
i

UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

PROYECTO FIN DE CARRERA

Design and creation of a drag-and-drop editor that allows
the customization of a sales application in

NFC payment terminals

José María Angulo Pinedo

Abril 2014

INGENIERÍA DE TELECOMUNICACIÓN

ii

Design and creation of a drag-and-drop editor that allows
the customization of a sales application in

NFC payment terminals

Autor: José María Angulo Pinedo

Tutor: Heinz Bircher-Nagy

Ponente: Germán Montoro Manrique

Software Development

Avance Pay AG

Abril de 2014

iii

iv

Resumen

El objetivo de este proyecto es el diseño y creación de un editor drag & drop que

permita la personalización de aplicaciones utilizadas en terminales móviles, como TPV

(Terminales Punto de Venta). El editor será desarrollado tanto para entornos Android como

para clientes web, y tiene como objetivo facilitar la personalización de sus aplicaciones de

venta a los pequeños comerciantes que utilicen el sistema de pago de Avance Pay.

En esta memoria primero se ofrece una visión general de los sistemas de pago móviles

mediante la tecnología NFC y las ventajas de utilizar un terminal móvil como TPV. Luego se

realiza un estudio del funcionamiento de los sistemas drag & drop, así como de los programas

WYSIWYG. A su vez se hace una comparación de los distintos editores existentes para Android.

Antes de crear el editor drag & drop se aborda el diseño de la aplicación TPV para

entornos Android. Para ello se analizan las características de aplicaciones TPV ya existentes en

el mercado, con el propósito de reunir los requerimientos oportunos. Además, se desarrolla

un prototipo acorde al diseño propuesto.

Una sección se dedica a la introducción a la programación web. Tanto del lado del

cliente como del servidor, presentando algunas de las tecnologías existentes. Estos

conocimientos serán necesarios para entender el diseño propuesto para la creación del editor,

el cual es a su vez explicado en otra de las secciones, donde se explica el diseño y se detalla el

desarrollo del código de los distintos elementos que integran el editor.

Palabras clave

Drag & drop, WYSIWYG, NFC, TPV (Terminal Punto de Venta), pago móvil

v

Abstract

The main goal of this Project is the design and creation of a drag & drop editor that

allows de customization of applications utilized in mobile terminals as POS (Points of Sale).

The editor has been developed on Android and web-client environments, and its purpose is

to facilitate the customization of Sales Applications to sales men who use the Avance Pay

system.

In this report firstly, a general overview of NFC-based Mobile Payments and the

advantages of using a mobile terminal as a POS are given. Afterwards, a study about drag &

drop editors and WYSIWYG programs functioning is made. Moreover, a comparison about the

different existing editors for Android is done.

Before creating the Drag & Drop Editor the design of the POS application is

accomplished. For that purpose the POS applications already existing in the market are

analyzed in order to gather the appropriate requirements. Furthermore, a functioning

prototype consistent with the proposed layout is developed.

 One section is dedicated to show the state of the art regarding web programming.

Both, client side and server side are explained, presenting some of the existing technologies.

This knowledge will be necessary to understand the solutions proposed for the creation of the

editor, which is as well explained in detail in other section, where the implementation of the

design is explained as well as the code development of the various elements that integrate

the drag & drop editor.

Key words

Drag & drop, WYSIWYG, NFC, POS (Point of Sale), mobile payment

vi

Agradecimientos

Muchas gracias a todos los que me apoyaron durante la realización de este Proyecto

Fin de Carrera. Por momentos resultó complicado pero vuestros ánimos resultaron clave

para la finalización del mismo.

En especial agradezco todo el apoyo que mi familia me dio. Siempre estuvisteis ahí,

apoyándome y no dejando que me desesperara. Os quiero.

También quiero darles las gracias a mis compis telecos, muchos de ellos amigos del

alma, con los que tan buenos momentos he pasado durante estos años.

Agradecer igualmente a todo el equipo de Avance Pay, con especial mención a Heinz

y Peter que hicieron posible este proyecto.

Y como no podía ser de otra manera, gracias a ti María que me escuchaste cuando lo

necesitaba, me animaste a mejorar y a no dejarlo nunca. Sin duda fuiste el mejor apoyo que

se pueda tener.

vii

Contents

1. Introduction... 2

 1.1. Motivation .. 2

 1.2. Objectives ... 2

 1.3. Methodology and working plan ... 2

 1.4. Report structure ... 3

2. Introduction to NFC ... 4

 2.1. Near Field Communication origins ... 4

 2.2. NFC modes .. 5

 2.3. NFC features ... 5

 2.4. NFC standard .. 6

 2.5. Mobile payments .. 7

 2.5.1. Mobile payment categories ... 7

 2.5.2. Key stakeholders .. 10

 2.5.2.1. Providers of mobile payment services ... 10

 2.5.2.2. Demand side .. 12

 2.6. NFC Payments ... 12

 2.6.1. Contactless Smart Cards .. 13

 2.6.2. Secure Element .. 14

3. Introduction to drag & drop and WYSIWYG editors .. 17

 3.1. Drag & drop editors .. 17

 3.2. WYSIWYG programs ... 17

 3.3. Android existing editors ... 17

 3.3.1. App Inventor .. 17

 3.3.2. DroidDraw .. 21

 3.3.3. PhoneGap ... 22

 3.3.4. AppyPie .. 23

 3.3.5. Comparison table ... 24

4. Web programming ... 25

 4.1. Client-side ... 26

 4.1.1. HTML .. 26

 4.1.2. CSS .. 29

 4.1.3. Javascript .. 30

viii

 4.2. Server-side .. 31

5. POS software design .. 32

 5.1. Technology comparison ... 32

 5.1.1. Key Points of POS software design .. 32

 5.1.2. mPOS in the market main features analysis. ... 35

 5.1.2.1. Square .. 36

 5.1.2.2. iZettle ... 37

 5.1.2.3. SumUp ... 39

 5.1.2.4. Revel .. 39

 5.1.2.5. AccuPOS ... 40

 5.1.3. mPOS features comparison table .. 41

 5.2. Definition of requirements ... 41

 5.2.1. Customer Segmentation .. 41

 5.2.2. Features matrix .. 45

 5.2.3. Event Merchant mPOS design.. 46

 5.3. Prototype creation ... 50

6. Design and development of the Drag & Drop Editor ... 53

 6.1. Requirements ... 53

 6.1.1. Web application solution ... 54

 6.1.2. Standalone application solution .. 54

 6.1.3. Android application solution .. 56

 6.2. Design ... 56

 6.3. Development .. 61

 6.3.1. Front-end programming .. 61

 6.3.2. Back-end programming .. 63

7. Conclusions and future work ... 64

 7.1. Conclusions ... 64

 7.2. Future work .. 64

Annex A ... 68

Annex B ... 71

Annex C ... 73

Annex D ... 74

ix

Figures Index

Fig. 1 NFC Forum N Mark ... 4

Fig. 2 NFC Communication Modes (Source: NFC Forum)... 5

Fig. 3 Mobile-tag interaction .. 5

Fig. 4 Mobile payment categories. Source: [8] .. 7

Fig. 5 Square, Inc. payment hardware and software. .. 9

Fig. 6 iZettle payment hardware and software. ... 9

Fig. 7 Square, Inc. signature process. ... 9

Fig. 8 iZettle payment using a Tablet as POS. .. 9

Fig. 9 Contactless smartcard operation scheme .. 14

Fig. 10 UICC memory slots .. 14

Fig. 11 End-to-end NFC Payment System scheme ... 15

Fig. 12 App Inventor scheme .. 18

Fig. 13 Open Block and Package for Phone buttons .. 18

Fig. 14 App Inventor's buttons ... 19

Fig. 15 App Inventor's Designer ... 19

Fig. 16 App Inventor's Blocks Editor ... 20

Fig. 17 DroidDaw application ... 21

Fig. 18 PhoneGap’s process .. 22

Fig. 19 AppyPie's App Creator - Select App Type ... 23

Fig. 20 Three-tier model. .. 25

Fig. 21 HTML page structure example ... 27

Fig. 22 HTML different versions ... 28

Fig. 23 CSS Syntax example .. 29

Fig. 24 Square's app for iPhone .. 36

Fig. 25 Square's app shopping cart detail .. 37

Fig. 26 iPad landscape layout ... 37

Fig. 27 iZettle's app and reader .. 38

Fig. 28 iZettle's PIN & CHIP ... 38

Fig. 29 iZettle's application ... 38

Fig. 30 SumUp's app and reader .. 39

Fig. 31 Revel's POS app ... 40

Fig. 32 AccuPOS' Android app .. 40

Fig. 33 mPOS screens flow ... 46

Fig. 34 mPOS layouts proposal ... 46

Fig. 35 Tablet grid ... 47

Fig. 36 Tablet mPOS login screen design .. 47

Fig. 37 mPOS login screen .. 48

Fig. 38 mPOS sales screen .. 48

Fig. 39 mPOS lock screen design .. 50

Fig. 40 mPOS lock screen .. 50

Fig. 41 JavaFX Scene Builder ... 51

Fig. 42 Login screen - Prototype ... 51

Fig. 43 Sales screen - Prototype ... 52

x

Fig. 44 Lock Screen - Prototype .. 52

Fig. 45 Solution for the web application .. 54

Fig. 46 Solution for the standalone application ... 55

Fig. 47 Standalone application logic ... 55

Fig. 48 Solution for Android application .. 56

Fig. 49 Android Drag & Drop Editor logic ... 56

Fig. 50 Drag & Drop Editor initial state .. 58

Fig. 51 Drag & Drop Editor category selected .. 58

Fig. 52 Drag & Drop Editor Category dialog ... 59

Fig. 53 Drag & Drop Editor - Product dialog ... 59

Fig. 54 Opened bin (left) and closed bin (right) ... 60

Fig. 55 Drag & Drop Editor - Changing category .. 63

Table index

Table 1 Android Editors comparison .. 25

Table 2 CSS versions ... 30

Table 3 mPOS main features comparison .. 36

Table 4 mPOS comparison ... 41

Table 5 Customer segmentation .. 44

Table 6 Features matrix .. 45

2

1. Introduction

1.1. Motivation

NFC payments are already here. Lots are the advantages of having everything integrated

in your mobile phone. Therefore, Avance Pay develops corresponding mobile phone based

payment terminals. Avance Pay system pretends to be fast, secure, economic, reliable and

extensible. It will present many advantages for customers and vendors.

The main motivation of developing a drag-and-drop application is to facilitate to those

persons without any programming skill, the customization of their own sales applications. This

tool provides the users the possibility of designing and making changes in their own business

applications, in a highly intuitive way.

In the same way, the intention is to provide the Avance Pay payment system with a

distinguishing element with respect to other payment systems, and for that the idea is to

provide the company clients with a tool that allows them to customize their business sales

applications.

1.2. Objectives

The main purpose of this thesis is to design and create a drag and drop application for

editing sales applications on, mobile phones and web clients. The idea is that vendors, who

are using an Avance Pay system, can edit their own sales application: change the interface

look, change prices, add new products, add new options, etc.

The system in mind will consist of a drag-and-drop editor for an android environment and

other for a web-client environment, which should be designed and created throughout the

present thesis.

To develop the application in mind different editors will be analyzed as well as different

mobile Points of Sale (mPOS). The idea is to understand how these programs are implemented

1.3. Methodology and working plan

To achieve the goals of this thesis a strict methodology will be followed. First of all

modern literature about NFC technology will be reviewed, in order to present a general

overview in this work. Besides, articles about Drag and Drop editors and XML code will be

also reviewed, among others.

Once all the literature has been reviewed, a general idea of the state of art has been

reached and the student has got acquainted with some existing editors, there will be defined

the requirements for the Avance Pay whole system as well as a development road map.

3

After the functional analysis, the intermediate file code (XML) requirements will be

defined and the drag-and-drop interfaces will be programmed. Once the base code is ready

it will be evaluated. Then, any eventual error will be corrected and any improvement

considered will be added.

The work plan will consist of the following steps:

1. Modern literature review about NFC technology and drag and drop editors.

2. Become familiar with the existing editors.

3. Definition of the requirements for the whole system.

4. Define development road map.

5. Implement first release (proof of concept).

6. Evaluate and discuss results.

7. Finalize report.

1.4. Report structure

Chapter 1. Introduction: Introduction of the report, where the motivation and the objectives

are exposed.

Chapter 2. Introduction to NFC: The NFC technology is introduced. The modes, features and

the standard are explained, as well as an introduction to Mobile Payments, focusing on NFC

payments in the last section of the chapter.

Chapter 3. Introduction to drag & drop editors and WYSIWYG: What these terms mean is

exposed and some android editors reviewed and compared.

Chapter 4. Web programming: Web programming is introduced. The client and the server

sides are explained. The main web standards are also analyzed.

Chapter 5. POS software design: First of all, the features and GUI elements of the different

mPOS applications are analyzed and compared. Then, the design of an own POS application

is introduced and finally the development of a prototype application is explained.

Chapter 6. Design and development of the Drag and Drop Editor: Firstly, the requirements

of the Drag and Drop Editor are exposed as well as the proposed solutions. Then the design

of the editor is showcased and the development of the code explained.

Chapter 7. Conclusions and future work: To finalize the conclusions of the present thesis

and the future work are written.

4

2. Introduction to NFC

2.1. Near Field Communication origins

NFC technology is based on RFID (Radio Frequency Identification). RFID technology origins

are not clear, but Harry Stockman’s work published in 1948, Communication by Means of

Reflected Power, is commonly accepted as the origin of RFID. In this work, the point-to-point

communication method in which the device with the information is a passive element which

does not generate any energy, but reflects and modulate the field generated by the initiator

to transmit its information is defined [1]. This technology is still commonly used in electronic

identification cards.

Philips and Sony jointly developed a standard for two-way contactless communication,

NFC (Near Field Communication). The ECMA (European Computer Manufacturers Association)

standardized the RFID Mobile or NFC in 2002, within the ECMA-340 standard and was

approved by the ISO in 2003, within the ISO/IEC 18092 standard.

This International Standard defines communication modes for Near Field Communication

Interface and Protocol (NFCIP-1) using inductive coupled devices operating at the center

frequency of 13,56 MHz for interconnection of computer peripherals. It also defines both the

Active and the Passive communication modes of Near Field Communication Interface and

Protocol (NFCIP-1) to realize a communication network using Near Field Communication

devices for networked products and also for consumer equipment. This International Standard

specifies, in particular, modulation schemes, coding, transfer speeds, and frame format of the

RF interface, as well as initialization schemes and conditions required for data collision control

during initialization. Furthermore, this International Standard defines a transport protocol

including protocol activation and data exchange methods [2][3].

However, the most important milestone for the technology was in the 2004 when Nokia,

Philips and Sony created the NFC Forum. The Near Field Communication Forum was formed

to advance the use of Near Field Communication technology by

developing specifications, ensuring interoperability among devices

and services, and educating the market about NFC technology [4].

Besides, the NFC Forum promotes the N Mark as an emblem of the

technology, pretending to be a universal symbol for NFC, so that

consumers can easily identify NFC-enabled products as well as the

locations where NFC services are available.

Fig. 1 NFC Forum N Mark

5

2.2. NFC modes

There are many ways to use the NFC technology. These ways of using it depend on the

mode being used. There are three main NFC modes, defined by the NFC forum:

• Peer to peer: This mode is defined for device to device link-level communication.

• Reader and writer: This mode allows applications for the transmission of NFC Forum-

defined messages.

• Card emulation: This mode allows the NFC-handset behave as a standard Smartcard.

Fig. 2 NFC Communication Modes (Source: NFC Forum)

2.3. NFC features

Near Field Communication main features are the following [5]:

Short-range wireless communication: NFC works using

magnetic induction: a reader emits a small electric current,

which creates a magnetic field that in turn bridges the physical

space between the devices. That field is received by a similar coil

in the client device, where it is turned back into electrical

impulses to communicate data such as identification number,

status information, or any other information. So-called 'passive'

NFC tags use the energy from the reader to encode their

response, while 'active' or 'peer-to-peer' tags have their own

power source and respond to the reader using their own

electromagnetic fields.

The NFC electromagnetic field range is very short, being in practice of 4 centimeters or less,

what means that the devices must be close enough to each other in order to establish the

communication.

Fig. 3 Mobile-tag interaction

6

Short data transferences: The NFC communication is not oriented to accomplish massive data

transactions. Furthermore the possible bit rates are in the order of hundreds of Kbit per

second, what allows only the transference of small data quantities.

Tags typically store between 96 and 512 bytes of data and transfer data using at speeds of

106Kb/s, 212Kb/s, 424Kb/s or 848Kb/s – enough to move small pieces of information virtually

instantaneously, as is essential in high-volume transport applications.

Operations in the ISM frequency: Like RFID, NFC works in the 13.56MHz radiofrequency

spectrum, using less than 15mA of power to communicate data over distances that are usually

far less than 20cm.

NFC works in the ISM (Industrial, Scientific and Medical) frequency band, what means that it

is an unregulated band and has not licensing costs associated. Radio communication services

operating within these bands must accept harmful interference, which may be caused by

these applications [6].

2.4. NFC standard

The Near Field Communication Interface and Protocol (NFCIP) defines the physical and the

transport layer of the technology. It is divided into two parts: NFCIP-1, which defines the NFC

communication modes on the RF layer and other technical features, and NFCIP-2, which

specifies the communication mode selection mechanism with the purpose of not disturbing

any ongoing communication at 13,56 MHz, for devices implementing ECMA-340 and the

reader functionality for integrated circuit cards compliant to ISO/IEC 14443 or ISO/IEC 15693

[2][7].

The NFCIP-1 standard defines the two working roles that NFC devices can assume in a

communication. These roles are both necessaries in a communication and are the following:

• Initiator: Device that initiates the communication.

• Target: Device that responds to the initiator.

Being the transmissions based in the question-answer principle, a device can only respond

to another if the other one has initiated the communication with it. NFCIP-1 devices shall

detect external RF fields at 13,56MHz with a value higher than a specific threshold while

performing external RF field detection. The threshold value is ���������� = 0,1875	 � �⁄ .

This standard also defines two working modes:

• Active Mode: An Initiator and a Target shall alternately generate a RF field.

• Passive Mode: An Initiator shall produce a RF field to energize the target.

An active device acting as the initiator and a passive one as the target is one of the most

utilized configurations. In this scenario, the active element generates a radiofrequency field

which supplies electromagnetic energy to the passive device allowing it to send its information

modulating the signal with a certain codification.

7

With the NFCIP-1 specifications, the peer-to-peer communication concept between two

terminals is introduced. In this case, an active device A acts as initiator of the communications,

sending a message to a device B. While it is waiting the answer, the device A deactivates its

radiofrequency field and the device B activates it to send out the answer. Thus, during the

communication the devices alternate the activation of their fields in order to send and receive

the data.

In this last case is important not to confuse modes and roles. Both devices are actives,

although its RF field is deactivated. Besides, although B is transmitting data, the initiator of

the communication will continue being the device A until the communication is finished.

2.5. Mobile payments

A mobile payment can be defined as a transfer of funds in return for a good or service,

where the mobile phone is involved in both the initiation and confirmation of the payment.

The location of the payer and supporting infrastructure is not important: he may or may not

be “mobile” or “on the move” or at a Point of Sale (PoS); the payment may be processed by

credit cards or by a prepaid wallet.

2.5.1. Mobile payment categories

Payments can be done between consumers (P2P or C2C) or between consumers and

companies (C2B). In addition, payments can either be executed in proximity, for example at

the counter in a shop, or remotely, for example paying online via a mobile phone [8].

In the following figure, the different mobile payment categories are shown.

Fig. 4 Mobile payment categories. Source: [8]

8

Proximity payments

1. Contactless payments

Contactless payments are payments done in proximity without making contact. Some

examples are paying at PoS by holding your mobile phone in proximity, transfer money to your

friend by moving the phones towards each other or by paying your metro ride by holding your

phone at the reader. As the examples show, contactless payments can be done both between

consumers (P2P) and between consumers and merchants (C2B).

Contactless technology can be divided into two categories:

• Vicinity: this technology offers a maximum read distance of 1 to 1.5 meters.

• Proximity: this technology has a much smaller read distance, usually about 7.5

centimeters in most instances.

There are multiple ways to perform contactless communication. Nowadays NFC gets most

of the attention in the field of contactless payments, and in general in the field of mobile

payments. Still there are many other, similar methods to perform contactless payments; they

can be done via the mobile internet, QR codes, Bluetooth or radio frequency waves of the

mobile speakers.

QR Codes: For example, PayPal is using it for allowing payments. The Payment Code feature

allow PayPal users to pay for things in physical retail stores by scanning a QR code generated

in the app, or by using a one-time four digit code in stores that use PIN codes but don’t have

a scanner [9].

Bluetooth: PayPal also embraced Bluetooth Low Energy (BLE) technology for payments after

writing off Near Field Communications (NFC) [10].

This payment system has been called Beacon, a payment service that employs the BLE

wireless communications technology so that customers in a store can pay without reaching

for their smartphone.

For the technology to work, retailers must plug in a USB dongle into a compatible point-of-

sales system. When customers walk into the store with a smartphone and the PayPal app,

they will be prompted to check in for hands-free payments. The PayPal app does not need to

be open and users don’t need to have a phone signal or GPS turned on.

Customers can elect inside the app to have their device always check into their favorite

stores so they don’t have to think about payment the next time they arrive. No information

is exchanged between the user and the store if a customer ignores the prompt and does not

check in.

Ultra sonic: Naratte, Inc. operates as a technology development company. It offers Zoosh, a

software that enables users to securely exchange data between devices using the speakers

and microphones [11].

9

2. Mobile devices used as POS

A recent phenomenon is the use of mobile devices as point of sale (PoS) to accept,

typically, card payments. With the help of an extra device and an application for the hardware

a mobile device can be used to accept card payments. The external card readers typically

support payments between consumers and small enterprises. They are specifically targeted

for enterprises not large enough for traditional PoS devices, thereby providing access to those

otherwise excluded due to high sum investments [12][13][14].

The next images show different systems that use mobile devices as POS to accept credit

and debit card payments.

Fig. 5 Square, Inc. payment hardware and software.

Fig. 6 iZettle payment hardware and software.

Fig. 7 Square, Inc. signature process.

Fig. 8 iZettle payment using a Tablet as POS.

These Mobile Points of Sale (mPOS) accept credit and debit cards, but do not accept

contactless payments. Avance Pay’s technology, on the other hand, offers the possibility of

turning NFC-enabled smartphones into EMV compliant, contactless payment terminals with

low investment costs.

The Avance Pay Mobile Payment Terminal is designed to accept all forms of contactless

payments such as contactless credit and debit cards, and also NFC-based wallet applications.

Therefore no additional readers are required; the merchant's NFC-enabled smartphone or

tablet serves as an all-in-one solution.

10

Due to full end-to-end protection, the Mobile Payment Terminal delivers highly

safeguarded transactions in both online and offline modes. Payments can be accepted

securely, even when the Mobile Payment Terminal is running offline, without server

connectivity. This allows for very flexible usage in different areas of application, where other

devices would fail.

Remote payments

3. Mobile money transfers

A mobile money transfer is a transfer of funds from one consumer to another over long

distance. There are two contexts in which mobile money transfers are executed.

• Payments between consumers within the same country: In developing countries

this could be in between people in a major city and their relatives on the country

side. However, also in a country such as the US there is a large market for P2P

mobile money transfers, supported for instance by the PayPal services.

• Consumers sending money overseas: This area is dominated by remittances. A

remittance is a transfer of funds from a foreign worker to his home country. This

typically constitutes migrant workers from Africa or Asia Pacific that work in Europe

and North America, but also happen within the same regions. Among the largest

recipient countries are India, China, Mexico and the Philippines.

4. Mobile online payments

Mobile online payments are payments via the mobile browser or via an app on the mobile

phone. There can be distinguished between two use cases of mobile online payments that

both are executed in the B2C- environment: m-commerce and digital goods.

• M-commerce: online shopping for goods or services on the mobile phone. Online

business models are incorporated into mobile devices in order to maximize

revenue opportunities. Mobile devices are thereby becoming an ecosystem for m-

commerce, allowing developers to build their own m-commerce applications on

the mobile device.

• Digital goods: purchase of digital goods on the mobile phone through mobile

platforms. Often ignored in the field of mobile payments, buying apps, games and

music is the fastest growing area in mobile payments. Depending on the platform,

mobile payments are typically done by either having stored card payment details

linked to the user account on the mobile phone, or prepaid cards credited to the

user account.

2.5.2. Key stakeholders

2.5.2.1. Providers of mobile payment services

11

Mobile network operators (MNO’s)

For mobile network operators mobile payments are an attractive proposition for

achieving a return on the investments made in infrastructure over the last two decades

through reduction of churn, extra payment related revenues and through associated increases

in air time and data use. For mobile network operators mobile payments also hold the

possibilities of allowing for diversification into other areas of the consumer’s needs and

lifestyle.

Financial institutions

For financial institutions mobile payments are first and foremost a defensive play.

From a retail banking point of view, financial institutions are primarily focused on protecting

the current account and surrounding loan products. Retail payments including mobile

payments are more often than not a loss leader for these more profitable products. From a

wholesale banking point of view financial institutions have already been disintermediated to

some degree from their wholesale customers by third parties in the area of online payments.

Financial institutions are keen to avoid the further worsening of this situation through third

party mobile payments. Mobile payments also hold the allure for financial institutions of

assisting in the ongoing battle to reduce the use of cash and its associated costs. Furthermore

in developing geographies mobile payments offer financial institutions the opportunity to

cost-effectively capture and service unbanked and underbanked communities.

Handset manufacturers (OEMs)

Handset manufacturers (or Original Equipment Manufacturers, shortly OEMs) produce

the mobile devices and thereby determine their capabilities and usability. The success of the

use of the mobile device for payments has the potential for resulting in a substantial increase

in both sales to new customers but also for the renewal of existing devices in the market to

ones that are payment capable.

Technology providers

As with any technology led development, mobile payments hold the most promise for

technology vendors and systems integrators: chip manufacturers create the smart card chip

on which the mobile payment application or secure element can reside; the secure element

issuer personalizes the chip with the secure element; the service provider offers specific

services for end users such as authentication; while the Trusted Services Manager (TSM)

enable the service provider to use the secure element.

All these organizations are positioning themselves to provide the infrastructure and

messaging for mobile payments and in the process offering to act as a trusted intermediary

between the banks and the mobile network operators.

12

It should be noted that in the market today both financial institutions and mobile network

operators play the roles of Secure Element issuers, service providers and trusted services

manager.

2.5.2.2. Demand side

Merchants

For merchants, Point of Sale mobile payments could provide faster throughput at the

checkout and the ability to send real time marketing messages to the consumer. However,

faster throughput could also be achieved through contactless cards and it is yet unclear

whether consumers would actually want or appreciate real time marketing messages from the

merchant on their phone. However un-manned or remote Point of Sale locations could benefit

from mobile payment by allowing a reduction in servicing costs. Remote mobile payments

provide another channel for merchants and as such are an attractive proposition if the use of

the channel can gain wide scale adoption at lower costs than existing channels.

Consumers

From the perspective of the end consumer, the mobile phone has achieved ‘permanent

share of pocket’, i.e. next to the wallet and keys it is the object that is most likely to be

constantly with the consumer. Furthermore, consumers are increasingly more comfortable

with the mobile phone fulfilling more than one function, with mobile devices slowly morphing

into multi-media and multi-application devices. However, does this mean that end consumers

are ready to abandon the wallet and rely primarily on the phone, which is more a lifestyle or

leisure tool, for the important task of handling their payments?

2.6. NFC Payments

NFC Payments are defined as payments carried out leveraging the NFC technology,

where there is an NFC-enabled device acting as the reader/cashier and a Contactless Smart

Card or an NFC-enabled mobile device on Card Emulation Mode as the payer.

These payments can be carried out by a POS reader and a Contactless Smart Card, by a

POS reader and an NFC-enabled mobile device leveraging the NFC Card Emulation Mode or

between two NFC-enabled mobile devices, acting one of them as the cashier and the other

as the payer.

The market developments have been quite uneven throughout the world. Some

countries are much more advanced in terms of technology deployed and business cases

implementation.

In Japan, South Korea, and other Asian countries, several successful mobile payment

solutions have already been launched (e.g., Mobile Suica, Edy, Moneta, Octopus). Mobile

phones are used for making purchases at convenient stores, transit fares, and many other

goods. Governments and influential mobile network operators (MNOs) pushed to enhance

13

the development of mobile payment services, which could partially explain the greater

success in Asia.

In Europe and North America, the development of mobile payments has not been as

successful, with the exception of several countries including Austria, Spain, Croatia, and the

Scandinavian countries

One major difference of the mobile payment services initiated in Asia, Europe, and the

U.S. markets is the technology deployed. In fact, Japan and South Korea telcos distribute

mobile phones ready for RFID technology (Radio Frequency Identification). This could be

partially explained by the ubiquity of contactless cards (IC cards) for payment transactions.

In Europe and the U.S., mobile payment systems are still mostly based on SMS (Short

Message Service), USSD (Unstructured Supplementary Service Data), WAP (Wireless

Application Protocol), or IVR (Interactive Voice Response). This was done in order to

facilitate the uptake of mobile payments by using the existing technologies installed in the

current customer base. As these technologies were not making mobile payments very

convenient and easy to use, companies are now testing new schemes based on NFC.

To a certain extent, NFC is the fusion of a contactless smartcard (RFID) and a mobile

phone. Mobile phone can therefore be used like a contactless card. NFC has a shorter range

than other wireless technologies embedded in a phone (e.g., Bluetooth, Wi-Fi). Another

great feature of NFC is that mobile phones are capable to act as RFID tags or readers. This

ability creates many opportunities for innovative services. There are several recurring

examples used to illustrate the new possibilities offered by NFC. One good example is the

smart poster. An RFID tag is embedded in a poster. By waving the mobile phone close to the

poster, the user gets more information about the poster. Possible applications are ticketing

or couponing. This could be seen as a new way to sell concert tickets through mobile

phones.

The expected success of NFC is not only limited to the mobile payments capability. Many

see that this technology will enable many innovative mobile services. Various applications in

different industries (e.g., retail, logistics, transportation) could be developed to take

advantage of the interaction between RFID tags and mobile phones. Access control scheme

based on NFC also seems to be quite popular. This means that mobile phones could

reinforce their position as a multi-function device. NFC also aims at facilitating

communication between various devices (e.g., business card exchange, driver configuration),

which could greatly contribute to the democratization of mobile computing.

2.6.1. Contactless Smart Cards

A contactless smart card is any pocket-sized card with embedded integrated circuits that

can process and store data, and communicate with a terminal via radio waves. Contactless

smart cards can be used for identification, authentication, and data storage. They also provide

a means of effecting business transactions in a flexible, secure, standard way with minimal

human intervention. A smart card has a microprocessor or memory chip embedded in it and

that coupled with a reader it has the processing power to serve many different applications.

14

The following figure shows a separate contactless smart card with reader. In NFC card

emulation mode, mobile phone will work just like this card with the additional benefits that

we don’t need to carry extra cards [15].

Fig. 9 Contactless smartcard operation scheme

2.6.2. Secure Element

In general, MNO (Mobile Network Operator) issues SIM (Subscriber Identification Module)

cards to mobile users where personal identity and applications (such as contact application)

are stored. Multiple contactless application can be stored in this card (updated from

conventional SIM) for each use cases. This card works as secured element that stores and

execute the contactless applications.

UICC (Universal Integrated Circuit Card) cards are the evolution of SIM cards. Like SIMs,

they go in our phone, have an application that stores our contacts, let our network identify

who we are, and work with any network in the world. However UICC cards can run more than

one application.

Fig. 10 UICC memory slots

The following diagram shows an NFC echo system diagram, showing those involved in NFC

payments:

15

Fig. 11 End-to-end NFC Payment System scheme

More than one credit or debit card can be stored in the same UICC, increasing the

convenience of PBM (Pay Buy Mobile) to the consumer. In use, data transferred by NFC from

the handset (actually from the UICC) to the reader is communicated to financial

organizations using the same secure process as used for conventional credit or debit card

transactions. One of the hottest topic with regard to NFC are SWP (Single Wire Protocol)

enabled UICCs. Whereas several handset manufacturers such as Nokia can equip its phones

(some series 40, and some coming Symbian devices) those are capable to communicate with

embedded secure element. The SWP connects the UICC to the NFC Modem through a single

wire and thus adds contactless functionality to the UICC (SIM).

Security is a key consideration with NFC. Retail and transit payments with a mobile

phone require wireless carriers, retailers, transport providers and banks to all work together.

All of the transaction and payment card accounts information need to be kept secure and

apart. For this reason, NFC requires the use of a "secure element." The UICC is the preferred

technology for the secure element that stores subscriber details – such as credit card

account numbers, transit accounts, and mobile phone details – and keeps these details

separate and secure. To enable proximity payments, secure element capable of

authenticating itself to a bank, and resistant to physical or logical attack. Contactless

frontend interface standardized by ETSI to connect a UICC to a contactless frontend to pass

data from UICC to card reader via NFC where the payment is processed by other echo

system members. Data is communicated between UICC and NFC module with SWP which

was developed to support the use of contactless payment applications running on UICCs – it

enables the payment application on the UICC to communicate with contactless readers via

the NFC interface of the handset. The standard is approved by ETSI November 2007.

Let’s take an example of micro payment application “NFC Wallet” consists of several

parts. The first one - and the only one that is actually recognized by the user – is the

applications running on the device. This part provides the user with a GUI (graphical user

interface) and allows him/her to recharge the wallet over the air and view the amount of

money available on the handset. To recharge the wallet, the application is able to establish a

16

GPRS connection to a transaction server located at the mobile network operator’s supported

bank for example. The transaction server accepts the incoming connection from the NFC

handset. The authentication of the device is done thru a solution of the mobile network

operator. The server checks the balance of the account of the customer and then sends the

money (encrypted) back to the handset. There the money is directly stored in the secure

element.

Another example could be using credit card application (see the previous figure). User

select the application in device (may needs to give password), he/she touches the NFC

reader (at point of sales), the reader gets the user’s credit card details from the UICC via NFC

and pass it to process with conventional ways and in return user get an electronic receipt

that can be stored in device.

17

3. Introduction to drag & drop and

WYSIWYG editors

3.1. Drag & drop editors

In computer graphical user interfaces, drag and drop is a pointing device gesture in which

the user selects a virtual object by "grabbing" it and dragging it to a different location or onto

another virtual object. In general, it can be used to invoke many kinds of actions, or create

various types of associations between two abstract objects.

3.2. WYSIWYG programs

What-You-See-Is-What-You-Get (WYSIWYG) means that all elements of the page will be

displayed on the exact same position (fixed layout) as in the designer; unlike fluid (dynamic)

layouts (generated by traditional HTML editors) where the position of objects depends on

the position and size of the objects surrounding it.

3.3. Android existing editors

There are a few frameworks existing to create Android applications, but not that many to

edit the layouts which define the GUI of the application. Hereafter, some mobile development

frameworks will be analyzed in order to present some features that might be interesting for

Avance Pay’s editor. DroidDraw is the only tool presented here that is simply intended to edit

the android layouts.

3.3.1. App Inventor

App Inventor for Android is an application originally provided by Google, and

now maintained by the Massachusetts Institute of Technology (MIT) [16].

Basically, App Inventor lets you develop applications for Android phones using

a web browser and either a connected phone or emulator. The App Inventor servers

store your work and help you keep track of your projects.

 Once you are logged into your account you have access to the edition area.

Here, a WYSIWYG editor is available to create the GUI and a blocks system to define

the behavior of the application.

18

Fig. 12 App Inventor scheme

The GUI editor is accessed directly through the web browser, while the block editor is

accessed via JavaWS (Java Web Start). As shown in the picture bellow, in the top right of App

Inventor’s edition web site there are two buttons; one for packaging the project into an .apk

file and another for opening the Block Editor.

Fig. 13 Open Block and Package for Phone buttons

When the user clicks on the “Open the Blocks Editor” button a JNLP file is downloaded.

This is a file created in the Java Network Launching Protocol (JNLP) format; used for launching

and managing Java programs over a network or on the Web; it can be double-clicked to run

the program if the Java Runtime Environment (JRE) is installed.

JNLP files contain information such as the remote address for downloading the Java

program (.JAR file) and the initial class to run. They are saved in an XML format and can be

viewed or edited with a text editor.

However, in order to execute the blocks program App Inventor’s Setup software

package must be installed. This is really simple; the user only has to download the installer

from App Inventor’s web page.

As mentioned before, App Inventor consists of two main blocks: the Designer and the

Blocks Editor.

Designer

On the left side of the editor, there is a palette where the user can pick the elements

he wants to include in his layout. By dragging and dropping them into the area that represents

the phone screen, the user is able to add all the elements needed to each of the screens he

wants to create.

19

Create a new screen is as easy as clicking a button. This button is just above the viewer.

Together to this button you can find buttons to save at any point your work, create a check

point and add or remove a screen.

Fig. 14 App Inventor's buttons

On the right side of the designer there is a list of all the components used in your

layout, named Components. Here you can find, as well, a Properties column, just to the right

of the Components column. This properties column allows you to modify the properties of

each one of the components included in the layout.

Blocks Editor

 The Blocks Editor allows the user to modify the behavior of the application in a high

intuitive way. It consists of forming logical blocks to define the behavior of the different

components which are part of each screen. In order to help the user to perform this task the

program offers some feedback, by allowing the users to see their progress either in an

Android-based mobile device or using an android emulator.

The mobile device can be connected in two different ways: connecting the device

through the USB cable to the computer or via Wi-Fi. With both options the user can check any

change he performs within the designer. The only action that is not supported is the change

to another screen since the user must open the Block Editor for each screen independently.

Fig. 15 App Inventor's Designer

20

On the left side of the editor window there is a menu where the user can pick the most

suitable block to perform the desired task. This menu contains three different tabs:

- Built-in: Range of generic elements such as blocks to interact with texts, colors, lists,

logic, controls, etc.

- My Blocks: In this tab are contained the blocks to interact with the components added

in the GUI editor, such as buttons, TextBoxes, Checkboxes, etc.

- Advanced: Blocks to add generic functionality for the elements added.

Pros:

- The design is stored in the server, so the users can easily log into their accounts from

a web browser to edit their app.

- Use of an android emulator to check the results or by connecting an android-based

mobile device via a USB cable or via Wi-Fi.

- The use of the blocks to define the behavior of the app is intuitive and user-friendly.

- Large range of components available to add to the layout.

Cons:

- Only linear layout allowed in the Designer. This restricts the possibilities of the user to

adapt the layout to the idea he may have in mind.

Fig. 16 App Inventor's Blocks Editor

21

3.3.2. DroidDraw

DroidDraw is an open-source WYSIWYG program that allows the creation of Android XML

layouts by dragging and dropping different android widgets.

Is it accessible via browser, accessing their web page which contains a java applet, or

locally, if you download the java executable from their website.

Fig. 17 DroidDaw application

The designer is really simple. It contains four frames. On the left side there is the Layout

Explorer, where the user can see all the components added to the layout.

The central frame contains the Screen representation. Here the components can be

dragged and dropped from the widgets list in order to edit the screen as desired. This is a

WYSIWYG editor that allows the user to select the kind of layout he wants to use. The possible

layouts are the following ones: Linear Layout, Relative Layout, Absolute Layout, Table Layout,

Scroll View and Tab Host.

At the bottom right side is the output frame. Here is where the user can see the code

generated based on the layout. The code generated is android-xml, so this tool is thought for

programmers who want to avoid the programming of the layout. After editing it visually by

means of DroidDraw they can pick the generated code and place it in the layout folder of their

android project.

Just above the output frame is the fourth frame. This frame contains four tabs: Properties,

Widgets, Layouts and Support. Within Widgets the user can find a range of android

components to place in the layout. Layouts contain a sort of layout to place within the screen

layout so that the user can create small areas

Pros:

- Generates the code in an output window, so it could also be edited manually.

22

- The layout type can be modified and it is even possible to create sub-areas within the

root layout.

- It is possible to load an existing layout to edit it.

Cons:

- There are not a wide variety of widgets available.

- The program not always responses as it should do.

3.3.3. PhoneGap

PhoneGap is a web-based mobile development framework, based on the open-

source Cordova project. PhoneGap allows you to use standard web technologies such as

HTML5, CSS3, and JavaScript for cross-platform development, avoiding each mobile platform’s

native development language. Applications execute within wrappers targeted to each

platform, and rely on standards-compliant API bindings to access each device's sensors, data,

and network status.

The application is rendered using platform’s web browser engine, not individual native

UI objects. This entails that the look-and-feel is not as good as in a native application.

Furthermore, PhoneGap does not offer any drag-and-drop GUI to create the

applications, but you can instead use any Web Editor to create your HTML/CSS code. Some

of this Web Editors are for example DreamWeaver, Kompozer or CKEditor. The user may

utilize one of these editors to create the different screens of their mobile app and then wrap

all these files with PhoneGap in order to obtain the packages for each platform they want.

Although it may be a good approach in other cases, this is not what

Fig. 18 PhoneGap’s process

Pros:

- The possibility to deploy the code to many mobile platforms.

- Open source.

Cons:

- Applications are rendered using platform’s web browser engine, not individual native

UI objects. Consequently, the look-and-feel is not as responsive as in a native

application.

23

3.3.4. AppyPie

Cloud based DIY Mobile App Builder that allows users with no programming skills, to create

an app for Windows 8 Phone, Android and iPhone applications.

With AppyPie’s App Maker, there is no need to install or download anything, you can just

drag & drop app pages to create your own mobile app online. Once the App is build, you will

receive an HTML5 based hybrid app that works with Android, iPhone, iPad, Windows Phone

and Blackberry.

The fancy thing about AppyPie is that it is thought for people without any programming

skill. Therefore, they have created a very simple designer that creates the applications based

on predefined layouts for different topics.

First of all, once you entered the

editor you have to choose the topic

of your application.

Once you have chosen a topic

you are requested to choose a name

for the app, a logo, the background

picture and the layout type.

Then you have the possibility to

add new functionality or remove it,

as well as edit some fields.

The possibilities here are not

really wide, but the interesting thing

about this mechanism is that you

can offer the user a guided way to

edit his apps, offering pre-

programmed features. The user only has to decide whether he is interested in adding one

feature or another, picking up those he may want to include.

Pros:

-Different edit options for different type of apps.

-Possibility to upload a logo and change the name of the app.

Cons:

-The possibilities of this editor are few. The user options are limited, but this may also be a

good aspect if the users do not have any programming skill.

Fig. 19 AppyPie's App Creator - Select App Type

24

3.3.5. Comparison table

The following table presents a summarized comparison among the previously described

editors:

 App Inventor DroidDraw PhoneGap AppyPie

Mechanism

Graphical editor

for the GUI of the

app and a Block

Editor for the

behavior.

WYSIWYG editor

for the GUI part

of the app. This

editor is only

intended for this

purpose.

Creates cross-

platform apps

from HTML, CSS

and JavaScript

files. The

HTML/CSS files

can be edited

with a graphical

Web Editor.

Guided app

editing. The user

chooses the name

of the app, the

topic, the logo

and some

features to

include within the

app.

Features

Offers the

possibility to

verify the

modifications the

user is carrying

out by

connecting an

android device or

using an android

simulator.

• Output frame

to show the

generated code

for further

modifications.

• Import a pre-

designed layout

to modify it.

The packaging of

the apps can be

performed from

PhoneGap’s

cloud system.

The user only has

to upload a zip

folder containing

all the files.

User-friendly.

Extremely

intuitive.

Platforms

supported
Android Android

Android, iOS,

Microsoft

Mobile,

BlackBerry,

webOS, Symbian,

Bada

Android, iOS

Licensing Open Source Open Source Open Source AppyPie account

Pros

• Designs saved in

App Inventor

servers.

• The user can

preview the

result of their

work.

• Large range of

components

available to add

to the layout.

• Generates the

code in an

output window

• Is possible to

create sub-

layout areas

within the root

layout.

• Multi-platform • Simple

Cons

• Only linear

layout allowed

in the Designer.

• It does not

work properly

every time.

• Rendering with

web browser

engine. The

look-and-feel is

not as good as

• Few editing

options.

25

in a native

application.

Server-based YES NO NO YES

Table 1 Android Editors comparison

4. Web programming

Programming can be briefly defined as the process of developing and implementing

various sets of instructions to enable a computer to do a certain task. Essentially, you give the

computer small steps of instructions, and the computer goes down the list, executing each

one in order.

Web programming, however, refers to the writing, markup and coding involved in Web

development, which includes Web content, Web client and server scripting and network

security. Web programming is different from just programming, requiring interdisciplinary

knowledge on the application area, client and server scripting, and database technology.

A typical web system is organized in three tiers, each running on a separate computer.

Logic on the middle-tier server generates pages to send to a front-end browser and queries to

send to a back-end database. In the next figure we can see graphically the three-tier model,

with the common programming languages of each one in brackets.

Fig. 20 Three-tier model.

The first tier is the client-side which is also called front-end. The other two tiers are

formed by the server and the database, which are known as server-side or back-end.

There is a way to customize web pages and make them more interactive, and that is by

mean of scripts. Scripts can be executed on the server side or in the client side. The two can

be used together and, actually, this is often done because they do very different things.

Another way of customizing a web page is with AJAX. AJAX stands for Asynchronous

Javascript and XML and is a group of interrelated web development techniques used on

the client-side to create asynchronous web applications. With Ajax, web applications can send

data to, and retrieve data from, a server asynchronously (in the background) without

interfering with the display and behavior of the existing page.

26

 The delivery of the web pages is possible through the Hypertext Transfer Protocol

(HTTP). The Hypertext Transfer Protocol is an application-level protocol for distributed,

collaborative, hypermedia information systems. It is a generic, stateless, object-oriented

protocol which can be used for many tasks, such as name servers and distributed object

management systems, through extension of its request methods. A feature of HTTP is the

typing and negotiation of data representation, allowing systems to be built independently of

the data being transferred [17].

 HTTP has been in use by the World-Wide Web global information initiative since 1990.

4.1. Client-side

The client is the side in which the web browser is running. Client-side scripts are

interpreted by the browser, being JavaScript the main client-side scripting language. The web

pages do also utilize a markup language, being HTML the most extended one, and usually a

style sheet, being CSS the most widespread.

The steps followed by the browser to display a web-page are the following:

• The user requests a web page from the server.

• The server finds the page and sends it to the user.

• The page is displayed on the browser with any scripts running during or after display.

4.1.1. HTML

HyperText Markup Language (HTML) is the main markup language for creating web pages.

The purpose of a web browser is to read HTML documents and compose them into visible or

audible web pages. For this purpose the HTML language contains HTML elements consisting

of tags, with come in angle brackets and normally in pairs. These tags are keywords which are

not displayed by the browser, but offer information of how to display the content.

 HTML allows images and objects to be embedded and can be used to create interactive

forms. It provides a means to create structured documents by denoting

structural semantics for text such as headings, paragraphs, lists, links, quotes and other items.

It can embed scripts written in languages such as JavaScript which affect the behavior of HTML

web pages.

Below is a visualization of an HTML page structure:

27

Fig. 21 HTML page structure example

HTML markup consists of several key components, including elements (and

their attributes), character-based data types, character references and entity references.

Another important component is the document type declaration, which triggers standards

mode rendering. The <!DOCTYPE> declaration helps the browser to display a web page

correctly. There are many different documents on the web, and a browser can only display an

HTML page 100% correctly if it knows the HTML type and version used.

HTML elements, in their most general form have three components: a pair of tags, a

start tag and an end tag; some attributes within the start tag; and finally, any textual and

graphical content between the start and end tags, perhaps including other nested elements.

The HTML element is everything between and including the start and end tags. Each tag is

enclosed in angle brackets.

The general form of an HTML element is therefore: <tag attribute1="value1"

attribute2="value2">content</tag>. Some HTML elements are defined as empty

elements and take the form <tag attribute1="value1" attribute2="value2" >. Empty elements

may enclose no content, for instance, the BR tag or the inline IMG tag. The name of an HTML

element is the name used in the tags. Note that the end tag's name is preceded by a slash

character, "/", and that in empty elements the end tag is neither required nor allowed. If

attributes are not mentioned, default values are used in each case.

Versions

In the following table is shown a summary of the different versions of HTML and the

year when they were launched.

28

Fig. 22 HTML different versions

The first release of HTML was launched in 1991, when Tim Berners-Lee, a physicist

working at CERN, proposed to create a global hypertext project, which later became known

as the World Wide Web (WWW).

HTML+ was published by the IETF as an Internet-Draft and was a competing proposal

to become a standard to the HTML draft. Like HTML, it was based on the Standard Generalized

Markup Language (SGML). HTML+ added new features like figures, tables and forms. It also

generalized the structures present in HTML to reflect practical experience with writing

browsers and a desire to make it easier to convert between HTML+ and other formats [18].

Neither HTML nor HTML+ became an official standard. Was in 1995, when the IETF

(Internet Engineering Task Force) published the HTML 2.0 which became an official standard.

 Since 1996, the HTML standards are published by the W3C (World Wide Web

Consortium). The HTML 3.2 standard, published in 1997, was the first standard published by

this organism. This version incorporates the last advances in web pages developed until

1996, like Java applets and text which flows around the images.

HTML 4.0 was published in 1998 and represents a big leap from the previous versions.

Among its most prominent novelties are the CSS style sheets, the possibility of including

scripts in the web pages, improves the accessibility, complex tables and improvements in the

forms. In 1999 an update of this version is launched within HTML 4.01.

 Since the publication of HTML 4.01, the W3C focused in the development of XHTML,

launching in the year 2000 the first release, XHTML 1.0. XHTML is an advanced version of

HTML adapted to the XML language. It maintains almost all the HTML tags and features, but

adds some restrictions and elements from XML.

 Because of the lack of HTML standards from the W3C since HTML 4.01, in 2004

Apple, Mozilla and Opera created the WHATWG (Web Hypertext Application Technology

29

Working Group), a group focused on the development of HTML 5.0, which was launched in

2012 and standardized by the W3C.

 At the same time the W3C continued with the standardization of XHTML. In the 2013

has published the XHTML 5 version.

4.1.2. CSS

HTML was never intended to contain tags for formatting a document. When tags like

, and color attributes were added to the HTML 3.2 specification, it started a nightmare

for web developers. Development of large web sites, where fonts and color information

were added to every single page, became a long and expensive process.

To solve this problem, the World Wide Web Consortium (W3C) created CSS.

CSS is the language for describing the presentation of Web pages, including colors,

layout, and fonts. It allows one to adapt the presentation to different types of devices, such

as large screens, small screens, or printers. CSS is independent of HTML and can be used with

any XML-based markup language. The separation of HTML from CSS makes it easier to

maintain sites, share style sheets across pages, and tailor pages to different environments.

This is referred to as the separation of structure (or content) from presentation [19].

CSS Syntax

A CSS rule has two main parts: a selector, and one or more declarations. In the figure you can

see the structure:

Fig. 23 CSS Syntax example

• Selector: The selector is normally the HTML element you want to style.

• Declaration: Each declaration consists of a property and a value.

• Property: The property is the style attribute you want to change. Each property has a

value.

In addition to setting a style for a HTML element, CSS allows to specify selectors for elements

with a concrete "id" or "class".

• The id selector is used to specify a style for a single, unique element. The id selector

uses the id attribute of the HTML element, and is defined with a "#".

• The class selector is used to specify a style for a group of elements. Unlike the id

selector, the class selector is most often used on several elements. This allows you to

30

set a particular style for many HTML elements with the same class. The class selector

uses the HTML class attribute, and is defined with a ".".

Insertion of a CSS in an HTML document

There are three ways of inserting a style sheet:

• External style sheet: is ideal when the style is applied to many pages. With an

external style sheet, you can change the look of an entire Web site by changing one

file. Each page must link to the style sheet using the <link> tag. The <link> tag goes

inside the head section of the HTML.

• Internal style sheet: An internal style sheet should be used when a single document

has a unique style. You define internal styles in the head section of an HTML page, by

using the <style> tag.

• Inline style: An inline style loses many of the advantages of style sheets by mixing

content with presentation. To use inline styles you use the style attribute in the

relevant tag. The style attribute can contain any CSS property.

Versions

Version Year

CSS 1 1996

CSS2 1998

CSS 2.1 2011

CSS 3 2012
Table 2 CSS versions

4.1.3. Javascript

JavaScript (JS) was invented by Brendan Eich. It appeared in Netscape (a no longer

existing browser) in 1995, and has been adopted by ECMA (a standard association) since 1997.

ECMA-262 is the official name of the JavaScript standard.

It is an interpreted computer programming language. It was originally implemented as

part of web browsers so that client-side scripts could interact with the user, control the

browser, communicate asynchronously, and alter the document content that was displayed.

More recently, however, it has become common in both game development and the creation

of desktop applications.

Insertion of JS in an HTML document

JavaScript in HTML must be inserted between <script> and </script> tags and can be put

in the <body> and/or in the <head> section of an HTML page.

31

Scripts can also be placed in external files. External files often contain code to be used by

several different web pages. To use an external script, you must point to the .js file in the

"src" attribute of the <script> tag: <script src="myScript.js"></script>.

4.2. Server-side

The server is where the Web page and other content lives. The server sends pages to the

user/client on request. The process is:

1. the user requests a Web page from the server

2. the script in the page is interpreted by the server creating or changing the page content

to suit the user and the occasion and/or passing data around

3. the page in its final form is sent to the user and then cannot be changed using server-

side scripting

The use of HTML forms or clever links allow data to be sent to the server and processed.

The results may come back as a second Web page.

Server-side scripting tends to be used for allowing users to have individual accounts and

providing data from databases. It allows a level of privacy, personalization and provision of

information that is very powerful. E-commerce, MMORPGs and social networking sites all rely

heavily on server-side scripting.

PHP and ASP.net are the two main technologies for server-side scripting.

The script is interpreted by the server meaning that it will always work the same way. Server-

side scripts are never seen by the user (so they can't copy your code). They run on the server

and generate results which are sent to the user. Running all these scripts puts a lot of load

onto a server but none on the user's system.

32

5. POS software design

5.1. Technology comparison

The main purpose of the technology comparison is to get a rough idea about the

current state of the art concerning the POS (Points of Sale). Mobile points of sale (mPOS) are

studied in detail as well. Especially, it will be focused on the GUI aspects of the market main

players' applications.

 Moreover, this report will help to determine which features are suitable for Avance

Pay's app and will analyze those features that could be activated and deactivated with the

editor to be designed throughout the present thesis.

5.1.1. Key Points of POS software design

Point of Sale software possesses the capability to streamline a retail business, since

smooth operations lead to higher profit margins. However, in order to design appropriate POS

software some key points should be taken into account [20].

Industry

POS software may be formatted for certain industries. Many solutions market

themselves as specific to industries like Sports Equipment, Antiques, or Fashion. However, a

significant portion are general solutions that offer all of the same capabilities. Creating a

software package specific to an industry will guarantee offering all of the features that are

needed.

Company Size

Different software solutions serve different sized companies. Size is an important

factor when designing a retail point of sale solution. The growth a company may experience

over the next few years should be considered. In this sense the following aspects should be

taken into account:

• Should the software be scalable?

• Should it handle more stations and thereby more sales?

• Should it possess features to help the merchant handle multiple currencies?

Deployment Model

On Premise/Client-Server Software follows the Client-Server deployment model. The

retailer purchases a physical disk and hosts it on their physical hard drive or server. Once

installed, the applications are accessed locally or through the user's network.

33

Software as a Service follows the Online or SaaS deployment model. It is hosted on

the provider's server, and the retailer employs the software through a network connection.

In general, you must visit the provider's website for access.

Functionality

POS software contains features to help vendors conduct sales transactions. These

features, or functionalities, have recently evolved to address more aspects of the retail

industry. Consequently, the term "Retail Management Software" more adequately represents

the functions included within POS software. The following are the features that extend the

normal POS features:

• Inventory Management

• Customer Management

• Employee Management

• eCommerce

• Retail Accounting

• Reporting

Point of Sale Features

Apply to the actual sales transaction. These features help cashiers process transactions.

Common features include receipt printing, gift card creation, and returns.

• Age Verification - Requires the customer's birthdate to approve transactions involving

age-restricted items.

• Bar Code Scanning - Offers the ability to retrieve item pricing information using a barcode

scanner.

• Buy X, Get Y Pricing - Allows organizations to offer special discounts using the X for Y

pricing scheme (i.e. "Two for the price of One!" or "Buy 3, Get 1 Free!").

• Cancellation - Lets cashiers cancel payments after the transaction has occurred.

• Consignment - Offers the ability to manage consigned inventory and sales.

• Coupons - Allows organizations to assign coupons for discounts on certain items.

• Credit Card Processing - Allows credit card swipe as an optional payment method.

• Customer History - Keeps up to date records of customer sales transactions and other

information.

• Customizable GUI - Provides the ability for managers to customize the interface to meet

organization specific needs.

• Discounts - Allows cashiers to apply discounts to individual items or to the total

transaction.

• Exchanges - Lets customers exchange items for different sizes or other in-store items.

• Gift Cards - Offers the ability to create gift cards/certificates which work like debit cards

loaded with store credit.

• Items on Hold - Gives the ability to place items on hold and manage them thereafter.

• Layaways & Quotes - Capable of supporting layaway transactions and

updating layaway debts.

34

• Mobile POS Capability - Includes the ability to perform point of sale tasks via a mobile

platform.

• Multi-System Integration - Enables the interlinking of multiple stations in order to keep

track of total sales and inventory.

• Multiple Currency - Accepts different types of currency at a single point of sale station.

• Multiple Payment Forms - Allows processing of individual transactions with multiple

payment methods (i.e. multiple credit/debit cards or a cash and card split).

• Price Lookup - Allows the retrieval of pricing and other information at the point of sale

station.

• Print Receipts - Capable of printing receipts containing important transaction

information, including individual and total cost of goods, sales tax, payment method, and

more.

• Receipt Notes - Allows cashiers to include transaction specific notes on the transaction

receipt.

• Refunds - Lets customers receive their money back when they return a faulty or

unwanted item.

• Rentals - Capable of processing rental transactions rather than standard sales processing.

• Returns - Allows customers to return items that they have purchased.

• Revenue Totals - Able to display the revenue totals for a single station or an entire store

over a given period of time.

• Sales Commissions - Both calculates and updates commissions earned by sales

representatives by item or altogether.

• Sell when Server/Network Down - executes transactions when the organization's network

or server is down by storing transaction info and uploading it later when the connection is

restored.

• Shipping/Delivery Setup - Lets customers and cashiers set up shipping for items that are

too large to be carried out of the store.

• Special Orders - Accepts special orders when an item is temporarily unavailable or out of

stock.

• Store Credit - Assigns store credit to a customer or card.

• Tax Exemption - Enables cashiers to dismiss tax charges when it is appropriate.

• Time-Limited Specials - Schedules price updates for limited-time sales and special

discounts.

• Transaction Hold/Recall - Lets cashiers hold, or pause, transactions to perform other POS

functions and then come back to finish them later.

• Void Transaction - Gives cashiers the ability to void whole or partial transactions.

35

5.1.2. mPOS in the market main features

analysis.

 First of all, some of the most important features present in several of the main mPOS

applications will be explained:

 Shopping cart: List containing all the articles a client wants to acquire.

 Tax rates: The merchants have the possibility to add a tax rate to each product so that

they can afterwards calculate sales tax for the transaction.

 Tipping: Merchants can configure the app to automatically prompt customers for a tip.

 Discounts: The merchants can apply a discount to any product.

 Signature: The clients can sign to verify the transaction.

 E-mail receipts: The merchants have the possibility to send a receipt to a client via e-

mail.

 SMS receipts: The merchants have the possibility to send a receipt to a client via SMS.

 Sales history: The merchants can check the sales history in the app.

 Reports: The merchants can access reports.

 Real-time sales volume: The merchants can access sales reports in-the-app and at real

time.

 Inventory management: The merchants can import their existing inventory database

in a snap. Once the inventory has been uploaded, the system will automatically track

how much they have in stock.

 Save customers info: Merchants can save customer information such as names and

addresses. This may be helpful to identify sales trends and best customers, ideal for

loyalty and other incentive programs.

 Manage cash transactions: Merchants can manage and record cash transactions

within the phone application.

 Refund: Merchants can refund the clients.

 Password protected: The application is protected with a user and password screen for

security purposes.

In the following table some of the major players’ applications features are compared:

Feature Square iZettle SumUp Revel AccuPOS

Shopping

cart

Tax rates
Tipping
Discounts
Signature
E-mail

receipts

SMS receipts
Sales history
Reports

36

Real-time

sales volume

Inventory

management

Save

customers

info

Manage cash

transactions

Refund
Password

protected

Table 3 mPOS main features comparison

5.1.2.1. Square

 Square brings mobile credit card processing to the masses with a miniscule square

credit card reader that plugs into the audio jack of popular mobile devices. The app itself is

free and there is no monthly service fee. You don’t pay for a merchant service because the

service works with your existing bank account.

 Square's application GUI is really simple. Its main screen consists

of an "Insert amount" screen where you insert the amount you want to

charge. Here you can add a description of the sale and even attach a

picture. If you have the card inserted into your device you can directly

swipe a credit card to charge the amount. If not, you can click the button

that appears in the upper right corner to even choose to insert the credit

card details manually or to register the sale as a cash payment.

 You can always add more items, even by inserting them manually

or by selecting them from the item library if you have previously added

one.

 Once the encash has been performed, a signature screen

appears so that the client can sign the transaction. This screen is

optional; this means that you can deactivate the signature

process from the settings menu. The same thing happens with the tipping. If you have

activated them the clients will be able to select the percentage they want to give as tip or even

insert the amount they want to give manually.

 Once the payment has been successfully performed, the user can select whether he

wants to receive the receipt even to his email account or by SMS.

Fig. 24 Square's app for iPhone

37

 As shown in the figure, the shopping cart for small

devices appears in the top of the screen, as well as in the

iPad vertical layout screen. The total amount is shown as

well as the number of items selected, appearing within a

little box. When clicked, a summary of the sales is

displayed.

The shopping cart for the iPad landscape layout is

displayed in detail in the right side of the screen.

 The insertion of new items is really simple. In the

“All items” screen there is an “Edit” button, which after

being clicked allows the merchant to edit the items

library. A “+” button appears where the Edit button was.

After clicking it a “new item” pop-up screen pops up. In

this pop-up the merchant can add a new product,

selecting a name, a category, a price and it is even

possible to add a photo or assign the product a color, a

text, etc.

 The merchants also have the

possibility to add Reward and discount

buttons. The procedure to create this

discount buttons is very similar to the

one of creating a new product.

 The iPad version offers extra

functionality that the android mobile

phones and iPhones don’t support. This

extra functionality is for instance the

possibility to have in-app reporting,

print receipts or kitchen tickets, or

have a cash drawer.

5.1.2.2. iZettle

iZettle has two clear target markets. The first is the small business provider who wants

to begin offering card payment options to his/her customers. These users will apply for a

‘Business Account’.

The other target market is for home users who want to be able to take card payments.

These users will apply for a ‘Personal Account’.

The difference between the two accounts is the amount you can take per transaction

and total amount per day.

Fig. 25 Square's app shopping cart detail

Fig. 26 iPad landscape layout

38

iZettle’s app appearance is quite similar to Square’s app. The main screen consists of a

numeric keyboard where the merchant can type the amount to charge. It is possible to add a

description of the sale as well as a picture.

Once you have typed the amount, you can click

on the pay button which is in the top right corner of

the screen. You can choose among inserting the credit

card details manually, entering a cash payment, to

track all your incomes, or inserting a MasterCard credit

card in the reader.

Although VISA payments are allowed, the

payment procedure is different. If you insert a VISA

card a SMS will be send to the owner of the card

containing a URL. Once the buyer clicks on the URL

link, the browser opens a web site where he can fill his

VISA card details to proceed with the payment.

After completing this process the payment

follows as in the MasterCard payment: a signature screen appears so that the client can sign.

After the verification, there is a “send receipt” screen where the customer can introduce his

email address in order to receive an electronic receipt.

There is also another way to perform a credit

card payment and is with iZettle’s PIN & CHIP device.

This device is connected via Bluetooth with the

device where the merchant has the app installed.

The customer inserts the card into the card slot.

Then he only has to introduce his PIN and confirm the

payment. If it results into a successful payment the

confirmation will appear on the merchant’s device.

Furthermore, iZettle’s app allows the merchant to

create items and to access them from the library. It also

allows vendors to organize the items by folders.

The method to insert new items is really similar to

Square’s one.

Fig. 27 iZettle's app and reader

Fig. 28 iZettle's PIN & CHIP

Fig. 29 iZettle's application

39

5.1.2.3. SumUp

SumUp’s service, as Square’s and iZettle’s, includes a free card reader, phone app, and

account setup as well as a no other fees in addition to a flat processing fee of 2.75% for all

card types and transactions.

The user interface is similar to Square’s and iZettle’s apps,

but offers some differences. The main screen is again a numeric

key board where the merchant can introduce the amount of the

purchase.

After having inserted an amount, it can be charged by

clicking the “Charge” button. The app will ask for the payment

method to be used in the following screen. If a card payment is

selected and the reader is connected to the device the app will ask

the buyer for inserting the credit card. It doesn’t recognize it

directly, but the merchant must press the “read card” button.

Afterwards, a signature screen will appear so that the buyer

can sign. He can even give a tip if desired.

Once the card has been successfully read and the

transaction has been performed, a screen to send an email or SMS receipt will show up. The

customer can insert his email address and he will receive the receipt.

On the other hand, the vendor can create his own items specifying the name, price,

and category. He can also attach a picture to it and finally post it to the “shelf”, where all the

created items will appear.

Once he wants to sell some item from the library he goes to the shelf and selects as

many items as he wants. A number will appear in the upper right part of the item image

within a little colored square, indicating the number of times the item has been added to the

shopping cart. When he has finishing adding products he can review the products added to

the cart by clicking the blue button on the upper right part of the screen.

There is the possibility to activate and deactivate the tip and tax rates from the

settings, as well as manage the products of the shelf. Moreover, the merchant has access to

the sales history and to email and social network support.

5.1.2.4. Revel

The Revel POS works in a hotkey fashion, in which cashiers can tap on menu categories

with drop-downs of items and modifiers to select. Or if you prefer, barcode numbers can be

entered into the system for ringing of items with a Bluetooth wireless barcode scanner. Tax,

discounts, service fees, and surcharges can be set to automatically add or manually add at the

Fig. 30 SumUp's app and reader

40

time of sale. All payment tenders are acceptable: cash, check, gift certificate, credit card, debit

card, and even customer rewards points. To pay with exact change requires hitting simply the

"cash" button. Manual credit card entry is also a payment option. Once an item is added to a

transaction it can be easily removed or deleted simply by tapping on it and tapping "delete."

If an item has modifiers attached to it, the option for modifiers will automatically pop-up when

the item is selected. In the "edit item" screen cashiers can set orders to-go, for delivery, repeat

items, remove items, enter discounts, enter special requests, add quantities, or even pay.

Editing modifiers is as easy as un-selecting what

you've selected and reselecting whatever you

want. When completing an order cashiers can also

add the customer's name to the order (for quick

service environments). Of course the POS can also

void payments, allow for tips, split bills, email

receipts, print/reprint guest receipts, and enter

rewards card numbers. Certain functions like

discounting an order, opening the cash drawer, or

voiding payments can have manager password

requirements if you prefer. If an order has already

been sent to the kitchen you even have the option

of going back to it and adding additional items,

sending then only the newly added items to the kitchen. Obviously items already sent cannot

be edited or deleted, but they can be repeated, discounted, increased in quantity, or voided

off the bill.

With Revel you can create multiple price levels, including time-based promotional prices

(i.e. sales) or promotional campaigns like buy one get one free, mix and match, and 1/2 off.

 Revel’s POS supports lots of features, but could result complex.

In Europe, Revel is integrated with Sum Up, a mobile credit card processor.

5.1.2.5. AccuPOS

AccuPOS is a PC-based POS software, but this company

offers also an Android-based version of their software.

 This company focuses in offering a useful GUI and professional

software more than in making it attractive for the sight. The

layout of the application consists of buttons added by the

merchant, grouped by colors. This way of showing the different

items is the most pragmatic approach.

 Then, the application of this company offers all kind of features,

really valuable for merchants, but they will not be described

because these features are mostly offered by their PC software.

The only purpose of including this software to the review is to

Fig. 31 Revel's POS app

Fig. 32 AccuPOS' Android app

41

show the appearance of their user interface, which, as mentioned before, focuses on the

usefulness and not in the appearance.

5.1.3. mPOS features comparison table

The following table shows a summary of some mPOS features.

 Square iZettle SumUp RevelSystems AccuPOS

Features

• Receipts by

SMS and

email

• Signature

verification

• Tips and

taxes

• Reporting

• Add product

• Discounts

• Receipts by

email

• Signature

and PIN

verification

• Tips and

taxes

• Reporting

• Add

products

• Discounts

• Receipts by

email

• Signature

verification

• Tips and

taxes

• Reporting

• Add

products

• Discounts

• Only for tablets

• Professional

software

• Professional

software

• Arrange

buttons by

categories

and color-

based

grouping

Type of

device

Android

devices,

iPhone, iPad

Android

devices,

iPhone, iPad

Android

devices,

iPhone, iPad

iPad

PC, Android

mobile

devices

Type of

business
Retailers Retailers Retailers All All

Pros

• Small card

reader

• Own wallet

app

• CHIP&PIN

device is

really useful

• Easy to use

• Professional

software

• Own wallet app

• Professional

software

• Very

complete

• Multiple

reports

Cons

• Reader only

allows to

swipe cards

• Payments

with VISA

cards are

annoying.

Card data

must be

inserted.

• Only for

small

merchants.

• May be difficult

learn how to

manage every

feature the app

offers.

• Not

appropriate

for small

merchants

for being

too

complex
Table 4 mPOS comparison

5.2. Definition of requirements

5.2.1. Customer Segmentation

First of all, is necessary to accomplish a customer segmentation in order to decide which

customers we want to focus on and which features apply for which type of customer. For this

purpose a workshop is required.

42

After studying the market possibilities these are the players that come up in the workshop

meeting for defining the customer segments:

• Small merchants: Merchants with few sales a day and not a high volume of sales.

• Event Merchants: Merchants with are selling in events such as concerts, football

matches, etc.

• Retailers: Merchant with a higher volume of sales than small merchants, requiring

a more professional sales solution.

• Workman: Person who offers a service and works by his own.

• Workman Company: Company that counts with various workmen.

• Tourism: City tickets, normally to enter museums and access to special services.

• Public transportation: Taxis, buses, underground, tram, etc.

Use Case Description Used HW Features / Keywords

Issuing Device Issuing card Smartphone /

Tablet

• Load / activate

• Different payment

methods, incl. cash and

online vouchers

Loading

Device

Converting money Smartphone • Load / activate

• Different payment

methods, incl. cash and

offline vouchers

CRM Device Customer

relationship

management

Smartphone /

Tablet

• Register cards

• Complains

• Refunding

• Blocking

Small

Merchants

Selling anything a

few times a day

Smartphone

Optional:

• Cash Drawer

• Receipt

Printer

• Customer

Display

Gamification / Standalone

• Hotkeys

• Product groups

• Specific amounts

• Shopping cart

• Discounts

• Tipping

• Different payment

methods, incl. cash

• (VAT)

• Loyalty

• (Coupons)

Event

Merchants

Selling small

assortment many

times

Tablet Fast & Simple GUI; full

(integration with) cash

register

• Hotkeys

• Product groups

• Specific amounts

43

• Shopping cart

• (Discounts)

• Tipping

• Single payment method

• Different payment

methods, incl. cash &

vouchers

• (VAT)

Retail Selling many

things many times

Tablet Professionals; full

(integration with) cash

register

• Scanning

• Article Numbers

• Specific amounts

• Shopping cart

• Discounts

• (Tipping)

• Different payment

methods, incl. cash &

vouchers

• Loyalty

• Coupons

• VAT

Workman Runs his own

business

Smartphone 3x Simple

• Calculator

• Tipping

• VAT

• Different payment

methods, incl. cash

Workman

company

Controlled by his

boss

Tablet /

smartphone

3x simple

• Working report

• Scanning

• Tipping

• Scheduling

• Dispatching

• Different payment

methods, incl. cash

• VAT

• CRM integration

Tourism Tablet Standalone

• Pass activation and

verification –or–

• Discount verification –

or–

• Payment / Points

• Reporting

44

Taxi POS for a taxi Smartphone 3x Simple

• Calculator

• Tipping

• VAT

Different payment methods,

incl. cash

Bus Selling fixed prices

tickets

Smartphone 3x Simple

• One ride

• Multiple rides (10x)

Different payment methods,

incl. cash
Table 5 Customer segmentation

Once the customer segments have been defined, a feature matrix containing the

previously gathered mPOS features and the customer segments is created in order to define

which features apply for which customer segment.

45

5.2.2. Features matrix

Table 6 Features matrix

46

After defining the features for each customer segment, some GUIs are proposed.

The classical lifecycle for small merchant mPOS is the following:

Fig. 33 mPOS screens flow

Based on this schema the small merchants GUI proposal design for the mPOS

application is created. The following are some examples of the designed screens:

Some designs were proposed to create an mPOS application for various customer

segments. However, we realized that the better approach would be to focus on one of those.

This decision was taken considering market preferences of the company. Therefore, since this

point we focus on Event Merchant mPOS.

5.2.3. Event Merchant mPOS design

Avance Pay’s Point of Sales for event Merchants is intended to be an application for

Android Tablets that allows Event Merchants to manage their sales.

Fig. 34 mPOS layouts proposal

47

The design of the GUI consists of a grid-based layout. The grid utilized will have a

dimension of 7 (vertical) by 9 (horizontal). In its turn each grid square will contain an internal

grid of 3 (vertical) by 4 (horizontal).

Fig. 35 Tablet grid

 All the screens of the applications have been designed using the above grid. Hereafter

there is an example of how the login screen has been designed:

Fig. 36 Tablet mPOS login screen design

48

The following image shows the expected final result:

Fig. 37 mPOS login screen

The main screen of the application will be the sales screen, where the merchant can

manage his sales operations. This will the first screen to be opened after doing the log in.

In the left side will be a tab control, where the user can select the screen to be

displayed. The tab with the shopping cart opens the main screen, which is the sales screen.

As you can appreciate, each element of the design has a defined size; easily assigned using the

grid and the same applies for the position of each element.

 Sales Screen

The following picture illustrates the five main areas in which this screen is divided:

Fig. 38 mPOS sales screen

49

The areas will be measured by squares of the grid taken up. Nomenclature: Y (vertical) by

X (horizontal) number of squares. Y x Z.

1. Tab control: The tab control will allow the users to control the screen to be

displayed. This area will take up the whole first row, being each tab one square of the

grid. Therefore, there will be a maximum of seven tabs. Dimension: 7 x 1.

2. Shopping cart: the shopping cart will consist of a list of the selected products and a

textbox showing the total amount to be paid. In the image it is highlighted by the

blue square. Dimension: 2 x 6.

3. Products: The products screen is marked in the picture with red. It consists of two

sub-sections: the “Product Groups” and the “Products”. Once the merchant selects a

category; the corresponding products belonging to that category will appear in the

“Products” area.

Dimension: 6 x 4.

-Product Groups: 2 x 4.

-Products: 4 x 4.

4. Calculator: the calculator function will be controlled by 4 radio buttons. The 4

buttons will allow the user among inserting a manual entry, entering a tip or a

discount or loading a card. It is highlighted in the picture in green in the right part of

the layout. Dimensions: 6 x 2.

5. Control buttons: The control buttons are three buttons at the bottom of the screen,

which allow the user to cancel a transaction (red button), undo the last operation

(yellow button) or go to the next screen (green button). Dimension: 1 x 8.

 Information screen

This screen will contain Avance Pay’s contact information and support, so it will be

probably based on a web page screen. It will not be editable.

 Transactions screen

This screen is out of scope for the present thesis while it is a not editable screen. It will

show the transactions realized in the terminal.

 Settings

This screen is out of scope for the present thesis while it is a not editable screen. It will

show a screen with some setting options.

 Lock screen

The lock screen will consist of a numeric keyboard, a text box and Avance Pay’s logo. As

shown in the following picture, the same grid is utilized to determine the position of the

elements.

50

Fig. 39 mPOS lock screen design

The final screen will look like the following picture:

Fig. 40 mPOS lock screen

The numeric keyboard will allow users to insert the unlock code PIN. The red button

resets the textbox and the green button confirms the inserted number.

5.3. Prototype creation

Once the GUI design is clearly defined, the idea is to create a functional prototype of

the application. The technology to be used to create it is JavaFX, which is a cross platform GUI

toolkit for Java. The functionality of the application will be programmed in Java.

 The layout of the screens have been created with JavaFX Scene Builder. It is a visual

layout tool that lets users quickly design JavaFX application user interfaces, without coding.

Users can drag and drop UI components to a work area, modify their properties, apply style

sheets, and the FXML code for the layout that they are creating is automatically generated in

51

the background. The result is an FXML file that can then be combined with a Java project by

binding the UI to the application’s logic.

The bellow image shows how this editor looks like:

Fig. 41 JavaFX Scene Builder

In the left side of the program you can find the

The result for the login screen is the following:

 Fig. 42 Login screen - Prototype

52

Then, the Sales Screen has been created. The following picture shows how it looks like.

It respects the previously designed layout.

Every single button has been implemented, carrying out their tasks. Furthermore, the

category buttons and their corresponding products are loaded by reading a configuration xml

file, as the real app will do it.

 Fig. 43 Sales screen - Prototype

The following shows how the lock screen looks like.

 Fig. 44 Lock Screen - Prototype

53

6. Design and development of the

Drag & Drop Editor

In this section the design and development of the drag and drop application are explained.

The requirements are firstly explained as well as the proposed solutions.

6.1. Requirements

Some of the requirements were stipulated from the outset: It had to work for web

browsers, as a standalone application and for android devices.

Moreover, in order to reuse code, a common programming language had to be chosen.

For this reason the use of standardized web APIs came into the spotlight.

This would be possible if the android application and the standalone application somehow

could display the web content. For that reason, the idea was to use a similar approach to the

PhoneGap’s one, and use android’s web browser engine to render the drag & drop application.

In the same way the standalone application had to render the web content using a web engine.

The chosen technology to create the standalone application was JavaFX, because it had

been used beforehand and was, therefore, known. Furthermore, its WebView could be used

to display the content as for the android app.

WebView is a Node that manages a web engine and displays its content. The

associated WebEngine is created automatically at construction time and cannot be changed

afterwards. WebView handles mouse and some keyboard events, and manages scrolling

automatically, so there is no need to put it into a ScrollPane [21].

The WebView enables the display of the frontend content. However, the intention was to

use the whole application without requiring an internet connection. For that reason, the

solution proposed was to insert the open-sourced and commercially usable web server, Jetty,

into the standalone application; and i-Jetty into the android application.

Jetty provides a Web server and javax.servlet container. Moreover, these components are

open source and available for commercial use and distribution, converting Jetty in the ideal

choice. Other features of Jetty are: small footprint, enterprise scalable, embeddable, full

featured and standard based [22].

Hereafter there is a summary of the technology used in the different platforms:

• Web Browser: Use of HTML, CSS and JavaScript for the front-end. Two JavaScript-

based frameworks have been used: KineticJS and JQuery.

For the backend Java was the choice.

• Standalone application: JavaFX with the WebView node to display the frontend

content and integrated with Jetty to manage the servlets.

54

• Android application: Android app using android WebView for the front-end and i-

Jetty for the backend servlets.

6.1.1. Web application solution

The web application is intended to be an online platform where Avance Pay’s users can

access their accounts in order to edit their POS applications. In this section a solution to

address this project is proposed.

The schema in mind consists of a front-end side, a back-end side and a terminal with a

POS application. The users might connect via web-browser to Avance Pay’s platform. From

the platform they may have access to the current configuration of their terminals.

They could make the changes they want and once they have saved the new

configuration file it could be updated to their android devices via FTP.

Fig. 45 Solution for the web application

In the image above the proposal is explained graphically. The front-end solution will be

the same as for the standalone and android applications, HTML5, CSS3 and JavaScript. The

technology to handle the creation of such configuration files will be Java.

6.1.2. Standalone application solution

As mentioned before, the standalone had to work as a complete solution. This means,

it had to work in offline mode, permitting the users to load a pre-configured file or to create

a new configuration.

55

In the following figure the proposed solution is illustrated to make it easier to

understand:

Fig. 46 Solution for the standalone application

The idea was to integrate the front-end and the back-end within a Java application.

The GUI part would be managed using JavaFX making use of its WebService engine to display

the front-end content. The back-end code would be handled by Jetty, where the XML

configuration file is generated.

Fig. 47 Standalone application logic

The previous image explains that the configuration files are generated by the

standalone application. These files must be afterwards stored in the appropriate folder in the

tablet containing Avance Pay’s POS application.

The load of a pre-configured file is accomplished by choosing the file from the system

files. Then the file must be stored in the tablet. This method is optimal if the configuration is

done by an employee of Avance Pay with the knowledge of where to store the file afterwards.

A better approach to make it usable to users might be to connect an android device to the

computer and detect such configuration file automatically. Once the user has saved the new

configuration it remains in the same folder inside the tablet, thus avoiding the need of placing

the file inside the appropriate place.

56

6.1.3. Android application solution

The Android solution has a slightly difference with respect to the standalone one. It is

the use of i-Jetty, the android version of Jetty. Here you can see this solution graphically:

Fig. 48 Solution for Android application

An .apk file is generated, containing a WebView to display the front-end content. As in the

previous solution the management of the servlets is done with i-Jetty.

Fig. 49 Android Drag & Drop Editor logic

 Currently, a configuration file must be chosen in order to edit it. For the future might

be considered as an option to directly look if the tablet running the editor contains Avance

Pay’s POS application and in that case load automatically the current configuration if

desired. Also, it would directly loaded when the users save it.

6.2. Design

Finally, after having decided how the mPOS app would look like and how it would work,

the Drag & Drop Editor design could be accomplished.

Firstly the editable elements of the mPOS application had to be defined in order to

establish the requirements of the editor. At an early stage the idea was to permit the editing

57

of various elements, but later was decided that would be a much better approach to offer only

the possibility of editing few things.

These few editable elements would be the category or group buttons and the product

buttons belonging the different categories. Moreover, the user might be able to choose

among different style buttons.

Furthermore, the application had to offer the possibility of eliminating any inserted

button, so a bin would be useful for that purpose. Also a Save Button and a Load Button were

defined as compulsory elements of the Drag & Drop Editor. Their function is described in the

next section of this chapter.

 The editing tool had to follow the drag & drop principle to facilitate the use of the

application to the users. The idea was that they could see their Sales Screen in the middle of

the editor and they could be able to drag and drop the categories and products buttons from

a tool pane at the left of the screen.

 The following image shows the final design of the Drag & Drop Editor. It counts with all

the elements.

• Category buttons: Four different style buttons that the user can drag and drop to a

category button outline. The category buttons outlines appear in black within the

tablet image.

• Product buttons: If a category button is selected, the product buttons appear. To

select a category, the category button must be placed in the tablet and then it has to

be clicked. There are also four styles of product buttons.

• Bin: Placed right below the product buttons. When a button placed in the tablet is

dragged and dropped onto the bin the button is removed. If it is a category button

containing product buttons, also these are eliminated.

• Save button: When clicked the current configuration is clicked, generating a

configuration file with the xml structure.

• Load button: Allows to select a configuration file to load its configuration to be

edited.

• Tablet with button outlines: The tablet with the buttons outlines where the buttons

can be placed.

58

When a category button is placed in a category outline and clicked, the product buttons

appear.

Fig. 51 Drag & Drop Editor category selected

Fig. 50 Drag & Drop Editor initial state

59

 An automatic dialog shows up when a new category button is placed in a category

outline, where the user can introduce the category names.

Fig. 52 Drag & Drop Editor Category dialog

 While the same happens for the product button but in this case the dialog has more

fields to fill out.

Fig. 53 Drag & Drop Editor - Product dialog

 Once the editing is finished the editor shall produce an XML file for the categories and

products, specifying the products belonging to each category, the name, the price and the

VAT value. The following code shows an example of such configuration file.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<configuration>

 <categories>

60

 <category id="category_1">

 <name>Food</name>

 <btn-type>1</btn-type>

 <position>1</position>

 <products>

 <product id="product_5">

 <name>Pizza</name>

 <btn-type>1</btn-type>

 <position>5</position>

 <price>8.5</price>

 <vat>21.0</vat>

 </product>

 <product id="product_6">

 <name>Spaghetti</name>

 <btn-type>1</btn-type>

 <position>6</position>

 <price>10.0</price>

 <vat>21.0</vat>

 </product>

 </products>

 </category>

 <category id="category_6">

 <name>Drinks</name>

 <btn-type>2</btn-type>

 <position>6</position>

 <products>

 <product id="product_2">

 <name>Coke</name>

 <btn-type>1</btn-type>

 <position>2</position>

 <price>2.5</price>

 <vat>21.0</vat>

 </product>

 </products>

 </category>

 </categories>

</configuration>

Accordingly, the load button had to allow the user to choose a configuration file in order

to modify it. Its content is loaded and it is overwritten with the new configuration once the

user saves his modifications.

When a button placed in a button outline within the tablet is dragged the bin had to show

the user that it can be eliminated, changing its image to an open bin.

Fig. 54 Opened bin (left) and closed bin (right)

61

6.3. Development

The development explanation is split in two sub-sections: front-end and back-end

programming.

6.3.1. Front-end programming

On the one hand, KineticJS’ API was the main choice to animate the editor web application

(front-end programming). Most of the interactive actions are supported by KineticJS, like the

drag and drop actions, the change of images, the highlights, etc.

On the other hand, JQuery was also used, for example to show the dialogs to enter the

category and product details.

In this section the programming logic will be briefly explained.

Basically, the index.htm document imports all the javascript files, which are the ones in

charge of loading all the images and managing the logic of the application.

KineticJS allows you to add objects to canvas which will respond to events like mouse click

and drag. The <canvas> element is only a container for graphics. You must use a script to

actually draw the graphics. For that purpose we use KineticJS.

 First of all we have to create a container in our HTML5 index page:

<div id="container"></div>

Then, we can import all the scripts:

<script>

 $.getScript('js/variables.js', function() {

 });

 $.getScript('js/main.js', function() {

 });

 $.getScript('js/productsManager.js', function() {

 });

 $.getScript('js/categoriesManager.js', function() {

 });

 $.getScript('js/productDialog.js', function() {

 });

 $.getScript('js/categoryDialog.js', function() {

 });

 $.getScript('js/loadButton.js', function() {

 });

 $.getScript('js/saveButton.js', function() {

62

 });

</script>

As shown in the code these scripts are imported using jQuery’s getScript() function.

After this, the main.js script loads the images and initiates the KineticJS’ stage. The stage in

KineticJS is used to contain multiple layers and is instantiated this way:

 var stage = new Kinetic.Stage({

 container : 'container',

 width : window.innerWidth,

 height : window.innerHeight

 });

 The container refers to the div container created in the html index page. It is the canvas

container and will be used to display all the elements created with KineticJS.

Then we have to add the layers. Two different layers are used:

• Background layer: contains the background image.

• Elements layer: contains the elements that integrate the editor (buttons, bin, logo,

etc.).

Within the main method the buttons outlines are also created. This outlines are images

placed inside the tablet image, where the buttons can be dropped. Finally the category

buttons are created. To manage the creation of category buttons there is a javascript file called

categoriesManager.js containing all the needed functions.

Inside the categoriesManager.js file can be found the logic to decide if more category

buttons should be created as well as when to call the method createProdBtns() from the

productsManager.js file. These decisions are made based on events related to the buttons.

To manage an event on a button is managed in the following way:

button.on('dragend', function() {…});

The first parameter of the method is a string indicating the action. The allowed action

strings are the following: mouseover, mousemove, mouseout, mouseenter, mouseleave,

mousedown, mouseup, click, dblclick, touchstart, touchmove, touchend, tap, dbltap,

dragstart, dragmove, and dragend. So many are the possibilities.

To make sure that a button was dropped on top of the corresponding outline or the bin

there is a method that verifies this. This method also admits a certain distance error, thus is,

it verifies whether a button was dropped nearby its corresponding outlines or the bin.

 While the users are configuring their app buttons, the mapping configuration is stored

in a javascript object, so that when a category button is clicked its pre-configured product

buttons are shown and the rest hidden.

63

In the images it can be appreciated that the products of each category are loaded when

the category button is clicked.

The dialogs to insert the product and category buttons details are implemented within two

respective javascript files, containing functions that open the dialogs and save the inserted

details in the javascript configuration map object.

6.3.2. Back-end programming

 For the back-end Java was the choice. The two classes implemented were two servlets,

one called when the save button is clicked and the other when the load button is clicked.

When the save button is clicked, the saveServlet.java is called using Ajax. In concrete the

method used is a jQuery method. It sends the map variable containing the configuration map,

but firstly this map is converted to a JSON string.

In the save button servlet the JSON string is received and parsed to java objects, where

the information is stored. Then a class to create an XML file is called and the generated file

saved. An OK message is returned to the front-end, where a successful message is shown to

the user.

In the other case, when the load button is clicked the loadServlet.java is called asking the

user to select an xml file containing a previous configuration. If the file is correct the xml file

is converted to a JSON string and passed to the front-end, where it is read and stored in the

configuration map variable. Once it is saved in the javascript object the new configuration is

displayed.

Fig. 55 Drag & Drop Editor - Changing category

64

7. Conclusions and future work

7.1. Conclusions

Throughout the present Thesis some Android Editors were analyzed in order to determine

the best approach for Avance Pay’s solution. After this analysis is concluded that a simple and

intuitive editor would be the best choice. Moreover, these editors did not fulfill the

requirements, i.e., to work for web browsers, as a standalone application and as an Android

application. Hence a proprietary solution is proposed to address these requirements.

However, some good ideas from these editors were appreciated and should be taken into

account for the future work, such as storing the configurations in our server and updating the

applications GUIs remotely.

The intention of doing it simple relies on the profile of the users, who are vendors, not

necessarily with informatics skills. For that reason, it may be a good idea to introduce some

tips to guide the users through their editing tasks.

Then, different mPOS were as well analyzed in order to determine the best design for our

POS application. Many features from these mPOS were gathered and was found that the focus

needs to be on one customer segment, due to the diversity of these and the differences among

the applications they need.

To finalize, the final application was developed using web standardized APIs. Even though

this application works fine for Android, the feeling and velocity are worse, so it is

recommended to use native code in order to avoid this limitations.

7.2. Future work

The current application constitutes a basis application. In it the vendors can edit their POS

applications from scratch or even load a preconfigured file to edit it. Future work may cover

the access to an online platform, using a user and a password, where users may have access

to different services. From their accounts they may see their current POS configuration

installed on their devices. The idea may be that once they save a configuration it is updated

remotely via an update manager.

Moreover, some other services may be interesting to offer from an online platform, such

as reports, customer service, online shop to enhance the POS capabilities, etc.

Nonetheless, the application could also support offline editing by detecting a device with

Avance Pay’s POS application installed on it attached to the computer via USB; or if it is

installed in the same device when running the editor in android. It may access the

configuration file and load the new configuration when saved.

65

The current design suits for Event Merchant points of sale, so other customer segment

applications can be designed and adapt the drag and drop editor so it allows the editing of the

different applications.

66

Bibliography

[1] H. Stockman, “Communication by Means of Reflected Power.” 1948.

[2] ECMA, Ecma-340: Near Field Communication Interface and Protocol-1, no. December.

2004.

[3] ISO, International Standard ISO / IEC: Near Field Communication, vol. 18092. ISO / IEC,

2004.

[4] N. Forum, “About NFC Forum.” [Online]. Available: http://www.nfc-

forum.org/aboutus/.

[5] INTECO, “La tecnología NFC: Aplicaciones y gestión de seguridad.” pp. 1–21, 1948.

[6] International Telecommunication Union (ITU), Radio Regulations (Volume 1) - Article

5: Frequency allocations, RR 5.150. .

[7] ETSI, “Near Field Communication Interface and Protocol-2 (NFCIP-2),” vol. 1. pp. 1–9,

2004.

[8] Innopay, Mobile payments 2012. 2012, pp. 1–100.

[9] “PayPal to enable in-store payments simply by scanning a QR code.”

[10] J. J. Echevarria, J. Ruiz-de-Garibay, J. Legarda, M. Alvarez, A. Ayerbe, and J. I. Vazquez,

“WebTag: Web browsing into sensor tags over NFC.,” Sensors (Basel)., vol. 12, no. 7,

pp. 8675–90, Jan. 2012.

[11] “Ultrasonic Payments: Naratte.”

[12] “Square Up.” [Online]. Available: https://squareup.com/.

[13] “i-Zettle.” [Online]. Available: https://www.izettle.com/.

[14] “SumUp.” [Online]. Available: https://sumup.co.uk/.

[15] NOKIA, “Inside NFC: secure payment technology.”

[16] M. Group, “App Inventor.”

[17] W3C, “HTTP Protocol (RFC 2616).”

[18] David Raggett, “A Review of the HTML+ Document Format.”

[19] W3C, “Cascading Style Sheets.”

67

[20] Findthebest.com, “Point of Sale (POS) Software.”

[21] “JavaFX WebView.” [Online]. Available:

http://docs.oracle.com/javafx/2/api/javafx/scene/web/WebView.html.

[22] “Jetty Project.” [Online]. Available: http://www.eclipse.org/jetty/.

68

Annex A

Introducción

Motivación

Los pagos NFC ya están aquí. Muchas son las ventajas de tener todo integrado en el

teléfono móvil. Es por este motivo que Avance Pay está desarrollando terminales de pago

integrados en teléfonos móviles. El sistema de Avance Pay pretende ser rápido, seguro,

económico, fiable y extensible. Presenta muchas ventajas tanto para los clientes como para

los vendedores.

El desarrollo de una interfaz drag-and-drop tiene como objetivo facilitar a aquellas

personas sin conocimientos de programación, la personalización de sus aplicaciones de venta.

Esta herramienta conseguirá que el usuario, de una forma altamente intuitiva, pueda diseñar

y hacer cambios en su propia aplicación.

Del mismo modo se pretende dotar al sistema de pago de Avance Pay de un elemento

diferenciador respecto a otros sistemas de pago, y para ello se pretende proveer a los

clientes de la empresa de una herramienta que les permita personalizar las aplicaciones de

venta de sus negocios.

Objetivos

El objetivo de este Proyecto Fin de Carrera es diseñar y crear una interfaz gráfica de usuario

(GUI) tanto para terminales móviles, con sistema operativo Android, como para clientes web.

La idea es que los comerciantes que estén usando el sistema de Avance Pay, puedan editar

sus propias aplicaciones de venta: cambiar la vista de la interfaz, cambiar precios, añadir

nuevos productos, nuevas opciones, etc.

El sistema en mente consistirá en un editor drag-and-drop para entornos Android y otro

para navegadores web y será diseñado y creado a lo largo del presente Proyecto Fin de

Carrera.

Para desarrollar la aplicación en mente se analizarán distintos editores Android así como

distintos Terminales Puntos de Venta móviles (mPOS por sus iniciales en inglés). La idea es

entender como están implementados estos programas.

Metodología y plan de trabajo

69

Con el fin de lograr los objetivos de este Proyecto Fin de Carrera la siguiente

metodología será seguida de manera estricta. En primer lugar se revisará literatura moderna

sobre la tecnología NFC, de tal manera que se pueda presentar una visión general sobre la

misma en este trabajo. Además, también serán revisados artículos sobre editores Drag and

Drop y sobre código XML, entre otros.

Una vez se haya revisado la literatura moderna referente al tema, se haya obtenido

una idea sobre el estado del arte y el estudiante se haya familiarizado con los editores

existentes, serán definidos los requerimientos del sistema de Avance Pay, así como un plan de

desarrollo del mismo.

Después del análisis funcional se procederá con la definición de los requerimientos del

fichero intermedio (XML) y con la programación de las interfaces drag-and-drop. Una vez se

tenga el código base, se procederá a la evaluación del mismo. Se corregirán los eventuales

errores que pueda contener y se añadirán las posibles mejoras que se consideren oportunas.

El plan de trabajo constará de los siguientes pasos:

1. Revisión de la literatura moderna sobre la tecnología NFC y los editores Drag and Drop.

2. Familiarización con los editores existentes.

3. Definición de los requerimientos del sistema.

4. Definición de un plan de desarrollo.

5. Implementación de la primera “release” (prueba de concepto).

6. Evaluación y discusión de los resultados.

7. Finalización de la memoria.

Estructura de la memoria

Capítulo 1. Introducción: Introducción de la memoria, donde la motivación y objetivos del

PFC son expuestos.

Capítulo 2. Introducción a la tecnología NFC: La tecnología NFC es presentada. Los modos,

características y el estándar son explicados, así como una introducción a los pagos móviles,

centrada en especial en los pagos NFC.

Capítulo 3. Introducción de editores drag & drop y WYSIWYG: El significado de estos

términos y una comparación entre algunos editores se presentan en este capítulo.

Capítulo 4. Programación Web: Conceptos básicos de la programación web son

presentados. Los principios cliente-servidor son explicados. Los principales estándares web

son explicados.

Capítulo 5. Diseño de software para TPV: En primer lugar, las características y elementos de

la interfaz gráfica de las diferentes aplicaciones TPV son analizadas y comparadas. En

segundo lugar, el diseño de una aplicación TPV es explicado y finalmente se expone el

proceso del desarrollo de una aplicación prototipo.

70

Capítulo 6. Diseño y desarrollo del editor drag-and-drop: En primer lugar, los

requerimientos del Editor Drag-and-drop son expuestos así como la solución propuesta. En

Segundo lugar, se muestra el proceso de diseño y desarrollo de la aplicación.

Capítulo 7. Conclusiones y trabajo futuro: Para terminar las conclusiones del proyecto y

posibles líneas futuras son expuestas.

71

Annex B

Conclusiones y trabajo futuro

Conclusiones

A lo largo del presente Proyecto Fin de Carrera, algunos editores Android fueron

analizados para poder determinar la posible mejor solución para el editor de Avance Pay.

Después de este análisis se vio que un editor intuitivo y simple sería la mejor elección. También

se vio que ninguno de estos editores cumplían los requerimientos, es decir, funcionar para

Android, navegadores web y como aplicación independiente para Windows. Por lo tanto, una

solución propia es propuesta para cumplir dichos requerimientos. De todos modos, algunas

ideas de estos editores pueden tenerse en consideración para líneas futuras de este producto,

tales como almacenar las configuraciones en nuestro servidor y ser capaces de actualizar la

configuración de las distintas aplicaciones remotamente.

La intención de hacer una aplicación simple tiene que ver con el perfil del usuario, que son

comerciantes sin conocimientos informáticos amplios, por lo general. Por esta razón, podría

ser una buena idea introducir algunos consejos y ayudas para guiar al usuario en el proceso

de edición de su aplicación.

Más adelante, diferentes aplicaciones TPV fueron analizadas y comparadas de manera que

se pudiese determinar el mejor diseño para nuestra aplicación TPV. Muchas características de

estos TPV fueron reunidas y se descubrió que debíamos centrarnos en un segmento de

clientes, debido a la diversidad de estos segmentos y las distintas necesidades que estos

presentan.

Para finalizar, la aplicación final fue desarrollada usando APIs de estándares web. A pesar

de que esta aplicación funciona adecuadamente para Android, la percepción de velocidad y

rendimiento no son como en una aplicación nativa, por lo que si esto se quiere evitar se

recomienda desarrollar la aplicación en código nativo Android.

Trabajo futuro

La aplicación desarrollada a lo largo de este Proyecto Fin de Carrera constituye una

aplicación básica. En ella los comerciantes pueden editar sus aplicaciones TPV desde cero o

incluso cargar una configuración previa para modificarla. Líneas futuras podrían cubrir el

acceso a una plataforma online, usando un usuario y contraseña, donde los usuarios podrían

tener acceso a distintos servicios. Desde sus cuentas podrían ver la configuración actual

cargada en sus terminales. La idea podría consistir en que una vez que una vez que el usuario

guarde una nueva configuración online, la aplicación se actualice automáticamente con ese

mismo diseño a través de un Gestor de Actualizaciones.

72

Además, otros servicios podrían ser de interés tales como informes de ventas, servicio de

atención al cliente, tienda online con utilidades para aumentar las capacidades de las

aplicaciones TPV, etc.

De cualquier modo, la aplicación también podría soportar edición offline detectando un

terminal con la aplicación TPV de Avance Pay instalada en el mismo que haya sido conectado

al ordenador mediante un cable USB; o si se trata del editor para Android que detectase la

aplicación TPV en ese mismo terminal. Podría acceder los archivos de configuración y cargar

la nueva configuración una vez que se guarde en el editor.

El diseño actual está pensado para comerciantes del mundo de los eventos, por lo que

otros diseños para otros tipos de clientes podrían ser diseñados para aumentar la oferta de

Avance Pay.

73

Annex C

1) Ejecución Material

• Compra de ordenador personal (Software incluido) ……………………………... 2.000 €

• Material de oficina …………………………………………………………………………………... 150 €

• Total de ejecución material …………………………………………………………………… 2.400 €

2) Gastos generales

• 16 % sobre Ejecución Material ………………………………………………………………... 384 €

3) Beneficio Industrial

• 6 % sobre Ejecución Material …………………………………….…………………………….. 144 €

4) Honorarios Proyecto

• 1800 horas a 15 €/ hora ………………………………………………………………………… 27000 €

5) Material fungible

• Gastos de impresión …………………………………………………………………………………. 280 €

• Encuadernación ………………………………………………………………………………………… 200 €

6) Subtotal del presupuesto

• Subtotal Presupuesto ……………………………………………………………………………. 32.558 €

7) I.V.A. aplicable

• 21 % Subtotal Presupuesto …………………………………………………………………. 6.837,18 €

8) Total presupuesto

• Total Presupuesto …………………………………………………………………………….. 39.395,18 €

Madrid, Abril de 2014

 El Ingeniero Jefe de Proyecto

 Fdo.: José María Angulo Pinedo

 Ingeniero Superior de Telecomunicación

74

Annex D

Este documento contiene las condiciones legales que guiarán la realización, en este proyecto,

de creación de un editor Drag-and-Drop que permita editar aplicaciones TPV para entornos

Android. En lo que sigue, se supondrá que el proyecto ha sido encargado por una empresa

cliente a una empresa consultora con la finalidad de realizar dicho sistema. Dicha empresa ha

debido desarrollar una línea de investigación con objeto de elaborar el proyecto. Esta línea de

investigación, junto con el posterior desarrollo de los programas está amparada por las

condiciones particulares del siguiente pliego.

Supuesto que la utilización industrial de los métodos recogidos en el presente proyecto

ha sido decidida por parte de la empresa cliente o de otras, la obra a realizar se regulará por

las siguientes:

Condiciones generales

1. La modalidad de contratación será el concurso. La adjudicación se hará, por

tanto, a la proposición más favorable sin atender exclusivamente al valor

económico, dependiendo de las mayores garantías ofrecidas. La empresa que

somete el proyecto a concurso se reserva el derecho a declararlo desierto.

2. El montaje y mecanización completa de los equipos que intervengan será

realizado totalmente por la empresa licitadora.

3. En la oferta, se hará constar el precio total por el que se compromete a realizar

la obra y el tanto por ciento de baja que supone este precio en relación con un

importe límite si este se hubiera fijado.

4. La obra se realizará bajo la dirección técnica de un Ingeniero Superior de

Telecomunicación, auxiliado por el número de Ingenieros Técnicos y

Programadores que se estime preciso para el desarrollo de la misma.

5. Aparte del Ingeniero Director, el contratista tendrá derecho a contratar al resto

del personal, pudiendo ceder esta prerrogativa a favor del Ingeniero Director,

quien no estará obligado a aceptarla.

6. El contratista tiene derecho a sacar copias a su costa de los planos, pliego de

condiciones y presupuestos. El Ingeniero autor del proyecto autorizará con su

firma las copias solicitadas por el contratista después de confrontarlas.

7. Se abonará al contratista la obra que realmente ejecute con sujeción al

proyecto que sirvió de base para la contratación, a las modificaciones

autorizadas por la superioridad o a las órdenes que con arreglo a sus facultades

le hayan comunicado por escrito al Ingeniero Director de obras siempre que

dicha obra se haya ajustado a los preceptos de los pliegos de condiciones, con

75

arreglo a los cuales, se harán las modificaciones y la valoración de las diversas

unidades sin que el importe total pueda exceder de los presupuestos

aprobados. Por consiguiente, el número de unidades que se consignan en el

proyecto o en el presupuesto, no podrá servirle de fundamento para entablar

reclamaciones de ninguna clase, salvo en los casos de rescisión.

8. Tanto en las certificaciones de obras como en la liquidación final, se abonarán

los trabajos realizados por el contratista a los precios de ejecución material que

figuran en el presupuesto para cada unidad de la obra.

9. Si excepcionalmente se hubiera ejecutado algún trabajo que no se ajustase a

las condiciones de la contrata pero que sin embargo es admisible a juicio del

Ingeniero Director de obras, se dará conocimiento a la Dirección, proponiendo

a la vez la rebaja de precios que el Ingeniero estime justa y si la Dirección

resolviera aceptar la obra, quedará el contratista obligado a conformarse con

la rebaja acordada.

10. Cuando se juzgue necesario emplear materiales o ejecutar obras que no figuren

en el presupuesto de la contrata, se evaluará su importe a los precios asignados

a otras obras o materiales análogos si los hubiere y cuando no, se discutirán

entre el Ingeniero Director y el contratista, sometiéndolos a la aprobación de

la Dirección. Los nuevos precios convenidos por uno u otro procedimiento, se

sujetarán siempre al establecido en el punto anterior.

11. Cuando el contratista, con autorización del Ingeniero Director de obras, emplee

materiales de calidad más elevada o de mayores dimensiones de lo estipulado

en el proyecto, o sustituya una clase de fabricación por otra que tenga asignado

mayor precio o ejecute con mayores dimensiones cualquier otra parte de las

obras, o en general, introduzca en ellas cualquier modificación que sea

beneficiosa a juicio del Ingeniero Director de obras, no tendrá derecho sin

embargo, sino a lo que le correspondería si hubiera realizado la obra con

estricta sujeción a lo proyectado y contratado.

12. Las cantidades calculadas para obras accesorias, aunque figuren por partida

alzada en el presupuesto final (general), no serán abonadas sino a los precios

de la contrata, según las condiciones de la misma y los proyectos particulares

que para ellas se formen, o en su defecto, por lo que resulte de su medición

final.

13. El contratista queda obligado a abonar al Ingeniero autor del proyecto y

director de obras así como a los Ingenieros Técnicos, el importe de sus

respectivos honorarios facultativos por formación del proyecto, dirección

técnica y administración en su caso, con arreglo a las tarifas y honorarios

vigentes.

14. Concluida la ejecución de la obra, será reconocida por el Ingeniero Director que

a tal efecto designe la empresa.

76

15. La garantía definitiva será del 4% del presupuesto y la provisional del 2%.

16. La forma de pago será por certificaciones mensuales de la obra ejecutada, de

acuerdo con los precios del presupuesto, deducida la baja si la hubiera.

17. La fecha de comienzo de las obras será a partir de los 15 días naturales del

replanteo oficial de las mismas y la definitiva, al año de haber ejecutado la

provisional, procediéndose si no existe reclamación alguna, a la reclamación de

la fianza.

18. Si el contratista al efectuar el replanteo, observase algún error en el proyecto,

deberá comunicarlo en el plazo de quince días al Ingeniero Director de obras,

pues transcurrido ese plazo será responsable de la exactitud del proyecto.

19. El contratista está obligado a designar una persona responsable que se

entenderá con el Ingeniero Director de obras, o con el delegado que éste

designe, para todo relacionado con ella. Al ser el Ingeniero Director de obras el

que interpreta el proyecto, el contratista deberá consultarle cualquier duda

que surja en su realización.

20. Durante la realización de la obra, se girarán visitas de inspección por personal

facultativo de la empresa cliente, para hacer las comprobaciones que se crean

oportunas. Es obligación del contratista, la conservación de la obra ya

ejecutada hasta la recepción de la misma, por lo que el deterioro parcial o total

de ella, aunque sea por agentes atmosféricos u otras causas, deberá ser

reparado o reconstruido por su cuenta.

21. El contratista, deberá realizar la obra en el plazo mencionado a partir de la

fecha del contrato, incurriendo en multa, por retraso de la ejecución siempre

que éste no sea debido a causas de fuerza mayor. A la terminación de la obra,

se hará una recepción provisional previo reconocimiento y examen por la

dirección técnica, el depositario de efectos, el interventor y el jefe de servicio

o un representante, estampando su conformidad el contratista.

22. Hecha la recepción provisional, se certificará al contratista el resto de la obra,

reservándose la administración el importe de los gastos de conservación de la

misma hasta su recepción definitiva y la fianza durante el tiempo señalado

como plazo de garantía. La recepción definitiva se hará en las mismas

condiciones que la provisional, extendiéndose el acta correspondiente. El

Director Técnico propondrá a la Junta Económica la devolución de la fianza al

contratista de acuerdo con las condiciones económicas legales establecidas.

23. Las tarifas para la determinación de honorarios, reguladas por orden de la

Presidencia del Gobierno el 19 de Octubre de 1961, se aplicarán sobre el

denominado en la actualidad “Presupuesto de Ejecución de Contrata” y

anteriormente llamado ”Presupuesto de Ejecución Material” que hoy designa

otro concepto.

77

Condiciones particulares

 La empresa consultora, que ha desarrollado el presente proyecto, lo entregará a la empresa

cliente bajo las condiciones generales ya formuladas, debiendo añadirse las siguientes

condiciones particulares:

1. La propiedad intelectual de los procesos descritos y analizados en el presente trabajo,

pertenece por entero a la empresa consultora representada por el Ingeniero Director del

Proyecto.

2. La empresa consultora se reserva el derecho a la utilización total o parcial de los

resultados de la investigación realizada para desarrollar el siguiente proyecto, bien para

su publicación o bien para su uso en trabajos o proyectos posteriores, para la misma

empresa cliente o para otra.

3. Cualquier tipo de reproducción aparte de las reseñadas en las condiciones generales, bien

sea para uso particular de la empresa cliente, o para cualquier otra aplicación, contará

con autorización expresa y por escrito del Ingeniero Director del Proyecto, que actuará en

representación de la empresa consultora.

4. En la autorización se ha de hacer constar la aplicación a que se destinan sus

reproducciones así como su cantidad.

5. En todas las reproducciones se indicará su procedencia, explicitando el nombre del

proyecto, nombre del Ingeniero Director y de la empresa consultora.

6. Si el proyecto pasa la etapa de desarrollo, cualquier modificación que se realice sobre él,

deberá ser notificada al Ingeniero Director del Proyecto y a criterio de éste, la empresa

consultora decidirá aceptar o no la modificación propuesta.

7. Si la modificación se acepta, la empresa consultora se hará responsable al mismo nivel

que el proyecto inicial del que resulta el añadirla.

8. Si la modificación no es aceptada, por el contrario, la empresa consultora declinará toda

responsabilidad que se derive de la aplicación o influencia de la misma.

9. Si la empresa cliente decide desarrollar industrialmente uno o varios productos en los que

resulte parcial o totalmente aplicable el estudio de este proyecto, deberá comunicarlo a

la empresa consultora.

10. La empresa consultora no se responsabiliza de los efectos laterales que se puedan

producir en el momento en que se utilice la herramienta objeto del presente proyecto

para la realización de otras aplicaciones.

11. La empresa consultora tendrá prioridad respecto a otras en la elaboración de los

proyectos auxiliares que fuese necesario desarrollar para dicha aplicación industrial,

78

siempre que no haga explícita renuncia a este hecho. En este caso, deberá autorizar

expresamente los proyectos presentados por otros.

12. El Ingeniero Director del presente proyecto, será el responsable de la dirección de la

aplicación industrial siempre que la empresa consultora lo estime oportuno. En caso

contrario, la persona designada deberá contar con la autorización del mismo, quien

delegará en él las responsabilidades que ostente.

