
very long times, of the order of the Heisenberg time

tH ∼ ReS (1.16)

setting the scale of O(1) Poincaré recurrences in (1.15). Since the
tiny energy spacings, of order e−S are invisible in low-energy QFT (be-
ing a theory only defined in powers of 1/S), any local QFT argument
treats the spectrum of black hole states as continuous.

An ab initio fix of this problem is to rely completely on holographic
variables, such as the CFT in the case of AdS black holes. This has
the high cost of sacrificing completely the locality of the bulk space-
time. More modestly, a semi-phenomenological fix to this problem is
the introduction of the ‘stretched horizon’ (SH). Physically, the origin
of the ‘disease of the continuous spectrum’ is the infinite redshift at
the black hole horizon. This can be fixed provisionally by imposing
a cutoff at a timelike surface which sits one Planck unit above the
horizon. This surrogate of the horizon, equipped with some effective
Hamiltonian, is the SH. The use of stretched horizons goes back to the
so-called ‘membrane paradigm’ [16–18], an effective Newtonian model
for the interactions of realistic black holes with various astrophysical
surroundings.

We can view the SH model as a parametrization of finite S ef-
fects, while keeping the broad formalism of local QFT in the vicinity
of the horizon. Roughly, we ascribe the non-local effects of order e−S

to the physics of this quantum system extended over the horizon with
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a density of degrees of freedom of order one bit per Planck area. Ul-
timately, the notion of the SH together with its effective Hamiltonian
must be derived from the putative holographic description. Provision-
ally, physically motivated models like the SH can be used to explore
the physics of the problem.

Viewed from the point of view of the Oout operator algebra, the
SH is a highly chaotic system which quickly thermalizes any quantum
state that it absorbs, and the energy is released back in the form
of Hawking radiation. This picture puts the black hole on the same
footing as any other complex highly excited system which processes
information as a randomizer.

There are two main differences between an ordinary thermal sys-
tem and the black hole. The first and more important is that such
a picture only applies to the Oout operator algebra associated to S-
matrix type questions or, more colloquially, to ‘external observer mea-
surements’. Infalling observers, carrying the Oin operator algebra, see
no SH whatsoever. In fact they just measure the local vacuum state
of the low energy QFT, in accordance with the EP. This dichotomy of
Bohr’s type has been argued by Susskind to be exactly that: a case
of quantum complementarity between two sets of non-commuting op-
erators. This idea, dubbed ‘the principle of black hole complementar-
ity’ [19], is the most important open question in the study of quantum
black holes. Exactly how to implement the unitarity transformation
between the out and the in operator algebras remains a subject of
intense debate 2

The second difference between black holes and generic randomizers
is the occurrence of new ‘short’ dynamical time scales associated to
the thermalization process, which are characteristic of the black hole
dynamics. They are the subject of the next section and indeed of the
main body of this thesis.

1.2 Why Fast Scramblers?

The conceptual scenario laid down in the previous section sug-
gests that, viewed in the context of information theory, black holes

2Recently, the discussion of firewalls [20] has elevated the tone of the discussion,
putting into question the very validity of the complementarity principle.



1.2. WHY FAST SCRAMBLERS? 9

are just efficient thermalization systems, characterized by one basic
time scale, T−1 the Hawking temperature, while a number of detailed
physical properties depend on the existence of a parametrically small
(but finite) number λ = 1/S which controls the accuracy of the semi-
classical picture. In particular we have two additional very long time
scales: the black hole lifetime in Minkowski space:

tev ∼ T−1 S (1.17)

and the Heisenberg time scale (setting the Poincaré recurrences)
for a black hole in a commensurate box (or AdS for that matter):

trec ∼ T−1 eS (1.18)

In this section we lay down a number of arguments suggesting
that a third time scale is present, associated to the global scrambling
of information, and having a logarithmic dependence on the entropy.
This time scale is associated to the universal presence of a near-horizon
region of Rindler type, associated to any SH, to the extent that one
may naturally view the SH and its associated Rindler region as a
dynamical unity.

1.2.1 The Conjecture

From this information theoretical point of view, black holes may be
regarded as efficient randomizers. A phenomenological description
in terms of a SH, with a highly chaotic Hamiltonian, embodies this
assumption. An interesting question in this respect is whether some
special dynamics, peculiar of black holes, must be postulated, or we
can regard the information processing by a black hole just like the
information processing in a hot gas.

The holographic description of black holes as plasma states in
QFT’s seems to indicate that no exotic thermalization properties are
to be expected. On the other hand, large semiclassical black holes
arise precisely at very strong coupling and in the large N limit in the
field-theory side, and thus standard QFT intuition must be reexam-
ined. In fact, there are reasons to believe that black holes have peculiar
thermalization properties, in the sense that they scramble information
essentially as fast as it is possible, compatible with causality. This was
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proposed in [5,6], and it comes under the name of The Fast Scrambling
Conjecture. The scrambling time for black holes was conjectured to
be

τs ∼ T−1 log(S) , (1.19)

with T the Hawking temperature and S the black hole entropy.
To have a feeling of how fast this is, one may take an straightfor-

ward diffusion argument. In systems with local degrees of freedom and
local interactions the scrambling of information can often be assimi-
lated to a diffusion process. In this case, if the diffusion takes place in
flat space, we can say that locally coded information ‘random-walks’
around the system, covering a volume Ld in a time proportional to L2.
For ‘normal’ states, with extensive entropy, S ∝ Ld, we find scram-
bling times proportional to S2/d, measured in units of some typical
time scale characterizing the state, such as the inverse temperature
β = T−1 in relativistic systems 3.

Therefore, roughly, 1.19 corresponds to the local scrambling for a
system with infinite spatial dimension, d → ∞. It is very interesting
to elevate this estimate to the rank of fundamental law of nature, and
regard black holes as the fastest possible scramblers [6].

The fast scrambling rate of black holes can be argued in a num-
ber of ways. It turns out that τs is the time scale that saturates the
no-cloning bound in black holes, i.e. it is a measure of the minimum
time for information retrieval in the Hawking radiation (cf. [5,6]). The
same time scale can be identified in a kinematical effect characteristic
of the ‘membrane paradigm’ [16–18], where a conserved charge distri-
bution on the stretched horizon, induced by the motion of external
charges, undergoes non-relativistic Ohmic diffusion with respect to
the Schwarzschild time variable. It follows that this induced charge
spreads exponentially fast, filling a given area of horizon in a time
which scales logarithmically with this area. Finally, from the point of
view of hypothetical holographic duals of the black hole, both Matrix

3We will argue the diffusion model for computing the scrambling in the third
chapter. At the same time we will be more rigorous in describing diffusion and
Random Walks in the fourth chapter. For the time being just notice that there is
also another bound, given by the time a perturbation takes to cross the system in
the vacuum state of the theory. This gives a causality bound for the scrambling
time of the order O(S1/d) for flat space models
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Theory [21] and AdS/CFT [14] suggest the consideration of N × N
matrix models with S ∼ N2 degrees of freedom. The non-local char-
acter of the interactions of matrix elements in ‘index space’ suggests
that, precisely for these systems, we may get the maximal possible
scrambling rate.

We develop more in these three constructions in what follows.

1.2.2 The no-cloning bound

We begin describing the no-cloning argument by noticing Figure 1.1,
which illustrates the fact that the edge of the near-horizon region,
given by the line X+X− = −R2

s, is symmetric to the singularity locus,
X+X− = R2

s, by a null reflection through the horizon. This fact
will be essential for our later observations. The points Q and Q′ are
also symmetric and separated a proper distance of order `p from the
horizon.

If a Q-bit falls into the black hole from P to Q while it is cloned
at the horizon and returns within the Hawking radiation at P ′, a
local verification of the cloning could occur inside the black hole if
Q and P ′ can have a common point S in their future. Notice that
the points P and P ′ are set at height Rs because the cloned Q-bit
must be efficiently detected while it is emitted with wavelength of
O(Rs). This situation being incompatible with the linear evolution of
quantum mechanical states, it must be that such a local meeting of
the two copies is prevented by the occurrence of the singularity. In
this way we obtain a lower bound on the time delay between the two
departures of the infalling Q-bit from P and P ′.
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P

P ′

Q

S

X+X−

X+X− = R2
s

X+X− = −R2
s

Q′

Figure 1.1: Diagram showing that the Schwarzschild time between P and
P ′ equals the reflection time of a photon from the stretched horizon, i.e. the
piecewise-null trajectory P Q′ ∪ Q′ P ′, where Q and Q′ lie respectively at
the inner and outer edges of the stretched horizon, i.e. on the hypersurfaces
X+X− = ±`2.

We compute this delay using the standard map between Schwarzschild
time and Kruskal coordinates, X± ∼ Rs exp(±t/2Rs). Since Q′ sits
at the edge of the stretched horizon we have X+

Q′X
−
Q′ = −`2

p. Further-

more, X+
P ′X

−
P ′ = −R2

s and, by the reflection conditions X−S = X−Q =

−X−P ′ = −X−Q′ , we find

∆tmin ∼ 2Rs log

(
X+
P ′

X+
P

)
= 2Rs log

(
R2
s

`2
p

)
. (1.20)

Noting that the entropy S = A
4G
∼ (Rs/`p)

2 we find, up to O(1)
coefficients and neglecting O(Rs) additive contributions,

∆tmin ∼ τ∗ = Rs log(S) . (1.21)

Since `p enters logarithmically, this time scale is very robust in
order of magnitude. For example, the same result is obtained with
the much less conservative criterion that X−Q > M−1, with M the
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mass of the black hole, so that the infalling Q-bit is not heavier than
the original black hole.

We point out, for later convenience, that in this construction it
is clear that the time-delay scale, τ∗, is equal to the ‘reflection time’
from the SH or, in order of magnitude, a minimal free-fall time to
the SH across the Rindler region. In the last chapter we will compute
this quantity for generic black holes. We shall denote this kinematical
time scale as the ‘optical depth’, in relation with the size of the optical
metric, to be described later on as well. These simple observations will
be central in all our scrambling models for Black Holes.

On the other hand, the actual relevance of these arguments for
the issue of information retrieval is not clear. As was pointed out
in [1], and carefully developed in [22], the complete decoding of the
information contained in a single Q-bit may require time scales in
excess of O(Rs e

S), the Heisenberg time of the system.

1.2.3 Classical diffusion at the Streched Horizon

A second argument introducing the time scale τ∗ = Rs log(S) uses
the dynamics of induced charge densities on the stretched horizon
according to the membrane paradigm [6, 16–18]. Generically, charges
densities are just given by the normal component of the Electric field,
solution to the classical equations of motion, at the given surface. We
review here the simple and clear approach exposed in [18]. We consider
a rest charge at position zc in Minkowski coordinates, with the electric
field given by

Ez =
e(z − zc)

[(z − zc)2 + x2
⊥]

3
2

. (1.22)

The purpose is to study physical quantities at the SH in the Rindler
frame, with metric

ds2 = −ρ2dω2 + dρ2 + dx2
⊥ . (1.23)

The SH is sited at ρSH = `p. Computing the normal component
of the Electric Field at this surface EρSH is a simple exercise, because
the Rindler wedge is related to the more common Minkowski one by a
boost along the z axis. In particular, the component along the boost
direction is invariant
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Eρ = Ez =
e(z − zc)

[(z − zc)2 + x2
⊥]

3
2

=
e(ρ coshω − zc)

[(ρ coshω − zc)2 + x2
⊥]

3
2

. (1.24)

The surface charge density is defined as

σ =
1

4πρ
Eρ|ρSH =

e

4π`p

`p coshω − zc
[(`p coshω − zc)2 + x2

⊥]
3
2

, (1.25)

which, in the limit ω � 1, is well approximated by

σ =
1

4πρ
Eρ|ρSH =

e

4π`p

`pe
ω

[(`peω)2 + x2
⊥]

3
2

, (1.26)

giving an exponential spreading of the surface charge density along
the transverse directions

x⊥ ∼ `pe
ω . (1.27)

In the case of a Schwarzschild Black Holes 1.27 gives the conjec-
tured time scale in order of magnitude.

Another view of these dynamics, which connects with the free fall
time observation of the no-cloning argument, is that spacetime varia-
tions of these surface densities should not violate local causality. The
fastest possible variations of such electromagnetic fields are induced
by letting a moving source charge above the horizon approach the
speed of light. This leads naturally to the time scale τ∗, since that is
the characteristic time for the source charge to cross the near horizon
region and hit the SH, as we have just mention when describing the
no-cloning argument.

Indeed one may think that an exponentially fast spread, as mea-
sured in asymptotic time, is incompatible with causality. A simple
argument from [13] shows that such a behavior is precisely saturating
the causality bound, rather than contradicting it. Let us define the
SH in locally flat coordinates (X+, X−, X⊥) as the Rindler surface

X+X− ≡ −(X0)2 + Z2 = `2
p . (1.28)

The future light-cone bounding causal events originating at a point
of coordinates (X0 = 0, X⊥ = 0, Z = `p) on the SH is given by
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− (X0)2 + (Z − lp)2 +X2
⊥ = 0 , (1.29)

which intersects the SH itself along the hypersurface

X2
⊥ = 2`p(Z − `p) −→ 2`2

p e
t/2Rs , , (1.30)

where we have inserted the long-time asymptotics of Z ∼ X+−X−,
with respect to the asymptotic Schwarzschild time variable, showing
the exponential rate which fills an area of order X2

⊥ ∼ R2
s in a time of

order τ∗.
Notice that the light rays between two points on the stretched hori-

zon do not propagate confined to the stretched horizon, but actually
go above it through the bulk of the Rindler region.

Another equivalent face of these considerations, which will be cru-
cial in what follows, is the study of this peculiar causality constraint in
the so-called optical metric, obtained by rescaling the physical metric
in such a way that the static redshift disappears, i.e. for 1.23 we have

d̃s
2

= −dt2 +
dρ2 + d~x 2

ρ2
, , (1.31)

which describes the direct product of the time line with a hyper-
bolic space. Being conformally related, the metrics1.23 and 1.31 share
the same local causality structure. In particular, null paths connecting
two points at the SH surface correspond to geodesic hyperbolic arcs
in the Hd+1 space, cut-off at ρSH . The resulting time of flight across
a ~x-coordinate domain of magnitude 2L is

tL = 2 log(L/`p) = 2zL , , (1.32)

where we have defined the tortoise coordinate
z = log(ρ/`p)
normalized so that zSH = 0 at the stretched horizon. Equation 1.32

shows that the fastest causal connection between two points separated
by an amount of order L in the SH scales only logarithmically with
L. This contrasts with the causal time for any transport within the
SH which, if taken in isolation, would be proportional to L, or even
O(L2) if the usual diffusion processes are assumed.

We then observe that the root of these two first heuristic argu-
ments, the no cloning bound and the charge spreading, is the same,
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being the specific and peculiar nature of the free fall time of null
geodesics in the near horizon region. At the same time these geodesics
and, therefore, the causal structure of the SH, can be naturally de-
scribed in the optical frame, in which the background geometry is the
product of the time line times an Hyperbolic space.

Going back to scrambling considerations, these arguments leave us
in a quandary regarding the interpretation of τ∗ as a scrambling time.
Since any process measured by scales of order τ∗ is saturating causality
in order of magnitude, this means that the purported scrambling must
be not only fast but in fact as fast as it can be. Hence the suggestion
that fast scramblers cannot behave like standard diffusion at all: a
fast scrambler must work at ballistic speed.

1.2.4 Quantum Circuits and Matrix Models

The last input for the justification of the conjecture is coming from
results in Quantum Information Theory [5]. In particular, in [23], it
is shown that such rates are attainable within the circuit scheme of
quantum computation.

The actual circuits considered in that work are as non-local as
they can be. The construction can be vaguely explained by asserting
that at each time step N/2 random pairs of Q-bits are chosen out of
the N total Q-bits conforming the circuit or, in more physical words,
conforming the physical system, and a random Unitary transformation
in the space of two Q-bits 4 is applied to each pair. This then furnish
a, unitary and discrete, time evolution for the system.

What is shown in Ref. [?] is that, indeed, with this procedure, after
O(log(N)) steps have elapsed, the resulting state is almost undistin-
guishable from a random state taken from the Haar ensemble, which
in turn is just the uniform distribution in the full Hilbert space. More
precisely, after those number of steps, the resulting state is a ran-
dom state taken from a unitary two design. These unitary p-designs
are probability distributions over quantum states, whose averages give
equal results to those obtained from the Haar ensemble, whenever the
polynomial function which is studied is of degree p or less.

4This is a 4 × 4 Unitary Random Matrix, a matrix taken from the unitary
Circular ensemble of 4× 4 matrices
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Although this is naively a very awkward and non-physical model it
has indeed some relevance for Black Holes. The point here is that the
existing holographic descriptions of black holes which are well defined
do involve matrix models, through the gauge/gravity correspondence.
In turn, matrix models are examples of systems with few-body in-
teractions in index space, such as the standard four-point interaction
potential for a N ×N Hermitian matrix model:

TrM4 =
N∑

ijkln=1

MijMklMlnMni (1.33)

which are completely non-local, with a structure resembling the
previously mentioned quantum circuits.

To be sure, the type of matrix models arising in the context of the
gauge/gravity correspondence come equipped with a gauge symmetry,
so that states must be singlets under the action of the SU(N) group.
However, the black hole states are associated to the part of the spec-
trum with entropy of order N2, which becomes separated from the
low-lying states by a large-N phase transition. For energies above the
critical one, Ec ∼ N2 one expects that the singlet constraint plays
no important dynamical role and one can approximate the dynamics
by that of ‘colored’ degrees of freedom, i.e. the matrix entries Mij or
‘gluons’.

Indeed, one even may have the intuition that these models scramble
information in one step. Initially localized information seems naively
to explore the whole set of degrees of freedom in one step, if every
degree of freedom is connected with every other. This would be vio-
lating the Fast Scrambling Conjecture, and would potentially furnish
another problematic issue to AdS/CFT correspondence, since we have
just seen, in the past two sections, how to obtain a lower causality
bound for this time scale in the bulk description of Black Holes. This
bulk causality bound is of O(τ∗) � O(1), and it is a time scale that
should appear in the dual descriptions. We will speculate about these
interesting issues in the last chapter.
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Chapter 2

Fast Scramblers must be
Small

Motivated by the observation that the free fall time through the near
horizon region until the SH is of the same order of the conjectured
scrambling time scale in the Schwarzschild Black Hole, we proceed
to study this quantity in several Black Hole metrics, with different
tranverse geometries and warped factors.

We begin with the simplest examples of Black Branes, without
compact factors and a near horizon region typical of an AdS/CFT
construction. The result is that the free fall time will not be related
to the full entropy, but rather to the effective number of degrees of
freedom of a single thermal cell in the dual theory. This result signals
the intuition that Fast Scrambling just occurs within the thermal cell,
and outside of it generic slow diffusion will take place, as was first
suggested in [6]. Then we go on to more general cases, with D-brane
geometries possessing compact factors in the bulk as well as in the
world volume. The same result remains unchanged under this gen-
eralizations, but new insights appear. When the compact factors in
the world volume are smaller than the thermal length, the entropy
appearing in the free fall time expression is the full entropy of the
D-brane system.

Given these two qualitatively distinct cases, we go and look for
phase transitions interpolating between the two phases, and verify
that the two laws show a smooth crossover. Moreover, within this
construction, by the use of T-duality we are able to derive the effective

19
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theory of a single thermal cell, which is given by Matrix Quantum
Mechanics, the model described in [21].

One could argue that these infalling times are peculiar of massless
particles. In the last section we consider other type of observables,
like D-branes, and show that the results remain the same.

2.1 Black branes

We begin with geometries suited for Holographic descriptions without
internal dimensions. The main purpose of this exercise is to express
the result in terms of dual QFT variables in a situation where the
AdS/CFT lore may be applied.

Consider a general (d + 2)-dimensional background, Xd+2, which
may admit a holographic interpretation in terms of a (d+1)-dimensional
field theory at finite temperature:

ds2
X = F (ρ)

(
−h(ρ)dt2 + d`2

)
+

dρ2

h(ρ)
, (2.1)

where ρ is the holographic radial coordinate, parametrizing the
UV regime at large ρ and the IR regime at small ρ. If the model
has the luxury of being defined as a perturbation of a well-defined
UV fixed point, the warp factor has the asymptotic behavior F (ρ)→
exp(2ρ/R∞) as ρ→∞, with R∞ the asymptotic AdS radius of curva-
ture. The metric of the dual QFT is defined as the asymptotic induced
metric after removing the F (ρ) warp factor, i.e.

ds2
QFT = −dt2 + d`2 , (2.2)

where ` parametrizes the d-dimensional spatial manifold on which
the QFT is defined. The function h(ρ) models thermal effects, having
a simple zero at the horizon, h(ρ0) = 0, and approaching unity at
large values of ρ, far from the horizon. The near-horizon, or Rindler
region, reaches out to radii of order ρβ, defined by h(ρβ) ∼ 1. In the
linear approximation we have h(ρβ) ∼ h′0(ρβ − ρ0) ∼ 1, which gives
an order-of-magnitude estimate for ρβ. The Hawking temperature is
given by

T =
h′0
4π

√
F0 , (2.3)
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where F0 ≡ F (ρ0).
For future convenience we change the radial variable to the Regge-

Wheeler coordinate, z defined by

dz = − dρ

h(ρ)
√
F (ρ)

, (2.4)

where the minus sign is meant to indicate that z grows ‘inwards’.
The metric in this frame reads

ds2
X = F (z)h(z)

(
−dt2 + dz2

)
+ F (z) d`2 , (2.5)

We proceed now to compute the flight time for a massless particle
to go through the near horizon region and hit the Streched Horizon.
This surface is settled at Planckian distance from the true horizon, at
coordinate ρ∗ defined by

`P =

∫ ρ∗

ρ0

dρ√
h(ρ)

∼
√
ρ∗ − ρ0

h′0
. (2.6)

Using h∗ = h(ρ∗) ≈ h′0(ρ∗ − ρ0) we find the relation

β
√
F0h∗ ∼ `P , (2.7)

which expresses the fact that the local blue-shifted temperature,
proportional to (F (z)h(z))−1/2, grows from O(T ) at the edge of the
Rindler region, to Planckian order O(mP) at the stretched horizon.

Within this setup the free fall time takes the following form

τ∗ ∼ z∗ − zβ ∼ β log

(
ρβ − ρ0

ρ∗ − ρ0

)
∼ −β log(h′0 `P) ∼ β log

(√
F0

T `P

)
,

(2.8)
where we have neglected numerical factors of O(1).
In order to translate (2.8) into dual QFT variables, we compute

the entropy, or horizon volume in Planck units:

S ∼ 1

`dP

∫
dd`
(√

F0

)d
∼ V

(√
F0

`P

)d
, (2.9)

with V =
∫
dd` the volume in the QFT metric. With these conven-

tions, the entropy in a QFT volume of one thermal length, Vcell ∼ βd,
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is given by Scell = S/ncell ∼ (T`P/
√
F0)−d, where ncell = V T d is the

number of ‘thermal cells’. Returning now to (2.8), we find, up to O(1)
numerical coefficients, the following expression in dual QFT variables

τ∗ ∼ β log

(
S

ncell

)
= β log (Scell) , (2.10)

The entropy per thermal cell, Scell, estimates the number of mi-
croscopic QFT degrees of freedom participating on a thermal state at
temperature T , and supported on length scales of order β, so that we
may use the notation Scell = Neff (T ). For a conformal field theory
Neff is asymptotically independent of the temperature and propor-
tional to the central charge, of order Neff ∼ N2 for CFTs based
on Yang–Mills theories. For non-conformal theories it gives a sort of
‘running’ central charge with non-trivial scale dependence. A good ex-
ample is provided by the gravity duals of the Dp-brane theories with
p < 5, where

Neff (T ) = N2 (λp T
p−3 )

p−3
5−p , (2.11)

with λp the dimension-full ’t Hooft coupling of the (p+1)-dimensional
Yang–Mills theory [24]. This running central charge also controls other
observables related to counting of degrees of freedom, such as the
entanglement entropy computed in the gravity prescription [25–27],
(see [28] for such a discussion).

Just as a summary, we have shown a nontrivial relation between
the free fall time to the Streched Horizon and the entropy contained in
a thermal cell of the putative dual Field theory living at spatial infinity
2.10. As was commented before, this points to the intuition that Fast
Scrambling should be confined to one thermal cell in the Dual Field
theory, whereas outside of it common slow diffusive phenomena should
take place, consistently with causality in the QFT.

2.2 Internal dimensions

In this section we look more carefully at the effects of finite horizon
size in these geometrical results concerning the near horizon region
and the free fall time. In particular, we consider finite-size effects in
the bulk geometry, both in internal dimensions and in the geometrical
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data of the dual CFT. As a concrete example, we will examine how
the free fall time depends on the size of the hypothetical dual model,
for the standard case of a thermal sate in maximally supersymmetric
Yang–Mills theory on a toroidal box Td.

First let us consider compact factors in the bulk. Refinements of
the AdS/CFT correspondence often involve the discussion of these
compact factors spaces. In this case, the question arises as to what
definition of the Planck length must be used in the two places where
it appears, namely in the location of the stretched horizon and in
the normalization of the entropy. We may use either the (d + 2)-
dimensional definition, or the (d + k + 2)-dimensional definition in a
background with a compact k-dimensional factor. A natural criterion
would demand that we ‘integrate out’ the extra compact factors when
their local size at the near-horizon region is smaller than the local red-
shifted inverse-temperature. On the other hand, at temperatures large
enough to ‘see’ the extra compact cycles we should use the higher-
dimensional picture (see [29] [30] [31] for an ‘extensive’ use of this
criterion in related contexts .)

A large class of holographic backgrounds can be parametrized as
‘warped products’ of AdS with a compact manifold of the same overall
(but positive) curvature. To be more precise, consider Einstein-frame
metrics parametrized in the form

ds2 =
r2

b(r)2

(
−h(r)dt2 + d`2

d

)
+
b(r)2

r2

dr2

h(r)
+ b(r)2 dy2

k , (2.12)

where b(r) is a function characterizing the overall curvature, or or-
der 1/b(r)2 at radius r. The coordinates yk parametrize a k-dimensional
compact factor Kk of O(1) curvature, warped by the profile function
b(r). The function h(r) is again the thermal factor, admitting a near-
horizon parametrization h(r) ∼ (r − r0)/r0 in order of magnitude,
so that the Hawking temperature reads T ∼ r0/b

2
0, with b0 ≡ b(r0).

More generally, we have an approximate UV/IR relation for the en-
ergies measured with respect to the t variable, E(r) ∼ r/b(r)2, as
corresponds to the warped product of the local approximate form
[AdSd+2]r × [Kk]r. Interestingly, most AdS/CFT backgrounds whose
geometry is determined by a generic deformation of an UV fixed point
admit a representation of the form 2.12, since a single dominant rele-



24 FAST SCRAMBLERS MUST BE SMALL

vant operator will determine a geometry with a single overall curvature
scale, both in compact and non-compact factors.

Repeating the calculation of the free fall time for 2.12 we find

τ∗ = z∗ − zβ ∼ β log
(
b0/¯̀

P

)
, (2.13)

where ¯̀
P denotes the Planck length in d + k + 2 dimensions. On

the other hand, the entropy in a single thermal cell reads

Scell =
S

ncell

∼ 1

V T d
1

¯̀d+k
P

(
r0

b0

)d
V · Vk(r0) . (2.14)

Using Vk(r0) ∼ bk0 and T ∼ r0/b
2
0 we find

Scell ∼
(
b0/¯̀

P

)d+k
, (2.15)

so that the main result

τ∗ ∼ β log (Scell) , (2.16)

is obtained in full generality, up to O(1) coefficients.
Our crucial observation here is that 2.16 is obtained independently

of whether we use the (d+k+2)-picture or the (d+2)-dimensional pic-
ture with effective Planck length `P, obtained by Kaluza–Klein reduc-
tion of the compact factor at the horizon Kk(r0). The two definitions
of Planck length satisfy ` dP = (¯̀

P)d+k/bk0, which in turn implies

(
b0/¯̀

P

)d+k
= (b0/`P)d , (2.17)

thus ensuring 2.16 also in the (d+ 2)-dimensional Einstein frame.

2.3 Small systems and topological jumps

A most interesting fact about the past result is the generalization of
2.16 to the degenerate case of d = 0, i.e. the situation where the
dual system is purely quantum mechanical and the horizon is only
extended in ‘internal’ compact dimensions, so that the previous notion
of ‘thermal cell’ is not defined. In this case one has no alternative to
using the (d+ k+ 2)-dimensional description, whose the free fall time
scales then with the logarithm of the total entropy S ∼ (b0/¯̀

P)k:
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τ∗ ∼ β log (S) . (2.18)

A characteristic example of this behaviour is the four-dimensional
Reissner–Nordstrom black hole, with near-horizon geometry AdS1+1×
S2. In this case the optical depth scales with the logarithm of the full
entropy, despite the fact that the size b0 of the S2 is much smaller
than the inverse temperature β in the extremal T →∞ limit. Notice
that this result for the free fall time must be distinguished from that
of the Schwarzschild black hole, despite involving the same formula.
The reason is that Schwarzschild black holes have a size of the same
order as the thermal length, for any temperature, so that both 2.18
and 2.16 apply to them.

This example suggests that the law 2.16 should be replaced by 2.18
when the system is smaller than the inverse temperature scale. It is
interesting to consider examples in which the reduction to a single
thermal cell can be achieved by varying a continuous control param-
eter. The simplest possibility is that of a CFT on a sphere Sd of
radius R. The bulk representation in the high-temperature phase is
a large AdS black hole. For T ∼ 1/R the black hole has size of O(1)
in units of the AdS curvature and we have a CFT living on a single
thermal cell. For T � 1/R, which corresponds to a system ‘smaller’
than a single thermal cell, the dominant background is the vacuum
AdS manifold, with no horizons. The propagation of bulk signals in-
side global AdS occurs on the time scale of the order of the curvature
radius, i.e. we have a purely ‘ballistic’ regime for signal propagation
on the CFT sphere (recall that the interactions with bulk rad iation
are down by one power of 1/N2.) This is all natural since the finite
size of the sphere gaps the spectrum of the CFT and we only see the
vacuum on scales smaller than the thermal length. We conclude that
the Hawking–Page transition makes the transition between 2.16 and
2.18 somewhat degenerate in this case, since all low-T entropies are of
O(1) in the large-N expansion.

A more interesting situation would apply if the theory conserves
O(Neff ) worth of degrees of freedom when system is smaller than a
thermal cell. In this case, we need to realize an entropy of O(Neff ) ∼
O(N2) in a purely quantum mechanical system, i.e. as a black-hole
metric of the form 2.12, with d = 0. This physical constraint, com-
bined with the Hawking–Page transition in the gapped case, suggests
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that we consider large-N phase transitions with the bulk interpreta-
tion of topological jumps between metrics of the form 2.12 with a
different partition of ‘internal’ and ‘spacetime’ directions.

To be more specific, consider the induced geometry at fixed radial
variable r and fixed time t, with topology Vd×Kk, where Vd denotes
the spatial section of the QFT metric. A topological flop into a system
with d = 0 has the schematic form Vd×Kk → Kd+k, and will be likely
to occur when the three manifolds have about the same proper size
at the radius scale set by the horizon r ∼ r0, corresponding to a
temperature T ∼ r0/b

2
0. The size of Kk(r0) is given by b0, whereas the

size of Vd(r0) is or order L · r0/b0 ∼ (LT )b0, with L the size of Vd

in the QFT metric. Using the UV/IR relation, these sizes are about
equal for LT ∼ 1, i.e. when the system contains a single thermal cell.

We then expect the quantum-mechanical phase to dominate in the
low-temperature regime, LT � 1, when the system is smaller than
a single thermal cell. This is natural since the entropy and/or free
energy of the QFT is computed in the bulk prescription by evaluating
volume integrals as a function of LT for the two manifolds. At the
transition one has S ∼ Scell, with 2.16 holding at LT � 1 and 2.18
taking over for LT � 1. In the next section we consider an specific
example of this construction, which in turns provides the effective
theory of a single thermal cell.

2.4 The Effective Theory of a Thermal

Cell

A particular example of the topological flops described in the previous
section can be studied in great detail by using the very explicit solu-
tions of D-brane backgrounds in type II string theories. According to
basic AdS/CFT lore, strongly coupled SYM theories in d + 1 dimen-
sions admit a bulk gravity dual description based on the near-horizon
(string frame) metric/dilaton of Dd-branes [24],

ds2
Dd =

1√
Hd

(
−h(r)dt2 + d`2

d

)
+
√
Hd

(
dr2

h(r)
+ r2dΩ2

8−d

)
,

e−2(φ−φ∞) = (Hd)
d−3

2 , (2.19)
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where Hd = (Rd/r)
7−d and h(r) = 1− (r0/r)

7−d. This background
is a particular case of 2.1, up to a change of coordinates, a Kaluza–
Klein reduction on the compact S8−d sphere, and a final rescaling to an
Einstein frame metric.1 For `d ∈ Td, a torus of size L, the associated
winding modes become light as r → 0. Resolving this singularity
via a T-duality on the Td one finds a metric which becomes unstable
to localization (a global version of [32, 33]) for r � α′/L (see for
example [30] for a detailed account). The localized metric is then that
of D0-branes, i.e. 2.19 with d = 0.

The T-duality transition occurs at the point where local winding
modes become of stringy mass, equivalently the local proper size of
the spatial torus in the string-frame metric 2.19 is of order

L(rα′) ∼ L

(
Rd

rα′

) 7−d
4

∼
√
α′ . (2.20)

The T-dual geometry for r < rα′ contains a torus growing towards
small r, supporting a uniform distribution of D0-branes. This geome-
try is globally unstable through the topological ‘flop’ Td×S8−d → S8.
The local size of the warped S8−d is proportional to r, while that of
the T-dual torus is proportional to L̃ = α′/L. This determines the lo-
cation of the flop at rflop ∼ L̃, where both fibers have roughly the same
size, so that they can have the same action as a round S8. Since Neff

is proportional to the entropy, which in turn scales with the volume
of the fibers, our construction guarantees that 2.16 continues to apply
in order of magnitude across this transition, where Scell is interpreted
in the low-temperature regime as the entropy of the large-N quantum
mechanics of the D0-brane system.2 So we have a system where we go
from a law of type 2.16 to a law of type 2.18, with the difference that
the low-temperature entropy still shows non-trivial T -dependence.

It is instructive to express these results in terms of SYM variables.
Let λd = g2

YMN be the ’t Hooft coupling of the SYM theory in d + 1
dimensions. It has length dimension d−3 and a dimensionless coupling
characterizing the intrinsic strength of interactions at the energy scale
T is the running coupling λd(T ) = λd T

d−3.

1Notice that the D-brane background is of the form 2.12, both in string frame
and in Einstein frame.

2The entropy computed through the Bekenstein–Hawking formula is invariant
under T-duality and also under S-duality.
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Dd

D0

D̃0

SYM

SQM

LT

λd(T )

1

1

Figure 2.1: Phases of the Dd-brane system as a function of LT and
the effective dimensionless coupling in d + 1 dimensions. In the gravity
regimes above the dotted line, we go from the Dd-brane geometry to the
smeared D0-brane geometry, D̃0, as the torus size goes through the T-
duality transition. For even smaller sizes we have a localization transition to
the metric of localized D0-branes. The large-N thermodynamic functions
are T-duality invariant, and undergo a first-first order phase transition
without O(N2) latent heat at the localization curve.

The SYM theory can be described by the holographic model 2.19
provided it is sufficiently strongly coupled, i.e. for λd(T )� 1, and the
temperature is large enough. At temperatures below the critical line
λd(T ) ∼ (LT )2(d−5), corresponding to r0 ∼ rα′ , the metric 2.19 must
be substituted by the T-dual background of N smeared D0-branes.
Further down in temperature the horizon reaches the critical stability
line r0 ∼ rflop, corresponding to λd(T ) ∼ (LT )d−5 in YM variables,
where the system localizes to the large-N quantum mechanics of N
coincident D0-branes, see Figure 2.1. In order to better represent
this behaviour, it is useful to define an effective renormalized thermal
length `T , by the relation

` 5−d
T =

β 5−d

λd(T )
, (2.21)

where strong coupling effects λd(T )� 1 make it smaller than the
perturbative notion of thermal length of O(β). The expression

τ∗ ∼ β log(Neff ) , (2.22)
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is then valid at all temperatures satisfying the strong coupling
condition λd(T )� 1, where the effective number of degrees of freedom
runs as that of strongly-coupled (d+ 1)-dimensional SYM, see Figure
2.2:

Neff (T ) = N2 (λd(T ))
d−3
5−d ∼ (S|Dd)cell , (2.23)

when the size of the system is larger than the effective thermal
length L � `T . For tori smaller than the effective thermal length,
L � `T , we cross-over to the effective number of degrees of freedom
of the large-N quantum mechanics at strong coupling:

Neff (T ) = N2 (λ0(T ))−
3
5 ∼ S|D0 , (2.24)

with λ0(T ) = λ0 T
−3 the effective dimensionless coupling of the

D0-brane system. Using the Kaluza–Klein reduction formula for the
SYM theory on the torus, we can write λ0 = λd/L

d, which allows us
to express the effective D0 coupling in terms of the original effective
Yang–Mills coupling in d+1 dimensions through the relation λ0(T ) =
λd(T )(LT )−d. Notice that the two expressions for Neff match in order
of magnitude across the critical transition line L ∼ `T .

This furnish a specific example interpolating between 2.16 and 2.18
in a smooth way, preserving nicely the expected features of the free
fall time scale.

1

N2

Neff(T )

L/!T

D3

D0

Figure 2.2: Plot of the temperature-dependent value of Neff (full line)
as a function of the system size for the SYM3+1 theory on a torus. The
transition from Neff = Scell to Neff = S occurs at the localization curve,
defined by L ∼ `T . Notice that the dominant solution minimizes Neff ,
even if it maximizes the total entropy.
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2.5 D-branes infalling times

As was commented in the introduction to this chapter, one could argue
that the infalling time has been computed for massless excitations,
and that other probes, such as D-branes, may show a different result.
Indeed this is not the case, and here show that these insightful objects
follow the same pattern.

Let us consider a CFT-space filling brane falling rigidly in the bulk
metric. The action depends on an effective tension σ and a charge q
through

Ibrane = ING + IWZ = −σVol [Σ] + q

∫

Σ

AWZ , (2.25)

where Σ is the word-volume of the brane and AWZ is a Wess–
Zumino field coupled minimally to the brane and assumed to be smooth
at the horizon. Transforming to Regge–Wheeler coordinates and ap-
proximating the action in the Rindler region one finds

Ibrane ≈ −
∫
dt
(
meff (z)

√
1− ż2 + v0

)
, (2.26)

where v0 is a constant and

meff (z) ≈ m0 e
−2πT (z−zβ) , (2.27)

for some positive constant m0. We see that the effective mass of
the brane vanishes exponentially as we approach the horizon. Hence,
the fall time from z = zβ to the stretched horizon is again of order
z∗ − zβ = τ∗.



Chapter 3

Searching for Fast
Scramblers

The purpose of this chapter is to find simple physical models showing
Fast Scrambling behaviour. For these matters, we use a pragmatic
diffusion approach towards this time scale. Below, we justify this
approach under the name of Probe approximation. In this framework,
we find a Fast Scrambler family of models. These physical models are
defined on Hyperbolic spaces, and also in their discrete counterparts,
so-called expander graphs.

These models will not only be examples of Fast Scramblers, but
will have a surprisingly close connection, in a mathematical sense, with
black hole physics. We will show this in the following chapter.

The first section develops the concept of scrambling by providing
its context and definition. We heuristically connect the fundamental
definition with the diffusion approach, which will be one of the tools
in the subsequent section. In the last part, we describe another fun-
damental characterization, in terms of causality bounds or signalling,
connecting with Ref. [34]. In the second section, we apply the diffusion
approach to search for fast scramblers. Due to the positive results con-
cerning hyperbolic spaces, we discuss other fundamental approaches to
the scrambling time in these spaces, with several interesting insights.

3.1 Generalities

In the context of black hole physics, the notion of scrambling is

31
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implicitly associated to the pragmatic situation in which one ‘throws
in’ a small system which qualifies as a perturbation of the black hole
state. The combined system is then left to relax in such a way that
any information contained in the small initial subsystem is ‘mixed’
throughout the large set of internal degrees of freedom of the black
hole, so that this information becomes only accessible through fine-
grained measurements of the final black hole state.

Many subtleties must be faced when trying to formalize the pre-
vious paragraph into a concrete mathematical statement. Many of
these subtleties result from the tension between the desire to achieve
maximal generality and the concrete properties encountered in actual
physical systems. This point is quite relevant for our discussion, since
black holes cannot be considered to be in the list of ‘ordinary’ physical
systems.

We shall abstain from entering into this intricate conceptual forest,
and rather be satisfied with a few brush strokes with the sole purpose
of motivating the effective models studied in this work.

Very formally, we can characterize the information content of a
quantum system as the degree of knowledge of its quantum prepara-
tion, i.e. its degree of ‘quantum purity’. A convenient measure of
(im)purity is the Von Neumann entropy

Sρ = −Tr ρ log ρ , (3.1)

and the information content can be defined as the negative of this
quantity,

Iρ = Smax − Sρ (3.2)

with an additive normalization to a reference maximal entropy for
the family of states of interest. For a finite-dimensional Hilbert space
H, we can always bound Smax ≤ log dimH, although the particu-
lar physical set up may suggest other reference normalizations for the
‘no information’ state, such as for example the microcanonical ther-
modynamic entropy at fixed energy, or the canonical thermodynamic
entropy at fixed temperature.

We say that the state ρ is ‘scrambled’ when its detailed information
content is only accessible to measurements involving essentially all the
degrees of freedom of the system. The intuition behind this idea is
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that the state is so ‘unstructured’ that measuring small subsystems
gives little clue about the detailed state of the full system.

A subsystem Σ is defined in terms of a tensor factorization of the
full Hilbert space, i.e.

H = HΣ ⊗HΣ (3.3)

where Σ is the complementary subsystem. Both Σ and Σ can be
broken up into further subsystems, a process which ends up with the
‘elementary degrees of freedom’.1 A state ρ is said to be scrambled
when subsystems smaller than half the total system contain essentially
no information about ρ, i.e.

IρΣ
≈ 0 , for dim(HΣ) < dim(HΣ) (3.4)

where ρΣ is the state obtained by marginalizing over the comple-
ment:

ρΣ = TrHΣ
(ρ) (3.5)

In [35], Page was able to present an estimate of the right hand side
for a system of Q-bits and ρ a globally pure state taken randomly from
the full Hilbert space. His result gives

IρΣ
≈ dim(HΣ)

2 dim(HΣ)
, (3.6)

again for dim(HΣ) < dim(HΣ). In practical situations where the
degrees of freedom are local in physical space, this quantity is expo-
nentially small in volume factors.

Page’s estimate implies that typical states in systems with ‘moving
parts’ contain essentially no information available in small subsystems
and serves as a standard: we say that a state is scrambled when it
satisfies the Page test with respect to any bi-partition Σ∪Σ, where Σ
stands for the smaller factor.

With these simple definitions at hand, we can give a formal charac-
terization of the black hole experiment at the beginning of this section.
We start with an Alice system A in a state with high information con-
tent, say ρA is pure, together with an independent black hole system

1When a system is described by a hierarchy of effective theories, the present dis-
cussion applies to any one of the effective theories, with a coase-graining procedure
relating different levels of description.
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in an scrambled state (pure or mixed) ρBH . The initial combined state
is assumed to have no correlations of classical or quantum nature, so
that it can be written as

ρi = ρA ⊗ ρBH (3.7)

Hamiltonian evolution of the combined system then results in a final
state ρf , defined in an slightly enlarged black hole Hilbert space, and
having the property of being scrambled in the sense of the Page test.
We can represent the result of idealized Page tests on ρi and ρf by the
diagram in Figure 3.1.

Σ

SρΣ

A BHi

Figure 3.1: The Page test for the initial state ρi = ρA ⊗ ρBHi (full line),
versus the Page test for the final state ρf = ρBHf

(dashed line).

The scrambling time tS can be defined as the characteristic time
scale for the full-line curve in Figure 3.1 to evolve into the dashed-
line curve, corresponding to a scrambled state of the combined system
after Alice has been absorbed. This definition allows us to interpret
the scrambling time as a kind of g lobal thermalization time for the
full system. It is plain that this time scale depends strongly on the
details of the Hamiltonian, such as its degree of locality, as well as the
particular choice of subsystem partition. For example, we may expect
that information which is locally encoded with respect to a particular
factorization scheme:

H = ⊗jHj (3.8)
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by declaring, say, that Alice corresponds to the first factor H1, should
have different scrambling times depending on the locality properties
of the Hamiltonian with respect to this particular basis. Furthermore,
the particular choice of observables used to encode and/or measure
the information within each Hj might be relevant when such opera-
tors are ‘aligned’ with structural properties of the Hamiltonian. One
such instance appears in [34], where a simple Ising-type qbit system
is shown to fast-scramble states that start as completely factorized in
local σx eigenstates, while doing nothing to states which start as direct
products of σz eigenstates.

3.1.1 The Probe Approximation

The scrambling time defined above is a very ‘involved’ quantity,
in the sense that the Page test requires gathering a large amount of
information about the time evolution of arbitrary subsystems. The
general problem of characterizing subsystem evolution is notoriously
difficult. While the state ρ of the full system evolves unitarily

ρ(t) −→ e−itH ρ(0) eitH (3.9)

the reduced state ρΣ = TrΣρ evolves linearly, conserving the defin-
ing properties of a density matrix, i.e. positivity ρΣ ≥ 0 and nor-
malization TrρΣ = 1. In this case we have a so-called superoperator,
acting as

(ρΣ)ab −→
∑

cd

($) cd
ab (ρΣ)cd (3.10)

where we write indices explicitly to emphasize that $ acts linearly
on the space of density matrices, rather than the Hilbert space of pure
states. The $ operator depends in principle on the full details of the
global state on Σ ∪ Σ, so that the equation (3.10) contains non-local
behavior in time from the retarded back-reaction of Σ on Σ, preventing
the existence in general of a local differential equation for ρΣ, similar
to Schrödinger’s. In particular situations when this back-reaction can
be neglected or sufficiently averaged by a coarse-graining in the time
resolution, the system may have a Markovian description governed by
an equation of the type
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∂t (ρΣ)ab =
∑

cd

L cd
ab (ρΣ)cd (3.11)

where the operator L is called the Lindbaldian. It describes not
only the unitary evolution of ρΣ but also the effect of interactions with
Σ through ‘quantum jumps’. These terms produce phenomena such
as usual energy damping and also decoherence.

From the point of view of (3.11), decoherence is the fast dynamical
diagonalization of ρΣ by the time evolution. The effective decoherence
basis is selected by the interaction Hamiltonian and is responsible for
the emergence of classical observables in Σ. Assuming that our time
resolution is much larger than the decoherence time for the particu-
lar choice of subsystem Σ, we have an equation of Markov type for
the diagonal density matrix, which is a probability density over the
decoherence basis:

∂t pi =
∑

j

W j
i pj (3.12)

where pj is now a positive and normalized vector over the particular
basis of HΣ and W j

i is a matrix of transition probabilities. Positivity
and normalization imply W j

i ≥ 0 for i 6= j and

W i
i = −

∑

j 6=i

W j
i (3.13)

for the diagonal entries. Notice that equation (3.12) is similar in
structure to Lindblad’s (3.11), except that it is written in a smaller
configuration space (probability distributions versus full quantum den-
sity matrices).

The descent from (3.10) down to (3.12) is rather intricate for any
semi-realistic physical system. Examples of systematic analysis in
models can be found in the classic works [36–40]. Roughly, one finds
that systems with quasiparticles that behave in a semiclassical manner
tend to admit a Markovian description of the type (3.12), at least in
some limits. Scrambling of any information coded in the quasiparticle
position can be characterized by a generalized diffusion problem for
the spatial quasiparticle density. This makes contact with the clas-
sical description of mixing in an idealized model where particles are
described as exercising random walks (brownian motion).
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The random walk model of scrambling sacrifices the generality of
the Page test and focuses on a specific type of subsystem Σ (akin to
a quasiparticle) and a specific basis of states to code the information
(i.e. the decoherence basis). Furthermore, if the subsystem Σ is really
interpreted as a quasiparticle, it is natural to represent Σ as having
local degrees of freedom accounting for each elementary transition of
the quasiparticle. In this case, we interpret Σ as a ‘quantum lattice’
serving as a background for the dynamics of the quasiparticle, with a
number of degrees of freedom of the order of the dimension of state-
space of the quasiparticle, i.e. a Hilbert space of dimension

dim (HΣ) ∼ exp (Cdim(HΣ)) (3.14)

with C some O(1) constant.
The quasiparticle diffusion model is the benchmark for scrambling

at the heuristic level. Since random walks cover a region of size t1/2

in a time t, the ‘scrambling time’ for a uniform system of size L scales
as tdiff ∼ L2, with dimensions provided by some combination of mi-
crophysical parameters and the effective temperature of the system.
If the system is furthermore extensive, we find the standard estimate

tdiff ∼ β S2/d (3.15)

with β the effective temperature, up to O(1) parameters, and S
the entropy. The law (3.15) characterizes the scrambling properties of
ordinary systems with local quasiparticle excitations.

Needless to say, our command of near-horizon local dynamics in
quantum black holes is very far from deriving a simplified model falling
under such a restrictive framework. It is nevertheless tempting to
propose that information coded in very heavy localized probes, such as
infalling D-branes, may admit such a description at a qualitative level.
Given the usual terminology of D-branes as very localized probes of
space-time, we shall refer to this reduction of the scrambling problem
to a generic diffusion problem as the probe approximation. While the
detailed justification from some ab initio description of the quantum
black hole, such as a matrix model or dual gauge theory, is an entirely
open problem, we will find it useful to pursue the probe approximation
to its limits, adding additional geometrical structure coming from our
knowledge of the space-time interpretation of the black hole. One of
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the main results of this thesis will be the reconciliation of the simple
diffusion model and the exotic (for a diffusion process) dependence on
the entropy that is characteristic of fast scramblers.

3.1.2 Scrambling And Signalling

A complementary approach to the study of fast scramblers focuses
on the question of ‘how fast can they be’. Namely, any fast scrambler
must satisfy causality constraints and, indeed, our introduction to fast
scramblers in the black hole context emphasizes precisely the ‘ballistic’
nature of the scrambling. By ballistic we mean here a behaviour with
the same scaling as the causally saturating one, being only suppressed
by numerical parameters.

Ordinary scramblers conforming to (3.15) do satisfy the causality
constraints without problems, since the causal time for local systems
scales linearly with system’s size, tcausal ∼ L, so that we always have

tcausal < tdiff (3.16)

for any system larger than one thermal cell, L > β. This is all that
is needed, since the diffusion model itself cannot be defined as such on
scales smaller than a thermal cell.

In systems with manifest locality, such as standard QFT, the de-
grees of freedom are laid down according to a causal geometry with
sharp light cones. In lattice approximations to such QFT, the light
cones are blurred by short-distance effects, but are still recognizable to
O(1) precision tests. For non-local systems, no simple estimates exist
of causal times, and the actual scales may depend very sensitively on
details of the Hamiltonian. A principled approach to this problem fo-
cuses on the actual physical meaning of causal independence, namely
the commutativity of delayed quantum observables. Under a given
partition of ‘degrees of freedom’

H = ⊗jHj (3.17)

we say that observables defined by degrees of freedom ‘on i’ and
‘on j’ are causally connected after time t if

[
Oi(0), O′j(t)

]
= O(1) (3.18)
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where the operators are defined in the Heisenberg picture. Physi-
cally, this is the condition for a measurement at ‘site i’ to significantly
affect a subsequent measurement done at ‘site j’ after a time t. The
scrambling time is thus bounded-below by the minimal time which
achieves (3.18) across all d.o.f. factors.

Very interesting bounds (so-called Lie–Robinson bounds [41]) were
proven in [34] for general systems with interactions of matrix-model
type (albeit based on bounded operators). In particular, it was shown
that the fastest possible signalling time scales logarithmically with the
number of Hilbert factors in (3.17), in line with expectations for fast
scramblers. Notice that no locality of the Hamiltonian is assumed in
establishing these bounds.

We shall see that signalling bounds also play an interesting role in
those systems that are able to fast-scramble probes, along the lines
of the previous section. In particular, one of the main results of this
thesis will be the observation that the scrambling time may satisfy
upper bounds under some idealized situations.

3.2 Diffusion, Random Walks and Graphs

We begin by developing the phenomenology of Random Walks in
graphs and diffusion in continuous manifolds. The space-time back-
ground or the adjacency matrix of a graph codify the structure of
interactions of the Hamiltonian.

We first review the subject of random walks on graphs, focusing
on necessary items and referring to other places for deeper analysis.
Then we show the closed connection of this problem with diffusion in
continuous manifolds.

In the second part, we explore Euclidean cases. We follow by
developing the more compelling expanding ones.

3.2.1 Generics of Walks

The problem of a random walk in an abstract graph is a famous and
recurring problem in both mathematics and physics. It is concerned
with the dynamics of a certain object which can be located in N dif-
ferent positions. The description of that object at a given instant of
time is given by means of a probability distribution, providing the
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probabilities of finding the object in each of the N locations. There-
fore, the object is described by a vector pi of N components, which

must satisfy the probability constraint, given by
i=N∑
i=1

pi = 1.

The dynamics is defined by means of a Markov process. This is
carried out by a linear transformation, which is usually called the
transition matrix. We have a simple law of the following form:

pn+1
j = Mpn =

i=N∑

i=1

Mjip
n
i , (3.19)

where
j=N∑
j=1

Mji = 1, so that evolution conserves the probability

constraint, and Mji = Mij due to microscopic reversibility. This con-
dition is a special case of the general detailed balance, which occurs
when the degeneracy of each possible state equals one. The physical
picture is that of a particle moving on a graph2, from vertex to vertex,
with probabilities given by the entries of the matrix M .

Given that we have a probability distribution, we can assign an
entropy to each particular state, quantifying our knowledge of the
position of the particle. This is the celebrated Shannonś entropy,
given by

Sp = −
i=N∑

i=1

pi log(pi) . (3.20)

This entropy is equal to zero when the object is sharply localized
at a certain position and is maximal in the uniform distribution given
by

ui = 1/N , (3.21)

where the entropy equals log(N). From this perspective, this en-
tropy should be interpreted as a thermodynamical entropy. In a par-
allel setting, within the quantum mechanical framework of the past
section, one is able to interpret it as the entanglement entropy of the

2A graph is collection of vertices and a collection of edges between them. The
graph can also be weighted, in the sense that we can give different weights to
different edges
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algebra of operators of size log(N) defining the probe observable. One
can show that the Markov process injects entropy at each time step,
carrying whatever initial probability distribution to the uniform dis-
tribution. In other words, the process tends to maximize this entropy
function and, therefore, the entanglement entropy of this abstract par-
tition of the quantum state.

This uniform distribution is also called the stationary distribution.
This is because it is the only physical eigenstate of the transition
matrix, and it has eigenvalue 1. Consequently, it does not evolve with
time and all other physical states evolve towards it.

Knowing the spectral decomposition of the transition matrix amounts
to solve

Mva = λava , (3.22)

where we will set λu = 1 corresponding to ui = 1/N .

Due to detailed balance, we know that this should provide us with a
basis of eigenvectors, expanding the space of probability distributions.
At the same time, one can easily check that the coefficient in front
of the uniform distribution is fixed to 1 for any physical probability
distribution (the sum of probabilities must add to one). Therefore

p0 = u+
i=N−1∑

i=1

cava , (3.23)

where p0 is a generic initial probability distribution. Plugging this
into the evolution equation, after n time steps we have

pn = u+
i=N−1∑

i=1

ca(λa)
nva . (3.24)

The row stochastic nature of the transition matrix implies (Perron-
Frobenius theorem) that the absolute value of any of the other eigen-
values is less than one, an essential ingredient for the attainment of
equilibrium, for obvious reasons. With this in mind, we consider,
without loss of generality, that 1 ≥ |λ1| ≥ |λ2|... ≥ |λN−1|. From
here we can already bound the difference with respect to the uniform
distribution by
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|pn − u| = |Mn(p0 − u)| ≤ |λ1|n|p0 − u)| ≤ |λ1|n = (1−∆)n , (3.25)

so that the figure of merit in this problem is the gap of the transi-
tion matrix ∆. This gap controls the rate of approach to equilibrium
of the probability distributions.

In order to show the connections with the continuum case, we
need to be more specific with the form of the transition matrix. In
particular, we fix the degree of connectivity of each vertex 1 to k. This
imposes a discrete analogue of homogeneity in the underlying graph.
We also impose the analogue of isotropy, which amounts to say that
transition probabilities out of a given vertex are equal to one another.
Denoting by r ∈ [0, 1] the probability of no jump we have

M =
1− r
k

A+ r , (3.26)

where A is the adjacency matrix of the graph 2. In the case at
hand, we have a simple k-regular graph of N vertices. It can be proved
that such adjacency matrices have a spectrum contained in the inter-
val [−k, k] [42]. The lower bound can only be achieved for bipartite
graphs, which will not be considered for simplicity here.

Now we can define the analogues of the continuous gradients and
divergences for the discrete graph [42]. In particular, one can de-
fine the analogue of the Laplacian in continuous manifolds, called the
graph Laplacian, which reads:

∆ ≡ 1− 1

k
A . (3.27)

This a positive-definite matrix with eigenvalues in the interval
[0, 2]. The uniform distribution is the zero mode of this Laplacian,
and the second largest eigenvalue directly defines the gap.

Rewriting the past Markov chain relation in terms of this new
matrix

pn+1 − pn = −(1− r)∆pn , (3.28)

1Fix is to be understood in relation to the thermodynamic limit
2Aij = 0 if i, j are not connected by an edge and Aij = 1 if they are
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we arrive to the discrete analogue of the usual diffusion equation
in continuous manifolds.

∂tp = D∇2p . (3.29)

Although it is not so common to treat the continuum case as we
have treated the discrete case, it can indeed be thought in the same
way, arriving to the conclusion that the Laplacian gap of the model
controls the rate of attainment of equilibrium.

3.2.2 Euclidean nets

To begin with, we describe an easy example: a random walk in a
flat lattice. This is the discrete analogue of diffusion in flat space-
time. The mother of the diffusion laws is the known dispersion re-
lation L ∼

√
t for the spreading of the probability distribution. For

extensive systems we have S ∼ Ld, so that we expect scrambling times
of O(Sd/2).

To review how to recover this result from the technology of the past
section, we need to compute the gap of a d-dimensional net. Supposing
that the net has periodic boundary conditions, the biggest wavelength
is λmax = L so that ∆ = 4π2

L2 . For the so-called lazy random walk 3,
r = 1/2, we have then

|pn − u| = (1− 1

2
∆)n , (3.30)

which goes to zero for tflat � N2/d ∼ S2/d.
We can repeat the argument for the continuum case. For simplicity

and future reference, we study the diffusion equation in the half line,
so that we need to solve

∂tp = D
∂2

∂x2
p, (3.31)

where x, t ∈ [0,∞) and the initial condition is that of sharply
localized perturbation at x = 0, so that p(x, 0) = δ(x).

The solution is given by the following Gaussian distribution

3We specify to this value to avoid certain technicalities concerning convergence
to the stationary distribution, but this choice does not affect any of the results
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p =
1√

4πDt
e−

x2

4Dt , (3.32)

which is centred at x = 0 for every moment of time, and which has
a width σ =

√
2Dt, providing the origin of the relation L ∼

√
t, and

therefore signalling the slow scrambling nature of these spaces.

3.2.3 Expander graphs and hyperbolic spaces

We have seen that the origin of the polynomial law, typical of a slow
scrambler, is the polynomial vanishing of the spectral gap in these
flat spaces. So if we want to decrease the diffusion time we need to
increase the spectral gap of the theory in the thermodynamic limit.
Luckily, there is an insightful family of graphs whose gap remains fixed
as we take this infinite size limit. These are the so-called expander
graphs and feature prominently in graph theory, due to their numerous
applications to several branches of mathematics [42,43].

Indeed one of the central results in expander graph theory is the
fast mixing of random walks. Using the past framework and the fact
that the gap is bounded away from zero in the thermodynamic limit,
which we name by ∆∞, we can bound the distance (3.30) by 1/Nα with
α > 0, just by setting n > C log(N), where C is a positive numerical
constant proportional to −α/ log(1−∆∞/2).

In the mathematical argon these are two out of three possible and
equivalent definitions of a expander graph, regarding the focus on
the algebraic or probabilistic nature of these intriguing objects. The
third possibility regards the combinatorial properties of them. We can
bring it here with the aid of a known geometrical interpretation of the
Laplacian gap, as a consequence of the so-called Cheeger inequality

h2

2
≤ ∆ ≤ 2h , (3.33)

where the Cheeger constant, h, is the (normalized) edge expansion
of the graph, defined as the formal ratio of ‘area/volume’,

h ≡ min
# edges [ ∂ S ]

k NS

, (3.34)

and where the minimum is taken over all graph bi-partitions G =
S∪(G−S), with the proper subgraph S having vertex size NS smaller
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than half of G, i.e. NS ≤ N/2. In the numerator it is counted the
total number of edges connecting the two sides of the partition, thus
measuring the boundary volume in edge units. Therefore, an expander
graph family has a bounded finite h in the large N limit, implying that
large subsets have a boundary volume scaling as their bulk volume.
We then naturally recognize expanders as the discrete analogue of
hyperbolic geometry.

Figure 3.2: The infinite regular tree, or Bethe lattice, is the ultimate
expander. Its adjacency matrix has a continuous spectrum in the interval
[−2
√
k − 1, 2

√
k − 1]. The figure shows the case k = 3, a tessellation of the

two-dimensional hyperboloid.

For example, the simplest and in many ways the most perfect ex-
pander is a regular tessellation of the Hyperbolic space Hk−1, known
as the Cayley tree or Bethe lattice (cf. Figure 3.2). The metrical
properties of the k-regular Bethe lattice give an approximation of the
(k − 1)-dimensional unit hyperboloid

ds2
Hk−1 = dr2 + (sinh r)2 dΩ2

k−2 , (3.35)

with lattice spacing of order unity.4 We can introduce hyperbolic

4Continuum models of finite expander graphs can be constructed as compact
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spaces of arbitrary curvature radius R, just scaling this metric by a
factor of R2, and the corresponding Bethe lattice would have spacing
of O(R).

This analogy suggest that the continuum analogue of this prob-
lem should also show certain fast scrambling insights. The diffusion
equation in curved space is just

∂tp = D
1√
g
∂µ(
√
ggµν∂ν)p . (3.36)

We will consider spherically symmetric configurations, so that p =
p(r, t). In this case the diffusion equation in hyperbolic space or radius
R takes the following form

∂tp = D
1

senh( z
R

)k−2
∂z((senh(

z

R
)k−2∂z)p , (3.37)

where we have rescaled the radial variable z = rR. The exact
solutions to this equation can be found in [44]. We quote here the
solution in three spatial dimensions (which is equivalent to setting
k = 4), which happens to take a particular simple form

p3(z, t) =
e−

Dt
a2

8R(πDt)
3
2

ze−
z2

4Dt

senh(z/a)
. (3.38)

In contrast with the flat diffusion solution, this is a Gaussian dis-
tribution whose peak moves radially with a velocity vpeak = 2D

R
, a fact

that can be easily checked by completing the square of the exponents
when z � R. Therefore the perturbation moves ballistically over the
manifold.

In fact, focusing our attention in the probability density of being
at a certain distance z from the origin at time t, which we call pz(z, t),
we have

pz(z, t) = VSk−2(R sinh(z/R))k−2p(z, t) . (3.39)

This probability distribution satisfies then a Fokker-Planck type
equation

hyperbolic manifolds of the form Hk−1/Γ, with Γ a free discrete subgroup of
isometries.
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∂tpz(z, t) + ∂z(v · pz(z, t)) = D∂2
zpz(z, t) , (3.40)

with drift velocity v = (k−2)
tanh(z/R)

D
R

. This velocity approaches expo-

nentially fast its limiting value v∞ = (k − 2)D/R as z � R. In the
three dimensional case, k = 2 and we recover the past result. This, as
was pointed out in [44], can be interpreted as a biased Random Walk
in the half line, explaining the ballistic nature of the diffusion in the
radial direction.

So, generically, for any dimension, perturbations in an hyperbolic
space spread ballistically. Now we can join this interesting feature
with the fact that volume increases exponentially fast in these spaces.
Supposing an extensive system we have S ∼ V ∼ eL, where L is the
size of the system. Therefore we need to travel a distance O(log(S)),
which we do in O(log(S)) due to the ballistic behaviour. This can be
argued as well for the discrete expander case just by appealing to the
known fact that the size of an expander graph of N vertices is of order
O(log(N)), equal to the mixing time, so that mixing in these graphs
saturate causality bounds.

At the same time, as expected, the analogy between this continuum
and discrete structures goes also to the algebraic properties of the
Laplacian. It is well known that the wave equation in the non-compact
hyperbolic space has a bounded gap, of the order of the radius of
curvature for any dimension. This provides another way to show fast
diffusion in this continuous manifolds.

In this little section we have argued in several ways that expanding
structures, such as expander graphs or hyperbolic spaces, are natural
fast scramblers. The key property is that the spectral gap remains
bounded away from zero in the thermodynamic limit. This, in turn,
through the Chegger inequality, is intimately connected with the ex-
pansion of the underlying structure.

3.3 Quantum approaches in Hyperbolic

spaces

In the past section we have taken a coarse grained approach to study
the scrambling time. In particular we have step on a heuristic defini-
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tion of a probe, which should furnish a subspace of dimension equal to
the entropy of the full Hilbert space. There are some clear drawbacks
to this approach. One is the lack of rigour in the operational definition
of this probe and in the derivation of its effective equation, when a
coarse graining in time is applied. Another one is the arbitrariness of
the partition.

We would like to free ourselves of these drawbacks and develop
some approach nearer the quantum mechanical ideas which gave rise
to the scrambling time, or at least nearer the quantum mechanical
framework in general, without any simplifying approximations. In
principle one should expect a rigorous path to define the probe and
derive its equation but, lacking this procedure, we will try to approach
the scrambling time in two other different ways.

In particular, having in mind the past section results we go on
study several properties of quantum models defined on expanding
spaces. We obtain some positive results concerning propagation of
information in these spaces and some negative ones, although inter-
esting, when trying to apply the page test to expander graphs.

3.3.1 Entanglement entropy in expander graphs

In this first section we study some generic properties of entanglement
entropy in quantum models defined on expander graphs. We make
no explicit reference to a probe subsystem or any other quasiparticle
degree of freedom. Rather, we focus on generic properties of entangle-
ment with respect to bi-partitions of the expander graph, and point
out some difficulties concerning the Page test definition of the scram-
bling time.

Let then G be a connected graph where a local quantum system
is defined, and A ∪ Ā a bi-partition into two connected components,
with the convention that A has the smaller vertex size: Nv(A) ≤ N/2.
Given a general state on G, described by a density matrix ρ, we can
define the usual marginal density matrix of A and its entanglement
entropy

ρA = TrĀ ρ , SA = −TrA ρA log ρA . (3.41)

As was described in the first section of this chapter, a natural
criterion to declare a system as scrambled is to demand that SA be
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bounded below by some fixed extensive function, for all choices of A
under the stated conditions,

SA ≥ C Nv(A) , Nv(A) ≤ N/2 . (3.42)

For systems with finite-dimensional Hilbert space at each vertex,
this criterion is then equivalent to maximal mixing of ρA when the
constant C saturates to its upper bound Cmax = log dimHv. In other
cases, it incorporates the fact that we may have different effective
temperatures depending on the total energy of the state or that our
computational abilities just allow us to find the scaling. This exten-
sive condition for the entanglement entropy of a quantum state was
referred as the Page criterion [35], leading to a natural definition for
the scrambling time [5], [6], [34], [3]. It is the typical lapse of Hamil-
tonian evolution needed to satisfy the Page criterion, starting from an
initial state which explicitly violates it.

With this in mind we may focus on globally pure states on G.
Two possibilities emerges for good candidates of non-scrambled states,
which explicitly violates the Page criterion. Possibly the best choice for
the ‘least thermalized’ initial state may be a completely factorized one
⊗v|ψv〉v, for which SA = 0 for all partitions. Such type of initial states
where also considered in [34] with similar type of objectives in mind.
The second natural choice of initial state is one whose entanglement
properties imitate those of the ground state. For systems with short-
range correlations such ground states satisfy the so-called ‘area law’
for the entanglement entropy, i.e. SA ∼ size[ ∂A ], where size[ ∂A ]
can be measured in terms of the edge size of the boundary, N`( ∂A ),
for k-regular graphs. Within these type of states and partitions the
usual intuition about quantum thermalization suggests then that the
scrambling consists on the gradual evolution from ‘area law’ to ‘volume
law’ for the entanglement entropy of spatial domains.

Already at the level of these primitive notions, we see that ex-
pander graphs are special in their behavior with respect to extensivity.
In particular, there is no clear-cut distinction between ‘area-law’ and
‘volume-law’ behaviors when G is an expander. As a consequence of
the expansion property (3.34), any area-law entanglement entropy of
a bi-partition G = A ∪ Ā satisfies the Page criterion

SA = sAN`( ∂A ) ≥ h k sANv(A ) (3.43)
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from the beginning. Such ‘area-law’ states are not difficult to en-
gineer and do not look ‘thermal’ at all. Moreover, as we will show,
they can be prepared in a time scale of O(β), which would provide a
clear counterexample to the Fast Scrambling conjecture.

To illustrate these facts, let us consider a simple Hamiltonian with
localized vertex terms and ‘hopping’ interactions for each edge of the
graph,

H =
∑

v∈ vertices

hv +
∑

`∈ edges

h` , (3.44)

where hv acts on the single-vertex Hilbert space Hv and the hop-
ping term h` acts on the two-vertex Hilbert space H` = Hv ⊗ Hw
associated to the edge ` = (vw). Let us suppose now that h` � hv
and construct the ground state in the hopping expansion in powers
of λ, a small parameter characterizing the matrix elements of h`. To
zeroth order, the vacuum is determined by the on-vertex vacua |0〉v
for each operator hv,

|V ac〉 = |Π 〉+O(λ) ≡ ⊗v |0〉v +O(λ) , (3.45)

a completely factorized state for which SA = 0 for any bi-partition.
To leading order in the hopping terms the ground state has the form

|V ac〉 = α |Π 〉+ λ
∑

`∈ edges

| ` 〉+O(λ2) (3.46)

where the sum extends over all links ` = (vw) of the lattice G and
the state |`〉 differs from the completely factorized on-site vacuum |Π〉
by an excitation on the `-edge Hilbert space H` = Hv ⊗ Hw. It is
orthogonal to the zeroth-order vacuum, 〈Π | ` 〉 = 0, and its particular
form is determined by the matrix elements of h` through the usual
formulae of first-order perturbation theory. Normalization sets the
constant α to the value α =

√
1− λ2N`, with N` the total number of

edges in G.

Given now a bi-partition G = A ∪ Ā, we define the state

|λAo〉 =
√
α |ΠAo 〉+

λ√
α

∑

`∈Ao
| ` 〉 , (3.47)
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where the link sum includes only those edges lying entirely within
the interior Ao of the subgraph A and |ΠAo〉 = ⊗v∈Ao |0〉v. Using
this state we can write the vacuum to leading order in the hopping
expansion as

|V ac〉 = |λAo 〉 ⊗ |λĀo 〉+ λ
∑

`∂

| `∂ 〉+O(λ2) , (3.48)

where `∂ denotes edges on the boundary ∂A.
In other words, the vacuum remains factorized except for O(λ)

non-trivial excitations localized on the boundary of the partition. It
follows that the entanglement entropy of the partition is proportional
to the number of edges on the boundary, i.e.

SA = λ cN`(∂A) +O(λ2) , (3.49)

with c a positive numerical constant.
Hence, we recover the expected result: ground states with very

short-range correlations have ‘area-law’ entanglement across bi-partitions.
The peculiar behaviour of expander graphs regarding Page-like cri-

teria can be further emphasized by looking at the opposite limit, in
which we regard the vertex Hamiltonian density as negligible com-
pared to the hopping term, i.e. in the limit |hv| � |h`|. Let us assume
that the Hamiltonian is homogeneous, in the sense that h` is given by
the same operator for all links, so that [h`, h`′ ] = 0 for all links on G.
Then, the evolution operator can be approximated as

UG(t) =
∏

`∈ edges

U` , U` = e−ith` , (3.50)

with h` independent of `, so that the ordering in the operator
product is actually immaterial. If the initial state is still given by
the factorized ground state of the hv Hamiltonian, ⊗v|0〉v, since in
general [hv, h`] 6= 0 when v ∈ `, we see that each link operator Uvw
will generate entanglement in the Hv ⊗ Hw subspace in a time scale
set by the eigenvalues of h`. Since h` is interpreted as the hopping
operator, we call β the characteristic time scale for its inverse normal
frequencies. The resulting state with O(1) entanglement across links
is generally termed a graph state in the literature (cf. [45]), and its
entanglement entropy is of the order of the rank of the off-diagonal
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adjacency sub-matrix connecting A and Ā. For a regular graph with
fixed coordination k, this so-called ‘Schmidt rank’ is of the order of the
boundary edge-size, N`( ∂A ), up to k-dependent degeneracy factors.

We thus conclude that hopping-dominated Hamiltonians on regu-
lar graphs achieve the graph state with area-law entanglement in times
of O(β). If the regular graph is also an expander, then we satisfy the
Page criterion in ‘scrambling’ times of O(β). To sharpen more this
construction consider takingHv to be a two-level quantum system and
h` determined by a single fundamental frequency of time scale β, the
evolution operator (3.50) is actually periodic on time scales of O(2β),
so that its putative Poincaré recurrence time scale is extremely small,
making it hard to talk physically about ‘scrambling’ or any type of
thermalization for that matter. 5

The solution to this conundrum seems to be in the subtle prefactor
going in front of the extensive scaling of the entanglement entropy.
What we are seeing is that there are systems for which this prefactor
has to be computed exactly. In particular, another reason confirming
that these previously constructed states are not scrambled states, is
the following. The initial state is of the form ⊗v|0〉v, which, formally,
can be expressed in the form

|ψ〉 = |0〉i ⊗ Πv 6=i ⊗v |0〉v = |0〉i ⊗ |ψ〉v 6=i , (3.51)

In other words, we can consider that we are codifying the vacuum
state in one of the vertices, and we want to study how the evolution
scrambles this information. Here, scrambles means that the evolution
codifies that information in a subspace of the Hilbert space whose
size is of the order of the full Hilbert space, so that for recovering
that Information we need to access O(N) degrees of freedom of the
system. In our case, it is clear that the evolution does not achieve this
codification in one step. In times of O(β) each node has interacted
just with its adjacent nodes. The information concerning the initial
vacuum state has been delocalized very mildly, and indeed it should
be extracted by just measuring the specific node and its neighbours.
This is, in other words, an expression of causality in the theory defined
of the expander graph. In this way we see that, although globally the

5The same can be said about the random Ising model example presented in [34].
In that case the scrambling time is of O(log N) because it takes O(log N) time
steps to build a random lattice with O(log N) average vertex degree.
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state seems scrambled, one can locally verify clearly that this is not
the case 6.

3.3.2 Causal properties of hyperbolic thermal states

Given the previous comments we see that the Page test can be a mis-
leading approach if exact computations of the entanglement entropy
are not attainable. On the other hand, we see that propagation of
the information seems to be a more reliable phenomenon and, as com-
mented in the first section, it clearly provides lower bounds for the
scrambling time.

In this way it might be interesting to look for alternative char-
acterizations of the ‘ballistic’ nature of expander-diffusion, without
making any type of approximation or coarse graining. The diffusion
model based on random walks assumes the stability of the walking
probe. This in turn is equivalent to the assumption that the system
has a conserved quasiparticle density or, more generally, a locally con-
served current. On general grounds, retarded correlation functions of
such local currents will show a characteristic ‘diffusion pole’ in the
lower half plane of complexified frequencies. For local diffusion on an
Euclidean geometry with diffusion constant D, such a pole takes the
form ωdiff = −iD~k 2 + . . . in a large wavelength expansion. Setting

|~k | ∼ 1/L for a fluctuation of wavelength L, we find the standard
diffusion time scale D−1L2 of a slow scrambler.7

This behaviour of retarded correlation functions is expected to be
quite different when the diffusion takes place in an expander graph. As
a preliminary discussion, we may look at the continuum approximation
and concentrate on the behaviour of retarded correlation functions
for field theories on hyperbolic manifolds. A first indication in this
direction is the behaviour of the free-field conformal Green’s functions
on hyperbolic space-times of the form R × Hn, with the first factor
representing a time-like dimension.

6The same can be said about the system studied in [34] in which initially locally
codified information is delocalized into O(log N) degrees of freedom in O(log N)
time, so that recovering it just amount to measure those O(log N) � N degrees
of freedom.

7This diffusion quasi normal mode is visible in the gra vitational description
of hydrodynamics, even if a quasiparticle picture is absent in this framework,
provided D is of O(1) in the large N limit.
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Gret(t, x) =

〈
0, 0

∣∣∣
(
∂2
t −∇2

Hn +
n− 1

4n
RHn

)−1 ∣∣∣ t, x
〉

ret

(3.52)

∼ δ(t− Lx)
1

(sinhLx)
n−2 , (3.53)

where (t, x) ∈ R×Hn and Lx is the hyperbolic geodesic distance
from the conventionally chosen origin of coordinates on Hn to the
point x (cf. for example [46]). We see that the retarded correlation
function is indeed ballistic, since it is strictly supported over the past
light-cone of the origin, despite the presence of a constant-curvature
term which simulates a mass. Furthermore this Green function is
automatically thermal, since it is periodic under imaginary-time shifts
t → t + 2πi when integrated against arbitrary sources. The effective
temperature for a hyperboloid of radius R is then β−1 = (2πR)−1.

The fact that perturbations on a free system behave ballistically at
finite temperature is not surprising. After all, the retarded Green func-
tion of any free field theory is a c-number, being proportional to the
commutator function of free fields, and thus it is the same in any state.
On the other hand, the functional form in (3.52) is largely dictated by
conformal symmetry, and in particular the hyperbolic Green function
must be proportional to the vacuum Green function on Minkowski
space, since R×Hn can be conformally mapped into a proper region
of R × Rn, given by the causal development of the unit ball Bn on
the t = 0 spatial section Rn. This region of Minkowski space, denoted
D(Bn), has the form of a ‘diamond’ based on Bn.

This fact suggests a very interesting and non-trivial generalization
of (3.52) to the case of fully interacting (but still conformal) field
theories. It is known (cf. for example [47] [48]) that a CFT thermal
state of temperature 1/2π on R × Hn is conformally related to a
vacuum state on R ×Rn in the following sense: any time-dependent
correlation function on the hot hyperboloid is conformally related to
a vacuum Minkowski correlation function, restricted to D(Bn).

Denoting ηµν the Minkowski metric on R × Rn and gµν the hy-
perbolic metric on R ×Hn, we write ηµν = Ω2 gµν for the conformal
rescaling. It turns out that the whole hyperbolic space-time is mapped
to the finite domain D(Bn) of Minkowski space-time.



3.3. QUANTUM APPROACHES IN HYPERBOLIC SPACES 55

More explicitly, if the Minkowski metric is written as

ηµν = −dt2 + dr2 + r2dΩ2
n−1 (3.54)

and we perform the following coordinate transformation (which is
valid just on D(Bn))

t = R
sinh(τ/R)

coshu+ cosh(τ/R)
(3.55)

r = R
sinh(u)

coshu+ cosh(τ/R)
(3.56)

we arrive to

ηµν = Ω2[−dτ 2 +R2(du2 + sinh2(u)dΩ2
n−1] (3.57)

with

Ω = (coshu+ cosh(τ/R))−1 (3.58)

Now, the Minkowski vacuum, as measured by local correlation
functions restricted to D(Bn), is equivalent to the mixed state ob-
tained by tracing over the degrees of freedom ‘outside’ the unit ball,
i.e. we may replace the Minkowski vacuum by the entanglement den-
sity matrix on the unit ball. We therefore wish to follow the conformal
map for this density matrix, to obtain the state in the Hyperbolic ver-
sion of the theory. As a matter of fact, since every density matrix
is hermitian and positive definite, they can be formally expressed as
ρ = e−HM where HM is the so-called Modular Hamiltonian. So, for-
mally, every density matrix is a thermal state with β = 1, with respect
to its modular Hamiltonian. Moreover, this modular Hamiltonian is
the generator of a symmetry of the system, as can be seen by

tr(ρU(s)OU(−s)) = tr(ρO) (3.59)

with U(s) = e−iHs

This abstract flow is called the modular group, and it has usually
no geometrical interpretation, except in certain cases, the most famous
example being the Rindler wedge in Minkowski space. In this case, the
modular Hamiltonian is just the Boost generator, equal to the natural



56 SEARCHING FOR FAST SCRAMBLERS

Hamiltonian in the Rindler wedge. This is known as the Bisognano-
Wichmann theorem [49, 50]. With this result in mind Ref [48] show
that the modular flow just acts as a time shift in the hyperbolic frame.
Specifically it is shown that

τ → τ + 2πRs (3.60)

and so the Hamiltonian is given by HR = 2πRHτ + logZ.
The conformal then map sends the entanglement density matrix on

D(Bn) into the thermal density matrix of the hyperbolic space-time,
with T = 1/2π, in units of the radius of curvature. The only feature
that remain to be shown is that the transformation 3.60 is a symmetry
of the correlators. If the correlation functions are defined for scaling
operators of conformal dimension ∆i we have

〈O1(y1) · · · Os(ys) 〉β,Hn = Ω(y1)∆1 · · ·Ω(ys)
∆s 〈 Ō1(ȳ1) · · · Ōs(ȳs) 〉vac,D(Bn)

(3.61)
where the operators O(y) at points y ∈ R × Hn are the images

under the conformal map of the operators Ō(ȳ) at points ȳ ∈ D(Bn).
Under the imaginary time shift 3.60, one can check that the different
factors coming from the conformal transformation and the correlators
in D(Bn) cancel each other, leaving the correlator in the hyperbolic
manifold invariant.

With these insights at hand, consider now the retarded two-point
function of an operator Ō(ȳ) = Ō∆(t̄,x̄) in the Minkowski vacuum of
the CFT. We may write it as the imaginary part of the time-ordered
correlation function, i.e.

Ḡret(t̄, x̄) ∝ θ(−t̄ )·Im
〈
T
[
Ō∆(0, 0) Ō∆(t̄, x̄)

]〉
vac,D = Im

θ(−t̄ )

(−t̄ 2 + |x̄|2 + i 0)∆
,

(3.62)
where θ(t) is the Heaviside function and we have used conformal

invariance in the last step. Since we assume the CFT to be unitary,
∆ is real, and the retarded correlation function is a distribution sup-
ported on the Minkowski (past) light cone of the origin, t̄ 2 = |x̄|2,
t̄ < 0, just like it was for free fields. Applying now the conformal
map (3.61) we learn that the thermal retarded Green function on the
hyperbolic manifold



3.3. QUANTUM APPROACHES IN HYPERBOLIC SPACES 57

Gret(t, x) = Ω(t, x)∆ Ω(0, 0)∆ Ḡret(t̄, x̄) (3.63)

is supported on the image of the light-cone under the conformal
map. The conformal transformations send light-cones into light-cones,
so that Gret(t, x) is supported on the past light-cone of the origin in
R×Hn. This proves that the fully interacting Green function in the
hyperbolic space-time is supported on the light-cone, and thus any
diffusion poles (for O∆(y) equal to a conserved current of dimension
∆ = n) must be compatible with the ballistic propagation on the
hyperboloid.

It would be interesting to prove the ballistic character of thermal
Green functions directly for discrete quantum systems on finite ex-
pander graphs. Perhaps such a proof can be approached by first solv-
ing the intermediate case of the Bethe lattice, a discrete expanding
geometry of infinite volume.
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Chapter 4

The Streched Horizon as a
Fast Scrambler

In the past chapter a scrambling framework has been developed with-
out any mention to Black Hole Physics. In this chapter we are going
to deal in detail with these intriguing objects from this perspective.

The objective is to develop a theory of information diffusion in
Black Holes and/or SH, and abstract its typical time scales, with spe-
cial emphasis on the scrambling time scale.

The chapter is organized as follows. The first section points out
a universal structure characterizing non-extremal events horizons. In
particular it shows the appearance of an hyperbolic space, as the opti-
cal metric of the near horizon region of every thermal horizon. In the
second section it is shown how this optical metric naturally defines
the concept of Streched Horizon, as the limit of applicability of Low
Energy Field Theory, LEFT, in the renormalization group sense. In
view of these facts, and using the results of the past two chapters,
we propose two models of Information Scrambling in the vicinities of
Black Hole Horizons, depending on the coupling regime of the LEFT.

The last section steps on these past constructions to abstract a
putative theory of information diffusion in the Planckian Streched
Horizon. The hyperbolic nature of the near horizon naturally selects
an ultrametric theory with specific transition amplitudes, saturating
stability bounds for the diffusion process. It is shown that this theory
is again a Fast Scrambler.

59
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4.1 The Hyperbolic Optical Metric

The diversity of thermal horizons in String Theory is certainly vast.
It would be interesting to have certain common structure from which
to look them all. In the case of extremal black holes, and more gener-
ically extremal black branes, this structure turns out to be AdS space
with all its insightful implications, beautifully unified in the AdS/CFT
correspondence. In the non-extremal case it is proposed that the uni-
versal structure is R × Hn, which appears as the universal optical
metric of thermal horizons 1. This section shows that this is indeed
the case for a vast class of thermal horizons.

4.1.1 Rindler, de Sitter and Hyperbolic space-
times

We begin with Rindler and de Sitter space-times, which are basically
trivial to analyse in this regard, and for which the conformal map is
exact in the whole space.

The first and basic observation of all our approach to Black Hole
information scrambling is the conformal optical map between R×Hn

and Rindler space-time, with metric

ds2
Rin = −y2dt2 + dy2 + d`2 , (4.1)

where the ` coordinates parametrize Rn−1. The optical frame then
yields R×Hn, presented in the upper-half plane coordinates

ds2
R̃in

= −dt2 +
dy2 + d`2

y2
. (4.2)

In a similar way there is a global conformal map between the space
R×Hn and the static patch of de Sitter space-time, dSn+1, which is
the patch covered by the cosmological horizon with metric

ds2
dS = (1− u2) dt2 + (1− u2)−1du2 + u2 dΩ2

n−1 . (4.3)

The corresponding optical frame is given by

1The so-called optical metric is obtained by removing the |g00| factor in any
static metric by a conformal transformation (cf. for example [46] for a recent
review)
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ds2

d̃S
= −dt2+

du2

(1− u2)2
+

u2

(1− u2)
dΩ2

n−1 = −dt2+dr2+(sinh r)2 dΩ2
n−1 ,

(4.4)
which is again globally identical to R × Hn, this time in global

coordinates, under the coordinate change sinh r = u(1− u2)−1/2.

4.1.2 Black Branes

Here we show this interesting feature for Black Branes, living in a Xd+2

spacetime, like the ones consider in chapter 2 (2.1), when computing
the free fall time.

To see this, notice that near a regular, static horizon we may choose
(d+ 2)-dimensional coordinates exhibiting a two-dimensional Rindler
factor in the near-horizon geometry Xd+2, of the form

ds2
X = gµν dx

µdxν ≈ F (ρ, y)

(
−
(

2πρ

β

)2

dt2 + dρ2

)
+Hij(ρ, y) dyi dyj ,

(4.5)
where the horizon is conventionally located at ρ = 0. The functions

F (ρ, y) and Hij(ρ, y) are assumed to have smooth expansions around
ρ = 0, as is the case for the holographic branes 2.1.

The optical manifold X̃ is defined in the exterior region ρ > 0
through the conformal transformation

ds2
X = Ω2(ρ, y) ds2

X̃
, Ω(ρ, y) =

2πρ

β

√
F (ρ, y) , (4.6)

with near-horizon asymptotic form

ds2
X̃
≈ −dt2 + dz2 + e4πz/β γij(y) dyidyj , (4.7)

where γij = (Hij/F )ρ=0 + O(ρ2), and we have defined a Regge–
Wheeler or ‘tortoise’ radial coordinate ρ = e−2πz/β, in terms of which
the Rindler region extends roughly along the interval z ∈ [0,∞], with
the horizon sitting at z =∞.

Up to terms exponentially suppressed at large z, the near-horizon
optical metric is ‘asymptotically locally hyperbolic’, with obvious ‘z-
expanding’ properties in the sense of the last section. The spatial
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metric d`2 = γij dy
idyj is induced at the edge of the Rindler region,

and it is related to the physical induced metric at the horizon by a
regular conformal transformation. Since γij defines a conformal com-
pactification of the horizon boundary, the obvious analogy with the
AdS/CFT correspondence was exploited in Ref. [51] to propose a dual
Euclidean CFT description on the γ-geometry. In this paper, we take
a different route and emphasize the relation between (4.7) and micro-
scopic models of the stretched horizon.

It is also interesting to obtain the optical metric in the asymptotic
region of the Black Brane metrics 2.1. This is represented by a flat
strip of length β,

ds2
X̃
≈ −dt2 + dz2 + d`2 , 0 < z < zβ ∼ β , (4.8)

with optical depth of order zβ ∼ β. It is remarkable that, despite
the non-AdS nature of the asymptotic regions, the optical metric is
still given by 4.8 for all Dp-brane throats with p < 5, including the fact
that the optical distance to infinity is given by the inverse temperature
β.

This observation helps us understand why the free fall time is con-
trolling the fast spreading of charges at the Streched Horizon, de-
scribed in chapter 1. This is particularly clear in the optical rep-
resentation of the thermal cell depicted in Figure 4.1. The whole
non-compact asymptotic region is mapped to a small box of size β,
so that induced charges at the stretched horizon are quite insensitive
to the motion of source charges in the asymptotic region. The optical
metric is dominated by the near-horizon region, and the time-scale for
global causal communication across this region defines the time scale
for large-scale rearrangements of induced charges at the stretched hori-
zon (notice that Maxwell’s equations are conformally invariant, so that
electromagnetic field solutions can be faithfully studied in the optical
frame).
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z

zβ

0

z∗

β

β(Neff)1/d

β

β

Figure 4.1: The optical box of a single thermal cell of CFT volume βd,
drawn to indicate the optical-volume expansion of the spatial sections up
to an optical volume Neff times larger at the stretched horizon, itself with
optical thickness of CO(β). The vacuum piece z � zβ has negligible optical
volume compared to the Rindler piece zβ � z � z∗, which dominates
the AdS/CFT computation of any boundary observable in the long-time
limit. Exponential sensitivity to initial conditions in the UV leads to chaotic
classical behavior in the near-horizon region.

4.2 The optical Strech

In this section we explain why the optical metric is a useful tool in any
discussion of near-horizon dynamics. Any such description involves a
finite number of local fields with Hartle–Hawking boundary conditions
at ρ = 0, which are equivalent to the specification of a thermal state
at locally measured temperature (β

√−g00)−1. Let us parametrize the
effective action of any such LEFT in the schematic form (here for a
scalar field degree of freedom Ψ)
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SLEFT = −
∫

Xd+2

[
1
2
Ψ

(
−∇2

X +
d

4(d+ 1)
R[ X ] +M2

)
Ψ +

∑

irr O

λ

Λ∆−d−2
O(Ψ)

]
.

(4.9)
In this expression, the Laplacian has been corrected by a conformal

coupling to the Ricci-scalar R[X], so that the remaining terms give
the strength of conformal symmetry breaking. M is a typical mass,
standing as a representative of whatever relevant operators we may
have turned on, and the remaining sum accounts for characteristic
irrelevant operators with conformal weight ∆ > d + 2, dimensionless
coupling λ and scale Λ, playing the role of Wilsonian UV cutoff for
the LEFT.2 Consistency of the Wilsonian procedure requires M < Λ.
Since the Hartle–Hawking quantum state to be stored on the fields
Ψ has energy scale 1/β, the Wilsonian consistency also requires the
constraint 1/β < Λ.

At this point we are free to perform field redefinitions in (4.9) if
they serve the purpose of illustrating the physics, just as it is some-
times natural to switch back and forth between so-called Einstein
and string-frames in the graviton-dilaton system arising in low-energy
string-theory Lagrangians. In the same vein, we shall rewrite (4.9) in
the ‘optical’ frame, together with the field redefinition

Ψ = Ω−d/2 Ψ̃ . (4.10)

Using the identity

(
−∇2

X +
d

4(d+ 1)
R[ X ]

)
Ω−d/2 = Ω−2−d/2

(
−∇2

X̃
+

d

4(d+ 1)
R[ X̃ ]

)
,

(4.11)
we finally obtain

SLEFT = −
∫

X̃
d+2

[
1
2
Ψ̃

(
−∇2

X̃
+

d

4(d+ 1)
R[ X̃ ] +M2

eff

)
Ψ̃ +

∑

irr O

λ

(Λeff )∆−d−2
O(Ψ̃)

]
.

(4.12)

2We adopt the ‘naturality’ convention in which the strength of the coupling is
controlled by Λ, i.e. λ = O(1).



4.2. THE OPTICAL STRECH 65

The result is a conformally-invariant effective action, perturbed
by relevant and irrelevant operators with effective position-dependent
dimension-full parameters Meff (z) = Ω(z)M and Λeff (z) = Ω(z)Λ.
Since Ω(z → ∞) → 0, all these dimension-full parameters are scaled
to zero in the horizon limit. Hence, the z → ∞ limit is a zoom into
the UV structure of the LEFT, isolating the conformally-invariant dy-
namics of whatever field degrees of freedom exist below the Wilsonian
cutoff Λ, while at the same time blowing up the irrelevant operators
heralding the approach to the UV cutoff.3 Since the thermal state
of interest has scale 1/β, the running of the effective dimensionless
coupling of irrelevant operators, defined at scale 1/β, is given by

λeff (z) =
λ

(βΛΩ(z))∆−d−2
. (4.13)

Since λ = O(1), the effective position-dependent coupling enters
strong-coupling at the point zΛ determined by

Ω(zΛ)Λ = 1/β . (4.14)

Therefore, z = zΛ marks the end of the LEFT domain of applica-
bility, and thus defines the edge of the Λ-stretched horizon. We see
then how the optical metric naturally defines de concept of a SH by
the blowing up of irrelevant operators in the renormalization group
sense. In general, in the context of ‘black hole complementarity’ [19],
we shall define the SH as the limit of applicability of Low-Energy-
Field-Theory (LEFT). The minimal choice for Λ is then of the order
of the Planck mass, MP, defining the standard notion of a Planck-
ian stretched horizon at the corresponding solution zP of (4.14), but
other choices are possible. Consider for example a perturbative string
theory with string mass scale Ms, which defines a stringy stretched
horizon at optical depth zs. In general we have Λ = Ms = g αs MP

with gs ≤ 1 the string coupling and α > 0. Solving the equations
1/β = Ω(zs)Ms = Ω(zP)MP yields the optical depth difference

3The conformal mass term is negative, approaching −(π d/β)2 as z → ∞.

Since the X̃-Laplacian is gapped in the same amount, only the zero mode of Ψ̃ is
tachyonic. This mode is seriously non-normalizable in the original X-frame field
Ψ, so it does not satisfy the Hartle–Hawking boundary conditions and should be
treated as non-dynamical in the LEFT.
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zP − zs =
β

2π
log

(
MP

Ms

)
=

β

2π
log(1/gαs ) . (4.15)

In this case, despite the fact that the string theory remains weakly
coupled at z ∼ zs, the effective mass of the whole Hagedorn tower
of massive string states comes down below the 1/β scale as z < zs.
Therefore, the dynamics is expected to become non-perturbative be-
cause of the exponential growth of field species.

Another interesting case is that of a ‘thick’ stretched horizon, aris-
ing for Λ ∼ 1/β, i.e. a situation where there is essentially no LEFT de-
scription at all. This corresponds to the bulk dynamics of holographic
gauge theory duals with ’t Hooft coupling of O(1). Such models are
akin to large-N , weakly coupled matrix models with possibly compli-
cated interactions.

We notice here that the free fall time discussed in chapter 2 trans-
lates in the optical metric to the size of this cut-off hyperbolic space.
Therefore we call this scale the optical depth, the size of the optical
metric. As we saw in the second chapter, this optical depth is of the
same order of the conjectured scrambling time scale, a fact that would
be crucial in the scrambling models to be defined below.

The physics of (4.9) in the radial domain 0� z � zΛ, deep within
the Rindler region but still clear from the stretched horizon, consists
of a conformal thermal state. 4 Since the optical metric is ultra-static,
the thermodynamic functions of such a thermal state are extensive on
the hyperbolic spatial geometry. For example, the entropy of Ψ-field
states contained in Rindler, up to optical depth z, scales with the
optical volume

SΨ ∼ Ṽz β
−d−1 , (4.16)

where

Ṽz = V

∫ z

0

dz′ e2πz′d/β ≈ V
e2πzd/β

2πd
, (4.17)

and V ≡ Vγ is the volume in the γij metric. Hence, we have a
uniform excitation density of O(1) degrees of freedom per thermal

4The discussion leading to (4.9) generalizes to any non-trivial CFT perturbed
by relevant and irrelevant operators with respective scales M and Λ.
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volume β d+1 of optical bulk, although the ‘expanding’ nature of the
geometry forces all extensive quantities to become dominated by the
large z-cutoff (states pile up in the last layer of O(β) thickness). The
old result of ’t Hooft’s brick-wall model [52,53] follows in this language
as the (approximate) matching of the entropy in sub-Planck Hawking
radiation with the Bekenstein–Hawking entropy of the black hole:

SBH ∼ ṼzP β
−d−1 . (4.18)

Again, this entropy is roughly accounted for by the last layer of
optical thickness of O(β) (equivalently O(`P) thickness in the physical
metric).

4.3 Horizon scrambling models

In this section all the data from previous sections and chapters is
used to propose three models of information scrambling in Black Hole
spacetimes. They all will naturally appear to be Fast scramblers.
They do not mean to be incompatible and the three mechanisms that
we propose may be well working at the very same time. All together
they furnish a theory of information processing at thermal horizons,
to be contrasted with the dual Matrix Models.

4.3.1 Expander diffusion

The first model considers the possibility of a putative stringy Black
Hole, dual of a large N gauge theory at small tH́ooft coupling. In this
regime, as commented before, we expect strong coupled dynamics in
the whole near horizon region. In other words, the Λ-stretched horizon
covers all the thermal atmosphere.

We will now make a basic assumption regarding the structure of
this Λ-stretched horizon. We declare that the geometrical structure of
X̃ is still relevant to characterize the interactions of strongly-coupled
degrees of freedom building up this region. More precisely, we model
the stretched horizon as an effective hyperbolic lattice of O(β) spacing
with a worth of O(1) Q-bit degrees of freedom per lattice point. In
other words, we have a strongly-coupled discrete quantum system on
a cut-off expander graph.
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The dimension of this Hilbert space is fixed by the matching to
the Bekenstein–Hawking entropy. In particular, we have the extensive
behaviour (4.16), now applying to the dimension of the Hilbert space,
rather than simply the entropy of excitations:

log dimHSH ∼ ṼSH β
−d−1 ∼ SBH , (4.19)

where ṼSH ∼ ṼzP and we have used (4.18).
Setting V = Vγ = β d, we deal with a single thermal cell, and

the associated entropy is just the specific entropy Seff = Scell = N .
Inverting (4.17) we find the relation between the maximal depth of
the stretched horizon and the specific entropy

zP =
β

2πd
log N , (4.20)

for the total optical depth at the ‘bottom’ of the stretched horizon.
At this point, we can make contact with the discussion in section

2, characterizing horizon scrambling in terms of a discrete diffusion
process with step β, playing on the expander graph cutoff to depths
zΛ < z < zP. The expander-diffusion process scrambles O(n) degrees
of freedom of a single thermal cell in a time of order β log(n), as the
random walk reaches the ‘bottom’ of the stretched horizon at z = zP.

Now, in a first approximation 5, any subsequent scrambling over
scales larger than a thermal cell of the γij metric proceeds by standard
diffusion on the ‘bottom’ of the expander with induced (optical) metric

d`2
zP

= e4π zP/β γij dy
idyj = N2/d γij dy

idyj . (4.21)

Hence, a length scale L � β in the γij metric corresponds to a
length scale LN1/d ∼ (NV )1/d in the bottom metric (4.21). Such a
patch is slow-scrambled in a time of order β−1 (V N)2/d. The number of
thermal cells on the patch is V/βd. Since N is the entropy per thermal
cell we may write the total entropy of the patch as S ∼ N V β−d, so
that the total slow-scrambling time is the standard diffusive β S 2/d

result. It is important to notice that this result is non-trivial, since it

5We will provide a different diffusion model in the next section more suited for
the dynamics of a single thermal cell. In any case, the results for the scrambling
time in spatial domains larger than a thermal cell is unchanged because this new
diffusion model will only operate again at the level of one cell.
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has been derived for systems which have O(N) degrees of freedom per
thermal cell, rather than O(1) degrees of freedom as in the common
case.

Combining these estimates we finally find the fast-scrambling law

τs(L) ∼ β log N , L ≤ β (4.22)

below the thermal cell scale, and the slow-scrambling law

τs(L) ∼ β S 2/d , L� β (4.23)

for distances well above the thermal cell.
The estimate (4.23) is quite general, since it only depends on the

bottom density of the expander. On the other hand, (4.22) assumes
tacitly that the expander graph starts at z = zΛ ∼ 0, i.e. the stretched
horizon covers the whole Rindler region. Such a situation is only ap-
propriate for highly stringy black holes dual to weakly-coupled CFTs,
as commented at the beginning of this section. Smooth horizons with
a large Rindler region where LEFT is valid support ‘thin’ stretched
horizons for which the fast-scrambling diffusion operates for a smaller
time of order β log(N) − zΛ. In particular, in the limit in which we
push the LEFT validity down to Planckian distances from the horizon,
we have zΛ ∼ zP up to O(1) factors, and the optical thickness of the
Λ-stretched horizon is only of O(β). In such a situation the random
walk diffusion is always slow-scrambling in a first naive approximation.

However, as we develop in the next section, surface-scattering ef-
fects may affect this picture.

4.3.2 Chaotic billiard

The last commentaries of the past subsection lead us to the second
scrambling model, the Chaotic billiard [1].

We suppose a weakly coupled bulk theory, dual to some gauge
theory at large tH́ooft coupling. In this regard we neglect the collisions
ofO(1/Neff ) strength within the bulk of the thermal atmosphere. The
near horizon optical region is a weakly coupled hyperbolic field theory
in the thermal state, which can be approximated as an ideal gas.

Within this setup we consider a Planck-localized probe following
null geodesics in the Rindler region, punctuated by collisions of O(1)
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strength at the stretched horizon. These collisions cannot be avoided,
as described in the past section. In order to benefit from the geometri-
cal intuition, we notice that any such piecewise-null trajectory defines
a corresponding piecewise-null trajectory on the conformally-related
optical manifold (4.7) with hyperbolic spatial sections. Therefore,
we can use the optical metric to discuss the dynamical time scales
of such an ideal probe motion. The advantage of this description is
the uniform proportionality between time scales for null propagation
and ‘optical’ length scales, together with the simplicity of hyperbolic
geodesics.

Consider then a localized probe sent radially inwards with a max-
imal (Planck) bulk resolution at the top of the Rindler region, as
measured in the physical metric (2.1), i.e. the initial resolution δ`i in
the ` coordinate satisfies

F0 (δ`i)
2 ∼ ` 2

P . (4.24)

The geometrical stretching of the optical metric implies that such
a probe is smeared over a region whose optical size in the ` directions
is of order

δsop ∼
δ`i√
h∗
∼ `P√

F0h∗
∼ β (4.25)

on arrival to the stretched horizon. The thermal state of strongly
interacting degrees of freedom at the stretched horizon has thermal
length of O(β) (again, in the optical metric), which determines the ef-
fective interaction length of probe scattering at the stretched horizon.
Since the effective resolution in the impact parameter for these scat-
tering events is also of O(β), we conclude that the outgoing scattering
angle at each collision has maximal uncertainty.

In between scattering events the probe is assumed to glide freely on
the Rindler region. Maximizing the glide velocity, we can assimilate
the motion to a random walk on a (d + 1)-dimensional hyperboloid
with steps made of geodesic arcs on the spatial sections of the optical
geometry:

ds2
op ≈ −dt2 +

(
β

2π

)2
dy2 + d`2

y2
. (4.26)
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In the Poincaré coordinates of (4.26), each free glide between colli-
sions is a circular arc with radius ∆y ∼ ∆`/2 if the collision points are
separated a distance ∆` in the QFT metric (cf. Figure 2). The max-
imum extent of a circular glide is given by arcs of radius ymax ∼ β.
The reason is that the scarce6 trajectories with larger radii hit the
end of the Rindler region and are effectively reflected back by the
confining wall of the asymptotic AdS region, the resulting complete
trajectory returning to the stretched horizon at ∆` < β. We thus
conclude that, after a few scattering events, there is complete uncer-
tainty about the position of the probe within a distance scale of the
order of the QFT thermal length. Since each maximal glide through
the optical hyperboloid takes a time of O(τ∗), we conclude that the
‘position’ scrambling of the Planckian probe within the thermal cell
has been achieved in times of order τ∗ ∼ β log(Scell). This is shown
schematically in Figure 4.2.

!d

y

Figure 4.2: Near-horizon random walk of a localized probe by scattering
at the stretched horizon, pictured in the Poincaré coordinates of the spatial
optical metric (4.26). Free paths between successive collisions are circular
arcs, with maximal radius ∆ymax ∼ β, since longer glides are reflected
back by the asymptotic AdS potential well which starts at the edge of the
Rindler region, represented in this picture by a dashed line.

The kinetic model presented here regards the near-horizon region
as a chaotic billiard over a negative-curvature space, one of the early
examples of hard chaos in classical mechanics [54, 55]. Indeed, if we

6The proportion of solid angle enclosing those trajectories which are ‘verti-
cal’ enough to hit the end of the Rindler region is of the order of δd/Vol(Sd) ∼
(h∗)d/2 ∼ 1/Neff .
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substitute the stretched horizon by a random arrangement of hard
reflecting spheres of size β in the optical metric, we get essentially the
same picture. The Lyapunov exponent, defined locally in terms of the
divergence rate of geodesics, is of order λL ∼ β−1. The Lyapunov time,
defined as the time for complete erasure of localization information,
from an initial resolution δ`i to a final resolution of one thermal length
δ`f ∼ β, is of order

τL ∼ λ−1
L log(δ`i/δ`f ) ∼ β log(`P/β

√
F0) ∼ τ∗ , (4.27)

since complete ignorance over the position of the Planck-size probe
on the extent of a thermal cell is achieved after O(1) collisions, with
characteristic collision time of O(τ∗).

Our proposed ‘ballistic catalysis’ of the scrambling is only effective
as long as the glides are large geodesic arcs on the hyperbolic optical
geometry (4.26). Since the finite extent of the Rindler region imposes
an effective cutoff to the size of these arcs, on time scales larger than
τ∗ the system behaves as a slow scrambler with effective time step τ∗.
This is again the same insight as in the past model, which show that
Fast Scramblers must be small.

Therefore, the whole system with ncell thermal cells is scrambled
in a time τs ∼ τ∗(ncell)

2/d. In other words, the scrambling time of a
general horizon as a function of the entropy and the effective number
of degrees of freedom is shown to be

τs ∼ β log(Neff ) (ncell)
2/d ∼ β log(Neff )

(
S

Neff

)2/d

. (4.28)

More generically, we can expect the combined effect of classical
chaos, with O(1) ‘atmospheric’ collision events, and the standard dif-
fusion upon absorption by the expander graph, altogether accounting
for the expected scrambling properties of idealized probes. A cartoon
of this picture is offered in figure 4.3.
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Figure 4.3: Schematic view of the effective kinetic scrambling model in
the optical frame, featuring a Cayley tree picture of the stretched horizon,
a hyperbolic ‘Rindler atmosphere’ and an asymptotic AdS region of optical
depth of O(β). The total optical depth of the hyperbolic section [0, zP]
is O(β logN). A localized classical probe injected from the asymptotic
boundary ( vertical blue line) is either absorbed or reflected at z = zΛ. If
reflected (curved red line), it scrambles fast in the effective chaotic billiard
of the Rindler atmosphere. If absorbed (jagged red line), it scrambles fast
by diffusion on the expander graph until it reaches the bottom at zP. Once
at the bottom, it scrambles slowly by diffusion on the bottom. The fast-
scrambling patch measured by the γij metric is always about one thermal
cell.

4.3.3 Ultrametric streched horizons

Phenomenological models based on propagation on hyperbolic geom-
etry have the drawback of requiring rather strong assumptions on the
dynamics of the whole near-horizon region (comprising the SH plus
its ‘thermal atmosphere’.) We either need a strongly interacting near-
horizon region to set up a random walk on an expander graph, or
a sufficiently stable probe must be assumed to justify the model of
chaotic elastic scattering off the SH.

At the same time, the principle of Black Hole Complementarity
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states that Black Hole dynamics should be completely described by
LEFT together with Streched Horizon dynamics. Despite intensive
study, the detailed structure of SHs remains mysterious beyond these
very general thermodynamical and hydrodynamical considerations.
One important point of contention is the status of locality of the ef-
fective SH Hamiltonian. Although the count of degrees of freedom
may suggest a local system with Planckian cutoff, there are various
reasons to suspect that a highly non-local dynamics is at play. After
all, if the SH is defined as the dynamics which cannot be described
by low-energy QFT in the bulk, it is natural to assume that this dy-
namics will be in conflict with at least one of the two cornerstones
of low-energy QFT: unitarity and locality, the second one being the
obvious choice.

In this section we advance in this picture, and try to combine the
virtues of both previous models. We shall continue to model scram-
bling in terms of discrete classical diffusion, but remove the assump-
tion of locality. At the same time, we require the non-local diffusion
kernel to just saturate the causality requirements, without sacrificing
stability bounds. One way of representing these conditions is to re-
gard the SH as the boundary of a cut-off expander graph, and then
‘integrate out’ the bulk of the expander graph, retaining only the tran-
sition amplitudes between points on the boundary. Since, as described
in chapter 3, expander graphs are well-approximated by regular trees,
we can simplify matters by considering a Cayley tree of fixed branch-
ing rate d+1, which provides a discretization of a hyperbolic geometry
in d+ 1 dimensions.

A single thermal cell of the SH will be modeled by S points over
which we define a positive probability density, undergoing discrete
diffusion as specified by the equation

∂t ρ = W ρ , (4.29)

where ρ is a S-vector and W is a S × S matrix of transition rates.
Off-diagonal elements must then be positive,

Wij ≥ 0 , i 6= j (4.30)

and normalization
∑

i ρi = 1 determines the (negative) diagonal
elements to be
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Wii = −
∑

j 6=i

Wij . (4.31)

The crucial hypothesis on the matrix Wij is the requirement that
the individual rates Wij between two points i and j of the SH be
determined by the inverse of their causal time separation tij, where
the causal times are computed as the times-of-flight of photons across
the thermal atmosphere

Wij ∝
1

tij
∼ 1

zij
. (4.32)

Here zij denotes the discretized version of the tortoise coordinate
for the turning point of a null geodesic joining points i and j. Since
we model the hyperbolic geometry by a tree, the z coordinate is to be
equated to the branching level n of the tree, measured from the SH,
in units of the inverse Hawking temperature.

We stress that the nodes of the tree are not part of the SH, nor is
the diffusion process 4.29 ‘playing out’ on the tree. Rather, the tree is
just used as a geometrical encoding of the appropriate causal times tij
between two points on the SH, and hence the value of the elementary
transition rate Wij.

We regard the points on the SH as the top leaves of an auxiliary
b-branching tree with b = d+ 1. Therefore, any point on the SH has a
single ancestor at level n, which is shared among a total of pn points
in the SH. The elementary transition time between any such points
sharing a common ancestor is taken to be proportional to the level n,
and be equal for all points sharing the same ancestor, so that the rate
only depends on n, giving the transition matrix a hierarchical structure
with block-entries of value Wn determined by their separation from the
main diagonal.

Such a hierarchical structure is characteristic of so-called ultramet-
ric spaces, in which distances are defined by ancestry rules such as
those implied by the regular tree specified here. More generally, an
ultrametric structure is defined by the rule that, given three points
defining three distances, the two smaller ones are always equal. This
is in violation of the standard triangle inequality of metric spaces, and
can always be modeled by defining distance in terms of an ancestry
level on a tree (not necessarily a regular one).
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The characteristic time scale for the variation of the local density
also depends on the phase space of final states. In particular, the total
probability to jump from site i to any other point connected through
a level-n ancestor is

∑

jn

Wijn = (d+ 1)n−1Wn ≡ e−In , (4.33)

where we have defined an ‘effective action’ for the transition through
level n, characterizing the effective ‘barrier height’. It becomes nat-
ural to include the entropic factor (d + 1)n−1 in the relation between
the characteristic time scales and the matrix of transition rates:

e−In ∼ 1

tn
∼ 1

n
. (4.34)

This expression is the main assumption of our model, stating that
the effective action for elementary transitions has a particular depen-
dence with the ultrametric distance between initial and final states:

In = log n+ constant , (4.35)

with exactly unit coefficient in front of the logarithm.
The general solution to the diffusion problem 4.29 on ultrametric

spaces is well known (see for example [56]) and has been intensely
studied in the context of disordered media and spin glasses. The rele-
vant information is encoded in the spectral properties of the transition
kernel Wij.

The completely scrambled state ρi = 1/S is an eigenvector of W
with vanishing eigenvalue, all the rest being negative-definite. We
choose to parametrize them in terms of the opposite-sign quasi-normal
frequencies Γr which are the eigenvalues of the negative kernel −Wij

and read,

Γr = d
R∑

k=R−r+2

e−Ik + (d+ 1) e−IR−r+1 . (4.36)

In this expression, the index r runs over all integers in the interval
0 ≤ r ≤ R, where R stands for the effective maximal ultrametric
distance between the S points of the SH under consideration, and
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is determined by the relation (d + 1)R = S. The expression 4.36
degenerates for r = 0, 1, for which we have

Γ0 = 0 , Γ1 = (d+ 1) e−IR . (4.37)

Notice that Γ1 gives the leading quasi-normal frequency which, for
the particular case of interest 4.35 is given by

Γ1 = (d+ 1) e−IR ∼ 1

log S
, (4.38)

up to coefficients of O(1). Being the smallest positive quasi-normal
frequency, Γ1 determines the time scale for exponential relaxation to
the uniform distribution,

tS ∼
1

Γ1

∼ log S (4.39)

confirming that ultrametric diffusion with the particular barrier land-
scape 4.35 defines a fast scrambler.

A distribution of the form 4.35 has a special significance in the
context of general ultrametric diffusion laws. In standard applications
in the theory of disordered media one usually considers linearly grow-
ing landscapes, with a law of the form In ∝ n + constant. These
type of systems exhibit quite slow diffusion, interpolating between
localization-type behavior and standard gaussian random walks. On
the other hand, logarithmic landscapes with a barrier growth of the
form

In = α log(n) + constant (4.40)

lead to the so-called Kohlrausch-law behaviour, with a diffusion
law that can be tuned to be faster than a gaussian random walk. An
interesting quantity which is sensitive to the dynamical coefficient α in
4.40 is the return walk probability. Starting with an initial distribution
completely localized at single origin point i = o, i.e. ρi(0) = δio, we
consider the return probability to the origin after time t, which can
be written quite explicitly,

ρo(t) =
1

S
+

R∑

r=1

d

(d+ 1)R−r+1
e−Γr t , (4.41)
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for the present case of a regular tree with branching b = d+ 1.
For a landscape of the form 4.40 the spectrum of quasi-normal

modes is

Γr/c =
d+ 1

(R− r + 1)α
+ d

R∑

k=R−r+2

1

kα
=

1

(R− r + 1)α
+ d

R∑

k=R−r+1

1

kα
,

(4.42)
where c is an overall proportionality constant of order O(1). If

inserted back into 4.41, after relabeling the index sum we obtain

ρo(t) =
1

S
+

R∑

l=1

d

(d+ 1)l
exp

(
−ct

(
1

lα
+ d

R∑

k=l

1

kα

))
. (4.43)

This expression shows that α = 1 is a critical value for the stability
of the random walk in the thermodynamical limit R ∼ logS → ∞.
For large R we may approximate the k-sum by

R∑

k=l

1

kα
∼ 1

α− 1

(
1

lα−1
− 1

Rα−1

)
(4.44)

which stays finite in the large R limit only for α > 1. In this case,
the 1/lα−1 term dominates over the 1/lα term in 4.41, resulting in the
estimate (by saddle point approximation after converting the l sum
into an integral)

ρo(t)S→∞ ∼ e−c
′ t1/α , (4.45)

the so-called stretched exponential or Kohlrausch law.
Hence, we find a very satisfying result. Our ansatz 4.35, which

was motivated by causality constraints in the near-horizon geometry, is
exactly the critical ultrametric landscape in which the thermodynamic
limit becomes impossible. Indeed, for α = 1 the exponents in 4.41 all
diverge logarithmically as S →∞ and the random walk is completely
spread up to infinity at any time t > 0.

The behavior of the autocorrelation function ρo(t) is usually char-
acterized in terms of the spectral dimension, d̃ defined in general in
terms of the long-time behavior as
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ρo(t) ∼ t−d̃/2 . (4.46)

With this definition, the Kohlrausch law 4.45 has an effectively
infinite spectral dimension at late times, a behaviour that is charac-
teristic of fast scramblers and diffusion in expander graphs in general.

Finally, the ballistic properties of the fast scrambler can be codified
in terms of 4.45 as well, since the number of points covered by the
distribution in time t is proportional to 1/ρo(t). The ultrametric radius
of this ‘ball’ is thus

reff (t) ∼ log (1/ρo(t)) ∼ t1/α . (4.47)

Therefore, we recover the expected ballistic behaviour reff (t) ∼ t
precisely in the limit α→ 1.
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Chapter 5

Summary

In this thesis we have advanced on several issues concerning the Fast
Scrambling Conjecture [5] [6]. Our results are in support of this con-
jecture. In this last chapter, we will quickly review the main concepts
and results of this thesis.

The heuristic arguments justifying the conjecture have been shown
to depend crucially on one geometrical aspect common to every ther-
mal horizon: the free fall time to the SH. This time scale is of the
same order of the conjectured time scale, from we conclude that Fast
Scramblers should evolve ballistically. In chapter 2, we study this
geometrical aspect for generic types of Black Branes, resulting in nu-
merous insights. For one, Fast Scramblers must be small, in the sense
that their thermal length must be bigger than any of the other spatial
length scales involved in the system. When the opposite is true, the
free fall time just depends on the effective entropy contained in a sin-
gle thermal cell. Thus Fast Scrambling only occurs within the thermal
cell, a fact highlighted in [6]. On the other hand, in the specific case
of the Super-Yang-Mill gauge theory in four dimensions defined on a
torus, when considering phase transitions, or topological flops, inter-
polating from one regime to the other, we derive the effective theory
of a single thermal cell. This theory is the Matrix Model of [21].

Secondly, within the phenomenological approach to the scrambling
time, the probe approximation, we show that hyperbolic spaces, in their
continuum and discrete versions, are natural Fast Scramblers. In this
vein, we proceed to attack the Fast Scrambling time scale on these
spaces from more fundamental perspectives, with two different out-
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comes. The first one appears when the original definition, concerning
the so-called Page test, is applied to these hyperbolic models. The
conclusion is that finding extensive scalings of entanglement entropy
should not be considered as a definite sign of Fast Scrambling. Ex-
act computations of entanglement entropy are necessary. As this is
a difficult task, we try to find other characterizations of Fast Scram-
bling. One possibility are the causality constraints of the model, or
signalling, as was termed in [34]. Consistent with previous intuitions,
we find that perturbations of Field Theories in Hyperbolic spaces in
the thermal ensemble propagate ballistically.

The core of the thesis stems from the observation that the phase
space and the dynamics of the near horizon region of every thermal
horizon can be naturally described in the conformally related optical
frame. This optical frame turns out to be, universally at the near
horizon region, a hyperbolic space times the time line. The vacuum,
or Hartle-Hawking state, is seen as a thermal state in this hyper-
boloid. Moreover, the specific technicalities of the conformal mapping
allows for a definition of the SH. In the optical frame, the irrelevant
couplings are position dependent, and diverge as we approach the
horizon, calling for an ultraviolet completion of the theory. This nat-
urally defines the concept of Λ-stretched horizon as the crossover from
weak coupling to strong coupling dynamics. This crossover depends
on the specific LEFT considered. When Λ ∼Mp, we recover the usual,
weakly-coupled near horizon region, cut-off by a Planckian SH.

Lastly, all the previous observations are joined to construct three
different models of information scrambling on event horizons. In the
case that the Λ-stretched horizon covers the whole near horizon re-
gion, i.e we have a putative black hole dual to a weakly coupled CFT,
expander graph or hyperbolic diffusion in the strong coupling region
provides the right scrambling time scale. In the other case, when we
have a weakly coupled near horizon region, we show how surface scat-
tering effects on the Planckian SH convert the thermal atmosphere
into an effective hyperbolic billiard, a classical example of hard chaos,
which, in turn, highlights the expected chaotic nature of Black Holes
and Matrix Models. In this case, the scrambling time scale is seen as
the Liapunov time of the chaotic billiard: the time needed for erasure
of any initially locally codified information. These two models, at first
sight, do not provide us with any information about the dynamics
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of the Planckian SH, a recurrent problem in Black Hole Physics. Us-
ing the Fast Scrambling Conjecture as a guide through these dynamics
and the previous results concerning the flight times across the thermal
atmosphere, we naturally propose a theory for information diffusion
on this surface. This theory possesses an Ultrametric structure, a fact
that can be traced back to the hyperbolic nature of the optical metric.
Furthermore, the theory has very specific transition rates saturating
stability bounds, a fact that can be traced back to the flight times
through the thermal atmosphere, or the optical depth. This model,
with these transition rates, is also a Fast Scrambler.

Further work is needed to confirm that some, or all of these struc-
tures appear in the dual Matrix Model description of Black Holes.
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Appendix A

Completely Connected
Physical Systems

The results concerning Fast Scrambling behaviour during the thesis
may be considered bulk results. Therefore it is still lacking a proper
understanding from the dual Matrix Models. Studies of these models
have been carried out in [57, 58] numerically, and analytical results
are obtained in [34]. In this section we advance some speculative
considerations about this problem. We take a different route, trying
to see if some of the Fast Scrambling structures uncovered during
the thesis emerge under some approximation in the dual, completely
connected, Matrix Models.

When considering physical models in which every degree of free-
dom interacts with every other degree of freedom, the first problem
to arise when directly applying the standard diffusion method is that
the scrambling time is of O(1), in appropriate units. Basically, diffu-
sion takes place in one step. This is easily seen when considering a
Random Walk in a graph that is completely connected. In this case,
the second eigenvalue of the Adjacency Matrix tends to zero in the
thermodynamic limit. If the probe particle has the same probability
to go anywhere on the graph, its position is completely uncertain just
after one step. This result remains unchanged when using a random
stochastic matrix as the Adjacency Matrix.

The analogue in the quantum framework is a quantum state under-
going Random Unitary evolution. This kind of problem was studied
in [59] and in [60], from which we inferred that scrambling is achieved
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in one step. This is a natural occurrence. Applying a random unitary
to a specific state should result in a pure random state. Due to the
Page result, this is seen to be a scrambled state

At first, these results appear to violate the conjecture, but this is
not the case when taking a closer look at the original statement [6].
A crucial condition in the conjecture is that the Hamiltonian should
contain terms involving no more than O(1) degrees of freedom, in the
large N limit. This is indeed what differentiates the evolution gov-
erned by the Matrix Theory Hamiltonian [21] from that of a Random
evolution taken from the Circular Unitary ensemble. The latter is
completely random, mixing in one step one particle states with O(N)
particle states. In contrast, the Matrix Theory Hamiltonian, although
completely non-local in position space, does not achieve this quantum
non-locality, and only mixes one particle states with O(1) particle
states in one step. This might imply that after one step, the pertur-
bation has achieved only O(1)-body entanglement.

Translating these heuristic arguments to more rigorous mathemat-
ical statements is part of our on-going work. For now, we will con-
struct a classical model which emulates these ideas and demonstrates
how scrambling is achieved after logN steps, even in a completely
connected model.

The core observation challenging the diffusion approach of the
scrambling time is that the attainment of equilibrium by the prob-
ability distribution does not imply that the random walk has visited
O(N) vertices.

For example, after the diffusion time has elapsed, in flat graphs
models or expander graphs, the random walk has visited O(nd/2) or
O(log n) respectively 1. In this way, the random walk has not explored
O(N) vertices, as would be required to scramble the whole system.

Consequently, we define the following process. We begin with a
random walk, representing the first perturbation of the system. When
the random walk arrives to a vertex, another random walk is created
(i.e, at each time step we double the number of random walks). This
represents how degrees of freedom become messengers of an original
perturbation once another messenger has interacted with them. A
natural quantity to study would be the time scale in which we have
probability of O(1)for having visited O(n) vertices.

1The number of vertices visited cannot exceed the number of steps taken
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We could not arrive to a proper Markov process formulation of
these dynamics. In particular it is not simply characterized by a ran-
dom walk with a certain regular adjacency matrix in some bigger con-
figuration space. However, the question we are seeking does not need
a rigorous formulation.

First, we notice that the number of random walks populating the
graph is exactly 2t, where t is a discrete time variable. So, by con-
struction, we immediately get a lower bound for the diffusion time of
this branching process on any type of graphs.

2t ' n −→ t ' log n (A.1)

Interestingly enough, we see that complete graphs do not achieve
equilibrium for this process in one step. We will study this process for
these types of graphs more precisely below. Let us first consider this
process for the more common flat and expander cases.

After log n steps we have created n random walks. For an expander
graph, in the worst case, we have to wait O(log n) steps so that each of
all those n Random Walks become uniform over the graph. When this
occurs, we have O(n) Random Walks randomly distributed over O(n)
sites, and therefore the probability of having visited O(n) different
sites is of O(1). In this way, we again conclude that expanders are
good examples of Fast Scramblers.

In the flat case, the situation is quite different. One might as-
sume that enlarging the number of Random Walks would decrease the
diffusion time, but this is not the case. As every Random Walk is
created by the arrival of another Random Walk to that specific site,
the time for this Branching process is still of O(n

2
d ) because the time

of traversing the system remains unchanged.

The time scales for these two types of graphs do not change. It
might seem that we have created some unjustified and unneeded inter-
pretations of the information processing through these systems. The
most striking case occurs when we observe a complete graph. We are
going to study this case in detail now.

We draw the process in Figure A.1. We observe that the branching
process creates a perfect tree with probability 1 in the large N limit.
The term tree means that no vertex is visited twice. The actual re-
lationship between these time trees and the trees founded in the bulk
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description of Black Holes is unclear and probably misleading. In any
case, it is a possibility worth exploring.

Figure A.1: In this picture it is shown a Branching Markov process in a
completely connected model. The number of random Walks is duplicated
at each time step. In the limit in which the number of nodes N → ∞ the
probability of no repetition and the subsequent formation of a time tree is
equal to one, until times of O(logN).

To check this tree emergence, we may just compute the probability
by counting the number of trees at each time step and dividing it by
the total number of possibilities. In particular, after m steps the total
number of possible configurations is given by

Ω = n20 × n21 × n22 × · · · × n2m−1

= n

i=m−1∑
i=0

2i

= n2m−1 (A.2)

On the other hand, the total number of trees is seen to be
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Ωtree = (n− 1)× (n− 2)(n− 1)× (n− 1)(n− 1)(n− 1)(n− 1)× · · · ×

×[n− (
i=m−2∑

i=0

2i + 1)][n− (
i=m−2∑

i=0

2i + 1)− 1]× · · · ×

×[n− (
i=m−1∑

i=0

2i + 1)] (A.3)

Ordering term by term, the probability of creating a tree randomly
is given by

Ωtree

Ω
=

(n− 1)(n− 2) · · · (n− (2m − 1))

n2m−1
=

(n− 1)

n
× (n− 1)(n− 2)

n2
× · · · ×

×(n− 2m−1)(n− 2m−1 − 1) · · · ×(n− (2m − 1))

n2m−1 (A.4)

So that

Ωtree

Ω
= P1 × P2 × · · ·Pm (A.5)

with

(1− 2m − 1

n
)2m−1

< Pm < (1− 2m−1

n
)2m−1

(A.6)

Taking now m = a log(n) + 1 it is easy to show that

lim
n→∞

Pm = 1⇐⇒ 0 ≤ a < 1/2 (A.7)

and

lim
n→∞

Pm = 0⇐⇒ 1/2 ≤ a ≤ 1 (A.8)

In other words, during times ofO(log(n)), the process creates these
time trees with probability 1.

There are two speculative directions worth exploring. For one,
the simple model may represent the flow of information in completely
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connected models. The Fast Scrambling Conjecture would follow nat-
urally by the tree construction.

A second possibility is that the bulk description of the Black Hole
geometrically represents this flow of Information. If this were the case,
this simple toy-model would help us understand why the space time
picture breaks at the SH. In this model, the dynamically generated
geometric description breaks down with probability 1 after times of
O(log(n)). This, in the bulk description, is exactly the location of the
Planckian SH.

The computation done in this section, concerning the tree proba-
bility, supposes that the perturbations propagating through the sites,
the probes, are distinguishable. We also studied the case in which these
perturbations are undistinguishable. The result turned out to be the
same to the one described above.
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