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ABSTRACT

In the standard model of cosmology, structure emerges out of a non-rotational flow and the angular momentum
of collapsing halos is induced by tidal torques. The growth of angular momentum in the linear and quasi-linear
phases is associated with a shear, curl-free, flow and it is well described within the linear framework of tidal torque
theory (TTT). However, TTT ceases to be applicable as halos approach turnaround when their ambient flow field
becomes rotational. Subsequently, halos become embedded in a vortical flow field and the growth of their angular
momentum is affected by the vorticity of their ambient velocity field. Using a cosmological simulation, we have
examined the importance of the curl of the velocity field in determining halo spin, finding a significant alignment
between the two: the vorticity tends to be perpendicular to the axis of the fastest collapse of the velocity shear tensor
(e1). This is independent of halo masses and cosmic web environment. Our results agree with previous findings on
the tendency of halo spin to be perpendicular to e1, and of the spin of (simulated) halos and (observed) galaxies to
be aligned with the large-scale structure. It follows that angular momentum growth proceeds in two distinct phases.
First, the angular momentum emerges out of a shear, curl-free, potential flow, as described by TTT. In the second
phase, in which halos approach virialization, the angular momentum emerges out of a vortical flow and halo spin
becomes partially aligned with the vorticity of the ambient flow field.
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1. INTRODUCTION

Most galaxies, especially late type spirals, are observed to
be rotating. Any robust theory of structure and galaxy forma-
tion thus needs to account for the origin of angular momentum.
In physics in general and hydrodynamics in particular, rotation
is often associated with vorticity. Not surprisingly, the early
ideas of Heisenberg & von Weizsäcker (1948) attempted to at-
tribute the rotation of spiral nebulae to a primeval vorticity. The
so-called theory of cosmic turbulence suggested that density
perturbations, out of which structure evolves, emerged out of
primordial turbulence and that galaxy rotation originated from
a primordial vortical flow (e.g., Ozernoi & Chernin 1968, cf.
the excellent review of Jones 1976). These ideas were super-
seded by an alternative theory which has survived and emerged
as the current standard model of cosmology: structure grows
by the evolution of small primordial density perturbations via
gravitational instability in an expanding universe (e.g., Press
& Schechter 1974; White & Rees 1978). By construction the
primordial flow field is a potential flow (thus curl-free) and
therefore an alternative model for the origin of the galactic spin
needs to be invoked. The first such ideas were developed by
Strömberg (1934) and Hoyle (1951) and then independently by
Peebles (1969), who suggested that tidal interaction between
collapsing halos may be responsible for galaxy spins. Accord-
ingly, the induced internal velocity field in the torquing objects,
is a curl-free shear flow (Binney 1974). It follows that the re-
sulting angular momentum of cosmological objects is associated
with a shear and not a vortical flow.

The classical picture of the origin of angular momentum was
expanded by tidal torque theory (TTT; White 1984; see also
Catelan & Thuens 1996). This seminal paper forms the base for

the standard lore of the origin of angular momentum in modern
cosmology. TTT provides a framework for calculating the dy-
namics and statistics of the growth of the angular momentum
(e.g., Hoffman 1986; Heavens & Peacock 1988; Steinmetz &
Bartelmann 1995). In fact, it is the only framework that enables
an analytical analysis of the growth of the angular momen-
tum of dark matter (DM) halos. It does so by considering the
growth of the Lagrangian mass of DM halos within the linear
theory of gravitational instability. Yet, TTT is of limited validity
when considering highly nonlinear virialized halos. Using nu-
merical simulations, Porciani et al. (2002) examined the growth
of the angular momentum of the Lagrangian mass associated
with z = 0 halos and found that TTT provides a useful de-
scription until around ≈60% of the effective turnaround time.
At z = 0 the relative error in the predictions for the magni-
tude of the spin is of the order of unity and the mean scatter in
the misalignment between the simulated and the TTT predicted
direction of the spin is ≈50◦. It is clear that nonlinear effects
weaken the applicability of TTT on the scale of virial halos.

A close examination of TTT reveals that one of the model’s
most important tenets is the fact that the primordial flow field
is curl-free and therefore that angular momentum emerges out
of a shear flow. This principle clearly does not hold deep in the
nonlinear regime, where the cosmic flow field becomes vortical
(Pichon & Bernardeau 1999; Knebe et al. 2006; Pueblas &
Scoccimarro 2009; Kitaura et al. 2012). This has prompted
us to study the role the nonlinear vorticity plays in shaping
the spin of DM halos. This is in line with recent efforts to
understand the emergence of the cosmic web and the properties
of DM halos in terms of the local differential properties of the
cosmic flow field (Hoffman et al. 2012; Libeskind et al. 2012,
2013).
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Table 1
Simulation Parameters: Box Side Length, Number of Particles,

Particle Mass, Softening Scale

Lbox Nparticles Mdm ε

64 h−1 Mpc 10243 ∼1.897 h−1 M� 1 h−1 kpc

Connecting galaxy or halo properties to their environments
has its roots in the seminal density-morphology relation of
Dressler (1980). A number of papers (Hahn et al. 2007; Aragón-
Calvo et al. 2007; Brunino et al. 2007; Sousbie et al. 2008;
Hoffman et al. 2012; Libeskind et al. 2012, 2013, among others)
have investigated the relation between halo spin and shape with
the large-scale structure (LSS) in numerical simulations using a
variety of different techniques to define the cosmic web.

Libeskind et al. (2012, 2013) used the velocity shear tensor to
show that halo spin tends to be perpendicular to the eigenvector
corresponding to the largest eigenvalue of the shear—the direc-
tion of greatest collapse (or, in voids, of weakest expansion). It
is therefore natural to extend these ideas to the anti-symmetric
part and examine how the direction of the curl of the velocity
field is distributed relative to the eigenvectors of the shear tensor
and halo spin.

2. METHODS

The same WMAP5, ΛCDM cosmological DM simulation
as Hoffman et al. (2012; see Table 1) is used here. The halo
finder AHF (Knollmann & Knebe 2009) is run on the z = 0
snapshot, identifying halos whose mean interior overdensity is
greater than 390ρback. Around ∼106 halos more massive than
1010 h−1 M� are considered.

2.1. Vorticity and Shear Calculation

The velocity field is evaluated using the clouds-in-cell (CIC)
approach calculated on a 2563 grid giving a spatial resolution of
250 h−1 kpc. Differentiation of the velocity field is performed in
Fourier space, using a fast Fourier transform. The CIC velocity
field is Gaussian smoothed with kernel lengths of rg = 250 h−1

kpc, 500 h−1 kpc and 1000 h−1 kpc. A given smoothing length
is then matched to the appropriate halo mass bin, such that rg
roughly equals four virial radii.

The velocity field v at each point in space may by expanded
as the sum of symmetric and anti-symmetric components. The
symmetric component is the shear tensor:

Σαβ = − 1

2H0

(
∂vα

∂rβ

+
∂vβ

∂rα

)
, (1)

where α, β = x, y, and z and H0 is the Hubble constant.
The trace of Σαβ is the divergence of the velocity, which is
proportional to the overdensity in the linear regime. The number
of positive (negative) eigenvalues corresponds directly to the
number of axes along which matter is contracting (expanding).
If zero, one, two, or three axes are simultaneously collapsing,
the region is considered a void, sheet, filament or knot (e.g., see
Hoffman et al. 2012). These axes are the eigenvectors of the
shear tensor (e1, e2, and e3). The anti-symmetric component
of the expansion is the vorticity, defined as the curl of the
velocity field: ω = ∇ × v. Vorticity generation is a strongly
nonlinear effect, shown by Kitaura et al. (2012) to appear only in
third-order Lagrangian perturbation theory. Initial perturbations
are assumed to be effectively curl-free since in an expanding

universe conservation of angular momentum implies that any
vortical flow decays linearly (Bouchet et al. 1995).

Halos are divided into three mass bins: low
(1010–1011 h−1 M�), intermediate (1011–1012 h−1 M�), and
high (1012–1013 h−1 M�) mass. The median virial radius (and
standard deviation) of each mass bin are 54 ± 13 h−1 kpc,
115±30 h−1 kpc, and 252±64 h−1 kpc, respectively. The align-
ment between spin and the vorticity is examined on scales �4rvir
using the smallest (250 h−1 kpc), intermediate (500 h−1 kpc),
and largest (1000 h−1 kpc) Gaussian smoothing kernel for the
smallest, intermediate, and largest mass bins, respectively.

3. RESULTS

3.1. Alignment of Cosmic Vorticity with the Velocity Shear

In this section the alignment of vorticity with the shear
tensor eigenvectors is examined. The probability distribution
of the angle formed between the vorticity vector and each
of the three eigenvectors of the shear tensor at each grid
point in the simulation is shown in Figure 1(a). Since the
eigenvectors of the shear denote axes (not directions), the
interval is confined to | cos μ| ∈ [0, 1]. Figure 1(a) clearly
shows that the vorticity tends to align perpendicular to e1
and in the e2–e3 plane, evidenced by the highly non uniform
distributions. The apparent parallel alignment with e2 and e3
is driven by the perpendicularity with respect to e1. Note that
there is a slight tendency for the vorticity to be more closely
aligned with e3, than e2, indicating a non-uniform azimuthal
distribution.

The significance of the alignment is quantified by calculating
the average offset between the measured distribution and a
uniform one, in units of the Poisson error σ per bin of a
uniform distribution. If less than unity, the measured distribution
is consistent with random. All three alignments in Figure 1(a)
show a ∼6.5σ statistical significance indicating they are fully
inconsistent with a random distribution. The median angles
between the vorticity and e1, e2, and e3 are 0.29, 0.60 and
0.54, respectively. The vorticity of the velocity field tends to be
perpendicular to the main axis of the shear and lie in the plane
of the intermediate and minor axis.

The alignment between the vorticity and the eigenvectors of
the shear tensor is also shown for each cosmic web environment
as the thin lines in Figure 1(a). The perpendicular alignment
between ω and e1 decreases in strength from sheets, to filaments,
to knots. This is likely due to the increased erratic behavior of
these vectors deep in nonlinear regimes. Regardless of which
web element is examined, ω tends to cluster more toward e3
than e2 and always away from ê1.

Given the dominance of the shear tensor in shaping the
local dynamics, it is only natural to study the orientation of
the vorticity with respect to its three eigenvectors. Since the
eigenvectors are non-directional lines (axes) the coordinate
system they define does not span the full three-dimensional
volume, but just the positive octant of the Cartesian grid. Each
vorticity vector can thus be normalized to unity, and its direction
projected onto a unit sphere defined by the eigenvectors.

The distributions of ω on (one-eighth of) the unit sphere can be
seen in an equal area projection in Figure 2. The perpendicularity
with respect to e1 is clearly visible as the vorticity tends to
inhabit regions close to the e2–e3 plane (the “equator”). As
exemplified by the stronger parallel alignment between ω and
e3 in Figure 1(a), at low latitude (i.e., for ω’s that are far from
e1), the vorticity is closer to e3 than to e2. As latitude increases,
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Figure 1. Left: the probability distribution P (| cos μ|) as a function of the angle formed, | cos μ| between the vorticity and the three principle axes the shear tensor. The
distribution between ω and e1, e2, and e3 is shown in black, blue and red. The vorticity displays a clear perpendicular alignment with e1 and parallel alignment with
both e2 and e3. The average offset between these distributions and a uniform one is ∼6.5 times the Poissonian error of a uniform distribution. Right: the probability
distribution between the vorticity and the halo spin axis Jhalo. Halos are binned by mass (1012 < M/h−1 M� < 1013 red; 1011 < M/h−1 M� < 1012 blue; and
1010 < M/h−1 M� < 1011 black). Poisson error bars for a uniform distribution with the same number of halos in each mass bin are shown along with the average
offset between the alignment and a random distribution in units of the Poisson error (i.e., the statistical significance). None of the alignments are consistent with
uniform.

(A color version of this figure is available in the online journal.)

Figure 2. Orthonormal eigensystem of the shear can be used to define a
coordinate system. By normalizing the vorticity vectors to unity, their orientation
with respect to this coordinate system is shown to be non-uniform. One-eighth
of the unit sphere is shown in an equal area projection here, with contours and
colors denoting the (surface) density of vorticities. e1 points toward the north
pole (i.e., cos(θ ) = 1) while e2 and e3 are longitudes of 0 and π/2, respectively.
A uniform distribution is represented by a monochromatic projection.

(A color version of this figure is available in the online journal.)

the vorticity becomes more uniform, moving closer to e2 at the
highest latitudes.

In Figure 3 we present the vorticity and shear field around a
generic overdensity in a 10 × 10 h−1 Mpc region. In overdense

Figure 3. 250 h−1 kpc slice through the simulation showing the unit vorticity
vector (ω) (blue arrows) and the principle axis (e1) of the shear tensor. Regions
where e1 corresponds to collapse (expansion) are shown in red (green). Since
e1 is an axis and not a vector, arrowheads are not plotted. The density is shown
as the gray scale and the white contour denotes overdensity with respect to the
mean. The length of the e1 and ω vectors are normalized to unity such that a
short vector implies perpendicularity with respect to the plane.

(A color version of this figure is available in the online journal.)

regions (where the vorticity is well defined) e1 tends to point in
the same direction across many Mpc, indicating that the axis of
greatest collapse is correlated on these scales. In the same region,
the perpendicularity of the vorticity and e1 is clearly visible.
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3.2. Alignment of Cosmic Vorticity with Halo Spins

Since Libeskind et al. (2013) showed that halo spin axes tend
to align with the principle axes of the shear tensor, and in the
preceding section a correlation between the shear eigenvectors
and the vorticity was shown, the alignment of vorticity and halo
spin is now examined. Such an alignment would be indicative
of a rotational flow, rather than the classical picture that halos
form out of a potential, irrotational flow. In Figure 1(b) we show
the alignment of halo spin with the vorticity for three halo mass
bins. Note that in this case the angle is between two vectors and
as such allowed to range from −1 to 1.

Figure 1(b) shows a clear correlation of halo spin with
vorticity for all mass bins. The strength of this alignment
is mass-dependent, with larger halo’s having their spin more
tightly aligned with the vorticity. The smallest, intermediate,
and highest mass bins have medians of cos μ = 0.13, 0.23, and
0.39, indicating that ∼6%, ∼11%, and ∼19% of halos in each
mass bin are aligned in a manner inconsistent with a uniform
distribution.

For the smallest mass bin, the halos have the weakest
alignment, yet display the strongest signal (∼5.3σ ) statistically
speaking, since this mass bin contains the largest number of
halos. The highest mass bin is inconsistent with a random
distribution at the ∼98% confidence level and shows the
strongest alignment. Halo spin is correlated with the large-scale
vorticity of the velocity field.

4. CONCLUSIONS AND DISCUSSION

Using a high-resolution cosmological simulation, the rela-
tionship between halo spin and the relevant directions that char-
acterize the LSS is studied. The velocity field has been evalu-
ated on a smoothed, CIC grid. The local differential behavior of
the velocity field is then accounted for, at each grid cell, by the
symmetric and antisymmetric components. The directions of the
vorticity, the eigenvectors of the shear tensor (which represent
directions of collapse or expansion) and halo angular momen-
tum have been compared. The main findings are threefold:

1. Halo spin is correlated with the direction of the local
vorticity on scales �4rvir. The strength of the correlation
is mass-dependent, with the most massive halos being the
most aligned with the vorticity.

2. The direction of the vorticity tends to be perpendicular to
the shear eigenvector associated with the largest eigenvalue
(ê1). In all web environments except voids (namely knots,
filaments and sheets) ê1 corresponds to the axis of fastest
collapse. In voids ê1 corresponds to the axis of slowest
expansion.

3. The strength of both alignments depends only weakly on
the web classification and the general trends are found
throughout the simulated volume.

A key element of the standard model of cosmology is that
structure emerges out of rotation-free Gaussian primordial
perturbations into a homogenous and isotropic universe. It
follows that the early dynamical phase of halo growth is
characterized by being a shear, curl-free, (potential) flow. TTT
(White 1984) provides the theoretical framework to account for
how the angular momentum of a halo’s Lagrangian mass grows
at this early stage. However, as the Lagrangian mass of a halo
decouples from the Hubble expansion, the flow field around the
halo becomes more nonlinear and more vortical (see Kitaura
et al. 2012). Porciani et al. (2002) showed that at about half

the halo’s turnaround time, the growth of the halo’s angular
momentum no longer follows TTT’s predictions. By analyzing
a high resolution DM-only cosmological simulation we have
shown here that at the present epoch the spin of simulated
halos is partially aligned with the vorticity of the large-scale
velocity field. This suggests that the acquisition of a halo’s
spin proceeds in two phases, before and after roughly half of
the halo’s turnaround time. In the first phase the halo is in
its linear and quasi-linear regime and the angular momentum
grows out of an irrotational shear flow. In the second phase as
the halo proceeds toward a virial equilibrium, it condenses out
of a rotational, vortical flow. It follows that both phases, the
potential flow and the vortical one, contribute to the final spin
of a halo and therefore one should not expect the spin to be very
strongly aligned with either the current curl of the velocity field
or the primordial shear. The mild alignment found here reflects
the balance between the two processes.

The orientation of galaxies and clusters with respect to the
LSS has been shown to be an important variable in the process
of galaxy formation and has repercussions on for example, the
correlation function (e.g., see van Daalen et al. 2012). Our
findings of an alignment of halo spin with the vorticity, and
the tendency of the vorticity to be orthogonal to ê1 regardless
of the web classification, can thus be directly compared with
observational studies.

For example, Navarro et al. (2004) reported that nearby disc
galaxies (including the Milky Way) tend to spin within the
super-galactic plane. On greater scales, Binggeli (1982) showed
that the orientations of clusters of galaxies are anisotropic
with respect to the cluster distribution: prolate clusters are
roughly parallel. Using the Two Micron All Sky Survey, Lee &
Erdogdu (2007) reconstructed the observed shear field finding
an alignment between galaxy spins and the intermediate axis.
Alignments have been examined in the Sloan Digital Sky Survey
by Paz et al. (2011) among others: Tempel et al. (2013) found
that the spin of spiral galaxies is aligned with the filament
axis (i.e., perpendicular to ê1). The orientation of spin with
respect to voids is controversial: Trujillo et al. (2006) reported
that disc galaxies located in shells surrounding voids, rotate
preferentially in the shell. This was disputed by Slosar & White
(2009) who found a distribution consistent with random. Varela
et al. (2012) find that within specifically chosen shells, discs are
aligned perpendicular to the void’s radial direction. In our web
classification scheme, voids are bounded by sheets for which
the plane of the sheet is defined by ê1. Since the vorticity tends
to lie within the plane of the sheet, it follows that halo spins are
embedded within sheets—an alignment similar that found by
Trujillo et al. (2006).

Much theoretical work (e.g., Patiri et al. 2006; Hahn et al.
2007; Aragón-Calvo et al. 2007; Brunino et al. 2007; Sousbie
et al. 2008; Wang et al. 2011; Libeskind et al. 2012; Codis
et al. 2012; Trowland et al. 2013 and references therein) has
been dedicated to predicting, understanding and quantifying
these alignments. Although these studies have access to the full
six-dimensional phase space information, spin alignments with
respect to the LSS, but never with the vorticity, have until now
been investigated. Understanding how the Milky Way halo spins
is of direct importance to studies that examine the geometry
and kinematics of the Milky Way’s satellite galaxy population
(Knebe et al. 2004; Libeskind et al. 2005, 2011; Deason et al.
2011).

The vorticity studied here reflects the behavior of the flow
field on scales greater than ∼4rvir which for Milky-Way-type
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halos is approximately the Mpc scale. Just a handful of dwarf
galaxies near the Milky Way have reliable proper motions (see
Metz et al. 2008 for a description of these): it is thus still
too difficult to reliably measure the spin of the Milky Way’s
halo and the vorticity of our cosmic environment. However,
future telescopes such as LSST and SkyMapper will be able
to measure proper motions of dwarfs on these scales, thus
probing the external flow field. With respect to external galaxies,
missions such as Gaia and Euclid may be able to map the large-
scale orientation of the vorticity in larger volumes. This can
be done by mapping the orientation of disc galaxies and using
it to model the orientation of the vorticity. The well known
misalignment between simulated galactic disks and their parent
halos (Bailin et al. 2005; Libeskind et al. 2007; Bett et al.
2010) complicates the suggested task. Yet, the relatively weak
statistical significance of the vorticity-spin alignment implies
that the effect can be measured only for a large enough sample
of galaxies and not by a few individual galaxies. This needs to
be tested and gauged against cosmological simulations.
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