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Abelian case, and follows from the interplay between gaugings of non-Abelian isometries of

the scalar manifold and field identifications making axion-like fields periodic. We present
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particular, compactifications with torsion homology classes, where non-Abelianity arises

microscopically from the Hanany-Witten effect, or compactifications with non-Abelian dis-

crete isometry groups, like twisted tori. We finally focus on the more interesting case of

magnetized branes in toroidal compactifications and quotients thereof (and their heterotic

and intersecting duals), in which the non-Abelian discrete gauge symmetries imply powerful

selection rules for Yukawa couplings of charged matter fields. In particular, in MSSM-like

models they correspond to discrete flavour symmetries constraining the quark and lepton

mass matrices, as we show in specific examples.
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1 Introduction

Discrete symmetries are a key ingredient in particle physics, and especially in physics

beyond the Standard Model. A prototypical example is the introduction of R-parity (or

other similar Abelian symmetries) in the MSSM to forbid or suppress certain operators

leading to exceedingly fast proton decay. Another fertile industry is the use of discrete

(possibly non-Abelian) symmetries in flavour physics, to generate textures of quark and

lepton masses and mixings.

Such discrete symmetries are thus introduced for phenomenological reasons, but their

fundamental origin remains obscure. Of course they could be just accidental symmetries of

the lowest-dimensional terms in the effective theory, but it is clearly important to consider

them as possibly exact symmetries at the fundamental level. In this respect, there are di-

verse arguments strongly suggesting that global symmetries, either continuous or discrete,

are violated by quantum gravitational effects, and hence cannot exist in any consistent

quantum theory including gravity (see [1–3] for early viewpoints, and e.g. [4, 5] and refer-

ences therein, for more recent discussions). This suggests that discrete symmetries should

have a gauge nature in such theories [6–13], in particular in string theory.

The realization of discrete gauge symmetries in string theory is therefore an important

topic. Abelian gauge symmetries, and their application to MSSM-like models have recently

been explored in D-brane models in [14–16], with nice agreement with the classification

of anomaly-free discrete symmetries in [17, 18] (see also [19–26] and references therein;

also [27] for attempts to implement R-parity in heterotic models).

In this paper we consider the realization of non-Abelian discrete gauge symmetries in

field theory and string theory, and study the constraints that they impose on the Yukawa

couplings of the theory. This requires generalizing the Abelian intuition that Zk symmetries

can be constructed as remnants of U(1) gauge symmetries broken by vevs of charge k

fields. The non-Abelian generalization involves the gauging of non-Abelian isometries in

the space of scalar fields of the theory, and its interplay with the field identifications (e.g.

axion periodicities, or possibly more general dualities) in this scalar manifold. The analysis

leads to a 4d Lagrangian formulation of (at least certain classes of) non-Abelian discrete

gauge symmetries in terms of gauging of such ‘non-Abelian axions’.

We also find several explicit realizations of this framework in the context of string

theory, with particular focus on type II compactifications and orientifolds thereof (although

much of the analysis holds more generally):

• First, extending the observation for 5d theories in [28] (see also [29, 30]), we show

that non-Abelian discrete gauge symmetries can arise from compactification of p-

form fields along torsion homology classes with non-trivial relations (which we de-

scribe explicitly). We perform the dimensional reduction from 10d, and indeed find

a 4d Lagrangian realizing non-Abelian discrete gauge symmetries, typically discrete

Heisenberg groups, in terms of gaugings of non-Abelian axions. This generalizes the

relation between torsion homology and discrete symmetries observed in the Abelian

case in [14].
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• We also consider the realization of (possibly non-Abelian) discrete gauge symme-

tries from discrete isometries of the compactification space. Their general analysis

is beyond our present scope, and we focus on the particular simple case of com-

pactifications on twisted tori. Their realization in terms of gaugings allows to de-

scribe the discrete gauge symmetry in the language of gauging of non-Abelian ax-

ions.

• Finally, we show that systems of magnetized branes on tori (or their heterotic or inter-

secting brane duals) in general enjoy non-Abelian discrete gauge symmetries, acting

non-trivially on 4d charged matter fields. The resulting discrete symmetries have

a Heisenberg-type structure and underlie some powerful selection rules for Yukawa

couplings. These include those observed in [31, 32] (interpreted in terms of sym-

metries in [34], see also [35]), and the rank one textures in certain MSSM-like mod-

els [31]. Our analysis shows that these properties are not merely accidental but rather

stem from genuine non-perturbatively exact discrete gauge symmetries present in the

model.

The paper is organized as follows. In section 2 we review Abelian discrete gauge

symmetries, and emphasize their interpretation in terms of gaugings. The intuitions are

subsequently generalized in section 3 to realize non-Abelian discrete gauge symmetries in

terms of gaugings of non-Abelian axions. In section 4 we realize non-Abelian discrete

symmetries from compactification of p-form fields on geometries with torsion homology

classes with relations. In section 5 we study non-Abelian discrete symmetries from com-

pactification on geometries with discrete isometries, focusing on the illustrative case of

twisted tori compactifications. In section 6 we describe non-Abelian discrete symmetries

in toroidal compactifications with magnetic fields. In section 6.1 we derive the discrete

symmetry in a toy situation of magnetization in a single T2, and reproduce the constraints

for Yukawa couplings appeared in [31, 32]. In section 6.2 we derive the non-Abelian dis-

crete symmetry from dimensional reduction of magnetized type I on T6, and obtain the

natural holomorphic variables in the effective action in section 6.4. In section 6.3 we de-

scribe such discrete symmetry for the MSSM-like model of [31, 33], and show it underlies

the rank-one texture for Yukawa couplings in this model, which is thus exact even at the

non-perturbative level. In section 7 we study non-perturbative instanton effects, and how

they manage to preserve the non-Abelian discrete gauge symmetry. Section 8 contains our

final remarks, and several technical results are kept in appendices: appendix A presents

a generalization of the construction in section 4.2, appendix B discusses the action of dis-

crete symmetries of twisted tori on KK modes, and appendix C details the derivation of

eq. (6.41).

The sections dealing with open strings in magnetized brane models are fairly self-

contained. Hence, the reader interested just in the selection rules for charged matter fields

in magnetized brane systems (or their duals), may get the relevant intuitions from section 2

and jump onto section 6.

– 3 –
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2 Abelian discrete gauge symmetries and gaugings

2.1 Review of the Abelian case

The basic action for a Zk discrete gauge symmetry (see [5] for a recent discussion)1 is
∫

d4x (∂µφ − kAµ)
2 (2.1)

where the gauge field A1 is normalized such that the minimum electric charge is 1, and φ

is a scalar field (henceforth dubbed ‘axion’) with a periodic identification

φ ≃ φ+ 1 (2.2)

The above Lagrangian can be dualized into an alternative BF formulation, involving

a 2-form and a (magnetic) gauge potential. Such formulation has been useful in the study

of Abelian discrete gauge symmetries in string theory (e.g. [14–16]), but for our present

purposes we however stick to the axion formulation. This form is largely inspired by

considering φ to be the phase of a Higgs field with charge k under a broken U(1) gauge

group. However, we prefer to regard it just as a scalar, whose moduli space (locally given

by R) has a continuous isometry

φ→ φ+ ǫ (2.3)

The action (2.1) describes the gauging of this isometry by a U(1),

Aµ → Aµ + ∂µλ , φ → φ + kλ (2.4)

Before taking into account the periodicity (2.2), the value of k could be removed by rescaling

φ, and would not be relevant. The integer k is thus properly interpreted as the winding

number in the map between the S1 of U(1) gauge transformations e2πi α (with α ≃ α + 1

due to charge quantization), and the S1 parametrized by the axion φ. The fact that k

is integer is a compatibility condition of the gauging by the U(1) with the pre-existing

discrete equivalence (2.2).

The gauging directly implements the field identification φ ≃ φ+ k. On the other hand

the discrete equivalence (2.2) corresponds to a ‘fractional’ 1/k U(1) gauge transformation,

namely a Zk gauge transformation. This perspective displays the close relation of the

discrete gauge symmetry with the underlying field identification in the scalar manifold.

More precisely, the discrete gauge symmetry is the group of field identifications in the

scalar manifold modulo those already accounted for by the gauging. This intuition is the

key to the non-Abelian generalization in the coming sections.

Theories with discrete gauge symmetries have sets of (possibly massive) charged par-

ticle states. These often provide a practical way to identify the discrete gauge symmetry

in a given theory. In the case of the above Zk theory, charge n particles with worldline C

are described as insertions of the line operator

Oparticle ∼ e2πin
∫
C
A1 (2.5)

1See also [36] for a more formal viewpoint on theories with discrete gauge symmetries.
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Their charge is conserved modulo k, since there are gauge invariant ‘instanton’ vertices

which create/annihilate sets of particles with total charge k,

e−2πi φ e2πi k
∫
C
A1 = e−2πi φOparticle(s) (2.6)

describing an insertion e−2πiφ at a point P , out of which a charge k set of particles emerges

along a worldline C (i.e. ∂C = P ). In many realizations, the above operators are induced

in the 4d action by effects e−Sinst , non-perturbative in some suitable coupling, with Sinst =

2πiφ + . . . linear in the gauged axion. The overall U(1) charge of Oparticle(s) is thus

compensated by shifts of Sinst..

In addition, the theory contains Zk charged strings, described as the insertion of op-

erators along a worldsheet Σ

Ostring ∼ e−2πi p
∫
Σ B2 (2.7)

where B2 is the 2-form dual to φ, and p is defined modulo k. A charge n particle defined

by (2.5) suffers a Zk discrete gauge transformation, n → n + p, when moved around the

charge p string (2.7), i.e. its wavefunction picks up an Aharonov-Bohm phase e2πi pn/k.

Conversely, a charge p string looped around a charge n particle picks up a phase e2πi np/k.

In more abstract terms, the amplitude associated to a charge p string on a worldsheet Σ

and a charge n particle on a worldline C contains an Aharonov-Bohm phase

exp
[

2πi
np

k
L(Σ, C)

]

(2.8)

where L(Σ, C) is the so-called linking number of Σ and C.

String charge is also conserved modulo k, since there are operators describing strings

of total charge k on worldsheets Σ ending along a junction line L (∂Σ = L)

e−2πi
∫
L
A1e2πi k

∫
Σ B2 (2.9)

These ingredients have a natural yet more involved generalization to the non-Abelian

case [8, 10–13] (see [37] for a review).

2.2 The multiple Abelian case

Before moving onto the non-Abelian case, let us sharpen our intuitions in a slightly more

involved (yet Abelian) situation. Consider a theory with several U(1) gauge symmetries,

labelled with an index α, and several axions φa, a = 1, . . . , N . The generalization of

eq. (2.1) is

L ⊃
∑

α

(

∂µφ
a − kα

aAα
µ

)

(

∂νφ
b − kα

bAα
ν

)

ηµνδab (2.10)

with integer kα
a ∈ Z. We take U(1) generators normalized such that charges are integer

and axions have integer periodicity.

In general, it is not immediate to identify the surviving discrete gauge symmetry. In

the literature this is usually done by ‘trial and error’, by scanning through different integral

linear combination of U(1) generators

Q =
∑

α

cαQα with cα ∈ Z and g.c.d.(cα) = 1 (2.11)

and checking for the greatest common divisor of the U(1) axion couplings
∑

αcαkα
a.

– 5 –
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There is however a systematic closed description of the surviving discrete gauge sym-

metry based on our earlier intuitions. For that aim, we consider the space spanned by the

scalars φa. This is a torus TN which we regard as RN/Γ, with Γ the lattice of translations

defined by vectors of integer entries

Γ = {(r1, . . . , rN ) | ra ∈ Z } (2.12)

The Lagrangian (2.10) implies that U(1)α gauge transformations act as translations in RN

along the vectors ~kα

Aα → Aα + dλα ; φa → φa +
∑

αkα
aλα (2.13)

For simplicity, we focus on the case where the number of axions and U(1) gauge symmetries

is equal.2 Finite U(1) gauge transformations leaving all charged fields invariant (i.e. gauge

parameter λα = 1) act as discrete translations in RN by the integer vectors ~kα, and

therefore span a sublattice Γ̂ ⊂ Γ,

Γ̂ = 〈~k1, . . . ,~kN 〉Z = {∑αcα
~kα | cα ∈ Z } (2.14)

Following our previous discussion for the single Abelian case, the discrete gauge symmetry

is given by the set of identifications in the space of scalars modulo those implemented by

the finite U(1) gauge symmetries, namely by the quotient

P =
Γ

Γ̂
(2.15)

As we will now see these intuitions generalize to the non-Abelian case as well.

3 Non-Abelian discrete gauge symmetries and gaugings

While the construction introduced above describes the well-known case of Abelian discrete

gauge symmetries, it admits a natural generalization to the non-Abelian case. In the non-

Abelian version instead of a single field we will have a whole set of scalars (dubbed ‘non-

Abelian axions’) which span a manifold with non-commuting isometries. This more general

construction can also be regarded as a procedure to construct a Lagrangian formulation

for (at least certain) non-Abelian discrete gauge theories.

3.1 The scalar manifold

Let M be the moduli space of N scalars φa, endowed with a metric Gab(φ) with a set of (in

general non-Abelian) continuous isometries with Killing vector fields XA = Xb
A∂b. Under

infinitesimal space-time independent isometry transformations the scalars transform as

φb → φb + ǫAXb
A (3.1)

2Generalization is straightforward. If the number n of U(1)’s, is smaller than the number N of scalars,

we restrict to those scalars which actually shift: we consider the Rn ⊂ R
N given by real linear combinations

of the vectors ~kα (assumed linearly independent for simplicity), and the sublattice Γn ⊂ Γ lying in this Rn,

and proceed as above with n playing the role of N . For ~kα not linearly independent, we just eliminate the

decoupled linear combinations of U(1)’s, and restart. Similarly if the number of U(1) gauge symmetries is

larger than the number of scalars to start with.

– 6 –



J
H
E
P
0
9
(
2
0
1
2
)
0
5
9

and their kinetic term ∫

d4xG(~φ)ab ∂µφ
a∂µφb (3.2)

is invariant provided that (LXA
G)ab = 0. The Killing vector fields satisfy a Lie algebra

[XA, XB] = fAB
CXC (3.3)

with fAB
C the structure constants and [ , ] the Lie Bracket.

Given the 4d Lagrangian (3.2) it is easy to guess how to implement a gauging analogous

to eq. (2.10), see eq. (3.12) below. Before doing that it is however useful to consider the

scalar manifold M and try to understand which kind of metrics Gab(φ) one may obtain in

the case where all the fields φa are axions. This will allow in particular to rewrite (3.2) in

a simpler form (namely eq. (3.8) below) which we will use extensively when reproducing

non-Abelian discrete gauge symmetries from string theory setups.

In order to characterize the metric Gab it is useful to describe the manifold M in the

language of group theory, as follows. Note that each Killing vector field describes a flow

within M, and so there is a natural action of the Lie group of isometries Iso(M) on the

scalar manifold M. We may then consider that Iso(M) acts transitively on M,3 and so

identify M with the coset Kp\Iso(M), with Kp the stabilizer or little group of an arbitrary

point p ∈ M. Therefore we may apply the usual procedure (see for instance appendix A.4

of [38]) for building a Riemannian metric Gab(φ) for M in terms of the elements of Iso(M)

and Kp.

In general, the quotientKp\Iso(M) will not be a Lie group itself: for this it is necessary

that Kp is a normal subgroup of Iso(M). However, if M is parametrizes the vevs of only

axion-like scalars, the choice of M as a Lie group is quite natural. Indeed, for an ‘axionic

manifold’ M the number of independent shift symmetries at any point should equal the

dimension of M. This is automatically satisfied if M is a Lie group, since in this case

we can identify each axion with an element of the Lie algebra of the group M, while the

continuous shift symmetry corresponds to the one-parameter subgroup generated by such

Lie algebra element. Hence, in the following we will consider the case where our axionic

manifold M is a Lie group.4

In the case that M is a Lie group we can systematically build an affine representation

of M acting on the plane RN+1, with N = dimM. For this construction, familiar from

the description of twisted tori geometries, we first consider the affine plane RN+1 described

by vectors

~v =

(

~φ

1

)

(3.4)

as well as a vector ~ǫ ∈ RN that parametrizes an element of the Lie algebra of M. Second,

we consider the adjoint representation of Lie(M), given by (ad~ǫ)b
c = ǫafab

c, and construct

3If not, we may take the orbit Op created when Iso(M) acts on a point p ∈ M, and then restrict the

initial set of scalars φa to those that span Op.
4In general we would expect that a coset M that is not a Lie group but is nevertheless a parallelizable

manifold could also qualify as an axionic manifold. We are nevertheless unaware of any example of this

kind arising from a string compactification, and so this possibility will not be analyzed here.

– 7 –
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the matrices

g(~ǫ) =

(

1
2ad~ǫ ~ǫ

0 0

)

(3.5)

which provide a faithful (N + 1)-dimensional linear representation of Lie(M) ⊂ iso(M).

Taking the exponential map, we obtain

g(~ǫ) =

(

e
1
2
ad~ǫ 2 ad−1

~ǫ (e
1
2
ad~ǫ − In×n)~ǫ

0 1

)

(3.6)

where ǫa now parametrize arbitrarily large translations in M. Finally, we can build an

explicit expression for the metric Gab(φ) in terms of the right-invariant 1-forms ηa, which

are defined as

(dg · g−1)(~φ) = ηa(~φ) ta (3.7)

with ta the generators of Lie(M). We then obtain that the metric for M is such that

∫

d4xGab(~φ) ∂
µφa∂µφ

b =

∫

d4xPabη
a · ηb (3.8)

where Pab is the metric in the tangent space of M, and so independent of φ, while ηa ·ηb ≡
ηµνηaµη

b
ν with ηµν the 4d Minkowski metric. Notice that this expression is automatically

invariant under continuous right-translations by group elements g(~φ) → g(~φ)g(~ǫ), and so

it indeed respects the axionic shift symmetries.

A particularly relevant case to forthcoming applications is when Lie(M) is a 2-step

nilpotent algebra (see [39] for a recent review). In this case we have that e
1
2
ad~ǫ = 1+ 1

2ad~ǫ
and so eq. (3.6) reduces to

g(~ǫ) =

(

1 + 1
2ad~ǫ ~ǫ

0 1

)

(3.9)

Then, applying eq. (3.7) we obtain

ηaµ = ∂µφ
a +

1

2
fbc

aφb ∂µφ
c (3.10)

yielding a particularly simple expression for the right-invariant forms ηa and hence for the

metric in (3.8).

Since the above construction is general it is important to note that, unless Lie(M)

is semi-simple, M will be a non-compact manifold which is unsuitable to describe the

moduli space of axionic-like scalars. We may however make this moduli space compact

by taking its quotient by a lattice Γ ⊂ M. This is in fact something quite common in

string theory, where moduli spaces are quotients of the form M̃ = M/Γ, with Γ a discrete

subgroup of Iso(M) that takes into account the dualities of the theory. A well-known

example is the 10d axio-dilaton coupling τ of type IIB theory, whose moduli space is not

– 8 –
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Mτ = SO(2)\SL(2,R) but rather M̃τ = SO(2)\SL(2,R)/SL(2,Z) once S-duality has been

taken into account.5

Going back to the general case, if Γ is cocompact, namely if there is a subset X ⊂ M
such that the image of X under the action of Γ covers the entire M, then M̃ = M/Γ

is compact. Finding such a lattice is in general a complicate task and its existence is

not guaranteed. However, if M is a nilpotent Lie group it is enough to require that the

structure constants are integer in some particular basis and that they satisfy fab
a = 0 [40].

For the time being we will assume that such cocompact Γ exists, but ignore its effect until

subsection 3.3.

3.2 The gauging

Let us now write a 4d Lagrangian describing a set of non-commuting U(1) gauge symmetries

that gauge some of the isometries of M, ignoring the effect of the discrete lattice Γ. To

describe such gauging, instead of (3.1), we consider infinitesimal space-time dependent

isometry transformations

φb → φb + ǫA(x)Xb
A (3.11)

where x represents the set of 4d coordinates. Invariance of the action under local trans-

formations becomes manifest once we introduce the corresponding set of gauge fields (see

e.g. [41]). We have the generalization of (2.10)
∫

d4xGab(φ)
(

∂µφ
a − kα

aAα
µ

)

(

∂νφ
b − kβ

bAβ
ν

)

ηµν (3.12)

where the set of vector fields {kα} is similar to the above {XA}, but not necessarily identical

due to relative normalizations to be discussed in the next subsections. In order for this

action to be invariant under the infinitesimal isometry transformations (3.11), covariant

derivatives have to transform as

∂µφ
a − kα

aAα
µ → (δab + ǫA∂bX

a
A)(∂µφ

b − kα
bAα

µ) (3.13)

which means that the gauge fields Aα
µ transform as

kα
aAα

µ → kα
aAα

µ + Xa
C∂µǫ

C + fCABX
a
C (X−1)Ab A

β
µ kβ

b ǫB (3.14)

As in the previous section, let us focus on the case where M is a Lie group. For

notational simplicity, we will assume that all the right isometries of M are gauged. It is

easy to see that the right-invariant 1-forms are now given by

(Dg · g−1)(~φ) = ηa(~φ) ta with Dg = dg − tak
a
αA

α
µ, (3.15)

5As a slightly more involved example, we may reconsider the multiple Abelian case in subsection 2.2.

Before taking the quotient by the lattice (2.12), the scalar manifold is M = R
N and its isometry group is

the Euclidean group, Iso(M) = R
N

⋊ O(N). Since the action of Iso(M) on M is transitive and the little

group of any point of M is O(N), M can be identified with the quotient O(N)\Iso(M), which is nothing

but the group of translations in M. Finally, this space is made compact by taking the quotient M̃ = M/Γ,

with Γ a group of discrete translations.

– 9 –
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and so are built by performing the replacement dg → Dg everywhere. In terms of these

new 1-forms the action is still given by

∫

d4xPabη
a · ηb (3.16)

As before, for the particular case of 2-step nilpotent groups things simplify and these

right-invariant 1-forms read

ηaµ = ∂µφ
a − kα

aAα
µ +

1

2
fbc

aφb (∂µφ
c − kβ

cAβ
µ) (3.17)

and so under a space-time dependent right-translation g(~φ) → g(~φ)g(~ǫ) gauge fields trans-

form as

kα
aAα

µta → kα
aAα

µtag(~ǫ) + g(~φ)∂µg(~ǫ) (3.18)

3.3 A simple example

The above construction provides the Lagrangian for a massive non-Abelian gauge symme-

try, but it still does not reveal potential residual discrete gauge symmetry. To proceed

further and make the discussion concrete, we introduce here an example of scalar manifold

M and lattice Γ whose gauging leads to a non-Abelian discrete symmetry group. The

example is constructed using the Heisenberg group, M = H3(R), and will be realized in

several physical systems in coming sections. In the next subsection we then extend the

discussion to the general case.

Thus, we consider the 3-dimensional Heisenberg group as generated by matrices of the

form

g(~ǫ) =











1 0 0 ǫ1

0 1 0 ǫ2

−M
2 ǫ

2 M
2 ǫ

1 1 ǫ3

0 0 0 1











(3.19)

with M an integer. The associated Lie algebra is

[t1, t2] =Mt3 (3.20)

where t1, t2 and t3 are the elements of the algebra that generate the 1-dimensional sub-

groups parametrized by ǫ1, ǫ2 and ǫ3. The right-invariant 1-forms are given by eq. (3.10),

which in this particular case corresponds to

η1µ = ∂µφ
1 , η2µ = ∂µφ

2 , η3µ = ∂µφ
3 +

M

2
(φ1∂µφ

2 − φ2∂µφ
1) (3.21)

in terms of which the metric of M is given by the r.h.s. of (3.8).

Since M is non-compact, we take our axionic moduli space to be given by the compact

coset M̃ = H3(R)/Γ where, for concreteness, we take the cocompact lattice Γ ⊂ H3(R)
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to be generated by (φ1, φ2, φ3) = (n1, n2, n3) with ni ∈ Z, namely by the discrete transfor-

mations

Γ(1, 0, 0) : φ1 → φ1 + 1 , φ3 → φ3 − M

2
φ2 , (3.22)

Γ(0, 1, 0) : φ2 → φ2 + 1 , φ3 → φ3 +
M

2
φ1 ,

Γ(0, 0, 1) : φ3 → φ3 + 1 .

We can gauge the right isometries of M̃ following the general procedure described in

the previous subsection. Thus, we introduce a set of U(1) gauge bosons Aα
µ, α = 1, 2, 3, and

replace the right-invariant 1-forms (3.21) by their gauged counterparts eq. (3.17), which in

this particular case read

η1µ = ∂µφ
1 − k1A

1
µ , η2µ = ∂µφ

2 − k2A
2
µ , (3.23)

η3µ = ∂µφ
3 − k3A

3
µ +

M

2

[

φ1(∂µφ
2 − k2A

2
µ)− φ2(∂µφ

1 − k1A
1
µ)
]

with kα ∈ Z, α = 1, 2, 3.

After the gauging, U(1) gauge transformations of the gauge bosons Aα
µ induce non-

trivial shifts on the scalars

A1
µ → A1

µ + ∂µλ
1 , A2

µ → A2
µ + ∂µλ

2 , (3.24)

A3
µ → A3

µ + ∂µλ
3 +

Mk1k2
2k3

(

λ2A1
µ − λ1A2

µ

)

+
M

2k3
(k2φ

1∂µλ
2 − k1φ

2∂µλ
1) ,

φ1 → φ1 + k1λ
1 , φ2 → φ2 + k2λ

2 , φ3 → φ3 +
M

2
(k2φ

1λ2 − k1φ
2λ1) + k3λ

3 .

Compatibility of these transformations with (3.22) then leads to a set of non-commuting

Zkα discrete gauge symmetries. Indeed, the gauge symmetry is given by the set of iden-

tifications (3.22) modulo these finite gauge transformations, in analogy with the Abelian

case. For instance, for k1 = k2 = k3 = k ∈ Z and M = 1 we have that the discrete gauge

symmetry is given by P = (Zk × Zk)⋊ Zk, with generators T̃1, T̃2 and T̃3 satisfying

T̃ k
1 = T̃ k

2 = T̃ k
3 = 1 , T̃1T̃2 = T̃3T̃2T̃1 (3.25)

For k = 2 this is isomorphic to the dihedral group, P ≃ Dih4, whereas for k = 3 the

discrete symmetry group is P ≃ ∆(27).

3.4 The discrete gauge symmetry

To obtain the non-Abelian discrete gauge symmetry group in the above example we have

closely followed a similar reasoning to the one that we used for Abelian discrete gauge

symmetries. Indeed, we have seen that gauge transformations span a lattice Γ̂ ⊂ M̃ and

in order to gauge the left isometries of M̃ it is enough to specify such a lattice. As in the

Abelian case, the discrete gauge symmetry arises when we take into account the group Γ

of scalar field identifications; namely when we specify the periodicities of the isometries
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generated by XA and compare them with those of the gauge transformations (3.14), gen-

erated by kα. Thus, once Γ is taken into account, a non-trivial compatibility condition for

the gauging arises.

The discrete gauge symmetry of the theory is

P =
Γ

Γ̂
(3.26)

Fields charged under the original U(1) symmetries end up in some representation of this

discrete gauge symmetry (whether they are massless fields or not), as we later on discuss

in explicit string theory examples.

4 Torsion p-forms and discrete gauge symmetries

Gauged shift symmetries, and thus discrete gauge symmetries, are ubiquitous in 4d string

theory models. This is particularly manifest in D-brane models, where Abelian discrete

gauge symmetries arise from the coupling of D-brane U(1)’s to axion fields [15]. As pointed

out in [14], another source of discrete gauge symmetries appears by considering compact-

ification manifolds with torsion in homology. As we will discuss in this section these two

frameworks are directly related, and the latter can be easily generalized to describe non-

Abelian discrete symmetries. In fact, we will show that dimensional reduction of type

IIB supergravity on a manifold with torsion produces the 4d Lagrangian of non-Abelian

discrete gauge symmetries constructed in the previous section.

4.1 Abelian discrete gauge symmetries and torsion homology

Before describing the non-Abelian case let us review the relation of Abelian discrete gauge

symmetries to torsion classes [14]. As mentioned in section 2.1, a practical way to identify

discrete gauge symmetries is to tag a set of Zk charged particles and Zk charged strings

inducing relative holonomies on each other via the Aharonov-Bohm phase (2.8). In string

theory compactifications, we thus search for dynamical objects in the higher-dimensional

theory that lead to Aharonov-Bohm strings and particles in the 4d effective theory.

4.1.1 Aharonov-Bohm strings and particles from torsion

A simple way to obtain Aharonov-Bohm strings and particles in type II vacua is to consider

D-branes or NS-branes wrapped on p-cycles of the compactification manifold, the inequiv-

alent possibilities being classified in terms of homology. In general, the homology group of

a D-dimensional manifold XD consists of a free part, given by bp ≡ dim Hr(XD,R) copies

of Z, and a torsion part, given by a set of finite Zk groups,

Hp(XD,Z) = H free
p (XD,Z) ⊕ Tor Hp(XD,Z) = Zbp ⊕ (Zk1 ⊕ . . .⊕ Zkn) (4.1)

It has been argued in [14] that 4d Aharonov-Bohm strings and particles arising from a

compactification in XD are associated to the torsion part of the corresponding homology

lattice. This is based on the observation that if we wrap a p-brane on a torsion p-cycle

πtorp and a dual (D − p)-brane on a torsion (D − p − 1)-cycle πtorD−p−1 then we will have
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a 4d particle and string, respectively, that induce fractional holonomies on each other

proportional to the torsion linking number L([πtorp ], [πtorD−p−1]) in the internal dimensions.

Such torsion linking number is one of the main topological invariants that can be defined

for the torsion homology classes of XD, and it univocally relates torsion classes of p-cycles

to torsion classes of (D − p− 1)-cycles, such that

Tor Hp(XD,Z) ≃ Tor HD−p−1(XD,Z) (4.2)

Let us be more specific and consider M-theory compactified on a manifold X7 with G2

holonomy. Gauge symmetries in the 4d effective theory arise from the M-theory 3-form

A3 and are classified by elements of H2(X7,Z). On the one hand, elements belonging

to the free part of H2(X7,Z) are in one-to-one correspondence with harmonic 2-forms in

X7 so, upon expanding A3 in such 2-forms, we obtain standard U(1) gauge symmetries

in the 4d effective theory. On the other hand, elements that belong to TorH2(X7,Z)

must correspond to discrete Zki gauge symmetries.6 This can be seen from the fact that

M2-branes wrapping torsion 2-cycles lead to Aharanov-Bohm particles in 4d, whereas M5-

branes wrapping the dual torsion 4-cycles (which exist because of eq. (4.2)) lead to 4d

Aharanov-Bohm strings.

Indeed, let us consider an M2-brane wrapping a Zk torsion 2-cycle πtor2 and with 4d

worldline C, as well as a 4d string with worldsheet Σ that arises from an M5-brane wrapping

a Zk torsion 4-cycle πtor4 of X7. Following [14], one can see that the holonomy that these

two objects induce on each other is given by

1

2πi
log [hol(Σ, C)]

mod 1
=

∫

C×πtor
2

A3 =
1

k

∫

D×kπtor
2

F4 =
1

k

∫

D×S3

δ5 (4.3)

mod 1
=

∫

Σ×πtor
4

A6 =
1

k

∫

B×kπtor
4

F7 =
1

k

∫

B×S5

δ8 (4.4)

The upper chain of equalities represent the Aharanov-Bohm effect that a 4d string creates

on a 4d particle circling around it with a path C = ∂D. Indeed, the M5-brane that becomes

a 4d string will create a flux F4 via backreaction, and we should integrate the corresponding

potential A3 on the M2-brane worldvolume C × πtor2 to compute the induced holonomy on

the 4d particle. The computation is then carried by applying Stokes’ theorem and by

noticing that because πtor2 is k-torsion there is a 3-chain S3 such that ∂S3 = kπtor2 , and

that dF4 = δ5 with δ5 a bump 5-form transverse to the M5-brane worldvolume Σ × πtor4 .

Similarly, the lower chain represents the holonomy created by the 4d particle on a 4d string

surrounding it with Σ = ∂B, with now ∂S5 = kπtor4 and dF7 = δ8. Notice that the integral

of a bump function like δ5 or δ8 is always an integer, and so we end up with a fractional

holonomy of the form exp (2πiℓ/k) with ℓ ∈ Z. One can see that the integer ℓ in eqs. (4.3)

and (4.4) is the same integer mod k, since both quantities in the r.h.s. are the definition

of the torsion linking number L([πtor2 ], [πtor4 ]) multiplied by the 4d linking number L(Σ, C)

of eq. (2.8).

6If the manifold has discrete isometries, there can be in addition discrete gauge symmetries coming from

the metric. We touch upon them in section 5.
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To summarize, one finds that the Aharanov-Bohm phase that an M2-brane and an

M5-brane wrapped on torsion cycles create on each other is given by

exp
[

2πiL([πtor2 ], [πtor4 ]) · L(Σ, C)
]

(4.5)

Comparing with eq. (2.8), we can identify L([πtor2 ], [πtor4 ]) = np/k, and so the charges n

and p of the 4d objects correspond in the higher dimensional M-theory picture to choose

torsion cycles with appropriate linking numbers.

This M-theory picture allows to reinterpret the Abelian discrete gauge symmetries

that arise in type IIA compactifications with intersecting D6-branes [15]. Indeed, if the

G2 manifold X7 admits a weakly coupled type IIA limit with D6-branes, some of the

U(1) symmetries classified by H2(X7,Z) are downlifted to U(1) symmetries localized at

D6-branes. Massless 4d particles charged under such U(1)’s, which in type IIA are open

strings at the D6-brane intersections, correspond to M2-branes wrapping collapsed 2-cycles

of X7. The U(1) gauge symmetries that in M-theory are related to H free
2 (X7,Z) become in

type IIA D6-brane U(1) symmetries without any axion coupling, while those discrete gauge

symmetries related to TorH2(X7,Z) become D6-brane U(1)’s broken to Zk through axion

couplings. Consequently, massless 4d particles are charged under the unbroken U(1)’s if

they are M2-branes wrapped on non-torsional 2-cycles, while particles that only have Zk

charges correspond to M2-branes wrapping collapsed torsional 2-cycles of X7.

This M-theory perspective provides also a geometrization of the instanton contribution

structure (2.6), as follows. Consider a set of particles ψi with Zk charges, namely a set

of M2-branes wrapping torsion 2-cycles Di; whenever the total homology charge of the

combination is zero (in particular, the torsion classes add up to a trivial class) there exists

a 3-chain S connecting them (∂S =
∑

iDi). An M2-brane wrapped on S would describe

an instanton effect on the 4d theory, but it contains open holes. A completely consistent

instanton can be obtained by glueing M2-branes on Di, emerging from the instanton from

the 4d perspective. This is precisely the dressed instanton structure (2.6) with O =
∏

i ψi.

Also, this is the M-theory picture of a D2-brane instanton with insertions of 4d charged

matter multiplets, observed in [42–44].

4.1.2 Torsion and dimensional reduction

Interestingly, this geometrical picture that relates torsion to discrete gauge symmetries

can also be made manifest by means of dimensional reduction [14]. For this, we need to

associate to each generator of TorHp(XD,Z) a differential p-form which is also an eigenform

of the Laplacian, just like we do when we associate harmonic p-forms to the generators of

H free
p (XD,Z). In the case of torsion groups, however, these eigenforms must have a non-

zero eigenvalue and in order to reproduce the topological information of TorHp(XD,Z)

we must consider non-closed p-forms satisfying specific relations. More precisely, given

the generators of Tor Hp(XD,Z) and Tor HD−p−1(XD,Z) we consider non-closed p- and

(D − p− 1)-forms ωα and αβ such that [14]

dωα = kα
βββ dαβ = (−1)D−pkβαω̃

α (4.6)
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where ββ and ω̃α are exact eigenforms of the Laplacian which are trivial in de Rham coho-

mology but represent non-trivial elements of Hp+1(XD,Z) and H
D−p(XD,Z), respectively.

Moreover, kα
β ∈ Z must be given by

L([πtorp,α], [π
tor,β
D−p−1]) = (k−1)α

β (4.7)

so that it contains the topological information of the torsion cycles that these eigenforms

are related to. Finally, the integral of these forms satisfy
∫

XD

αρ ∧ βσ =

∫

XD

ω̃ρ ∧ ωσ = δρσ (4.8)

Including this set of non-harmonic eigenforms when performing the dimensional reduc-

tion allows to reproduce the 4d Lagrangian for Abelian discrete gauge symmetries, and in

particular displays the gauging structure discussed in section 2.1. Indeed, taking again the

above example of M-theory on 7-manifolds, for each torsion 2-cycle we need to consider an

exact 3-form α3 and a non-closed 2-form ω2, with dω2 = kβ3 and k ∈ Z. Expanding the

M-theory 3-form A3 in such eigenforms we obtain

A3 = φ(xµ) ∧ β3 + A1(x
µ) ∧ ω2 + . . . (4.9)

namely, a 4d U(1) gauge boson A1 and a 4d scalar φ. One can check that the gauge

transformation (2.4) shifts A3 by the exact 3-form d(λω2) and so it indeed leaves any 4d

quantity invariant. In particular we have that

dA3 = (dφ− kA1) ∧ β3 + dA1(x
µ) ∧ ω2 + . . . (4.10)

and so the 4d Lagrangian (2.1) arises from the dimensional reduction of the 11d kinetic term

dA3∧∗11dA3. These observations will be exploited and generalized in the next subsections

in the context of type IIB compactifications, in order to reproduce via dimensional reduction

the 4d Lagrangian of non-Abelian discrete gauge symmetries.

4.2 Non-Abelian discrete symmetries from torsion homology

Torsion classes have appeared in an example in [28] as a source of discrete non-Abelian

gauge symmetries in 5d in the AdS/CFT setup (see also [29, 30]). In this subsection we

further explore and generalize this realization in the 4d setup, unveiling that the key to

non-Abelianity lies in the existence of wedge (or cup) product relations among torsion

classes. The corresponding dimensional reduction allows an elegant derivation of a general

class of 4d theories with non-Abelian discrete gauge symmetry.

4.2.1 Non-Abelian strings and the Hanany-Witten effect

In order to describe the link between non-Abelian discrete gauge symmetries and torsion

let us consider the class of models given by type IIB compactifications to 4d. In a generic

6d manifold there are two independent torsion classes, corresponding to torsion 1-cycles

(and 4-cycles) and torsion 2-cycles (and 3-cycles)

Tor H1(X6,Z) ≃ Tor H4(X6,Z) and Tor H2(X6,Z) ≃ Tor H3(X6,Z) (4.11)
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The first class actually describes two different kinds of discrete gauge symmetries: one of

them associated to spontaneously broken U(1) symmetries that result from reducing the

RR 2-form C2 and the other to the spontaneously broken U(1)’s that result from reducing

the NSNS 2-form B2. In the latter case the 4d particles and strings charged under the

discrete gauge symmetry arise from fundamental strings wrapping torsion 1-cycles and

NSNS 5-branes wrapping torsion 4-cycles, respectively, while in the former case they arise

from D1 and D5-branes. On the other hand, the second class in (4.11) describes discrete

gauge symmetries associated to the RR 4-form C4, with charged particles and strings

arising from D3-branes wrapping torsion 3-cycles and 2-cycles, respectively.

As emphasized above, in compactifications with torsion classes the key to non-Abelianity

is encoded in the existence of relations between torsion elements. Let us be more specific

and consider the simple case where the torsion groups of X6 are given by

TorH1(X6,Z) = TorH4(X6,Z) = Zk TorH2(X6,Z) = TorH3(X6,Z) = Zk′ (4.12)

In general k 6= k′ although their precise relation is not relevant for our momentary purposes.

Naively, considering general (p, q)-strings and 5-branes, the torsion 1-cycles would seem to

produce a Zk×Zk symmetry, while also considering D3-branes in torsion cycles would add

an extra Zk′ factor. This mere Abelian structure is however promoted to a non-Abelian one

if the corresponding classes have non-trivial relations. Indeed, if the torsion 4-cycles dual

to the 1-cycles intersect non-trivially along a torsion 2-cycle, there is a non-trivial Hanany-

Witten effect [45] between the 4d strings obtained from NS5 and D5-branes wrapping the

torsion 4-cycles. Crossing the strings in 4d leads to the creation of D3-branes wrapped on

the torsion 2-cycle at the intersection of the 4-cycles, namely the creation of a 4d string

associated to the RR 4-form. This 4d string creation effect is associated to non-Abelian

discrete symmetry groups [8, 10–13, 37]. At the level of the gauge holonomies that result

from moving around the 4d strings, we have the non-Abelian relation

T̃1T̃2 = T̃3T̃2T̃1 (4.13)

among the generators T̃1, T̃2 of the two Zk’s and the generator T̃3 of Zk′ . This defines a

finite Heisenberg group (c.f. eq. (3.25)). The same result can be obtained by working out

the non-Abelian transformations undergone by particles moving around 4d strings, again

by invoking the Hanany-Witten effect [28].

4.2.2 Dimensional reduction and four-dimensional effective action

Just like in the Abelian case, this microscopic description of a non-Abelian discrete gauge

symmetry should have a macroscopic counterpart via dimensional reduction. Indeed, we

will show below how a 4d effective Lagrangian reproducing such non-Abelian symmetries

can be obtained by following the same procedure as in the Abelian case. Again, in order

to perform the dimensional reduction we need to consider a set of non-harmonic forms

satisfying (4.6), together with certain relations among them which are necessary for the

non-Abelian pattern to emerge, and are equivalent to the topological conditions which

allow for the Hanany-Witten effect. For simplicity, we will consider here the simple case
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where the torsion classes of X6 are given by (4.12). The more general case can be worked

out in a similar way, as it is explicitly done in appendix A.

More precisely, we consider a set of non-harmonic Laplacian eigenforms in X6

dγ1 = kρ2 , dρ̃4 = kζ5 (4.14)

dα3 = k′ω̃4 , dω2 = k′β3

with ρ2, ω̃4, ζ5 and β3 representing the generators of the torsion cohomology Poincaré dual

to (4.12), and such that

∫

X6

γ1 ∧ ζ5 =
∫

X6

ρ2 ∧ ρ̃4 =
∫

X6

α3 ∧ β3 =
∫

X6

ω2 ∧ ω̃4 = 1 (4.15)

In these expressions k−1 and k′−1 are the torsion linking numbers between dual p- and

(5 − p)-cycles, with p = 1, 3 respectively, and encode the monodromies which are felt

by an electric (magnetic) charge when moved in a closed loop around its dual magnetic

(electric) source. The fact that these torsion cycles have a non-trivial intersection pattern

as described above is expressed in terms of these dual forms as

ρ2 ∧ ρ2 =M ω̃4 (4.16)

with M ∈ Z, which can be integrated to7

ρ2 ∧ γ1 =M ′ α3 M ′ ∈ Z such that kM = k′M ′ (4.17)

Let us then perform dimensional reduction of the type IIB supergravity action, taking

into account the relations that we have introduced above. The relevant part of the action

written in the 10d Einstein frame is

S10d =
1

4κ210

∫

d10x

[

(−GE)
1/2

(

−Mij dB
i
2 · dBj

2 −
1

2
(F5)

2

)

+
ǫij
2
dC4 ∧Bi

2 ∧ dBj
2

]

(4.18)

where B1
2 ≡ B2 and B2

2 ≡ C2 are respectively the NSNS and RR 2-form potentials, F5 =

dC4 − C2 ∧ dB2, the matrix Mij denotes the SO(2)\SL(2,Z) coset metric

Mij =
1

Im τ

(

|τ |2 −Re τ

−Re τ 1

)

(4.19)

and τ = C0 + ie−φ the complex axio-dilaton.

7In principle, instead of (4.17) one could have chosen the more general condition

ρ2 ∧ γ1 = M ′ α3 +M ′′β3 M ′,M ′′ ∈ Z

This choice however, corresponds to gauging also the magnetic degrees of freedom and it will not be explored

here.
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In order to dimensionally reduce this action, we expand the NSNS and RR 2-forms

and the RR 4-form potentials as8

Bi
2 = biρ2 +Ai

1 ∧ γ1 i = 1, 2 (4.20)

C4 = b3ω̃4 +A3
1 ∧ α3 + V 3

1 ∧ β3 + c2 ∧ ω2

obtaining several 4d vectors and scalars. The corresponding 10d field-strengths read

dBi
2 = ηi ∧ ρ2 + dAi

1 ∧ γ1 , i = 1, 2 (4.21)

F5 = η3 ∧ ω̃4 − F 3
2 ∧ α3 + F̃ 3

2 ∧ β3 + dc2 ∧ ω2 (4.22)

where we have introduced the following 4d 1-form potentials

ηiµ ≡ ∂µb
i − kAi

µ , η3µ ≡ ∂µb
3 − k′A3

µ −Mb2η1µ (4.23)

and field-strengths

k′F 3
2 ≡ dη3 − ǫij

2
Mηi ∧ ηj , F̃ 3

2 ≡ dV 3
1 + k′c2 (4.24)

and we have made use of the relations (4.16) and (4.17). Substituting these expansions

into eq. (4.18) we get (up to total derivatives and in 4d Planck mass units)

S4d =
1

4

∫

d4x

[

(−g)1/2
(

−MijNdAi
1 · dAj

1 −MijT ηi · ηj −
R
2
(F 3

2 )
2+

+QF 3
2 · F̃ 3

2 +
S
2
(F̃ 3

2 )
2 − G

2
(dc2)

2 − G−1

2
(η3)2

)

− η0 ∧ dc2 − F̃ 3
2 ∧ F 3

2

]

(4.25)

where we have defined9

N ≡
∫

X6

γ1 ∧ ∗6γ1 , T ≡
∫

X6

ρ2 ∧ ∗6ρ2 , (4.26)

Q ≡
∫

X6

α3 ∧ ∗6β3 , R ≡
∫

X6

α3 ∧ ∗6α3 ,

S ≡
∫

X6

β3 ∧ ∗6β3 , G ≡
∫

X6

ω2 ∧ ∗6ω2 ,

Since we have not yet imposed the self-duality condition of the RR 5-form field-strength,

F5 = ∗10F5, the 4d effective action (4.25) contains redundant degrees of freedom. Making

use of

F̃ 3
2 = −F 3

2QS−1 − ∗4F 3
2 S−1 , dc2 = G−1 ∗4 η3 (4.27)

8This expansion is the most general one if we assume an underlying orientifold structure, according to

which γ1 and ρ2 must be odd and ω2, ω̃4, α3 and β3 even forms under the orientifold action. We also ignore

4d 2-forms resulting from Bi
2, as they do not play any role in what follows.

9Note that idempotency of the hodge operator imply the non-trivial relation RS + Q2 = −1, so these

quantities are not all independent.
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we finally obtain

S4d =
1

4

∫

d4x
[

(−g)1/2
(

−MijT ηi · ηj − G−1(η3)2

−MijNdAi
1 · dAj

1 + S−1(F 3
2 )

2
)

+QS−1F 3
2 ∧ F 3

2

]

(4.28)

From the first line of this equation and comparing to eq. (3.16) we observe that the 4d

axion-like scalars in this setup span a gauged scalar manifold with tangent space metric

Pab = −1

4

(

G−1 0

0 T Mij

)

, (4.29)

right-invariant 1-forms given by the eqs. (3.23) upon the following identifications

φ1 = b1 , φ2 = b2 , φ3 = b3 − M

2
b1b2 , k1 = k2 = k , k3 = k′ (4.30)

A1
µ

∣

∣

sec. 3.3
= A1

µ , A2
µ

∣

∣

sec. 3.3
= A2

µ , A3
µ

∣

∣

sec. 3.3
= A3

µ − M ′

2
(b1A2

µ + b2A1
µ) ,

and structure constants of the Heisenberg algebra H3. The example based on the Heisen-

berg manifold M̃ = H3(R)/Γ discussed in section 3.3 is thus physically realized in a large

class of type IIB compactifications with torsional homology.

4.2.3 Non-Abelian discrete gauge symmetries

As the 4d effective action (4.28) is identical to the one analyzed in section 3.3, the discrete

gauge symmetries that one obtains from it can be directly extracted from the discussion

therein. It is however illustrative to reproduce the previous 4d discussion from a 10d

perspective. In the present context, the shift symmetries of the scalars b1, b2, and b3 are

inherited from the 10d gauge transformations of B2, C2 and C4. Indeed, at the perturbative

level we have that the 10d field strengths dB2, dC2 and F5, eqs. (4.21) are invariant under

any of the following shifts

B2 → B2 + ǫ1ρ2 , C2 → C2 + ǫ2ρ2 , C4 → C4 + ǫ2ρ2 ∧B2 + ǫ3ω̃4 , (4.31)

with ǫ1,2,3 ∈ R. Hence, they are symmetries of the Lagrangian (4.18). Upon dimensional

reduction they become isometries of this axionic manifold, which at this level can be thought

to be H3. On the other hand, one should impose the discrete identifications

C4 → C4 + ω̃4 (4.32)

B2 → B2 + ρ2 ,

C2 → C2 + ρ2 , C4 → C4 + ρ2 ∧B2 ,

which in 4d become the discrete transformations

b1 → b1 + 1 , (4.33)

b2 → b2 + 1 , b3 → b3 +Mb1

b3 → b3 + 1 ,
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in agreement with eqs. (3.22) once we make use of the identifications (4.30). These sym-

metries generate a non-Abelian discrete group Γ, so that the final axionic manifold is

M̃ = H3/Γ. The corresponding algebra generators satisfy eq. (3.20) and the symplectic

Sp(2,Z) ≃ SL(2,Z) global structure of this algebra is in this context inherited from the

SL(2,Z) invariance of the 10d action.

Because of the torsion, the discrete shifts of B2, C2 and C4 above not only imply the

discrete transformations (4.33), but also discrete transformations of the 4d massive gauge

vectors Ai that must occur simultaneously with them. That is, we find that the discrete

shifts of the scalars are gauged to

A1
µ → A1

µ + ∂µλ
1 , A2

µ → A2
µ + ∂µλ

2 , (4.34)

A3
µ → A3

µ + ∂µλ
3 +M ′kλ2A1

µ +M ′b1∂µλ
2 ,

b1 → b1 + kλ1 , b2 → b2 + kλ2 , b3 → b3 +Mkb1λ2 + k′λ3 .

Compatibility with the discrete transformations (4.33) leads to a sublattice Γ̂ ⊂ Γ, as in

eqs. (3.24).

As already discussed, the gauge symmetries of the action (4.28) for non-vanishing k and

k′ are then given by the quotient P = Γ/Γ̂. It is insightful to work out the transformation

of charged fields under such discrete gauge group. For that aim, consider a 4d charged

particle ψ(x) with integer charges qI under AI
1, I = 1, 2, 3. From a 10d perspective this

corresponds to a bound state of q0 D3-branes wrapping the torsion 3-cycle above, and

q1 fundamental strings and q2 D1-branes wrapping the torsion 1-cycle. The 4d covariant

derivative is given by

Dψ(x) =
[

d+ iqIÂ
I
1

]

ψ(x) (4.35)

with Âi
1 = k−1ηi, i = 1, 2, and Â3

1 = k′−1η3. In general, under a discrete gauge transforma-

tion (4.34) the field ψ(x) will transform with a holonomy phase and a charge redefinition.

Indeed, acting on (4.35) with (4.34) we obtain the following transformation properties

under the action of P

T̃1 : ψ(x) → exp
[

2πik−1q1
]

ψ(x) (4.36)

T̃2 : ψ(x) → exp
[

2πik−1q2
]

Uψ(x)
T̃3 : ψ(x) → exp

[

2πik′−1q3
]

ψ(x)

where U is the charge redefinition

U :







q1
q2
q3






→







1 0 M ′

0 1 0

0 0 1













q1
q2
q3






(4.37)

The above monodromies can also be derived from a higher dimensional point of view, by

simply performing the discrete shifts (4.33) on the Chern-Simons actions of the correspond-

ing type IIB p-branes, and reading the induced charges before and after the shift. Note

that a particle with charge qI is indistinguishable from a particle with charge qi + kni (or
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q3+ k′n3 for the case I = 3) for ni ∈ Z, and therefore represent the same physical state, in

agreement with the underlying discrete symmetry discussed above. Moreover, due to the

non-Abelian structure the basis of charge eigenstates of T̃1 and T̃2 are not compatible with

each other, and the two types of charges cannot be simultaneously measured.

4.2.4 A simple example revisited

In order to illustrate the usefulness of the above results let us consider the simple setup

of [28], consisting on a set of N fractional D3-branes at a C3/Z3 singularity on type II

string theory. In the large N limit this setup backreacts to string theory on AdS5×S5/Z3,

dual to a certain supersymmetric SU(N)3 gauge theory with bifundamental matter. The

SCFT has a ∆(27) discrete symmetry, which can be obtained from torsion homology in

the 5d AdS dual, as described in [28]. Alternatively, we can make use of the results of the

previous subsection for torsion p-forms in order to make explicit the non-Abelian discrete

gauge symmetry directly from dimensional reduction of the backreacted setup. Indeed, in

this case the torsion homology of S5/Z3 × S1 corresponds to eqs. (4.12) with k = k′ = 3

and M = M ′ = 1 in eq. (4.16). Charged particles in the 4d theory are thus labeled by

three fractional charges 1
N (q1, q2, q3), with qI defined mod 3. In particular, the three types

of bifundamental fields described in [28] correspond to states ψr(x), r = 1, . . . , 3 with

(q1, q2, q3) = (r − 1, 0, 1). These are 4d particles which result from wrapping a D3-brane

in the torsion 3-cycle and 0, 1 or 2 fundamental strings in the torsion 1-cycle. From our

previous results, we obtain that the three generators of discrete symmetries act in these

states as

T̃1 : (ψ1, ψ2, ψ3) → (ψ1, ξψ2, ξ
2ψ3)

T̃2 : (ψ1, ψ2, ψ3) → (ψ2, ψ3, ψ1) (4.38)

T̃3 : (ψ1, ψ2, ψ3) → (ξψ1, ξψ2, ξψ3)

with ξ = e2πi/3N , in complete agreement with the results of [28].

5 Non-Abelian discrete symmetries from discrete isometries

In Kaluza-Klein compactification, isometries of the compactification manifold produce

gauge symmetries in the lower dimensional theory. This is familiar for continuous isome-

tries, but also holds for discrete isometries, suggesting a natural source for (possibly non-

Abelian) discrete gauge symmetries. Although this mechanism is seemingly different from

the description in terms of gaugings in section 3, in this section we focus on an illustrative

example which nicely fits within this framework.

Prototypical examples of compactification spaces with discrete isometries are twisted

tori. For simplicity we focus on the case of a twisted torus (T3)M (where M denotes the

first Chern class of the S1 fibration over the base T2). This space and its symmetries can

be neatly displayed by the following coset construction (see e.g. [46, 47]). Consider the set
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H3(R) of upper triangular matrices

g(x, y, z) =







1 x z + xy
2

0 1 y

0 0 1






, x, y, z ∈ R (5.1)

which forms a non-compact Heisenberg group under multiplication

g(x, y, z)g(x′, y′, z′) = g(x+ x′, y + y′, z + z′ +
1

2
(xy′ − x′y)) (5.2)

A basis of e.g. right-invariant forms ηx = dx, ηy = dy, ηz = dz − 1
2(ydx − xdy) allows

the introduction of a metric ds2 = (ηx)2 + (ηy)2 + (ηz)2 with an isometry group defined

by right multiplication, and therefore given by H3(R) itself. More precisely, we have that

the Killing vectors of this metric are given by the left-invariant vectors of H3(R), a simple

basis for them being

Xx
L = ∂x −

1

2
y∂z g(x, y, z) → g

(

x+ λx, y, z −
1

2
yλx

)

(5.3a)

Xy
L = ∂y +

1

2
x∂z g(x, y, z) → g

(

x, y + λy, z +
1

2
xλy

)

(5.3b)

Xz
L = ∂z g(x, y, z) → g(x, y, z + λz) (5.3c)

where we have also specified the continuous isometries generated upon exponentiation of

such Lie algebra elements.

The twisted torus is obtained as a left coset (T3)M = H3(R)/H3(M) of the non-

compact space H3(R) by the infinite discrete subgroup Γ̂ = H3(M) with elements of the

form







1 Mnx Mnz
0 1 Mny
0 0 1






, nx, ny, nz ∈ Z (5.4)

In other words, by imposing the identifications

g(x, y, z) ∼ g

(

x+M, y, z − M

2
y

)

∼ g

(

x, y +M, z +
M

2
x

)

∼ g(x, y, z +M) (5.5)

As the metric is made of right-invariant forms, (T3)M has a well-defined quotient metric.

On the other hand, some of the isometries of the parent space H3(M) are broken in

(T3)M . The quotient enjoys a continuous U(1) isometry along the S1 fiber, generated by

the invariant Killing vector Xz
L = Xz

R = ∂z. However, the other two vectors Xx
L and Xy

L

are not right-invariant, and so the corresponding continuous isometries disappear. Indeed,

one can see that the action of Xx
L and Xy

L is in general different for different points of
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H3(M) which are identified under (5.5). For instance,

eλxXx
L : g(x, y, z) → g

(

x+ λx, y, z −
1

2
yλx

)

(5.6)

eλxXx
L : g

(

x, y +M, z +
M

2
x

)

→ g

(

x+ λx, y +M, z +
M

2
x− 1

2
(y +M)λx

)

∼ g

(

x+ λx, y, z −
1

2
yλx +Mλx

)

and so these two actions are the same only if λx ∈ Z. A similar statement holds for the

parameter λy in (5.3b). Hence, one finds that the identifications (5.5) break two of the

continuous isometries of the parent H3(R), preserving only the discrete order-M actions

generated by

eX
x
L : g(x, y, z) → g

(

x+ 1, y, z − 1

2
y

)

, eX
y
L : g(x, y, z) → g

(

x, y + 1, z +
1

2
x

)

(5.7)

Just like Xx
L and Xy

L, these generators do not commute, but rather produce an element of

the U(1) generated by Xz
L, and realize a discrete Heisenberg group P = HM = H3(M =

1)/H3(M). This discrete non-Abelian isometry group produces a discrete non-Abelian

gauge symmetry HM in the lower-dimensional theory.10

The above construction is a particular case of a more general setup (see e.g. [48, 49]).

Given a non-compact group G, the metric constructed with right-invariant forms has G

itself as its isometry group (by right multiplication). In taking the coset G/H by a subgroup

H, some of these isometries may survive (in continuous or discrete versions). In general,

H is not a normal subgroup of G, so G/H is not a group, and cannot be the isometry

group. To identify the correct isometry group, note that a point g1 in G/H is, at the level

of G, an equivalence class of points of the form g2 = g1γ, with γ ∈ H. An isometry R

in G, mapping such g1 and g2 to g1R and g2R, is an isometry in G/H if the images are

in the same equivalence class, namely if g2R = g1Rγ
′ for some γ′ ∈ H. This requires R

to satisfy R−1γR = γ′, namely conjugation by R should leave H invariant (although not

necessarily pointwise). Those transformations form the so-called normalizer group NH of

H, and define the maximal subgroup of G such that H is normal in NH . Since H acts

trivially on G/H, the actual isometry group of G/H is NH/H.

It is easy to show that in the twisted torus the group NH3(M)/H3(M) corresponds to

the one identified above, namely HM× U(1). The simplicity of the twisted torus allows to

explicitly compute interesting restrictions imposed by the discrete symmetry on couplings

of the lower-dimensional theory, as analyzed in detail in appendix B.

It is natural to ask if, besides the above higher-dimensional description, there is a lower-

dimensional description of the discrete gauge symmetry in terms of gauging of suitable

scalars. Indeed, it is familiar that compactification on a twisted torus can alternatively be

viewed as a compactification on T3 with metric fluxes, which can be described in terms

10Note that although the twisted torus geometry has torsion cycles, the discrete gauge symmetry from

discrete isometries is associated to components of the metric, and not to p-forms reduced on torsion classes,

in contrast with the previous section.
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of gauging a Heisenberg algebra [50]. The qualitative structure of the gauging is already

manifest in the twisted torus metric, with gxz ∼ y and gyz ∼ x, as follows. A gauge

transformation of the KK gauge boson V x
µ ∼ gxµ along the circle parametrized by y (i.e.

a translation in y) shifts the vev of the scalar φ ∼ gxz, and similarly for the KK gauge

boson along x and the scalar gyz. The integer M arises as the ratio of winding numbers

of the map between full translations in the geometric circles, and the induced shifts in the

scalar manifold. The non-Abelian structure of the isometries of the scalar manifold makes

the resulting discrete gauge symmetry non-Abelian. This qualitative description can be

fleshed out by performing the dimensional reduction explicitly; this is carried out in detail

in the related but more interesting case of magnetized toroidal compactification in the next

section.

6 Magnetized branes and discrete flavour symmetries

In this section we discuss the appearance of non-Abelian discrete symmetries in magne-

tized toroidal compactifications, focusing on magnetized D-brane systems, although similar

conclusions hold for analogous heterotic models and T-dual intersecting brane models (for

review of these constructions, see [51] and references therein). These symmetries are anal-

ogous to those in the twisted torus in the previous section, since dimensional reduction of

the latter on the S1 fiber produces a T2 compactification with a constant magnetic field

for the KK gauge boson. We start our analysis with the case of magnetized T2, to make

the main ideas manifest, and also to allow contact with the earlier geometric discussion for

twisted tori; subsequently we move on and analyze the more involved system of magne-

tized T6 compactifications. For the latter, and via dimensional reduction of the 10d type

I supergravity action, we will make direct contact with the formalism of section 3.

6.1 Non-Abelian discrete symmetries and Yukawa couplings in magnetized T2

As a warm up, let us consider a T2 compactification with a U(1) gauge field background

A1 = πM (xdy − ydx) , so that F2 = 2πM dx ∧ dy (6.1)

Before introducing F2 the translations generated by ∂x and ∂y are clearly symmetries of

the system. When introducing a non-vanishing F2, even if constant along T2, they are no

longer so, since A1 depends explicitly on its coordinates x, y

A1(x+ λx, y) = A1(x, y) + λxdχx χx = πMy (6.2)

A1(x, y + λy) = A1(x, y) + λydχy χy = −πMx

Hence, if we want to leave our system unchanged, with every translation we need to perform

a gauge transformation that compensates the change in A1. Acting on a wavefunction of

charge q, this means that we need to perform the operations

ψ(x, y) → e−iqλxχxψ(x+ λx, y) = eqλxXxψ(x, y) (6.3)

ψ(x, y) → e−iqλyχyψ(x, y + λy) = eqλyXyψ(x, y)
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instead of plain translations. The above are generated by the operators Xx, Xy, defined as

(we also introduce the generator of gauge transformations XQ)

Xx = ∂x − iπMy , Xy = ∂y + iπMx , XQ = 2πi (6.4)

These are the analogues of the left-invariant vectors of the twisted torus. Indeed, they

satisfy the Heisenberg algebra [Xx, Xy] =MXQ, which exponentiates to the group

g(ǫx, ǫy, ǫQ) = exp
( ǫx
M
Xx +

ǫy
M
Xy +

ǫQ
M
XQ

)

(6.5)

g(ǫ′x, ǫ
′
y, ǫ

′
Q)g(ǫx, ǫy, ǫQ) = g

(

ǫx + ǫ′x, ǫy + ǫ′y, ǫQ + ǫ′Q +
ǫ′xǫy
2M

−
ǫxǫ

′
y

2M

)

Again, the continuous version of this group is not a symmetry of our system. The point is

that since the two-torus is compact, we need to impose well-defined boundary conditions

on our charged particles, namely

ψ(x+ 1, y) = eiqχxψ(x, y) and ψ(x, y + 1) = eiqχyψ(x, y) (6.6)

In order to be actual symmetries of the system, the actions of Xx, Xy and XQ must be

compatible with the above identifications. This is automatic for XQ, but not for Xx and

Xy, since

eiqλxXxψ(x, y + 1) = eiqχyeqλxXxψ(x, y) ⇐⇒ eiqλxM = 1 (6.7)

which is only true if λxqM ∈ Z. Similarly, we obtain that λyqM ∈ Z and so, for particles of

minimal charge q = 1 the symmetry corresponds only to a set of discrete elements together

with the gauge transformations generated by XQ, namely

P = {g(nx, ny, ǫQ) |nx, ny = 0, . . . ,M − 1; ǫQ ∈ R} = HM ×U(1) (6.8)

Notice that in order to arrive to the above conclusion it was not necessary to know

the precise form of the wavefunctions in a magnetized torus. This is to be expected be-

cause (6.8) is a symmetry group of the background, and not of its fluctuations. Nevertheless

such symmetry group should have a well-defined action on the magnetized torus wavefunc-

tions, which should transform as a particular representation under the discrete group HM .

Indeed, by solving for the q = 1 wavefunctions of a magnetized T2 one finds (see, e.g., [32])

ψj,M (z, U) = eiπMzIm z/ImU · ϑ
[

j
M

0

]

(Mz,MU) (6.9)

where U stands for the complex structure and z = x + Uy the complex coordinate of the

T2, j ∈ ZmodM is a family index and ϑ is the Jacobi theta function

ϑ

[

r

p

]

(ν, U) =
∑

l∈Z

eπi(r+l)2U e2πi(r+l)(ν+p) (6.10)
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One can now check that the action of the symmetry group (6.8) on this set is given by

g(nx, ny, ǫQ)ψ
j,M (z, U) = e2πi(ǫQ+nxny/2M)e2πi

nxj
M ψj+ny ,M (z, U) (6.11)

with nx, ny and ǫQ taken as in (6.8). Notice that acting on the vector of functions

Ψ =







ψ0,M

...

ψM−1,M






(6.12)

the action of g preserves the norm
∑

j |ψj |2 and corresponds to an element of U(M). In

particular, the discrete parameters nx, ny that generate the group HM are mapped to the

’t Hooft clock and shift M ×M matrices

P(1, 0, 0) → T̃x ≡











1

ω

. . .

ωM−1











P(0, 1, 0) → T̃y ≡











1

1

1

1











(6.13)

with ω the M -th root of unity. Hence, via its action on wavefunctions, the discrete gauge

group HM is embedded into a non-Abelian discrete subgroup of SU(M).

The above system can be equivalently described as gaugings of a T2 compactification

(see [50] for a heterotic description, and [52] for a D-brane/F-theory setup). In fact, the

gauging structure is already manifest in (6.1), as follows. A gauge transformation of the

KK gauge boson V x
µ ∼ gxµ along the circle parametrized by y (i.e. a translation in y) shifts

the vev of the Wilson line scalar ξx ∼ Ax, and similarly for the KK gauge boson along x

and the Wilson line scalar along y. The integer M arises as the ratio of winding numbers

of the map between full translations in the geometric circles and the induced shifts in the

Wilson line scalars. The non-Abelian structure is manifest in the above Heisenberg algebra,

which corresponds to the gauging algebra (3.20). In this respect, the appearance of the

discrete Heisenberg group gauge symmetry in the compactified theory fits within the general

perspective in section 3. Note that such picture implies that performing translations along

the coordinates x and y should be equivalent to performing shifts in the corresponding

axion scalars, which for the gauging associated to magnetization are the T2 Wilson lines.

Indeed, in the presence of Wilson lines the wavefunction (6.9) generalizes to

ψj,M (z + ξ, U) = eiπM(z+ξ)Im (z+ξ)/ImU · ϑ
[

j
M

0

]

(M(z + ξ),MU) (6.14)

with ξ = −ξy + Uξx, and so a translation in T2 can be traded for a change in the Wilson

line, and viceversa, in agreement with the gauging picture. This qualitative description

can be fleshed out by performing the dimensional reduction of the U(1) theory on a mag-

netized T2, as we analyze in the next section for the more complete case of magnetized T6

compactifications.

Before that, we pause to emphasize the effect of these non-Abelian discrete gauge

symmetries at the level of the 4d effective action, in particular as selection rules for charged
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matter Yukawa couplings.11 For simplicity, we consider the case where all charged matter

fields involved have equal rangeM , and transform under the discrete Heisenberg group with

the clock and shift matrices (6.13). Further possibilities, with different field multiplicities

and transformations, are illustrated by the example in section 6.3. Hence our present case

involves couplings

λijk Φ
ab
i Φbc

j Φ
ca
k (6.15)

where i, j, k = 1, . . . ,M are family indices, and a, b, c are Chan-Paton gauge indices. Since

the massless 4d fields Φi have an internal wavefunction (6.9), they also transform with the

matrices (6.13). The constraints imposed by the symmetry are

λijk = 0 if i+ j + k 6= 0 mod M

λijk = λi+1,j+1,k+1 (6.16)

These selection rules were obtained by explicit computation in [31, 32] for magnetized

and intersecting brane models, respectively; they were suspected to arise from a discrete

symmetry in [34] (see also [35]). Our analysis shows that this is not an accidental symmetry

but rather a discrete gauge symmetry present in the model.

6.2 Dimensional reduction and non-Abelian discrete symmetries

Let us now generalize the above simple picture and consider N magnetized D9-branes on

a T6 = (T2)1 × (T2)2 × (T2)3 orientifold compactification with O9 and O5-planes (the

conclusions hold for any system leading to the same 4d theory, in particular T-duals with

lower-dimensional intersecting/magnetized branes). The 10d effective action for this setup

can be suitably described in terms of the type I supergravity action

S10d =
1

2κ2

∫

d10x(−G)1/2
[

e−2φ(R+ 4∂µφ∂
µφ)− 1

4
|F̃3|2 −

1

4
|F̃7|2 − e−φTr(|F2|2)

]

(6.17)

where we have doubled the degrees of freedom of F̃3 by introducing a dual 7-form field-

strength F̃7 = − ∗ F̃3, with

F̃3 = dC2 − ω3 , F̃7 = dC6 −
1

12
ω7 (6.18)

and ω3 and ω7 respectively the 3- and 7-dimensional Chern-Simons forms

ω3 = TrV

[

A ∧ dA− 2i

3
A ∧A ∧A

]

(6.19)

ω7 = TrV

[

A ∧ dA ∧ dA ∧ dA− 4i

3
A ∧A ∧A ∧ dA ∧ dA−

−6

5
A ∧A ∧A ∧A ∧A ∧ dA+

4i

7
A ∧A ∧A ∧A ∧A ∧A ∧A

]

11That Yukawas and other couplings are constrained by discrete gauge symmetries is not only true for

magnetized D-brane models, but holds in general. For instance, one obtains selection rules on the Yukawas

arising from twisted tori compactifications, as shown in appendix B.
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In order to achieve a chiral 4d compactification we magnetize the D9-branes by considering

a background for the Yang-Mills field strength F2 of the form

F2 =
3
∑

r=1

πi

Im U r















mr
a

nr
a
Inr

a

mr
b

nr
b
Inr

b

mr
c

nr
c
Inr

c

. . .















dzr ∧ dz̄r (6.20)

where zr = dxr + U rdyr is the complexified coordinate of (T2)r, U
r its complex structure

and nrα,m
r
α ∈ Z the D9-brane ‘magnetic numbers’, with N =

∑

α n
1
αn

2
αn

3
α.

Upon dimensional reduction, and focusing on ‘diagonal’ geometric moduli, the 4d

effective theory contains 7+3N complex scalars: 3 complex structure moduli Up, 3 Kähler

moduli T p, 1 axio-dilaton S and 3N complex Wilson lines ξpα, that can be defined as [53, 54]

T p =

∫

(T2)p

C2 + ie−φJ , S =

∫

T6

C6 + ie−φVol6 , ξpα = −ξpα,y + Upξpα,x (6.21)

with J the Kähler form of T6, and Vol6 = J3/3! its volume form. The scalars ξpα,x and ξpα,y
are the real Wilson lines along the two 1-cycles of (T2)p, with periodicity [0, 2/nrα).

12

There are in addition 6+N U(1) gauge bosons in the 4d effective theory: 6 U(1) gauge

bosons coming from the isometries of the T6, that we shall represent by V x,p
µ and V y,p

µ ,

and N U(1) gauge bosons from the Cartan generators of the D9-brane U(N) gauge group,

denoted by Aα
µ in what follows.

The kinetic terms for the 4d scalars can be obtained by dimensionally reducing the

10d action (6.17) on the above background (see also [50]), resulting in13

L4d =
1

(S − S̄)2

∣

∣

∣

∣

∣

∣

DS − 1

2

3
∑

p=1

∑

α

cpα
(

ξpx,αDξ
p
y,α − ξpy,αDξ

p
x,α

)

∣

∣

∣

∣

∣

∣

2

+

+
3
∑

p=1





1

(Up − Ūp)2
|∂Up|2 + 1

(T p − T̄ p)2

∣

∣

∣

∣

∣

DT p +
1

2

∑

α

c0α
(

ξpx,αDξ
p
y,α − ξpy,αDξ

p
x,α

)

∣

∣

∣

∣

∣

2

+

+
1

Up − Ūp

∑

α

c0α
T p − T̄ p

∣

∣−Dξpy,α + UpDξpx,α
∣

∣

2

]

(6.22)

where we have defined the following covariant derivatives

DµS = ∂µS +
∑

α

d0αA
α
µ DµT

p = ∂µT
p −

∑

α

dpαA
α
µ (6.23)

Dµξ
p
x,α = ∂µξ

p
x,α +

mp
α

npα
V y,p
µ Dµξ

p
y,α = ∂µξ

p
y,α − mp

α

npα
V x,p
µ

12A different (yet common) convention in the literature for the normalization of the Wilson line scalars

is such that ξpα,x, ξ
p
α,y lay on the interval [0, 1/np

α).
13We have taken the magnetization to be actually along the vector representation of SO(2N), so that

sums over α in eq. (6.22) and following expressions do not run over the orientifold brane images.
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Notice that the coefficients of this expression

c0α = n1αn
2
αn

3
α , c1α = n1αm

2
αm

3
α , c2α = m1

αn
2
αm

3
α , c3α = m1

αm
2
αn

3
α (6.24)

d0α = m1
αm

2
αm

3
α , d1α = m1

αn
2
αn

3
α , d2α = n1αm

2
αn

3
α , d3α = n1αn

2
αm

3
α

measure the D9-, D5-, D3/D3 and D7/D7-brane charges of our system, induced on the

stack of N D9-branes by the magnetization.

In order to make contact with our general discussion of section 3, let us analyze the

symmetries of the axion-like scalars within (6.22). Due to the shift symmetries of the RR

potentials in 10d, the real scalars φ0 ≡ Re S and φr ≡ Re T r behave as axions in the 4d

effective theory with shift symmetries

φP → φP + ǫP P = 0, 1, 2, 3 (6.25)

and discrete identifications

φP ≃ φP + 1 P = 0, 1, 2, 3 (6.26)

The same occurs for the Wilson line scalars ξrα,x and ξrα,y, for whom 4d shift symmetries

descend from 10d YM gauge invariance. Setting momentarily dPα = 0, we see that in order

to have a symmetry of the action (6.22) a shift in the Wilson lines should be accompanied

with a shift in the above RR axions. More precisely we have that

ξpα,x → ξpα,x + ǫpα,x , φ0 → φ0 +
1

2
cpαξ

p
y,αǫ

p
α,x , φp → φp − 1

2
c0αξ

p
y,αǫ

p
α,x (6.27)

ξpα,y → ξpα,y + ǫpα,y , φ0 → φ0 − 1

2
cpαξ

p
x,αǫ

p
α,y , φp → φp +

1

2
c0αξ

p
x,αǫ

p
α,y

leave (6.22) invariant. We thus have the discrete identifications

ξpα,x ≃ ξpα,x +
2

npα
, φ0 ≃ φ0 + cpα

ξpy,α
npα

, φp ≃ φp − c0α
ξpy,α
npα

(6.28)

ξpα,y ≃ ξpα,y +
2

npα
, φ0 ≃ φ0 − cpα

ξpx,α
npα

, φp ≃ φp + c0α
ξpx,α
npα

Switching the coefficients dPα back on, the action (6.22) can be rewritten in the form

(3.12). In particular, it can be written as a gauged non-Abelian scalar manifold with

action (3.16), right-invariant 1-forms (c.f. eq. (3.17))

ηφ
p

µ = ∂µφ
p +

1

2

∑

α

(

−2dpαA
α
µ + c0αξ

p
x,αη

ξpy,α
µ − c0αξ

p
y,αη

ξpx,α
µ

)

(6.29)

ηφ
0

µ = ∂µφ
0 +

1

2

∑

α



2d0αA
α
µ −

3
∑

p=1

(

cpαξ
p
x,αη

ξpy,α
µ − cpαξ

p
y,αη

ξpx,α
µ

)





η
ξpx,α
µ = ∂µξ

p
x,α +

mp
α

npα
V y,p
µ

η
ξpy,α
µ = ∂µξ

p
y,α − mp

α

npα
V x,p
µ
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tangent space metric

Pab =











Pφpφp 0 0 0

0 Pφ0φ0 0 0

0 0 Pξpx,αξ
p
x,α

Pξpx,αξ
p
y,α

0 0 Pξpy,αξ
p
x,α

Pξpy,αξ
p
y,α











=















1
(T p−T̄ p)2

0 0 0

0 1
(S−S̄)2

0 0

0 0 c0α|U
p|2

(Up−Ūp)(T p−T̄ p)
− c0α(U

p+Ūp)
(Up−Ūp)(T p−T̄ p)

0 0 − c0α(U
p+Ūp)

(Up−Ūp)(T p−T̄ p)
c0α

(Up−Ūp)(T p−T̄ p)















(6.30)

and algebra of shift symmetries

[txp
α
, typα ] = c0αtφp − cpαtφ0 (6.31)

where txp
α
, typα , tφp and tφ0 denote the generators of shifts of the axion-like scalars ξpx,α,

ξpy,α, φp and φ0, respectively.

From these expressions we observe that the coefficients cPα (i.e., the D9- and D5-brane

charges our our model) determine the structure constants of the non-Abelian algebra in

the axionic manifold (φP , ξpx,α, ξ
p
y,α). On the other hand the coefficients dPα (the D3/D3 and

D7/D7 charges) specify the set of D-brane U(1)’s that become massive and the embedding

of their gauge lattice into the lattice of scalar shifts. Indeed, as one can check from (6.23),

the linear combinations of D9-brane U(1) gauge symmetries

QP =
∑

α

dPαQ
α, P = 0, 1, 2, 3 (6.32)

are spontaneously broken to discrete gauge symmetries by eating the RR scalars φP , as it

is familiar from the generalized Green-Schwarz mechanism in magnetized D9-brane com-

pactifications. Similarly, the U(1) Kaluza-Klein isometries V x,p
µ and V y,p

µ are spontaneously

broken to discrete isometries by eating Wilson line scalars.

From (6.29) one can check that under the U(1) gauge transformations the above axion-

like scalars shift according to

Qα Xp Y p

Aα
µ → Aα

µ + ∂µλ
1 V x,p

µ → V x,p
µ + ∂µλ

2 V y,p
µ → V y,p

µ + ∂µλ
3

φ0 → φ0 − d0αλ
1 φ0 → φ0 −∑α d

0
αξ

p
x,αλ2 φ0 → φ0 −∑α d

0
αξ

p
y,αλ3

φp → φp + dpαλ1 φp → φp +
∑

α d
p
αξ

p
x,αλ2 φp → φp +

∑

α d
p
αξ

p
y,αλ3

ξpy,α → ξpy,α + mp
α

np
α
λ2 ξpx,α → ξpx,α − mp

α

np
α
λ3

Aα
µ → Aα

µ + ξpx,α∂µλ
2 Aα

µ → Aα
µ + ξpy,α∂µλ

3

(6.33)

This in turn implies that these gauge generators satisfy the gauge algebra [52]

[Xp, Y p] = −m
p
α

npα
Qα (6.34)
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Nα (n1α,m
1
α) (n2α,m

2
α) (n3α,m

3
α)

Na = 3 (1, 0) (3, 1) (3,−1)

Nb = 1 (0, 1) (1, 0) (0,−1)

Nc = 1 (0, 1) (0,−1) (1, 0)

Nd = 1 (1, 0) (3,−1) (3, 1)

Table 1. Wrapping and magnetization numbers of the T-dual model to that of [31, 33] with D5

and magnetized D9-branes.

The discrete identifications (6.26) and (6.28) are mapped via the above shifts to the discrete

gauge symmetry group of the theory, which can be embedded in the continuous Lie group

that arises from (6.34). Rather than describing the most general case, in what follows

we illustrate the type of discrete gauge symmetries that one may obtain by analyzing a

semi-realistic example.

6.3 An example: flavour symmetries in a MSSM-like model

We can illustrate the application of the above general ideas by considering the MSSM-like

model of [31–33] and its global realization in terms of an orientifold of T6/(Z2×Z2) [55, 56].

The model consists of two stacks of magnetized D9-branes (stacks a and d), and two stacks

of D5-branes (stacks b and c). The wrapping and magnetization numbers are summarized

in table 1.

If brane b is not on top of the orientifold plane, the gauge group is SU(3)× SU(2)L ×
U(1)Y ×U(1)B−L×Z3.

14 The two U(1) factors are related to the diagonal U(1) generators

of the three stacks a, c and d as

QY =
1

6
(Qa − 3Qc + 3Qd) , QB−L =

Qa

3
+Qd (6.35)

whereas the remaining orthogonal combination of U(1)’s

QZ3 = 3Qa −Qd (6.36)

is anomalous and is spontaneously broken to a discrete Z3 gauge symmetry [15].15 Indeed,

observe from table 1 that the the magnetization on the D9-branes induce non-trivial D7/D7

charges

d2a = d3d = 3 , d3a = d2d = −3 (6.37)

so that from eq. (6.29) we observe that 3U(1)a−U(1)d becomes massive by combining with

the linear combination of RR axions φ2 − φ3.

The chiral spectrum of the model is summarized in table 2, and is exactly that of the

MSSM with three generations of quarks and leptons and one vector-like pair of Higgses. As

14At other particular points of the moduli space, the continuous part of the gauge group can be enhanced

to the maximal SU(4)× SU(2)L × SU(2)R gauge symmetry of this model. See [31] for details.
15More precisely, the anomalous U(1) is broken to a Z9 discrete gauge symmetry, but a Z3 ⊂ Z9 subgroup

actually corresponds to the center of SU(3). Hence, the only non-trivial discrete symmetry is Z9/Z3 ≃ Z3.
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Sector Field SU(3)× SU(2)L QY QB−L QZ3

ab QL 3(3,2) 1/6 1/3 3

ac UR 3(3̄,1) -2/3 -1/3 -3

ac∗ DR 3(3̄,1) 1/3 -1/3 -3

db L 3(1,2) -1/2 -1 1

dc NR 3(1,1) 0 1 -1

dc∗ ER 3(1,1) 1 1 -1

bc Hu (1,2) 1/2 0 0

bc Hd (1, 2̄) -1/2 0 0

Table 2. Chiral spectrum, Higgs sector and charges of the model in table 1.

it has been noticed in [15], the Z3 discrete gauge symmetry of this model is equivalent to

baryon triality [18], up to U(1)B−L and U(1)Y transformations. In particular dimension five

proton decay operators QLQLQLL and URERURDR vanish to all orders in perturbation

theory and, according to the discussion in section 7, also at the non-perturbative level.16

Besides this Z3 discrete gauge symmetry, there are additional discrete gauge symme-

tries in this model that come from the isometries of T2 × T2 × T2 and act non-trivially

on the flavour indices of the MSSM fields. Indeed, following our discussion in the previous

subsection, we observe that the four translational symmetries of the second and third 2-

tori are gauged and spontaneously broken down to Z3 discrete gauge symmetries. Together

with the above flavour-universal discrete symmetry, these symmetries form a non-Abelian

discrete gauge symmetry algebra

[X2
Z3
, Y 2

Z3
] = −[X3

Z3
, Y 3

Z3
] = −QZ3

3
+ . . . (6.38)

where the dots in the r.h.s. denote possible additional continuous U(1) generators. The

four discrete isometry generators act on the MSSM fields as

e
X2

Z3 : Xk
R → e−

2πik
3 Xk

R (6.39)

e
X3

Z3 : Xk
L → e

2πik
3 Xk

L

e
Y 2
Z3 : (X1

R, X
2
R, X

3
R) → (X2

R, X
3
R, X

1
R)

e
Y 3
Z3 : (X1

L, X
2
L, X

3
L) → (X3

L, X
1
L, X

2
L)

where k = 1, 2, 3 denotes the three generations of MSSM fields and XR and XL denote

collectively the right-handed and the left-handed MSSM fields, respectively. The resulting

finite discrete symmetry group can be thought as two copies of ∆(27) acting respectively

on the left or the right-handed MSSM fields and sharing a common flavour-universal center

that contains QZ3 .

16Baryon or lepton violating operators with dimension less than five are forbidden in this model because

of the continuous U(1)B−L gauge symmetry.
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The most interesting implications of flavour symmetries are the constraints they impose

on the flavour structure of the couplings and, more particularly, on Yukawa couplings. In

order to describe the structure of Yukawa couplings imposed by the non-Abelian discrete

symmetry in this particular model, let us write them schematically as

3
∑

i,j=1

YijX
i
LX

j
RH (6.40)

where Yij are holomorphic functions of the complex structure and the complex Wilson line

scalars. In general, under a discrete gauge transformation the MSSM fields transform as

in (6.39), so that Yij will also transform accordingly such that the sum (6.40) remains

invariant under discrete symmetry transformations. This, together with the fact that Yij
are holomorphic functions, leads to a set of constraints on the structure of the couplings.

For the particular case at hand, we find that

Y11
Y21

=
Y12
Y22

=
Y13
Y23

,
Y21
Y31

=
Y22
Y32

=
Y23
Y33

,
Y31
Y11

=
Y32
Y12

=
Y33
Y13

(6.41)

Y11
Y12

=
Y21
Y22

=
Y31
Y32

,
Y12
Y13

=
Y22
Y23

=
Y32
Y33

,
Y13
Y11

=
Y23
Y21

=
Y33
Y31

The details on the derivation of these relations can be found in appendix C. These relations

imply that Yukawa couplings in this model have the structure

(Yij) =







a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3






(6.42)

with ai and bi, i = 1, 2, 3, holomorphic functions of the moduli. Intuitively, the fields Xi
L

and Xj
R in (6.40) are triplets under two different non-Abelian factors (albeit with a common

center) associated to two different internal T2’s; their transformations must cancel against

those of Yij , which must be made up of two objects ai and bj , transforming as conjugate

triplets under the two factors.

The above result is in agreement with what was found in [31, 32] from a direct compu-

tation and in particular implies that the Yukawa matrices of this model have rank one. As

we have already mentioned, discrete gauge symmetries are exact symmetries of the theory

so this rank one structure will be preserved in the complete non-perturbative formulation

of the model. In particular, for this model the rank one texture should survive through

the instanton effects mentioned in [57]. Indeed, as we discuss in detail later on, and in

analogy with the Abelian case, non-perturbative effects will in general induce couplings

that violate the underlying continuous symmetries, but are invariant under the discrete

gauge symmetry. This results in a very much constrained flavor structure also for those

non-perturbative couplings.

6.4 Kähler potential and holomorphic variables

In the previous subsection we have made use of the holomorphic dependence of superpo-

tential Yukawa couplings on the complex structure and complexified Wilson lines in order
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to obtain the selection rules that the discrete gauge symmetry imposes on them. As we

will see in the next section, holomorphicity of the superpotential is also a key ingredient

in deriving analogous rules for non-perturbatively induced superpotential couplings. Note

however that, while the complex structure and Wilson lines transform holomorphically

under the transformations (6.33), the complex axio-dilaton and Kähler scalars defined in

eq. (6.21) in general transform non-holomorphically. Thus, the latter are not the right

variables in terms of which the superpotential and gauge kinetic functions are holomorphic

quantities.

A simple method to obtain the suitable variables consists on expressing the 4d effective

action (6.22) in terms of the second derivatives of a Kähler potential

L4d = −
∑

i,j

Kij̄∂M
i∂M̄ j (6.43)

Indeed, after some algebra we find that the following Kähler potential

K = −
3
∑

p=1

[

log(Up − Ūp) + log

(

T̂ p − ¯̂
T p − 1

2

∑

α

c0α
(ξpα − ξ̄pα)2

Up − Ūp

)]

−

− log



Ŝ − ¯̂
S +

1

2

∑

α

3
∑

p=1

cpα
(ξpα − ξ̄pα)2

Up − Ūp



 (6.44)

correctly reproduces eq. (6.22),17 where the redefined fields Ŝ and T̂ p are given by18

Ŝ = S − 1

2

∑

α

3
∑

p=1

cpα
ξpαIm ξpα
Im Up

, T̂ p = T p +
1

2

∑

α

c0α
ξpαIm ξpα
Im Up

(6.45)

In particular, the discrete identifications (6.26) and (6.28) in terms of these variables now

correspond to the holomorphic identifications (see also [59])

Ŝ ≃ Ŝ + 1 (6.46)

T̂ p ≃ T̂ p + 1

ξpα ≃ ξpα +
2

npα

ξpα ≃ ξpα +
2Up

npα
Ŝ ≃ Ŝ − cpα

npα

(

2ξpα +
Up

npα

)

T̂ p ≃ T̂ p +
c0α
npα

(

2ξpα +
Up

npα

)

17In fact, the above Kähler potential leads to an extra term in the kinetic term of the complex Wilson

line scalars that is not present in eq. (6.22)

Kξ
p

αξ̄
p

α
= −

1

Up − Ūp

∑

α

(

c0α
T p − T̄ p

−
cpα

S − S̄

)

This terms perfectly agrees with the CFT result obtained in [58]. From this point of view, this extra term

comes from the Tr(|F2|
4) term that we have neglected in eq. (6.17).

18Similarly, matter fields are also redefined by the Wilson line scalars. This redefinition can be seen for

instance from the perturbative Yukawa couplings [59]. The latter carry an exponential prefactor which

depends non-holomorphically on the Wilson line scalars, and that it is absorbed into a redefinition of the

bifundamental fields.
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We will make use of these holomorphic variables when discussing instanton effects in the

next section.

7 Instantons

As we have seen in the previous section, the presence of non-Abelian discrete gauge symme-

tries in D-brane and other string theory models directly constrain the structure of Yukawa

couplings at the perturbative level. A natural question is then if such discrete symmetries

also affect those couplings that are generated at the non-perturbative level, in particular

by instanton effects in 4d chiral compactifications. The purpose of this section is to show

that this is indeed the case, and that most of the intuition that holds for instanton effects

in compactifications with discrete Abelian symmetries generalizes to the non-Abelian case.

In order to do so, let us recall the structure of instanton induced couplings in 4d chiral

D-brane models, which is typically of the form (c.f. (2.6))

Φ1Φ2 . . .ΦN A e−Sinst. (7.1)

where

Sinst. = 2π(g−1
s V + iφ) (7.2)

is the complexification of the D-instanton volume and Φi are 4d chiral open string modes.

Finally, the prefactor A is a non-trivial function of the open and closed string moduli of the

compactification, excluding those closed string moduli that enter into D-instanton actions

Sinst.. The open string operator Φ1Φ2 . . .ΦN is non-trivially charged under a U(1) gauge

symmetry arising from a bulk D-brane, symmetry that becomes massive by eating the

axionic closed string modulus φ. Both this term and exp(−Sinst.) are not invariant under

such U(1) gauge transformations and the corresponding shift in φ, but their product is, so

that (7.1) is an allowed operator. In case that the massive U(1) symmetry is not totally

broken but a Zk subgroup remains, then exp(−Sinst.) is invariant under the action of such

Zk subgroup, and so must be Φ1 . . .ΦN , so that not all operators can be generated in the

effective theory [15].

Let us now turn to the non-Abelian case. As we have seen in section 6 when considering

discrete symmetries in D-brane models we may not only focus on axions φ arising from

the closed string sector, but also on open string axions ξα. Hence, in order to check the

transformation properties of each of the factors in (7.1) under non-Abelian transformations

we need to consider the prefactor A and its dependence on those open string axions that

enter into the definition of the non-Abelian symmetry.

The prefactor A is oftentimes difficult to obtain, but it can be explicitly computed in

examples like toroidal compactifications with magnetized and/or intersecting D-branes.19

For instance, let us consider two magnetized D9-branes on an orientifold of T6 = (T2)1 ×
(T2)2× (T2)3 with magnetic numbers (nra,m

r
a) and (nrb ,m

r
b) as in (6.20), and an Euclidean

D1-brane wrapping (T2)p’s. If this E1-brane has the appropriate zero mode structure and

19This also applies to elliptically fibered Calabi-Yau compactifications where the interaction between open

string chiral fields is localized at the elliptic fiber [60].
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assuming that dra = −drb = N , a superpotential coupling like (7.1) will be generated for

the open string fields Φab
i that transforms in the bifundamental of U(1)a×U(1)b. More

precisely we will have something of the form

e−Sinst.
∑

α

Φα1 . . .ΦαN
A′

α1
. . .A′

αN
(7.3)

where each of the factors Aαi
arises from a three-point function of open string chiral fields,

namely two fermionic zero modes of the E1-brane and a 4d chiral multiplet Φab
αi
. Since T6

is factorized, such three-point functions are given by the product of three functions of the

form

A′
δijk

= eiπMξIm ξ/ImU · ϑ
[

δijk
0

]

(Mξ,MU) (7.4)

one for each factor (T2)r r = 1, 2, 3, where for simplicity we have omitted the label r of

the T2 in all these quantities. Here U = U r is the complex structure modulus of such T2

and ξ is a linear combination of complex open string moduli in (T2)r. Namely,

Mξ = (Ibcξa + Icaξb)/d M = IabIbcIca/d
2 (7.5)

with ξα = ξrα defined as in (6.21) and Iab = Irab ≡ nram
r
b − nrbm

r
a the number of zero modes

that arise in the sector ab from (T2)r. Similarly, one can define Ica = Irca and Ibc = Irbc as

the zero modes of the E1-brane charged under U(1)a and U(1)b, respectively, arising from

(T2)r. Finally, d = g.c.d.(Iab, Ibc, Ica) and we have that

δijk =
i

Iab
+

j

Ica
+

k

Ibc
(7.6)

where i, j, k label the chiral zero modes at each D-brane sector. In particular, the index i

labels 4d chiral fields Φα in (7.3) and j, k the charged zero modes of the E1-instanton that

couple to them.

It is easy to see that (7.4) is not a holomorphic function of the open string mod-

uli ξα of the compactification. However, one may absorb the non-holomorphic prefactor

exp(iπMξIm ξ/ImU) into the definition of the instanton classical action Sinst. and the

chiral fields Φα. Indeed, as first pointed out in [59], the whole expression (7.3) can be

rewritten as

e−Ŝinst.
∑

α

Φ̂α1 . . . Φ̂αN
Aα1 . . .AαN

(7.7)

where Ŝinst. is a linear function of the holomorphic variables Ŝ, T̂ r defined in (6.45), Φ̂α are

the redefined 4d chiral fields of [59] and the prefactors Aα are now holomorphic functions

of the moduli. In the example at hand we have that Ŝinst. = T̂ p, and that (7.4) gets

replaced by

Aδijk = ϑ

[

δijk
0

]

(Mξ,MU) (7.8)

One can now check how the non-perturbative coupling transforms under the discrete

gauge symmetry, and in particular under discrete Wilson line shifts. On the one hand we

have

ξ → ξ +
1

M
Aδijk → Aδijk e

2πiδijk (7.9)
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If Iab = Ibc = Ica = d then (7.9) corresponds to the third identification in (6.46), under

which the other holomorphic variables do not transform. In particular Ŝinst. remains invari-

ant and since the product of A’s saturates all possible values j, k for the charged instanton

zero modes we obtain the transformation

e−Ŝinst.Aα1 . . .AαN
→ e−Ŝinst.Aα1 . . .AαN

e
2πi

∑
i

αi
Iab (7.10)

which means this term is invariant only if the flavor indices αi add up to a multiple of Iab,

or in other words if
∑

i

αi = 0 mod Iab (7.11)

in analogy with the selection rules for perturbative Yukawa couplings.

On the other hand we have the shift

ξ → ξ +
U

M
Aδijk → Aδijk+1/M e−πiU/Me−2πiξ (7.12)

that can be partially compensated by a simultaneous shift of the form

Ŝinst. → Ŝinst. + 2ξ + U (7.13)

as follows from the last identification in (6.46). Hence the product in the right hand

side of (7.10) remains invariant under (7.12) except for a shift in the zero mode indices

(i, j, k) → (i+ i0, j + j0, k + k0) such that

i0IbcIca + j0IabIbc + k0IcaIab = d2 (7.14)

which is always possible. Notice that Aδijk only depends on the value of the l.h.s. of (7.14),

so given a prefactor Aαi
in (7.7) there is a unique image Aα′

i
under the shift (7.14). We

then we have that the second transformation acts as

e−Ŝinst.Aα1 . . .AαN
→ e−Ŝinst.Aα′

1
. . .Aα′

N
(7.15)

and as a permutation of the chiral fields Φαi
and instanton zero modes. Hence, if the

operator (7.7) is not invariant under this shift, the whole instanton amplitude should be a

sum of operators of this form invariant under (7.15).

An example. Let us consider an example used in section 5 of [31], namely the case where

there is only one T2 and Iab = Ibc = Ica = 3. There we have that

Aδ111 = ϑ

[

0

0

]

(3ξ, 3U) = Aδ222 = Aδ333 ≡ A (7.16)

Aδ132 = ϑ

[

1/3

0

]

(3ξ, 3U) = Aδ213 = Aδ321 ≡ B

Aδ123 = ϑ

[

−1/3

0

]

(3ξ, 3U) = Aδ231 = Aδ312 ≡ C
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all the other couplings vanishing. This induces a coupling of the form

e−Ŝinst.

[

ABC
(

Φ̂3
1 + Φ̂3

2 + Φ̂3
3

)

+ (A3 +B3 + C3)Φ̂1Φ̂2Φ̂3

]

(7.17)

which is indeed invariant under the discrete shifts (7.9) and (7.12), acting as

ξ → ξ +
1

3
A→ A , B → e2πi/3B , C → e−2πi/3C (7.18)

ξ → ξ +
U

3
A → B → C → A

Notice however that none of the terms of (7.17) is invariant individually. Interestingly, for

ξ = 0 we have that A = 0 and B = −C, so (7.17) vanishes identically at that point.

8 Conclusions

In this paper we have analyzed the realization of non-Abelian discrete gauge symmetries

in field theory and 4d string compactifications, and provided a fairly general ‘macroscopic’

formulation based on the interplay between gauged non-Abelian isometries of the scalar

manifold and non-trivial field identifications. We have studied several mechanisms to gen-

erate non-Abelian discrete gauge symmetries, and shown that they indeed fall into this

formulation.

In particular we have extended the realization in [14, 28] of discrete gauge symmetries

from NSNS and RR p-form fields in compactifications with torsion homology. We have also

touched upon the discrete symmetries arising from discrete isometries of the compactifica-

tion manifold, exemplified by twisted tori compactifications. The realization of the latter

as a toroidal compactification with geometric fluxes suggests the extension to the study

of discrete symmetries in other fluxed compactifications, which we leave for future work.

It would be interesting to generalize this analysis to other geometries, in particular CY

spaces with (Abelian or non-Abelian) discrete isometries.

Finally we have described non-Abelian discrete gauge symmetries in systems of magne-

tized gauge fields in toroidal compactifications (or quotients thereof). Although we focused

on magnetized D-brane models, the results apply to analogous heterotic or T-dual intersect-

ing brane models. We have derived the symmetry microscopically (from analysis of charged

matter wavefunctions, and from dimensional reduction) and also shown its relation with

the macroscopic gauging formulation. The discrete groups typically have a Heisenberg-like

structure, with generators associated to discrete isometries of the torus geometry, commut-

ing to discrete symmetries generated by the D-brane U(1)’s (broken to discrete subgroups

as in [15]). We have shown that these symmetries imply powerful selection rules on the

Yukawa couplings of charge matter fields, including those observed in [31, 32] (and their

interpretation in [34, 35]), and the rank-one structure in certain MSSM-like models [31],

which are thus exact even at the non-perturbative level. It would be interesting to apply

our insights to discrete symmetries in other semi-realistic constructions, e.g. to comple-

ment the recent discussions of discrete symmetries in heterotic orbifolds (see [61, 62] and

references therein).
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As a final remark, note that our analysis is independent of the supersymmetry of the

models. It would be interesting to particularize onto supersymmetric compactifications,

and understand possible special properties of R-symmetries. We hope to come back to

these and other appealing properties of discrete gauge symmetries in the future.
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A Non-Abelian discrete symmetries from torsion forms: general case

We have explored in subsection 4.2 the structure of non-Abelian discrete gauge symme-

tries from the perspective of dimensional reduction, for the simplest case with torsion

groups (4.12). In this appendix we perform dimensional reduction of the type IIB action

for the more general case with arbitrary torsion homology groups (4.11). Thus, we intro-

duce a set of non-harmonic eigenforms associated to the generators of the torsion homology

groups with

dγα1 = kαβρ
β
2 , dρ̃4,β = kαβζ5,α (A.1)

dαα
3 = k′αβω̃

β
4 , dω2,β = k′αββ3,α

and ∫

X6

γα1 ∧ ζ5,β =

∫

X6

ρα2 ∧ ρ̃4,β =

∫

X6

αα
3 ∧ β3,β =

∫

X6

ω2,β ∧ ω̃α
4 = δαβ (A.2)

In these expressions k−1 and k′−1 are the linking matrices between dual p- and (5−p)-cycles,
with p = 1, 3 respectively.

We recast the torsion cycle intersection pattern in terms of these dual forms as

γα1 ∧ γβ1 = 0 , ρα2 ∧ γβ1 = Aαβ
γ α

γ
3 , ρα2 ∧ ρβ2 = Kαβ

γ ω̃
γ
4 (A.3)

where consistency with the exterior derivative requires

Aα[β
γ k

δ]
α = 0 , kαβ Kδβ

γ = k′βγ Aδα
β (A.4)

We proceed now to perform dimensional reduction of the type IIB supergravity ac-

tion eq. (4.18), taking into account these relations. Following the same reasoning than in
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subsection 4.2, we expand the NSNS and RR 2-forms and the RR 4-form as

Bi
2 = biαρ

α
2 +Ai

1,α ∧ γα1 i = 1, 2 (A.5)

C4 = b3αω̃
α
4 +A3

1,α ∧ αα
3 + V 3,α

1 ∧ β3,α + cα2 ∧ ω2,α

The corresponding 10d field-strengths read

dBi
2 = ηiα ∧ ρα2 + dAi

1,α ∧ γα1 , i = 1, 2 (A.6)

F5 = η3β ∧ ω̃γ
4 − F 3

2,α ∧ αα
3 + F̃ 3,α

2 ∧ β3,α + dcα2 ∧ ω2,α

where now

ηiα ≡ dbiα − kβαA
i
1,β , η3α ≡ db3α − k′βαA

3
1,β −Kγρ

αb
2
γη

1
ρ (A.7)

and

k′αβF
3
2,α ≡ dη3β − ǫij

2
Kρα

βη
i
α ∧ ηjρ , F̃ 3,α

2 ≡ dV 3,α
1 + k′αβc

β
2 (A.8)

Substituting into eq. (4.18) and making use of the relations (A.4) we get

S4d =
1

4

∫

d4x
[

(−g)1/2
(

−MijNαβdAi
1,α · dAj

1,β −MijT αβηiα · ηjβ−

−Rαβ

2
F 3
2,α · F 3

2,β +Qα
βF

3
2,α · F̃ 3,β

2 +
Sαβ

2
F̃ 3,α
2 · F̃ 3,β

2 − Gαβ

2
dcα2 · dcβ2−

−(G−1)αβ

2
η3α · η3β

)

− η3α ∧ dcα2 − F̃ 3,α
2 ∧ F 3

2,α

]

(A.9)

where

Nαβ ≡
∫

X6

γα1 ∧ ∗6γβ1 , T αβ ≡
∫

X6

ρα2 ∧ ∗6ρβ2 , (A.10)

Qα
β ≡

∫

X6

αα
3 ∧ ∗6β3,β , Rαβ ≡

∫

X6

αα
3 ∧ ∗6αβ

3 ,

Sαβ ≡
∫

X6

β3,α ∧ ∗6β3,β , Gαβ ≡
∫

X6

ω2,α ∧ ∗6ω2,β ,

and

RαβSβγ +Qα
βQβ

γ = −δαγ , SαβQβ
γ −Qβ

αSβγ = 0 (A.11)

The self-duality condition of the RR 5-form field-strength, F5 = ∗10F5, implies

F̃ 3,α
2 = −F 3

2,βQβ
γ(S−1)γα − ∗4F 3

2,β(S−1)βα , dcα2 = (G−1)αβ ∗4 η3β (A.12)

so we finally obtain

S4d =
1

4

∫

d4x
[

(−g)1/2
(

−MijT αβηiα · ηjβ − (G−1)αβη3α · η3β

−MijNαβF i
2,α · F j

2,β + (S−1)αβF 3
2,α · F 3

2,β

)

+Qα
γ(S−1)γβF 3

2,α ∧ F 3
2,β

]

(A.13)
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The gauge symmetries of this effective action are

A1
1,α → A1

1,α + dλ1α , A1
2,α → A2

1,α + dλ2α (A.14)

A3
1,α → A3

1,α + dλ3α +Aδβ
αk

γ
δ(A

1
1,βλ

2
γ + b1δdλ

2
β)

b1β → b1β + kαβλ
1
α , b2β → b2β + kαβλ

2
α , b3α → b3α +Kβδ

αk
α
βλ

2
αb

1
δ + k′αγλ

3
α

These correspond to a set of non-commuting discrete ZrI
β
gauge symmetries, where rIβ is

the lower integer for which (k−1)α
βriβ (or (k′−1)α

βr3β in the case of I = 3) is an integer.

We can also work out the transformation of charged fields under these discrete gauge

transformations. For that aim, we consider a 4d charged particle ψ(x) with integer charges

qαI . The 4d covariant derivative is given by

Dψ(x) =
[

d+ iqαI Â
I
1,α

]

ψ(x) (A.15)

with Âi
1,α = (k−1)α

βηiβ , i = 1, 2 and Â3
1,α = (k′−1)α

βη3β . Acting on (A.15) with (A.14) we

obtain the following transformation properties under the discrete gauge symmetry genera-

tors

T̃ γ
1 : ψ(x) → exp

[

2πi(k−1)δ
γqδ1

]

ψ(x) (A.16)

T̃ γ
2 : ψ(x) → exp

[

2πi(k−1)δ
γqδ2

]

Uψ(x)

T̃ γ
3 : ψ(x) → exp

[

2πi(k′−1)δ
γqδ3

]

ψ(x)

where U is the charge redefinition

U :







qα1
qα2
qα3






→







δαβ 0 Aγα
β

0 δαβ 0

0 0 δαβ













qβ1
qβ2
qβ3






(A.17)

B KK modes and Yukawas in twisted tori

We have seen in section 5 that non-Abelian discrete isometries of the twisted torus (T2)M =

H3(R)/H3(M) lead to non-Abelian discrete gauge symmetries in the compactified effective

theory. Thus, and in analogy to what occurs for Yukawa couplings in magnetized branes,

we expect the presence of powerful selection rules in this setup for the couplings of KK

modes. In this appendix we work out such selection rules for the three-point couplings,

this time exploiting the underlying group structure of the twisted torus.

In more general terms, for a compactification on a group manifoldG/Γ, whereG is a Lie

group and Γ ⊂ G a cocompact lattice, we expect 4d KK particles to arrange in irreducible

unitary representations of the discrete isometry group P of G/Γ. Such representations

can be explicitly worked out from the irreducible representations of G that are invariant

under Γ. In physical terms, the components of these (generically infinite dimensional)

representations correspond to wavefunctions of the particles in the 4d theory. The Clebsch-

Gordan decomposition of the tensor product of two representations (namely, the operator
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product expansion, OPE) then allows the computation of superpotential couplings in the

4d effective theory, relating overlaps of n wavefunctions to overlaps of two wavefunctions.

Since the Γ-invariant irreducible representations of G are also arranged in finite dimensional

irreducible representations of the discrete symmetry group P, the OPE must satisfy the

set of selection rules associated to the discrete charge conservation.

In what follows we illustrate this procedure with the twisted torus compactification of

section 5, for which G = H3(R) is the Heisenberg group.

B.1 KK wavefunctions in twisted tori

The irreducible unitary representations of the Heisenberg group can be worked out starting

from eq. (3.19), for instance by means of Kirillov’s orbit method (see e.g. appendix D

of [63] for details). In general, irreducible representations π(g) of non-Abelian groups are

not simple functions, but rather operators acting on a Hilbert space of functions u(~s) ∈
L2(Rp(π)) with p(π) ∈ N. For the case of the 3-dimensional Heisenberg group the complete

set of irreducible unitary representations is given by

πk(~φ)u(s) = exp

[

2πik

(

φ3 +
M

2
φ1φ2 + φ2s

)]

u(s+Mφ1) , u(s) ∈ L2(R) (B.1)

πk1,k2(
~φ) = exp

[

2πi
(

k1φ
1 + k2φ

2
)]

Γ-invariant irreducible representations can be constructed by taking sums over the lattice Γ

B(g) ≡
∑

γ∈Γ

π(γg)u(s) (B.2)

For the particular case of the Heisenberg group the complete procedure was carried out

in [63]. Taking complex coordinates, z = φ1 + Uφ2, and imposing B(g) to be eigenstates

of the Laplacian (namely, of the quadratic Casimir invariant of H3(R)), we obtain

BM
k,n,δ(z, φ

3) = ΨkM
n,δ (z) exp

(

2πikφ3
)

(B.3)

Bk(z) = exp

[

2πi
Im(kz)

Im(U)

]

where k ≡ −k2 + Ūk1, with k1,2 ∈ N. We have defined

ΨN
n,δ(z) ≡

(2π|N |) 1
4

∑

s∈Z

ψn

[

√

2π|N |
(

δ

N
+ s+

Im(z)

Im(U)

)]

exp

[

2πiNRe(z)

(

δ

N
+ s+

Im(z)

Im(U)

)]

(B.4)

with n ∈ N, δ ∈ ZN and ψn(x) the Hermite functions given by

ψn(x) ≡
1√

n!2nπ1/2
Hn(x)e

−x2/2 (B.5)

where Hn(x) are the standard Hermite polynomials.
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B.2 Yukawa couplings for KK modes

We are particularly interested in 4d particles with wavefunctions of the type (B.3) as those

carry a non-zero KK momentum along the fiber of the twisted torus and therefore see

the non-Abelian nature of the gauging. In the language of magnetized D-branes these

correspond to particles with non-trivial charge k under the gauge symmetry of the D-

brane. In such magnetized brane language, n denotes the Landau level and δ runs over the

degeneracy of the corresponding Landau level (namely, it is a flavour index).

For any given set of states (B.3) with fixed k and δ (namely, for any given Γ-invariant

representation of G with non-vanishing central charge) the ground state n = 0 (i.e., the

highest weight of the representation) can be expressed in terms of Jacobi theta functions as

BM
k,0,δ(z, φ

3) = (2π|kM |) 1
4 ϑ

[ δ
kM

0

]

(kMz; kMU) exp

[

iπkM
zIm(z)

Im(U)
+ 2πikφ3

]

(B.6)

One may easily check that (B.6) transforms under the generators of the gauge lattice Γ̂ as

φ1 → φ1 +
1

M
, φ3 → φ3 − φ2

2
, BM

k,0,δ → ωδBM
k,0,δ (B.7)

φ2 → φ2 +
1

M
, φ3 → φ3 +

φ1

2
, BM

k,0,δ → BM
k,0,δ+k

φ3 → φ3 +
1

M
, BM

k,0,δ → ωkBM
k,0,δ

with ω ≡ exp(2πi/M). As we saw in section 5, these are the generators of the discrete gauge

symmetry P = Γ/Γ′ for the level k. For instance, for k = 1 we have P = (ZM ×ZM )⋊ZM ,

and in the particular case of M = 3, P = ∆(27) as we have seen in different contexts in

the main part of the text.

Let us now focus on the OPE of irreducible representations. For for zero-th Landau

levels (B.6) the OPE can be easily worked out from the following relation between theta

functions [32]

ϑ

[

δ1
N1

0

]

(N1z1; N1U)ϑ

[

δ2
N2

0

]

(N2z2; N2U) =

∑

m∈ZN1+N2

ϑ

[

δ1 + δ2 +N1m

N1 +N2

]

(N1z1 +N2z2; (N1 +N2)U)·

· ϑ
[

N2δ1 −N1δ2 +N1N2m

N1N2(N1 +N2)

]

(N1N2(z1 − z2); N1N2(N1 +N2)U) (B.8)

which leads to,

ΨN1
0,δ1

(z1)Ψ
N2
0,δ2

(z2)

=
∑

m∈ZN1+N2

ΨN1+N2
0,δ1+δ2+N1m

(

N1z1 +N2z2
N1 +N2

)

Ψ
N1N2(N1+N2)
0,N2δ1−N1δ2+N1N2m

(

z1 − z2
N1 +N2

)

(B.9)

– 43 –



J
H
E
P
0
9
(
2
0
1
2
)
0
5
9

Setting z1 = z2 = z, M1 = M2 = M and multiplying in both sides of this equation by

e2πi(k+j)φ3
we obtain

BM
k, 0, δ1(z, φ

3)BM
j, 0, δ2(z, φ

3) =
∑

m∈ZM(k+j)

BM
k+j, 0, δ1+δ2+kmM (z, φ3)Ψ

kj(k+j)M3

0,M(jδ1−kδ2+kjmM)(0)

(B.10)

This OPE can be used to compute superpotential couplings which only involve 4d KK

modes with zero-th Landau level. For instance, we see from the above expansion that, up

to an overall normalization factor, 3-particle couplings are given by

Y(k,0,δ1)(j,0,δ2)(h,0,δ3) ≃ ΨkjhM3

0,M(jδ3−hδ2)
(0) (B.11)

together with the selection rules,

h = k + j ,
δ3 − δ1 − δ2

kM
∈ ZhM (B.12)

Let us now generalize eq. (B.10) to KK particles with higher Landau level. The key obser-

vation is that higher Landau levels can be obtained by acting with the creation operators

on the lowest Landau level (namely, by acting with the lowering operator on the highest

weight of the corresponding irreducible representation). The Heisenberg algebra has only

one creation operator. This is given by

a† ≡ 2
∂

∂z
− πNz̄ (B.13)

Indeed, from eq. (B.3) one may check that

a†ΨN
n,δ = i

√

4π|N |(n+ 1)ΨN
n+1,δ (B.14)

Acting with this operator an arbitrary number of times on both sides of eq. (B.9) and

performing some algebra, we obtain

ΨN1
n,δ1

(z1)Ψ
N2
p,δ2

(z2) =

√

(−1)n+p

(N1 +N2)n+p+1

∑

m∈ZN1+N2

n
∑

ℓ=0

p
∑

s=0

(−1)s
√

Nn+s−ℓ
1 Np+ℓ−s

2 ·

·
[(

n

ℓ

)(

p

s

)(

n+ p− ℓ− s

n− ℓ

)(

ℓ+ s

ℓ

)] 1
2

·

·ΨN1+N2
n+p−ℓ−s, δ1+δ2+N1m

(

N1z1 +N2z2
N1 +N2

)

Ψ
N1N2(N1+N2)
ℓ+s,N2δ1−N1δ2+N1N2m

(

z1 − z2
N1 +N2

)

(B.15)

Setting z1 = z2 = z, M1 = M2 = M and multiplying in both sides of the equation by

e2πi(k+j)φ3
), as we did before, we obtain the OPE for the complete set of KK modes of the

4d theory

BM
k,n, δ1(z, φ

3)BM
j, p, δ2(z, φ

3) =

√

(−1)n+p

(k + j)n+p+1M

∑

m∈ZM(k+j)

n
∑

ℓ=0

p
∑

s=0

(−1)s
√

kn+s−ℓjp+ℓ−s·

·
[(

n

ℓ

)(

p

s

)(

n+ p− ℓ− s

n− ℓ

)(

ℓ+ s

ℓ

)] 1
2

·

·BM
k+j, n+p−ℓ−s, δ1+δ2+kmM (z, φ3)Ψ

kjM3(k+j)
ℓ+s,M(jδ1−kδ2+kjmM)(0) (B.16)
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From this expression we easily read the 3-particle couplings for arbitrary KK modes in the

4d theory. Up to combinatorial and overall numeric factors, these are given by

Y(k,n,δ1)(j,p,δ2)(h,q,δ3) ∼ ΨkjhM3

n+p−q,M(jδ3−hδ2)
(0) (B.17)

together with the selection rules (B.12) and

q ∈ {0, 1, . . . , n+ p} (B.18)

C Details on the derivation of (6.41)

In order to obtain the set of constraints that the discrete symmetry imposes on the holo-

morphic Yukawa couplings Yij it is important to recall that if f(ξ) is a holomorphic function

of ξ with domain on C and is invariant under some discrete lattice Γ then f(ξ) is actually

independent of ξ. Knowing how Yij transform under the isometry generators, we can then

build holomorphic invariants of {X2
Z3
, Y 2

Z3
} and/or {X3

Z3
, Y 3

Z3
} that are independent of the

corresponding complex Wilson line scalars and that satisfy particular relations.

Let us first illustrate the procedure on a similar model with only two generations of

fields transforming as

X2
Z3

: Xk
R → e−iπkXk

R Y 2
Z3

: (X1
R, X

2
R) → (X2

R, X
1
R) (C.1)

X3
Z3

: Xk
L → eiπkXk

L Y 3
Z3

: (X1
L, X

2
L) → (X2

L, X
1
L)

with k = 1, 2. Yukawa couplings are of the form

Y =

(

Y11 Y12
Y21 Y22

)

(C.2)

Taking into account the above transformations of the fields, we observe that the following

function

A ≡ Y11
Y21

− Y12
Y22

(C.3)

is invariant under X3
Z3

and (Y 3
Z3
)2, so that a is independent of the complex Wilson line

scalar ξ3. Moreover, under Y 3
Z3

it transforms as

A→ −A (C.4)

but since acting with Y 3
Z3

is equivalent to performing a shift in ξ3, this means that a has

to be identically zero. We have therefore shown that

Y11
Y21

=
Y12
Y22

(C.5)

For the three generation model of section 6.3 the proof follows the same logic. For

instance, let us consider the following functions

A ≡ −Y11
Y21

+
Y12
Y22

+
Y13
Y23

, B ≡ Y11
Y21

− Y12
Y22

+
Y13
Y23

, C ≡ Y11
Y21

+
Y12
Y22

− Y13
Y23

(C.6)
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invariant under X3
Z3

and (Y 3
Z3
)3 and therefore independent of the complex Wilson line

scalar ξ3. Under Y 3
Z3

they transform as

A→ B → C → A (C.7)

and therefore we must have A = B = C, from which the first relation in (6.41) follows.

The other relations in (6.41) are proven similarly.
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