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INTRODUCTION 

1. NEWBORN HYPOXIC-ISCHEMIC ENCEPHALOPATHY 

 

1.1. THE PROBLEM 

Perinatal asphyxia resulting in newborn hypoxic-ischemic encephalopathy (NHIE) 

occurs in 2 to 9 in 1000 live births at term (Volpe, 2001; González & Ferriero, 2008; Fatemi et 

al., 2009).  In addition to inflicting direct brain damage, leading to acute brain dysfunction, 

such an insult may interfere with brain development, determining long-term morbidity. 

Thus, worldwide near 2 million babies die or remain with long-lasting disability because of 

NHIE each year (Volpe, 2001). In addition to the invaluable cost of losing human lives, 

developmental disabilities derived from NHIE have important socioeconomic costs for 

patients and their caregivers (usually, their family). The CDC estimated in 2004 a lifetime 

cost (in 2003 US$) of US$11.5 billion for persons with cerebral palsy, representing a lifetime 

cost per person of near US$ 1 million; near 20% of cost derives from direct medic and non-

medic costs, but the largest percentage accounted for indirect costs, in terms of losses of 

works and social opportunities (CDC. Economic costs associated with mental retardation, 

cerebral palsy, hearing loss and vision impairment – United States 2003. MMWR 2004; 

53:57-59).  

Despite the continuous progress in Neonatology and Perinatology in the late years, the 

aforementioned numbers have not substantially changed, and perinatal asphyxia remains an 

outstanding health problem even in developed countries. With not small frustration, 

neonatologists accept that, nowadays, there is no therapy successfully preventing o reducing 

the consequences of perinatal asphyxia. 
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1.2. PATHOPHYSIOLOGY OF NHIE 

The brain requires a continuous supply of oxygen and glucose to maintain normal 

function and viability. When this supply is interrupted, a cascade of events takes place 

leading to cellular injury (Fig. 1) (Volpe, 2001; Johnston, 2001; Allan & Rothwell, 2001; du 

Plessis-Volpe, 2002; Ferriero, 2004; Takuma et al., 2004; Chisari et al., 2004; Martinez-

Orgado et al., 2006; Fatemi et al., 2009; Rees et al., 2011). The determining event is the 

energetic failure, which completes two periods: the early energetic failure, just after the 

start of hypoxia-ischemia, and the late energetic failure, during reperfusion and after a 

period of apparent recovery; this late energetic failure is proportional to the early one, and 

is of a high prognostic value as it is related to the starting of apoptotic processes (Volpe, 

2001; Ferriero, 2004). Energetic failure leads to the dysfunction of ATP-dependent ionic 

bombs for Na+, K+, H+ and Ca+2, which alters the membrane polarity and determines the 

intracellular accumulation of cations as Na+ and Ca+2, resulting in cytotoxic oedema (du 

Plessis-Volpe, 2002; Martinez-Orgado et al., 2006). 

 

Figure 1. Mechanisms of cell 
damage after oxygen and glucose 
deprivation that lead to cell death 
(Martínez-Orgado et al., 2007). 
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In addition, there is an accumulation of purines, products from anaerobic metabolism 

of ATP, which constitute the substrate for free radicals generation during reoxygenation 

(Saugstad, 1996). Production of oxygen free radicals is enhanced during asphyxia, an effect 

attributed to the dysfunction of some components of the respiratory chain, particularly the 

cytochrome oxidase complex; in addition, there is an inhibition of superoxide dismutase 

activity, preventing the neutralization of superoxide anion (Warner et al., 2004). These 

changes, together with specific changes in enzymatic activity, mitochondrial function, 

membrane transporters and, particularly in the immature brain, the scarcity of antioxidant 

defences, make brain very vulnerable to reoxygenation (Warner et al., 2004). 

Changes in membrane polarity led to the release and accumulation of excitotoxic 

aminoacids, in particular glutamate. Glutamate plays an important role in brain damage, 

increasing dramatically intracellular levels of cations through the opening of channels 

coupled to NMDA or AMPA receptors (Johnston, 2001); in in vitro models of NHIE glutamate 

release show a direct relationship with the severity of cellular necrosis (Fernández-López et 

al., 2005). Glutamate enhances TNFα synthesis and induces the expression of inducible NO 

synthase (iNOS), both relevant factors in NHIE (Fernández-López et al., 2005; Martinez-

Orgado et al., 2006). The latter effect is of particular relevance as glutamate receptors and 

NOS are co-expressed in the same areas of immature brain (Johnston et al., 2001).  

The increase in intracellular Ca+2 activates some enzymes as phospholipases, 

endonucleases, proteases and caspases; these enzymes induce structural damage, worsen 

the energetic failure, increase oxidative stress and are involved in apoptosis (du Plessis-

Volpe, 2002; Ferriero, 2004). Another enzyme activated is the neuronal NOS (nNOS), which 

together with iNOS leads to a massive production of NO (du Plessis-Volpe, 2002; Ferriero, 

2004; Fernández-López et al., 2005; Martinez-Orgado et al., 2006); other factors as cytokines 
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or glutamate further enhance NO production (Martínez-Orgado et al., 2006). NO massively 

produced further impairs the energetic status by irreversible blocking mitochondrial 

respiration, and induces DNA damage (du Plessis-Volpe, 2002; Ferriero, 2004; Martinez-

Orgado et al., 2006).  

During reperfusion, two major events take place increasing and aggravating brain 

damage: inflammation and oxidative stress (Volpe, 2001; Johnston, 2001; Allan & Rothwell, 

2001; du Plessis-Volpe, 2002; Ferriero, 2004; Takuma et al., 2004; Chisari et al., 2004; 

Martinez-Orgado et al., 2006; Rees et al., 2011). Cytokines, mostly TNFα and interleukin-1: i) 

alter blood-brain barrier integrity, enhancing the infiltration and proliferation of immune 

cells; ii) increase excitotoxicity by inhibiting astroglial glutamate reuptake; iii) increase 

oxidative stress by inducing the expression of iNOS; iv) are involved in processes leading to 

apoptosis by activating FAS receptors; v) impair mechanisms of repair by reducing astroglial 

production of neurotrophic factors as BDNF and NGF; and vi) lead to vacuolar degeneration 

of myelin because of oligodendrocyte injury. Inflammation, together with the dysfunction of 

some components of the respiratory chain, particularly the cytochrome oxidase complex and 

the inhibition of antioxidant defences as superoxide dismutase, increases oxidative stress. 

 Lately, the importance paid to glial cells, particularly astrocytes, in NHIE 

pathophysiology is growing (Chen & Swanson, 2003). Astrocytes guarantee the energetic 

supply to neurons by accumulating glycogen, synthesize and release neurotrophic factors, 

release antioxidant molecules, and remove the excess of NO or glutamate from the 

interneuronal space (Yong, 1998; Chen & Swanson, 2003; Villapol et al., 2008; Belanger et 

al., 2011). In addition, it has been recently shown that astrocytes play an important role in 

activation flow coupling and local blood flow preservation during ischemic insults (Belanger 

et al., 2011). After a HI insult, astrocytes die by early necrosis or by apoptosis; thus, 
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preservation of astrocyte survival has become an endpoint of similar importance to neuronal 

survival (Takuma et al., 2004).  The role of microglia is still more controversial since two 

different phenotypes have been described (M1, cytotoxic, and M2, cytoprotective) and 

switches between both phenotypes are possible depending on inflammation, oxidative 

stress and apoptosis processes in brain tissue (Faustino et al., 2011). Thus, depletion of 

microglia in post-HI brain leads to the increase of damage; therefore, it becomes apparent 

that microglia might somehow pertain to the natural protective mechanisms of brain 

(Faustino et al., 2011). 

 

1.3. PARTICULARITIES OF IMMATURE BRAIN 

Although all the aforementioned components are acting similarly to induce cellular 

death in mature and immature brain, the latter shows some particularities determining its 

highly selective vulnerability to hypoxic-ischemic damage. Immature brain is particularly 

resistant to hypoxia: prenatal brain development takes place in a physiologically “hypoxic” 

environment, determining that the immature brain metabolism was adapted to low oxygen 

concentrations. By contrast, the rapid growth of brain during the perinatal period 

determines a high metabolic rate, which together with the immaturity of glucose uptake 

mechanisms makes hypoglycaemia particularly harmful for the perinatal brain (Volpe, 2001; 

Ferriero, 2004). Thus, if a failure in glucose supply is over imposed to hypoxia, immature 

brain damage occurs. In fact, removing glucose and oxygen for 30 min from the medium of 

incubation of forebrain slices from newborn rats leads to brain damage, closely similar both 

histopathologically and biochemically to that observed after in vivo hypoxia-ischemia 

(Fernández-López et al., 2005).  
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Of high importance is the fact that immature brain is particularly sensitive to 

excitotoxicity (Johnston, 2001; Mishra et al., 2001; Vexler & Ferriero, 2001; Fatemi et al., 

2009; Johnston et al., 2011): since NMDA receptors are involved in processes of brain 

maturation and plasticity, they are over expressed in immature brain (Johnston, 2001). 

Besides, in immature brain, NMDA receptor subunits are more sensitive to glutamate, in 

particular after hypoxia (Johnston et al., 2001; Mishra et al., 2001), showing a longer open 

time, which results in larger Ca+2  influx into the cell (Johnston, 2001). Finally, GABA release, 

which can modulate glutamate effects, becomes exhausted earlier (Johnston, 2001). The 

very significant role played by excitotoxicity in NHIE is supported by the direct relationship 

between extracellular glutamate levels and the severity of cellular death, as observed in an 

in vitro model of NHIE, the oxygen and glucose deprivation (OGD) of forebrain slices from 

newborn rats (Fernández-López et al., 2005). As the regional distribution of glutamate 

receptors in the brain of immature rats corresponds to the pattern of selective vulnerability 

during hypoxia-ischemia (Vexler & Ferriero, 2001; Ferriero, 2004), it can be concluded that 

the age-dependent regional vulnerability to hypoxic–ischemic insults seen in the immature 

brain can be related, at least in part, to regional vulnerability to excitotoxicity. 

Immature brain is extremely sensitive to inflammatory damage as well (Fatemi et al., 

2009; Johnston et al., 2011; Rees et al., 2011). It is well known that cerebral HI selectively 

stimulates IL-1ß and TNFα gene expression in brain regions susceptible to irreversible injury 

in perinatal rats (Szaflarski et al., 1995). Although most of the pathways related to 

inflammation-induced exacerbation of post-HI brain damage are similar in mature and 

immature brain, the latter is particularly sensitive due to the immaturity of the immune 

system, the apoptosis pathways enhancement, the disbalance between pro- and anti-

oxidant enzymes, differences in leukocyte-endothelial cell communication and distinct 
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intracellular signalling within inflammatory pathways (NF-κB and MAPK) (Vexler & Yaris, 

2011). In newborn rats, previous administration of lipopolysaccharide dramatically increases 

HI-induced brain damage (Coumans et al., 2003). Thus, intrauterine infection/inflammation 

is a major factor underlying perinatal brain damage (Volpe, 2009; Yoon et al., 2000), with an 

increased risk of cerebral palsy in term infants exposed to chorioamnionitis (Wu, 2002).  

Other relevant aspect is that immature brain is much more vulnerable to oxidative 

stress than mature brain, as antioxidant defences are only partially developed at birth 

(Fatemi et al., 2009; Gitto et al., 2009; Johnston et al., 2011). This situation is particularly 

harmful for the immature oligodendroglial cells, because these cells accumulate excessive 

amount of iron as the active acquisition of iron is required for oligodendroglial proliferation 

to occur, thus determining the production of high quantities of hydroxyl radicals by Fenton’s 

reaction (Volpe, 2001; du Plessis & Volpe, 2002; Rees et al., 2011); as a result, white matter 

damage is usually wider and more severe in immature brain after hypoxia-ischemia than in 

mature brain (Volpe, 2001).Therefore, excitotoxicity, inflammation and oxidative stress 

constitute the triad of major factors leading to HI damage in immature brain (Johnston et al., 

2011).  

It is well known that apoptosis plays a significant role in normal brain development; in 

particular for brain plasticity; thus, proapoptotic molecules as the Bcl-2 family member Bax 

or proapoptotic enzymes as caspases are highly expressed in immature brain (Roth & D’Sa, 

2001). This determines that after a hypoxic-ischemic insult, apoptotic cell death plays a more 

relevant role in immature than in mature brain (du Plessis & Volpe, 2002). Nevertheless, in 

immature brain, necrosis occurs swiftly during the HI insult with apoptosis starting early 

after. The pattern of necrosis-apoptosis has geographical variations, being the former 

predominant in subcortical and the latter in cortical regions as demonstrated in term fetal 
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lambs in which HI brain damage was induced by global ischemia after reducing umbilical 

blood flow (Goñi de Cerio et al., 2007). Necrosis and apoptosis are considered now a 

continuum, with cells showing either feature at the same time or even mixed morphologies 

(Fatemi et al., 2009). 

Cerebral blood flow (CBF) shows also some particularities in immature brain. 

Autoregulatory range of CBF is narrower in newborns than in older children and adults, 

particularly in preterm babies (Volpe, 2001; Martinez-Orgado et al., 2006). There are 

dramatic regional variations in the amount of blood flow as well as in metabolism-

microcirculation coupling, influencing the regional differences in the vulnerability to hypoxia-

ischemia (Volpe, 2001; Martínez-Orgado et al., 2006). These responses are particularly 

dependent on endothelial function in newborn brain arteries (Martínez-Orgado et al., 1998); 

thus, CBF autoregulation is very vulnerable to hypoxic-ischemia-induced endothelial 

dysfunction in newborns (Volpe, 2001).  

Finally, immature brain has demonstrated a particularly strong capacity to recover 

from hypoxic-ischemic injury by producing new neurons in the subventricular zone that 

migrate to injured areas in neocortex (Ong et al., 2005; Yang et al., 2007; Fernández-López et 

al., 2010). Neocortical neuron migration coincides with proliferation and migration of glial 

cells (Zaidi et al., 2004); this process is of great importance to start remyelinization of injured 

areas, but also to guarantee the survival of the new neurons (Ong et al., 2005). Thus, an 

important spontaneous recovery of myelinization can be demonstrated in the external 

capsule of newborn rats 7 days after an HI insult (Fernández-López et al., 2010). 
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2. NEUROPROTECTION IN NHIE  

Several factors account for the feasibility or unfeasibility of preventing or reducing the 

consequences of NHIE (Volpe, 2001; Ferriero, 2004; Martínez-Orgado et al., 2007; Fatemi et 

al., 2009; Johnston et al., 2011):  

Favourable aspects: 

- There is the so-called “therapeutic window”, defined as the lapse between the start of 

the HI insult and the activation of the different processes leading to late neuronal death. 

- Perinatal asphyxia often is the result of a well-recognized episode occurring in the 

presence of health caregivers, prompting an immediate obstetric response. Thus, 

neonatological management of asphyxiated newborns often can be started between the 

limits of the therapeutic window.  

Unfavourable aspects: 

- Occurrence of perinatal asphyxia is unpredictable. Therefore, it often occurs outside well-

equipped health institutions. Those neuroprotective strategies needing strong 

investments either in technology or in human resources – as is the case of the most 

promissory neuroprotective strategy so far, hypothermia- won’t be universal. 

- Neuroprotective substances must reach brain parenchyma –thus crossing the blood-brain 

barrier- being effective without significant side effects. In the case of newborns, in 

addition, they must avoid interferences with developmental processes: in other words, 

safety must be demonstrated in the short as well as in the long term.  

- Many neuroprotective strategies successfully tested in animals have failed to show 

significant benefit in humans (for instance, allopurinol, antioxidants) or have showed 
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unexpected side effects (for instance Ca+2 channel blockers, Mg sulphate, NMDA 

antagonists, etc). Multicenter studies on hypothermia consistently show trends to better 

results than placebo, but significant differences –excepting for death and/or major 

disabilities in mild encephalopathy- have not been reported.  

- The complex pathophysiology of NHIE demands the use of treatments acting at different 

levels. Very likely the optimal results will be obtained with combined therapies. 

 

2.1. GENERAL MANAGEMENT  

General management of an asphyxiated infant is aimed to prevent the occurrence of 

homeostatic disbalances that could further increase brain damage (Perlman, 2006; Martinez-

Orgado et al., 2007).  

- Blood pressure must be maintained in the normal range, because after HI brain arteries 

autoregulation is lost, so CBF become passive.  

- Hyperthermia must be avoided, because it increases brain excitability and metabolic 

consumption.  

- Ionic (in particular, sodium and calcium) disbalance as well as hypoglycaemia must be 

avoided.  

- It is mandatory to maintain normoxemia, because hypoxemia extends HI damage 

whereas hyperoxemia increases oxidative stress. In addition, hypocapnia must be avoided 

because it reduces CBF.  

- Seizures must be vigorously treated, because epileptic activity increases brain metabolic 

consumption, increases excitotoxicity and impairs cardio-respiratory homeostasis.  
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- Brain oedema must be treated if so severe as to induce a “non-reflux” phenomenon that 

is the reduction of CBF because of brain arteries compression.  

- There is no indication for prophylactic antibiotic treatment, but infection must be 

diligently treated, in particular if produced by LPS-producing bacteria. 

 

2.2. SPECIFIC NEUROPROTECTIVE STRATEGIES  

Magnesium sulphate: This compound blocks NMDA receptors, blunting their 

activation by glutamate, and is anti-oxidant (Gonzalez & Ferriero, 2008). In animal models, 

however, magnesium sulphate has been effective just when administered before the HI 

insult (Levene, 2010). In agreement, clinical trials in asphyxiated newborns showed no 

benefit but instead an increase of the risk of hypotension (Whitelaw & Thoresen, 2002). 

However, prenatal administration in very preterm deliveries seems to have some 

neuroprotective effects, reducing the risk of cerebral palsy (Nguyen et al., 2013). 

Therapeutic hypothermia (TH): TH is the only treatment having demonstrated clinical 

efficacy so far (Laptook, 2009; Edwards et al., 2010). TH reduces cell metabolism (5% per ºC), 

reduces ionic influx and glutamate release, reduces inflammation and oxidative stress and 

stops apoptotic processes (Fatemi et al., 2009; Johnston et al., 2011). Two modalities have 

been proved: selective hypothermia, in which head temperature is reduced by some kind of 

cap filled with cooled water, together with mild body temperature decrease (Gluckman et 

al., 2005); and whole body hypothermia, in which body temperature is decreased to 33-35 

ºC by a cool water-filled blanket (Azzopardi, 2009). TH has to be started in the first 6 h after 

birth and discontinued after 72 h (Laptook, 2009). A recent systematic review demonstrates 

that this procedure reduces death and/or severe neurological impairment by the age of 18 

month, but just in mild NHIE cases (Edwards et al, 2010). Thus, it is well accepted now the 
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need for synergistic neuroprotective strategies such as pharmacological agents being 

delivered either during or after the hypothermic treatment (Cilio & Ferriero, 2010; Levene, 

2010). 

Xenon: The neuroprotective effect of this anaesthetic gas, demonstrated in HI models 

in newborn animals (Dingley et al., 2006), relies on its effect as antagonist of NMDA 

receptors (Cilio & Ferriero, 2010; Levene, 2010). Xenon inhibits apoptotic processes and 

show cardioprotective effects (Roberston et al., 2012). Interestingly, xenon easily crosses the 

brain-blood barrier (BBB) and there is substantial experience on its use in human newborns 

(Levene, 2010; Roberston et al., 2012). The main caveat against xenon is its very high cost, 

although there are ongoing experiments with re-circling devices that might make xenon less 

expensive (Chakkaparani et al., 2009). Xenon has demonstrated to enhance TH 

neuroprotection in newborn animals (Hobbs et al., 2008; Faulkner et al., 2011). There are 

some ongoing clinical trials testing xenon plus TH in asphyxiated infants.   

Erythropoietin (EPO): EPO is a very pleiotropic substance. Studies in animal models of 

NHIE demonstrated that EPO, acting on JK/Stat5 pathways and inhibiting NF-B, blunts 

different pro-apoptotic pathways and modulates toxic NO synthesis; in addition, EPO shows 

anti-inflammatory, antioxidant and anti-excitotoxic properties and improves post-HI 

perfusion (Sola et al., 2005a; Sola et al., 2005b; McPherson & Juul, 2010). Interestingly, EPO 

is not only reducing post-HI brain damage but is enhancing neuro-repair by enhancing 

angiogenesis and neurogenesis (McPherson & Juul, 2010; Gonzalez et al., 2013). There is a 

long experience of using EPO in newborn infants (Sola et al., 2005b). There is some concern 

regarding the possible increase of the risk for retinopathy after EPO administration in 

newborns, but this effect has not been demonstrated yet in term infants receiving EPO at 

the usual dose (McPherson & Juul, 2010). Unfortunately, recent studies in newborn rats 
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failed to demonstrate any additive effect of EPO in HI animals treated with TH (Fan et al., 

2013; Fang et al., 2013).  There are promising data coming from clinical trials on EPO for 

newborn with NHIE (Zhu et al., 2009).  

Melatonin: The interest on melatonin as a neuroprotectant for HI infants has risen 

lately. Melatonin is a mighty antioxidant substance that exerts immunomodulatory effects 

too (Gitto et al., 2009; Hardeland et al., 2011; Robertson et al., 2012; Robertson et al., 2013). 

Melatonin administration in experimental models demonstrated that this substance reduces 

apoptosis, at least in part by inhibiting NOS activity and stabilizing mitochondria (Hardeland 

et al., 2011; Robertson et al., 2012). Melatonin exerts some anticonvulsant effects by 

increasing GABA levels (Hardeland et al., 2011). In addition, melatonin may enhance neuro-

repair and myelogenesis because it increases the release of neurotrophins like GDNF or NGF 

(Villapol et al., 2010; Hardeland et al., 2011). There is a long experience on its safe use in 

humans, it may be administered by IV as well as by oral route, and it easily crosses the BBB 

too (Hardeland et al., 2011; Robertson et al., 2013). The main caveat is the possible effect on 

the hormonal production of the neuro-axe but this is likely to be insignificant in short-term 

treatments (Hardeland et al., 2011; Robertson et al., 2012). Melatonin has demonstrated to 

enhance TH neuroprotection in HI models in newborn pigs (Robertson et al., 2013).  There 

are some ongoing clinical trials testing melatonin plus TH in asphyxiated infants.   

Anticonvulsants: Although early reports suggesting that administration of high doses 

of Phenobarbital might have neuroprotective effects in NHIE were very promissory, further 

clinical trials did not support that effect (Whitelaw&Thoresen, 2002; Evans et al., 2007). 

Thus, Phenobarbital is currently accepted in NHIE patients just for the treatment of seizures 

and at conventional dose (Evans et al., 2007). 

Topiramate is a well-known anticonvulsant already used in newborns that has resulted 
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neuroprotective in animal models of NHIE (Schubert et al., 2005; Levene, 2010). 

Interestingly, some synergistic effect with hypothermia has been reported (Johnston et al., 

2011); therefore, there are some ongoing clinical trials on topiramate plus TH.  

 

3. ENDOCANNABINOID SYSTEM 

 

 3.1. GENERAL CONCEPTS 

 The Asiatic plant Cannabis sativa (Fig. 2) has been used for more than 8000 years due 

to its medical and psycotropic effects (Cannabinoids and the brain, Ed. Kofalvi A, 2007). The 

first written note about the medical use of cannabis was discovered in China which dates 

back to 2727 B.C., and lengthwise the History it was used as a medicine in several countries. 

However in the 20th century the plant was declared harmless and its use was prohibited. 

 

Figure 2.Cannabis sativa. The plant cannabis belongs to the family 
Cannabaceae and its leaves and flowering tops are used to produce 
marijuana and hashish. The medical use of cannabis it is extensively 
known and even Queen Victoria was prescribed cannabis by her doctor 
in 1890. However in 1901 it was declared harmful and illegal.  

 

 

 

In 1940 the first phytocannabinoids were discovered (Adams et al., 1940): Cannabinol 

(CBN) and Cannabidiol (CBD), although these compounds have not psycotropic effects. A few 

years later Gaoni and Mechoulam (Gaoni & Mechoulam, 1964) isolated and described the 

most important active constituent of cannabis, a benzopyran derivative isolated from the 
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yellow resin of the leaves and inflorescences, named Δ9-tetrahydrocannabinol (THC); this 

substance made the way for the discovery of a group of molecules with similar effects, the 

cannabinoids (Howlett et al., 2002; Mechoulam & Lichtman, 2003; Fowler, 2003; Stella, 

2004; Pazos et al., 2005; Martinez-Orgado et al., 2007).  

The existence of an endocannabinoid system (ECS) was confirmed with the discovery 

of two different cannabinoid receptors (CBRs) at late 80s (Devane et al., 1988; Matsuda et 

al., 1990) and the two main endocannabinoids: N-arachidonoylethanolamine (AEA) (Devane 

et al., 1992) and 2-arachidonoyl glycerol (2-AG) (Mechoulam et al., 1995). 

In the last forty years, a lot of knowledge has emerged about the Cannabis sativa and 

its beneficial effects. Currently, many scientific evidences suggest the huge importance of 

the ECS in physiological and pathological conditions, so the pharmacological manipulation of 

different components of this system could be very useful in several pathologies.  

The endocannabinoid system (ECS) is comprised of several elements: 

- At least two different G-protein coupled membrane receptors (termed CB1 and CB2)  

- Endogenous ligands or endocannabinoids (eCB) 

- Mechanisms for the synthesis and degradation of eCB. 

 

3.2. CANNABINOID RECEPTORS 

Two cannabinoid receptors were cloned so far: CB1 and CB2. Both receptors are G-

protein coupled receptors and share an overall identity of 44% (Fig. 3) but they exhibit 

dramatical differences in their tissue distribution. 

Besides, studies carried out on knock-out mice have demonstrated that some effects 

of cannabinoids are not mediated by CB1-CB2 receptors, suggesting that more unknown 
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cannabinoid receptors could exist. In addition, cannabinoids can activate other receptors 

such as vanilloid receptors (TRPV1), orphan GPCRs (GPR55, GPR119), and also nuclear 

receptors as peroxisome proliferator-activated receptors (PPARs) (Pertwee et al., 2010). 

 

 

 

 

 

 

Figure 3. Cannabinoid receptors structure. Both receptors are G-protein coupled receptors and share 
an overall identity of 44%. 

 

Finally, some effects could be receptor-independent, that is the case of the antioxidant 

properties of ECB, in which the chemical structure of these compounds is involved.    

CB1R: CB1 receptor belongs to the GPCR superfamily, it contains seven-transmembrane 

domains and it is coupled to Gi protein. This receptor is located in several peripheral tissues 

such as heart, liver, spleen, and reproductive organs, urinary and gastrointestinal tracts 

(Galiegue et al., 1995; Gerard et al., 1991; Mackie, 2005).However, CB1 is mainly distributed 

in nervous tissues, in fact, in brain is known to be the most profuse and ubiquitous of Gi-

protein coupled receptors, with a distribution comparable to that of glutamate or GABA 

receptors.  

In adult rodents, CB1 receptor was detected preferentially in hippocampus, cerebral 

cortex, cerebellum and basal ganglia (substantia nigra and globus pallidus); it is less 

distributed in limbic areas such as acumbens nucleus and tonsil (Fig. 4; Herkenham et al., 
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1991). This specific distribution probably is the reason why CB1R is involved in the control of 

neuronal circuits related to coordination and modulation of movement; superior cognitive 

functions as memory and reward mechanisms; response to stress and pain; regulation of 

sleep, body temperature, appetite, nausea and vomiting (López de Jesús et al., 2006). 

 

Figure 4. CB1 receptor distribution in 
adult rat brain (Herkenham et al., 
1991). Cb: cerebellum; CbN: cerebelar 
nucleus; cc: corpus callosum; EP: 
entopeduncularnucleus; Fr: frontal 
cortex; GP: globus pallidus; Hi: 
hippocampus; Sn: substancia nigra. 

 

 

Regarding to cell populations, in nervous tissues CB1R is expressed primarily by 

neurons where it modulates the release of several neurotransmitters (GABA, glutamate, 

dopamine, adrenaline, etc). CB1R can also be found in glial cells, both astrocytes and 

oligondendrocytes (Howlett et al., 2002; Mechoulam & Lichtman, 2003; Stella, 2004; Pazos 

et al., 2005; Pertwee et al., 2010).  

CB2R: CB2 receptor seems to be restricted to cell types related with the immune 

system (Munro et al., 1993) (spleen and tonsil) and in immune cells such as monocytes, B 

and T lymphocytes (Schazt et al., 1997). It is thought that CB2R could be involved in the 

immunomodulatory effect of cannabinoids (Howlett et al., 2002; Mechoulam & Lichtman, 

2003; Fowler, 2003; Stella, 2004; Pazos et al., 2005; Klein, 2005; Pertwee et al., 2010). 

Recent reports have also described the presence of CB2 receptor in brain cells, 

including neurons of brain stem that could be responsible for emesis control (Van Sickle et 

al., 2005). Although it is accepted that CB2 receptor is not expressed in forebrain neurons, 
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controversial studies were published due to appropriate biochemical tools are not available, 

and this receptor was detected in hippocampus, cerebellum and some cortical areas 

involved in memory and cognitive processes (Gong et al., 2006; Morgan et al., 2009). 

Under some pathological conditions such as ischemia (Zhang et al., 2007), Alzheimer’s 

disease (Benito et al., 2003), Huntington’s disease (Sagredo et al., 2009) and multiple 

sclerosis (Benito et al., 2007), CB2 receptor has been described in activated glia. 

 Both CB1 and CB2 receptors are also expressed in blood vessels. Vascular effects of 

cannabinoids are mediated primarily by TRPV1 receptors, although recently it has been 

described that functional CB1 and CB2 receptors are constitutively expressed in the 

endothelial cells of human brain microvessels (Golech et al., 2004). 

Non CB1-CB2 receptors: Other non-CB1-non-CB2 receptors have been proposed to exist 

in brain for cannabinoids. The activation of endothelial receptor for Anandamide (AEA), the 

abnormal-cannabidiol receptor (abn-CBD), enhances vasorelaxation and potenciates 

microglial migration (Járai et al., 1999). 

The orphan GPCR receptor, GPR55 has been described as a novel metabotropic 

cannabinoid receptor. It is widely distributed in peripheral tissues (spleen, liver, intestine) 

and also in nervous tissues (hippocampus, cerebellum, striatum). An endogenous 

acetilethanolamide structurally related to AEA, N-palmitoylethanolamine (PEA), could be the 

endogenous ligand for GRP55 (Godlewski et al., 2009; Pertwee, 2007). 

Recently, it has been published that some endogenous cannabinoid ligands can 

activate some nuclear receptors such as PPARs (De Petrocellis et al., 2009a). These results 

open a new role for cannabinoids; they could directly modulate gene expression. 
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Finally, cannabinoids are known to non-specifically bind different receptors present in 

brain, as NMDA receptors and others (Howlett et al., 2002).  

  

3.3. ENDOGENOUS LIGANDS 

After the description of the CB receptors,two types of arachidonic acid-derivated 

molecules were identified as endogenous ligands or endocannabinoids (eCB) for the 

cannabinoid receptors: N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-

AG).AEA was isolated from pig brain and it has functional properties similar to THC; this 

substance, received the evocative name of anandamide (from “ananda”: “inner bliss”, in 

Sanskrit) (Devane et al., 1992).The second endocannabinoid, 2-AG was isolated from rat 

brain (Sugiura et al., 1995) and from canine gut (Mechoulam et al., 1995). 

These two lipophylic compounds exhibit important differences in their quantitative 

distribution as well as in their properties as endogenous agonists for cannabinoid receptors; 

2-AG is more abundant (200-fold higher in some brain regions) than AEA in brain tissue and 

behaves as a full agonist for CB1 and CB2receptors, while AEA acts as a partial agonist for CB1 

receptors and as a weak partial agonist-antagonist. 

 

Figure 5.Chemical structures of endogenous 
ligands of ECS 
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From this moment, a number of molecules with cannabimimetic activity (Fig. 5) have 

been described (Noladin-eter, Virodhamine; Porter et al., 2002), sharing a common basic 

structure consisting in a lipidic radical, usually derived from arachidonic acid, and a polar 

group.  

    

3.4. BIOSYNTHETIC AND HIDROLYZING ENZYMES 

Different proteins are involved both in the synthesis and inactivation of the eCB signal. 

Characteristically, synthesis of eCB is an on-demand process, so that eCB are synthesized 

when needed from lipid precursors located in the plasma membrane, but they are not 

stored.In relation to eCB synthesis, the most knowledge is about AEA and 2-AG formation, 

the increase of intracellular Ca+2 induced by the nervous impulse activates some enzymes 

involved in eCB synthesis. 

Biosynthesis of AEA. Two main pathways were described for the AEA synthesis in vivo:  

- Condensation of arachidonic acid (AA) and ethanolamine through Fatty Acid Amide 

Hydrolase (FAAH) action (Ueda et al., 1995). 

- Activation of N-acyl-transferase (NAT) that facilitates the transference of arachidonic acid 

to phosphatidylethanolamine (PE) to obtain N-arachidonoyl-PE (NArPE).NArPE is 

hydrolyzed by phospholipase D and AEA is released (Di Marzo et al., 1994).  

Biosynthesis of 2-AG. 2-AG is formed from arachidonic acid-containing membrane 

phospholipids through the combined actions of phospholipase C and diacylglycerol lipase 

(DAGL). 

Once eCB are synthesized, they are released to synaptic cleft in a calcium-dependent 

way, quickly activate CB receptors and modulate synaptic activity (Wilson & Nicoll, 2002; 
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Stella, 2004).Finally, eCB are re-uptaked and subsequently degradated inside the cells 

(Pertwee et al., 2010). AEA is hydrolyzed to AA and ethanolamine by FAAH action (Cravatt et 

al., 1996). 2-AG can be metabolized also by FAAH activation but monoacylglycerol lipase 

(MAGL) is the main enzyme involved in 2-AG degradation (De Petrocellis et al., 2004). 

Both AEA and 2-AG can be also metabolized by enzymes involved in eicosanoids 

general metabolism, such as ciclooxygenases, lipooxygenases and P450 oxidases. These 

reactions produce a huge variety of bioactive molecules (Guindon & Hohmann, 2008). 

 

3.5. SIGNAL TRANSDUCTION PATHWAYS  

The activation, in particular of CB1 receptor, inhibits the adenylyl cyclase through Gi/0 

activation; hyperpolarizes the presynaptic cell due to the closure of voltage-dependent Ca+2 

channels and the opening of K+ channels; induces the expression of kinases as extracellular 

signal regulated kinase, c-Jun-N-terminal kinase, mitogen p38-activated protein kinase or 

protein kinase B; inhibits the nuclear factor κ-B (NF-κB); and generates ceramides. The 

closure of Ca+2 channels finishes the synaptic transmission and the release of the 

neurotransmitter is interrupted (Wilson & Nicoll, 2002; Howlett et al., 2002; Mechoulam & 

Lichtman, 2003; Fowler, 2003; Stella, 2004; Martinez-Orgado et al., 2007). 

By activating cannabinoid receptors, eCB can modulate various signal transduction 

pathways involved in controlling cell proliferation, differentiation and survival. Thus, by 

coupling to Gi/0 proteins, the CBR inhibit adenylyl cyclase and the cAMP pathway in several 

cell types, stimulating then the mitogen-activated protein kinase (MAPK) cascades, 

specifically the extracellular-signal-regulated kinase (ERK) cascade and the p38 MAPK 

cascade. 
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On the other hand, CB2 receptor also inhibits the adenylyl cyclase but through G0 

activation; activates MAPK and PI3K/PKB pathways (Diaz-Laviada & Ruiz-Llorente, 2005; 

Sánchez et al., 2003). CB2 activation does not modify the ionic conductance but, in the same 

way that CB1, increases the Ca+2concentrations inside the cell (Demuth & Molleman, 2006). 

In addition to their effect on the synaptic transmission, eCB also bind to receptors 

located in glial cells (Howlett et al., 2002; Fowler, 2003; Stella, 2004; Pertwee et al., 2010). 

Thus, eCB enhance the rate of glucose oxidation and ketogenesis of astrocytes, and 

modulate the production of nitric oxide (NO) and cytokines by astrocytes or microglial cells. 

Pharmacological stimulation of CBR also activates the pro-survival phosphatidylinositol 

3-kinase and Akt (PI3K–Akt) pathway in rat oligodendroglial cells (Fernández-Ruiz et al., 

2004). Despite the deep knowledge on ECS physiology, several issues remain unresolved, as 

the characterization of eCB transporters or the existence of additional CBR (Pertwee et al., 

2010). Besides, new discoveries offer new perspectives for the understanding of the role and 

particularities of the ECS in the central nervous system; some examples are the 

oligomerization of CBR, or the presence of CBR in mitochondrial membranes. 

 

4. PHARMACOLOGY OF ECS 

After that huge amount of knowledge, a lot of synthetic or exogenous substances that 

interact with most of the main elements of the endogenous cannabinoid system have been 

described  (Howlett et al., 2002; Mechoulam & Lichtman, 2003; Fowler, 2003; Stella, 2004; 

Pazos et al., 2005; Martinez-Orgado et al., 2007). 

Currently we have available drugs that bind to the CB1 / CB2 receptors as agonists or 

antagonists, drugs that block the endocannabinoid transport and drugs that inhibit the 
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synthesis or degradation of eCB. Cannabinoid receptor agonists may be designed to mimic 

the signaling processes mediated by AEA and 2-AG, mainly in pathological situations where a 

boost in cannabinoid receptor stimulation might be needed. Cannabinoid receptor 

antagonism might be the approach selected in conditions with enhanced endocannabinoid 

signaling. Transport inhibition and inhibition of degradation are more sophisticated 

approaches, both oriented towards magnifying the tonic actions of endocannabinoids 

(Rodríguez de Fonseca et al., 2005). As a summary of cannabinoid pharmacology, Table 1 

shows the reference compound for each molecular target. 

Table 1.Pharmacological characteristics of ECS. Adapted from Rodríguez de Fonseca et al., 2005. 

 

 

5. PARTICULAR CHARACTERISTICS OF CANNABINOIDS IN IMMATURE BRAIN  

 

5.1. ROLE IN NEURAL PROLIFERATION AND MYELOGENESIS 

Several data suggest that the ECS might play a significant role in brain development. 

Thus, CBR are found very early in brain structures: in human brain CB1R is expressed in brain 

Name Target Action Ki/IC50 (nM) Reference 

ACEA CB1 Agonist 1.4 Hillard et al., 1999 

SR141716A CB1 Antagonist 5.6 Rinaldi-Carmona et al., 1994 

HU-308 CB2 Agonist 22.7 Hanus et al., 1999 

SR 144528 CB2 Antagonist 0.60 Rinaldi-Carmona et al., 1998 

UCM 707 AT Blocker 800 Lopez-Rodriguez et al., 2001 

OL-135 FAAH Inhibitor (reversible) 2.1 Lichtman et al., 2004 

URB 597 FAAH Inhibitor (irreversible) 4.6 Kathuria et al., 2003 

http://alcalc.oxfordjournals.org/content/40/1/2.long#T2
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neurons at 9 weeks of gestational age, whereas in rodents it is detected at G12 (Fernández-

Ruiz et al., 2004). Neural progenitors express FAAH too and are able to synthesize eCB.  

In addition, CB1R is found in developing brain in “atypical” areas related to 

proliferation and migration of neural cells: the subventricular zone, the cortical plaque or 

commissural fibers from white matter (Fernández-Ruiz et al., 2004). As CB1R expression is 

not found in these areas in mature brain, such distribution is considered as an evidence for 

the ECS involvement on brain development. Further findings suggest that the eCB signaling: 

1) might regulate the proliferation of progenitor cells and promote their differentiation into 

glial cells, in an attempt to maintain the neuron/glia balance during brain development; 2) 

plays a role in the generation of neurons from neural progenitors; and 3) are involved in the 

control of neuritic elongation, the establishment of synaptic communication, and the 

acquisition of a specific neurotransmitter phenotype (Gómez et al., 2008). 

 

5.2. LACK OF PSYCHOACTIVE EFFECTS 

Psychoactive effects of cannabinoids are determined by the characteristic localization 

of CB1 receptors in adults in areas as prefrontal cortex; as in immature brain CB1 receptors 

are not expressed in these areas, cannabinoids are expected to not induce psychoactive 

effects in immature brain. In agreement, clinical trials of THC in children with cancer showed 

an almost complete absence of psychoactive effect (Martinez-Orgado et al., 2005).  
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5.3. HYPERSENSITIVITY TO CB1-MEDIATED APOPTOSIS 

There are some data suggesting that some functional differences in ECS function 

between immature and mature brain could exist. Bernard et al. (2005) reported that either 

blockade or over activation of CB1 receptor has a strong impact on network activity in 

newborn rat brain slices; by contrast, in the adult CB1 receptor antagonists and agonists have 

little effects on network activity in physiological conditions. This difference could be due, at 

least in part, to a constitutive activity of CB1 receptors in immature brain. 

Downer et al. (2007) reported that, in vitro, Δ9-THC induces the activation of JNK and 

caspase-3 in the cerebral cortex isolated from the neonatal rat, via activation of the CB1 

receptor. In contrast, cortical slices obtained from the adult rat brain are less susceptible to 

the Δ9-THC-induced activation of JNK and caspase-3. A similar profile is observed in vivo, 

with newborn rat brain being more vulnerable than adult rat to the activation of JNK, 

caspase-3, cathepsin-D, and DNA fragmentation following an acute peripheral 

administration of Δ9-THC.  . 

 In addition, rimonabant reduces brain damage in newborn rats after intracerebral 

injection of NMDA (Martínez-Orgado et al., 2007). These data suggest that CB1R activation in 

immature brain might activate signaling pathways in a different manner than in mature one.  

 

5.4. ROLE OF CB2 RECEPTORS 

There are some evidences suggesting a more important role for CB2 receptor in 

immature than in mature brain. CB2 expression has been reported in embryonic chick brain; 

our group has demonstrated by Western-blot the presence of CB2 receptors in forebrain 
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slices and whole brain homogenates from 7-day-old rats (Martinez-Orgado et al., 2005; 

Fernández-López et al., 2006). 

It has been reported that the CB1-CB2R agonist WIN55212 reduces glutamate release in 

an in vitro model of hypoxic-ischemic brain damage on newborn rat forebrain slices and that 

either the CB1R antagonist rimonabant or the CB2R antagonist SR144558 blunt such a 

reduction (Fernández-López et al., 2007). However, in adult rodent brain the cannabinoid-

induced reduction of glutamate release is abolished by CB1R but not by CB2R antagonists 

(Pertwee et al., 2010). In addition, it has been reported that the CB2R antagonist AM630 

reverses the neuroprotective effects of CBD observed in the in vitro model of hypoxic-

ischemic brain damage on newborn mice forebrain slices (Castillo et al., 2010). In mature 

brain, however, it is accepted that CBD does not bind CB2R and that CB2R antagonists did not 

modify CBD effects (Pertwee, 2004; Mechoulam et al., 2007). All those results might be 

explained by a different activity of CB2R in immature and mature brain.  

 

6. CANNABINOIDS AND NEUROPROTECTION 

Some of the aforementioned characteristics of cannabinoids account for a theoretical 

neuroprotective effect (Fig. 6) (Mechoulam & Lichtman, 2003; Fowler, 2003; Stella, 2004; 

Klein, 2005; Martínez-Orgado et al., 2007; Martinez-Orgado et al., 2009; Pertwee et al., 

2010): 

- Prevention of intracellular Ca+2 increases: activation of cannabinoid receptors induces the 

closure of Ca+2 channels.  

- Reduction of glutamate release: the closure of Ca+2 channels determines the reduction of 

glutamate release. In addition, cannabinoids reduce direct NMDA toxicity by downstream 
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inhibition of protein Kinase A signaling and NO generation. Drugs reducing glutamate 

release are of particular value in neuroprotection in NHIE, as glutamate receptor blockers 

are neurotoxic in immature brains.  

- Reduction of toxic NO production: cannabinoids inhibit iNOS expression in glial cells after 

different stimuli, by inhibiting of transcriptional activity of NF-κB (the mechanism by 

which glutamate induces the expression of iNOS) and enhancing the release of the IL-1 

receptor antagonist (IL-1ra). In addition, cannabinoid-induced reduction of Ca+2influx 

reduces the activation of nNOS.  

- Reduction of inflammatory insult: cannabinoids are potent immunomodulators, inhibiting 

TNFα production in cultured astrocytes or microglial cells after immunological stimuli by 

modulating different transcriptional factors and enhancing the release of the endogenous 

IL-1ra. 

- Reduction of oxidative stress: endocannabinoids are potent antioxidants, an effect 

related to their molecular structure. Several studies have reported neuroprotective 

effects of cannabinoids related to their antioxidant effect.  

- Repair: as it has been discussed before, cannabinoids promote cell proliferation and 

neurosphere generation and induce remyelinization in animal models of demyelinizating 

diseases. In addition, cannabinoids promote the differentiation of glial precursors into 

astroglial cells.  

- Glioprotection: cannabinoids enhance energy metabolism of astrocytes, and are 

protective of these glial cells against cytotoxic and proapoptotic stimuli. 
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Figure 6. Neuroprotective effects of 

cannabinoids and the mechanisms 

involved. 

 

 

 

 

 

 

- Other effects:  

-  Hypothermia: it is known that cannabinoids reduce body temperature. Studies in adult 

rats have demonstrated that hypothermia is substantial part of the neuroprotective 

effect of different cannabinoids, as warming reduces or even abolishes that beneficial 

effect.  

-  Vasodilatation.  

-  Blood-brain barrier stabilization.  

 

6.1. REPORTS ON CANNABINOID NEUROPROTECTION 

Ten years ago, in vitro studies by the group of David Greenberg demonstrated that 

cannabinoids prevent cellular death in incubated neurons exposed to OGD (Nagayama et al., 

1999; Sinor et al., 2000). Lately, a number of in vivo experiments supported the 

neuroprotective effect of cannabinoids in models of stroke, global ischemia or closed brain 

trauma (Mechoulam&Lichtman, 2003; Martinez-Orgado et al., 2007; Martinez-Orgado et al., 

2010). As the number of these studies grows, it has become evident that this 
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neuroprotection varies according to the species, age, and the type and/or severity of brain 

insult. 

Enhanced levels of endocannabinoids have been observed in the brain of the newborn 

rat after acute injury, both traumatic or excitotoxic, and in adult rat brain after focal 

ischemic injury; besides, increased CB1 and CB2 receptor expression soon after an acute 

ischemic insult has been observed in the rat brain cortex (Mechoulam & Lichtman, 2003; 

Fowler, 2003; Martinez-Orgado et al., 2007). These data prompted several investigators to 

propose that the endogenous cannabinoid system constitute a natural system of 

neuroprotection (Mechoulam&Lichtman, 2003).  

Cannabinoids have been also tested for treating neurodegenerative diseases in 

humans. However, the results should be considered with caution since most studies tested 

cannabinoids administered per os, a route with unpredictable results (Martinez-Orgado et 

al., 2007; Pertwee, 2008):  

- Alzheimer’s disease: THC and dronabinol decrease nocturnal agitation by significantly 

improving several clinical parameters (such as nocturnal motor activity), without 

undesired side effects.  

- Multiple sclerosis: Some recent studies have demonstrated that cannabinoid-induced 

amelioration in spasticity and other symptoms of MS reach significance after 10 weeks of 

treatment and remains over 1 year, with reported side effects usually mild and declining 

as the treatment continues 

- Brain ischemia: The cannabinoid HU-211 administered after brain trauma in adults 

offered short term beneficial effects, but failed to demonstrate any benefit on long term 

neurologic outcome or survival at 6 months. 



Introduction 

 

44 

 

6.2. STUDIES ON CANNABINOIDS AS NEUROPROTECTANTS IN NHIE 

Studies on neuroprotection by cannabinoids in immature brain are scarce, and limited 

to direct excitotoxic damage. Thus, it has been described that administration of THC or AEA 

reduces brain damage in newborn rats after intracerebral injection of ouabain or the AMPA 

agonist S-bromowillardiine (Van der Stelt et al., 2001; Shouman 2006). After those early 

studies, some research has been carried out regarding cannabinoids and neuroprotection in 

models of NHIE (Martinez-Orgado et al., 2003; Fernández-López et al., 2006; Fernández-

López et al., 2007; Alonso-Alconada et al., 2010; Fernández-López et al., 2010; Alonso-

Alconada et al., 2012): 

Rodents:  

- In vitro models: in newborn rat forebrain slices exposed to oxygen-glucose deprivation 

(OGD), the CB1- CB2 agonist WIN55212-2 (50 µM) reduces cell death in OGD slices, as 

quantified in terms of LDH efflux and histopathological studies. Neuroprotection by 

WIN55212-2 is related with the decrease of glutamate and cytokines release as well as of 

iNOS expression. All these effects are abolished by either a CB1 or CB2 receptor 

antagonist. Moreover, the effect of WIN55212-2, a combined CB1 and CB2 agonist, is 

superior to the effect of a pure CB1 agonist (ACEA) or a pure CB2 agonist (JWH133). These 

data suggest that the simultaneous activation of both CB1 and CB2 receptors offers more 

benefits than CB1 or CB2 activation alone.  

- In vivo models: in newborn rats exposed to severe anoxia, post-anoxic administration of 

WIN55212-2 0.1 mg/kg i.p. dramatically reduces both early and delayed neuronal death in 

cortex and hippocampus. In newborn rats exposed to acute hypoxia-ischemia (Rice-

Vannucci model: left carotid artery ligation plus exposure to hypoxia -10% O2- for 90-120 



Introduction 

 

45 

 

min) (Rice et al., 1981), post-insult administration of WIN55212-2 led to a strong 

neuroprotective effect, in which CB1 and CB2 receptors are involved since co-

administration of WIN55212-2 with either a CB1 or a CB2 receptor antagonist abolishes 

the beneficial effect of WIN55212-2. Finally,WIN55212-2 increases cell proliferation and 

protein expression of the neuroblast marker doublecortin (Dcx) in the subventricular zone 

(SVZ) 7 days after neonatal HI, as well as the number of newly-generated neuroblasts 

(BrdU+/Dcx+ cells) in the ipsilateral striatum 14 days after HI. WIN55212-2 also promoted 

the remyelination of the injured external capsule, increasing the number of early 

oligodendrocyte progenitors (NG2+ cells) in this area. 

 Big mammals: in term fetal lambs exposed to HI by umbilical cord occlusion, post-

insult administration of WIN55212-2 (0.01 mg/kg) improves cerebral blood flow and 

reduces apoptotic neural death, as demonstrated by the reduction of TUNEL+ neurons. 

Interestingly, WIN also demonstrated glioprotective effect, reducing astrocytic death. 

Those effects rely on the maintenance of mitochondrial integrity and functionality.  

 

7. CANNABIDIOL AS A NEUROPROTECTANT IN NHIE 

 

 7.1. PARTICULARITIES OF THE NON-PSYCHOACTIVE PHYTOCANNABINOID 

CANNABIDIOL 

Cannabidiol is the major non-psychoactive constituent of Cannabis sativa; the lack of 

psychoactive effects derives from the lack of significant binding to CB1 receptors (Pertwee, 

2004; Mechoulam et al., 2007; Pertwee, 2008). However, it remains unclear whether some 

effects of CBD are mediated by CB2 receptors, since CB2 antagonists may reverse some of the 
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effects of CBD in vitro and in vivo (Sacerdote et al., 2005; Ignatowska-Jankowska et al., 

2010), including its neuroprotective effect (Castillo et al., 2010). CBD is also thought to be an 

agonist of serotonin 5HT1A receptors (Russo et al., 2005), which have previously been 

implicated in the neuroprotective effects of CBD in adult rat models of stroke (Hayakawa et 

al., 2010). Adenosine receptors are also involved in CBD-mediated neuroprotection in 

immature mouse brains exposed to OGD, in particular A2A receptors (Castillo et al., 2010); 

CBD increases brain adenosine levels by reducing adenosine reuptake (Carrier et al., 2006). 

In addition, CBD binds other receptors as TRPV1, TRPV2, TRPA1 and GPR5 (Pertwee, 2004; 

Mechoulam et al., 2007; Pertwee, 2008).  

CBD has shown neuroprotective effects in both in vitro and in vivo studies in adult 

animals (Fernández-Ruiz et al., 2013): 

- Hampson et al. (1998) showed that CBD protects against glutamate-induced neurotoxicity 

in primary cultures of rat cerebrocortical neurons, an effect attributed to its antioxidant 

properties. 

- Braida et al. (2003) reported that administration of CBD 5 mg/kg to gerbils after bilateral 

carotid occlusion reduces brain damage as show by EEG, neurobehavioral and histological 

studies. 

- Lately, the group of Fujiwara (Hayakawa et al., 2007) has reported in a model of stroke in 

mice that post-insult administration of CBD 1-3 mg/kg results in long lasting 

neuroprotection -attributed to antioxidant, anti-inflammatory, and cerebral blood flow 

stabilizing effects-, without the development of tolerance after repeated doses.  
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The mechanisms by which CBD exerts these effects are not completely understood yet, 

but some of its properties may account for CBD-induced neuroprotection (Hampson et al., 

1998; Pertwee, 2004; Esposito et al., 2006; Mechoulam et al., 2007): 

- CBD is a potent anti-inflammatory substance, modulating cytokine production, COX 

activity and cell infiltration in different paradigms of inflammatory damage.  

- CBD modulates toxic NO production by inhibiting iNOS induction, at least in part by 

inhibiting NF-κB activation. 

- CBD is a potent anti-oxidant substance, directly because of their molecular 

characteristics, and by reducing inflammatory responses and NO production. 

- CBD increases brain adenosine levels by reducing adenosine reuptake. Adenosine is 

thought to play a neuroprotective role after HI and adenosine reuptake inhibitors have 

been shown to induce neuroprotective effects.  

- Other effects with neuroprotective potential are the inhibition of calcium transport across 

membranes, the inhibition of anandamide uptake and enzymatic hydrolysis and the 

release of CGRP by TRPA1 activation. 

- In addition, CBD shows a significant anti-convulsant activity. 

- CBD is virtually free from side effects (Pertwee, 2004; Mechoulam et al., 2007). It has 

been reported that CBD may induce mild sedation at doses of 40 to 100 mg/kg in rats or 

600 mg in humans, which represents 10 times higher than the dose of THC needed to 

achieve a similar effect. In rats, CBD 5 mg/kg may decrease locomotor activity, a dose 5 

times higher than of THC (Pertwee, 2004). In newborn pigs, CBD 0.1 mg/kg iv shows no 

significant side effects on cardiovascular and respiratory parameters; as the piglets were 
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sedated, however, no effects on locomotion or consciousness has been tested (Alvarez et 

al., 2008). 

- Early studies in the late 80’s described that plasma level of CBD declines rapidly after i.v. 

administration, showing a terminal half life of 18-33 h, and being eliminated mostly by 

feces. 

 

7.2. STUDIES CARRIED OUT ON CBD AS NEUROPROTECTANT IN NHIE 

The aforementioned data suggesting a deleterious effect for CB1 agonists in immature 

brain prompted the studies on non-CB1 cannabinoids for the treatment of HI infants. CBD 

became quickly a candidate because of their lack of CB1 activity and the emerging evidences 

for CBD neuroprotective effects. In this regard, several studies have demonstrated the 

neuroprotective effect of CBD both in in vitro and in vivo models of NHIE: 

Mice (Castillo et al., 2009): in newborn mice forebrain slices exposed to OGD, CBD 100 

µM reduces cell death (reduction of LDH efflux). CBD also blunted apoptotic pathways, 

reducing the production of caspase-9. The neuroprotective effect is related with the 

decrease of glutamate and cytokines release as well as of iNOS expression. All these effects 

are independent from CB1receptors, but are mediated by CB2 receptors as well as by 

adenosine receptors, mainly A2A receptors.  

Rats (Pazos et al., 2012): in newborn rats undergoing a HI insult (Rice-Vannucci model), 

then receiving CBD 1 mg/kg or vehicle, and followed for 30 days (when rats become adults), 

CBD reduces the volume of brain infarct (as assessed by magnetic resonance imaging) by 

17%, as well as the extent of the histological damage (mean neuropathological score) being 

1 point lower in CBD than in vehicle-treated animals. Those neuroprotective effects are 
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associated with a neurofunctional restore: CBD treated animals score similarly to control 

animals in different neurobehavioral tests assessing motor (Rotarod, assessing motor 

coordination, and Cylinder Rear Test, assessing unilateral motor deficits) and cognitive 

(Novel Object Recognition, assessing work memory) whereas vehicle-treated animals show 

permanent deficits as scored in all tests. In those experiments, proton magnetic resonance 

spectroscopy (H+-MRS) studies not only supported the neuroprotective effect but indicated 

that the n-acetylaspartate/choline ratio (reflecting neuronal density) was increased in CBD-

treated animals, suggesting some neuroproliferative effect for CBD.  

Piglets (Alvarez et al., 2008; Lafuente et al., 2011): in newborn piglets the 

administration of CBD 0.1 mg/kg i.v. after an HI insult (hypoxia and carotid occlusion) had 

neuroprotective effects, as shown by: 

- Amplitude-integrated EEG studies: reporting a significant recovery of cerebral activity, the 

reduction of post-insult brain oedema (as reflected by the reduction of impedance 

increase in EEG) and the reduction of electrical seizure incidence.  

- Near-infrared spectroscopy studies: reporting a significant improvement of brain 

metabolic activity, as reflected by the reduction of FTOE extraction fall, as well as the 

reduction of cerebral hemodynamic impairment, as reflected by nTHI . 

- Histological studies: reporting the reduction of HI-induced brain damage as reflected by 

the increase of the number viable cell loss and the decrease of that of degenerating 

neurons (fluorojade B stained). In addition, CBD administration reduced astrocyte 

damage, blunting HI-induced reduction in number and size as observed by GFAP 

immunohistochemistry 72 h post-HI.  
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- Biochemical studies: reporting that CBD blunts of HI-induced increase of Neuronal 

Specific Enolase (reflecting neuronal damage) and S-100β protein (reflecting astrocyte 

damage) levels in cerebrospinal fluid 3 h after HI, thus supporting the neuroprotective 

and glioprotective effect of CBD.  

- Neurobehavioral studies: CBD administration dramatically improves piglet 

neurobehavioral performance as early as 24 h after the HI insult. This improvement 

progresses in the following days so that at 72 h the neurobehavioral score in HI+CBD was 

similar to in SHAM. In HI+VEH there was a modest recovery in neurobehavioral 

performance in the first day after HI, but this recovery did not continue in subsequent 

days. 

 

7.3. NON-ANSWERED QUESTIONS REGARDING CBD AS NEUROPROTECTANT IN NHIE 

All the aforementioned studies strongly suggest that CBD is a valuable candidate for 

synergistic therapy with TH in HI infants. However, before testing CBD in human infants 

some issues have to be clarified: 

- The mechanisms of action of CBD in vivo, including the involvement of cannabinoid and 

non-cannabinoid receptors.  

- The optimal CBD dose. 

- The therapeutic window (i.e., the longer time that CBD administration could be delayed 

without losing CBD neuroprotection) 

- The effects of CBD on neuro-repair (proliferation and myelogenesis).  
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HYPOTHESIS 

  

Cannabidiol, administered at 1 mg/kg by i.v. route will achieve such levels in brain 

tissue as to protect neurones and glial cells by modulating inflammation, excitotoxicity and 

oxidative stress. This neuroprotective effect is mediated by CB2 and 5HT1A receptors and will 

be still apparent with CBD being administered up to 6 h after the hypoxic-ischemic insult.  

 

OBJECTIVES 

1. To develop a short follow-up (6 h) model of hypoxic-ischemic brain damage in piglets, to 

demonstrate cannabidiol neuroprotection by different ways: 

1.1. Demonstrating that cannabidiol recovers brain activity as assessed by 

electroencephalographic studies. 

1.2. Demonstrating that cannabidiol reduces brain damage as assessed by histological 

studies: 

 1.2.1. Protecting neurones. 

 1.2.2. Protecting glial cells. 

1.3. Demonstrating that cannabidiol reduces brain damage as assessed by magnetic 

resonance spectroscopy biomarkers. 

2. To develop a medium follow-up (72 h) model of hypoxic-ischemic brain damage in piglets, 

to demonstrate: 

2.1. That cannabidiol-induced recovery of brain activity and prevention of seizures as 

assessed by electroencephalographic studies is sustained for 3 days. 
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2.2. That cannabidiol-induced reduction of histological brain damage is sustained for 3 

days and includes: 

2.2.1. Protecting neurones. 

2.2.2. Protecting glial cells. 

2.3. That cannabidiol-induced reduction of brain damage as assessed by magnetic 

resonance spectroscopy biomarkers is sustained for 3 days. 

2.4. That cannabidiol recovers neurological function: 

2.4.1. As assessed by motor tests. 

 2.4.2. As assessed by behaviour tests. 

 2.4.3. A assessed by anxiety tests. 

3. To determine the mechanisms of cannabidiol neuroprotection: 

3.1. Analyzing the effect ofcannabidiol on excitotoxicity. 

3.2. Analyzing the effect of cannabidiol on oxidative stress. 

3.3. Analyzing the effect of cannabidiol on neuroinflammation. 

3.4. Analyzing the receptors involved in cannabidiol neuroprotection, in particular: 

 3.1.2. CB2 receptors. 

 3.1.3. 5HT1A receptors. 

3.5. Analyzing the involvement of changes of endocannabinoid brain concentration 

3.6. Analyzing the receptors involved in cannabidiol neurobehavioral effects, in 

particular 5HT1A receptors. 
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4. To develop a model of hypoxic-ischemic brain damage in newborn mice: 

4.1. To demonstrate the protective effect of CBD by different ways:  

4.1.1. Demonstrating that cannabidiol reduces the volume of brain damage as 

assessed by magnetic resonance imaging. 

4.1.2. Demonstrating that cannabidiol reduces the histological brain damage: 

 4.1.2.1. Preventing neuronal necrosis. 

 4.1.2.2. Preventing apoptosis. 

 4.1.2.3. Protecting glial cells. 

4.2. To determine the temporary therapeutic window of cannabidiol. 

5. To determine the pharmacological properties of cannabidiol in a intravenous formulation, 

assessing: 

5.1. The optimal dose and interval. 

5.2. The pharmacokinetic profile. 
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METHODS 

1. ANIMAL MODELS 

All procedures met European and Spanish regulations for protection of experimental 

animals (86/609/EEC and RD 1201/2005) and were approved by the Ethical Committee for 

Animal Welfare of the Hospital Universitario Puerta de Hierro Majadahonda. The number of 

animals used was determined to be the minimum number necessary to achieve statistical 

significance.  

The mice model was realized in Oslo (Norway) and the animal experiments were 

approved by the National Animal Research Authority (NAAR) in Norway. 

 

1.1. PIGLET MODEL 

Animals: Newborn piglets were provided by an authorized farm (aged 1 to 2 days old 

and body weight 1600-2000 g).Two different approaches were used in this model: in the first 

one, piglets were maintained for 6 hours under anaesthesia to get insights on the 

mechanisms of CBD neuroprotection; in the second one, piglets were observed for 72 hours 

to study short term effects of CBD. 

 

1.1.1. 6 H-LONG FOLLOW-UP (6HFU) 

Animal preparation and instrumentation: At arrival piglets were weighted and then 

anesthetized with sevoflurane (5% induction, 1% maintenance), firstly by mask and then 

through an endotracheal tube (Portex 2.5, single lumen). One ear vein was cannulated 

(Introcan 24G, Braun, Melsungen, Germany) to infuse 4 mg/Kg/min of dextrose 
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intravenously. In each animal, each carotid artery was dissected, exposed and surrounded by 

an elastic band (Vessel Loops. Bard Nordic.Helsingborg. Sweden).  

- Haemodynamic monitoring: Then, right jugular veins were dissected and an indwelling 

catheter (NutrilineTwinflo 2F, Vygon, Valencia, Spain) placed to continuously infusing drugs 

and measuring Cardiac Output (CO). To do this, right femoral artery was dissected and an 

indwelling catheter (Pulsiocath 3F, Pulsion, Munich, Germany) placed to measure Cardiac 

output (PiCCO Plus, Pulsion), heart rate (HR), mean arterial blood pressure (MABP) and 

central temperature and to obtain arterial blood samples for gasometric and other analyses. 

Body temperature was maintained at 37.5-38.5 ºC by an air-warmed blanket (Bair Hugger. 

Agustine Medical Inc. Eden Prairie. MN. USA). Once instrumentation was finished, a 

continuous infusion of propofol (14 mg/kg/h) and vecuronium (0.6 mg/kg/h) was started and 

maintained throughout the entire experimental period to obtain paralyzed sedation.  

- Respiratory management and monitoring: Then, the piglet was disconnected from the 

inhaled anaesthetic device and connected to a mechanical ventilator (Evita 4. Dräger.Lubeck, 

Germany) with the following starting parameters: inspired oxygen fraction (FiO2) 21%, 

inspiratory time 0.5 sec, breath rate 30 rpm, PEEP 5, and PIP enough for a tidal volume (Vt) 

of 6 ml/kg. Airway resistance, lung compliance and Vt were monitorized by the ventilator-

integrated pneumotacography. End-tidal CO2 (etCO2) and transcutaneous arterial SO2 (tcSO2) 

was monitorized by an integrated device (Ohmeda 5250 RGM. Louisville. CO. USA). The 

etCO2 probe was attached to the proximal end of the endotracheal tube whereas the 

pulsioximeter probe was attached to one leg. Ventilatory parameters were then modified as 

needed to maintain tcSO2 92-98% and etCO2 35-55 mmHg; arterial blood gases were 

checked hourly throughout the experimental period.  
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-Metabolic monitoring: Glycemia and serum levels of cations (Na+, K+) were checked out in 

blood samples every 3 h, and corrected if needed by dextrose 50% or ClNa 1M boluses. 

- Brain activity monitoring: Finally, stainless steel wires were placed into the piglet head 

scalp to continuously monitorize brain activity by amplitude-integrated EEG (aEEG) (BRM3, 

BrainZInstruments, Auckland, New Zealand). Quantitative changes in aEEG amplitude were 

registered whereas aEEG background was qualitatively assessed by a neural activity score (4: 

continuous normal voltage; 3: discontinuous normal voltage; 2: burst suppression; 1: 

continuous low voltage; 0: Inactive, isoelectric pattern). 

Hypoxic-ischemic insult: After completion of the surgical procedure, piglets were 

allowed to achieve haemodynamic stability (variation lesser than 10% in all haemodynamic 

and metabolic parameters monitorized) for at least 30 min. The end of this period of 

stabilisation was considered the t0 point for hypoxia-ischemia (HI). Then, piglets underwent 

a cerebral HI insult: carotid blood flow was interrupted by pulling out the carotid bands and 

FiO2 was reduced to 10%, for 30 min. HI was confirmed by the suppression of brain activity in 

aEEG. If severe systemic hypotension (MABP <30 mm Hg) or bradycardia (HR<60) developed, 

FiO2 was minimally increased to improve hemodynamic parameters but preventing aEEG 

recovery. If hemodynamic deterioration progressed and at least 25 min of HI had been 

completed, HI was ended. At the end of the period of HI, carotid flow was restored and FiO2 

was increased to 21%. If needed, resuscitation was then carried out by adrenaline infusion, 

chest compression and FiO2 increase. Then, and throughout the entire experiment, 

appropriate changes in ventilatory parameters were done to regain normal tcSO2, etCO2 and 

gasometric values. If needed, sodium bicarbonate was infused to correct acidosis. If needed, 
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dopamine infusion (5-20 mcg/kg/min) was started to maintain appropriate MABP (50-70 

mmHg).   

Treatment: Thirty minutes after HI, piglets were randomly assigned to receive 10 ml 

i.v. of vehicle (HV, n=9) or CBD (HC, 1 mg/Kg IV) (n=11), alone or with the antagonist of CB2 

receptors AM630 (1 mg/Kg) (CBD + AM630: HCA, n=6) or the antagonist of serotonin 5HT1A 

receptors WAY100635 (1 mg/Kg) (CBD + WAY100635: HCW, n=6). 

CBD was prepared in a 5 mg/ml formulation of ethanol:solutol:saline at a ratio of 

2:1:17. AM630 or WAY 100635 were administered 15 min before CBD and dissolved in the 

same vehicle.  

After drug administration, piglets remained sedated and ventilated for 6 h. During this 

period hemodynamic and ventilatory parameters were recorded hourly and aEEG 

continuously monitorized. Blood samples were obtained hourly after drug administration, to 

check gasometric and metabolic parameters and to study CBD pharmacokinetics (PK).  

Sample collection: 

- Blood samples: Both at the beginning and at the end of the experiment 0.5 ml blood 

sample was obtained and placed in a container with EDTA, then centrifuged at 1500 rpm for 

15 min at 4º C and then serum and plasma separated and stored at -80 ºC until use. 

- Brain samples: Then, cold heparinized saline was infused through carotid arteries 

indwelling catheters to wash out blood from the brain; jugular veins were sectioned to 

facilitate this procedure. Then piglet was killed by 10 ml 1M KCl infusion, and brain removed. 

Brain hemispheres were separated. The left hemisphere was divided into 4 pieces that were 

placed into 4% formaldehyde and embedded in paraffin for histological and 

immunohistochemical studies. Three samples from parietoccipital cortex and three samples 
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from hipoccampus were obtained from the right hemisphere and immediately frozen in 

isopentane and conserved at -80 ºC for biochemical studies. Piglets similarly managed but 

with neither HI nor drug treatment (SHM) served as controls. 

 

1.1.2. 72 H-LONG FOLLOW UP (72HFU) 

Animal preparation and instrumentation: piglets were anesthetized, intubated and 

ventilated and each carotid artery dissected, exposed and surrounded by an elastic band 

similarly to 6HFU piglets. Then, right jugular veins were dissected and an indwelling catheter 

(NutrilineTwinflo 2F, Vygon, Valencia, Spain) placed to continuously infusing drugs. The 

extravascular segment of the catheter was secured with several skin stitches with the end of 

the catheter placed and secured on the piglet back, to guarantee a venous access for 

medication and blood sampling throughout the entire experimental period. Then, 4 

mg/Kg/min of dextrose were infused intravenously.  

HR was monitorized using external electrodes. Central temperature was monitorized 

using a rectal probe. Body temperature was maintained at 37.5-38.5 ºC using the air-

warmed blanket. A pulsioximeter probe was attached to one leg. Finally, stainless steel wires 

were placed into the piglet head scalp to continuously monitorize brain activity by aEEG. 

Once instrumentation was finished the piglet were kept anaesthetized under 2% 

sevoflurane.  

Glycemia, serum levels of cations and blood gases were checked out until stabilization 

before starting the HI insult. Appropriate corrections on ventilator settings and/or dextrose 

or cations infusion were made until normalized parameters were obtained.  
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Hypoxic-ischemic insult: this was carried out similarly to that explained for 6HFU 

excepting that the insult lasted for 20 min. At the end of the period of HI, carotid flow was 

restored and FiO2 was increased to 21%. Then, the piglets were disconnected from the 

anaesthetic device and connected to the Evita ventilator with the same parameters. Once 

spontaneous breathing movements were observed the ventilator setting was changed to 

CPAP at 6 cmH2O and the lower FiO2 needed for SO2>92%. Once spontaneous breathing 

became regular the piglets were extubated. Afterwards, 100% O2 was administered at 4 lpm 

through nasal prongs as long as this was needed to maintain SO2>92%.  

Treatment: Fifteen minutes after HI the piglets received acetaminophen 15 mg/Kg i.v. 

(for analgesia) and cefotaxime 50 mg/Kg i.v. (to prevent surgical infections). Both drugs were 

then administered every 12 h throughout the experimental period.  

Thirty minutes after HI, piglets were randomly assigned to receive 10 ml i.v. of vehicle 

(HV, n=9) or CBD 1 mg/Kg. In some piglets CBD was administered single dose (HC1, n=5) 

whereas in other piglets CBD was administered once a day for 3 days (HC3, n=6). Drugs were 

administered alone or with WAY100635 (1 mg/Kg) every 12 h. In piglets receiving CBD single 

dose WAY was then administered just the first day (HCW1, n=4) whereas in piglets receiving 

CBD once a day for 3 days WAY was administered every 12 h during the three days (HCW3, 

n=4).(Table 2). 

Table 2. Scheme of drug administration 
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After drug administration, piglets were moved toan air heater-warmed cage once 

spontaneous breathing became stable. During the first 24 h after HI piglets remained with 

nothing per os receiving 4 mg/Kg/min of dextrose i.v. Then, up to 40 ml of milk formula 

suitable for newborns was offered every 2-3 h from 8 a.m. to 8 p.m. Milk formula was 

administered through a tube attached to a researcher's finger and connected to a 50 ml 

syringe; once the piglet started sucking the finger, the syringe was gently pushed to deliver 

milk as synchronized to suckling as possible.  

Piglets similarly managed but with neither HI nor drug treatment (SHM) served as 

controls. 

Neurobehavioral assessment: 

-Functional brain assessment: 24, 48 and 72 h after HI a 10 min-long aEEG trace was 

recorded to register changes in aEEG amplitude.Electrographic seizures were defined as 

repetitive,rhythmic waveforms with a distinct beginning and end with a duration >10 s.  

- Anxiety response: based on the stress response of mammals upon restrain, the time spent 

by piglets on fighting against restrain during the aEEG record was obtained as a surrogate of 

anxiety. 

- Playful activity: since piglets start to interact with the environment and live beings (either 

pigs or humans) from the second day of life, playful activity with an object (a sheet) or with 

the researchers were videorecorded for 10 min at 48 and 72 h after HI. Later on, a 

researcher blinded to the experimental group quantified the percentage of that time spent 

on object or social playfulness. 

- Eating behaviour: Swollen milk amount as well as suckling appropriateness was recorded 

each time piglets were fed. 
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- Motor performance: based on a standardized piglet neurobehavioral test (Schubert et al., 

2005; Lafuente et al., 2011), piglet motor performance was assessed 24, 48 and 72 h (Table 

3). 

 

 

 

 

 

 

 

 

 

 

 

  Table 3. Neurobehavioral test 

 

Sample collection: 

- Blood samples: Both at the beginning and at the end of the experiment 0.5 ml blood 

sample was obtained and managed similarly to that described for 6HFU. 

- Brain samples: Brains were obtained and managed at the end of the experiment similarly to 

that described for 6HFU.  
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1.2. MICE MODEL 

Animals: NewbornC57/BL6mice (aged 9 to 10 days old) were bred in the animal 

facilities of the Rikshospitalet (Oslo, Norway). This model was selected to study the 

temporary therapeutic window of CBD treatment. 

Animal preparation and instrumentation: Before surgery, pups were handled to avoid 

rejection by the dam. Firstly, the dam was placed into a cage besides the pup cage. After 

flushing gloves with 1% clorhexidine (Cristalmina®), pups were touched several times. 

Immediately after the dam was returned to the pup cage. 

Fifteen minutes later, the dam was placed into a cage with free access to food and 

water and moved to another room and pups were touched again with clorhexidine-flushed 

gloves. Then, after 15 minutes the dam was once more returned to the pup cage. Fifteen 

minutes later the dam was placed into a cage with free access to food and water and moved 

to another room. Pups were then ready for surgery. 

Hypoxic-ischemic insult: Pups in the cage were kept warm by an air heater. Pup cage 

was divided into two sections to separate operated from non-operated pups. The pup to be 

operated was anaesthetized with sevoflurane 5%. Then, pup was placed upright with both 

forepaw gently attached to a 1 ml syringe and the neck in gently hyperextension. Deep 

anaesthesia was confirmed by absent response to tail compression. Then, neck left side was 

cleaned with clorhexidine and a 1 cm-wide incision was made with a scalpel, starting in the 

middle point between clavicles and going then craneo-laterally oriented to pup left. 

Subcutaneous, fat and muscular planes were dissected by forceps and scissors. The 

vasculoneural plane was dissected by forceps. Then, sevoflurane was lowered to 2,5%. Once 

the left carotid artery was exposed, it was carefully dissected and separated from vein and 
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nerve. Using the L-shaped forceps, the left carotid artery was brought up and carefully 

electrocoagulated until it became divided into two parts. A drop of saline was poured in to 

gently separate both electrocoagulated arterial ends from forceps. 

Finally, the wound was stitched up with two knots using 5-0 Vycril® and further 

cleaned with clorhexidine. Still under anaesthesia, the pup was identified by an ear-

punch/scissor. Pups were allowed to awake and when moving by itself is placed into the 

cage, under the warmed air. 

Six pups from each litter underwent the carotid electrocoagulation (HI group). The 

remaining ones just underwent scalpel incision, stitching and clorhexidine cleaning up (Sham 

group). In case it lasted more than 5 min to find the carotid artery surgery was finished and 

that pup was considered as Sham. In case bleeding appeared with no stop after gentle 

pressure by a cotton bud or if carotid artery was accidentally broken, the pup was killed by 

cervical dislocation under anaesthesia.  

After surgery was completed, the dam was returned to the pup cage, which was placed 

in a quiet environment for at least 3 h. After that recovery period, the dam was placed into a 

cage with free access to food and water and moved to another room. Three randomly 

selected pups were weighted to obtain the mean pup weight. 

Then, HI pups were placed in groups of three into 500-ml jars maintained at 37ºC by a 

warm water bath and exposed to a 10% O2 mixture for 90 min. In the meanwhile, 

Sham(SHM, n=30)mice were maintained in the cage under warmed air.  

After the end of HI, pups were resuscitated by tactile stimulation at room air. Freely 

moving pups were then placed into the cage under warmed air and animals were randomly 

assigned to receive s.c. injections of 0.1 ml of vehicle (ethanol:solutol:saline 2:1:17) (HV, 

n=60) or CBD (1 mg/Kg) was administered s.c. 15 min, or 1, 3, 6, 12 or 24 h after the end of 
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the HI insult (HC0.15 n=10; HC1, n=10; HC3, n=10; HC6, n=10; HC12, n=10; HC24, n=10, 

respectively).The CBD was prepared from the 5 mg/ml formulation of ethanol:solutol:saline 

(2:1:17).  

Sacrifice: Seven days later (P16), the mice were sacrificed by a lethal i.p. injection of 

diazepam + ketamine. After opening the chest, left heart ventricle was cannulated with a 25 

G needle and saline and then 4% paraformaldehyde (PFH) were transcardially perfused at 4 

ml/min. Then, the skull was opened, brain removed and placed in Falcon tubes containing 

4% paraformaldehyde. The brains were used to asses brain damage by Magnetic Resonance 

Imaging (MRI) and subsequently processed to histological studies. 

 

2. IMAGING ANALYSIS 

In mice model MRI was used to determine the volume of HI brain damage.The MRI 

scan of the brains was carried out in the MRI Unit of the Instituto Pluridisciplinar, 

(Universidad Complutense, Madrid) on a BIOSPEC BMT 47/40 (Bruker-Medical, Ettlingen, 

Germany) operating at 4.7 T, equipped with an actively shielded gradient insert with an 11.2-

cm bore, a maximal gradient strength of 200 mT/m, an 80-ms rise time, and a homemade 4-

cm surface coil. T2WI were acquired with multislice rapid acquisition (TR ¼ 3.4 s, RARE factor 

¼ 8, interecho interval ¼ 30 ms, TEeff ¼ 120 ms; matrix size ¼ 256 _ 256(pixel dimensions 

117_117 mm), field of view (FOV) ¼ 3 cm2). The slice package consisted of 26 consecutive 

0.5-mm-thick slices in the axial plane with an interslice gap of 0.1 mm to image the entire 

brain. Brains were placed in Fluorinert FC-40 (3 M, Minnesota, USA) for the MRI scan and 

then replaced in PFH. 
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Volumetric analyses of the MRI slices were performed using ImageJ 1.43u software 

(U.S. National Institutes of Health). In the selected slice, the area of brain parenchyma was 

manually outlined, and the size of the selected area was calculated by the software program. 

 

3. HISTOLOGICAL STUDIES 

Once the tissues were fixed in 4% paraformaldehyde, they were dehydrated and 

embedded in paraffin to be cut on a Leica microtome. Consecutive sections (4 m) of each 

animal were cut and mounted on a glass slides for histological techniques. 

 

3.1. NISSL STAINING: Sections were stained with Toluidine Blue (0.25%) in distilled 

water for 1 minute. Then sections were successively washed in 96% ethanol and mounted to 

analyse in an optical microscope. 

Piglet model analysis: Consecutive coronal sections were analyzed. Areas of 1 mm2 in 

the central three lobes of the parietal cortex at 3 mm in the posterior plane, as shown in a 

stereotaxic atlas of pig brain (Félix et al., 1999), were examined, focusing on layers II-III, by 

an investigator blinded to the experimental group using an optical microscope and a grid of 

50 compartments; the mean of three compartments was calculated. Apparently normal 

neurons were identified by the presence of typical nuclei with clear nucleoplasm and a  

distinct nucleolus surrounded by purple-stained cytoplasm. Neurons were defined as 

damaged when no distinction could be made between the nucleus and cytoplasm (pyknotic 

or necrotic). 

Mice model analysis: Three consecutive sections corresponding to the plate 35 of the 

rat brain atlas (Paxinos & Watson, 1997) were selected for analysis by an examiner blinded 
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to the experimental group of the animal. The degree of brain damage in the ipsilateral 

hemisphere was scored as follows: 0 = normal, 1 = few neurons damaged (1-5%), 2 = several 

neurons damaged (6-25%), 3 =moderate number of neurons damaged (26-50%), 4 = more 

than half of neurons damaged (51-75%), 5 = majority of neurons damaged (>75%). The mean 

of 3 sections from each animal was determined. 

 

3.2. IMMUNOHISTOCHEMISTRY: The basic protocol for immunohistochemistry assays 

is described below. Coronal sections were submitted to antigen retrieval process, washed in 

0.1 M PBS (Phosphate Buffer Saline) and incubated with the corresponding primary antibody 

(Table 4) over night at 4ºC. After that, tissue sections were incubated with secondary 

antibody for 2 hours at 37ºC (1:200, Alexa; Molecular Probes). Finally, cell nucleuses were 

counterstaining with TO-PRO-3 (1:500, Molecular Probes) and mounted in aqueous medium 

Vectashield (Vector Laboratories, Burlingame, United Kingdom). Visualization and 

photography of the samples was carried out with a TCS SP5 confocal microscope (Leica 

Microsystems, Wetzlar, Germany) equipped with 10xHCX PL APO (0.4numerical aperture), 

20x  HCX PL APO (0.7 numerical aperture) and  oil-immersion optics:  40× HCX PL APO (1.25 

numerical aperture) and 63xHCX PL APO (1.4 numerical aperture ). 

 

 Table 4.Primary Antibodies used for immunohistochemistry  

Antibody Company Dilution 

Myelin basic protein Sigma-Aldrich 1:500 

GFAP-Cy3 Sigma-Aldrich 1:1000 
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In piglets histological studies were done in the three medial crests of parietooccipital 

cortex and hippocampus; MBP immunohistochemistry was done in the subcortical area of 

the aforementioned crests (Fig. 7A), In mice, immunohistochemical studies were carried out 

in a Region of Interest (R.O.I) involving the parietooccipital cortex at the penumbral 

perilesional area (Fig. 7B). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. A) Parietoccipital crests and hippocampus for histological studies in piglets. B) Region of 
interest (R.O.I.) for immunohistochemical studies in newborn mice. 

 

 

 

 

3.3. TUNEL ASSAY: Tunel assay was performed in mice brains to evaluate cell 

apoptosis in different groups. The fragmented DNA of the apoptotic cells was labelled using 

DeadEnd Colorimetric TUNEL System (Promega, Spain). As manufacturer instructions, after 

rehydration slides were treated with 20 mg/ml proteinase K for 10 min at room 

temperature, washed with PBS and re-fixed in 4% paraformaldehyde.  Then slides were 

incubated with rTdT enzyme and the nucleotide mix at 37Cº for 60 min and the reaction was 

stopped by incubation in 2x SSC for 15 min. After washing with deionized water, the slides 

B 

A 
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were counterstaining with TO-PRO-3 (1:500, Molecular Probes) and covered with glass 

coverslips in an aqueous medium (Vectashield; Vector Laboratories, Burlingame, United 

Kingdom). Visualization and photography of the samples was carried out with a confocal TCS 

SP5 confocal microscope (Leica Microsystems, Wetzlar, Germany). 

Both GFAP immunohistochemistry and TUNEL assay images were analyzed using the 

ImageJ 1.43u software (U.S. National Institutes of Health). The number of cell positive was 

quantified in each selected area. For MBP immunohistochemistry, the number of positive 

pixels in the selected area was determined by using the ImageJ software.  

 

4. BIOCHEMICAL STUDIES 

4.1. WESTERN-BLOT: Protein analysis and quantifications were conducted through 

the use of western-blotting. Following the company instructions 0.2 grams of brain tissue 

from piglets were homogenated in 500 ml of T-PER Reagent (Thermo Scientific) and 5 ml of 

Protease Inhibitor Cocktail Kit (Thermo Scientific). The samples are quickly centrifuged at 4ºC 

at 10000G. The supernatant is collected and store at -80ºC. Previously to perform the 

western-blot, protein content was measured for each sample Pierce BCA Protein Assay Kit 

(Thermo Scientific).  

IL-1beta quantification: Samples were heated for 5 minutes at 95ºC and quickly put on 

ice to be subjected to electrophoresis on a SDS-polyacrylamide gel for 1.5 h at 90V (constant 

voltage). Proteins thus separated were transferred to a PVDF (polyvinylidenedifluoride 

membrane) membrane (Amersham Hybond-P, GE Healthcare), at 60V for 1.5 h. 

After transference, the non-specific sites were blocked by incubating the membrane 

with blocking solution (5% non-fat dried milk in PBS-T) for 1 hour at room temperature (RT). 
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Then membrane was incubated with primary antibody (1:200; Thermo Scientific), diluted in 

blocking solution overnight at 4ºC with gently shaking. After 3 washes of 10 minutes with 

TBS-T, the membrane is incubated with secondary antibody diluted 1:7000 (GE Healthcare; 

UK) in blocking solution for about 1h at room temperature with gently shaking. In order to 

normalize the data, beta-actin quantification is used for each sample. Chemiluminescence 

detection is performed using the ECL Western-blotting Analysis System (GE Healthcare; UK) 

and impressed in an autoradiographic film. Data analysis is made by Quantity One software 

(Bio-Rad) measuring the average of intensity for each band.  

Oxyblot:OxyBlot protein oxidation detection kit (Millipore Iberica; Madrid) was used to 

quantify the presence of protein carbonyl groups in brain tissue. 15 mg of total protein were 

subjected to the derivatization reaction with 2,4-dinitrophenylhydrazine and processed for 

Western blot analysis. According to the manufacturer’s protocol, the corresponding negative 

controls were used at the same time. Then, samples were electrophoresed in a 12% sodium 

dodecyl-sulfate-polyacrylamide gel (SDS-PAGE). DNP-BSA Standards (Millipore Iberica; 

Madrid) were included on each gel.  

Proteins were electro-blotted onto PVDF membranes (GE Healthcare, UK) in 

Tris/glycine/methanol transfer buffer at 4ºC under constant voltage (2 h at 250 mA). The 

resultant blots were blocked in PBS-Tween (PBST) containing 5% nonfat dried milk at 4ºC by 

overnight incubation. Primary antibody incubation was carried out at 1:150 dilution in PBST 

containing 5% nonfat dried milk for 1 h at RT. After washing with PBST, the membranes were 

incubated with the secondary antibody (1:300) for 1 h at RT. Finally, the peroxidase reaction 

was developed with an ECL Kit (GE Healthcare; UK). Films were scanned and analyzed with 

ImageJ software. The levels of protein oxidation were quantified by means of densitometric 
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analysis and normalized by total protein loading (Red Ponceau staining) and expressed by 

the OxyBlot/Red Ponceau ratio. 

 

4.2. PROTON MAGNETIC RESONANCE SPECTROSCOPY (H+-MRS): H+-MRS was 

performed in the MRI Unit of the InstitutoPluridisciplinar, (Universidad Complutense, 

Madrid, Spain) at 500.13 MHz using a Bruker AMX500 spectrometer 11.7 T operating at 4ºC 

on frozen cortex samples (5-10 mg weight) placed within a 50 l zirconium oxide rotor with 

cylindrical insert and spun at 4000 Hz spinning rate. Standard solvent suppressed spectra 

were acquired into 16 k data points, averaged over 256 acquisitions, total acquisition 14 

min using a sequence based on the first increment of the NOESY pulse sequence to effect 

suppression of the water resonance and limit the effect of B0 and B1 inhomogeneities in the 

spectra (relaxation delay-90º-t1-90º-tm-90º-acquire free induction decay (FID)) in which a 

secondary radio frequency irradiation field is applied at the water resonance frequency 

during the relaxation delay of 2s and during the mixing period (tm = 150ms), with t1 fixed at 

3 s. A spectral width of 8333.33 Hz was used. All spectra were processed using TOPSPIN 

software, version 1.3 (Bruker Rheinstetten, Germany). Prior to Fourier transformation, the 

FIDs were multiplied by an exponential weight function corresponding to a line broadening 

of 0.3 Hz. Spectra were phased, baseline-corrected and referenced to the sodium (3-

trimethylsilyl)-2,2,3,3-tetradeuteriopropionate singlet at δ 0ppm. 

By using the 3.1.7.0 version of the SpinWorks software (University of Manitoba, 

Canada) curve fitting was performed and several ratios were calculated, including: the 

lactate/N-acetylaspartate (Lac/NAA), the N-acetylaspartate/choline (NAA/Cho), the 

glutamate/N-acetylaspartate (Glu/NAA) and the reduced gluthation/creatine (GSH/Cr). 
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4.3. DETERMINATION OF BRAIN ENDOCANNABINOID LEVELS: These studies were 

carried out in the Prof. Cecilia Hillard's laboratory, at the Neuroscience Research Center of 

the Medical College of Wisconsin (USA). Thus, tissue samples were weighed and placed into 

borosilicate glass culture tubes containing two ml of acetonitrile with 84 pmol of 

[2H8]anandamide and 186 pmol of [2H8]2-AG. Tissue was homogenized with a glass rod and 

sonicated for 30 min. Samples were incubated overnight at −20°C to precipitate proteins, 

then centrifuged at 1,500 × g to remove particulates. The supernatants were removed to a 

new glass tube and evaporated to dryness under N2 gas. The samples were resuspended in 

300 μL of methanol to recapture any lipids adhering to the glass tube, and dried again under 

N2 gas. Final lipid extracts were suspended in 20 μL of methanol, and stored at −80°C until 

analysis. The contents of arachidonylethanolamide (AEA), 2-arachidonoylglycerol (2-AG), 

oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were determined in the lipid 

extracts using isotope-dilution, liquid chromatography-mass spectrometry. 

 

5. CBD PHARMACOKINETIC STUDY 

Blood samples from piglets (6HFU) were obtained every 30 min after CBD injection. 

Plasma was immediately separated by centrifugation at 4 ºC and 7000 rpm for 15 min, and 

stored at -80 ºC. Then, plasmatic CBD concentration was determined by gas 

chromatography-mass spectrometry. Successive CBD concentrations defined the time-

concentration curve, allowing the performance of the pharmacokinetic study by 

determining: 



Methods 

 

74 

 

- Plasma half life(T1/2): the time necessary to halve the plasma concentration. It is useful to 

determine the frequency of administration of CBD. Allows to calculate the Elimination Rate 

Constant (kel=0.693/T1/2) 

- Cmax: maximum CBD concentration after administration.  

- Tmax: time after administration when Cmax is reached.  

- Area under the curve (AUC): expressed in ng/h/ml. It is useful to study CBD bioavailability 

and total clearance. 

In addition, samples (10 mg weight) from frozen 6HFU HC brains were homogenized in 

MeOH:water (10:90, v:v) added in a 3:1 solvent:brain ratio (1 g of brain tissue was taken to 

equal 1 ml). CBD was extracted from brain tissue homogenate using liquid-liquid extraction 

with 5% IPA (hexane), and CBD levels were quantitatively determined using LC-MS/MS at 

Quotient Bioresearch Ltd. (Fordham, UK). 
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RESULTS 

1. NEUROPROTECTIVE EFFECT OF CBD 

1.1. PIGLET MODEL 

1.1.1. 6HFU 

No significant differences were found between the distinct treatment groups in terms 

of age or weight (Table 5). Of a total of 38 animals, only two piglets (5.3%) died in the 90 

min following the HI insult (one assigned to the HV and the other to the HC group).  

Table 5. Piglet age and weight.  

 SHM HV HC HCA HCW 

Age (days) 1.8 ± 0.1 1.8 ± 0.1, 1.9 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 

Weight (kg) 1.9 ± 0.1 1.7 ± 0.1 1.9 ± 0.1 1.8 ± 0.1 1.9 ± 0.1 

 

 

Cardiopulmonary parameters 

There were no differences in CO (cardiac output) among the piglets of the different 

groups, with the exception made for HCW piglets in which CO fell throughout the 

experimental period (Table 6). HI insult was associated with a progressive fall of MABP 

(mean arterial blood pressure) in HV-treated animals (Table 6), so that a half of HV piglets 

needed inotropic drug support (dopamine, mean dose 13±4 μg/Kg/min). Such a fall of 

MABP was not observed in HC, with no piglet from this group needing inotropic support. By 

contrast, in piglets receiving CBD plus the CB2 or the 5HT1A receptor antagonist MABP 

dropped 15-20 mmHg throughout the experimental period. The effect was more dramatic 

for HCW (Table 6) so that 5 out of 6 piglets from this group needed inotropic drug support 

(dopamine, mean dose 11.2±1.2 μg/Kg/min). Brain HI was associated with a drop in pH 

throughout the experimental period in all HI groups, although such a drop was more severe 
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in HCA or HCW (Table 6). There were no differences in CO2 levels among the piglets of the 

different groups. 

 
Table 6. Cardiorrespiratory parameters. B: Basal. D: Drug. E: End.  CO: cardiac output (mL/min/kg). 
MBP: mean blood pressure (mmHg). (*) p<0.05 vs SHM. (#) p<0.05 vs B. (§) p<0.05 vs. HC. 

  SHM HV HC HCA HCW 

CO 
B 
D 
E 

31.8(2.9) 
35.5(2.7) 
35.0(3.6) 

33.9(3.5) 
36.9(4.1) 
34.4(4.2) 

35.7(2.5) 
33.4(4.1) 
33.6(4.3) 

34.4(3.9) 
33.2(2.2) 
32.0(3.6) 

 
34.4(2.8) 
36.2(2.3) 

29.6(2.1)*,#,§ 

 

MBP 
B 
D 
E 

79.3(5.0) 
90.5(5.8) 
78.8(5.1) 

80.1(3.3) 
86.0(7.1) 

 59.6(3.1)*
,#,§

 

82.5(2.6) 
91.4(7.8) 
78.8(2.5) 

83.1(5.1) 
95.4(4.5) 

68.4(2.5)*
,#,§

 

 
76.9(3.1) 
85.1(5.3) 

56.4(7.1)*
,#,§

 
 

pH 
B 
D 
E 

7.34(0.02) 
7.38(0.01) 
7.39(0.01)# 

7.32(0.02) 
7.21(0.03)*,# 

7.32(0.03)* 

7.35(0.02) 
7.20(0.05)*,# 

7.32(0.02)* 

7.32(0.01) 
7.18(0.04)*,# 

7.25(0.03)*,#,§ 

 
7.35(0.01) 

7.23(0.04)*,# 
7.26(0.03)*,#,§ 

 

pCO2 
B 
D 
E 

41.4(3.3) 
39.4(2.3) 
38.8(1.1) 

39.4(1.9) 
42.4(2.2) 
42.2(2.9) 

40.7(2.6) 
43.4(2.3) 
42.3(1.6) 

38.8(1.6) 
41.2(3.1) 
42.5(2.7) 

39.9(1.8) 
40.1(1.6) 
39.9(2.5) 

 

 

CBD recovered brain activity 

The benefits of CBD treatment in the piglet HI model were quantitatively assessed by 

determining the aEEG amplitude and qualitatively using a neural activity score (Tichauer et 

al., 2009). Continued sedo-analgesia determined that aEEG amplitude dropped slightly in 

SHM animals throughout the experiment (Fig. 8A). When analyzing the neural activity 

score, however, it was apparent that such a drop was not associated with an impairment of 

background activity and/or pattern (Fig. 8B). HI led to a severe fall of brain activity (Fig. 8A) 

together with a severe impairment of background pattern, which were not recovered 

during the following 6 hours (Fig. 8B). CBD administration led both to a progressive 

recovery of brain activity (59.3±9% basal activity at 6 h) (Fig. 8A) and of the background 

pattern (Fig. 8B).  
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Figure 8. A) Quantitative CBD-induced recovery of brain activity after HI. Changes of mean amplitude 
of aEEG trace recorded in 1-to-2 day-old piglets after sham operation (SHM) or after hypoxia-
ischemia (HI) and treatment with vehicle (HV) or CBD (HC). Results are expressed as means ± SEM of 
6-10 animals. (*) p<0.05 vs. SHM. (§) p<0.05 vs HC. B) Qualitative CBD-induced recovery of brain 
activity. Qualitative assessment of aEEG background activity by a neurological activity score in 1-to-2 
day-old piglets after sham operation (SHM) or after hypoxia-ischemia (HI) and treatment with vehicle 
(HV) or CBD (HC). (*) p<0.05 vs. SHM.  

 

 

 

CBD protected neurons 

 HI insult led to a dramatic increase in the number of necrotic neurons in the cortex, 

as witnessed by Nissl staining of this tissue 6 hours after insult (Fig. 9A), although this 

increase was blunted by CBD administration (Fig. 9B).  

 

 

 
 
 
 
 
 
 
 
Figure 9. CBD-induced prevention of neuronal death after HI. A) Representative light 
microphotographs of Nissl stained brain sections, obtained from 1-to-2 day-old piglets after sham 
operation (SHM) or after hypoxia-ischemia (HI) and treatment with vehicle (HV), or CBD (HC). B) In 
brain from HV there is an increase in number of pyknotic cells and a decrease in number of viable 
neurons. Administration of CBD reduced the presence of pyknotic cells. Original magnification x200, 
bar: 100 µm. Results are expressed as means ± SEM of 6-10 animals. (*) p<0.05 vs. SHM. 
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CBD increased the number of astrocytes 

In the HV group, no reduction in the number of GFAP+ cells was evident in the cortex 

after HI insult (Fig. 10). By contrast, CBD administration led to a significant increase in the 

number of GFAP+ cells in the HC group.  

 

 

 
 
 
 
 
 
 
 
Figure 10. CBD-induced prevention of astroglial death after HI. A) Representative fluorescence 
microphotographs of GFAP stained brain sections, obtained from 1-to-2 day-old piglets after sham 
operation (SHM) or after hypoxia-ischemia (HI) and treatment with vehicle (HV), or CBD (HC). B) 
Administration of CBD increased the presence of GFAP+ cells. Original magnification x200, bar: 100 
µm. Results are mean ± SEM of 6-10 animals. (*) p<0.05 vs. SHM. 

 

 

CBD improved H+-MRS prognostic markers 

 Lac/NAA and NAA/Cho ratios were used as prognostic markers. Although Lac/NAA 

ratio increased and NAA/Cho decreased in cortex after the HI insult (Fig. 11B), these 

changes were not observed in HI piglets treated with CBD (Fig. 11B).  

 

 

Figure 11. CBD-induced improvement of H+-
MRS biomarkers after HI. A) representative 
brain H+-MRS spectrum from a normal piglet, 
showing the peaks of the different 
metabolites studied. B) Bars represent the 
results, expressed as means ± SEM, of 
different metabolite ratios obtained from 
studies performed in brain samples from 1-to-
2 day-old piglets after sham operation (SHM) 
or after hypoxia-ischemia (HI) and treatment 
with vehicle (HV) or CBD (HC). Cho: choline; 
Lac: lactate; NAA: N-acetylaspartate. (*) 
p<0.05 vs. SHM. 

A 
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1.1.2. 72HFU 

All piglets were 1 day-old. No significant differences were found between the distinct 

treatment groups in weight (Table 7). Of a total of 39 animals, eight piglets (20.5%) died in 

the 24h following the HI insult (three assigned to the HV, two to the HC1, two to the HC3 

and one to the HCW3 group).  

 

Table 7. Piglet weight  

 SHM HV HC1 HC3 HCW1 HCW3 

Weight (kg) 1.5 ± 0.1 1.7 ± 0.1 1.6 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 

 

 
CBD recovered brain activity 

The benefits of CBD treatment were quantitatively assessed by determining the aEEG 

amplitude (Fig. 12). HI insult led to a decrease of aEEG amplitude in all the experimental 

groups. In HV piglets, a mild recovery was observed at 72 h after HI but this was not 

enough to regain normal amplitude. From 48 h after HI, however, aEEG amplitude 

improved in animals treated with CBD, reaching normal values by 72 h after HI.  There were 

no differences between HC1 and HC3.  

 
 
Figure 12. CBD-induced recovery of 
brain activity after HI. Changes of mean 
amplitude of aEEG trace recorded in 
piglets after sham operation (SHM) or 
after hypoxia-ischemia (HI) and 
treatment with vehicle (HV) or CBD 
single dose (HC1) or in 3 doses (HC3). 
Results are expressed as means ± SEM 
of 6-10 animals. (*) p<0.05 vs. SHM. (§) 
p<0.05 vs HC. 
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CBD prevented seizures 

Electrographic seizures were observed in on third of HV piglets 24 h after HI. This was 

worsening in the following days so that at the third day more than a half of HV piglets 

showed electrographic seizures at the aEEG record (Table 8). Only one piglet treated with 

CBD showed seizures in the aEEG 24 h after HI. CBD showed a robust antiepileptic effect 

afterwards, so that no piglet treated with CBD showed electrographic seizures 72 h after 

HI.  

Table 8. Electrographic seizures. (*) Pearson's X
2
 p<0.05 

Group 24 h post HI 72 h post HI 

SHM 0/4 0/4 
HV 3/9 5/9* 
HC 1/10 0/10 

 

 

CBD protected neurons 

HI insult led to a decrease of the number of neurones and an increase of the 

proportion of death neurones, as witnessed by Nissl staining in brain parietoccipital cortex 

72 hours after insult (Fig. 13), although this increase was blunted by CBD administration 

(Fig. 13).There were no differences between HC1 and HC3. 

  

Figure 13. CBD-induced prevention of neuronal 
death after HI. Changes of neuronal density and 
proportion of death neurons in cortex as 
observed in Nissl stained brain sections, 
obtained from piglets after sham operation 
(SHM) or after hypoxia-ischemia (HI) and 
treatment with vehicle (HV) or CBD single dose 
(HC1) or in 3 doses (HC3). Results are expressed 
as means ± SEM of 6-10 animals. (*) p<0.05 vs. 
SHM. 
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CBD increased myelin in brain 

HI led to a decrease of the myelin density in the External Capsule, as observed after 

MBP immunohistochemistry of brain slices 72 h after HI (Fig. 14). In this case, CBD 

administered single dose did not modify such an effect of HI. CBD administered once a day 

for 3 days, however, did increase MBP density to levels similar to SHM.  

 

Figure 14. CBD-induced prevention of 
hypomyelinization after HI. Changes in Myelin 
Basic Protein density in brain sections obtained 
from piglets after sham operation (SHM) or 
after hypoxia-ischemia (HI) and treatment with 
vehicle (HV)or CBD single dose (HC1) or in 3 
doses (HC3). Results are expressed as means ± 
SEM of 6-10 animals. (*) p<0.05 vs. SHM. 

 
 

 

 

 

CBD improved H+-MRS prognostic markers 

Lac/NAA ratio increased in cortex after the HI insult (Fig. 15). This change was not 

observed in HI piglets treated with CBD (Fig. 16), with no differences between HC1 and 

HC3.  

 
 
Figure 15. CBD-induced improvement of H+-
MRS biomarkers after HI. Bars represent the 
results, expressed as means ± SEM, of the 
metabolite ratio obtained from studies 
performed in brain samples from piglets 
after sham operation (SHM) or after hypoxia-
ischemia (HI) and treatment with vehicle 
(HV) or CBD single dose (HC1) or in 3 doses 
(HC3). Lac: lactate; NAA: N-acetylaspartate. 
(*) p<0.05 vs. SHM. 
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CBD improved neurobehavioral performance 

HI led to neurobehavioral impairment as reflected by the decrease of 

neurobehavioral scoring by near 30% 24 h after HI (Fig. 16). Later on there was a small and 

non-significant improvement so that at 72 h after HI NBS was still 20% lower than in SHM. 

NBS impairment was due mainly to behaviour as well as to muscle tone impairment (Table 

9). 

 
 
Figure 16. CBD prevented HI-induced 
neurobehavioral impairment. Neurobehavioral 
score (NBS) carried out on from piglets after 
sham operation (SHM) or after hypoxia-
ischemia (HI) and treatment with vehicle (HV) 
or CBD single dose (HC1) or in 3 doses (HC3). 
(*) p<0.05 vs. SHM. 

 

 

 

By contrast, HI piglets treated with CBD performed better in the NBS, in particular 

from 48 h after HI when CBD treated piglets show similar NBS than SHM. CBD treatment 

improved NBS in all items (Table 9).  There were no differences between HC1 and HC3. 

  
Table 9. Neurobehavioral score 72 h after HI. Results as mean (SEM). (*): p<0.05 vs. SHM 

 SHM HV HC1 HC3 

Alertness 4(0) 3.8(0.1) 4 (0) 4(0) 

Behavior 3.9(0.1) 2.6(0.3)* 3.7(0.2) 3.9(0.2) 

Stepping 3(0) 2.5(0.2)* 3(0.2) 2.8(0.1) 

Righting 2(0) 1.7(0.1) 2(0) 2(0) 

MuscleTone 4(0) 2.8(0.3)* 4(0.1) 3.7(0.2) 

Standing 4(0) 3.1(0.3)* 3.8(0.1) 3.7(0.2) 

Walking 4(0) 3.1 (0.4)* 3.9(0.2) 3.8 (0.2) 
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CBD improved feeding behaviour 

Looking particularly at feeding behaviour, HI impaired feeding both qualitatively (Fig. 

17A) and quantitatively (Fig. 117B). Thus, HI piglets treated with vehicle scored worse in 

feeding items of the NBS throughout the experimental period (Fig. 17A). In addition, HV 

piglets ate 22% less milk by the end of the experimental period than SHM (Fig. 17B). By 

contrast, HI piglets treated with CBD show normal feeding behaviour from 48 h after HI 

(Fig. 17A), restoring the volume of ate milk 72 h after HI (Fig.17B).There were no 

differences between HC1 and HC3.  

 

 
 

Figure 17. A) CBD prevented HI-induced impairment of feeding behaviour. Scoring of feeding 
behaviour in the NBS carried out on from piglets after sham operation (SHM) or after hypoxia-
ischemia (HI) and treatment with vehicle (HV) or CBD single dose (HC1) or in 3 doses (HC3). (*) 
p<0.05 vs. SHM. B) CBD prevented HI-induced impairment of feeding. Volume of milk ate by piglets 
after sham operation (SHM) or after hypoxia-ischemia (HI) and treatment with vehicle (HV) or CBD 
single dose (HC1) or in 3 doses (HC3). (*) p<0.05 vs. SHM; (§) p<0.05 vs HC.. 

 

 

CBD had an anxiolytic effect 

The HI insult led to an increase of anxiety in piglets, as reflected by the 50% increase 

from 48 to 72 h after HI of the time needed to become calm during restrain for aEEG 

recording (Fig. 18). By contrast, HI piglets treated with CBD showed no increase of anxiety 
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during the experimental period; with results similar to those observed in SHM (Fig. 

20).There were no differences between HC1 and HC3.  

 

          
 
 
 
 
 
 
 
 
 
 

 
Figure 18. CBD prevented the HI-induced increase of anxiety. Changes in anxiety, quantified as the 
time needed to become calm during restrain for aEEG recording in piglets after sham operation 
(SHM) or after hypoxia-ischemia (HI) and treatment with vehicle (HV) or CBD single dose (HC1) or in 
3 doses (HC3). (*) p<0.05 vs. SHM. 

 

 

CBD improved playful activity: SHM piglets show a significant playful activity, 

spending about 70% of time on it (Fig. 19).  77% playfulness time was devoted to interact 

with the researchers and 33% to explore objects.  HI led to a dramatic decrease of 

playfulness activity, which was roughly a 40% shorter than in SHM; in addition, the time 

spent on social playfulness was proportionally shorter (Fig. 19). By contrast, HI piglets 

receiving CBD spent a normal time on playful activities, with the proportion devoted to 

social interaction being similar to SHM (Fig. 19). There were no differences between HC1 

and HC3.  

Figure 19. CBD prevented the HI-induced 
decrease of playfulness. Playful activity 
related to objects or researchers, referred 
to a 10 min-long videorecording of piglets 
after sham operation (SHM) or after 
hypoxia-ischemia (HI) and treatment with 
vehicle (HV) or CBD single dose (HC1) or in 3 
doses (HC3). (*) p<0.05 vs. SHM. 
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1.2. MICE MODEL 

CBD reduced the volume of damage 

HI insult led to the loss of 13.1 ± 1.3 % ipsilateral hemisphere volume, as determined 

by MRI 7 days after the HI insult (Fig. 20). Administration of CBD 15 min (0.25 h) after the 

HI reduced the loss of brain volume by 60% (Fig. 20). 

 
 
 
Figure 20. CBD reduced the HI-induced loss of brain 
volume. Ipsilateral hemisphere volume loss as 
determined by MRI in brains from C57BL6 mice seven 
days after HI and treatment with vehicle (HV) or CBD 
(HC) administered 15 min (0.25 h) after HI. Results are 
expressed as means ± SEM of 10-20 animals. (*) 
p<0.05 vs. HV. 

 

 

 

CBD prevented brain tissue damage 

HI led to moderate brain tissue damage in the ipsilateral hemisphere (Fig. 21), as 

determined using a neuropathological score after studying Nissl stained brain slices. 

Administration of CBD 15 min after the HI insult prevented such a damage to occur (Fig. 

21). 

 
 
Figure 21. CBD prevented brain tissue damage. 
Brain tissue damage assessed using a 
neuropathological score in Nissl stained slices of 
brains obtained from C57BL6 mice seven days 
after HI and treatment with vehicle (HV) or CBD 
(HC) administered 15 min (0.25 h) after HI. Results 
are expressed as means ± SEM of 10-20 animals. 
(*) p<0.05 vs. HV. 
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CBD prevented apoptosis 

HI increased apoptosis, as assessed by TUNEL staining of the perilesional tissue in the 

ipsilateral hemisphere (Fig. 22).  This effect was not observed when CBD was administered 

15 min after the HI insult (Fig. 22).  

 

Figure 22. CBD prevented apoptosis. 
Apoptosis assessed using TUNEL staining 
in slices of brains obtained from C57BL6 
mice seven days after HI and treatment 
with vehicle (HV) or CBD (HC) 
administered 15 min (0.25 h) after HI. 
Results are expressed as means ± SEM of 
10-20 animals. (*) p<0.05 vs. HV. 

 

 

 

CBD protected astrocytes 

HI insult led to a decrease of the number of astrocytesas assessed by GFAP 

immunohistochemistry in the perilesional tissue of the ipsilateral hemisphere (Fig. 23).  

This effect was not observed when CBD was administered 15 min after the HI insult (Fig. 

23). 

 
 
Figure 23. CBD prevented HI-induced reduction 
of astrocyte number.Astrocyte density assessed 
using GFAP immunohistochemistry in slices of 
brains obtained from C57BL6 mice seven days 
after HI and treatment with vehicle (HV) or CBD 
(HC) administered 15 min (0.25 h) after HI. 
Results are expressed as means ± SEM of 10-20 
animals. (*) p<0.05 vs. SHM. 
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2. MECHANISMS OF CBD NEUROPROTECTION (PIGLET MODEL) 

2.1. EXCITOTOXICITY 

CBD reduced glutamate release 

HI led to an increase of glutamate release in brain, as showed by the increase of 

Glu/NAA ratio after H+-MRS of frozen piglet brain samples (Fig. 24). Administration of CBD 

blunted Glu/NAA increase (Fig. 24).  

 
 
Figure 24. CBD reduced HI-induced excitotoxicity. 
Glutamate release quantified as Glu/NAA ratio by H+-
MRS of brain samples from 1-to-2 day-old piglets after 
sham operation (SHM) or after hypoxia-ischemia (HI) 
and treatment with vehicle (HV) or CBD (HC). Glu: 
glutamate; NAA: N-acetylaspartate. (*) p<0.05 vs. SHM. 

 

 

 

2.2. OXIDATIVE STRESS 

CBD prevented reduced glutathione consumption  

The HI insult led to increased oxidative stress, as reflected by the consumption of 

reduced glutathione (GSH), which was quantified by the GSH/Cr ratio obtained by H+-MRS 

of frozen piglet brain samples (Fig. 25). CBD exerted an antioxidant effect, preventing the 

HI-induced decrease of GSH/Cr (Fig. 25). 

 
 
Figure 25. CBD reduced HI-induced oxidative stress. 
Changes in GSH/Cr ratio obtained by H

+
-MRS of brain 

samples from 1-to-2 day-old piglets after sham 
operation (SHM) or after hypoxia-ischemia (HI) and 
treatment with vehicle (HV) or CBD (HC). GSH: 
reduced gluthation. Cr: creatine. (*) p<0.05 vs. SHM. 
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CBD reduced protein carbonylation 

OxyBlot studies revealed that HI increased the protein carbonylation in the brain (Fig. 

26). CBD administration after HI had a significant antioxidant effect, blunting the increase 

in protein carbonylation (Fig. 26).  

 
 
 

Figure 26. CBD-induced reduction of brain protein 
carbonylation. Top: representative Western blot 
probed with antibody to derived protein carbonyl 
side groups (OxyBlot), carried out in brain samples 
from 1-to-2 day-old piglets after sham operation 
(SHM) or after hypoxia-ischemia (HI) and 
treatment with vehicle (HV) or CBD (HC). Bottom: 
densitometric analysis of relative protein carbonyl 
contents. The levels of protein oxidation were 
normalized by total protein loading (Red Ponceau 
staining) and expressed by the OxyBlot/Red 
Ponceau ratio. Bars represent the mean ± SEM of 
6-8 experiments. (*) p<0.05 vs. SHM. 

 
 
 
 
 

 

2.3. INFLAMMATION 

CBD reduced cytokine release 

The HI insult led to the increase of interleukin (IL)-1 concentration in brain tissue (Fig. 

27). Administration of CBD after the HI insult had an anti-inflammatory effect, blunting the 

HI-induced increase of IL-1 concentration in brain (Fig. 27).  

 

Figure 27. CBD-induced reduction of IL-1 
production after HI.  Brain concentration of IL-1 
quantified by microarrays in samples from1-to-
2 day-old piglets after sham operation (SHM) or 
after hypoxia-ischemia (HI) and treatment with 
vehicle (HV) or CBD (HC). Bars represent the 
mean ± SEM of 6-8 experiments. (*) p<0.05 vs. 
SHM. 
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2.4. INVOLVEMENT OF CB2 AND 5HT1A RECEPTORS 

2.4.1. 6HFU 

Effect of CB2 or 5HT1A antagonists on CBD-induced recovery of brain activity 

The effects of CBD on aEEG amplitude (Fig.28A) or background (Fig. 28B) were 

abolished by co-administration with either AM630 or WAY100635 The effect of HI on aEEG 

was not different in animals receiving AM630 or WAY100635 alone than in those receiving 

vehicle (31.2 ± 9% and 28.1 ± 6% of basal activity at 6 h for AM630 and WAY100635, 

respectively, p>0.05 vs. HV). 

 
 

 

 
 
Figure 28. A) Quantitative CBD-induced recovery of brain activity after HI was reversed by 5-HT1A or 
CB2 receptor antagonists. Changes of mean amplitude of aEEG trace recorded in 1-to-2 day-old 
piglets after sham operation (SHM) or after hypoxic-ischemic (HI) insult and treatment with vehicle 
(HV), CBD (HC), CBD + AM630 (HCA) or CBD + WAY100630 (HCW). Top:  throughout the experiment. 
Results are expressed as means ± SEM of 6-10 animals. (*) p<0.05 vs. SHM. (§) p<0.05 vs HC. B) 
Qualitative CBD-induced recovery of brain activity after HI was reversed by 5-HT1A or CB2 receptor 
antagonists. Qualitative assessment of aEEG background activity by a neurological activity scorein 1-
to-2 day-old piglets after sham operation (SHM) or after hypoxic-ischemic (HI) insult and treatment 
with vehicle (HV), CBD (HC), CBD + AM630 (HCA) or CBD + WAY100630 (HCW). Results are expressed 
as means ± SEM of 6-10 animals. (*) p<0.05 vs. SHM. (§) p<0.05 vs HC. 
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Effect of CB2 or 5HT1A antagonists on CBD-induced neuronal protection 

HI insult led to a dramatic increase in the number of necrotic neurons in the cortex, 

as witnessed by Nissl staining of this tissue 6 hours after insult (Fig. 29), although this 

increase was blunted by CBD administration (Fig. 29). The beneficial effect of CBD 

disappeared when it was administered along with either CB2 or 5HT1A antagonists (Fig. 29). 

The effect of HI on neuronal death was not different in animals receiving AM630 or 

WAY100635 alone than in those receiving vehicle (necrotic neurons: 16.2 ± 2.4% and 18.2 ± 

3.2% for AM630 and WAY100635, respectively, p>0.05 vs. HV). 

 
 
 

 
Figure 29. CBD-induced prevention of neuronal death after HI was abolished by 5-HT1A or CB2 
receptor antagonists. Representative light microphotographs of Nissl stained brain sections, 
obtained after from 1-to-2 day-old piglets after sham operation (SHM) or after hypoxia-ischemia (HI) 
and treatment with vehicle (HV), CBD (HC), CBD + AM630 (HCA) or CBD + WAY100630 (HCW). 
Original magnification x200, bar: 100 µm. Results are expressed as means ± SEM of 6-10 animals. (*) 
p<0.05 vs. SHM. 
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Effect of CB2 or 5HT1A antagonists on CBD-induced astrocyte protection 

In the HV group, no reduction in the number of GFAP+ cells was evident in the cortex 

after HI insult (Fig. 30). By contrast, CBD administration led to a significant increase in the 

number of GFAP+ cells in the HC group, an effect that was prevented by co-administration 

of AM630 or WAY100635.  

 

 
Figure 30. CBD-induced prevention of astroglial death after HI was abolished by 5-HT1A or CB2 
receptor antagonists. Representative light microphotographs of GFAP stained brain sections, 
obtained after from 1-to-2 day-old piglets after sham operation (SHM) or after hypoxia-ischemia (HI) 
and treatment with vehicle (HV), CBD (HC), CBD + AM630 (HCA) or CBD + WAY100630 (HCW). 
Original magnification x200. Results are expressed as means ± SEM of 6-10 animals. (*) p<0.05 vs. 
SHM. 

 

 

 

Changes by CB2 or 5HT1A antagonists of CBD effects on H+-MRS biomarkers 

Although the Lac/NAA and NAA/Cho ratios increased and decreased, respectively, 

after HI insult these changes were not observed in the cortex of HI piglets that received 

CBD. The effects of CBD were reversed when CBD was co-administered with AM630 or 

WAY100635 (Fig. 31). The effect of HI on H+-MRS biomarkers was not different in animals 

receiving AM630 or WAY100635 alone than in those receiving vehicle (Lac/NAA: 6.5 ± 1.5 

and 6.7 ± 0.9; NAA/Cho:  4.8 ± 0.6 and 4.6 ± 0.6; for AM630 and WAY100635, respectively, 

p>0.05 vs. HV). 
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Figure 31. CBD-induced improvement of H
+
-MRS biomarkers after HI was reversed by 5-HT1A or CB2 

receptor antagonists. Bars represent the results, expressed as means ± SEM, of different metabolite 
ratios obtained from studies performed in brain samples from 1-to-2 day-old piglets after sham 
operation (SHM) or after hypoxia-ischemia (HI) and treatment with vehicle (HV), CBD (HC), CBD + 
AM630 (HCA) or CBD + WAY100630 (HCW). Cho: choline; Lac: lactate; NAA: N-acetylaspartate. (*) 
p<0.05 vs. SHM. 

 

 

Effect of CB2 or 5HT1A antagonists on CBD modulation of excitotoxicity 

The increase in the Glu/NAA ratio in the HV group indicated that HI augmented the 

excitotoxicity in the cortex, an effect that was not observed in HC animals. The Normal 

Glu/NAA ratios were restored following CBD administration, but not when it was 

administered along with a CB2 or 5HT1A antagonist (Fig. 32). The effect of HI on H+-MRS 

biomarkers was not different in animals receiving AM630 or WAY100635 alone than in 

those receiving vehicle (Glu/NAA: 0.69 ± 0.02 and 0.64 ± 0.04; for AM630 and WAY100635, 

respectively, p>0.05 vs. HV). 

 
Figure 32. CBD-induced reduction of 
glutamate release after HI was reversed by 5-
HT1A or CB2 receptor antagonists. Bars 
represent the results, expressed as means ± 
SEM, of different metabolite ratios obtained 
from studies performed in brain samples from 
1-to-2 day-old piglets after sham operation 
(SHM) or after hypoxia-ischemia (HI) and 
treatment with vehicle (HV), CBD (HC), CBD + 
AM630 (HCA) or CBD + WAY100630 (HCW). 
Glu: glutamate; NAA: N-acetylaspartate. (*) 
p<0.05 vs. SHM. 
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Effect of CB2 or 5HT1A antagonists on CBD modulation of oxidative stress 

HI-induced increases in oxidative stress were analyzed by measuring the GSH/Cr ratio 

and the levels of protein carbonylation. HI insult diminished the brain GSH/Cr ratio 

determined by H+-MRS and additionally, OxyBlot studies revealed that HI increased the 

protein carbonylation in the brain. CBD administration after HI had a significant antioxidant 

effect, blunting both the decrease in the GSH/Cr ratio (Fig. 33) and the increase in protein 

carbonylation.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33. CBD-induced reduction of oxidative stress after HI was reversed by 5-HT1A or CB2 receptor 
antagonists. Bars represent the results, expressed as means ± SEM, of GSH/Cr ratio obtained from 
studies performed in brain samples from 1-to-2 day-old piglets after sham operation (SHM) or after 
hypoxia-ischemia (HI) and treatment with vehicle (HV), CBD (HC), CBD + AM630 (HCA) or CBD + 
WAY100630 (HCW). GSH: reduced gluthation; Cr: creatine. (*) p<0.05 vs. SHM. 

 

 

However, the antioxidant effect of CBD was lost when it was administered in 

combination with either AM630 or WAY100635 (Figs. 33 and 34). The effect of HI on 

oxidative stress was not different in animals receiving AM630 or WAY100635 alone than in 

those receiving vehicle (GSH/Cr: 0.13 ± 0.02 and 0.11 ± 0.04 for AM630 and WAY100635, 

respectively, p>0.05 vs. HV). 
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Figure 34. CBD-induced reduction of brain protein carbonylation after HI was reversed by 5-HT1A or 
CB2 receptor antagonists. A) representative Western blot probed with antibody to derived protein 
carbonyl side groups (OxyBlot), carried out in brain samples from 1-to-2 day-old piglets after sham 
operation (SHM) or after hypoxia-ischemia (HI) and treatment with vehicle (HV), CBD (HC), CBD + 
AM630 (HCA) or CBD + WAY100630 (HCW). B) densitometric analysis of relative protein carbonyl 
contents. The levels of protein oxidation were normalized by total protein loading (Red Ponceau 
staining) and expressed by the OxyBlot/Red Ponceau ratio. Bars represent the mean ± SEM of 6-8 
experiments. (*) p<0.05 vs. SHM. 

 

 

Effect of CB2 or 5HT1A antagonists on CBD modulation of inflammation 

HI was accompanied by a significant increase in IL-1 levels in the cortex. In 

accordance with its anti inflammatory effects, CBD reduced IL-1 levels in lesioned animals, 

although this effect was prevented when it was administered along with a CB2 or 5HT1A 

antagonist (Fig. 35). The effect of HI on inflammation was not different in animals receiving 

AM630 or WAY100635 alone than in those receiving vehicle (IL-1: 160 ± 25 and 140 ± 15 

pg/ml for AM630 and WAY100635, respectively, p>0.05 vs. HV). 

             
Figure 35. CBD-induced reduction of brain IL-
1 production after HI was reversed by 5-HT1A 
or CB2 receptor antagonists. Brain 
concentration of IL-1 quantified by 
microarrays in brain samples from 1-to-2 day-
old piglets after sham operation (SHM) or 
after hypoxia-ischemia (HI) and treatment 
with vehicle (HV), CBD (HC), CBD + AM630 
(HCA) or CBD + WAY100630 (HCW) Bars 
represent the mean ± SEM of 6-8 
experiments. (*) p<0.05 vs. SHM. 
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2.4.2. 72HFU. 

Since 5HT1A receptors are involved in the behavioural and psychiatric effects of CBD 

(Russo et al, 2005; Campos et al, 2012), the effects of coadministeringWAY100635with CBD 

were studied in the 72HFU piglet model. Since in that model no significant differences were 

obtained between HC1 and HC3, in this case only HI piglets receiving CBD single constituted 

the HC group. 

 

Effects of 5HT1A antagonism on CBD-induced improvement of neurobehavioral 

performance 

CBD prevention of HI-induced neurobehavioral impairment was lost when the single 

dose of CBD was administered together with WAY100635 (HCW1) (Fig. 36 and table 10). 

However, when CBD was administered for three days the beneficial effect of CBD was 

preserved despite WAY100635 was co-administered for the same period (HCW3) (Fig. 36 

and table 10).  

 

 

 

 

 

 
 
 
Figure 36. 5-HT1A receptor antagonism reversed the prevention of HI-induced neurobehavioral by 
CBD single dose but not by CBD three doses. Neurobehavioral score (NBS) carried out on from piglets 
after sham operation (SHM) or after hypoxia-ischemia (HI) and treatment with vehicle (HV) or 
WAY100630 co-administered with CBD single dose (HCW1) or in 3 doses (HCW3). (*) p<0.05 vs. SHM. 
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Table 10. Neurobehavioral score 72 h after HI. Results as mean (SEM). (*): p<0.05 vs. SHM 
 SHM HV HC HCW1 HCW3 

Alertness 4(0) 3.8(0.1) 4 (0) 4 (0) 4(0) 

Behavior 3.9(0.1) 2.6(0.3)* 3.7(0.2) 3 (0.2)* 3.7(0.2) 

Stepping 3(0) 2.5(0.2)* 3(0.2) 2.8(0.1) 2.8(0.1) 

Righting 2(0) 1.7(0.1) 2(0) 2 (0) 2(0) 

MuscleTone 4(0) 2.8(0.3)* 4(0.1) 3.6(0.1)* 3.9(0.1) 

Standing 4(0) 3.1(0.3)* 3.8(0.1) 3.8(0.1) 3.9(0.1) 

Walking 4(0) 3.1 (0.4)* 3.9(0.2) 3.6(0.1)* 3.8 (0.1) 

 

 

Effects of 5HT1A antagonism on CBD-induced improvement of feeding behaviour 

The beneficial effect of CBD on feeding behaviour and the volume of milk was lost 

when the single dose of CBD was administered together with WAY100635 (HCW1) (Figs. 37 

and 38). However, when CBD was administered for three days the beneficial effect of CBD 

was preserved despite WAY100635 was co-administered for the same period (HCW3) (Figs. 

37 and 38).  

   
 
 
Figure 37. 5-HT1A receptor antagonism 
reversed CBD prevention of HI-induced 
impairment of feeding behaviour. Scoring of 
feeding behaviour in the NBS carried out on 
from piglets after sham operation (SHM) or 
after hypoxia-ischemia (HI) and treatment 
with vehicle (HV) orWAY100630 co-
administered with CBD single dose (HCW1) 
or in 3 doses (HCW3). (*) p<0.05 vs. SHM. 
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Figure 38.  5-HT1A receptor antagonism 
reversed CBD prevention of HI-induced 
impairment of feeding. Volume of milk ate 
by piglets after sham operation (SHM) or 
after hypoxia-ischemia (HI) and treatment 
with vehicle (HV) orWAY100630 co-
administered with CBD single dose (HCW1) 
or in 3 doses (HCW3). (*) p<0.05 vs. SHM. 

 

 

 

 

Effects of 5HT1A antagonism on CBD-induced anxiolytic effect 

The anxiolytic effect of CBD after HI was lost when the single dose of CBD was 

administered together with WAY100635 (HCW1) (Fig. 39). In this case, the anxiolytic effect 

of CBD after HI was lost when CBD was administered for three days too (HCW3) (Fig. 39).  

               

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 39. 5-HT1A receptor antagonism reversed the anxiolytic effect of CBD. Changes in anxiety, 
quantified as the time needed to become calm during restrain for aEEG recording in piglets after 
sham operation (SHM) or after hypoxia-ischemia (HI) and treatment with vehicle (HV) orWAY100630 
co-administered with CBD single dose (HCW1) or in 3 doses (HCW3). (*) p<0.05 vs. SHM. 
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CBD improved playful activity 

CBD prevention of HI-induced impairment of playfulness was lost when CBD was co-

administered with WAY100630, no matter this was administered after CBD single dose 

(HCW1) or in three doses (HCW3) (Fig.40).  

 
 

Figure 40. 5-HT1A receptor 
antagonism reversed CBD 
prevention of HI-induced decrease of 
playfulness. Playful activity related 
to objects or researchers, referred to 
a 10 min-long video recording of 
piglets after sham operation (SHM) 
or after hypoxia-ischemia (HI) and 
treatment with vehicle (HV) 
orWAY100630 co-administered with 
CBD single dose (HCW1) or in 3 
doses (HCW3).(*) p<0.05 vs. SHM. 

 
 

 

 

2.5. EFFECT OF CBD ON ENDOCANNABINOID BRAIN CONCENTRATION 

As CBD was reported to reduce anadamide (AEA) uptake and/or degradation in vitro 

(Pertwee, 2004; Mechoulam et al, 2007), whether the contribution of CB2 receptors to the 

effects of CBD was due to a CBD-induced increase in brain endocannabinoid levels was 

investigated in piglet brain 6 h after the HI insult. HI increased the levels of AEA, 2-AG, PEA 

and OEA in the brain, evident in brain tissue taken from HV animals (Fig. 41). However, 

similar levels of those endocannabinoids were detected in CBD-treated and SHM animals 

(Fig. 41). 
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Figure 41. HI-induced increase of brain endocannabinoid levels was prevented by CBD. Brain 
concentration of endocannabinoidleves was quantified by liquid chromatography–mass 
spectrometry in samples from 1-to-2 day-old piglets after sham operation (SHM) or after hypoxia-
ischemia (HI) and treatment with vehicle (HV) or CBD (HC). See 2.7. Determination of brain 
endocannabinoid levels for details. Bars represent the mean ± SEM of 6-8 experiments. AEA: 
arachinodoylethanolamide; 2-AG: 2-arachidonoylglycerol; OEA: oleylethanolamide; PEA: 
palmitoylethanolamide. (*) p<0.05 vs. SHM. 

 

 

 

3. TEMPORARY THERAPEUTIC WINDOW OF CBD  

Time to loss the CBD-induced reduction of the volume of damage 

Administration of CBD 15 min (0.25 h) after the HI reduced the loss of brain volume 

by 60% (Fig. 42). Delaying the administration of CBD up to 12 h after HI did not significantly 

modify such an effect. When CBD administration was delayed 24 h after HI, however, the 

protective effect of CBD was lost (Fig. 42) 

 
Figure 42. CBD reduction of the HI-induced 
loss of brain volume was lost when CBD 
administration was delayed for 24 h. 
Ipsilateral hemisphere volume loss as 
determined by MRI in brains from C57BL6 
mice seven days after HI and treatment 
with vehicle (HV) or CBD (HC) administered 
form 15 min (HC0.25) to 24 h (HC24)after 
HI. Results are expressed as means ± SEM 
of 10-20 animals. (*) p<0.05 vs. HV. 
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Time to loss the CBD-induced prevention of brain tissue damage 

Administration of CBD 15 min after the HI insult prevented HI-induced brain damage 

to occur (Fig. 43).Delaying the administration of CBD up to 1 h after HI did not significantly 

modify such an effect. When CBD administration was delayed from 3 to 12 h after HI, the 

protective effect of CBD was reduced, although the NPS was still lower than in HV (Fig. 43). 

When CBD administration was delayed 24 h after HI, however, the protective effect of CBD 

was totally lost (Fig. 43). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 43. CBD prevention of brain tissue damagewas lost when CBD administration was delayed for 
24 h. Brain tissue damage assessed using a neuropathological score in Nissl stained slices of brains 
obtained from C57BL6 mice seven days after HI and treatment with vehicle (HV) or CBD (HC) 
administered from 15 min (HC0.25) to 24 h (HC24) after HI. Results are expressed as means ± SEM of 
10-20 animals. (*) p<0.05 vs. SHM.(§): p<0.05 vs. HV. 

 

 

Time to loss the CBD-induced prevention of apoptosis 

Administration of CBD 15 min after the insult prevented HI-induced apoptosis (Fig. 

44).  When CBD administration was delayed from 1 to 12 h after HI, the protective effect of 

CBD was reduced, although the number of TUNEL+ cells was still lower than in HV (Fig. 44). 

When CBD administration was delayed 24 h after HI, however, the protective effect of CBD 

was lost (Fig. 44). 
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Figure 44. CBD prevention of 
apoptosis was lost when CBD 
administration was delayed for 
24 h.Apoptosis assessed using 
TUNEL staining in slices of brains 
obtained from C57BL6 mice 
seven days after HI and 
treatment with vehicle (HV) or 
CBD (HC) administered from 15 
min (HC0.25) to 24 h (HC24) after 
HI. Results are expressed as 
means ± SEM of 10-20 animals. 
(*) p<0.05 vs. SHM. (§): p<0.05 
vs. HV. 

 

 

 

Time to loss the CBD-induced protection of astrocytes 

Administration of CBD 15 min after the insult prevented the HI-induced reduction of 

the density of GFAP+ cells.  This protective effect on astrocytes was not modified when 

CBD administration was delayed from 1 to 12 h after HI (Fig. 45). When CBD administration 

was delayed 24 h after HI, however, the protective effect of CBD was lost (Fig. 45). 

 

     

 
 
 
 
 
 
 
 
 
 
 
Figure 45. CBD prevention of HI-induced reduction of astrocyte number was lost when CBD 
administration was delayed for 24 h. Astrocyte density assessed using GFAP immunohistochemistry 
in slices of brains obtained from C57BL6 mice seven days after HI and treatment with vehicle (HV) or 
CBD (HC) administered from 15 min (HC0.25) to 24 h (HC24) after HI. Results are expressed as means 
± SEM of 10-20 animals. (*) p<0.05 vs. SHM. (§): p<0.05 vs. HV. 
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4. PHARMACOKINETIC STUDIES 

PK curve and parameters in blood 

The study of CBD concentration in blood at different times after administering 1 

mg/Kg i.v. to 6HFU piglets indicated that CBD concentration followed an exponential curve 

(Fig. 46) after the formula:  y = 64.951x -0.841 

Where "x" is time after injection (in houyrs) and "y" CBD concentration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 46. Time course of CBD concentration in blood. CBD concentration was measured in blood 
from 1-to-2 day-old piglets after receiving  CBD 1 mg/Kg i.v. 

 

The calculated PK parameters were: 

- Tmax: 0.15 h 

- Cmax: 263.8 ± 101.9 ng/mL 

- Plasma half life (T1/2): 1.98 ± 0.67 h 

- Area under the curve (AUC):305.21 ± 107 ng/h/mL 

 
CBD concentration in brain 

Six hours after the administration of CBD (1 mg/kg) in the used formulation, the CBD 

concentration in brain tissue was 58 ± 14 ng/g. 
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DISCUSSION 

1. NEUROPROTECTIVE EFFECT OF CBD 

Post-insult administration of CBD to two different species of newborn animals 

successfully prevented HI-induced brain damage. These results agree with previous studies 

demonstrating the neuroprotective effect of CBD in different models of NHIE.  

In in vitro studies using newborn mice forebrain slices exposed to OGD (Castillo et al., 

2010) CBD 100 µM reduces cell death, as shown by the CBD-induced prevention of post-OGD 

increase of LDH efflux. In this model, CBD also blunts apoptotic pathways, reducing the 

production of caspase-9 in brain.  

In in vivo studies carried out on newborn piglets the administration of CBD 0.1 (Alvarez 

et al., 2008; Lafuente et al., 2011) i.v. after an HI insult (hypoxia and carotid occlusion) had 

neuroprotective effects as shown by aEEG studies, reporting a significant recovery of 

cerebral activity, the reduction of post-insult brain oedema (as reflected by the reduction of 

impedance increase in EEG) and the reduction of electrical seizure incidence. In addition, 

near-infrared spectroscopy studies report a significant improvement of brain metabolic 

activity, as reflected by the reduction of fractional tissue oxygen extraction fall, as well as the 

reduction of cerebral hemodynamic impairment, as reflected by the normalized tissue 

hemoglobin index (Alvarez et al., 2008; Lafuente et al., 2011). In those experiments, CBD 0.1 

mg/Kg reduces HI-induced brain damage as reflected by the increase of the number viable 

cell loss and the decrease of that of degenerating neurons (fluorojade B stained). In 

agreement, CBD blunts the HI-induced increase of Neuronal Specific Enolase (reflecting 

neuronal damage) levels, as shown by ELISA studies on cerebrospinal fluid (CSF) 3 h after HI 

(Lafuente et al., 2011). In addition to its neuronal protective effect, CBD administration 
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reduces astrocyte damage, blunting the HI-induced reduction of astrocyte number and size 

as observed by GFAP immunohistochemistry 6 h post-HI as well as the increase of S-100β 

protein (reflecting astrocyte damage) levels as shown by ELISA studies on cerebrospinal fluid 

(CSF) 3 h after HI (Lafuente et al., 2011).  

In in vivo studies on newborn rats undergoing a HI insult at P7 (Rice-Vannucci model) 

and then receiving CBD 1 mg/Kg or vehicle (Pazos et al., 2012), CBD 1 mg/Kg s.c. reduces by 

17% the volume of brain infarct as assessed by magnetic resonance imaging at P37. This 

effect correlates with the reduction of the extent of the histological damage: the mean 

neuropathological score was 1 point lower in CBD than in vehicle-treated animals. In those 

experiments, proton magnetic resonance spectroscopy (H+-MRS) studies support the 

neuroprotective effect as reflected by the CBD-induced prevention of Lac/NAA increase 

(Pazos et al., 2012). Those neuroprotective effects are associated with a neurofunctional 

restore: CBD treated animals score similarly to control animals in different neurobehavioral 

tests assessing motor (Rotarod, assessing motor coordination, and Cylinder Rear Test, 

assessing unilateral motor deficits) and cognitive (Novel Object Recognition, assessing work 

memory) whereas vehicle-treated animals show permanent deficits as scored in all tests 

(Pazos et al., 2012). Altogether these data demonstrate a remarkable protective effect from 

a functional point of view, exceeding that expected by the mild histological protective effect. 

The current work aimed then to test the later dose tested, CBD 1 mg/Kg, in two 

additional different species. It is mandatory to demonstrate the efficacy of a given new 

therapeutic approach in different species in order to aiming a future clinical trial in humans 

(Hamrick & Ferriero, 2003). For instance minocycline, which has demonstrated 

neuroprotective effects in HI newborn rats (Gonzalez & Ferriero, 2008) do worse HI brain 
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damage in newborn mice (Tsuji et al., 2004). Thus, we aimed to check out if this therapy at 

that dose was also effective in piglets and mice.  

 

1.1. CBD NEUROPROTECTION IN PIGLETS 

1.1.1. 6HFU 

Models in piglets have a strong translational nature. Pigs can fill the gap between 

preclinical models in rodents and clinical trials, because pig physiology and pathophysiology 

is closer to humans than rodents; in particular, pig brain is gyrencephalic as in humans 

instead of lisencephalic like in rodents (Ioroi et al., 2002; Gileing et al., 2011). The 6HFU 

model allow a close surveillance of cerebral and extracerebral changes in the first hours after 

HI, during the so-called "latent phase", which spreads up to 6-15 h after the HI insult when 

most of the brain damage mechanisms start  (Johnston et al., 2011; Drury et al., 2014; Juul 

& Ferriero, 2014). In fact, substantial histological brain damage can be observed in the piglet 

brain 6 h after an HI insult (Alvarez et al., 2008; Pazos et al., 2013).  

 

CBD was protective for HI piglets as soon as 6 h after HI 

Our findings indicate that CBD administration after a hypoxic ischemic insult provides 

neuroprotection in newborn pigs.  

As early as 6 h after HI insult, the background pattern and amplitude of the aEEG are 

good predictors of outcome after HI brain damage in newborn infants (Tao & Mathur, 2010). 

The more intense disruption of the aEEG parameters seen here as opposed to previous 

reports (Tichauer et al., 2009) suggests that the HI insult applied in our study was very 
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severe. Nonetheless, administration of CBD 1 mg/Kg enhanced the mean amplitude and 

restored the neural activity. The effect was stronger than that reported for CBD 0.1 mg/Kg: 

in the experiments by Alvarez et al. (2008), aEEG amplitude 6 h after 20 min-long HI and 

treatment with CBD 0.1 mg/kg i.v. was about a half of that of SHM. In our work, despite a 

more severe HI insult, lasting for 30 min, aEEG amplitude 6 h after HI and treatment with 

CBD 1 mg/Kg i.v. was about two thirds of that of SHM.  

The Lac/NAA ratio calculated by H+-MRS is thought to be the most predictive early 

biomarker of a poor outcome to infant HI and a surrogate endpoint used to evaluate 

neuroprotective strategies (Thayyil et al., 2010). CBD prevented the increase in Lac/NAA 

induced by HI, as previously reported for other neuroprotective treatments such as xenon 

and/or hypothermia in a similar experimental model (Faulkner et al., 2011). CBD also 

prevented the HI-induced decrease in the NAA/Cho ratio, which is inversely correlated with 

the severity of neuronal damage in HI piglets (Li et al., 2010).  

The results from the aEEG and H+-MRS analyses correlate with those of histological 

studies (Faulkner et al., 2011; Tichauer et al., 2009). Thus, the HI insult resulted in a 4-fold 

increase in the proportion of necrotic neurons in the cortex. CBD treatment reduced the 

density of necrotic neurons to values similar to those of SHM animals and notably, the 

beneficial effects of CBD were not limited to neurons but they were also observed in 

astrocytes (reflected by the increase in GFAP+ cells in the cortex of HC animals 6 h after HI 

insult). While late astrogliosis correlates with the extent of brain damage (as astrocytes are 

involved in post-necrotic scar formation), increased astrocyte proliferation soon after HI is 

correlated with a smaller infarct size and better functional recovery (Barreto et al., 2011). 

Astrocytes support the neurons that survive the immediate effects of HI, modulating 

oxidative stress and glutamate excitotoxicity, and releasing neurotrophic factors, as well as 
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maintaining the integrity of the blood-brain barrier and thereby limiting brain invasion by 

inflammatory cells during reperfusion (Barreto et al., 2011; Mehta et al., 2007). Accordingly, 

protecting astrocytes from HI injury is now considered a critical component of 

neuroprotective strategies (Barreto et al., 2011).  

 

CBD show no side effects in HI piglets 

Remarkably, and consistent with previous studies (Alvarez et al., 2008; Lafuente et al., 

2011), CBD caused no extra-cerebral alterations in HI piglets that could limit its potential 

therapeutic use in HI infants, yet it resulted in extra-cerebral benefits. For instance, CBD 

prevented the HI-induced decrease in MABP. It is unlikely that this decrease could influence 

the development of HI brain damage because in all animals MABP was over the limit below 

which cerebral blood flow is affected (Laptook et al., 1982). 

 

1.1.2. 72HFU 

CBD restored brain activity 

Brain activity, as reflected by aEEG amplitude, felt by 30% during the following 24 h to 

the HI insult, similarly to that previously reported in a similar model (Lafuente et al., 2011). 

However, in the work by Lafuente et al. (2011) some modest increase of aEEG amplitude 

was observed from 24 to 48 h post-HI whereas in our present work aEEG amplitude did fall 

again to become 50% lower than in SHM at 48 h post-HI. This feature suggests that in the 

present experiments the HI insult was more severe. In fact, piglet mortality in 72HFU 

experiments accounted for 20.5%, which was very similar to the actual mortality of HI insults 

in human newborns (Volpe, 2001). This supports the value if this model as a representation 
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of the actual human condition. There are no data on experimental mortality in the work by 

Lafuente et al. (2011). By the end of the experiment aEEG amplitude in HV piglets was about 

30% of the baseline. 

In CBD treated animals the fall of aEEG amplitude during the first 24 h post-HI was 

similar to that observed in HV, suggesting that HI severity was similar. However, aEEG did 

not further decrease, starting a recovery from 48 h after HI to regain normal amplitude by 

the end of the experiment. This effect was more robust than that observed after CBD 0.1 

mg/kg, since in the work by Lafuente et al. (2011) aEEG did not regain amplitude similar to 

sham animals.  

 

CBD prevented seizures 

Since subtle seizures are hardly apparent in piglets just severe epileptic forms are easy 

to detect by physical examination (Björkman et al., 2010). Therefore, in the present study 

aEEG records were obtained daily in piglets to detect electrographic seizures. More than a 

half of HV piglets showed electrographic seizures 72 h after HI. Seizures are a frequent 

complication of HI insults in newborns (Volpe, 2001). In HI piglets subclinical (electrographic) 

seizures are associated with increased severity as assessed by histology, MRI or H+-MRS 

(Björkman et al., 2010). 

However, none of the HI piglets treated with CBD showed electrographic seizures at 72 

h after HI. CBD is a substance with a well-known anticonvulsant effects by mechanisms not 

fully understood yet (Jones et al., 2010). In HI piglets CBD reduced the incidence of seizures 

as assessed by aEEG during the 6 h following to HI (Alvarez et al., 2008).  
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CBD prevented neuronal death 

The HI insult led to reduction of the number of neurones observable in the 

parietooccipital cortex. In particular, the number of viable neurones was 40% lower in HV 

than in SHM. In addition, the proportion of death neurones observable in cortex was 

increased, accounting for 21% of the total number on visible neurones. In addition, the sum 

of viable and death neurones was significantly lower than that observable in SHM animals, 

suggesting that many death neurones had disappeared by the moment the histological 

analysis was done. Thus, the actual proportion of death neurones must be greater than 21%. 

These figures are similar to that reported by Lafuente et al. (2011). 

Administration of CBD 1 mg/Kg after the HI insult, no matter it was single dose or in 

three doses, reduced the HI-induced loss of neurones. Thus, the total number of neurones 

observables in cortex as well as the proportion of viable or death ones were similar to SHM. 

Such a strong protective effect was similar to that observed after administering CBD 0.1 

mg/kg (Lafuente et al., 2011). The effect of CBD 0.1 mg/Kg preventing HI-induced neuronal 

death was so strong (Lafuente et al., 2011) that in this case further improve by increasing the 

dose was unconceivable.   

 

CBD increased myelinization 

The HI insult led to a decrease of the myelin density in the External Capsule. It is well 

known that immature oligodendrocyte are particularly susceptible to HI damage due to its 

high metabolism and iron content which made them particularly susceptible to oxidative 

stress and inflammation (Volpe, 2011). Thus, late oligodendrocyte progenitors, which are the 

predominant oligodendrocyte lineage cells in the newborn brain, show massive apoptotic 
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death after a HI insult resulting in impaired remyelinization (Back et al., 2002). Therefore, 

oligodendroglial damage during HI insults has a paramount importance determining the risk 

of development of Cerebral Palsy (Volpe, 2011). The finding of a decrease of myelin density 

supports this point since MBP is produced by mature oligodendrocytes, deriving from 

surviving late oligodendrocyte progenitors. 

Noteworthy, CBD administration after the HI prevented such a decrease of myelin 

density, in particular when CBD was administered once a day for three days. This finding is of 

great interest since it opens new perspectives for using CBD in different paediatric 

conditions in which demyelinization could take part. 

 

CBD improved H+-MRS prognostic markers 

Similarly to that described for the 6HFU model, the HI insult led to an increase of 

Lac/NAA ratio. The increase of Lac/NAA is observed very early after a HI insult, lasting for 

several days in humans (Thayyil et al., 2010) and piglets (Faulkner et al., 2011).  

Administration of CBD 1 mg/Kg after the HI insult, no matter it was single dose or in 

three doses, prevented the HI-induced increase of Lac/NAA, supporting the neuroprotective 

effect of this treatment.  
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1.2. NEUROBEHAVIORAL EFFECTS OF CBD 

Piglet behaviour assessment 

Most reports on the behavioural effects of perinatal HI and neuroprotective 

treatments come from studies carried out in rodents (Gieling et al., 2011). However, the 

domestic pig (Sus scrofa) is an animal with complex and rich behaviour.  

Reports on the neurobehavioral effects of HI on piglets have usually been focused on 

the motor performance, describing hindquarter diplegia, ataxia or weakness 48-72 h after HI 

(Leblanc et al., 1991; Thoresen et al., 1996; McCulloch et al., 2005; Schubert et al., 2005; 

Björkman et al., 2010; Lafuente et al., 2011). LeBlanc et al. (1991) adapted a usual 

neurological examination to piglets, with several items related to reflexes, muscle tone and 

movement scored from 1 to 4 to a maximum of 36. Thoresen et al. (1996) changed the sore 

to a maximum of 2 per item and included seizure categorization: 2: absence of pathologic 

movements; 1: occasional cycling movements or jerks; 0: sustained clonic movements or 

persistent tonic postures (Thoresen et al., 1996). This scheme, with some modifications, has 

been largely used in further reports on the neurobehavioral consequences of HI in piglets 

(Schubert et al., 2005; Björkman et al., 2010; Lafuente et al., 2011). The one used in the 

present work was the one reported by Lafuente et al. (2011). 

In the aforementioned piglet evaluations (LeBlanc et al., 1991; Thoresen et al., 1996; 

McCulloch et al., 2005; Schubert et al., 2005; Björkman et al., 2010; Lafuente et al., 2011) 

the items devoted to pure behaviour are scant and fairly unspecific. Scoring just the level of 

alertness at the beginning (LeBlanc et al., 1991), motivation to explore the surroundings 

(Thoresen et al., 1996) and aggressiveness (Björkman et al., 2010) were then included. 

However, piglet behaviour is fairly more complex.  
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Just after birth piglets start a playful behaviour, firstly related with sow, becoming one 

or two days later curious about the surrounding world including objects and peers (social) 

(Blackshaw et al., 1997; Park et al., 2010). Thus, piglets develop a rich behaviour 

performance that can be categorized as (Cox & Cooper, 2001): 

- Social interactions: Pigs are social species. Social behaviour included nudging, nuzzling, 

body contact or pushing other animals or people (Blackshaw et al., 1997; Park et al., 

2010). Social playfulness is related to neocortex activity, time devoted to it increasing in 

parallel with maturation (Park et al., 2010). 

-Maintenance activities: Those are foraging activities, mostly devoted to eating. Eating, 

that is suckling in newborn piglets, is considered as a key part of behaviour assessment 

since eating is essential for survival (Park et al., 2010). In addition, chewing is a feeding-

motivated behaviour typically used by piglets to explore novel objects (Kittawornrat & 

Zimmerman, 2010).  

- Environmental interactions: Object playful behaviour included pulling strings or pushing, 

rooting, biting or sniffing an inanimate object (Litten et al., 2003).  

These categories are explored in the present studies. Social interactions were assessed 

by determining the time spent by piglets interacting with the researchers. Maintenance 

activities were assessed by qualifying piglet suckling of the researcher's finger during feeding 

as well as by quantifying the volume of swollen milk. And environmental interactions were 

assessed by determining the time spent by piglets interacting with an object (sheet).  

Piglets spend about 40% of time in active behaviour, mostly early morning and early 

evening (Park et al., 2010). From this, about 20% is devoted to object play and about 30% to 

social play (Blackshaw et al., 1997). The proportion of time devoted to social play was 
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increased in piglets in the present study, accounting for near 70% of time. Piglets prefer 

bright spaces (Kittawornrat & Zimmerman, 2010).  

Pigs perform with efficacy on learning and memory tests and several tests originally 

designed for rodents (open field, novel object recognition, T maze, even water maze) have 

been adapted to pigs (Gileing et al., 2011).  

Restrain is a usual stress-induced manoeuvre in animals; in piglets, back restrain 

prompt an escaping behaviour (Kittawornrat & Zimmerman, 2010). Piglets with increased 

levels of stress tend to show increased locomotion, grunting, chewing, nosing and drinking, 

early and stronger escape behaviour, increased aggressiveness and more superficial 

exploratory behaviour (Parrott et al., 2000; Kittawornrat & Zimmerman, 2010).  

It is important to have the piglet weight into account when piglet behaviour is 

analysed. Just after birth piglets form the same litter set hierarchies by setting teat order so 

that the more active and heavier piglets gets the first pairs of teats; since those teats have 

more milk the more active piglets remain being larger and heavier (Litten et al., 2003; Park 

et al., 2010). Thus, smaller piglets spend less time in object play than heavier piglets (Litten 

et al., 2003). Since in the present experiments no significant differences were observed 

among the different group piglets, the differences in playful behaviour among groups cannot 

be attributed to this factor.  

 

Effects of HI on piglet neurobehaviour  

Piglets suffering from a HI insult treated with vehicle showed neurobehavioral 

impairment.  
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From a motor point of view, HI led to a dramatic decrease of NBS, which scored 28% 

lower 24 h after HI than SHM animals. Later on there was a modest and non-significant 

improvement so that by the end of the experiment HV piglets performed 22% worse than 

normal piglets.  The more affected items were related with movement and hind limb muscle 

tone.  This outcome was similar to that reported for similar experiments in piglets (LeBlanc 

et al., 1991; Schubert et al., 2005; Lafuente et al., 2011) and support the significant brain 

damage inflicted by this approach in comparison for instance with other based on prolonged 

hypoxia (McCulloch et al., 2005). HI compromised the ability for sucking too, with HV scoring 

worse than SHM in eating behaviour throughout the experimental period, as reported 

(Lafuente et al., 2011). In addition, the amount of milk drunk was significantly lower than in 

SHM. This feature pointed to a severe neurological impairment, because eating has to be 

preserved as long as survival is aimed (Park et al., 2010). This feature was even more 

significant having into account that HV piglets showed increased anxiety (see after), and 

anxiety leads to increased feeding in piglets (Parrott et al., 2000). 

Time spent in fighting or escape behaviour during restrain for aEEG recording was used 

to quantify anxiety. HI increased anxiety as reflected by the more than 50% increase of 

fighting time from 48 to 72 h after HI. 

From a "pure" behavioural point of view, HI reduced by near 50% the time spent in 

exploring the environment in piglets treated with vehicle. This reduction was mainly due to 

the decrease of social playful time, which was so reduced that the time spent in social play 

was slight lower than that spent in object play. This finding is of great relevance since pig is a 

social species (Park et al., 2010) usually devoting twice as much time in social than in object 
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play (Blackshaw et al., 1997), as observed on SHM animals in the present work. The 

reduction of social playfulness might be related with the increased anxiety.  

 

CBD prevented HI -induced impairment of piglet neurobehaviour  

Administration of CBD 1 mg/Kg after HI restored NBS as soon as 48 h post-insult. This 

effect was stronger than that observed in piglets receiving CBD 0.1 mg/Kg, in which NBS was 

non-significantly lower than sham animals just 72 h after HI (Lafuente et al., 2011). The 

effect also was stronger than that observed for other neuroprotective treatments now 

tested in clinical trials as topiramate, which improves but not restores NBS in HI piglets 

(Schubert et al., 205). Normalization of the neurological assessment in the first days after HI 

is one of the best predictors of good outcome in asphyxiated newborns (Volpe, 2001).  

The beneficial effect of CBD was extended to eating behaviour, which scored similar to 

SHM just 48 h after HI. In addition, the amount of milk drunk was increased so that at the 

third day after HI the volume of milk was similar in HC piglets than in SHM. This effect can be 

only attributed to a neurological improvement since CBD has no activity on CB1 receptors 

being thus void of effects on appetite (Pertwee, 2004; Mechoulam et al., 2007). Besides, CBD 

treated animals showed less anxiety (see after). Therefore, an anxiety-induced enhancement 

of eating behaviour or the amount of milk swollen can be ruled out.  

Remarkably, CBD treatment abolished HI-induced increase of anxiety.  In fact, HC 

piglets spent lees time fighting against restrain than SHM animals, although this difference 

did not reach statistical significance. CBD show a well-known anxiolytic effect (Pertwee, 

2004; Mechoulam et al., 2007), which prompted the study of CBD in the treatment of 

anxiety-related psychiatric conditions (Campos et al., 2012). In rats, CBD was shown to 
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decrease defensive behaviours evoked by predator exposure (Campos et al., 2012). 

Interestingly, CBD can interfere in learning and/or memory of aversive events in animals, 

(Campos et al., 2012), which can explain why fighting time against restrain was even shorter 

72 h than 48 h after HI.  

CBD treatment restored the amount of time spent in playful activities. Although the 

recovery of time devoted to social play was not complete, in these animals social play time 

was significantly longer than object play time. Effects of CBD on social behaviour, which is a 

key component of psychosis, are controversial. In SHR rats CBD reduces anxiety but does not 

modify social behaviour although it does increase social interaction in Wistar rats (Almeida 

et al., 2013). In a rat model of Alzheimer chronic administration of CBD decreased anxiety 

and improved social behaviour (Cheng et al., 2014). The latter results might indicate that 

CBD could more effective recovering social behaviour in neurodegenerative conditions.  

  

1.3. CBD NEUROPROTECTION IN MICE 

CBD reduced the volume of damage 

HI led to 12% reduction of ipsilateral hemisphere volume as assessed by MRI seven 

days after HI. This was remarkably lower than that reported for newborn rats (Pazos et al., 

2012), which may be related to a greater resistance to HI of mice than rats.  

Post-insult administration of CBD to newborn mice dramatically reduced HI-induced 

loss of brain volume. In this case, CBD effect was stronger than that reported for newborn 

rats since 7 day after CBD-treated HI newborn Wistar rats show similar volume of damage 

than vehicle-treated ones (Pazos et al., 2012). This might represent a greater sensitivity to 

CBD in newborn mice. CBD fully prevent necrotic damage in newborn mice forebrain slices 
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exposed to OGD (Castillo et al., 2010). CBD reduces hypoxic-ischemic brain damage in vivo in 

adult mice too (Schiavon et al., 2014).  

 

CBD reduced the brain histological damage 

HI led to moderate brain tissue damage, as assessed by a NPS. This was fully prevented 

by CBD administration just after the HI insult. Once more this point to a greater sensitivity to 

the protective effects of CBD in mice than rats, since 7 days after HI immature Wistar rats 

receiving CBD show a lower NPS than HV rats but higher than control rats (Pazos et al., 

2012). CBD has proven to reduce necrotic brain cell damage in mice as reflected by the CBD-

induced reduction of LDH release in mice forebrain slices exposed to OGD (Castillo et al., 

2010). 

The beneficial effect of CBD was extended to the apoptotic processes. In vehicle-

treated mice HI led to a dramatic increase of the number of TUNEL+ cells as observed in 

brain 7 days after HI. Such an increase was fully prevented by CBD. A similar effect was 

observed in piglets 3 days after HI (Lafuente et al., 2011). In mice forebrain slices exposed to 

OGD, CBD prevented the OGD-induced increase of concentration of caspase 9 (Castillo et al., 

2010). Apoptosis is a key process in HI-induced immature brain damage, spreading injury 

spatially and temporary (Volpe, 2001). 
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 CBD protected astrocytes 

 As observed in piglets, CBD administration prevented the HI-induced reduction of the 

number of GFAP+ cells. The importance of preserving astrocyte from HI damage has been 

stressed before.  

 

2. MECHANISMS OF CBD NEUROPROTECTION 

As deduced from piglet 6HFU model, CBD-mediated neuroprotection in HI piglets 

involved the modulation of excitotoxicity, inflammation and oxidative stress, confirming 

previous in vitro findings from the immature rodent brain (Castillo et al., 2010) in a large 

mammal in vivo.  

Excitotoxicity, inflammation and oxidative stress are the "deadly triad" leading to HI-

induced brain damage (Johnston et al., 2011; Drury et al., 2014; Juul & Ferriero, 2014). Only 

pleiotropic therapies acting on all of those mechanisms are suitable for successful 

neuroprotection (Cilio & Ferriero, 2010; Johnston et al., 2011; Juul & Ferriero, 2014). 

 

CBD modulated excitotoxicity 

The deleterious effect of glutamate excitotoxicity is greater in the immature brain 

(Johnston et al., 2011; Mehta et al., 2007) and consequently, the increase in the Glu/NAA 

ratio after HI in human newborns is proportional to the severity of encephalopathy 

(Groenendaal et al., 2001). The increase in the Glu/NAA ratio observed in the piglet brain 

after HI was dampened by CBD administration. It has been reported that CBD reduces Glu 

release in vitro in newborn mice forebrain slices exposed to oxygen-glucose deprivation 
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(OGD) (Castillo et al., 2010). In vivo in HI rats, CBD administration led to a decrease of 

Glu/NAA in the H+-MRS studied carried out 7 days after HI (Pazos et al., 2012). It is worth it 

that a neuroprotective substance reduces Glu release instead of blocking NMDA receptors 

since NMDA receptor blockade in immature brain has demonstrated to have deleterious 

effects (Hamrick & Ferriero, 2003). 

 

CBD modulated oxidative stress 

The deleterious effects of oxidative stress are magnified in the immature brain due to 

low levels of antioxidant activity and high iron content (Johnston et al., 2011). The GSH/Cr 

ratio decreased here after HI, an effect that was prevented by CBD administration. GSH is 

the most abundant water-soluble antioxidant that is readily identified by H+-MRS, and its 

reduction in the brain correlates with oxidative stress (Satoh & Yoshioka, 2006). CBD also 

prevented the HI-induced increase of protein carbonylation, which plays an important role in 

HI-induced neuronal death (Oikawa et al., 2009). Indeed, CBD is a powerful antioxidant 

molecule (Hampson et al., 1998) with proven beneficial effects in oxidative stress-related 

neurodegenerative processes (Hayakawa et al., 2010). CBD is a strong antioxidant because of 

its molecular properties (Hampson et al., 1998) and also because it modulates iNOS 

expression, a major source of free radicals after HI (Hamrick & Ferriero, 2003; Johnston et 

al., 2011; Juul & Ferriero, 2014), as demonstrated in newborn mice forebrain slices after 

OGD (Castillo et al., 2010). CBD administration did not modify the concentration of 

malondyaldehide (MDA) in CSF in asphyxiated piglets as compared with vehicle-treated 

animals (Lafuente et al., 2011).  However, MDA is a low sensitive marker of oxidative stress 

(Johnston et al., 2011).  
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CBD modulated neuroinflammation 

CBD prevented the HI-induced increase in IL-1 levels in piglets. Inflammation plays a 

key role in HI-induced damage in the immature brain (Johnston et al., 2011). Among the 

different pro-inflammatory cytokines IL-1 is particularly important in the context of HI-

induced brain damage (Allan & Rothwell 2001), IL-1 levels increasing in the CSF of HI infants 

in parallel with the severity of encephalopathy. Indeed, this cytokine better predicts HI brain 

injury than TNFα (Oygür et al., 1998), suggesting that modulation of IL-1 may have 

neuroprotective effects (Allan & Rothwell 2001). CBD has a wide range of anti-inflammatory 

properties, modulating cytokine release and exhibiting anti-inflammatory effects both in vivo 

and in vitro (Pertwee, 2004; Mechoulam et al., 2007). CBD has demonstrated to reduce the 

release of IL-6 and to inhibit COX-2 expression in newborn mice forebrain slices after OGD 

(Castillo et al., 2010). In rats suffering a HI insult at P7 CBD blunts the HI-induced increase of 

TNFα concentration in brain tissue as determined seven days after HI (Pazos et al., 2012). In 

aphyxiated piglets CBD prevents the HI-induced increase TNFα(+) cells as observed by flow 

cytometry of brain tissue (Lafuente et al., 2011).  

 

Role of CB2 receptors in CBD effects 

In HI piglets CBD neuroprotection was abolished when CBD was administered with 

AM630. In addition, the mechanisms involved in CBD neuroprotection (anti-excitotoxicity, 

anti-oxidation and anti-inflammation) were also affected by CB2 antagonism. CB2 receptors 

have been largely involved in the anti-inflammatory and iNOS expression modulatory effects 

of different cannabinoids (Pertwee et al., 2010). It has been described a protective effect of 
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CB2 activation in immature (Fernandez-Lopez et al., 2006; Fernandez-Lopez et al., 2007) and 

mature  (Zhang et al., 2007) rodent brain after HI. 

It is generally assumed that CBD does not bind to CB2 receptors (Pertwee et al., 2010). 

In adult mice, CB2 antagonists did not reverse CBD neuroprotection after HI in vivo 

(Hayakawa et al., 2008). However, it has been reported that CB2 receptor antagonism blocks 

the effects of CBD on cytokine release in cultured cells (Sacerdote et al., 2005) and rat body 

weight gain (Ignatowska-Jankowska et al., 2011). Besides, CBD has demonstrated to activate 

CB2 receptors in poorly differentiated cells as tumoral cells (Ligresti et al., 2006). Thus, it is 

possible that the CBD affinity to CB2 receptors we observed in immature brain might be 

related to developmental variations in CB2 physiology. In agreement, co-incubation with 

AM630 reverses the protective effects of CBD newborn mice forebrain slices exposed to 

OGD (Castillo et al., 2010). Thus, the involvement of CB2 receptors in some of the effects of 

CBD (Mechoulam et al., 2007) cannot be completely ruled out. 

 

Role of endocannabinoid levels in CBD neuroprotection 

Since CBD inhibits the uptake and/or hydrolysis of several endocannabinoids, including 

anandamide (Pertwee, 2004), the involvement of CB2 receptors might not be due to the 

direct action of CBD but rather to an increase in brain endocannabinoid levels induced by 

CBD. We observed an increase in brain endocannabinoid levels in the HV group, similar to 

those reported in adult rodents following ischemic events in the brain (Hillard, 2008). By 

contrast, endocannabinoid levels in HC animals were lower than in HV animals, and 

comparable with those of the SHM group. Interestingly, increased endocannabinoid levels 

immediately after brain HI are thought to contribute to the damage produced (Hillard, 2008) 
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and accordingly, preventing the HI-induced increase in brain endocannabinoids by 

administering CBD may be at least partially responsible for the neuroprotective effects of 

CBD. In any case, these observations rule out the possibility of CB2 receptor activation by 

CBD through the increase in endocannabinoid levels. 

 

Role of 5HT1A receptors in CBD neuroprotection 

CBD inhibits 5HT re-uptake and acts as an agonist of 5HT1A receptors (Russo et al., 

2005; Rock et al., 2010; Magen et al., 2012). In HI piglets in the 6HFU model WAY100635 

reversed the neuroprotective effects of CBD, including the CBD-mediated modulation of 

glutamate release, oxidative stress and inflammation. There are no precedent reports on the 

involvement of 5HT1A receptors in CBD-mediated neuroprotection in the immature brain. 

Blockade of 5HT1A receptors inhibits the neuroprotective effect of CBD in adult mice by 

reversing the increase in cerebral blood flow during ischemia induced by CBD (Hayakawa et 

al., 2010). However, we cannot rule out the possibility that the beneficial effects of CBD on 

inflammation and the excito-oxidative cascade in piglets were the result of a non-specific 

neuroprotective effect due to increases in cerebral blood flow mediated by the 5HT1A 

receptor. Indeed, the fact that WAY100635 reversed the beneficial systemic hemodynamic 

effects of CBD after HI supports this hypothesis. 

Interestingly, our results demonstrate remarkably similar effects of WAY100635 and 

AM630. Heteromers of G-protein-coupled receptors can be found in neural cells (Casadó et 

al., 2010; Ferré et al., 2009; Pertwee et al., 2010), possessing specific functions (other than 

those of the individual homomeric receptors), and they can be identified by cross-

antagonism (Moreno et al., 2011).  As such, in heteromeric receptor complexes the 
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activation of one receptor can result in the engagement of the G protein coupled to the 

partner receptor, while antagonists of a partner receptor in the heterodimer can block the 

signalling mediated by the heteromer (Ferre et al., 2009; Moreno et al., 2011). Hence, it can 

be speculated that 5HT1A and CB2 receptors form heteromers and that such heteromers 

were at least in part responsible for the CB2 involvement in CBD effects.  

 

Role of 5HT1A receptors in CBD neurobehavioral effects 

Serotonin 5HT1A receptors are involved in many of the behavioural effects of CBD 

(Russo et al., 2005; Campos et al., 2012).  

 In the present experiments, CBD prevention of HI-induced NBS impairment was 

reduced but not abolished by co-administration of WAY100635 only when CBD was 

administered single dose. Thus, in HCW1 muscle tone and walking were affected by HI 

despite CBD administration. However in HCW3, in which CBD was administered once a day 

during the three days of experiment, WAY100635 failed to modify CBD effects in spite of the 

fact that the 5HT1A antagonist was administered during the three experimental days too. 

Similar results were obtained regarding eating behaviour. Altogether these results and the 

results from the 6HFU model suggest that 5HT1A receptors were involved in but were not 

indispensable for CBD preservation of motor function, and that such involvement took place 

just in the first hours after HI. After 24 h post HI, however, CBD beneficial effects on 

neurological function were independent from 5HT1A receptor activation. Since 5HT1A 

receptor involvement on CBD neuroprotection is thought to be related with the increase of 

cerebral blood flow (Hayakawa et al. 2010), it can be speculated that this mechanism must 

be of great importance during and shortly after the ischemic episode. Later on, and in 
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particular when the secondary phase is established and different deleterious processes 

(excitotoxicity, inflammation, oxidative stress) have started, other receptor-independent 

properties of CBD (anti-inflammatory and anti-oxidant effects) (Pertwee, 2004; Mechoulam 

et al., 2007) might gain importance.  

Regarding anxiety, by contrast, WAY100635 blunted the anxiolytic effect of CBD no 

matter it was administered single dose or in three doses. A similar result were observed 

regarding playfulness, since the 5HT1A receptor antagonist abolished CBD prevention of HI-

induced decrease of play time both in HCW1 and HCW3. These data suggest that anxiolytic 

and social effects of CBD in HI piglets are largely dependent on 5HT1A receptor activation. In 

agreement, WAY100635 reverses the anxiolytic effects of CBD in rat models of anxiety as 

predator exposure or intracerebral injection of DPAG (Campos et al., 2012). Besides, CBD 

show a similar anxiolytic profile than a 5HT1A receptor agonist, ipsapirone, in reducing 

anxiety to public speaking in naïve volunteers (Campos et al., 2012).  

 

3.  CBD TEMPORARY THERAPEUTIC WINDOW 

The protective effects of CBD against HI-induced brain damage in mice was still 

apparent even when CBD administration was delayed up to 12 h after HI but was lost when 

CBD administration was delayed for 24 h. Regarding the volume of brain damage as assessed 

by MRI, CBD administration led to the same result no matter CGD was administrated 15 min 

or 1, 3, 6 or 12 h after HI. Regarding the protection of neurones, however, CBD effect loosed 

some strength when the administration was delayed for 3 h, so that either the number of 

necrotic neurons or the number of TUNEL+ cells were greater in HC3 or later than in HC0.25 

although those numbers were still significantly lower than in HV. Regarding astrocytes, 
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however, once again CBD remained similarly protective when administered 15 min or 12 h 

after HI. These data support the great protective effect of CBD on astrocyte, which at least in 

newborn mice seems to be stronger than neuronal protection. This feature is of paramount 

importance since protecting astrocyte not only reduces HI brain damage but also guarantees 

effective neuro-repair, supporting the newly created neurones (Takuma et al., 2004). 

The aforementioned data suggest that the temporary therapeutic window should be 

between 12 and 24 h. In a model of stroke in adult rats, CBD is able to reduce the number of 

TUNEL+ cells, prevent the decrease of GFAP+ cells and improve neurological function even 

when CBD administration started 3 days after the insult (Hayawa et al., 2009). This 

difference may be due to the greater susceptibility of immature than mature brain to HI 

insults (Volpe, 2001; Ferriero, 2004). On the other hand, in the experiments on stroke adult 

rats CBD was administered 3 mg/Kg whereas in the present experiments CBD was 1 mg/Kg. 

In fact, in the present experiments the volume of lesion as well as the number of necrotic 

neurons or TUNEL+ cells was lower in HC24 than in HV although this difference was not 

statistically significative. Therefore, it cannot be ruled out the possibility that greater dose of 

CBD might lead to a longer temporary therapeutic window.  

In any case, the therapeutic temporary window showed by CBD in the present 

experiments was longer than that reported for the gold standard of neuroprotection, 

hypothermia. The best results from hypothermia are obtained when this procedure is 

started during the first 6 h after HI (Laptook, 2009). In fact, recent experimental evidence 

indicates that hypothermia delayed for 12 h might be actually harmful (Sabir et al., 2012). 

This data enhances the interest for CBD being part of the therapeutic package for 

asphyxiated infants since CBD might be of election when hypothermia was unfeasible.   
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Other therapeutic strategies under investigation show similar or even broader 

therapeutic temporary window to that described for CBD. For instance, erythropoietin has 

demonstrated some efficacy even when its administration is delayed for 48-72 h (Wu et al., 

2012). Melatonin, administered 24 or 48 h after HI to newborn rats reduces the histological 

damage and restores long term neurological examination (Carloni et al., 2008). However 

other treatments as xenon (Thoresen et al., 2009) are effective only when administered in 

the following two hours to the HI insult.  In the case of topiramate the temporary 

therapeutic window is even shorter (Noh et al., 2006) 

 

4. PHARMACOLOGICAL ASPECTS 

Administration route 

In the present experiments we used a formulation suitable for i.v. administration. This 

formulation contained Solutol(R), a dissolvent already used in humans. Thus, this formulation 

is more appropriate for use in humans than the typical formulation of CBD in TWIN or 

cremophor (Alvarez et al., 2008). Although CBD can be administered by oral route (Pertwee, 

2004; Mechoulam et al., 2007), the i.v. route is of great interest because asphyxiated infants 

candidates for neuroprotective treatments are under intensive care when oral route is 

forbidden. In addition, CBD has demonstrated better bioavailability when used by i.v. than 

oral route (Deiana et al., 2012).  
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Dose 

As described before, in the present experiments in piglets with CBD 1 mg/Kg the 

neuroprotective effects were stronger that those reported for CBD 0.1 mg/Kg (Alvarez et al., 

2008; Lafuente et al., 2011), in spite of the fact that the HI insult was heavier. Since most 

results of CBD 1 mg/kg i.v. are hardly improvable because CBD restored activity or biomarker 

values, this dose and route seems to be appropriate for a future clinical trial. It remains to be 

determined, however, whether or not slightly greater doses (3 or 5 mg/Kg, for instance) 

might further improve the result of CBD.  

  

Dose frequency 

Experiments using the 72HFU model indicated that CBD efficacy was similar no matter 

CBD was administered in a single dose or in three doses once a day. The only exception was 

the effect of CBD on myelinization, since CBD administered once a day for three days 

showed better results than CBND single dose. This result together with the capability of CBD 

in three daily doses to overcome the blockade of 5HT1A receptors makes more 

recommendable the alternative of CBD in daily doses for at least three days.  

 

Pharmacokinetics 

There are no precedents of PK studies of CBD administered i.v. to piglets. The shape of 

the plasma concentration curve was similar to that reported for adult dogs after i.v. 

administration of CBD 45 mg in ethanol 70% (Samara et al., 1987). In dogs, the T1/2 wasas 



Discussion 

 

130 

 

twice as longer than in newborn pigs, which might indicate a faster clearance of CBD from 

blood due to a faster brain entrance.  

In adult rats, CBD dissolved in cremophor and administered i.p. at a dose 100 times 

higher than in our experiments show a Cmax only 7 times higher, a Tmax 10 times higher 

and a T1/2 50% longer (Deiana et al., 2012). These data suggest that CBD by i.v. route, at the 

present formulation and in piglets have a greater bioavailability than by i.p. route in rats. 

Similarly, the brain concentration of CBD in the present experiments was as twice as higher 

than that reported for newborn rats after s.c. administration of the same dose (1 mg/Kg) 

(Pazos et al., 2012). In addition the longer T1/2 supports a faster clearance of CBD in newborn 

pigs than in adult rats.  
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CONCLUSIONS 

1. Blocking carotid artery and reducing inhaled oxygen content to 10% for 30 min in 

newborn piglets is an efficient model of newborn hypoxic-ischemic brain damage, as 

demonstrated by functional, histological and biochemical studies. In this model: 

1.1. Cannabidiol prevents the hypoxia-ischemia-induced depression of brain activity as 

assessed by amplitude-integrated EEG, restoring amplitude and background. 

1.2. Cannabidiol prevents the hypoxia-ischemia-induced brain damage as assessed by 

histological studies: 

1.2.1. Preventing neuronal death. 

1.2.2. Increasing the survival of astrocytes. 

1.3. Cannabidiol prevents the hypoxia-ischemia-induced impairment of magnetic 

resonance spectroscopy biomarkers, preventing the Lac/NAA increase and NAA/Cho 

decrease. 

 

2. Blocking carotid artery and reducing inhaled oxygen content to 10% for 20 min allowing 

then the recovery of the piglets is an efficient model of newborn hypoxic-ischemic brain 

damage, as demonstrated by functional, histological, biochemical and neurobehavioral 

studies. In this model: 

2.1. Cannabidiol prevents the hypoxia-ischemia-induced depression of brain activity as 

assessed by amplitude-integrated EEG, restoring amplitude and background 72 hours 

after the insult. 
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2.2. Cannabidiol prevents the hypoxia-ischemia-induced brain damage as assessed by 

histological studies 72 h after the insult: 

2.2.1. Preventing the decrease of viable neurons as well as the increase of 

necrotic neurons. 

2.2.2. Preventing the decrease of myelin content. 

2.3. Cannabidiol prevents the hypoxia-ischemia-induced impairment of magnetic 

resonance spectroscopy biomarkers, restoring the Lac/NAA ratio 72 h after the insult. 

2.4. Cannabidiol prevents the hypoxia-ischemia-induced impairment of neurological 

function: 

2.4.1. Preventing the hypoxia-ischemia-induced impairment of muscle tone and 

locomotion. 

2.4.2. Preventing the hypoxia-ischemia-induced impairment of eating behaviour 

and environment exploration. 

2.4.3. Preventing the hypoxia-ischemia-induced increase of anxiety and social 

play impairment. 

2.5. Cannabidiol exerts all these effects no matter it was administered single dose or 

once a day for three days, with the exception made for the effect on myelinization that 

was observed only after administration of three doses. 

 

3. Regarding the mechanisms of cannabidiol neuroprotection: 

3.1. Cannabidiol exerted antiexcitotoxic effects, preventing the hypoxia-ischemia-

induced increase of glutamate release. 
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3.2. Cannabidiol exerted antoxidant effects, preventing the hypoxia-ischemia-induced 

consumption of reduced glutathione and increase of protein carbonylation. 

3.3. Cannabidiol exerted antiinflammatory effects, preventing the hypoxia-ischemia-

induced increase of interleukine 1 production. 

3.4. Regarding the receptors involved in cannabidiol neuroprotection: 

3.1.2. The coadministration of a CB2 receptor antagonist reversed all the 

protective effects of cannabidiol, indicating the involvement of such receptors in 

cannabidiol neuroprotection. 

3.1.3. The coadministration of a 5HT1A receptor antagonist reversed all the 

protective effects of cannabidiol, indicating the involvement of such receptors in 

cannabidiol neuroprotection. 

3.5. Endocannabinoid brain concentration was not increased by cannabidiol, ruling out 

the involvement of this mechanism on cannabidiol neuroprotection. 

3.6. Regarding the involvement of 5HT1A receptors in cannabidiol neurobehavioral 

effects: 

3.6.1. The coadministrarton of a 5HT1A receptor antagonist reversed all the 

protective effects of cannabidiol on muscle tone and locomotion only when 

cannabidiol was administered single dose but not when it was administered for 

three days, indicating that these receptors are involved in cannabidiol 

neuroprotection the first hours after the insult but not afterwards. 

3.6.2. The coadministration of a 5HT1A receptor antagonist reversed all the 

protective effects of cannabidiol on behaviour no matter how cannabidiol was 
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administered, indicating that these receptors are mediating the behavioral 

effects of cannabidiol. 

 

4. Exposing newborn mice to 10% oxygen atmosphere after left carotid artery 

electrocoagulation is an efficient model of newborn hypoxic-ischemic brain damage, as 

demonstrated by neuroimaging and histological studies. In this model: 

4.1. Cannabidiol prevents the hypoxia-ischemia-induced loss of ipsilateral brain 

hemisphere volume seven days after hypoxia-ischemia. 

4.2. Cannabidiol prevents the hypoxia-ischemia-induced histological brain damage seven 

days after hypoxia-ischemia: 

4.2.1. Preventing the increase of necrotic neurons. 

4.2.2. Preventing the increase of apoptotic cells. 

4.2.3. Preventing the decrease of astrocytes. 

4.3. Cannabidiol shows a temporary therapeutic window lasting between 12 and 24 

hours. 

 

5. Regarding the pharmacological properties of cannabidiol: 

5.1. Cannabidiol dissolved in a formulation containing ethanol, solutol and saline in a 

proportion of 2:1:17 is suitable for intravenous use. 

5.2. The administration of cannabidiol 1 mg/Kg once a day for three days is the best 

schedule for treatment. 
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5.3. Intravenous administration of cannabidiol to newborn pigs shows better 

bioavailability and faster clearance to tissues than that observed in adult animals.  

 

GENERAL CONCLUSION 

 Cannabidiol, administered at 1 mg/Kg up to 12 h after a hypoxic-ischemic insult, 

prevents the resulting brain damage, protecting neurons and astrocytes, protecting 

myelinization, restoring brain activity and function and preventing behavioural 

consequences. Cannabinoid CB2 receptors are somehow involved in these effects. Serotonin 

5HT1A receptors are involved in the cannabidiol histological, biochemical and motor 

protective effects and mediate the behavioural effects of cannabidiol. Cannabidiol 

properties meet when not overtake those described for the gold standard of current 

treatment, hypothermia. Altogether these results confirm cannabidiol as a potent, effective, 

feasible and suitable candidate to be included in the treatment of asphyxiated infants.  
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