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Abstract

This thesis presents optical studies of a GaAs based microcavity in which strong coupling
between quantum well excitons and confined photons is observed. In the strong coupling
regime, the system is neither described by excitons nor photons, but rather by new eigen-
modes called polaritons. This mixed modes inherit characteristics of both components: they
are bosons, since their constituents are bosons, therefore they are able to occupy a single
energy quantum state; they have a very light mass compared with that of the electron mass;
they interact with each other via Coulomb interaction. The latter porperty together with the
particular shape of the lower polariton branch allow to obtain optical parametric oscillator
(OPO) behavior in microcavity polaritons. In the optical parametric oscillation regime in
microcavity-polaritons two pumped polaritons interact via Coulomb interaction and scatter
towards states that have low and high energies and momenta, fulfilling phase matching con-
ditions. Above a certain pump power threshold, three states are massively occupied: pump,
signal and idler. This is the situation that is presented is this thesis.

In particular two properties that attract great interest are addressed: phase correlation
and polarization properties, both allow to get a deep inside sigth into the characteristic
behavior of a massively occupied state by the OPO process in microcavity exciton-polaritons.

Chapter 1 introduces the physics behind the exciton-polaritons and the condensation.
It starts with a general review of semiconductors band structure. This is followed by a
description of the polariton constituents: the confined photons and the quantum well excitons.
Then the new eigenmodes that arise from the mixed exciton-photon are introduced, together
with its main properties. Moreover, the concepts behind the Bose Einstein condensation are
introduced and finally a few of the more remarkable achievements in the field of polaritons
are presented.
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Chapter 2 describes the sample used in this work and as well as the experimental setups
and techniques implemented during this thesis. Firstly, the characteristic of the microcavity
structure are presented, it follows a detailed description of the pump laser. Then the imaging
techniques are introduced both for real and momentum space. Later the interferometers built
during this thesis and the procedure to retrieve the first order correlation function together
with the phase of the condensates are described. Finally, the setup used in the polarization
resolved measurements is detailed.

Chapter 3 reports the coherence properties of the condensates, both spatial and temporal
coherence properties are studied for different regimes. One of the aims is to demonstrate
that OPO polariton condensates present spontaneous extended spatial coherence. In order
to do so, different pumping power regimes are investigated: diverse behaviors are found for
pump powers below, slightly above and well above condensation threshold. Also a partic-
ular situation when the microcavity is excited above the condensation power threshold is
investigated, in this situation the threshold is defined as a function of the laser’s energy and
the influence of the laser energy tuning, with respect to phase matching conditions, on the
coherence properties is unveiled.

Furthermore the presence of undesired effects caused by the growth process are exploited:
the last part of Chapter 3 deals with the coherence properties of a hybrid 2D-1D system
composed by a wire-like defect surrounded by a 2D planar structure.

Chapter 4 deals with the polarization properties of the OPO process in polariton con-
densates, these are studied in the system consisting of the hybrid 2D-1D condensates where
selective excitation of either the 1D solely or the composed 2D-1D system can be achieved.
In both cases the polarized emission depends on the orientation of the polarization’s plane
of the pump laser but there are marked differences on this dependence for the 2D and 1D
systems. The results are theoretically explained, by the group of G. Malpuech, using two
complementary models: a spinor Gross-Pitaevskii equation and a semi-classical Boltzmann
model.



Resumen

Esta tesis presenta estudios ópticos de una microcavidad de GaAs en la cual existe el
acoplamiento fuerte entre excitones de un pozo cuántico y fotones confinados. En el rég-
imen de acoplamiento fuerte, el sistema se describe por nuevas cuasi-partículas llamadas
polaritones que son una mezcla de excitones y fotones. Los nuevos modos heredan carac-
terísticas de los dos componentes: son bosones, ya que sus constituyentes también lo son;
tienen una masa muy pequeña comparada con la masa del electrón; interactúan a través de
la interacción de Coulomb. La última característica junto con la forma particular de la rama
polaritonica inferior permiten conseguir oscilación paramétrica óptica (OPO) en polaritones.
En este proceso dos polaritones interactúan a través de la interacción de Coulomb y se dis-
persan hacia estados con mayor y menor energía y momento, satisfaciendo las condiciones
de ajuste de fase. Por encima de cierto umbral para la potencia de bombeo hay tres estados
masivamente ocupados: el bombeo, la señal y el ocioso (“idler”). Esta es la situación que se
estudia en esta tesis.

En particular se investigan dos de sus propiedades que atraen gran interés actualmente:
las correlaciones de fase y las propiedades de polarización. Ambas permiten obtener un
conocimiento profundo sobre el comportamiento característico de un estado ocupado masi-
vamente por el proceso OPO en polaritones de microcavidad.

El Capítulo 1 introduce la física que yace detrás de los polaritones de excitones y de la
condensación. Comienza con una revisión general de la estructura de bandas en semicon-
ductores, seguido de una descripción de los constituyentes de los polaritones: los fotones
confinados y los excitones de pozo cuántico. A continuación se introducen los modos que
aparecen como consecuencia de la mezcla entre el excitón y el fotón junto con sus princi-
pales propiedades. Además se presentan los conceptos que dan lugar a la condensación de
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Bose Einstein. Finalmente se comentan algunos de los hitos más importantes logrados en
polaritones.

En el Capítulo 2 se describe la muestra utilizada en este trabajo así como las técnicas
experimentales implementadas y usadas a lo largo de esta tesis. En primer lugar se presentan
las características de la microcavidad, seguida por una descripción detallada del láser de
bombeo. A continuación se introducen las técnicas de adquisición de imágenes utilizadas
en el espacio real y en el espacio de momentos. A esto le sigue una descripción de los
interferómetros construidos y del procedimiento para obtener la función de correlación y la
fase. Finalmente se presenta el montaje experimental usado para las medidas resueltas en
polarización.

En el Capítulo 3 se exponen las propiedades de coherencia del condensado OPO. Sus
propiedades de coherencia temporal y espacial se estudian en diferentes regímenes. Uno de
los objetivos es demostrar que el condensado OPO presenta coherencia espacial extendida
espontanea. Para conseguir esto, se investigan diferentes regímenes de la potencia de bombeo,
encontrando diferentes comportamientos para potencias por debajo, apenas por encima y
bastante arriba del umbral de condensación. También se investiga una situación particular
cuando la microcavidad se excita por encima del umbral de condensación, en esta situación
el umbral es definido en función de la energía del láser y se revela la influencia del ajuste de
la energía del láser, con respecto a las condiciones de ajuste de fase, sobre las propiedades de
coherencia.

A continuación se hace buen uso de la presencia de efectos no deseados causados por el
proceso de crecimiento: en la última parte del Capítulo 3 se investigan las propiedades de
coherencia de un sistema hibrido 2D-1D compuesto por un defecto de tipo hilo rodeado por
una estructura 2D.

El Capítulo 4 presenta las propiedades de polarización del proceso OPO en condensados
de polaritones. Estudiamos el sistema hibrido 2D-1D, que permite la excitación selectiva
de o bien el sistema 1D únicamente o del sistema compuesto 2D-1D. En ambos casos la
emisión polarizada depende de la orientación del plano de polarización del láser de bombeo,
sin embargo existen diferencias marcadas en esta dependencia para los sistema 2D y 1D. Los
resultados se explican teoréticamente, por el grupo de G. Malpuech, utilizando dos modelos
complementarios: la ecuación de espinorial Gross-Pitaevskii y un modelo de Boltzmann semi-
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Chapter 1

Introduction to exciton-polaritons

In this chapter we will give a detailed description of the physics behind microcavity exciton-
polaritons. The strong light-matter coupling, which is the cornerstone for the existence of
microcavity exciton-polaritons is addressed. Properties of the polaritons are pointed out,
especially the parametric scattering. Then the physics underlaying the Bose-Einstein con-
densation is presented and finally some of the milestones achieved in exciton polaritons are
reviewed.

1.1 Physics of semiconductors

Semiconductors are well characterized in the framework of solid state physics, since they are
ordered periodical structures. In this context, a crystal can be properly described in terms
of a unit cell (a1, a2, a3) that allows to reproduce the whole structure by repeating this unit
cell an integer number of times.

Thus in order to describe an electron in the periodical structure, it is convenient to write
the electron’s wavefunction as follows [1]:

 nk (r) = unk (r) e
ik·r (1.1)

where unk (r) is a periodic function (Bloch’s function) that represents the periodicity of the

1



2 CHAPTER 1. INTRODUCTION TO EXCITON-POLARITONS

As#
Ga#

(a)$ (b)$

Figure 1.1: Crystal structure in real and reciprocal spaces for GaAs. (a) shows the zinc-
blende structure formed by the GaAs compound constituting a two interpenetrating fcc. (b)
represents the first Brillouin zone, where a few symmetry points have been labeled (adapted
from [2]).

crystal, n is an index that represents the band state and k is the electron’s wavevector. If
the crystal characteristic lateral size is L, and a is the lattice constant (L = Na, where N is
the number of atoms along the lateral crystal direction), for any linear combination of unit
cells, Eq. 1.1 imposes the following constrain for the k vector, k =

�
2⇡n
Na

�
, where n can only

take values within
⇥
�N

2 ,
N
2

⇤
, this limits k to

⇥
�⇡

a
, ⇡
a

⇤
. The k vectors contained in this range

define the first Brilloiun zone which is the unit cell in reciprocal space.

The structures studied in this thesis are made of binary, Gallium-Arsenide (GaAs), and
ternary, AlxGa1�xAs alloys, which belong to the zinc-blende crystal structure, shown in
Fig. 1.1(a). The lattice consists of two interpenetrating face-centered-cubic (fcc) lattices,
where Arsenic atoms are put in one fcc lattice and Gallium or Aluminum atoms are placed
in the other. The reciprocal lattice of an fcc lattice is a body-centered-cubic (bcc) lattice
[see Fig. 1.1(b)]. Points with high symmetry are represented by greek capital letters in the
first Brillouin zone, the center (k = 0) is denoted by �. Few of those points are shown in
Fig. 1.1(b).
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Figure 1.2: Band structure for a GaAs structure (adapted from [2]).

In a semiconductor structure there is an energy gap (Eg) between the valence band (VB),
defined as the occupied energy states at zero temperature (the highest occupied energy state is
called the Fermi level), and the conduction band (CB) states where electrons can freely move
through the crystal lattice. Figure 1.2 shows the band structure for GaAs. The bandgap is
direct in GaAs, i.e. the minima of the valence and of the conduction band are at the same
k vector.

At the � point the conduction band has an s orbital character (l = ml = 0), so taking into
account the electron spin (s = ±1/2) the band is two-fold degenerated. On the other hand,
the valence band has a p orbital character (l = 1,ml = 0,±1), thus, including the electron
spin (but neglecting the spin-orbit coupling), the band would be six-fold degenerated. By
taking into account the spin-orbit coupling the degeneracy is partially lifted into the �8 and
�7 bands (see Fig. 1.2).
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Figure 1.3: Scheme of band structure. (a) Shows the case where the spin-orbit coupling has
not been considered, while (b) represents the band structure including spin-orbit coupling

The total angular momentum (J = l + s) for the lowest conduction band (�6 band) is
J =

1
2 , and considering the third components of the angular momentum Jz = ±1

2 , the
conduction band results in two states represented as | 1

2 ,±
1
2 >. In the valence band the

situation is more complex, the total angular momentum is J =

3
2 ,

1
2 , with third components

Jz = ±3
2 ,±

1
2 for the total angular momentum J =

3
2 (�8 band), and Jz = ±1

2 for the total
angular momentum J =

1
2 . It is convenient to separate the states with Jz = ±3

2 and Jz = ±1
2 ,

since they present different curvatures as they move away from k = 0. The | 3
2 ,±

3
2 > is called

heavy-hole band, while the | 3
2 ,±

1
2 > is dubbed as light-hole band. The next valence band

with J =

1
2 , �7, has third components Jz = ±1

2 and is called the split-off band, since it is split
from the heavy- and light-hole band by the spin-orbit interaction [2]. Figure 1.3(a) shows a
scheme of the band structure of the conduction and valence band edges without considering
the spin-orbit coupling. Figure 1.3(b) depicts a scheme of the band structure that takes into
account the spin-orbit coupling.

When an electron is excited from the valence band to the conduction band, a vacancy
is left in the valence band, this is described as a quasi-particle called a hole, it is positively
charged and has an effective mass ⇠

⇣
@2E
@k2

⌘�1

. Electrons and holes attract each other via
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Coulomb interaction forming an electron-hole pair, dubbed exciton, this pair resembles the
hydrogen atom where an electron is bounded to the nucleus. The energy of the exciton is
given by:

EX(K) = Eg � Ebind +
(}K)

2

2mX

(1.2)

where Ebind is the binding energy of the exciton, }K is the momentum of the center of mass
of the electron and hole system and mX is the exciton effective mass. As it was mentioned
before, there are two kind of bands in the valence band, therefore two types of excitons are
present. The pseudospin of excitons (as usual, we will name spin, or pseudospin, to the
third component of the exciton total angular momentum) is determined by the spin of their
constituents, so it is ±2 or ±1 for heavy-hole excitons and ±1 or 0 for light-hole excitons.
The fact that excitons have integer spin is crucial since it identifies them as bosons, allowing
them to be in the same quantum state.

Excitons can be optically excited by absorption of light with an energy higher than the
energy gap. In order to observe these transitions, the momentum and angular momentum
must be conserved. Since the momentum of the photon is negligible compared to the mo-
mentum of the electrons, only transitions with �k ⇠ 0 fulfill this constrain. The angular
momentum conservation, on the other hand, imposes that only the combinations JH

z =

3
2 ,

Je
z = �1

2 and JH
z = �3

2 , J
e
z =

1
2 for the heavy-holes and JH

z =

1
2 , Je

z =

1
2 and JH

z = �3
2 ,

Je
z = �1

2 for the light-holes are optically allowed under circularly polarized excitation.
The exciton photon coupling is characterized by the oscillator strength that takes into

account the probability transition rate associated to the exciton optical transition, it is defined
by:

f osc
=

2!mX

~

���
D
uv

���~r · ~E
���uc

E���
2

(1.3)

where ! is the light frequency, ~ is the Planck constant and
D
uv

���~r · ~E
���uc

E
is the valence

conduction band matrix element, with ~E a unit vector indicating the polarization’s direction
of the electric field [3].
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Figure 1.4: Reflectivity of Distributed Bragg Reflectors. (a) The green (blue) curve shows
the reflectivity spectrum for a DBR structure composed by 8 (24) pairs of GaAs/AlAs for
�0 = 800 nm. (b) The spectrum in black (red) corresponds to an incident wave at 45º for a
TE (TM) polarized wave for a structure composed by 24 layers. Curves calculated with the
transfer matrix method [4].

1.2 Confinement of light and matter

1.2.1 Photons

The confinement of light can be achieved in a microresonator that resembles a Fabry-Perot
(FP) cavity, where the cavity mirrors are distributed Bragg reflectors (DBR) and the cavity
spacer is a dielectric material. A DBR is a periodic structure composed by alternating
material layers with different refractive index (n1 and n2). The design of such structure has
to fulfill the following condition n1L1 = n2L2 = �0/4 (�0 is the wavelength for which the DBR
is designed), this ensures that the reflection in every interface constructively interfere, while
the interference is destructive in transmission. The result is the formation of a stop-band
where light cannot propagate perpendicular to the axis of the DBR. Figure 1.4(a) shows the
reflectivity spectrum in green (blue) of a DBR structure composed by 8 (24) layers; as one
can see, the reflectivity at the so-called stop-band increases with the number of layers.

For oblique incidence the reflectivity changes depending on the polarization of the elec-
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tromagnetic field, for a transverse electric (TE) (the electric field oscillates in the plane of
the DBR) polarized field, the spectrum is shown in Fig. 1.4(b) in black, meanwhile for a
transverse magnetic (TM) (oscillation of the magnetic field in the plane of the DBR) polar-
ized field, the spectrum is depicted by the red curve in Fig. 1.4(b), for an angle of incidence
of 45º. This causes that the TE and TM modes split in energy and this splitting increases
with the angle (k vector) [5].

Semiconductor microcavities are made by staking two DBR structures, that are the cavity
mirror’s, to a spacer, that itself acts as the cavity. This structure confines the electromagnetic
field in the propagation direction (from now on z direction) and allows the free propagation
in the transversal direction. The confinement imposes the following constrain to the allowed
optical modes in the cavity:

kzLC = N⇡ (1.4)

where kz =

2⇡
�0
nC is the wavevector along z, nC is the refractive index of the cavity, LC

is the length of the cavity and N is an integer. In Fig. 1.5 the reflectivity spectrum for a
GaAs/AlAs based �-cavity is shown, the central dip of the reflectivity depicts the resonance
at 800 nm.

The energy of the cavity is given by EC = ~!. It is convenient to write the dispersion
relation:

EC =

~c
nC

q
k2
z + k2

k '
~c
nC

kz

 
1 +

k2
k

2k2
z

!
= E0 +

~c
2nCkz

k2
k (1.5)

where c is the speed of light in vacuum, nC is the cavity refractive index and kk is the in-
plane wavevector (ky, ky). This expression allows to write an effective photon mass, given
by: mC = ~nCkz/c = 2⇡nC~/c�0, which is of the order of ⇠10

�6m0, where m0 is the free
electron mass.

The in-plane wavevector is related to the angle of incidence ✓, defined with respect to the
normal of the microcavity, of the electromagnetic field by:
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Figure 1.5: Fabry-Perot reflectivity. Reflectivity spectrum of a �-cavity based on
GaAs/AlAs.

kk = k sin ✓ ; k =

2⇡

�
) kk =

!

c
sin ✓ (1.6)

where ! is the light frequency.

1.2.2 Quantum well excitons

Confinement strongly modifies the energy configuration of excitons. We will see later that
it also has an important impact on the light-matter interactions. Excitons can be confined
along one (quantum well), two (quantum wire) or three (quantum dot) dimensions.

A quantum well (QW) is formed by growing a thin layer of a material with some bandgap
EB sandwiched between two layers of a material with different bandgap EA, as is shown in
Fig. 1.6. In the growth direction, the confinement restricts the allowed k vectors, according
to the following constrain kz = N

�
⇡
L

�
, where L is the length of the embedded layer and N is

an integer.
Therefore, the QW energy band is given by:
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Figure 1.6: Scheme of quantum well structure. (a) shows a schematic draw of the QW for
GaAs based materials. (b) The effect of the confinement is shown for the conduction band.
(c) Dashed (continuos) line depicts the crossing (anticrossing) between the heavy and light
hole bands (adapted from [7]). Note that the heavy (light)-hole band becomes light (heavy)
in the plane of the QW.

Eband(k) = Ebind +
(~kz)2

2mconf

⇣⇡
L

⌘2
N2

+

�
~kk
�2

2mband

(1.7)

where the first term is the binding energy, the second one is the band energy in the con-
finement direction (for infinite high barriers, where mconf is the mass in the confinement
direction), and the third term is the band energy in the plane of the QW (mband is the
mass of the band). Both the conduction and valence bands open up into subbands [see
Fig. 1.6(b)]. In the valence band the confinement lifts the degeneracy, since the heavy- and
light-hole bands have different masses. As a result, the heavy-hole band has lower energy
than the light-hole band. Moreover, a reversal of the heavy- and light-holes masses appears
in the in-plane direction, that gives to the heavy-hole a lighter mass than the light hole
for small k and therefore they would present a crossing at high k. Interaction between the
bands leads to a significant mixing between them and anti-crossing can be observed [6, 7]
[see Fig. 1.6(c)].

The optical excitation of QW excitons follows similar restrictions to those for bulk exciton.
The in-plane momentum of the photon must be the same as the in-plane momentum of the
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exciton in the QW. Moreover conservation of angular momentum in the optical transitions
imposes the same constrains as in the case of bulk excitons.

Excitons in QWs present a splitting in energy for non-zero momentum between states
with dipole moment oriented along and perpendicularly to the wavevector, caused by the
long-range exchange interaction between the electron and hole. This splitting increases with
the k vector [8] and induces an effective magnetic field that makes excitons precess and
therefore influences their spin relaxation processes [9].

1.3 Exciton-polaritons

In § 1.2 the effects of the confinement of light and matter were addressed, setting the basis to
describe the coupling between those confined modes. The first report of polaritons formed by
a confined exciton and photon modes in a semiconductor microcavity was done in Ref. [10].

When a radiative system is placed at the antinode of the electromagnetic field inside
a FP-like cavity, its emission is enhanced, this is know as the Purcell effect [11]. Let us
consider, for the sake of simplicity, that we have a two-level system, if the coupling between
the two-level system and the electromagnetic field is enough, i.e. the energy exchange is faster
than the decoherence mechanisms, the whole system is described by a superposition of the
two-level system and the cavity mode. The situation is similar when a QW is placed at the
anitnode of the cavity mode in a microcavity. From now on, we will describe this case.

In a quantum description, exciton and photon constitute a system of two bosonic oscilla-
tors coupled through light-matter interaction, the Hamiltonian describing the interaction is
given by:

H =

X

k

h
EX (k) b†kbk + EC (k) a†kak + ~⌦R

⇣
b†kak + a†kbk

⌘i
(1.8)

where b†k, bk
⇣
a†k, ak

⌘
are the creation and annihilation operator for the exciton (photon),

EX (k) and EC (k) are the in-plane exciton and photon energies, respectively and ⌦R (called
Rabi splitting) is the light-matter coupling energy, which is given by [12]:
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~⌦R ⇡ ~
s

2�0NQW

nCLeff

(1.9)

here NQW is the number of QWs, Leff is the length of the cavity plus the penetration depth
of the electric field inside the DBR mirrors and �0 is the radiative decay rate of the exciton,
which is proportional to the exciton oscillator strength [13]:

�0 =
⇡

4⇡✏0nC

e2

m0c
f osc (1.10)

where is ✏0 the vacuum dielectric constant and e is the electron charge.

The Hamiltonian in Eq. 1.8 can be written in the matrix form:

H =

 
EC (k) ~⌦R

~⌦R EX (k)

!
(1.11)

whose eigenvalues are the ELPB and EUPB, which correspond to the lower and upper polariton
branch, respectively:

ELPB =

1
2

✓
EC (k) + EX (k)�

q
4~2⌦2

R + (EC (k)� EX (k))2
◆

EUPB =

1
2

✓
EC (k) + EX (k) +

q
4~2⌦2

R + (EC (k)� EX (k))2
◆ (1.12)

These states have been obtained by diagonalizing the Hamiltonian in Eq. 1.8 introducing
the following transformation in terms of the polariton’s basis [14]:

 
pk

qk

!
=

 
Xk Ck

�Ck Xk

! 
bk

ak

!
(1.13)
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where pk and qk are the operators for the lower and upper polariton, respectively and Xk, Ck

are the Hopfield’s coefficients, which satisfy the condition X2
k + C2

k = 1. These coefficients
represent the excitonic and photonic component of the polaritons respectively.

Figure 1.7 shows the upper and lower polariton branches together with the bare ex-
citon and photon dispersion relations for a cavity exciton energy difference equal to zero
((EC � EX)k=0 = 0). This energy difference is known as a detuning (�) and determines
whether the lower polaritons are excitonic-like (� > 0) or photonic-like (� < 0). The quadratic
dependence on k of the the exciton is not visible in the figure, due to the fact that the exciton
mass (mX) is much heavier than the photon mass.

If Eq. 1.12 is expanded around k = 0, an effective mass for the lower and upper polariton
can be defined as follows:

1

mLBP

=

|Ck|2

mC

+

|Xk|2

mX

1

mUBP

=

|Xk|2

mC

+

|Ck|2

mX

(1.14)

as mC ⌧ mX at k = 0, the polariton mass is mainly given by the photon mass weighted
by the photonic or excitonic component, this result in a very light effective mass for the
polariton of the order of ⇠10

�6m0.

So far the finite lifetime of both excitons and photons has not been taken into account,
they play an import role in the polariton formation and now we discuss it. Excitons have a
decay rate �X (considering radiative and non radiative decay), while the decay rate of photons
is �C . By introducing this decay rates in Eq. 1.12, and for zero cavity exciton detuning, the
Rabi splitting can be defined as:

⌦

�
R =

q
4⌦

2
R � (�C � �X)

2 (1.15)

If ⌦R <
�
�
C

��
X

2

�
is purely imaginary both solutions in Eq. 1.12 have the same energy, under

this condition, the system is described by the bare cavity and exciton modes. On the other
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Figure 1.7: Polariton dispersion. (a) Shows the polariton dispersion (in red the upper and
lower branches) as a function of the k-vector together with the bare exciton and photon
modes, for a � = 0. (b) Depicts the polariton dispersion at the bottom of the bands as a
function of the cavity-exciton detuning.

hand, when ⌦R >
�
�
C

��
X

2

�
is a real number, Eq. 1.12 shows two solutions, the upper and

lower polariton branch. This can be understood as follows: excitons and photons exchange
energy, when this exchange occurs several times before the decay rates are significant, the
system is in the strong coupling regime and the normal modes are given by Eq. 1.12.

The effect of the exciton splitting depending on their orientation with respect to their
wavevector is increased in microcavities due to the exciton-light coupling, since the electro-
magnetic modes also present a TE-TM splitting. Therefore, one can express the polariton
TE-TM splitting as [15]:

�P = �X |Xk|2 +�C |Ck|2 (1.16)

where Xk and Ck are the exciton and photon Hopfield coefficients, �X and �C are the
TE–TM splitting corresponding to the exciton [9] and cavity modes[5], respectively. �P

strongly depends on the detuning between the cavity mode and the exciton resonance as
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shown in Ref. [16].

1.4 Pseudospin of the exciton-polaritons

The polarization properties of the polaritons are determined by the properties of their con-
stituents. The spin of photons in the circular basis is ±1 , meanwhile optically active excitons
(heavy excitons) have spin ±1 (in fact, light excitons with spin ±1 are able to couple light
as well, but the likelihood is a third of that for heavy excitons, moreover they lay at higher
energies and will not be considered. Also light excitons with spin 0 are able to couple light
as long as the light is linearly polarized). As both excitons and photons have integer spin,
so the polariton spin is integer as well, this allows to treat them as bosons, in the limit of
dilute system where the excitonic component does not show its fermionic nature. Polaritons
interact between them, this interaction can be attractive or repulsive, depending on the spin
configuration, and it is described in terms of two constant that quantifies the strength of the
interaction: ↵1 for polaritons with parallel spin and ↵2 for polaritons with opposite spin. The
factors responsible for attraction are the Van-der-Waals coupling (independent on spin and
small), the indirect exchange coupling via the dark states, and interaction via the biexciton
state (main factor). The two latter factors contribute only in the parallel polariton’s spin
configuration (↵1); the mechanisms responsible for the repulsion of the exciton-polaritons are
the mean-field electrostatic interaction, which does not depend on spin and direct exchange
interaction (only valid for opposite polariton’s spin configuration ↵2) [17].

A very convenient and useful method to describe the polarization properties of the exciton-
polariton is to use the pseudospin representation, due to the fact that the polarization of an
emitted photon has a one to one correspondence with the polariton pseudospin.

Light can be fully characterized by the Stokes parameters, which are the degree of polar-
ization in the linear (H,V) diagonal (D, A) and circular (�+, ��) basis, defined as follows:

⇢L =

IH � IV
IH + IV

, ⇢D =

ID � IA
ID + IA

, ⇢C =

I� � I 
I� + I 

(1.17)

by using the Poincare sphere representation; the Stokes vector ~S is a point in the surface of
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Figure 1.8: Poincare Sphere. Circularly polarized light lays on the poles of the sphere, while
linearly polarized light is on its equator.

the sphere, for fully polarized light is defined by:

~S =

q
⇢2L + ⇢2D + ⇢2C (1.18)

where the azimuth and inclination angles are given by:

✓ = arctan

⇢D
⇢L

; ' = arccos

⇢Cp
⇢2L + ⇢2D

(1.19)

respectively. Figure 1.8 shows a general state of light with elliptical polarization.

The poles of the sphere represent a purely circularly polarized state of light, and linearly
polarized states are represented on the equator of the sphere. Any other polarized state
corresponds to the general case of an elliptical polarization.
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1.5 Polariton optical parametric oscillator

Polaritons show a strong non linear behavior due to their excitonic component that allows
them to interact via Coulomb interaction, this non linear behavior gives rise to parametric
scattering processes. When the LPB is quasi resonantly pumped at a certain angle, close to
its inflection point, for a given pump power, the polaritons created at this point, the pump
state (kp), interact between them and scatter in pairs, one of them goes to the signal state
(ks) and the other one jumps to the idler state (ki). In this process the polariton at the
idler state gains energy and momentum, while the polariton at the signal state looses the
same amount of energy and momentum with respect to the polaritons at the pump state,
i.e the scattering process [see Fig. 1.9(a)] must fulfill energy and momentum conservation
(phase-matching conditions) according to:

2

~kp = ~ks + ~ki

2Ep = Es + Ei

(1.20)

where ~kp, ~ks and ~ki are the ~k vectors, and Ep, Es, and Ei are the energies of the pump, signal
and idler states, respectively. This process was first reported in microcavities in Ref. [18]
in the form of an optical parametric amplifier (OPA), where the parametric scattering was
triggered by a probe laser at k = 0. The gain of the signal state (ks = 0) was highly increased
when the k vector of the pump was close to the inflection point of the LPB [see Fig. 1.9(b)].
This increment of the signal state is due to the bosonic amplification induced by stimulated
scattering. Furthermore, the OPA process highly depends on the polarization of the pump
and probe beam [18-20], showing the rich phenomenology of the scattering process.

When the parametric scattering is achieved with only a pump beam [21-23], the process
is dubbed optical parametrical oscillator (OPO) and is characterized by the macroscopy
occupation of the three states. The OPO behavior is possible in microcavities, due to a) the
excitonic component which gives them a strong non linear behavior and b) the very peculiar
shape of the lower polariton branch (s shape), that allows to easily fulfill the phase-matching
conditions.

In the parametric scattering process, the phase of the pump state (�p) is imposed by
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Figure 1.9: OPO scheme. (a) shows a scheme of the OPO process, where the pump creates
polaritons with a certain momentum and energy and the scattering process allows them to
jump towards the signal and idler states. (b) shows the gain achieved by the signal state
when the phase-matching condition are satisfied, for three different detunings (adapted from
[18])

the pump laser. On the other hand, the phase of the signal and idler states is free, since it
remains invariant under simultaneous phase rotation of both signal and idler. The phase of
the full process is given by [24]

2�p = �s + �i (1.21)

In the OPO configuration, the phase of the signal and idler states, is spontaneously chosen,
but the Eq. 1.21 is still valid. This fact, which is important because it breaks the symmetry
of the system will be addressed later on in § 1.6.4

The coherence of the signal state was investigated in an OPA configuration by coherent
control in Ref. [25]. In that work, a 1 ps pulse was applied at non-zero incidence angle to
create a pump population; then two phase locked probe pulses were sequentially applied to
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(a)$ (b)$

Figure 1.10: Coherence of the signal state by means of coherent control. (a) Angular pattern
of the emission in transmission geometry as a function of the control phase (time delay 2 ps).
The lower panel shows plots for constructive and destructive control phase. (b) Contrast of
coherent control oscillations versus the delay between the two probe pulses; the first probe
pulse is synchronous with the pump. I0 is the threshold intensity of the first probe which
triggers stimulated scattering (adapted from [25]).

the sample at normal incidence. The first probe pulses above certain threshold, P0, triggered
stimulated scattering of the pump polaritons towards the k = 0 state. Then, the second
probe pulse fed polaritons that would interfere with the existing population at k = 0. The
results demonstrated [see Fig. 1.10] high coherence of polaritons at k = 0, and very long
coherence times of the order of 10 ps [see Fig. 1.10].

One can describe the OPO process by either using the Gross-Pitaevskii equation or a
semi-classical Boltzmann model (both are used by the group of G. Malpuech to model the
results shown in Chapter 4). Here we introduce them, we start with the Gross-Pitaevskii
equation, which is basically a non linear Schrodinger equation that includes interactions, it
reads:
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where the polariton wavefunction is written in terms of its photonic  and excitonic '

components, respectively, � is the decay rate of the photon, ⌦R is the Rabi splitting, VC (r)

is a potential affecting the photons, gX accounts for the particle-particle interactions and P

in the pump term acting only on the photonic component.

In the semi-classical Bolztmann model, the population of the three states involved in the
OPO process are considered, thus the model is:

dnk

dt
= �nk�+Wk!k0nk + Pk (1.23)

where the nk for k = s, i, p are the population for the signal, idler and pump states respec-
tively, � is the decay rate and W describes the polaritons scattering rate from one state to
another, Pk is the pump term and it is different from zero only for k = p.

1.6 Condensation

In 1925 Einstein proposed a new state of the matter where a system composed by identical
particles, below certain temperature, can occupy a single energy state [26], called Bose Ein-
stein condensate (BEC). Many years passed until this proposal was used to describe an actual
system, when London explained the superfluidity behavior of liquid Helium [27]. Great theo-
retical efforts were done between the 40’s and 60’s in order to give a more general description
of the BEC phase [28-30].

An experimental realization of a BEC was done in 1995 in a dilute atomic 85Rb gas [31],
this achievement brought a huge interest into the field.

Microcavity exciton-polaritons represent a solid state system where massive occupation
of a single state also occurs [32].
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1.6.1 Ideal Bose gas

Now we present the derivation of the BEC transition for an ideal Bose gas (non interacting)
that follows the approach found in [4, 33, 34]. In a grand canonical ensemble, at thermal
equilibrium, the probability of a configuration with Nr particles and energy Es is given by:

Pr,s =
e�(µNr

�E
s

)

Z(�, µ)
(1.24)

where � = 1/kBT , kB is the Boltzmann constant, T the temperature of the reservoir, µ
is the chemical potential that represents the needed energy to add a particle to the system
and Z(�, µ) is the grand partition function:

Z(�, µ) =
1X

N
r

X

S

e�(µNr

�E
s

) (1.25)

Applied to an ideal gas of indistinguishable particles distributed in ‘microstates i’ of
energy ✏i and occupation number Ni in each state:
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for a Bose gas the sum is extended to Ni = 0, 1, 2, ...,

Z(�, µ) =
Y

i

�
1� e�(µ�✏

i

)
�

(1.27)

Using Eq. 1.27 one can obtain the Bose-Einstein distribution function fBE(✏i), the total
number of particles N , and the total internal energy of the gas E(T, µ):
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fBE(✏i) = ni = � @

@�✏i
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(1.28)
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fBE (✏i) (1.29)

E (T, µ) =
X

i

✏ifBE(✏i) =
✏i

e�(✏i�µ) � 1

(1.30)

Due to the fact that ni � 0 the constraint for a Bose gas µ < ✏0 is imposed (✏0 is the
energy of the ground state). Hence, at given T , fBE(✏i > ✏0) reaches a finite maxima, while
fBE(✏0) diverges. So Eq. 1.29 can be rewritten in terms of the particle number in the ground
state, N0, and NT the particles in any excited state:

N = N0 +NT =

1

e�(✏0�µ) � 1

+

X

i 6=0

fBE (✏i) (1.31)

for µ ! ✏0 from below, N0 takes values increasily large, this means that the ground state
becomes massively occupied, on the other hand, NT takes a maximum value (NC) for µ = ✏0,
thus if N > NC , the exceeding particles must go to the lower state in order to satisfy
Eq. 1.31. The massive occupation of a ground state and the “depletion” of any excited state
is the mechanism that gives rise to the Bose-Einstein condensation.

Considering a three dimensional gas where the particles are able to move free in the
volume, i.e. the particles have a parabolic dispersion, E = P 2/2m, the density of particles
in an excited state can be written as

NC

V
=

✓
mkBT

2⇡~2

◆3/2
1̂

0

p
✏

e✏/kBT � 1

d✏ =
2.612

�3dB
(1.32)

the term
q

2⇡~2
mk

B

T
is the de Broglie wavelength (�dB). When the separation between particles

is of the order or smaller than �dB, the individual wavefunctions start to overlap and all the



22 CHAPTER 1. INTRODUCTION TO EXCITON-POLARITONS

particles are in the same state.
Condensation can be achieved by either increasing the number of particles above Nc,

keeping the temperature constant, or by decreasing the temperature while keeping the number
of particles fixed.

1.6.2 Weakly interacting Bose gas

In the previous section a description of the ideal Bose gas, where the particle-particle interac-
tions are not considered, was introduced giving the main mechanism that allows Bose-Einstein
condensation. Here a Bose gas with interaction between particles is presented.

The Hamiltonian describing a dilute interacting Bose gas is given by [35]:

H =

X

p

p2

2m
a†pap +

U0

2V

X

p,p0,q

a†p+qa
†
p0�qapap0 (1.33)

where ap
�
a†p
�

is the annihilation (creation) operator, V is the volume of the system and U0

is an approximation to the microscopic two body potential.
In the Bogoliubov approximation [36], at T = 0 the assumption that only small deviations

are possible is made, therefore all terms with higher order than 2 in ap and a†p will be neglected.
Let N0 denote the occupation number of the ground state, thus the zero-momentum operators
a0 and a†

0 can be replaced by
p
N0.

The energy of the ground state is given by taking into account the states at p = 0:

E0 = N2U0

V
(1.34)

and the chemical potential is given by:

µ =

@

@N
E0 = U0

N

V
(1.35)

The total number of particles is N = a†
0a0 +

P
p 6=0

a†pap, then the Eq. 1.33 reads:



1.6. CONDENSATION 23
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the above Hamiltonian can be diagonalized by introducing the following coefficients:

ap = upbp + v⇤�pb
†
�p

a†p = u⇤
pb

†
p + v�pb�p

(1.37)

where up and v�p are given by:

up, v�p = ±

s
p2/2m+ µ

2✏ (p)
± 1

2

(1.38)

where ✏ (p) is the Bogoliubov spectrum, defined by:

✏ (p) =

s
p2

2m

✓
2µ+

p2

2m

◆
(1.39)

then, the Eq. 1.33 is diagonalized in the form H = E0 +
P

p ✏ (p) b
†
pbp.

1.6.3 Long range order

In § 1.6.1 the description of a BEC transition was presented, here we introduce a more
suitable definition of a transition, where massive occupation of a single state occurs. In this
transition the different particle wavefunctions forming the system collapse into a macroscopic
wavefunction in the ground state that describes the system, this is given by:

� =

p
N0� (r) (1.40)

where N0 is the number of particles in the ground state and � (r) is the phase. This has a non
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zero mean value, and it is defined as the order parameter of the transition. At the transition,
the phase in Eq. 1.40 represents the phase of the whole condensate and it is spontaneous
fixed, therefore the “rotational” symmetry is broken, and the system becomes phase coherent
[30, 37].

Another way to state condensation is through the single particle density matrix (dubbed
as well as correlation function), defined as:

⇢ (r, r0) ⌘
⌦
 †

(r) (r0)
↵

(1.41)

where  
�
 †� is the particle annihilation (creation) operator. The diagonal elements in the

density matrix (⇢(r, r)) represent the number of particles at the position r.

The density matrix also determines the momentum distribution ⇢ (p) =

⌦
 †

(p) (p)
↵
,

where  (p) = (2⇡~)�3/2 ´ dr exp (ip · r/~) (r) is the annihilation operator in momentum
space.

In a homogeneous system consisting of N particles occupying a volume V , in the ther-
modynamics limit, the single particle density matrix depends on the relative distance r� r0,
therefore one can write

⇢ (r � r0) =
1

V

ˆ
dp⇢ (p) e(ip·(r�r0)/~) (1.42)

In a non interacting Bose gas the ground state (p = 0) is macroscopically occupied and the
momentum distribution can be written as:

⇢ (p) = N0� (p) + ⇢exc (p) (1.43)

here N0 is proportional to the total number of particles � is the Dirac delta function and
⇢exc (p) is a smooth function. For r � r0 ! 1 Eq. 1.42 has a finite non zero value given by:

⇢ (r � r0)r�r0!1 ! N0

V
(1.44)
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this behavior is referred as off-diagonal long-range order (ODLRO) since involves the compo-
nents out of the diagonal in the single particle density matrix and was proposed in Ref. [28]
as a general definition of a BEC.

Normalizing the single particle density matrix by the total number of particle at the
positions r and r0, one obtains

g(1) (r, r0) =

⌦
 †

(r) (r0)
↵

p
h †

(r) (r)i h †
(r0) (r0)i

(1.45)

This can be expressed in terms of the electromagnetic field, giving the first order correlation
function

g(1) (r, t : r0, t0) =
hE�

(r, t)E+
(r0, t0)ip

hE�
(r, t)E+

(r, t)i hE�
(r0, t0)E+

(r0, t0)i
(1.46)

with E(r, t) =

´1
�1 ⇣(!, r)e�i!td! = E�

+ E+, where E� is the equivalent to the creation
operator and corresponds to the negative frequencies of the electric field and E+ corresponds
to the annihilation operator and represents the positive frequencies of the electric field [38].

1.6.4 Condensation of polaritons

Exciton-polaritons were proposed to show condensation (massive occupation of a single state)
and lasing by bosonic amplification in Ref. [39], the exciton-polariton laser was demonstrated
by optically exciting a microcavity in Ref. [40], and more recently, by means of electrically
injection of polaritons [41]. Condensation was first claimed in Ref. [42], where the second
order correlation function showed the feature of a coherent state above certain pump power,
however the lack of proof about whether the system was in the strong coupling regime or not
raised doubt about their assertion.

The firm demonstration of polariton BEC was achieved in Ref. [32], in that work most
of the footprints shown by a BEC were measured: narrowing in momentum space [see
Fig. 1.11(a)], the appearance of off-diagonal long-range order [shown in Fig. 1.11(b)], build-
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(a)$ (b)$

Figure 1.11: Polariton BEC. (a) Narrowing of the emission in momentum space. (b) Corre-
lation maps below/above (left/right panel) condensation threshold (adapted from [32]).

up of linear polarization, and the massive occupation of a state when the energy of the
condensate is close the the chemical potential. Since then, there have been further reports
of polariton BEC [43, 44]. More intriguing behavior associated to the BEC phase transition
have been reported: the observation of quantized vortices and half vortices [45, 46] and the
appearance of an antivortex after printing a vortex in the condensate [47]; superfluidity has
been demonstrated in Ref. [48, 49] by the diffusionless flow of a polariton condensate against
a defect and permanent flow, where polaritons rotate much longer than the duration of an
initial impulse [50]. Solitonics features of the polariton BEC have been reported in Ref. [51]
for dark solitons, and bright solitons in Ref. [52].

When the microcavity is pumped in OPO regime, i.e. there are three state macroscopically
occupied, the solutions of Eq. 1.22 are three (pump, signal and idler) states [53]. Such
solutions are in principle invariant under simultaneous rotation of the phase of both signal
and idler states, nevertheless the signal and idler spontaneously select their phase in the
OPO regime, therefore the phase rotation is spontaneously broken. This symmetry breaking
implies the appearance of Goldstone modes (!G (k) = cGk) that go to zero around the
signal state in the long-wavelength limit. The intensive study done in Ref. [53] shows that
in the case of non equilibrium system, there is no singularity in !G (k) in the vicinity of
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the signal state (the equilibrium case shows a discontinuity in k = 0) [54]. A Goldstone
mode can be understood as a spatially slowly varying twist of the signal and idler phases.
A localized perturbation will not propagate as a sound wave, but rather relax back to the
equilibrium state while being dragged by the pump polariton flow: this over-damped and
diffusive character is a remarkable difference with respect to the equilibrium case. In the
case of non-resonant excitation of the polariton condensate the Goldstone mode has been
predicted to be diffusive [55]

Moreover, the emission from the signal state has the following characteristics: narrowing
in momentum space [21], threshold-like behavior as the pump intensity is increased [23, 56],
coherence times lasting longer than the polariton lifetime (which have been measured by
means of coherent control [25] and also through the first order correlation function [57]), and
spontaneous spatial coherence has been predicted to appear [58].

Despite all these properties, that are attributed to the BEC phase transition, the OPO
polariton condensate cannot be considered as a genuine, "classical" BEC, since the system
is in a dynamic equilibrium between three states macroscopically occupied and therefore
thermalization is never reached.
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Chapter 2

Sample and experimental techniques

This section is devoted to give a discussion of the sample and the experimental techniques
used in this thesis. After the description of the sample, we start giving the specifications of the
excitation source, then the imaging techniques are described for both, the real and momentum
space, later the interferometer techniques are introduced and finally the polarization resolved
setup is described.

2.1 Sample

The sample used in this work is provided by the group of professor J�rn M. Hvam at the
Danmarks Tekniske Universitet (DTU). It is a GaAs based microcavity, grown by molecular
beam epitaxy. The sample consists of a single 10 nm GaAs/Al0.3Ga0.7As quantum well
(QW) placed at the antinode of the electromagnetic field of a � cavity. The bottom (top)
Bragg reflector is composed by 25 (16) pairs of AlAs/Al0.15Ga0.85As. A schematic draw of the
microcavity is shown in Fig. 2.1(a). From the measured polariton emission a cavity linewidth
of 0.13 meV and an excitonic linewidth of ⇠0.06 meV were inferred, the cavity lifetime is
of order of 2 ps and the Rabi splitting is about 4.2 meV [59]. The cavity presents a wedge
across the sample that enables the tuning of the cavity-mode energy by changing the position
of the excitation spot on the sample. Figure 2.1(b) shows the measured polariton half width
at half maximum (HWHM) as a function of the detuning (adapted from [60]). The heavy-

29
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Figure 2.1: Scheme of a microcavity. (a) Represents the microcavity structure composed by
two DBR and a spacer with a quantum well embedded at the antinode of the electromagnetic
field. (b) Linewidth vs detuning of the lower (closed squares) and upper (open circles) po-
lariton branches (adapted from Ref. [60]) (c) Polariton energies as a function of the detuning.
The inset shows the reflectivity spectrum of the microcavity at zero detuning (adapted from
Ref. [60]).

hole exciton resonance is at 1553.24 meV (798.24 nm), the light-hole exciton resonance is at
1565.5 meV (791.97 nm) far detuned from the heavy-hole resonance (not shown), therefore
the sample acts as having a single resonance over the detuning range.

The polariton energies as a function of the detuning are depicted in Fig. 2.1(c).
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2.2 Excitation source

A key issue in this thesis, and in any high resolution spectroscopy experiment, is the use of a
frequency locked laser, which allows to study the otherwise masked properties of the studied
system due to the intrinsic laser fluctuations in power and frequency. The laser is a T i :

Al2O3 (Ti:Sa) crystal in a ring cavity geometry (Sirah Lasertechnik model Matisse TX/light),
pumped by a CW laser (Spectra Physics Millenia Pro 10S, whose laser medium is a Nd :

Y V O4 crystal, doubled in frequency by a LBO crystal), which is pumped by diode bars. This
laser has a linewidth as narrow as 75 kHz (manufacture specifications). In order to achieve
this narrow emission, several frequency filters are used: first the cavity configuration in a ring
geometry, where the length of the cavity is changed by the tuning mirror [see Fig. 2.2(a)],
allows to have oscillation in two distinct counter-propagating direction, (rather than the
standing wave in linear cavities, with the possibility to get a different mode oscillating with
its anti-node where the lasing mode has its nodes). The existence of two traveling waves,
back and forth, with the same frequency could lead to a complicated intensity dynamics, so
as to get rid off this problem an optical diode is placed in the path letting just one direction
oscillate. Due to this, a single longitudinal mode is easier to reach, besides a homogeneous
saturation of the laser medium allows to use most of the atoms for amplification, hence a
higher power is achieved, which at the working wavelength 800 nm, is about 2 W .

To reduce the available lasing modes in the cavity, coated cavity mirrors that are highly
reflective only for a certain range of wavelengths are used, decreasing the broad emission
from the Ti:Sa crystal, in this case the coating is made for the range 750- 880 nm.

Within this range, a coarse frequency selection is done by a birefringence filter (BiFi),
which is compose by three quartz plates, with its axes aligned and oriented at the Brewster
angle with respect to the incident light. The working principle is based on birefringent
properties of the quartz plates, which are acting as a retardation plate and thus rotate the
polarization of the incoming beam. On the other hand, the BiFi works as a polarization
filter, due to the fact that the incoming p-polarized light does not reflect at the Brewster’s
angle whereas the s-polarized light will encounter high losses due to reflection. The desire
wavelength is achieved by rotating the axes of the plates with respect to the normal surface
to the plates, in this way, the optical axis of the quartz crystal will also be rotated, hence
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yielding new wavelengths of the incoming light for which there is no change of the polarization
state, and therefore no losses through reflection at Brewster’s incidence.

The single mode operation is achieved by placing etalons in the cavity, one of them is a
quartz etalon of 400 µm thickness with a free spectral range of 250 GHz. The principle here
is try to make one of the etalon modes to coincide with one of the laser cavity modes; this is
done by tilting the etalon. The other etalon is a formed by two Littrow prisms functioning
as a Fabry-Perot cavity with an air gap adjustable by a piezo element in one of the prisms:
the free spectral range is in this case about 20 GHz. The piezo etalon ensures that all except
one longitudinal mode have so high losses that lasing is not possible. Therefore, the spacing
of the etalon must be matched to an multiple of the favored longitudinal mode’s wavelength.
Because of the tight spacing and in order to be able to perform a scan, the spacing is actively
controlled. The control loop is based on a lock-in technique and the etalon spacing is varied
by a piezo drive.

With the elements described in the previous paragraph the laser linewidth is in the order of
MHz, further narrowing in the laser linewidth needs to suppress the laser intrinsic frequency
noise, this is obtained by using an external frequency reference, a Fabry-Perot cavity (FP),
and locking the laser frequency to this reference.

The technique used to lock the laser frequency is called Pound-Drever-Hall [61] and con-
sists on generating an error function derived from the resonance’s maximum, that controls
a piezo driver set in one of cavity’s mirror and therefore the frequency of the laser. In this
method, a small part of the light is separated from the main laser and modulated in frequency
by an electro-optic modulator, this adds sidebands to the laser beam, then this is sent to a
FP. Since sidebands are out of resonance, they are reflected by the FP, while the laser beam
is in resonance. Nevertheless a small part of the laser can escape the FP, carrying phase in-
formation about the cavity. This is sent to a photodetector. The output of the photodetector
varies as follows: when the frequency is above the resonance, increasing the laser’s frequency
increases the signal in the photodetector, on the other hand if the frequency is below the
resonance, increasing the laser’s frequency decreases the signal in the photodetector, thus
the frequency modulated light gives information about the actual position of the frequency
about the resonance. Then the photodetector’s signal is mixed with the modulation signal,
extracting the part that is at the same frequency as the modulation signal (the mixer’s output
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(a)$

(b)$

Figure 2.2: Scheme of the laser. (a) A schematic draw of the laser with the reference cavity
the more important elements are indicated. (b) The error signal generated with the PDH
method for three different values of the cavity’s finesse.

is just the product of its inputs). The sign of the mixer’s output is different on either side of
resonance, and it is zero when the system is exactly on resonance. This is error signal that
feeds the fast piezo [see Fig. 2.2(a)] and locks the laser’s frequency to the cavity’s resonance.

Figure 2.2(a) shows a scheme of the laser and the cavity reference. Figure. 2.2(b) depicts
the Pound-Drever-Hall error signal for three different values of the cavity’s finesse.
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2.3 Imaging techniques

Condensation of polaritons takes place due to the peculiar shape of the polariton’s dispersion,
which allows the polaritons to massively occupy the bottom of the dispersion [4], therefore
in order to fully characterize their emission, it is required to image both real and momentum
space.

The microcavity sample is excited through an objective lens with a N.A. ⇠ 0.75 and a
focal length f0 of ⇠20 mm, which allows to collect a cone of light of about ⇠70º, however
the total N.A. is limited by the imaging optics in our experimental setup, therefore the range
of collected angles is about ⇠ 40º.

In § 3.1.2 the size of the excitation spot is changed to observe how the coherence properties
of the condensate are affected. In order to do so, a suitable pair of lenses is added to the
optical path of the excitation beam before the excitation lens. The spot size on the sample’s
surface, for a Gaussian beam, can be estimated using the following formula [62] Sf = 1.2⇥� f0

S
i

,
where Sf is the spot size on the sample, � is the wavelength, f0 is the focal length of the
excitation lens and Si is the spot size before the excitation lens. Thus the spot size on the
sample’s surface is given by the magnification of the pair of lenses and the focal length of the
excitation lens.

The photoluminescence is collected through the same excitation lens, so as to image the
real space, the emission is focalized by a lens of 1000 mm focal length, on the entrance
slit of a spectrometer/CCD (Acton SpectraPro 2500i with a 1200 grooves/mm diffraction
grating/Acton Pixis 1024 with 1024x1024 pixels and the pixel size is 13 µm), where the
grating is set at zeroth order in order to have energy integrated images. The magnification
of the system is given by the ratio between the imaging lens and the collection lens which, in
this case is M ⇡ 50x. The principle of real space imaging is shown in Fig. 2.3(a), moreover the
setup is built in such way that allows to perform filtering in real space by placing a pinhole or
a slit in order to investigate a small region of the microcavity structure. Figure 2.3(b) shows
a typical real space emission for a pump power below threshold and non-resonant pumping
in a region of the microcavity sample without defects.

In order to obtain the emission in momentum space, the angular distribution of the
emitted light must be imaged, this can be obtained in the back focal plane of the excitation
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Figure 2.3: Principle of real space imaging. (a) Schematic draw of the lenses and its position,
also shown the principle of real space filtering, where two lenses of the same focal length (LT),
forming a telescope, create an intermediate real space image where a slit or pinhole filters
out the undesired emission. (b) is the real space image below threshold for non-resonant
pumping of the microcavity sample.

lens, L1, which corresponds to the Fourier plane. This plane is also found after the telescope
[see Fig. 2.3(a)]. The lens L2 is placed at a distance equal to its focal length, f2, from
the Fourier plane. Therefore an image of the momentum space is obtained by placing an
additional lens, L3, [see Fig. 2.4(a)] which is focused on the entrance slit of the spectrometer.
The positioning of the three lenses is shown in Fig. 2.4(a) (for the sake of simplicity the
telescope is not shown): here light emitted with the same angle (red lines) reach the same
point in the Fourier plane, with a displacement, �x, with respect to the optical axis given by
tan ✓ = �x/f1. Photons emitted by the cavity have the same momentum than the polaritons
inside the microcavity, so, the momentum of the polaritons is determined by kk = k0 sin(✓).

Spectral resolution is achieved by partially closing the entrance slit of the spectrometer



36 CHAPTER 2. SAMPLE AND EXPERIMENTAL TECHNIQUES

!!!!!L1!!
f1=20mm!

!!!!!!!L2!
f2=1000mm!

Spectrometer!slit!
momentum!space!

!!!!!!!L3!
f3=100mm!

f1! f1! f2! f3!

(a)!
Sa
m
pl
e!

Fourier!plane!

Figure 2.4: Principle of momentum space imaging. (a) Schematic draw of the principle and
the lenses positions (red lines represent light emitted with a certain angle, while the blue line
displays light emitted at 0º). (b) Polariton’s dispersion achieved by spectrally resolving the
full momentum space emission.

(40 µm opened), in that way the image on the CCD becomes a one dimensional image in
the vertical direction. By setting the diffraction grating at its first order, the horizontal
direction becomes energy resolved: the spectral resolution of our spectrometer is of the order
of ⇠100 µeV .

Figure 2.4(b) shows a spectrally resolved momentum space image, i.e. the polariton’s
dispersion, of the same region of the sample shown in Fig. 2.3(b).

2.4 Interferometric setup

In this thesis two interferometric setups have been built and used, depending on whether
the coherence properties have to be studied or the phase of the condensate is needed. The



2.4. INTERFEROMETRIC SETUP 37

former requirements are achieved by using a Michelson interferometric setup and the later is
fulfilled with a Mach-Zehnder interferometer.

(a)$ Ti:AL2O3$laser$
M1$

L2$
spectrometer$

CCD$

BS$$$$$$L1$$
N.A=0.75$

Cold$finger$
$cryostat$
@$10K$
$ BS$

M2$

M3$

RR$

PZT$&$delay$line$

$$$Michelson$$
interferometer$

Figure 2.5: Michelson interferometer setup and its working principle. (a) M1, M2 and M3
are mirrors. M1 is mounted in a linear translation stage to change the k vector. BS are 50/50
beam splitters, L1 is an objective lens with an NA = 0.75, L2 is the real space imaging lens,
RR is a retroreflector mounted in a computer controller piezo-element and also mounted in
a delay line. The dashed square represents a shield to protect the interferometer from air
currents. A scheme of the image and the retroreflected image is shown in the rectangle. (b)
A sinusoidal fit to experimental data obtained by scanning the relative length of on arm of
the interferometer, the amplitude of this fit gives the g(1).

The interference formed by two fields  1 = A1(r)ei('1(r)) and  2 = A2(r)ei('2(r)) is given
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by:
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where A(~r) is the amplitude at ~r, and '(~r) is the phase of the field. The last term in the
above equation can be re-arrenged considering that h ⇤

1 ·  2i = g(1) ·
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·
⌦
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↵
, where

g(1) is the first order correlation function between the fields  1 and  2, defined as in § 1.6.3.
Therefore Eq. 2.1 reads:
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where g(1) =
hA1·A2·ei('2�'1)iq
h|A1|2i·h|A2|2i

is expressed in terms of the field’s amplitude.

In the Michelson interferometer a retroreflector configuration has been chosen, this allows
to correlate opposite points of the condensate. The retroreflector is mounted in a computer
controller piezo-electric element, which has a displacement in a nanometric scale. By moving
the piezo, the length of one arm of the interferometer is changed, allowing a very precise
scanning of the relative phase (⇥) between the two arms. Besides, the retroreflector has
a long delay line (maximum delay of 1.7 ns) that allows to prove the temporal coherence
properties. Figure 2.5(a) shows the experimental setup with the Michelson interferometer.

The intensity of the interference pattern formed by the field EM(~r) and the symmetrically
inverted field ER(~r) at the output of the interferometer reads:

Iint(~r,�~r) = | EM(~r) |2 + | ER(~r) |2

+ 2AM(~r)AR(�~r)cos(~k~r +⇥+ (�(~r)� �(�~r)))g(1)(~r,�~r) (2.2)
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where just the real part of Eq. 2.1 has been considered, ⇥ is the relative phase between the
two arms of the interferometer and ~k~r = kxx+ kyy, with kx = k d

x

f
and ky = k d

y

f
takes into a

count the displacement induced by the retroreflector. The term g(1)(~r,�~r) is the first order
spatial correlation function of the condensate.

Equation 2.2 can be re-expressed in terms of experimental variables:

Inorm = g(1)(~r,�~r)cos(~k~r +⇥+ (�(~r)� �(�~r)))

=

Iint(~r,�~r)� IM(~r)� IR(�~r)
2

p
IM(~r)IR(�~r)

(2.3)

here Iint is the intensity of the interference pattern, and IM , IR are the intensities of the mirror
and retroreflector arm, respectively. Then, scanning the phase ⇥ of the interferometer a
sinusoidal function will be obtained for each pixel, whose amplitude is g(1)(~r,�~r), a sinusoidal
fit of each measurement is shown in Fig. 2.5(b).

To obtain the first order temporal correlation function, a slightly different procedure is
followed: now the scan over the interferometer phase ⇥ is done with the delay line, achieving
a significant phase difference between the two arms of the interferometer and recording the
interferogram. Here g(1) is extracted from the contrast, c, of the interference fringes, given
by

c(t) =
Imax(t)� Imin(t)

Imax(t) + Imin(t)
=

2

p
IM(t)IR(t)

IM(t) + IR(t)
g(1)(t) (2.4)

where Imax and Imin are the intensities of the maximum and minimum of the interference
fringes.

This is the general expression for the case where the intensities of the two arms are
different; in our setup the intensities are equal, hence the contrast gives the first order
temporal correlation function.

When the phase of the condensate needs to be measured, a Mach-Zehnder interferometer
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setup is used [see Fig. 2.6].
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Figure 2.6: Mach-Zehnder interferometer setup. Here M1, M2, M3 are mirrors, BS are beam
splitters L1 and L2 are the objective lens and the real space imaging lens respectively, RR
is the retroreflector. A telescope is put in one of the interferometer arms to enlarge the
condensate image and get a constant phase reference, this is shown by the inset.

The phase of the condensate is obtained by using the Fourier transform method, in the
so-called digital off-axis holography [63]. Applying a Fast Fourier Transform (FFT) to an
interference pattern [Fig. 2.7(a)] measured at the output of the interferometer, formed by
the emission of the condensate and a reference field, and taking into account the interference
pattern is given by Eq. 2.1, one obtains:

FFT (I) = FFT (|A1|2 + |A2|2)

+ FFT
�
A⇤

1A2e
i('2�'1)

�

+ FFT
�
A⇤

2A1e
�i('2�'1)

�
(2.5)
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The first term after the equality is located at the origin of the Fourier space, the other two
terms are placed symmetrically with respect to the origin and its position is determined by
the relative angle between the two arms of the interferometer [see Fig. 2.7(b)]. By filtering
out the term at the origin and one of the oscillatory term, the remaining term corresponds
to a complex number in real space [see Fig. 2.7(c)]. Therefore when this term is brought
back to the real space by performing an inverse FFT (iFFT), the result is a complex number
whose phase gives the phase difference between the two fields that form the interference. In
order to obtain the phase of the emission, and not the relative phase, a pair of lenses is set
in one of the arms of the interferometer to get an enlarged image of the condensate, which
acts as a reference field with a constant phase [see Fig. 2.7(d)].

FFT 

Filtering out 

Arg(iFFT) 

Figure 2.7: Retrieval of the phase. (a) Interference pattern formed by the fields defined in
Eq. 2.1. (b) Fourier transform of Fig. (a) where three term are seen. (c) Result of filtering
out the term at the origin and one of the oscillatory terms. (d) Phase extracted from (c)
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Figure 2.8: Setup for polarization measurements. M is a mirror, pol are linear polarizers,
�/2 are half waveplate, BS is a beam splitter, L1 and L2 are the objective lens and the real
space imaging lens, respectively and �/4 is a quarter waveplate. The combination of the half
and quarter waveplates plus the linear polarizer allows to determine the Stokes parameters
from the emission of the sample. The dashed square represents the same telescope described
in Fig. 2.4(a)

2.5 Setup for polarization resolved studies

The polariton’s pseudo-spin can be determined by measuring the Stokes parameters (S0, S1,
S2, S3), where S0 is the total intensity and the last three components are related to a degree
of polarization by:

S1 =
IH � IV
IH + IV

, S2 =
ID � IA
ID + IA

, S3 =
I� � I 
I� + I 

(2.6)

where Ij are the intensities in the horizontal (H), vertical (V), diagonal (D), anti-diagonal
(A) linear basis, and right- (�), left-handed ( ) correspond to the intensity in the circular
basis. Therefore, S1 is the degree of linear polarization in the basis given by H/V, S2 is the
degree of linear polarization in the basis given by D/A and S3 is the degree of polarization
in the basis given by �/ . To measure each one of these intensities, a combination of half-
and a quarter-waveplates with a linear polarizer was set up, as shown in Fig. 2.8. In order
to remove the polarization sensitivity of the spectrometer’s diffraction grating, the linear
polarizer is oriented vertically (0º) and fixed, what implies that the detected signal will be
always linearly polarized in the vertical direction. Thus, the intensities are measured by
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proper alignment of the axes of each waveplate with respect to the linear polarizer. It is
worthwhile noticing that, for an incoming vertically polarized light, when the axes of the
three elements are aligned to 0º, all the intensity is detected. The following table shows the
orientation angles at which each of the polarization optics elements should be aligned so that
all the light reaches the detector for different linearly- (V, H, D, A) and circularly- (�,  )
polarized intensities intensity.

Incoming polarization state �/2 �/4 Pol.
V (1) 0º 0º 0º
H (2) 45º 0º 0º
D (3) 22.5º 0º 0º
A (4) -22.5º 0º 0º
� (5) 0º 45º 0º
 (6) 0º -45º 0º

Table 2.1: Orientation of the different polarization elements to detect the maximum intensity
for different polarization states of the incoming light.

A proof of the validity of this Table is presented in the Annex at the end of the Chapter.

2.6 Cryostat

As the microcavity sample is a GaAs based sample, the working temperature has to be
low enough to avoid the dissociation of excitons, therefore the sample is put in a cold fin-
ger cryostat (Janis ST-500 Microscopy Cryostat) with a nominal vibration of ⇠60 nm in
30 min. when the cryostat is mounted in an isolated optical table. A temperature controller
(Lakeshore Mod. 331S) allows to cool down the sample with liquid helium up to 4 K (all the
experiments were done at 10 K). Moreover the cryostat is mounted in a three dimensional
travel stage which allows to scan the position of the sample.



44 CHAPTER 2. SAMPLE AND EXPERIMENTAL TECHNIQUES

2.7 Annex

We present here the Mueller matrix method to show that the combinations of the polarization
elements written in Table 2.1 are the correct ones. We apply, as an example, this formalism
to the case of right-handed circularly polarized input light.

In this description, light is represented by a column vector given by the four Stokes
paramaters:

0

BBBB@

S0

S1

S2

S3

1

CCCCA
(2.7)

The first element represents the total intensity S0; the second, S1, corresponds to the
degree of linear polarization in the horizontal/vertical basis; the third one, S2, constitutes
the degree of linear polarization in the diagonal/anti-diagonal basis and the fourth one, S3,
is the degree of circular polarization.

For the sake of compactness we shall write the column vector as a row
h⇣

S0 S1 S2 S3

⌘i
,

in the following text.
The Mueller matrix for a retarder with its axis oriented at an angle ✓ and retardation �

is given by;

0

BBBB@

1 0 0 0

0 cos22✓ + cos�sin2
2✓ cos2✓sin2✓ � cos2✓cos�sin2✓ sin2✓sin�

0 cos2✓sin2✓ � cos2✓cos�sin2✓ cos�cos22✓ + sin2
2✓ �cos2✓sin�

0 �sin2✓sin� cos2✓sin� cos�

1

CCCCA
(2.8)

Turning back to our example, for a half and a quarter waveplate the retardation are
� = 180º and � = 90º, respectively, therefore when the �/2 plate is vertically oriented (0º)
and the �/4 plate is oriented at 45º the previous matrix reduces to:
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0

BBBB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1

CCCCA
�

2 ,0º

and

0

BBBB@

1 0 0 0

0 1 0 1

0 0 1 0

0 �1 0 0

1

CCCCA
�

4 ,45º

(2.9)

Finally, for the linear polarizer (retardation � = 0º), which is vertically oriented (0º), its
Mueller matrix is given by:

1

2

0

BBBB@

1 �1 0 0

�1 1 0 0

0 0 0 0

0 0 0 0

1

CCCCA

L,0º

(2.10)

Light with an initial state of polarization ~Sin passing through an optical element M , will
come out in the polarization state ~Sout, this is represented by: ~Sout = M ~Sin. For our setup,
there are three optical elements M : a half waveplate, a quarter waveplate and finally a linear
polarizer, which are represented by M�

2
, M�

4
and ML respectively, hence light that passes

through this system is represented by:

~Sout = MLM�

4
M�

2

~Sin (2.11)

We apply the aforementioned formalism to the example of an input defined by a righ-
handed circularly polarized light, given by the vector

h⇣
1 0 0 1

⌘i
. According to Table 2.1,

using the combination (5) all the light should reach the detector. Keeping in mind that the
linear polarizer is always oriented vertically (0º), the ~Sout should be

h⇣
1 �1 0 0

⌘i
.

Equation 2.11 for the combination (5) reads:

~Sout = ML,0ºM�

4 ,45º
M�

2 ,0º
~Sin
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~Sout =
1

2

0

BBBB@

1 �1 0 0

�1 1 0 0

0 0 0 0

0 0 0 0

1

CCCCA

0

BBBB@

1 0 0 0

0 1 0 1

0 0 1 0

0 �1 0 0

1

CCCCA

0

BBBB@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1

CCCCA

0

BBBB@

1

0

0

1

1

CCCCA
, (2.12)

operating one obtains:

~Sout =

0

BBBB@

1

�1

0

0

1

CCCCA

which proves that all the intensity reaches the detector (S0 = 1).



Chapter 3

Phase correlation in 2D and 1D systems

The signature of a transition from a thermal distribution to a condensed phase is given by
the build up of the off-diagonal long-range order (ODLRO) [28] and is characterized by the
existence of an order parameter, in the case of a condensate a macroscopic wave function
with a well defined phase. This chapter describes the properties of the first order correlation
function for the signal state of the OPO process in microcavity exciton-polaritons. As it was
pointed out in § 1.6, the appearance of ODLRO can be measured by the normalized single
particle density matrix, which is the first order correlation function. We will use this quantity
to measure the phase correlation of a polariton field created under OPO configuration. Even
though the OPO polariton condensate is a system in dynamic equilibrium between three
states massively occupied, we will show that, it presents a non-vanishing ODLRO.

3.1 Coherence in a 2D OPO system

Spatial coherence properties have been studied theoretically for the OPO condensate by
Carusotto and Ciuti [58]. In that work, the first order correlation function (g(1)) is studied
numerically for a finite condensate, paying special attention to its behavior across the OPO
parametric threshold, defined as a function of the detuning of the excitation laser with respect
to the phase-matching conditions (ETh). It is found that, for excitation frequencies wp below
that of the threshold ~!p < ETh, g(1) has a finite correlation length. Increasing wp in order

47
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to approach ETh, maintaining fixed the pump angle (and therefore the wavevector), they
predict the build up of macroscopic phase coherence extending over the entire condensate
[58].

In this regime, when the phase coherence extends over the full condensate, the spatial
fluctuations are negligible, therefore the temporal coherence properties should be captured by
a theory developed by Whittaker and Eastham [64]. In their theory, the temporal coherence
is limited by fluctuations in the particle number, which due to the polariton-polariton interac-
tions imply a broadening of the emission [57, 65-67]. This broadening mechanism, however,
would be suppressed if the intensity fluctuations become very fast, in a form of motional
narrowing effect [68]. Thus, for appropriate pump powers and condensate areas, very long
coherence times could be obtained. Using a high-quality sample and a very narrow-bandwidth
pump laser, we obtain spatially extended single-mode polariton condensates, with uniform
spatial coherence extending over the entire pump spot. The temporal coherence decay of
the condensates reveals two timescales associated with the interaction-induced broadening
of the condensate and the intensity fluctuations, respectively. We show that the finite-size
scaling laws describing the variation of these timescales with condensate area qualitatively
agree with the theory. The main factor that limits the coherence is the quality of the cav-
ity: the presence of defects creates a disorder potential that traps the condensate, leading
to multi-mode and inhomogeneous states [69]. Another, very important, detrimental effect
in the coherence that needs to be considered is due to the fluctuations in intensity and fre-
quency of the excitation laser. This hinders the attainment of the intrinsic coherence of the
condensate. Previous studies [32, 69, 70] have been performed by non-resonantly pumping
the microcavity, and in such cases the resulting distribution of the population at the bottom
of the lower polariton branch is subjected to fluctuations due to the reservoir of particles at
the bottleneck. These fluctuations, broadening the distribution of polaritons in energy and
momentum space, translate, according to the Wiener-Khinchin identity [71, 72], into a faster
decay of the temporal and spatial coherence.

Although analogous broadening by the fluctuating population of pump polaritons can
occur in the OPO [57], the pump power threshold (PTh) for a resonant-gain process is much
lower than that for non-resonant gain and the effect of the reservoir polaritons is not relevant,
since the reservoir is either completely empty or very weekly occupied. Thus the coherence
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exhibited by an OPO polariton-condensate is expected to decay over much longer times and
larger distances than that produced by non-resonant techniques. Here we realize experi-
mentally a spatially extended, and with long temporal coherence, condensate in the OPO
configuration and identify the mechanism driving the extended temporal coherence. This is
mainly due to the fact that the pump laser, frequency locked, has a spectral bandwidth in
the order of ⇠ 10

�10 electron-volts (75 kHz frequency width), which allows us to control very
precisely the OPO phase-matching conditions.

3.1.1 Power threshold

In order to have a complete control over the OPO conditions leading to the formation of
extended condensates, in this section the decay of the first order correlation function is
studied as a function of the pump power. The microcavity is excited with a pump spot
of 40 µm diameter, and three different regimes are investigated: below power threshold for
condensation, about power threshold and well above power threshold. For each one of this
regimes the OPO phase-matching conditions are set, first, by fixing the pump power and
then adjusting the k vector and energy of the laser, in order to fulfill the conservation of
energy and momentum.

By pumping the system below the power threshold (the power threshold is about ⇠50 mW ),
with a pump power of ⇠ 40 mW , with an energy of ⇠1551.1 meV and at a k vector of ⇠
1.5 µm�1 (angle of incidence ⇠11�), condensation is not achieved; and the corresponding
emission from the sample covers the whole pump spot size, as is shown in Fig. 3.1(a). The
interference pattern, shown in Fig. 3.1(b), displays a significant contrast only at the cen-
ter of the emission, which corresponds to the autocorrelation point. Figure 3.1(c) presents
the coherence map, that is the first order correlation function, which appears in the region
corresponding to the autocorrelation point. By taking a horizontal profile of the coherence
map, of 0.26 µm (1 pixel width), centered at the maximum of it, a coherence length of about
2.4 µm is extracted from a Lorentzian fit, as shown in Fig. 3.1(d). This value corresponds to
the thermal de Broglie wavelength for a gas of non-condensed polaritons. Figure 3.1(e) shows
the phase map of this non-condensed emission. Under these conditions, the microcavity is in
the linear regime, as corroborated by the coherence and phase maps (Figs. 3.1(c) and 3.1(e)
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respectively), and the coherence is limited to the autocorrelation region.
In order to bring the microcavity into condensation, the pump power is increased, keeping

the excitation area constant. Therefore, a proper adjustment of the phase-matching condition
needs to be done: the energy and k vector of the laser must be increased to compensate for
the blueshift caused by polariton-polariton interactions, which renormalize the LPB. Thus,
the pump power corresponds to 60 mW , slightly above the power threshold, the laser energy
is tuned at 1551.76 meV and the k vector at 1.7 µm�1 (⇠12.5�).
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Figure 3.1: Microcavity pumped below power threshold (40 mW ). The laser at 1551.1 meV
is impinging on the sample at an angle of 11�. (a) Shows the real space emission of the
microcavity. In (b) the interference pattern is depicted, it observed a significant contrast just
at the autocorrelation point. (c) depicts the coherence map. In (d) is shown a slice of the
coherence map presented in (c), the red line corresponds to a fit with a Lorentzian function,
with a linewidth of 2.4 µm (FWHM). The phase map of the emission is shown in (e). All
the data are energy integrated and the temperature of the sample is kept at 10 K.

Under these conditions, the condensation takes place in a smaller region than the pump
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spot size. This is due to the fact that the pump beam has a Gaussian profile, therefore it
does not have a homogeneous power distribution, being higher at the center of the beam and
decreasing towards its rim. Thus, the necessary pump power to trigger the OPO process
is limited to a smaller area that of the actual pump spot size leading to condensation in
a reduced size. The real space emission, shown in Fig. 3.2(a), depicts a emission of the
condensate in a reduced zone compared to the non-condensed case.
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Figure 3.2: Microcavity pumped slightly above the power threshold (60 mW ). The laser is
set at 1551.76 meV at an angle 12.5� with respect to the normal. (a) Shows the real space
emission of the microcavity pumped slightly above power threshold. In (b) the interference
pattern is shown, which is more extended compared to the non-condensed case, but is smaller
than the pump spot size; (c) depicts the coherence map and (d) represents a slice of the
coherence map shown in (c), the red line corresponds to a fit with a Lorentzian function,
with a linewidth of 6.5 µm (FWHM). The phase map of the condensate, which does not
present any singularity where the condensate is defined, is given in (e).

The interference pattern is shown in Fig. 3.2(b), which now extends along all the conden-
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sate emission area. The coherence map and a horizontal slice of it are shown in Figs. 3.2(c)
and 3.2(d), respectively. A fit with a Lorentzian function of the profile shown in Fig. 3.2(d)
reveals that the coherence length in the condensed phase has increased up to 6.5 µm, which
corresponds to 2.7 times the coherence length for the uncondensed situation. The phase map
also shows a size increment as can be seen in Fig. 3.2(e).
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Figure 3.3: Microcavity pumped well above power threshold (458 mW ). The laser’s energy is
1551.81 meV and the angle is at 13.6�. (a) shows the real space emission of the microcavity,
which is extended to the whole pump spot size. (b) presents the interference pattern, whose
contrast covers the full emission. (c) depicts the coherence map, where a constant degree
of coherence is observed in all the condensate. (d) Represents a slice of the coherence map
shown in (c). The phase map of the condensate, without any singularity in the condensed
region, is presented in (e).

A further increase of the pump power causes that the OPO process is triggered in the
whole pump area, therefore the condensate area is determined by the pump spot size. Fig-
ure 3.3(a) shows the real space emission for a pump power of 458 mW , with a k vector of



3.1. COHERENCE IN A 2D OPO SYSTEM 53

1.85 µm�1 ( ⇠13.6�) and an energy of 1551.81 meV . This emission is quite homogeneous and
covers the whole pump spot. An inspection of the interference pattern, shown in Fig. 3.3(b)
reveals a very uniform contrast all over the emission area. The coherence map, shown in
Fig. 3.3(c), demonstrates that the coherence is almost constant over all the pump spot. A
horizontal slice of the coherence map is shown in Fig. 3.3(d): now the coherence does not
decay within the pump spot but rather is extended and almost flat. Figure 3.3(e) shows the
phase map, here the phase, as it can be deduced from the coherence map, is also extended.

A extended coherence for a finite size condensate under an OPO regime is predicted
in [58], this will be discussed in more detail in § 3.1.3.

Now we focus on the temporal decay of the first order correlation function. Here, we study
the same three regimes described above, the temporal decay of g(1) (⌧) =

⇣
hE⇤(t)E(t+⌧)i
hE⇤(t)ihE(t)i

⌘
is

extracted following the procedure explained in § 2.4. The temporal decay of g(1) is shown in
Figs. 3.4 for three different excitation powers: a clear increase in decay time with increasing
power is observed (notice the different ranges of the abscissa in the figures).

By pumping the microcavity below the power threshold for condensation (0.8 PTh), the
interference pattern has significant contrast just in the autocorrelation point as is observed
in Fig. 3.1(b). The temporal decay is shown in Fig. 3.4(a), where the fit to the data is given
by a mono-exponential function with a characteristic decay time of 7 ps, which is of the order
of the polariton lifetime for this microcavity. The fitted curve to the experimental data is
given by:

g(1) (t) ⇠ e�t/⌧ (3.1)

The temporal decay for a pump power above the power threshold (1.2 Pth), is shown in
Fig. 3.4(b). Here, the observed decay has a Gaussian shape rather than the mono-exponential
one observed in the non-condensed case (the change of the function describing the decay will
be addressed later in this section). The red curve shown in Fig. 3.4(b) is a Gaussian fit,
from where a characteristic decay time of 86 ps has been extracted (a mono-exponential fit
gives a decay time of 80 ps, however, as one can see by direct inspection, the decay is not
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Figure 3.4: Temporal decay of the first order correlation function. In (a) the temporal decay
is shown when the system is pumped below the power threshold (0.8 PTh), it presents a fast
exponential decay, with a decay time of 7 ps given by the fit shown by the red curve. (b)
shows the decay for a pump power slightly above the power threshold (1.2 PTh), under these
conditions the decay can be fitted by a Gaussian function, as depicted by the red line, which
obtains a characteristic time of 86 ps. In (c) the decay is depicted for pump power well above
the power for condensation threshold (9 PTh). By fitting an exponential curve (red curve)
a decay time of 2.7 ns is extracted. The three graph are in semilog scale to facilitate the
perception of the different characteristic shapes of the decays.

exponential), this represents an increment of one order of magnitude with respect to the
decay time for non-condensed case. The curve used to fit the experimental data is:

g(1) (t) ⇠ e�(t/⌧)2 (3.2)

Increasing further the pump power to 9 PTh, the condensate becomes spatially extended
to the whole spot size, as is shown by the coherence map of Fig. 3.3(c). The increase in
the spatial coherence is accompanied by an increase in the temporal decay. This is depicted
in Fig. 3.4(c), where Eq. 3.1 has been used to fit the experimental data (red curve): the
characteristic decay time is 2.7 ns. This coherence time, for polariton condensates created
under the OPO regime, is much longer than the previously reported times. We have even
achieved longer coherence times lasting up to 3.2 ns as we will show in § 3.1.3.

The temporal decay of g(1) gives the time scale during which the phase of the condensate
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can be consider coherent, but it also provides a measurement of the spectral distribution
of the emission source, in this case the polariton condensate. Applying a Fourier transform
to g(1), the spectral distribution is obtained [37]. The genuine linewidth of the condensate
cannot be obtained in our case by a direct measurement, due to the spectral resolution of the
spectrometer (100 µeV ). It is worth to notice that, for the sake of convenience, the spatial and
the temporal correlations are considered to be independent, thus the power spectrum can be
written as: S(!) =F(g(1)(0, t)), where the symbol F denotes the Fourier transform operator.
Figure 3.5 shows the Fourier spectrum, calculated using Eq. 3.1, with the respectively decay
time, for the cases that show an exponential decay, and using Eq. 3.2 for the case with a
Gaussian decay, for the three situations exposed above. Figure 3.5(a) shows the lineshape
of the distribution corresponding to a Lorentzian curve with a full width at half maximum
of 75 GHz, corresponding to an energy width of 310 µeV . This value is considerably lower
than the experimentally determined from Fig. 3.5(d), which obtains a width of 110 GHz.
The difference arises from the fact that, below threshold the emission comes from different k
vectors, so the Fourier spectrum has the form S(!, k), which cannot be separated as assumed
above. Despite the fact that the spatial and temporal frequencies cannot be considered as
independent, as we have done in our approximation, the Fourier transform obtains a relatively
good estimation of the linewidth.

When the system is condensed, the linewidth decreases drastically, but, as aforementioned,
this cannot been measured in our setup due to the spectral resolution of the spectrometer.
Thus, the linewidth is extracted from the Fourier spectrum shown in Fig. 3.5(b), obtain-
ing 5.2 GHz (21.5 µeV ), whilst the experimental measured one is given by the FWHM of
Fig. 3.5(e), which is 31 GHz (128 µeV ). Here, as the condensation takes place at k = 0, the
Fourier spectrum can be considered independent of the spatial frequencies.

The longer coherence time achieved by pumping harder the microcavity should be also
reflected in a further narrowing of the linewidth. Figure. 3.5(c) shows the Fourier spectrum,
from where a linewidth of 0.18 GHz (0.7 µeV ) is extracted. The experimentally measured
value is 27 GHz (112 µeV ) obtained from Fig. 3.5(f). In both cases above threshold, the
experimentally determined linewidth is similar, but if the linewidth is extracted from the
Fourier spectrum, notable differences appear. Since the temporal decay of the first order
correlation function shows different shapes and decay times, the genuine spectra are also
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different in shape and width.
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Figure 3.5: Fourier transform of the g(1). (a) shows the Fourier spectrum for the non-
condensed case (0.8 PTh), with a Lorentzian lineshape (FWHM of 75 GHz). In (b) the
case where the sample is pumped slightly above the threshold is presented (1.2 PTh), here
the lineshape is Gaussian with a linewidth of 5.2 GHz. (c) depicts the spectrum when the
pump power is well over the power threshold (9 PTh), the lineshape is Lorentzian with a
FWHM of 0.18 GHz. Note the different ranges of the abscissas in (a), (b) and (c). In (d)
the experimentally measured linewidth with a FWHM of 110 GHz. The panel (e) renders
the linewidth, when the pump power is slightly above threshold, the width is 31 GHz. (f)
displays the measured linewidth pumping the microcavity well above the power threshold,
here the width is 26 GHz very close to the value when the microcavity is pumped slightly
above threshold, and in both cases limited by the experimental resolution.

The different lineshapes shown by the decay of g(1), indicates that the condensate expe-
riences several regimes, depending on the strength of the pump. Below threshold g(1) shows
a fast exponential decay: in this case the system is dominated by the losses. Slightly above
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threshold, there is a close match between gain and losses, that brings the condensate into a
static regime [64], i.e. the number fluctuations become slow as compared with the coherence
time. This was also the case in Ref. [73] where the temporal decay of g(1) showed a character-
istic Gaussian shape reaching coherence times up to 200 ps. A further increase of the pump
power, causes a saturation of the gain, thus the slowing-down in the number fluctuations no
longer occurs and the condensate falls into a motional narrowing regime, where very long
coherence times can be achieved. This regime is characterized by an exponential decay [64].

3.1.2 Spot size dependence

Here, the influence of the pump spot size on the coherence time is investigated; in order to
do so, the pump power is chosen to be well above the power threshold. The variation in area
is obtained changing the optics before the lens focusing on the sample, so that the range
of pump angles is kept as close as possible in the different cases. In this way we are able
to perform a controlled comparison with theory, by varying the area while maintaining the
same power density. We obtain a predominantly exponential decay for g(1), with a coherence
time reaching TC = 3.2 ns (see the definition of TC below). This is six times longer than
the largest value reported in the literature until now for the same material system under
OPO conditions [57]. Despite the lack of spatial fluctuations, the coherence time of the
condensate, though long, is clearly finite. In general, such a finite correlation time in a state
with perfect spatial order is caused by finite-size fluctuations [74], and reflects the absence
of true phase transitions in finite systems. A well-known example is the Schawlow-Townes
formula for the coherence time of a single laser mode with an average of N photons, Tc / N .
Since N / A when the control parameter, defined as the ratio between the pump power Pave

and the condensed area Ac (Pd = P
ave/A

c

) is constant, the Schawlow-Townes result implies
the scaling form Tc / A. However, as shown in detail below, this scaling law is violated by
more than an order of magnitude for the polariton condensates, and the results cannot be
understood as a straightforward effect of increasing the particle number. Nevertheless, the
results presented may be interpreted in terms of the theoretical model of Ref. [64], in which
the linewidth arises from fluctuations in the number of particles. Due to the interactions,
such number fluctuations imply energetic fluctuations of the emission, leading to a broad line
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or a decay of g(1). This is captured by Kubo’s result
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for the emission from a transition whose energy fluctuates, where ⌧c is determined by the
width of the (generically Gaussian) distribution of the energy level and ⌧r is the characteristic
timescale on which the fluctuations occur. If ⌧r � ⌧c the fluctuations are slow and the emission
reflects the energy distribution of the level, so that the coherence decays on a timescale tc.
If, however, ⌧r ⌧ ⌧c, a motional narrowing effect leads to an exponential decay, with a much
longer coherence time given by TC = ⌧2

c

2⌧
r

.

Figure 3.6(a) shows the temporal decay of the first order correlation function, where we
have used the Kubo formula Eq. 3.3 to fit the data, for a power density of ⇠ 10 kW/cm2,
which corresponds to a pump power of ⇠ 265 mW and an area of ⇠2.7x103 µm2; a coherence
time TC of ⇠3.2 ns is obtained. The results shown in Fig. 3.6(b), corresponding to the
temporal decay of g(1) for two different power densities keeping the size of the condensate
constant (A = 70µm2

), demonstrate that increasing the power a longer coherence time is
achieved. In fact, the coherence time for this condensate of relatively small area A = 70 µm2

increases from Tc = 0.5 ns at Pd = 5.4 kW/cm2, to Tc = 0.9 ns at Pd = 10 kW/cm2. We
note that the coherence decay of the smallest condensate at the lowest power, black squares
in Fig. 3.6(b), has considerable structure and does not follow well the Kubo form: in fact
neither a Gaussian nor exponential decay provides a good fit to this data, suggesting that
this condensate is not a single mode condensate.

In order to elucidate the effects of the number fluctuations, the Kubo formula is used to
fit the data for three different areas, keeping the power density fixed at Pd = 10 kW/cm2.
For the condensate with a larger area A = 2.7⇥ 10

3 µm2, ⌧c = 0.97 ns and ⌧r = 0.15 ns are
obtained fulfilling the inequality for the motional narrowing regime and giving a coherence
time Tc = 3.2 ns. For an intermediate area A = 1.3 × 103 µm2, we observe a decrease of both
parameters ⌧c = 0.76 ns and ⌧r = 0.14 ns corresponding to Tc = 2.1 ns. A further reduction
of the area to A = 70 µm2 obtains ⌧c = 0.20 ns and ⌧r = 0.023 ns, corresponding to a shorter
Tc = 0.9 ns, still indicating in both cases that the system is in the motional narrowing regime.
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This is summarized in Figs. 3.6(c) and 3.6(d), where ⌧c and ⌧r are respectively plotted as a
function of the condensate area. The error bars of the fit parameters ⌧r and ⌧c are estimated
from the regression to Eq. 3.3 and explicitly shown in Figs. 3.6(c) and 3.6(d).

As well as moving to larger areas, another way to have longer decay times, suggested in
Ref. [64], is to increase the pump power, with the pump always in the conditions to drive the
system in the OPO regime, this was the situation discussed in § 3.1.1.

From the Kubo fits to the data, for a given power, we can extract the scaling ⌧c / A0.41±0.05

[Fig. 3.6(c)]. This is consistent with the dominant dephasing mechanism being the polariton-
polariton interaction, suppressed by motional narrowing, in which case the Kubo formula
should hold with ⌧c / A0.5 [64]. Although this implies an increase in the coherence time,
TC , with area, our results show that this increase is restrained because ⌧r also increases with
area as ⌧r / A0.41±0.17 [Fig. 3.6(d)], so that motional narrowing becomes less effective, giving
to the coherence time the trend TC / A0.5. This is shown in Fig. 3.7 that depicts TC as
obtained from a fit to an expression similar to Eq. 3.3 which has been rewritten to explicitly
contain TC as a parameter,

��g(1) (⌧)
��
= exp


� ⌧r
Tc
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(3.4)

Note that the error bars of Tc are estimated from the regression to Eq. 3.4. The red solid
line shows the best fit to a square root dependence on A, while the dashed line corresponds
to a linear dependence (Schawlow-Townes mechanism). We note that the square root form
provides a better fit to the data, consistent with the linewidth due to polariton-polariton
interactions in the motional narrowing regime. The small size of our system and the use of
pump powers which are relatively close to threshold, PTh, are responsible for the observed
increase of ⌧r with area.

Finally, let us discuss briefely the area dependence of ⌧r. In the thermodynamic limit,
A ! 1, the occupation, n, of a single mode with linear gain �, linear loss gc and nonlinear
gain � obeys the mean-field rate equation dn/dt = (g−gc−Gn)n [75]. Linearizing we see
that the damping time for number fluctuations is tr = 1/|g−gc|. This timescale is therefore
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Figure 3.6: (a) Temporal coherence decay above threshold for condensate area 2.7 × 103 µm2

at a pump power density Pd = 10 kW/cm2, the central line is a fit to Eq. 3.3, side bands
define the confidence range in which the experimental points fall within a probability of 95%.
(b) Temporal coherence decay for Pd = 5.4 kW/cm2 (black squares) and Pd = 10 kW/cm2

(blue dots) at A = 70 µm2. Lines are fits to Eq. 3.3. Fig. (c) depicts the dependance of ⌧c
with the condensate area A, the line is a fit to ⌧c / Ax, with x = 0.41 ± 0.05. In Fig. (d), ⌧r
as a function of condensate area A is shown, the line is a fit to ⌧c / Ax with x = 0.41 ± 0.17.
In the last two figures the power density is kept constant at Pd = 10kW/cm2.
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Figure 3.7: Temporal coherence Tc as obtained from Eq. 3.4 as a function of the condensate
area A, for the same power density shown in Fig. 3.6 (Pd = 10 kW/cm2). Red solid line is
a fit to square root dependence on area A, , the dashed line corresponds to the best fit to a
linear dependence.

independent of area when the rate equation is valid. However, at power threshold, g = gc
and the rate equation predicts a divergence in the relaxation time, which in the finite system
must be cut off by fluctuations. Thus, in the threshold region, ⌧r initially grows with area,
as we observe, before eventually saturating. The scaling in the threshold region may be
obtained from the dynamical model described in Ref. [64], which when solved numerically at
threshold gives ⌧r /

p
A, consistent with Fig. 3.6(d).

3.1.3 Parametric threshold as a function of pump laser-energy

In order to experimentally proof the prediction of [58], the parametric threshold is proved
for two different spot sizes. In both cases the pump power is kept well above the power
threshold, thus the condensate is spatially determined by the spot size. The phase-matching
conditions are properly set for each size, i.e. the k vector and energy for the corresponding
pump power. Once condensation is achieved, the energy of the laser is varied leaving the
pump power and the k vector unchanged.
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Figure 3.8: Interference pattern (a/d) and corresponding coherence (b/e) of the conden-
sate generated at/below the parametric threshold, ETh, corresponding to a pump energy
E1 = 1552.28 meV / E2 = 1551.51 meV and a power density P = 13.5 kW/cm2 . Horizontal
profile at the center (c/f) showing a constant coherence (extended about ⇠10 µm, shown
by the blue arrow) along the entire condensate for E1/an exponentially decaying one for E2.
The red lines are Gaussian function used to fit the data.

We start describing the case of a pump spot size of ⇠ 10 µm with the laser energy set a
ETh. The interference pattern and the coherence map are shown in Figs. 3.8(a) and 3.8(b),
respectively. The maps are extended to the whole pump spot size. This can be better
observed in Fig. 3.8(c), where a horizontal profile of 0.26 µm width (1 pixel) of the coherence
map is represented. A fit of a Gaussian function to the profile obtains a width of 13 µm, which
is defined as the coherence length (LC). The longer LC value than that of the pump spot
size is due to a diffusion of polaritons outside the pumping area. The blue arrow displays the
region where the coherence map presents a constant value. When the energy of the laser is
decreased by dE ⌘ ETh−E = 0.77 meV towards lower energies, leaving fixed the pump power
and angle, the phase-matching conditions are still partially fulfilled, as it is demosntrated
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by the observation of the interference pattern depicted in Fig. 3.8(d). By looking at the
coherence map, shown in Fig. 3.8(e), a decrease of g(1) is clearly seen, both in the area and in
the magnitude, but it still presents a considerable value. More details are given in Fig. 3.8(f),
which is a horizontal profile of the coherence map. The fit of a Gaussian function is shown in
by the red curve, obtaining a value of LC ⇠9 µm. This decrease is smaller than that proposed
in [58], since even pumping well detuned from the energy ETh, the condensate presents an
extended and significant coherence.

Increasing the pump spot size to 40 µm, the same measurements are performed. At the
parametric threshold, see Fig. 3.9(a), the interference is extended to the entire condensate,
and the coherence map, see Fig. 3.9(b), reveals that the condensate’s phase is locked across
the entire area (as it was observed in the previous case). In this situation, one cannot extract
a value for LC since the condensate is extended to the whole pump spot and abruptly decays.
This is shown again in more detail in Fig. 3.9(c), where a horizontal profile of the coherence
map is represented. By decreasing the pump energy by dE ⌘ ETh−E = 0.008 meV towards
lower energies, leaving fixed the pump power and angle, the phase-matching conditions for
the OPO are not fulfilled anymore and an emission of thermally populated states is obtained
at the bottom of the LPB. The interferometric analysis of the emission from the cloud of non-
condensed polaritons gives an interference pattern with a high contrast of the interference
fringes only at the center of the emission [Fig. 3.9(d)]. The corresponding coherence map
[Fig. 3.9(e)] reveals a ⇠7 µm coherence length, extracted by fitting a Lorentzian function
[Fig. 3.9(f)].

The fact that, for both cases 10 and 40 µm, the degree of coherence is almost flat along
the entire condensate, when the conditions for the parametric threshold are satisfied, demon-
strates that a single coherent mode is formed, in contrast with what has been found in pre-
vious works [69, 73] where disorder of the sample caused the development of several modes.
In both situations, the extension of the coherence is limited by the pump spot size. Until
now only in the work of Baas et al. [76] similar levels of extended spatial coherence in the
OPO condensate have been reported, though without the complete quantitative map of g(1)

presented here (the still longer coherence lengths observed in 1D microcavities [77] are asso-
ciated with polaritons propagating outside the pumped region). It is worth to note that in
an OPO process, the coherence properties of the signal are not inherited from the excitation
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Figure 3.9: Interference pattern (a/d) and corresponding coherence (b/e) of the conden-
sate generated at/below the parametric threshold, ETh, corresponding to a pump energy
E1 = 1552.57 meV / E2 = 1552.56 meV and power density P = 15.8 kW/cm2 . Horizontal
profiles at the center (c/f) showing the constant coherence along the entire condensate for
E1/an exponentially decaying one for E2. The red line is the Lorentzian fit.

laser [53]. It is also important to note that although the theory of an infinite 2D condensate
predicts the absence of long-range order, and a power-law decay of the spatial coherence
[35] with a decay length inversely proportional to the particles’s mass, in a finite dimension
system such as the studied here, determined by the pump laser size, which is much smaller
than the decay length, a constant coherence of the condensate can be obtained.

Figure 3.10 renders how the coherence length is affected by different values of dE, for
each one of the two studied sizes. In Figure 3.10(a) it is observed that the condensate is
very robust to changes of the pump energy, so the coherence length shows a smooth decay,
even for a very large detuned energy of the excitation source, e.g. for �E = 0.77 meV the
coherence length is about 9 µm, while at the parametric threshold, the coherence length is
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Figure 3.10: Coherence length Lc as a function of the energy distance from the threshold
energy dE ⌘ ETh�E. (a) Depicts the case for the 10 µm spot size, where a smooth decay of
the coherence length is observed. In (b) the case of 40 µm is presented, here the coherence
length shows a pronounced decay, when dE is increased. Dashed lines are guides to the eye.

about 13 µm (this is a few micrometer wider than the spot size and is due to a diffusion of
polaritons outside the pump spot). On the other hand, when the system is pumped by a
spot size of 40 µm, for detunings as small as �E =10 µeV , the condensate is brought out of
resonance, as in shown in Fig. 3.10(b): black points represent the typical behavior, where the
coherence length falls from 40 µm, at the parametric threshold, to a value of about 7 µm.
Red points in Fig. 3.10(b) present a different case where a less abrupt decay of the coherence
length is observed for small �E, nonetheless, the behavior is similar for both cases presented
in Fig 3.10(b).

The marked difference between Figs. 3.10(a) and 3.10(b) is mainly due to the fact that
the range of k values used to pump the cavity increases with decreasing pump the size.

3.2 Coherence of coexisting 2D and 1D condensates

This section deals with the coherence properties of a hybrid system, where we exploit the
presence of otherwise undesired defects in the sample. Most semiconductor microcavities
exhibit different kinds of defects due to strain relaxation during the growth process, which
originates from impurities or lattice constant mismatch of the different semiconductor layers.
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(a)$
(b)$

Figure 3.11: System under study. (a) Displays a schematic representation of the sample with
a defect due to the imperfections of the top Bragg mirrors, developing along the y-direction,
and resulting in the confinement along the x-direction. (b) Shows the PL for non-resonant
excitation of the sample’s region where the defect is present. In (c) the emission in momentum
space is shown, the scale is saturated in order to better observe the emission. The inset
displays the emission in a non-saturated logarithmic scale.

The latter is a typical phenomenon of the multilayer DBR structures and leads to cross-
hatching [78], with 1D defects along the crystallographic axes. This is the plausible origin
of the 1D defect we choose to investigate. Figure 3.11(a) depicts a schematic draw of the
microcavity with a defect in the upper Bragg mirror. The defect presents an approximated
width of 3 µm and length of 60 µm. Figure 3.11(b) shows an actual real space image,
for non-resonant low power pumping, of the microcavity region where the defect is placed.
Figure 3.11(c) presents momentum space emission (in a saturated scale) of the same region
of the microcavity displayed in Fig. 3.11(b), where the 1D LPB is seen. The inset is the same
momentum space image in a logarithmic non-saturated scale

In Ref. [58] a theoretical study of the coherence properties of a 1D OPO system is pre-
sented and it is found that the first order spatial correlation function is expected to decay
rapidly along the condensate length even when pumping at the parametric threshold, ETh.
For atomic condensates, which are equilibrium systems, the theory developed in [35] for the
1D case predicts an exponential decay of the phase coherence. In the case of polariton con-
densates, which are rather out of equilibrium, the theory does not necessarily hold anymore.
Such a non-trivial theoretical issue of coherence of OPO condensates generated in 1D sys-
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tems has been further developed in a subsequent work of Wouters and Carusotto [79], who
predicted the coherence behavior by means of numerical simulations. For the 1D system they
found that the effects of long-wavelength fluctuations are expected to be stronger than those
in the 2D case, being able to destroy the long-range order [35, 53]. For these systems, in the
case of an ideal disorder-less scenario, they predict that the spatial coherence along the 1D
condensate direction (y) decays with an exponential law: g(1)(y) / e−|y|/lc , with lc being the
coherence length, which they estimate to be of the order of a few hundreds of microns. The
coherence degree of 1D condensates has also been addressed in a recent work of Malpuech
and Solnyshkov [80], in which they take into account the presence of disorder; in this case
they predict a fluctuating degree of coherence in space, with the maxima of coherence in
correspondence to potential minima.

We carry out the study of coherence in two different cases: (a) generating the OPO
in the 1D, pumping close to the inflection point of the 1D branch, and (b) generating the
OPO in the 2D system, by phase-matching the 2D branch. The results of this procedure
are depicted in Figs. 3.12(a)–(d), where, using a dove prism, we are able to record the OPO
emission along two directions, parallel and orthogonal to the line defect. Figure 3.12(a)
shows the emission of the 1D-OPO condensate generated by pumping at the inflection point
of its LPB [case (a)], tuning the pump laser at ETh = 1551.1 meV and with an average
power P = 0.07 W . The condensate emission coming from the direction kx shows a flat
dispersion due to the confinement along x. However, the emission coming from the direction
ky, parallel to the defect, exhibits a small curvature in its dispersion [see Fig. 3.12(b)]. The
dramatic effect of excitonic interactions is witnessed by the strong blueshift experienced by
the emission energy of the region enclosed by line defect, of the order of E = 3.3 meV .
Tuning the laser toward high energies and increasing the pump power from P = 0.07 W to
P = 0.1 W , we phase-match the 2D system at ETh = 1551.6 meV [case (b)] achieving an
OPO condensate as depicted in Fig. 3.12(c) for emission collected orthogonally to the line
defect and in Fig. 3.12(d) for parallel collection. In this case, the blueshift for the LPB of
the 2D condensate is only E = 0.4 meV , much lower than that of the 1D case, but the 1D
system still experiences the same strong blueshift and shows a very narrow emission as when
it was resonantly pumped, indicating that the line defect is still massively occupied and the
condensation is still present.
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Figure 3.12: k-space OPO emission from the orthogonal (a) and parallel (b) directions to the
line defect when phase-matching the line defect at ETh = 1551.1 meV at the average pump
power P = 0.07 W . The 1D emission shows a blueshift of E = 3.3 meV when the OPO takes
place. (c, d) Emission from the orthogonal and parallel directions to the defect, respectively,
for the case of the OPO achieved by phase-matching the 2D LPB. The pump laser is tuned
at ETh = 1551.6 meV at a power P = 0.1 W . Both the 2D and 1D energy levels experience
a blueshift of E = 0.4 meV and E = 3.2 meV , respectively, indicating that in this case the
2D and 1D systems are massively occupied.

Figures 3.13(a) and 3.13(d) display the real space emission counterparts of the two cases
presented in Fig. 3.12. When we phase-match only the line defect energy dispersion, a bright
emission is collected only from the defect area [Fig. 3.13(a)]. In order to extract the coherence
of the 1D condensate, we used the procedure detailed in § 2.4. This time, when the phase-
matching conditions allow to generate parametric scattering only in the 1D system, the
interference pattern is present only in the wire-like region [Fig. 3.13(b)]. The corresponding
coherence map presents a maximum degree of coherence of 0.5 at the center of the condensate,
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and decaying along the axis of the defect, with a modulation ascribable to the fluctuations
of the potential landscape [see Fig. 3.13(c)].

Figure 3.13: (a) Real space emission from the line defect condensate, the corresponding
interference pattern (b) and coherence map (c) when phase-matching the line defect at
ETh = 1551.1 meV and P = 0.07 W . (d) Real space emission from the line defect condensate
along with the 2D condensate emission; a dark region of 6 µm separates the 2D and the 1D
emission; the corresponding interference (e) and coherence map (f) when phase-matching the
2D emission at ETh = 1551.6 meV and P = 0.1 W .

To better visualize the spatial decay of the coherence, we present a cross-section of the
coherence map [Fig. 3.14(a)], which demonstrates a fast decay of coherence along the defect
direction dropping from the maximum value of 0.5 at the center to 0.25 at a distance of only
10 µm. This result agrees qualitatively with the prediction of a decaying coherence in 1D
systems presented in Refs. [58, 79]. From these data it is not possible to extract the predicted
decay law, because the coherence is modulated by the disorder of the sample. In fact, the
reduced dimensionality makes the coherence more sensitive to the effects of sample disorder.
A similar modulation of the spatial coherence along a line has already been observed for
condensates created by non-resonant pumping in CdTe microcavities by Manni et al. [81],
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Figure 3.14: Horizontal slice of the coherence map of the line defect presented in Fig. 3.13(c),
showing a fast spatial decay modulated by the sample inhomogeneities (the dashed line is a
guide for the eye). (d) Horizontal slice of the coherence map of the line defect presented in
Fig. 3.13(e), where higher degree of coherence and longer coherence length are reached, and
with less dramatic effects of the sample inhomogeneities.

who attributed the effect to disorder. It is worth mentioning that a very high and extended
spatial coherence, lasting up to hundreds of microns, has been demonstrated in 1D systems
by Wertz et al [77]. The observation of such coherence has been possible thanks to two main
factors, i.e. the extremely high quality of the sample and the fact that they study, unlike
us, propagating condensates which preserve their original spontaneous coherence during the
propagation along the wire.

On the other hand, when the 2D system is phase-matched, we observe in real space the
coexistence of the emission from both the 2D and the line defect as shown in Fig. 3.13(d),
with a dark region of about 6 µm separating them. The interference pattern presented in
Fig. 3.13(e) reveals a higher contrast in the 2D region than that in the line defect region.
It is worth noting that the fringes corresponding to the upper and the lower 2D part have
the same orientation and periodicity, which indicates that the same phase is obtained in the
two split 2D condensates, while the central region, where the line defect is located, presents
fringes with a slightly different periodicity with respect to that of the 2D, which could be
given by a different angle of emission. The coherence map presented in Fig. 3.13(f) reveals
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Figure 3.15: Temporal coherence decay of the line defect condensate when phase-matching
the 1D system at ETh = 1551.1 meV . Each point of the curve corresponds to an average
of points around the center of the line defect. A coherence decay time of ⌧c = 280 ps is
extracted from fitting the experimental data with a exponential function.

quite a large coherence modulated by the sample disorder in a less pronounced way than that
observed for 1D phase-matching conditions. This is well evidenced in Fig. 3.14(b), where the
horizontal profile of the coherence map of the line defect is shown. Under these conditions
we observe an increase in the coherence length of the line defect as well; in this case two
condensates coexist: one related to the 2D system created by parametric scattering and the
other in the defect created by a sort of migration of polaritons from the 2D condensate toward
the line defect, energetically favored by the lower energy of the 1D system.

It is well known that excitonic interactions lead to fluctuations in the number of particles
in the condensate, and that these fluctuations, broadening the energy of the emission, are
responsible for a faster decay of the coherence [64]. To test the effect of interactions in
the 1D system, we have also measured the temporal decay of the coherence when the OPO
condensate is created only in the quasi-1D system. For this purpose we use the method
described in § 2.4, this time measuring g(1) at a given point for different time delays ⌧ ,
g(1) (⌧) =

⇣
hE⇤(t)E(t+⌧)i
hE⇤(t)ihE(t)i

⌘
, which permits the evaluation of the signal temporal coherence. In

this manner, we obtain g(1) from zero up to a maximum delay of ⇠0.3 ns. A typical result
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of the temporal behavior of the coherence is presented in Fig. 3.15, where an exponentially
decaying coherence is found. A fit of the data obtains a decay time of ⌧c = 280 ps, which is
a long time compared to the polariton lifetime, but is almost an order of magnitude lower
than the best value found in § 3.1.2 for 2D OPO polariton condensates. We suggest that, as
in the 2D case, this coherence time is limited by the interactions in the system. However,
converting it into a coherence length using the polariton mass would give a coherence length
of the order of 100 µm, of the same order as those calculated in [79], but much longer than
the coherence decay seen in Fig. 3.14(a). Thus, we propose that disorder is the dominant
factor limiting the coherence decay in our experiments on 1D systems.

3.3 Summary

In this chapter we have presented a study of the coherence properties, both spatial and tem-
poral, of polaritons condensate in the OPO regime. The spatial coherence was investigated
below and at the OPO condensation threshold, obtaining a very large coherence length for
2D GaAs microcavity polaritons. Measurements of the temporal coherence reveal a predom-
inantly exponential decay caused by polariton-polariton interactions in a motional narrowing
regime. Although similar to the exponential decay associated with the Schawlow-Townes
linewidth, the mechanism is different, and gives a different dependence of coherence time on
condensate area. By varying the area of the condensate and comparing with scaling laws, we
observe that the dephasing time follows the predictions of the coherence theory of polariton
condensates. Constructing condensates of large area, we are able to achieve long coherence
times, which is a crucial step forward for exploiting polariton condensates in quantum and
ultrafast devices.

On the other hand, for an isolated 1D condensate we find that the coherence decays
rapidly over length scales much smaller than our spot size. We also find a coherence time
one order of magnitude smaller than that of a 2D condensate created in the same sample.
Such a behavior may reflect the increasing importance of fluctuations as the dimensionality is
reduced. However, some of the effects may be also related to changes in the effective disorder
strength.



Chapter 4

Polarization properties of OPO
condensates

In this chapter we report on the polarization properties of the polariton condensate. The
study is focused in the peculiar system described in § 3.2 where the coexistence of a 2D and
1D condensate allows us to investigate and compare the polarization behavior of the OPO
process in microcavity exciton-polaritons [82]. Polaritons present an one-to-one correspon-
dence between the polarization of the emitted photon and the polariton pseudospin, this
allows to obtain the polariton spin by directly measuring the polarization of light.

The rich spin dependent phenomena offered by exciton polaritons, especially the phe-
nomena found in the parametric scattering, make them a suitable system in order to develop
optical spin devices.

4.1 Polarization behavior of the OPO process

Polaritons are promising candidates for novel optical devices due to their spin structure,
consisting in two spin with opposite projections on the structure growth axis. Their spin
dynamics was studied for non-resonant pumping [16], where a sign reversal of the circular
degree of polarization was found; the reversal is related with the sign of the splitting between
the energies of the �+/�� polarized components of the PL. The spin of the lowest energy

73
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state changes from +1, for positive cavity-exciton detuning, to -1 for negative cavity-exciton
detuning; the results were modeled in the framework of a quantum theory describing the
momentum and spin relaxation by Kavokin et al. [83]. On the other hand, for the parametric
scattering process in the OPA configuration, mechanisms for scattering between polaritons
with opposite spin were observed, moreover spin-flip was found for linearly polarized pump
together with the amplification of a �+ probe beam [19, 20, 84].

Other spin dependent phenomena have been proposed and demonstrated experimentally:
spin switches [85], whose results resemble the findings of Ref. [19], where a localized probe
(�+ or ��) switches on a large emission of a pump controlling its polarization; the optical
spin Hall effect proposed by Kavokin et al. [86] was experimentally achieved in Ref. [87] and
a similar non-linear effect was observed in Ref. [88]; polarization pattern formation in real
space with high degree of circular polarization was proposed in Ref. [89], and independently
experimentally observed in Refs. [90, 91]. Moreover, for possible future devices that might
exploit spin properties, room temperature operation is a further requirement. In this context,
polariton lasing has been achieved in GaN-based microcavities [92].

Let us start here by reviewing the aspects related with the rotation of the polarization
of the emission with respect to that of the excitation laser. This is the main result found in
our study, where we have done a full study of the polarization properties of the emitted light
from of the OPO signal as a function of the angle of the linear polarization of the excitation.
An inversion of the linear polarization (⇠90° rotation) of the 2D-OPO signal with respect
to the polarization of the pump has been reported previously [84]. This was explained in
terms of the negative ratio of the scattering cross-sections of polaritons with opposite and
parallel spins, which are dominated by exchange interaction. Rotation of the linear polariza-
tion as well as conversion from linear to circular polarization have been observed in Ref. [93].
These results were modeled taking into account the self-induced Larmor precession (due to
the splitting between spin-up and spin-down polaritons and polariton-polariton interactions)
and the additional splitting, caused by the TE-TM splitting of excitons with dipole momen-
tum aligned along and perpendicular to the wavevector and the different reflectivities of the
microcavity for the TE and TM polarization (both dependent on the in-plane wavevector).
In 1D-microcavities, an inversion of the linear polarization of the signal and idler with re-
spect to that of the pump, in inter-band parametric scattering processes, has been reported,
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[94, 95] but only for particularly selected polarization conditions of the excitation.
The TE-TM splitting has been reported in Refs. [16, 96, 97], amounting to ⇠100 µeV ,

this value supports a key hypothesis made usually in the literature to theoretically describe
these phenomena, that the splitting between polarized eigenmodes is small. Two polarization
eigenstates are modeled as a single state of given energy subject to an effective magnetic
field, which induces rotation of the polariton pseudo-spin. This approach neglects that the
scattering rates toward the split states are slightly different, and in fact the description breaks
down if the polarization splitting is large. This is in general the case in 1D systems, where the
splitting between longitudinal and transverse modes is comparable with the splitting between
different confined modes.

In this chapter, we present a full study of the polarization properties of the light emitted
from coexisting 2D and 1D polariton condensates in a GaAs-based microcavity pumped in
the conventional intra-band OPO regime, as a function of the angle of the linear polarization
of the excitation. Our experiments confirm the previously reported results for the 2D case,
however, by reducing the dimensionality of the system from 2D to 1D, the polarization
properties are strongly modified. In the latter case by rotating the polarization plane of
the pump beam, we observe an abrupt switching behavior of the OPO condensate emission
between two highly linearly polarized states. Interestingly, the switching between these states
occurs with the double frequency of that of the rotation of the pump’s polarization plane.
In collaboration with the group of Prof. G. Malpuech, we have developed an extension of
the existing spin-dependent semi-classical Boltzmann kinetic equations, taking explicitly into
account the large polarization splitting value, which fits excellently the experimental data.
Real space simulations done with Gross-Pitaevskii equations also confirm our interpretation
of the experiments.

4.2 Polarization exciting the 2D system

In section § 3.2 we presented the coherence properties of a hybrid system found in the
microcavity studied in this thesis; in this section, we investigate the polarization properties
of the same system, when the phase-matching conditions are set for the 2D branch. The
experimental setup is described in § 2.5 and here we choose the pump power to be 164 mW ,
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well above the threshold Pth = 76 mW , the temperature is kept at 10 K, and the spot size
is ⇠ 40 µm, under these conditions two condensates are formed at the lowest sub-bands,
E1D = 1549.5 meV and E2D = 1550.2 meV , respectively. In Fig. 4.1(a) the real space
emission, integrated in energy, of an area around the defect is shown for excitation in the
OPO configuration using the appropriate phase-matching conditions. The system is pumped
⇠1.7 meV above the bottom of the 2D-LPB with an excitation energy of 1551.9 meV and an
in-plane wavevector of kx⇠2.0 µm�1, corresponding to a pump angle of 14.7°. Figures 4.1(b)
and 4.1(c) show the energy-momentum dispersion along the ky and kx directions, respectively.
For the momentum space imaging, we use a telescope, with a slit in the real space plane,
to filter spatially, reducing the collection area, the emission from the 2D area (otherwise
the emission from the 2D condensate would completely hide any feature of the emission
from the 1D condensate). More details about the procedure to obtain the momentum space
images are given in § 4.3. In order to obtain Fig. 4.1(b) the slit in the telescope has been
set in such a way that the intensities of the 2D and 1D condensates are similar and the
dispersion characteristics can be compared simultaneously. One can infer by inspection of
the dispersion relations images that, there are emission from non-condensed region (soft
blue color) coexisting within the same spatial region with a condensed. In the ky direction,
parallel to the wire [Fig. 4.1(b)], two dispersions are clearly observed, an energetically lower
and another higher one corresponding to the LPBs of the 1D and 2D system, respectively.
Strong emission located in momentum-space at the bottom of the LPBs at k = 0 indicates
that phase-matching conditions are sufficiently fulfilled for both the 1D and 2D systems.
Figure 4.1(c) shows the dispersion along the kx direction, perpendicular to the wire. The
additional confinement in this direction leads to a further quantization of the microcavity
states [77, 98] and in particular to a flat polariton dispersion in the direction normal to the
wire at the lowest energy.

It is worth to notice that, the angle (or, equivalently, the corresponding k-value) of the
excitation cannot be extracted from the momentum space images [Figs. 4.1(b) and 4.1(c)].
What is seen there at 1551.9 meV is reflected plus scattered laser light. The component of
the wave-vector parallel to the wire is basically negligible. Furthermore, in order to keep the
experimental realization of the OPO configuration as simple as possible, the experiments are
restricted to the most symmetric situation, i.e. keeping the plane of incidence normal to the
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Figure 4.1: Real space emission and polariton dispersion for 2D phase-matching conditions.
In (a) the normalized real space emission, integrated in energy, is shown in a region of
the sample where the planar cavity is split by a line defect in a linear false-color scale.
(b) shows the dispersion taken along the axis of the 1D system. Here both systems show
nonlinear emission from the bottom of their respective branch coexisting with non-condensed
polaritons. In (c) the dispersion is normal to the 1D system: marked difference are seen, the
1D system shows no dispersion, both for the condensed and non-condensed polaritons, while
the 2D remains the same as in the previous case. A logarithmic scale is used for (b) and (c).

axis of the wire (ky = 0). If the plane of incidence would not be normal to the axis wire, one
would be changing the OPO configuration and simultaneously more complicated polarization
selection rules would apply.

The emission in the area of the spot shows two rather rectangular shaped 2D condensates,
with an 1D wire condensate vertically aligned in-between them. The particular rectangular
shape and lines of the emission support the idea of strong cross-hatching due to DBR strain
relaxation, as it was pointed out in § 3.2. The long-range coherence properties of this sys-
tem have been presented in Chapter 3 and confirm the presence of a macroscopic quantum
condensate.

In § 2.5 the procedure to analyze the emitted light in its polarized components, in order
to obtain the Stokes parameters, was described. In Fig. 4.2 we show the polarized emission
decomposed in the six main components: four linear components (in the horizontal/vertical
and the diagonal/anti diagonal basis) and the circular ones, for a laser’s linear polarization
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oriented perpendicularly to the axis of the defect. This orientation of the laser’s polarization
plane, is chosen to be the horizontal axis in the Poincare sphere [see Fig. 1.8] so that the
degree of linear polarization (DLP) of the laser results in a positive value, calculated according
to DLP = (IH � IV )/(IH + IV ).

Figure 4.2(a) depicts a map of the polarized emission in the horizontal direction, which
shows light mainly emitted by the wire. The polarized emission in the vertical direction is
depicted in Fig. 4.2(b), this reveals emission from the 2D. Figure 4.2(c) represents the S1

component of the Stokes vector, i.e. the DLP in the H/V basis. In the second row, the emis-
sion polarized along the diagonal and anti-diagonal directions are presented in Figs. 4.2(d)
and 4.2(e), respectively, and the S2 component of the Stokes vector is shown in Fig. 4.2(f).
The circularly polarized emission is shown in Figs. 4.2(g) and 4.2(h) which corresponds to
the �+ and �� -polarized emitted light, respectively; the degree of circular polarization is
extracted from these two maps and the result is compiled in Fig. 4.2(i). As one can see from
the Stokes parameters, the S1 component shows a high degree of polarization in both the 2D
and 1D besides of marked difference in their orientation. The other two components of the
Stokes vector show a rather low degree of polarization and therefore no significant differences
between the 2D and the 1D system can be appreciated.

As clearly observed in Fig. 4.2(a), there is a markedly different behavior in the S1 compo-
nent for the 2D and 1D system, therefore we investigate in detail the DLP in the H/V basis
as a function of the angle, ✓P , of the linear polarization of the laser. Polarization maps for
the DLP corresponding to the S1 component are shown in Fig. 4.3 for different ✓P : ✓P = 0
(normal to the wire), ✓P = 20°, ✓P = 45° (diagonal) and ✓P = 90° (parallel to the wire). In
Fig. 4.3(a) the pump polarization is aligned perpendicularly to the wire and it is observed
that the polarization of the 2D polaritonic emission is rotated by 90° with respect to that of
the pump laser (blue colors). However, the polarization of the light emitted from the wire
coincides with that of the pump polarization (red colors). In Fig. 4.3(b), for ✓P = 20°, the 2D
emission shows a slight decrease in the DLP, while the DLP of the 1D system becomes nearly
zero. Figure 4.3(c) corresponds to the diagonally polarized excitation: now the DLP of the
2D emission vanishes, whereas in the 1D system a high negative DLP is observed. Finally,
when the system is excited with polarization parallel to the wire (Fig. 4.3(d), ✓P = 90°), both
polarizations of the 1D and 2D emissions are rotated by 90° with respect to that of the pump
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Figure 4.2: Polarized emission. (a)/(b) depicts the polarized emission in the horizon-
tal/vertical direction. In (c) the corresponding false-color intensity map for the emitted
light in the S1 component is shown. The second row (d)/(e) shows the light emitted in the
diagonal/antidiagonal direction. (f) depicts the Stokes parameter calculated in the diagonal
basis. In (g)/(h) is presented the emission in the right/left handed circularly polarized basis.
(i) shows the S3 component, which is the degree of circular polarization. In (c) a high degree
of polarization is seen in both systems, moreover a marked difference is observed between
them, the 2D system presents a polarized emission vertical direction (rotated with respect to
the laser’s polarization), on the other hand the 1D system shows polarized emission with the
same polarization of the laser. The S2 and the S3 components depict a rather small degree of
polarization and significant differences are appreciated neither in the S2 nor S3 components.
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Figure 4.3: S1 Stokes component for selected values of ✓P . The arrows depict the plane
of the pump’s polarization. In (a), ✓P = 0, the polarization of the emission from the 2D
system is opposite to that of the laser, while the 1D condensate keeps the same polarization
of the pump. In (b), ✓P = 20°, the DPL of the 2D condensate decreases and that of the 1D
system vanishes. In (c), ✓P = 45°, the 2D condensate exhibits a negligible DLP, while the
1D emission is highly polarized parallel to the wire. In (c), ✓P = 90°, both condensates show
an inversion of the polarization plane with respect to that of the laser. Dashed boxes show
the area of integration, used to obtain the curves in Fig. 4.7.

laser.

For the sake of completeness, the polarization properties were also studied for ellipti-
cally polarized pump laser, in Figs. 4.4(a)-(c) the Stokes components for a pump ellipticity
(e = �1) are shown, here inversion is neither observed for the 2D nor 1D condensate, i.e.
the emission of the signal state is completely driven by the laser, as in Ref. [19]. When the
ellipticity of the pump is null (e = 0), it corresponds to horizontally linearly polarization,
Figs. 4.4(d)-(f) depict similar polarization maps as those shown Fig. 4.2.
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e"="#1" e"="0"

Figure 4.4: Stokes parameters for elliptically polarized pump. (a)-(c) Show the case for
e = �1, where the dominant component is the S3. Figures (d)-(f) are the Stokes parameters
for e = 0.

4.3 Polarization exciting the 1D system

As it was shown in § 3.2, it is possible to selectively generate only the 1D condensate by
fine-adjusting the excitation to the phase-matching conditions of the wire, i.e. lowering the
excitation energy to E = 1550.8 meV and choosing an in-plane wavevector of kx ⇠1.55 µm�1,
corresponding to a pump angle of 11.4°, as demonstrated in the real space image in Fig. 4.5(a).
Now, only the emission of the 1D wire is observed, while no condensation occurs in 2D.
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Figures 4.5(b) and 4.5(c) show the polariton dispersion parallel and perpendicular to the
wire, respectively, and confirm the presence of a wire condensate at k = 0 and the absence
of the 2D condensate. Note, that the excitation energy is still well above the 2D condensate
energy, as observed in Fig. 4.1, and also above the LPB, but the strict 2D phase-matching
conditions impede the formation of the 2D OPO.

2D#
#
1D#

2D###1D###2D# Pump# Pump#

Figure 4.5: Real space emission, and polariton dispersion for 1D phase-matching conditions.
In (a) the normalized real space emission, integrated in energy, at the same region as in
Fig. 4.1, is shown in a linear false-color scale, but now there is only significant emission
from the 1D condensate. (b) Dispersion taken along the axis of the 1D system. Here the
2D polariton dispersion does not show condensation, whereas in the 1D system nonlinear
emission is found; besides, the presence of the quasi-parabolic dispersion in the 1D system
indicates coexistence of non-condensed and condensed polaritons. In (c) the dispersion is
normal to the 1D system: marked difference are seen, the 1D system shows no dispersion
while the 2D remains basically the same. A logarithmic scale is used for (b) and (c).

One should note that the main purpose of the momentum space images, shown in the
Figs. 4.1(b), 4.1(c), 4.5(b) and 4.5(c) is to visualize the dispersion relations of the 1D and 2D
system for different directions. A quantitative analysis of the results shown in these figures
is neither needed nor performed for our studies. Slightly different alignment of the imaging
optics produces differences between Figs. 4.1(b) and 4.1(c) regarding intensities, energy shifts
and dispersion curvatures. The same effect is observed comparing Figs. 4.5(b) and 4.5(c). The
larger energy-blueshifts seen in Figs. 4.1(b) and 4.1(c) as compared to those in Figs. 4.5(b) and
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4.5(c) arise from differences in the occupancy of the different states. The higher density of 2D
polaritons, and consequently the increased polariton-polariton interactions in the condensed
phase [Figs. 4.1(b) and 4.1(c)], leads to a blueshift of ⇠0.5 meV for the 2D system with
respect to the noncondensed situation [Figs. 4.5(b) and 4.5(c)]. For the same reason, the
condensed 1D polariton state shifts also to higher energies, although by a smaller amount.

Turning back again to the polarization properties, in Fig. 4.3, where the phase-matching
conditions were set for the 2D branch, the 1D system showed a different evolution of the S1

component with respect to the 2D system as the angle ✓P was varied. In Fig. 4.6 we present
polarization maps for the same selected values as in Fig. 4.3, when the phase-matching
conditions are now set for the 1D branch.

The orientation, ✓P , of the linearly polarized excitation varies for the four panels: ✓P = 0
(normal to the wire), ✓P = 20°, ✓P = 45° (diagonal) and ✓P = 90° (parallel to the wire).
The results found are qualitatively the same as those obtained in the previous section: in
Fig. 4.6(a) the pump polarization is aligned perpendicularly to the wire and it is observed
that the polarization of the light emitted from the wire coincides with that of the pump
polarization (red colors). In Fig. 4.6(b), for ✓P = 20°, the DLP of the 1D system becomes
nearly zero. Figure 4.6(c) corresponds to the diagonally polarized excitation: now in the 1D
system a high negative DLP is observed. Finally, when the system is excited with polarization
parallel to the wire (Fig. 4.6(d), ✓P = 90°), the polarization of the 1D emissions is rotated
by 90° with respect to that of the pump laser.

Looking into the details of the DLP patterns shown in Figs. 4.3 and 4.6 , a fine structure
is observed in the region of the wire, which was not further studied since we were only
interested in the overall DLP behavior as a function of the laser polarization plane. However,
the resolution of this fine structure demonstrates the power of polarization-resolved emission
studies compared to regular photoluminescence ones (see Figs. 4.1(a) and 4.5(a), where this
fine structure is not resolved).

4.4 Differences between the 2D and 1D systems

Here we compare the main results obtained for the DLP as the laser’s polarization plane is
rotated, Figure 4.7 compiles the emission DLP as a function of ✓P in more detail. These data
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Figure 4.6: S1 Stokes component for selected values of ✓P . The arrows depict the plane
of the pump’s polarization. In (a), ✓P = 0, the polarization of the emission from the 1D
condensate keeps the same polarization of the pump. In (b), ✓P = 20°, the DPL of the 1D
system vanishes. In (c), ✓P = 45°, the 1D emission is highly polarized parallel to the wire.
In (c), ✓P = 90°, the condensate shows an inversion of the polarization plane with respect to
that of the laser. Dash box shows the area of integration, used to obtain the curves in Fig.
4.3.

are obtained by integration and normalization of areas in the DLP maps that are depicted as
dashed boxes in Figs. 4.3(a) and 4.6(a). Figures 4.7(a) and 4.7(b) show the results discussed
above for 2D phase-matching conditions, while Fig. 4.7(c) corresponds to 1D phase-matching
conditions.

Analysis of the 2D-case: For the 2D condensate, Fig. 4.7(a), it is observed that the
DLP changes, in a sinusoidal-like fashion, between -0.5 and 0.4, when varying the pump po-
larization angle ✓P . In particular, for perpendicular (?) and parallel (k) polarized excitation
with respect to the wire, the emission polarization is rotated by ⇠ 90°. Linear polarization
inversion is a typical behavior of microcavity polariton systems, which has been previously
observed experimentally [93] and explained theoretically [84] in terms of polariton-polariton
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Figure 4.7: Degree of linear polarization as a function of the linear polarization angle of the
pump: Colorbars next to the vertical and bottom axis represent the DLP of the emission
and the pump, respectively. At ✓P = 0 (✓P = 90°) the laser is polarized normal (parallel)
to the wire, as indicated by the ? (k) symbol. The symbols at the ordinates indicate the
main orientation of the emission’s polarization plane: ? (k) perpendicular (normal) to the
wire axis. (a) Shows the evolution of the DLP for the 2D system, for 2D phase-matching
conditions. (b) Depicts the evolution of the DLP for the 1D system, for 2D phase-matching
conditions. (c) Compiles the evolution of the DLP for the 1D system, for 1D phase-matching
conditions. The solid lines (red open points) are calculated DLPs using the Boltzmann (GP)
model (see § 4.5).
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scattering. It confirms that in our system the interaction constants of same-(↵1) and opposite-
(↵2)spin polaritons, described in § 1.4, are of opposite signs and that the interaction between
polaritons of opposite spins is attractive [17].

Analysis of the 1D-case: The DLP of the 1D wire emission for the 2D phase-matching
conditions, Fig. 4.7(b), is remarkably different to the one observed for the 2D condensate.
Now the emission is polarized either parallel or normal to the wire with high DLP up to
-0.7 and 0.8, respectively. Moreover, the transition between these two polarization states is
very abrupt. Linear polarization inversion has also been observed in inter-band parametric
scattering processes in polariton wires [94, 95], where a linearly polarized TM pump laser
excites the TM mode and the parametric scattering brings the signal and idler polaritons to
the TE mode of a different branch. Furthermore, our study, performed over the full range
of the angles of the pump’s polarization, reveals not only the inversion but also switching
of the polarization with the double frequency of the rotation of the pump’s polarization
plane. Figure 4.7(c) shows the evolution of the wire DLP for 1D condensate phase-matching
conditions: compared with Fig. 4.7(b) no significative differences are observed, suggesting
that the 2D and 1D system are decoupled.

4.5 Theoretical model

In order to describe and interpret our experimental results, we profited from the collaboration
with the group of professor G. Malpuech. Two complementary models were used to model
the results: (i) the coupled 2D spinor Gross-Pitaevskii equation for excitons and Schrödinger
equation for photons [99]; (ii) the semi-classical Boltzmann equations for populations and
pseudo-spins of pump, signal and idler [100]. The former model allows to obtain spatial
images similar to the experimental ones (Fig. 4.3), but is numerically very heavy, while the
latter one captures the essence of the physics involved and allows to reproduce the DLP in
the 2D and 1D cases (Fig. 4.7) when there is no need for spatial resolution.
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4.5.1 Gross-Pitaevskii approach

In the first model, we write the coupled equations for a 2D four-component exciton-photon
wave-function composed of a photonic fraction  "#(x, y) and a excitonic fraction '"#(x, y):

i~@ "#

@t
= � ~2

2mC

� "# +
~⌦R

2

'"# +Hx #"

+U "# �
i~
2⌧ph

 "# + P"# + f"#

(4.1)
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+↵2 |'#"|2 '"#

(4.2)

Here, mC = 4⇥ 10

�5 m0 is the photon mass, mX = 0.6m0 is the exciton mass, m0 is the
free electron mass, ~⌦R = 4.2 meV is the Rabi splitting, ↵1 = 6Eb a2B and ↵2 ⇠ �0.01↵1 are
the triplet and singlet interaction constants [17], respectively. Eb = 10 meV is the exciton
binding energy and aB = 10nm is the exciton Bohr radius. The potential acting on photons,
confining them in the trap of width 4.25 µm and depth 0.6 meV , is described by U . ⌧ph = 1ps

is the photon lifetime (the exciton decay is neglected), P is the quasi-resonant pumping term,
exciting the system at a given frequency ! ⇡ 1.6meV /~ above the bottom of the polariton
branch and f is the noise, which serves to account for the effects of spontaneous scattering.
Pumping provides an average of 10 particles in a 0.25 µm-wide unit cell in the steady state,
and the spontaneous scattering creates 0.01 particles. The term Hx = 30 µeV describes the
effective magnetic field (polarization splitting of 60 µeV ) acting only inside the 1D wire.

The results of the simulations performed for the same four orientations of the pump
polarization as in the experiments (✓P = 0

�, 20

�, 45

� and 90

�) are presented in the Fig. 4.8:
they reproduce qualitatively the experimental observations of Fig. 4.3.

In these simulations, as in the experiments, in the 2D region the polarization is always
inverted because of the opposite signs of ↵1 and ↵2, while in the quantized 1D region the
polarization is determined by an interplay between the signs of the ↵’s coefficients and the
splitting between the parallel and transverse polarized modes, as explained in detail below.
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Figure 4.8: Calculated S1 Stokes component for selected values of ✓P : (a) ✓P = 0°, (b)
✓P = 20°, (c) ✓P = 45° and (d) ✓P = 90°.

Note, that in the simulations the 2D condensate extends over the entire area shown in
the figure, in contrast to the experiments, where the condensate’s extension is about 40 µm.
Also, the DLP is higher in the calculations than in the experiments, however, a qualitative
overall agreement between experiment and theory is evident. Although this model is nicely
fitting the experiments, it is quite demanding numerically because of the need for a large
2D grid, a small step size to describe accurately the potential defect and the profiles of the
modes, and long calculation times necessary to obtain spontaneous OPO with a relatively
weak noise. In Figure 4.8(c), one can notice a small asymmetry between the left and the
right side of the wire. This asymmetry is due to the direction of the propagation of the pump
polaritons. The left part is “before” the defect and right part is “after” the defect.
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4.5.2 Semi-classical Boltzmann approach

This approach considers only the three strongest populated modes (pump, signal and idler),
while all others are neglected, which greatly improves the computational efficiency of the
model. Using the experimental evidence of decoupled 2D and 1D systems, we calculate these
sub-systems separately. The system of equations describing the dynamics of the pump, signal
and idler populations and their pseudo-spins is written as:

dNk",#

dt
= �Nk",#

⌧k
+

✓
dNk",#

dt

◆����
rot

+

✓
dNk",#

dt

◆����
p�p

+ Pk (4.3)

dSk

dt
= �Sk

⌧k
+

✓
dSk

dt

◆����
rot

+

✓
dSk

dt

◆����
p�p

+Pk (4.4)

where Nk",# are the z projections of the populations and Sk is the in-plane pseudo-spin.
Thus, Sk contains the Sx and Sy components, while the Sz projection is given by N" � N#.
Here k = p, s, i corresponds to the pump, signal and idler states. ⌧k is the lifetime of the
corresponding state, and Pk is the pumping term (Pp = P , Ps,i = 0). The semi-classical
equations take into account the spontaneous and the stimulating scattering processes. We
solve these equations separately for each case presented in Fig. 4.7: 2D [Fig. 4.7(a)], 1D
out-of-resonance [Fig. 4.7(b)] and 1D resonant case [Fig. 4.7(c)]. All other relevant details of
the model are given in the Annex.

These equations were used very efficiently to describe the polarization dynamics in various
OPO configurations [93, 101], but always in the 2D case of planar cavities. The result of the
simulation for the 2D system is presented as a solid line in Fig. 4.7(a) giving a very good
agreement with the experimental data and showing polarization inversion.

However, the observed effects in the 1D case are not limited to a simple polarization
inversion, and the model requires to be extended. The strong splitting between the linearly
polarized polariton modes has not been treated so far. This splitting is of the order of
0.1 meV , and its effect is not limited to a simple precession of the polariton pseudo-spin in
an effective magnetic field, analogous to the TE-TM field. It also affects energy conservation
of polariton-polariton inelastic scattering processes, causing slightly different scattering rates
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into parallel and normal modes. This can be taken into account in the three-level model by
introducing a new term to Eq. (4.4) describing the pseudo-spin dynamics of signal and idler:

+ex�W

✓
dNj

dt

◆����
p�p

(4.5)

where j = s, i stands for signal and idler, respectively. This term describes the dynamics of
pseudo-spin projection on the unit vector ex along the x-axis of polaritons scattered into s

and i and is proportional to the relative difference between the scattering amplitudes into
the linear modes �W = (W? �Wk)/(W? +Wk). �W originates from the difference in the
overlap integrals between the states localized in the trap and the extended propagating states
of the pump and the idler. Indeed, the trap is wide enough to contain several quantized levels.
The highest levels of the two orthogonal polarizations that become strongly populated in the
experiments [see Figs. 4.3 and 4.9] do not have the same transverse quantum number n.
Otherwise the transverse-polarized state ? would be higher in energy than the longitudinal-
polarized state k because of the longitudinal-transverse splitting. The overlap integrals,
contained in the scattering rates W , exhibit a 1/n dependence, implying that scattering into
the lower lying states is favored. On the other hand, phase-matching conditions favor the
population of higher lying ones. This balance leads actually to a further decrease of �W .
Thus, this term is comparable to the one responsible for polarization inversion (the latter is
proportional to ↵2/↵1) and the competition between them can determine the relative sign of
the signal’s and pump’s DLP. Values of ↵2/↵1 = �0.01 and �W = 0.008 are typically used
in the simulations.

This additional contribution would produce a linear polarization in the signal even for
an unpolarized pump. Since scattering into one of the two polarization eigenstates is more
efficient, it becomes populated stronger, which leads to an increase of the DLP. The interplay
between the polarization inversion and the generation of linear polarization explains the
observed DLP of the signal state in Figs. 4.7(b) and 4.7(c) for 2D and 1D phase-matching
conditions, respectively. Since the linear polarization is generated by the presence of the
confining potential, the resulting behavior is essentially the same for both cases.

A good agreement between both models concerning the DLP of the wire is obtained:
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the results of the GP simulation of Fig. 4.8 are depicted as red open points in Fig. 4.7(b).
They coincide well with the results of the Boltzmann model. Both theoretical approaches
allow us to conclude that the peculiar behavior of the DLP for the 1D case is a result of the
competition between the polarization inversion mechanism and the difference between the
scattering rates towards the polarization eigenstates, which are quantized in the wire. The
inversion mechanism is based on the spin-anisotropy of the interactions, which acts both for
2D and 1D. The nonlinearity of the OPO configuration does not allow representing the signal
DLP simply as the sum of the two effects and the resulting curve becomes not sinusoidal.
Finally, it is important to mention that this competition and the nonlinearities imply that
the results would differ for a wire characterized by different parameters.

4.6 Polarization fine structure

The Boltzmann model renders well the change of the DLP for the 1D and 2D condensates
and implies orthogonal, linearly polarized states with different polariton-polariton scattering
rates. Indeed, our experiments reveal the existence of such polarization fine structure. We
show in Fig. 4.9 spectrally and spatially resolved polarization false-color intensity maps of
the 1D system for varying angle ✓P of the polarization of the pump under 2D phase-matching
conditions. A length of ⇠1 µm in the x direction has been integrated to obtain these maps.
Red and blue represent, as in the previous figures, linear polarizations normal and parallel
to the wire axis, respectively. Note that higher values for the DLP than those depicted in
Figs. 4.3 and 4.7 are obtained, since the non-polarized emission arising from the uncondensed
phase is now spectrally filtered out.

The two energetically highest lying lines at ⇠1552 meV and ⇠1550 meV correspond to
the excitation laser and the emission from the 2D system, respectively. In Fig. 4.9(a) the
angle ✓P is zero and the polarization of the emission at ⇠1549 meV of the 1D system is the
same as that of the excitation. However, for ✓P = 20°, shown in Fig. 4.9(b), the emission
of the 1D system consists of two split lines, each one with opposite linear polarization. In
Fig. 4.9(c), ✓P = 45°and the 1D system again shows just a single emission line polarized
parallel to the wire. For an angle of ✓P = 90° the 1D system exhibits again emission of high
DLP and polarization inversion occurs [see Fig. 4.9(d)].
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Figure 4.9: Spectrally resolved S1 Stokes component, with the same selected values of ✓P as
in previous figures. In (a) the 1D system shows emission polarized normal to the wire at
⇠1549 meV . (b) Two lines with opposite polarization in the 1D condensate are resolved: at
low (high) energy the emission is polarized normal (parallel) to the wire. In (c) again a single
line is emitting. (d) The emission from the 1D system becomes again polarized normal to
the wire. The square brackets in (a) delimit the range, along the wire, used to integrate the
polarized emission that is shown in Fig. 4.10.

The polarized wire emission integrated along the wire, in the range enclosed by square
brackets in Fig. 4.9(a), is shown in more detail in Fig. 4.10 for selected polarizations of the
pump. The emission spectra exhibit shoulders, which suggests that more than one mode are
excited, however, in the presented measurements they cannot be resolved due to experimental
limitations. Furthermore, for all pump polarizations, a polarization splitting of the wire LPB
into two orthogonal linearly polarized modes LP 1D

k and LP 1D
? is obtained: they are polarized

parallel and normal to the wire, respectively. Large polarization splitting in polariton wires
has been observed previously and attributed to external strain [77, 94, 95] . In our samples,
we observe marked cross-hatching suggesting the presence of large internal strain fields, which
are possibly the source of the polarization splitting [78]. In Fig. 4.10 the splitting between
the linearly polarized modes appears to be different in each of the Figs. 4.10(a)-4.10(d). One
must consider that several components are present in each emission band (not resolvable due
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Figure 4.10: Emission spectra of the wire condensate for different ✓P . Polarization fine
structure is observed and attributed to internal strain. The modes LP 1D

k and LP 1D
? are

polarized parallel and normal to the wire, respectively.

to experimental limitations) and that the relative changes of intensity of each component,
together with the blueshifts due to polariton-polariton interactions, lead to an apparent
change of the splitting. In Figs. 4.10(a) and 4.10(d) the pump is polarized normal and
parallel to the wire, respectively: in both cases the dominant emission originates from the
energetically lower lying, polarized normal to the wire, mode LP 1D

? , while the intensity of
parallel polarized mode LP 1D

k is small, giving rise to a high DLP. The spectra in Fig. 4.10(b)
(✓P = 20°) exhibit closer emission intensities from both lines, and therefore a vanishing DLP
is observed in Figs. 4.3(b) and 4.7(b). Finally, in Fig. 4.10(c) the pump’s polarization is



94 CHAPTER 4. POLARIZATION PROPERTIES OF OPO CONDENSATES

diagonal and the emission arises mainly from the parallel polarized mode LP 1D
k rendering

again a high DLP. In both cases shown in Figs. 4.10(b) and 4.10(c), the larger emission arises
from the energetically higher lying state, LP 1D

k , in contrast to what would be expected for
a thermal distribution. However, polariton condensates, especially in the OPO regime, are
highly non-thermal. This behavior is similar to the observation made in Ref. [96], where
a splitting in the linear polarization is reported and a larger occupancy of the higher lying
state is observed. This fact has been attributed to crystallographic anisotropy and pinning.

4.7 Summary

To sum up, we have investigated polarization properties of 2D and 1D polariton condensates
as a function of angle of the pump’s polarization plane, ✓P . In both cases, we observe
polarization inversion for a pump polarization parallel to the wire. However, for the 1D wire,
as the polarization plane of the excitation is rotated, we observe a switching between two
states of high DLP. The switching between the two states occurs with the double frequency of
the rotation of the pump’s polarization plane. Two models, based on semiclassical Boltzmann
kinetic equations and the Gross-Pitaevskii equation, respectively, are presented and reproduce
well the polarization rotation for the 2D condensate and in particular the halved periodicity
of the rotation for the 1D limit.

4.8 Annex

Here we give the details of the semi-classical Boltzmann approach used to simulate the DLP
in the 2D and 1D cases. The rotational terms in Eq. (4.3) and (4.4) describe the action of
various effective magnetic fields associated with polarization splittings:

✓
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dt

◆����
rot
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✓
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◆����
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⌦LT, k is the effective magnetic field induced by the polariton TE-TM splitting [5], ⌦int is an
effective field due to spin-anisotropic interactions

~⌦int,k = 2ez
X

k0

⇣
V (1)
k,k0,0 � V (2)

k,k0,0

⌘
(Nk0" �Nk0#) , (4.8)

where V (1)and V (2) are the matrix elements of polariton-polariton interactions described in
detail below, and ez is a unit vector in the z direction of the Stokes spaces, corresponding to
circularly polarized light. Finally, the polariton-polariton scattering terms can be expressed
as
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describe numerous experiments on the polariton OPO [93, 101]. They are presented here
for the reader’s convenience. The terms W (1), W (2) and W (12) represent polariton-polariton
interactions in different spin configurations:
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Equations (4.11)-(4.13) are written for the most general case. Taking into account the
excitonic fraction of the relevant states, and assuming a contact interaction for the matrix
elements V, therefore not depending on k, V (1) and V (2) correspond to the ↵1 and ↵2 pa-
rameters of the Gross-Pitaevskii Eq. (4.2). We assume for the calculations the usual ratio
↵2/↵1 ⇠ �0.01 (see Refs. [17, 93]), which obtains a negative W (12)

0,k
p

,k
p

. Since the expression
for the in-plane pseudo-spin reduces to

dSs

dt
= W (12)

0,k
p

,k
p

(N"p +Np#)Sp , (4.14)

the negative sign of W (12)
0,k

p

,k
p

leads to polarization inversion during spontaneous scattering
from the pump to the signal state.
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Chapter 5

General conclusions

In this thesis we have investigated polaritons condensates created under the OPO configura-
tion. Its coherence properties were addressed in Chapter 3 and the polarization properties
presented in Chapter 4.

The measurements for the first order correlation function have shown that very long
coherence times and extended spatial coherence can be obtained even for polaritons with
lifetimes of the order of ⇠2 ps. Coherence times lasting up to ⇠3 ns, the longest ones reported
in microcavities, were achieved either by increasing the size of the condensates (increasing
the pump spot size and keeping the excitation power density fixed) or by increasing the pump
power leaving fixed the condensate size. The main effect of both approaches is to increase
the number of condensed particles and this causes that the condensates fall into a motional
narrowing regime.

The appearance of spontaneous spatial coherence has been demonstrated following the
proposal by Carusotto and Ciuti [58], where the threshold for condensation is achieved by
varying the excitation laser energy.

Different regimes were observed as a function of the pump power:

• Below power threshold for condensation, both the spatial and temporal coherence
showed a fast decay, the former decayed within the polariton’s de Broglie wavelength,
and the latter attained a coherence time of ⇠7 ps with a well defined exponential decay.

• Slightly above power threshold both, spatial and temporal coherence displayed an in-
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crease of its characteristic decay, the coherence time went up to ⇠80 ps and the spatial
coherence became 3 time more extended than that in the non-condensed case.

• Well above the power threshold, the condensate showed remarkable features like a flat
spatial coherence, limited only by the pump spot size, and coherence times of the order
of ⇠3 ns.

Moreover it has been shown that defects in the DBR can trap polaritons and form a conden-
sate. By properly adjusting the phase-matching conditions, one can create either solely a 1D
condensate or coexisting 1D and 2D condensates. In the case of an isolated 1D condensate,
it has been found that the coherence decays rapidly over length scales much smaller than
the excitation spot size. It has been also obtained that the coherence time is one order of
magnitude smaller than that of a 2D condensate created in the same sample. Such a behavior
reflects the increasing importance of fluctuations as the dimensionality is reduced. Addition-
ally, the larger disorder in the 1D system, as compared with the 2D one, is responsible for
the degradation of the coherence in the condensate trapped by the defects.

The polarization properties of the coexisting 2D-1D condensates have been studied, the
2D condensate showed that its emission is polarized and rotated about ⇠90º with respect
to the linear polarization of the laser, presenting a sinusoidal-like behavior, with a period
T = ⇡, as a function of the orientation of the laser’s plane polarization. The 1D condensate,
on the other hand, presented a different behavior:

• Its polarized emission was aligned with respect to the polarization of the laser when
the pump’s plane polarization is perpendicular to the main axis of the defect.

• On the other hand its polarized emission was inverted ⇠90º with respect to the laser’s
plane polarization for pump’s plane polarization along the axis of the defect.

• When the pump’s plane polarization laid in either of the diagonals with respect to the
axis of the defect, the polarized emission was oriented along the defect’s axis.

This behavior has been successfully explained theoretically by the group of G. Malpuech
considering that the state of the polarized emission is a result of two effects: a precession
due to the presence of a induced magnetic field by the TE-TM splitting and the difference
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in the scattering rate towards the different highly linearly polarized states present in the 1D
system, which is determined by the overlap integrals between the states localized in the trap
and the extended propagating states of the pump and the idler.
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Conclusiones generales

En esta tesis hemos investigado condensados de polaritones creados en la configuración de
excitación de oscilador paramétrico óptico (OPO). En el Capítulo 3 se han estudiado sus
propiedades de coherencia, mientras que en el Capítulo 4 se han abordado sus propiedades
de polarización.

Las medidas de la función de correlación de primer orden (g(1)) han mostrado la posi-
bilidad de obtener tiempos de coherencia muy largos y coherencia espacial macroscópica,
incluso cuando los polaritones tienen tiempos de vida del orden de ⇠2 ps. Se han obtenido
tiempos de coherencia del orden de ⇠3 ns, los más largos reportados en microcavidades. Este
resultado experimental se consiguió a través de dos procedimientos: aumentando el tamaño
del haz de excitación y manteniendo su densidad de potencia constante o manteniendo fijo el
tamaño del haz y aumentando su potencia de bombeo. El principal efecto de los dos métodos
es aumentar el número de partículas condensadas, provocando que el condensado entre en
un régimen de estrechamiento debido al movimiento (“motional narrowing”).

Además, se ha demostrado la aparición de coherencia espacial espontánea siguiendo la
propuesta teórica de Carusotto y Ciuti [58], donde el umbral de condensación se define en
función de la energía de excitación del láser.

Se han observado diferentes regímenes del estado de los polaritones que dependen de la
potencia de bombeo:

• Cuando ésta se encuentra bajo la potencia umbral de condensación, en el que la co-
herencia espacial y la coherencia temporal han mostrado un decaimiento rápido. La
coherencia espacial decae en el rango de la longitud de onda de de Broglie de los po-
laritones, mientras que la coherencia temporal es del orden de ⇠7 ps, con un marcado
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decaimiento exponencial.

• Cuando la potencia de bombeo tiene un valor justo por encima de la potencia um-
bral. En este caso las coherencias temporal y espacial muestran un incremento del
decaimiento característico: la coherencia temporal decae en el rango de los ⇠80 ps, y
la coherencia espacial incrementa 3 veces con respecto al caso anterior.

• Por último, cuando la potencia de bombeo excita muy por encima del valor de la po-
tencia umbral para la condensación de polaritones. Éste adquiere propiedades notables
como una coherencia espacial plana (únicamente limitada por el tamaño del haz de
bombeo) y una coherencia temporal del orden de ⇠3 ns.

Por otra parte, se ha mostrado que los defectos en los espejos de Bragg de la microcavidad
pueden generar estados localizados donde los polaritones quedan condensados y atrapados
por ellos. Bajo condiciones apropiadas de ajuste de fase se puede crear un condensado 1D
aislado (sin condensación en la región 2D) o un condensado extendido a un sistema 2D-1D. En
el caso del condensado 1D aislado, se ha encontrado que la coherencia decae rápidamente en
distancias mucho más pequeñas que el tamaño del haz de excitación. También se ha obtenido
que el tiempo de coherencia es un orden de magnitud más pequeño que el correspondiente
al condensado en la región 2D en la misma zona de la muestra. Este comportamiento refleja
la importancia de las fluctuaciones cuando la dimensionalidad se reduce. Adicionalmente,
el desorden que presenta el sistema 1D, comparado con el sistema 2D, es responsable de la
degradación de la coherencia en un condensado confinado en un defecto.

Finalmente se detallan los resultados obtenidos en la investigación de las propiedades de
polarización del condensado en los sistemas 2D-1D. El condensado bidimensional muestra
una emisión linealmente polarizada y rotada ⇠90º con respecto a la polarización lineal del
haz de excitación. También se observa una oscilación sinusoidal con un periodo T = ⇡ en
función del ángulo de orientación del plano de polarización lineal del láser. Por otro lado, el
condensado 1D presenta un comportamiento significativamente diferente:

• Cuando el plano de polarización del láser está alineado perpendicularmente al eje lon-
gitudinal del defecto, la emisión linealmente polarizada del defecto está alineada con el
plano de polarización del láser.
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• Por otra parte, cuando el plano de polarización de la excitación está alineado parale-
lamente al eje longitudinal del defecto, la emisión polarizada del condensado 1D está
invertida ⇠90º con respecto al plano de polarización del láser.

• En el caso intermedio en el que el plano de polarización de la excitación yace a lo largo
de cualquiera de las direcciones diagonales con respecto al eje del defecto, la emisión
polarizada se orienta a lo largo del eje del mismo.

Este comportamiento se ha explicado teóricamente con las simulaciones realizadas por el
grupo de investigación del Prof. G. Malpuech, considerando que la emisión polarizada es
el resultado de dos efectos: una precesión debida a la presencia de un campo magnético
efectivo, inducido por la separación TE-TM, y la diferencia en la tasa de "scattering" hacia
los distintos estados polarizados presentes en el sistema 1D, dicha tasa queda determinada
por las integrales de solapamiento entre estados localizados en la trampa 1D y la propagación
extendida de los estados de bombeo y ocioso (“idler”).
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