
UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

MASTER THESIS

HIGH PRECISION PACKET TIME-STAMPING USING NETFPGA 10 G
PLATFORM

Antonios Gavaletakis
(antonios.gavaletakis@estudiante.uam.es)

SEPTEMBER 2014

mailto:antonios.gavaletakis@estudiante.uam.es

HIGH PRECISION PACKET TIME-STAMPING USING NETFPGA 10G
PLATFORM

AUTOR: Gavaletakis Antonis

TUTOR: Dr. Gustavo Sutter

High Performance Computing and Networking

Dpto. de Ingeniería Informática

Escuela Politécnica Superior

Universidad Autónoma de Madrid

September 2014

Abstract

Abstract � High precision network measurements is an area with high interest as the perfor-
mance of the networks a�ects the quality and the cost of a service between a Network Service
Provider (NSP) and the costumer. The increase of the network speed leads the measurements of
the software system to be unreliable even though their low cost and the high con�gurability. The
solution for high network performance measurement at high network speed is hardware system
that can guarantee standard high performance.

The NetFPGA is an open source low-cost platform based on networks that permits to im-
plement network system easily due to the wide reference components that o�ers. The second
version of the NetFPGA platform designed by the Stanford University has four 10GigE SFP+
interfaces and a powerful FPGA providing the ability to implement network system over copper
and optic �ber at 1Gbps and 10Gbps.

This NetFPGA 10G project can measure the network parameters at high precision with the
technique of the time stamping. A GPS system guarantees the high precision of the time. The
dynamically generation of back-to-back packets gives the �exibility for measurements without
any recaptured �ows that no other system provides. The save of the captured packets gives the
possibility of o�-line further analysis of the network.

Index Terms � NetFPGA, network measurement, high precision, packet time-stamping,
GPS

I

High precision packet time-stamping using NetFPGA 10G platform

II

Resumen

Resumen � Medidas de red de alta precisión es un área de gran interés de como el desempeño
de las redes afecta la calidad y el costo del servicio entre un proveedor de servicios de red (NSP) y
el consumidor. El incremento de la velocidad de las redes lleva a que las mediciones por software
sean poco �ables a pesar de su bajo coste y alta con�gurabilidad. La solución para mediciones
de alto rendimiento en redes de alta velocidad son sistemas hardware que pueden garantizar alta
rendimiento estándar.

La NetFPGA es una plataforma de código abierto de bajo coste basado en redes que permite
implementar sistemas de red con facilidad debido al gran soporte de componentes de referencia
que ofrece. La segunda versión de la plataforma de NetFPGA desarrollada por la Universidad de
Stanford tiene cuatro interfaces de 10GigE de tecnología SFP+ y una potente FPGA que permite
implementar sistemas de red con conexiones de cobre y de �bra óptica de 1Gbps y 10Gbps.

Este proyecto de NetFPGA 10G puede medir parámetros de red con alta precisión con la
técnica de marca de tiempo (time-stamping). Un sistema GPS garantiza alta precisión de tiempo.
La generación dinámica de paquetes consecutivos da la �exibilidad para mediciones sin repro-
ducir trá�co anteriormente capturado, cosa que otros sistemas no pueden hacer. El guardado
de paquetes generados da la posibilidad de futuros análisis sin repetir los experimentos (análisis
o�-line).

Palabras Clave � NetFPGA, network measurement, high precision, packet time-stamping,
GPS

III

High precision packet time-stamping using NetFPGA 10G platform

IV

Agradecimientos

En primer lugar me gustaría agradecer a mi tutor Gustavo Sutter su inestimable ayuda durante
la realización de este proyecto. Él fue quien me aconsejo durante todo el trabajo y quien expuso
la principal idea para implementar el sistema que he desarrollado y me apoyo durante estos meses
de investigación.

Mención especial a los profesores Sergio López Buedo e Jorge López de Vergara por sus sabios
consejos e importantes recomendaciones.

En estos agradecimientos no podrá faltar la maravillosa ayuda que me han ofrecido durante
mi estancia en este laboratorio mis compañeros. Sin ellos el día a día hubiese sido, sin duda, más
aburrido y aun me encontraría buscando en google alguna solución. En especial a Rafa Leira
por ofrecer me esta plantilla de Latex, y por los innumerables veces que me hizo más ameno el
camino en el tren de cercanías. A Mario Ruiz le agradezco su ayuda y amistad dentro y fuera del
laboratorio y a José Zazo Rollón y David Muelas su colaboración desde el primer momento en
la implantación de este proyecto. Y para mi familia que desde Grecia me ha apoyado les dedico
las siguientes palabras.
Ευχαριστώ τους γονείς μου και τον αδερφό μου Μάριο για την συνεχή υποστήριξη τους όλο

αυτό το διάστημα που βρισκόμουν στην Ισπανία.

Τοις τολμώσιν η τύχη ξύμφορος.

(Η τύχη βοηθάει τους τολμηρούς.)

Θουκυδίδης 460-394 π.Χ

V

High precision packet time-stamping using NetFPGA 10G platform

VI

Contents

1 Introduction 1
1.1 Objective . 2
1.2 Motivation . 3
1.3 Thesis Organization . 3

2 NetFPGA 10G and OSTN 5
2.1 The NetFPGA board . 5
2.2 How to design into NetFPGA project . 6
2.3 The OSNT project . 7

2.3.1 OSNT tra�c monitor . 8

3 Measuring Network parameters 11
3.1 GPS synchronized frequency/time source . 12

4 Implementation 15
4.1 Packet Generator Module . 15

4.1.1 Rate module . 16
4.1.2 Generator Module . 17
4.1.3 Register System . 21
4.1.4 Software Analysis . 22

4.2 System Integration . 23
4.3 System veri�cation . 25

5 Evaluation 27
5.1 Theoretical limits . 27
5.2 Testing equipment . 29
5.3 Experiments . 29

5.3.1 Experiment 1: Theoretical Limits of 10Gbps Link 29
5.3.2 Experiment 2: Packet Losses . 31
5.3.3 Experiment 3: Virtual Network . 33
5.3.4 Experiment 4: Virtual Network with Delay and Packet Losses 34

5.4 Conclusions . 36

6 Conclusions and future work 37
6.1 Future Work . 38

A Packet Headers 41
A.1 IEEE 802.3 Ethernet frame . 41
A.2 IPv4 Network Layer . 42
A.3 UDP Transport Layer . 43

VII

High precision packet time-stamping using NetFPGA 10G platform

B Xilinx's Protocol Handshakes 45
B.1 AXI4-STEAM . 45

VIII CONTENTS

List of Tables

4.1 Packet Headers' name and size . 18
4.2 Fields and values of MAC header . 18
4.3 Fields and values of IP header . 19
4.4 Fields and values of UDP header . 19
4.5 Value of m_axis_tstrb . 21
4.6 Packet Generator Module's registers . 22
4.7 Rater Module's registers . 22
4.8 Rater Module's registers . 26

5.1 Pps and Throughput theoretical limits vs Payload Size 27
5.2 Computer speci�cations . 29
5.3 Experiment's 1 Network Parameters . 30
5.4 Packet Losses of 18 Bytes payload . 31
5.5 Packet Losses of 1472 Bytes payload . 31
5.6 Packet Losses of 82 Bytes payload with 64Byte packet cut 32
5.7 Packet Losses of 1472 Bytes payload with 64Byte packet cut 32
5.8 Experiment's 3 Network Parameters . 34
5.9 Experiment's 4 Network Parameters version 1 . 34
5.10 Experiment's 4 Network Parameters version 2 . 35

IX

High precision packet time-stamping using NetFPGA 10G platform

X LIST OF TABLES

List of Figures

2.1 NetFPGA 10G card components . 6
2.2 Reference pipeline of the Reference NIC project 7
2.3 Reference pipeline of the OSNT project . 9

3.1 Time stamping technique . 12

4.1 Packet Generation module . 16
4.2 Rater module's FSM . 17
4.3 Generator module's FSM . 18
4.4 Endianess . 20
4.5 AXI Stream registers' values by sending a UDP packet of 32 bytes payload 21
4.6 Wireshark capture of generated packet . 23
4.7 user_data_path_new . 24
4.8 simulation . 25
4.9 Experiment's results . 26

5.1 802.03 �ows' theoretical packets per second limits 28
5.2 802.03 �ows' theoretical throughput limits . 28
5.3 Experiment's 1 topology . 30
5.4 Experiment's 1 Throughput vs Packet Size . 30
5.5 Experiment's 3 Topology . 33
5.6 Experiment's 3 Throughput vs Packet Size . 33
5.7 Experiment's 4 Throughput vs Packet Size . 35

A.1 802.3 Ethernet packet . 42
A.2 IP header's �elds . 43
A.3 UDP header's �elds . 44

B.1 Data Transfer in an AXI-Stream Channel . 45

XI

1
Introduction

The network's performance always is getting higher and higher. The last 20 years the wired net-
works speed is 1.000 times faster, starting with 10BASE-T at 10 Mbit/s speed at the beginning
of 90s [1] and nowadays achieving 10Gbps speeds. The Ethernet evolution includes higher band-
width, improved media access control methods, and di�erent physical media. This high speed
evolution leads the packet processing like packet classi�cation, manipulation, and forwarding to
be done at very high rates [2].

Network performance is the main criterion for the service quality and service cost between
the Network Service Provider (NSP) and the costumer. The Service Level Agreement (SLA)
that speci�es the quality level of service that the service NSP and the client are agreed should be
respected and monitoring by the NSP. SLA monitoring involves the monitoring the performance
status of the o�ered service and provide relevant information to the service level management
system. The main network performance metrics (NPM) that should be measured are Availability
(Connectivity, Functionality), Loss (One Way Loss, Round Trip loss), Delay (One-Way delay,
RTT delay) and Utilization (Capacity, Bandwidth and Throughput). Consequently, the careful
networks' measuring with high precision is crucial [3].

The NPM are measured by various network monitoring technologies either software or hard-
ware. Depending on goals of the application, each one of these solutions has advantages and
disadvantages. For network measurements at high precision and speed the software solutions
have a lot of disadvantages. First of all, the software systems do not provide high precision as
they are depended on the hardware performance of the host computer that are executed. What is
more, for high precision network measurements a high performance computer is demanded which
results in high price [4]. In addition, the high rate measurement demands a lot of computer re-
sources with high CPU load witch results to high power consumption that is an important issue
nowadays. On the other side, the hardware solution guarantees high performance as the execu-
tion of the system is in depended from the computer resources. The majority of the times the
hardware systems are executed without the use of any computer. The high measurement rates
do not need more computational resources so the power consumption is always unchanged and
low.

The use of a FPGA for network measurement at high rates with high precision is the best so-
lution. A �eld-programmable gate array (FPGA) is a reprogrammable hardware that guarantees
high performance. With unprecedented logic density increases and a host of other features, such

1

High precision packet time-stamping using NetFPGA 10G platform

as embedded processors, DSP blocks, clocking, and high-speed serial at ever lower price points,
FPGAs are a compelling proposition for system of high speed network measurement. In addition,
FPGA systems are lower cost solution comparing with hardware commercial system or software
solution with high performance computer providing the same or better results. The FPGA power
consumption is always the same, at low level comparing to computer power consumption as the
execution code on the FPGA always consumes the same energy [5].

This thesis has been inspired by the need for an a�ordable high precision network measure-
ment at high rate program using packet time-stamping. This can be achieved by implementing
a con�gurable tra�c generator which time-stamps the packets with high precision using a GPS
system. In addition, as high precision measurements are needed, both the part of the packets gen-
eration and the part of the receiving and time-stamp analyzing packets should be implemented
in advance. The implementation is done in the NetFPGA 10G (network Field-Programmable
Gate Array) platform that is the low-cost recon�gurable hardware platform optimized for high-
speed networking. It includes all the logic resources, memory, and Gigabit Ethernet interfaces
necessary to build a packet generator and a high precision packet receiver [6].

To date, there is a wide variety of tools generating tra�c - both commercial and open-
source solutions, either in software or in hardware [7�9] . Unfortunately, they have important
disadvantages (inaccurate measurements, high cost).

To conclude, all these disadvantages of inaccurate measurements and high power consumption
that the software implementations have, as well as the high cost of the commercial products can be
solved with this implementation of gigabit high precision time-stamping network measurement
project on the NetFPGA 10G platform. The goal of this project is to implement a packet
generator that provides reliable time-stamp �ow generation without the pre knowledge of other
�ows with low power because of the technology of the FPGA and a receiver that can receive,
time-stamp and store tha packets to the host's hard drive.

1.1 Objective

This work is focused in the network performance measurement at high rates with high precision.
The aim is to build a system that will measure the performance parameters of throughput,
packet losses, jitter and one-way delay using the technique of the packet time-stamping. For
high precision of the measurements the new generation of the NetFPGA 10G of the Stanford is
used. The implemented system in the platform of the NetFPGA 10G is planned to be separated
into two parts: the packet generation part and the packet reception and analysis.

The goal of the sender is to generate back-to-back marked UDP packets with generation time
and sequenece number of parameterized MAC, IP, UDP headers and payload size. For high
time-stamping precision a GPS system will be used that guarantees the precise announcement
of the seconds. The generation of the packets will be done dynamically on the card without the
replication of pre-saved information. The part of the receiver is planned to be responsible for
the reception, the time-stamping and the store of the received packets at the hard disc of the
computer for further processing. The aim for the time-stamping of the received packets is to be
implemented using a GPS system. The goal is the generating part as well as the receiving part to
be implemented in the same NetFPGA card in order to avoid problems of clock synchronization.

Up to date, there have been several commercial implementations in hardware like Network
latency measurements of APCON [10] as well as in university and researching communities like
HATS: High Accurate Time stamping System Based on NetFPGA [11] and OSNT:Open Source
Network Tester [12]. Each one of these implementations has disadvantages that our system
solves. As the aim is to implement a lower cost system as commercial product, the academic
hardware of the NetFPGA is used as it has low cost and a powerful FPGA for implement big and

2 CHAPTER 1. INTRODUCTION

High precision packet time-stamping using NetFPGA 10G platform

complex systems. The implementation of [12, 13] needs a large database of stored net-�ows as
they replicated the stored �ows which are as important limitation. Aim of this implementation
is not to have this limitation, by generating and the sending of the �ows without need of a
prefabricated �ling base. The goal is the generated packets to be produced dynamically on the
card only from the preferences of the user without the pre-capture of any tra�c �ow.

1.2 Motivation

Nowadays there is need for high speed network measurements with high precision. There are
several implementations for measuring the network performance with the technique of the packet
generation in software [9] and in hardware [7, 8] as well. Network measurment systems with the
technique of the time-stamping are not so spread. The demand of a hardware implementation in
time-stamping technique is really high as high precision in time-stamping is needed. Hardware
implementation always yields high performance. The speed-up of the hardware implementations
compared to the software implementations is substantial as the low-level programming better
exploits the hardware. The already existed hardware implementations of the time-stamping
technique or are limited to measure network of 1Gbps [14] or need a big bang of pre-captured
�ows for replicating in order to measure the network.

As it is observed there is not a low-cost system that could generate dynamically packets
without the pre-captured and stored �ows and mark the packets in order to store the time-
stamped testing packets and measure networks at 10Gbps either with optical �ber connection or
copper connection.

A possible solution could be an implementation in NetFPGA 10G for the packet generation,
that combines high performance, low consumption of energy and low cost and gives the possibility
to be implemented systems that can process packets at 10Gbps either on optical �ber or copper
connection. For the time-stamping the best solution is GPS system that guarantees high precision
of timing. The high NetFPGA performance is achieved as the functionality of the system is
programmed in the powerful FPGA of the card and does not need the use of a power computer
like the software implementations. The card of the NetFPGA 10G has four SFP+ interface that
give the possibility to connect either optical �ber cables or copper cables that works at 10Gbps.

1.3 Thesis Organization

The rest of the thesis is organized as follows; Chapter 2 presents the NetFPGA 10G platform,
how a new project is designed and the OSTN project. The measuring network parameters
are presented at chapter 3. The design and the architecture of the hardware and software
implementation of our system are discussed in Chapter 4. The results of the implementation
are presented in Chapter 5. Chapter 6 summarizes and concludes this thesis by listing future
enhancements that can be implemented.

CHAPTER 1. INTRODUCTION 3

High precision packet time-stamping using NetFPGA 10G platform

4 CHAPTER 1. INTRODUCTION

2
NetFPGA 10G and OSTN

2.1 The NetFPGA board

The NetFPGA platform is used for the implementation of this system. NetFPGA (network
Field-Programmable Gate Array) is the low-cost recon�gurable hardware platform optimized for
high-speed networking that the Stanford University is developed. It is an open source hardware
and software platform designed for research and teaching. Currently there are two platforms:
NetFPGA-1G (1G) and the NetFPGA-10G (10G) [6].

For this implementation, the second newer version of the NetFPGA is used. The card has
four 10GigE SFP+ interfaces, a PCI Express interface to the host (Gen2 x8 channels), and a
Xilinx Virtex-5 TX240T FPGA for the implementation of the functionality logic. The board has
SRAM and DRAM (27 MBytes QDRII SRAM, 288 MBytes RLDRAM-II) memories and a high
bandwidth expansion connector for daughter-cards. As the card supports SFP+ extensions, the
system can work with �ber optical cables or copper cables without any changes at rates of 10Gbps
and 1Gbps. The x8 PCI Express Gen 2 that provides 5Gbps per lane is suitable for writing the
received �ows to the host's hard disk through DMA (Dynamical Memory Access). The powerful
FPGA Xilinx Virtex-5 XC5VTX240TFFG1759 is big enough to be applied the blocks of the
microprocessor, the PCIe endpoint with DMA as well as the building blocks of the system. The
big SRAM and the bigger DRAM memory of the card are suitable for or storing forwarding table
data and packet bu�ering respectively. All these components are showed at �gure 2.2. In the
following chapters it is explained how these components are used for this project.

The community of the NetFPGA apart from the hardware of the card o�ers a plenty of
implemented reference designs like NIC in 10G mode with all 4 ports active, switch at 10Gbps
and router at 10Gbps and much more. In advance, a big bank of basic building blocks of all
future designed is o�ered that implement basic functionalities of the card like PCIe endpoint with
DMA, a microprocessor, UART communication with the host, Ethernet interface core modules, a
register system, etc. The software code is available also. The software part contains the reference
NIC 10G driver. Apart from the basics functionalities of the driver that are to read and write
the packets are coming from the network interfaces and the host respectively, is to read and write
the registers of the card. This is achieved through the PCIe and the DMA that are implemented
in hardware on the card and in software on the driver. The writing of the card's registers allows
to parameterize the functionality of the card and the reading of the card's registers informs the

5

High precision packet time-stamping using NetFPGA 10G platform

software and the user about the state of the card.

Figure 2.1: NetFPGA 10G card components

2.2 How to design into NetFPGA project

All the code that it is implemented for the NetFPGA projects is open and free. All the available
reference projects implement the basic infrastructures of the cards that are the communication
between card and host and the reception and analyses of the network packets. Consequently, the
design and implementation of new project that is relative to network implementation, with the
NetFPGA platform is easier than begin to design and implement with any other FPGA platform.

The reference NIC 10G is the reference project that all the other project are based on it.
Understanding these hardware modules is essential in making the most of the available designs.
This design is a pipeline where each stage is a separate module as the �gure 2.2 illustrates.

The packets that are receives in from the network enter the device through the nf10_10g_interface
module, which is an IP that combines Xilinx XAUI and 10G MAC IP cores, in addition to an
AXI4-Stream adapter. The received packets are converted from XAUI protocol to AXI4-Stream.
In transition case the opposite conversion is executed. Five instances of this module are used,
four for each physical network interface and one for the DMA transactions.

Next, the packets enter the input arbiter module. The �ve �ows that are coming from the
�ve nf10_10g_interface instances are stored temporarily into their FIFOs and then forward to
the next module by selecting sequentially a �ow each time. The round-robin arbiter selects each
time a new non-empty queue to forward to the output port lookup module.

The output port lookup module receives the packets and decides which port a packet goes
out of. The look up scheme is simple as when the packet comes from the network it forwards it

6 CHAPTER 2. NETFPGA 10G AND OSTN

High precision packet time-stamping using NetFPGA 10G platform

to the CPU and vice versa based on the source port indication.
According to the packet's destination it is selected, the nf10_bram_output_queues module

stores it to output queues. There are �ve output queues as four are for the 10G ports and one
for the DMA block

The DMA module serves as a DMA engine. Its purpose is to read and write packets that are
receiving or sending from the CPU through the PCIe interface as well the host can access the
card registers. The Xilinx Microblaze subsystem that is implemented in the FPGA is used for
initializing the cores of the card and the host to communicate through UART with the card for
debugging.

The new modules of a new NetFPGA design should be inserted and connected between
the input and output queues. At the point of the input/output queues the information of the
received/transmit packet can be processed. The basic modules of Microblaze, DMA and AXI
interconnection should be used for having the main functionalities of communication with the
host. The standards of the AXI4-STREAM and AXI-Lite make simpler the design and the
interconnection of the modules.

Figure 2.2: Reference pipeline of the Reference NIC project

2.3 The OSNT project

The Open Source Network Tester (OSNT) is an open-source project based on NetFPGA 10G
platform that provides a tra�c generator and a capture system with 4x10Gbps SFP+ interfaces.
It is a combination of the OSNT Tra�c Generator and OSNT Tra�c Monitor features into
single FPGA device and single card. The OSNT's packet generator part can generate packets
by reproducing pre-loaded PCAP traces. For each port it can reproduce only one trace in
a continuous loop. The dimension allowed of the maximum trace dimension depend strictly
depends on the SRAM resources available on board. The packet generator does not support

CHAPTER 2. NETFPGA 10G AND OSTN 7

High precision packet time-stamping using NetFPGA 10G platform

time-stamping of the generated packets. The OSNT tra�c monitor provides packet capture
at full line-rate. In addition allows packet �ltering permitting selection of tra�c-of-interest.
The captured packets are marked with the arrival time with high precision and accurate. The
statistics can gather and store at the hard disk of the computer for further analysis.

2.3.1 OSNT tra�c monitor

This system receives the incoming packets and stores them at the hard disk of the computer. It
can capture packets at full line-rate of 10Gbps with high precision and accurate. The �gure 2.3
illustrates the architecture of the monitoring pipeline. The modules of the Physical interfaces
that are before the receive queues, are changed properly for time-stamping the incoming packets,
so the incoming packets are time-stamped when exactly enter the pipeline data path of the card.
The four incoming �ows are aggregated into one from at the Input Arbiter module and sent to
the Core Monitoring module.

The Core Monitoring module is responsible for aggregating statistics and sent it to the host
and to select and cut the packets that will be sent to the hard disk through the DMA and the
PCIe. In details, the Statistics Collector module receives the packets and calculates the average
throughput in bits per second (bps) and packets per second (pps) and count the packet number
of each protocol (UDP, TCP, Ethernet.). The �ltering stage is done by the modules Header
Extraction, TCAM and Decision Module. The 5-tuple (protocol, IP address pair and layer four
port pair) extraction is performed using an extensible packet parser able to recognize VLAN
packets. Only packets that are matched to a rule are sent to the software, while all other packets
are dropped. Another mechanism records a �xed-length part of each packet (sometimes called a
snap-length) along with a hash of the dropped part. The goal of the dropped part hash is that
if a user is interested in all packets on all interfaces it is possible to exhaust the host resources.

The software is divided into two parts; the GUI and the driver with the relevant program
for receiving and packets. The python-based GUI allows the user to interact with the HW
components (e.g., enable cut/hash, set �ltering rules, check statistics). In addition GUI informs
the user with the statistics of the card (number of packet, bits per second, packets per second,
etc.). For the storing of the receive packets it is needed a kernel level program (driver) and a user
level program. The driver receives the packets that the card sends through the PCIe using the
DMA mechanism. The driver stores temporary the packets at a share kernel/user memory. The
device driver secures performance by bypassing the Linux TCP/IP stack. A C-based application
that comes with it records the received tra�c that is temporarily stored in the shared memory
in either PCAP or PCAPNG format to the disk.

For the accurate time-stamping it is used a GPS external system that it is connected with
the NetFPGA card on AU19 General Purpose Input/Output (GPIO) pin. This pin provides
a stable pulse-per-second (PPS) signal such as that derived from a GPS receiver permits both
high long-term accuracy and the synchronization of multiple OSNT elements. Each packet is
appended with a 64-bit timestamp. The upper 32-bits count seconds, while the lower 32-bits
provide a fraction of a second with a maximum resolution of approximately 233ps. The practical
prototype resolution is 6.25ns because of the 160MHz clock of the FPGA.

8 CHAPTER 2. NETFPGA 10G AND OSTN

High precision packet time-stamping using NetFPGA 10G platform

Figure 2.3: Reference pipeline of the OSNT project

CHAPTER 2. NETFPGA 10G AND OSTN 9

High precision packet time-stamping using NetFPGA 10G platform

10 CHAPTER 2. NETFPGA 10G AND OSTN

3
Measuring Network parameters

In the IP network that the philosophy of the best-e�ort is used, it is important to know the
quality of the networks. This information is valuable in order to con�gure services that are
sensible in low packet losses, low one-way delay and low jitter like VoIP services, online games,
etc. For the network's measurements performance are used two di�erent methods: the packet
generation method and the packet time-stamping method.

The packet generation used involves the injection of probe packets into the network for
measuring the statistics results. Speci�cally, there is a system (for example a computer's network
interface) that generates a �ow of packets of the same header and payload size, on the one end,
while on the other there is a receiver that receives this �ow of packets. The generation rate is the
maximum bandwidth of the network connection. With this technique the network devices are
tested at the highest load. The metrics are calculated by observing the size, the amount and the
arrival time of the packets. The network parameters are throughput, packets per second jitter
and packet lost. Throughput characterizes the amount of data that the network can transfer per
unit of time and is measured in bits per seconds (bps). Jitter or Packet Delay Variation (PDV)
is the di�erence in end-to-end one-way delay between selected packets in a �ow with any lost
packets being ignored. Due to the devices' performance and the actual state of the network, the
statistics can be variable and might not achieve the theoretical limits.

At the packet time-stamping technique, which is the technique that is implemented in this
system, a small number of generated back-to-back packets is enough for measuring the network
parameters of the network. The generated packets are sent all together at the maximum speed
in order not to be separated between them as the �gure 3.1 illustrates. In the case where the
packets traverse a bottleneck link, a space will be added between each pair of packets. Such space
will be determined by the bit rate of the bottleneck link. The measured quality parameters are
the bandwidth, one-way delay, packet losses and jitter. The calculation of these parameters are
based on the received time and the time-stamp that each received packet. For the calculation
of the instantaneous available bandwidth (R) for each pair of packets in the train will be given
by the length in bits of a packet (L), divided by the di�erence between the arrival times of both
packets as the equation 3.1 describes.

R(i+1) =
L

Receiver T imestamp(i+1) −Receiver T imestamp(i)
(3.1)

11

High precision packet time-stamping using NetFPGA 10G platform

Figure 3.1: Time stamping technique

Based on this idea the mean available bandwidth for all packets the train is calculated.
The receiving test unit compares the send time stamp of the test packet with the time of its

reference clock(receive time). This di�erence is the one-way delay of the link. To measure the
jitter, the variation in one-way delay between subsequent packets is calculated. For the packet
losses calculation the receiving sequence number order of each packet is veri�ed.

Two key factors a�ect the resolution and accuracy of these network parameters: synchroniza-
tion error between the test units' reference clocks, and the internal inaccuracy latency error of
the measurement device itself. Both of these must be minimized to provide a meaningful one-way
delay measurement.

The most reliable and accurate approach is the GPS Receiver-Based Synchronization. This
approach embeds a networking timing source directly into one of the measurement units by using
a reliable system of GPS. GPS eliminates the inaccuracies. This method matches the sync path
to the service transport path under test, while also eliminating delays related to accessing a
remote time server like in the case of NTP-server synchronization [15].

3.1 GPS synchronized frequency/time source

For the accurate time-stamping of the packets a GPS system is used. Global Positioning System
(GPS) is a global satellite network consisting of at least 24 satellites maintained by the US De-
partment of Defense (DoD). The present system provides full 24-hour service for high precision
time broadcast and two-dimensional navigation. In operation, each of the satellites is continu-
ally broadcasting its own position and its own very precise time. Only a small adjustment -the
periodic addition of leap seconds- is needed to make this time equivalent to Universal Time Co-
ordinated (UTC). Most GPS receivers make this adjustment automatically, so the time reported
to the user is UTC. The satellites broadcast regularly recalculated and updated ephemerides, so
their position in space can be accurately calculated as well. Using this information, a ground
- based receiver can accurately track time and triangulate its position provided that there are
at least four satellites in view. Applications of GPS-based frequency and time sources include
network communications, production test and calibration and electric power distribution.

A GPS-based time source, or GPS clock, addresses the foregoing key concerns of communi-

12 CHAPTER 3. MEASURING NETWORK PARAMETERS

High precision packet time-stamping using NetFPGA 10G platform

cations providers. Frequency, accuracy and stability are similar to those obtainable from atomic
frequency standards. The GPS system o�ers time stability to within 300 ns. Typical pulse-to-
pulse jitter in GPS timing receivers however, is 40 to 60 ns. In the design of GPS receivers,
emphasis has conventionally been placed on producing a time output (1 pulse per second, or 1
pps) having a short-term average that is very accurate in relation to GPS time. Pulse-to-pulse
jitter has typically not been an overriding concern [16,17].

In any case, GPS clock synchronization eliminates the need for manual clock setting (an
error-prone process) to establish traceability to national and international standards so various
events can be correlated even when they are time-stamped by di�erent clocks. The bene�ts are
numerous and include: legally validated time stamps, regulatory compliance, secure networking,
and operational e�ciency.

There are lots of manufactures with interests of time Synchronization to GPS [17, 18]. For
this work it is used the EVK-5T model of ublox. It is low cost GPS system but it provide us the
currency that this project demands.

CHAPTER 3. MEASURING NETWORK PARAMETERS 13

High precision packet time-stamping using NetFPGA 10G platform

14 CHAPTER 3. MEASURING NETWORK PARAMETERS

4
Implementation

The hardware implementation includes the modules and their functionality of the hardware and
the software program that analyse the received packets and calculates the network parameters
in o�-line mode. In this chapter also it is illustrated the registers of the cards that are accessed.
In addition the full interconnection of the hardware modules is shown. The veri�cation of the
correct project functionality is presented.

4.1 Packet Generator Module

The Packet Generator module's purpose is to generate dynamically UDP packets and sent them to
the network. The module is parameterized through the register system by writing the appropriate
register of the card. The access of the registers is done through the PCIe, DMA system and driver.
The �elds of the UDP packets are �lled according to the user selections and the IEEE standards
as the appendixA.1 explains.

The Packet Generator module is constructed by 3 sub-modules as the �gure 4.1 illustrates:
ipif_regs module, rater module and generator module. The ipif_reg module is responsible for
communicating with the host through an AXI LITE interface and gives the parameters to the
rater and generator modules. The rater module is responsible for the frequency of generation
packets. Last, the generator constructs and sends the packets through an AXI STREAM inter-
face.

15

High precision packet time-stamping using NetFPGA 10G platform

Figure 4.1: Packet Generation module

4.1.1 Rate module

Rate is a hardware module implemented in Verilog. It is responsible for the periodical time
announcement of the packet generation. The rate module is parameterized by the host in order
to adjust the period of the packet generation and as a result the generation speed. Rater module
has two 32-bit register that adjusts the generation period. The �rst register called limit is set up
by the register system. The second register called counter is increased by +one every positive
edge of the clock. When the counter reaches the same value as the limit it reset to zero and the
one-bit generate_pulse wire is send one pulse that indicates the start of a new generation packet
as the �gure 4.2 illustrates. Each positive edge of the clock is 6.25ns as the 160MHz reference
clock de�nes.

This module is independent from the state of the generator module. This module depends
only on the reference clock of the card. The reason is that the packet generation period time
should always be constant and independence of the next connected module state that is the
Generator module . Whenever it is time to send a packet, the Rater indicates this by raising the
generate_pulse wire for one clock cycle.

16 CHAPTER 4. IMPLEMENTATION

High precision packet time-stamping using NetFPGA 10G platform

Figure 4.2: Rater module's FSM

4.1.2 Generator Module

Verilog module of Generator constructs dynamically and sends UDP packets to the next module.
The headers of the UDP packets are �lled with the selections of the user and the IEEE standards
as the appendixA.1 explains. The user preferences reach to the Generator module through the
register system that the standard library of the NetFPGA provides.

State Machine

The Generator module has one State Machine. The execution of the states constructs dy-
namically packets according to the standards and the user choices and sends the packet to the
next module at chunks of m_axis_tdata weidth (256 bits). The state machine consists from
six states as the �gure 4.3 illustrates: Wait, Prepare, Send_Header, Send_Header_Payload,
Send_Payload, End_Packet.

The state machine is initialized at the Wait state after the �rst hardware reset. While there
is not generate pulse indication the state machine remains at same state. When a new generation
pulse is arrived the state is changed at Prepare.

At the Prepare state, the new packet is constructed depending on the parameters that are
chosen. The registers that represent the three network layers, MAC, IP, and UDP are �lled
according with the parameters. This state lasts one clock.

The next state after Prepare state is Send Header where the �rst 256 bits of the packet are
sent to the next module, �lling all the wires of the AXI_STREAM protocol. It is standard that
the �rst 256 bits of the packets is part of the header. The Send_Header state lasts one cycle
before the state machine changes to Send_Header_Payload state.

Send_Header_Payload state is responsible to send the next 256 bits of the packet. As the
packet header has standard size of 336 bits, at this state it will be send 80 bits of the header
and 176 of the payload if there are. In case that there is not more payload bites to be send the
state changes to End_Packet. If there are more payload bites to be send the next state changes
to Send_Payload.

The bits of the payload are sent at chunks of 256 bits at the Send_Payload state. When
there is not more payload to be send the state changes to End_Payload by the indication of the
one-bit wire end_of_packet. When there are no more payload bits of be send the state of the
state machine changes from End_Packet to Wait.

CHAPTER 4. IMPLEMENTATION 17

High precision packet time-stamping using NetFPGA 10G platform

Figure 4.3: Generator module's FSM

Module Functionality

There are three registers that represent the three header of the packet and two more that
are for the time-stamp and the sequence number of the packet as the table 4.1 shows. The size
of the registers depends on the size of the header that the IEEE standard de�nes. The �elds
of the packets are �lled with �xed values or with user values or with calculated values that the
hardware does. The tables 4.1, 4.2, 4.3 and 4.4 illustrates the �elds' values of each header that
are �lled.

Table 4.1: Packet Headers' name and size
Reg/Wire Size in Bytes Name

reg 14 mac_header
reg 20 ip_header
reg 8 udp_header
wire 64 timestamp
reg 32 Sequence_number

Table 4.2: Fields and values of MAC header
MAC Header Values
Field Value

mac_destination User choice
mac_source User choice
mac_type 0x800

18 CHAPTER 4. IMPLEMENTATION

High precision packet time-stamping using NetFPGA 10G platform

Table 4.3: Fields and values of IP header
IP Header Values

Field Value
Version 4
IHL 5

Di�erentiated Services User choice
Tolat length Calculated value
Identi�cation Calculated value

�ags 0
Fragment O�set 0

TTL 255
Protocol 17

Header Checksum Calculated value
Source IP address User choice

Destination IP address User choice

Table 4.4: Fields and values of UDP header
UDP Header Values
Field Value

Sourch UDP address User choice
Destination UDP address User choice

Length Calculated value
Checksum 0

The values of the user are reaching to the Generator module through the register system.
They are 32-bits input wires that are connected with the ipif_regs module. All the input pa-
rameters wires have the size of the �elds that the IEEE standards de�ne.

The values that should be calculated by the hardware are the length of the IP header and
the length of the UDP header. For the length of the IP header it is calculated the bytes of the
IP, UDP header, plus the payload size in bytes. Finally, as the size of the header is standard the
length calculation is:

length = 28 + payload_size_bytes[cur_queue_stored] (4.1)

The calculation of the checksum demands two cycles of calculations. At the beginning, the
checksum �eld is initialised a zero.In the �rst cycle the header of the IP is cut in chunks of 16
bits and they are summed into the 19-bits temp register.

temp[0 : 18] = ((ip_header[0 : 15] + ip_header[16 : 31])+

(ip_header[32 : 47] + ip_header[48 : 63]))+

((ip_header[49 : 79] + ip_header[80 : 95])+

(ip_header[96 : 111] + ip_header[112 : 127]))+

(ip_header[128 : 143] + ip_header[144 : 159])

(4.2)

In the second cycle, if the temp register produced a number bigger than 16 bits, the extra
bits are summed up to a 16-bits result (sum register) which is then subtracted out of 0xFFFF.

sum[0 : 15] = temp[3 : 18] + temp[0 : 2] (4.3)

CHAPTER 4. IMPLEMENTATION 19

High precision packet time-stamping using NetFPGA 10G platform

ip_header[80 : 95] = 0xFFFF − sum[0 : 15] (4.4)

For the length of the UDP header it is calculated the bytes of the UDP header, plus the
payload size in bytes. Finally, as the size of the header is standard the length calculation is:

length = 8 + payload_size_bytes[cur_queue_stored] (4.5)

After the UDP header it is added the payload. The payload begins always with the same
32-bits �elds of the time-stamping. The time-stamp register consists of two 32-bits parts: the
seconds and the nanoseconds. The register size it is chosen so bin in order to be able to represent
the actual second. The register size of the nanosecond is big enough in order to have precision
of 6 nanoseconds. This information comes as input from the module of the GPS that controls
these registers. The serial number is register that indicates the number of the sending packet.
Every time a packet is sent, it increases +1. The serial number is used by the receiver in order
to identify lost packets. Each time a new raw of packets is send this counter is reset to zero.

These two �elds are included in the RTP header. However the RTP header is not used in this
system. First, the RTP header size is much bigger than manual mini header that is proposed.
This means that there is less overhead at each send packet. In addition, the RTP header provides
less accuracy at the type stamp as the RTP time stamp �eld is 32 bit when our proposal is 62.
Therefore RTP header is not adequate for network measurements with high precision with the
use of time-stamps.

The NetFPGA process the packet data of the network with di�erence endianness that the
data are sent in the network. Because of this, the send packet bytes should be sent inversely as
the �gure 4.4 explains.

Figure 4.4: Endianess

The size of the heads with our �new header� is always standard. Their size is 54 bytes or 432
bits. Consequently, the �rst packet data transmission is the only header as at each transmission
it is sent 256 bytes. The value of the m_axis_tstrb wire of the �rst transmission is 0xFFFFFFFF
as all the bytes are valid. In addition, in the �rst transmission the m_axis_tuser that indicates
the packet size in bytes and the source/destination port is �lled.

20 CHAPTER 4. IMPLEMENTATION

High precision packet time-stamping using NetFPGA 10G platform

Figure 4.5: AXI Stream registers' values by sending a UDP packet of 32 bytes payload

The second transition as the state machine at �gure 4.5 illustrates, header and payload data
are sent. The �rst 176 bites of the transmission are the header of the packet plus the time-
stamp and the serial number and the 80 more bytes of the transmission are payload if there are.
Depending if there is enough data to be send or not the next transmission can be either payload
data or the end of the transmission. The valid bytes of the transition are indicated by the value
of the m_axis_tstrb wire as the table 4.5 illustrates. For each valid data bit one bit of the of
m_axis_tstrb turns to one. The value of the m_axis_tuser wire is zero as it is important only
at the �rst transition. The data value is always a �xed value and the size of the value depends
on the users choices.

If there is more payload information, at each clock 256 bits of the payload is sent with
m_axis_tstrb value of 0xFFFFFFFF. For the last transmission of the data the value of the
m_axis_tstrb indicates the valid data like at the earlier occasions.

Table 4.5: Value of m_axis_tstrb
Value of m_axis_tstrb Data Valid Bytes

0x0 0
0x1 1
0x3 2
0x7 3
... ...

0x7FFFFFFF 255
0xFFFFFFFF 256

4.1.3 Register System

The register system that is implemented on the hardware of FPGA is the way that the host
communicates with the NetFPGA card. The register system modules are included in the standard
library of the NetFPGA and collate and generate addresses for all the registers and memories in
a NetFPGA project. Each module de�nes the memory size and the address that needs for the
registers at the mpd �le of its data folder. The communication is achieved through the DMA
mechanism and the PCIe interface. The driver of the NetFPGA at the software level receives and
sends the request from and to the card. The user has simple functions for reading and writing
the address of the register system. The tables 4.6 and 4.7 illustrate the name, the use and the
length of the registers for the Packet Generator module.

CHAPTER 4. IMPLEMENTATION 21

High precision packet time-stamping using NetFPGA 10G platform

Table 4.6: Packet Generator Module's registers
Packet Geretor Module

Register Name Description Size in bits
payload_size_bytes Payload size in bytes. 32

dstip Destination IP address by decadal representation. 32
srcip Source IP address by decadal representation. 32

dstport Destination port (�eld of transport layer). 32
srcport Source port (�eld of transport layer). 32

dstmac_high High 16 bits of destination MAC address. 32
dstmac_low Low 32 bits of destination MAC address. 32
srcmac_high High 16 bits of source MAC address. 32
srcmac_low Low 32 bits of sourch MAC address. 32
num_packets Number of packets to be generated. 32

num_packets_generated Generated packets number. 32
(output)

Table 4.7: Rater Module's registers
Rater Module

Register Name Description Size in bits
clk_limit Packet generator �ow rate limit. 32

packets_generated Number of generated packets 32
(output) of the Rater module.

4.1.4 Software Analysis

The hardware receiver marks them the arrival time when the packets arrived. The time-stamp
precision is at the scale of nanosecond. The packet is sent through the PCIe and the DMA to the
host memory and when the user needs to store them, executes a user level program that copies
the packet from the memory to the hard disk. The saved format is pcap. As the standard libpcap
library o�ers precision at the scale of ms for the saved packets, the new unreleased version of the
library 1.6.2 should be compiled and used. With this change the packets are saved with precision
of nanosecond that it is demanded for network measurement at 10Gbps.

The analysis program that is implemented reads the saved pcap �les and analyze them in
order to obtain the network measuring parameters of the network. The analysis program uses
the libpcap library as a result it should be compiled with the new libpcap library 1.6.2.

As input argument the program expects pcaps �le. All the packets are captured for all the
pcap �les. The time stamps and the serial number of each packet of the pcap �le are analyzed.
The arrival time-stamps of each packet is used for the calculation of the throughput. The
information of the arrival time-stamp is stored at the meta-data of the header of the packet as
the �gure 4.6 illustrates. The instant throughput is calculated with the arrival time subtraction
of two consecutive packets as the follow equation illustrates. Respectively the average throughput
is calculated.

Throughput =
L

arrival time(i+1) − arrival time(i)
(4.6)

The actual jitter is calculated with the arrival time of the three last consecutive packets as

22 CHAPTER 4. IMPLEMENTATION

High precision packet time-stamping using NetFPGA 10G platform

the follow equation shows.

Jitter = ||arrival time(i+2) − arrival time(i+1)| − |arrival time(i+1) − arrival time(i)|| (4.7)

Respectively the average jitter is calculated. The one-way delay is calculated with the arrival
time and the transition time of all the packets as the follow equation shows. Respectively the
average one-way delay is calculated.

OnewayDelay = arrival time(i) − transmition time(i) (4.8)

Figure 4.6: Wireshark capture of generated packet

4.2 System Integration

The Verilog module of the Packet generator is integrated with the OSNT tra�c monitor of the
OSNT project. The Packet generator module is connected through the AXI STEAM interface
with the �rst Tx Output Queue of the NetFPGA as the �gure 4.7 illustrates. The module is
connected with the AXI LITE bus for the communication with the host through the PCIe in
order to set the parameters of the module (number of generated packets, size of packets, etc.).
The time-stamp input of the module is connected with the wire of the time-stamp that the OSNT
tra�c monitor provides.

CHAPTER 4. IMPLEMENTATION 23

High precision packet time-stamping using NetFPGA 10G platform

The Packet generator module is set with the parameters of the user by the register system and
starts to generate and send packets of the same delay and the same packet size to the network.
The generated packets have the time-stamp GPS that provides the OSNT tra�c monitor project.

The time-stamped packets traverse the network under measurement and arrive at the inter-
faces of the NetFPGA. Then the OSNT receiver receives the packets and marks them with the
GPS active value as soon as possible. The time-stamped received packets pass the monitor core
where they are �ltered, cut and forwarded to the DMA queue. When there are packets at the
DMA queues the DMA engine sends the packets through the PCIe to the host memory. A user
level program is responsible to copy the data from the host's memory to the hard disk at pcac
form. Our software reads the saved pcaps �les and makes an o�ine analysis of the �ow. The
network parameters are calculated so the network performance is speci�ed.

Figure 4.7: user_data_path_new

24 CHAPTER 4. IMPLEMENTATION

High precision packet time-stamping using NetFPGA 10G platform

4.3 System veri�cation

The veri�cation of the system is important as it assurances the capabilities of the project. The
veri�cation part includes the simulation part and the real time execution of the project.

The simulation part includes the behavioural simulation of the module and the entire system
of the hardware part in order to verify that they work properly and the wires' values are the
expectable. In addition, wrong connection or unconnected wires are checked at this step. A
python �le which is responsible for generating the Verilog testbench is written. The python �le
initializes the network interfaces of the simulated system and writes the appropriate values of each
module registers. All the Packet Generator module's registers are set for testing the functionality
of the module. The registers and the wires of the module are observed and especially the wires
of the AXI STEAM protocol in order to verify that the restrictions are completed as the �gure
4.8 shows. The ISim simulation release version 13.4 is used for the simulations. All the wires are
connected properly and their values are the expected.

Figure 4.8: simulation

The aim of the �rst basic real experiment is to show that the card and our system can
measure a 10 Gbps network with high precision using the GPS for time-stamping the packets.
The interface nf0 is connected with the interface nf1 directly with an optical �ber. A �ow of
200 packets of 1472 bytes of payload are generated in order to verify the ability of the system
to measure the theoretical limits. The packet are generated and sent from the nf0 interface and
are received from the nf1 interface as the �gure 5.4 illustrates. The o�-line analysis demostrates
at the table 4.8.

The results reveal that the system can measure the bandwidth of a Gigabit connection with
high precision. The measured throughput is really close to the theoretical throughput limits.
The jitter is close to the period of the clock which is 6.25ns. One-way delay is at micro second
scale. 15,50% of the generated packets are not stored by the driver even though all the packets
are received from the hardware. Even though, cards of PCIe generation 2 of 8 lanes gives 40Gbps
throughout, the DMA engine of the NetFPGA card is not able to send packets to the host at
this high rate. This concludes that because of the hardware implementations there are some
limitation but for throughput measurements with generated packets of payload 1472 bytes high
precision is provided.

CHAPTER 4. IMPLEMENTATION 25

High precision packet time-stamping using NetFPGA 10G platform

Figure 4.9: Experiment's results

Table 4.8: Rater Module's registers
Payload Theoretical Measured Di�erence Jitter One-Way Packet
Size Throughput Throughput Delay Loss
Bytes Bps Bps % ns us %
1.472 9.843.953.186 9.788.530.843 -0,56 8,631 2,058 15,50

26 CHAPTER 4. IMPLEMENTATION

5
Evaluation

5.1 Theoretical limits

Maximum theoretical throughput of 802.03 and 802.11g standards are calculated in order to be
used as reference values for the experiments' execution over Ethernet. The payload limit size is
between 18 and 1472 bytes as the MAC layer segment de�nes [?].

The maximum theoretical limits of a 1 Gbps throughput connection for 802.03 are calculated
with the following formula:

pps =
Throughput

Packet Size
=

Throughput

MAC header + IP header + UDP header + payload
(5.1)

Throughput = (Frame size− 24) ∗ pps (5.2)

For the measurements the packet size used is outlined in the table 5.1:

Table 5.1: Pps and Throughput theoretical limits vs Payload Size
Packet Size Packet Useful data Payload Size Max pps Max Throughput

Bytes Bytes Bytes Bits per second
84 60 18 14.880.950 7.142.857.143
300 276 234 4.166.667 9.200.000.000
1000 976 934 1.250.000 9.760.000.000
1538 1514 1472 812.744 9.843.953.186

The bigger the payload size, the better the network's sources are utilised. However, the
theoretical total throughput is not achieved because of the packet's overhead, preamble, start
of frame delimiter, inter-frame gap and frame check sequence with total size 24 bytes. On
the other hand, with smaller payload size, smaller throughput is achieved because of the useful
information's fraction and the extra payload overhead. Fig. 5.2 shows the 802.03 link's theoretical
throughput and the �g. 5.1 shows the theoretical 802.03 link's pps.

27

High precision packet time-stamping using NetFPGA 10G platform

Figure 5.1: 802.03 �ows' theoretical packets per second limits

Figure 5.2: 802.03 �ows' theoretical throughput limits

28 CHAPTER 5. EVALUATION

High precision packet time-stamping using NetFPGA 10G platform

5.2 Testing equipment

For the experiments it is used two computers. Even though the hardware of the NetFPGA
has a high standard performance, the computer that hosts the card a�ects the performance of
the experiments as the software part of the computer is used in order to store the packets. In
addition, in some of the following experiments it is used a second computer and a network card
for simulation of a real network.

The �rst computer is used as a host for the NetFPGA card. Through this computer the card
is set in order to generate the packets that will measure the network. The NetFPGA is used as
a network receiver for capturing the packets as well. The performance of the computer a�ects
only at the moment of the packet storing at the disk.

The second computer is used as a packet repeater. The computer has a Gigabit network card
with two interfaces. The packets that are entering from the �rst interface are propagated to the
second interface. In software level delay and packet losses is added to the generated �ows. The
technical features of the two computers are presented at the table 5.2.

Table 5.2: Computer speci�cations
NetFPGA computer Virtual LAN computer

CPU Intel(R) Xeon(R) CPU E5-1620 0 Intel(R) Core(TM) i7 CPU 920
@ 3.60GHz @2.67GHz x8

RAM 16 GB 6 GB
Network NetFPGA-10G Intel Corporation 82599EB
card Xilinx Virtex-5 VTX240T 10-Gigabit SFI/SFP+
O.S Fedora 14 Ubundu 12.04

Kernel 2.6.35.14-106.fc14.x85_64 3.8.0-35 generic

5.3 Experiments

5.3.1 Experiment 1: Theoretical Limits of 10Gbps Link

This experiment is the most important as it proves the capability of the system to generate
packets with high precision at low jitter. The aim of this experiment is to measure a 10Gbps
link by generating �ows of di�erent packet sizes in order to see the di�erence between the mea-
surements. The theoretical maximum throughput is changing depending on the packet size as
the calculations of the paragraph 5.1 shown. Di�erent measured throughput is expected for each
packet size. The NF0 network interface of the NetFPGA 10G is connected with the NF1 as the
�gure 5.3 which is a 10Gbps link as the interfaces supports link at this speed. 200 packets are
generated and are sent from the hardware and are saved from the software at di�erent packet
sizes.

CHAPTER 5. EVALUATION 29

High precision packet time-stamping using NetFPGA 10G platform

Figure 5.3: Experiment's 1 topology

Table 5.3: Experiment's 1 Network Parameters
Payload Jitter One Way delay Packet Loss Packet Loss
Bytes ns us packets %
18 7.636 1.139 85 0.424
291 7.093 1.923 82 0.41
563 2.734 1.756 48 0.24
745 8.239 1.935 54 0.27
1018 8.960 2.579 66 0.33
1290 7.2931 2.189 43 0.215
1472 8.631 2.057 31 0.155

Figure 5.4: Experiment's 1 Throughput vs Packet Size

30 CHAPTER 5. EVALUATION

High precision packet time-stamping using NetFPGA 10G platform

The results of the table 5.3 shown that the system can measure the 10Gbps link with high
precision as for all the packet sizes the di�erence of the maximum theoretical and the measured
throughput is really small(-0,88% at the worst case) . The jitter is at low lever, between 2,734ns
and 8,631 ns that is almost the precision that the 160MHz clock of the FPGA provides. The
one-way delay is at the scale of us, between 1,140us and 2,579us. The percentage packet loss is
really high for all the packet sizes between 15,50% and 45,50%. At hardware level the packets
are generated and captured from hardware monitor. This disadvantage is not because of our
design but because of the standard library core DMA core of the NetFPGA. The 8 lanes of PCIe
of the card have theoretical throughput 40Gbps but in reality this throughput is not achieved.
The packet loss phenomenon is examined in detail at the experiment 2.

5.3.2 Experiment 2: Packet Losses

The experiment's 1 results revile the problem of the packet losses because of the limitations of
the DMA hardware implementation. At experiment 2 the packet loss phenomenon is examined
in detail and it is proposed a possible solution. The topology of the experiment is the same at
the experiment 1 (�gure 5.3). Flows of the same packet size are tested with di�erent number
of generated packets. The aim is to check the limit of the generated packets where there are
not packet losses and to check if the number of generated packets a�ects the packet loss. The
payload sized that are used are the smallest (18 Bytes) and the biggest (1472 Bytes) possible
that the 802.03 permits.

Table 5.4: Packet Losses of 18 Bytes payload
Number of generated Packet Loss Packet Loss

Packets Packets %
50 0 0
100 0 0
200 85 42.4
1,000 803 80.3
10,000 9680 96.7
50,000 43553 87.1
100,000 88935 88.9

Table 5.5: Packet Losses of 1472 Bytes payload
Number of generated Packet Loss Packet Loss

Packets Packets %
50 0 0
100 6 6
200 31 15.5
1,000 229 22.9
10,000 3630 36.2
50,000 12720 25.4
100,000 25151 25.1

CHAPTER 5. EVALUATION 31

High precision packet time-stamping using NetFPGA 10G platform

The results of the tables 5.4 and 5.5 show that for both payload there is not packet losses
if there are send less than 100 packets. The high packet per second (pps) of the small payload
a�ects to the packet losses. It concludes that the more pps the more packet losses there are. The
di�erence between the two di�erent packet sizes is 49%. For generated number packets bigger
than 1000 the percentage losses is almost unchanged for both payload sizes.

Solution

The packet losses, as it is mentioned earlier, are an e�ect of the DMA implementation at the
NetFPGA. In order to prove it and provide a quick solution of this problem there will be stored
a certain size of the captured packet. This experiment is the same as the experiment 2 with the
di�erence that the traveled information from the hardware to the software through the PCIe and
the DMA mechanism will be less. With this technique the throughput is reduced as at the same
time less information is sent. All the received packets are cut at 64 bytes that is enough in order
to include the transition time stamp and the sequence number.

Table 5.6: Packet Losses of 82 Bytes payload with 64Byte packet cut
Number of generated Packet Loss Packet Loss

Packets Packets %
50 0 0
100 4 4
200 90 45
1,000 803 80.3
10,000 5424 54.2
50,000 8706 17.4
100,000 43721 43.7

Table 5.7: Packet Losses of 1472 Bytes payload with 64Byte packet cut
Number of generated Packet Loss Packet Loss

Packets Packets %
50 0 0
100 0 0
200 0 0
1,000 0 0
10,000 124 1.24
50,000 128 0.25
100,000 652 0.65

The smaller size of stored packet a�ects dramatically the packet losses. Less packet losses
are observed for both di�erent packet sizes. For the 1472 bytes of sent packet the packet losses
are almost 0 as the pps of the generated �ow is lower than the �ows of the 18 bytes. On the
other hand, the �ows with the small payload size and 64bytes packet cut still have a big amount
of packet losses. This is because the small packet has size 60bytes so with the process of cutting

32 CHAPTER 5. EVALUATION

High precision packet time-stamping using NetFPGA 10G platform

the packet size remains the same size. The experiment reveals that the problem is spotted at the
DMA throughput and not at the implementation of our system. Concluding, the problem of the
packet losses can be solved either by changing the DMA engine of the NetFPGA that is a really
painful and time-cost process or by cutting the received packet and save the possible smallest
size.

5.3.3 Experiment 3: Virtual Network

The experiment's goal is to measure the network performance of a virtual network using our
system. A computer and a network card with spesi�cation of the table 5.2 are used for the
simulation of the virtual LAN. The generated packets are sent from the nf0 interface of the
NetFPGA. The packets enter the eth1 interface of the network card and are propagated from
the eth2 interface as the �gure 5.5 illustrates. Firstly, IP forwarding is enabled on your system
in order to forward packets from one interface to the other. Then, forwarding rules are inserted
at the iptables. The computer simulates a real network by adding delay, jitters and adjusts the
throughput. 200 packets are generated and are sent from the hardware at di�erent packet sizes.

Figure 5.5: Experiment's 3 Topology

Figure 5.6: Experiment's 3 Throughput vs Packet Size

CHAPTER 5. EVALUATION 33

High precision packet time-stamping using NetFPGA 10G platform

Table 5.8: Experiment's 3 Network Parameters
Payload Jitter One Way delay Packet Loss Packet Loss
Bytes ns us packets %
18 463.521 290.189 0 0
290 2237.964 361.897 0 0
563 647.565 326.849 0 0
745 655.494 311.315 0 0
1017 727.156 299.271 0 0
1290 583.045 225.149 0 0
1472 677.954 255.081 0 0

The intermediate computer apparently changed the measured throughput as it is much more
less than the maximum theoretical limit for all the packet sizes. The di�erences are between
97.75% and 38.51% as the �gure x illustrates. The extra network component is added a high
jitter at the generated packets compared with the results of the table x from the experiment
1. The di�erences are between 456 ns and 2,237ns. The result is logic as the packets from the
network should travel all the way up to the kernel in order to retransmit. Retransmission is not
done at hardware level but at kernel level. This explanation justi�es the extra one way delay
of the packet. The extra delay is between 223us and 359us. There are not packets losses at
this experiment because the packets are sent with lower throughput back to NetFPGA and with
high jitter so probably the NetFPGA bu�ers are not saturated. Concluding the extra network
re-transmitter adds high jitter to the packets, one way delay and reduces the throughput.

5.3.4 Experiment 4: Virtual Network with Delay and Packet Losses

The aim of this experiment is to measure a more realistic network where there are packet losses
and delays. Packet losses can be appeared in networks where there works at high picks and the
bu�ers of the routers are getting full very often. The delay is appeared because the packets travel
through di�erent traces and the packets should wait at the FIFOs of the routers in order to be
routed.

The simulation of these parameters is done at software level using the tc tool. There are
done two versions of this experiment. At the �rst version, the tc tool is set to add 120ms delay
and 10% packet losses. At the second version, it is set 520ms delay and 50% packet losses. The
topology of the experiment is the same as at the experiment 3 (�gure 5.5). 200 packets are
generated of di�erent packet size.

Table 5.9: Experiment's 4 Network Parameters version 1
Payload Jitter One Way delay Packet Loss Packet Loss
Bytes ns us packets %
18 1,398.149 520,337.867 99 49.5
290 2,720.999 520,325.076 102 51
563 1,660.937 520,287.676 89 44.5
745 115.851 520,234.750 98 49
1,017 791.107 520,127.161 95 47.49
1,290 1,543.000 520,238.212 106 53
1,472 2082.200 520,223.024 112 56

34 CHAPTER 5. EVALUATION

High precision packet time-stamping using NetFPGA 10G platform

Table 5.10: Experiment's 4 Network Parameters version 2
Payload Jitter One Way delay Packet Loss Packet Loss
Bytes ns us packets %
18 976.837 120,271.236 27 13.5
290 1,481.220 120,310.471 20 10
563 2,119.191 120,293.261 20 10
745 1,376.653 120,290.819 26 13
1,017 783.122 120,262.754 18 9
1,290 1,195.787 120,242.318 23 11.5
1,472 13.000 120,188.831 56 28

Figure 5.7: Experiment's 4 Throughput vs Packet Size

The new added parameters of the packet loss and the delay of the packets are appeared
correctly at our measurements. At the �rst version the one-way delay is changed approximately
to 120,000.000 us and at the second to 520,000.00us which is the parameters of the packet delay
of the retransmiter. The percentage packet loss of the measurements is at the �rst version close
to 10% and at the second version close to 50%. The jitter is increased about 1,000ns in all the
cases because of the extra calculation overhead of the new rules that are added. This extra
calculation overhead a�ects the calculated throughput of the link. This is the reason why the
calculated throughput is less than the theoretical maximum throughput. The processing of the
received �ows at software level produce this unexpected form of the throughput between the �rst
and the second version as in some cases the version's 1 throughput is greater than the second's
and some other cases less.

CHAPTER 5. EVALUATION 35

High precision packet time-stamping using NetFPGA 10G platform

5.4 Conclusions

The experiments proved that our system can measure 10Gbps networks with high precision. The
generated packets have really low jitter and a GPS time-stamping at precision of ns. A limitation
at the storing of the packets is observed by measuring of the packet losses, but this problem can
be solved easily by cutting the big packet to smaller size. The minimum size that the packets
can be cut is the size where the time-stamp and the sequence number are included.

It is also observed that the more software part is involved the worst measurements are ob-
served. At the experiment where it is used an extra computer for simulating a virtual network
the calculated throughput was lower than without. The hardware parts of the network (network
card, connections) permits to achieve the theoretical limits of the 10Gbps but the software imple-
mentation limits the measurements of the throughput. The rest of the network parameters(jitter
and one-way delay) are not changed dramatically.

36 CHAPTER 5. EVALUATION

6
Conclusions and future work

Network Measuring is a crucial issue as the performance of the of the networks a�ects the
reputation, the costing and the marketing of the service provides. The measurements should be
done with high precision for reliable results. The high rates of the networks make this process
more demanding and di�cult.

Network measurement with the use of time-stamping is an area with small progress as it is a
technique than need high performance system in order to provide high precision measurements.
Network measurement systems are implemented over both hardware and software platforms.
Software platforms exist both as open-source and free-ware, and as closed source commercial
products. Software platforms are more widely used because of their �exibility as they are easier
to deploy them at multiple nodes, have the ability to rapidly modify and extend and the pos-
sibility to perform more realistic experiments. Unfortunately, the software implementations are
highly unreliable as they are dependent on the commercial o�-the-shelf (COTS) hardware used,
the operating system adopted, and the status of the host used for tra�c generation. Moreover,
hardware platforms are typically more precise and reach better performance as they are com-
pletely independent of the host computer features and they sometimes run without a computer.
The hardware solution that incorporates FPGAs combines high computational capabilities with
low energy consumption. FPGA is the easier and lower cost solution of hardware that maintains
the performance of the hardware.

This thesis has focused on the implementation of high performance network measuring system
based on FPGA using a GPS system for high precision packet time-stamping. A UDP packet
generator on NetFPGA 10G platform was successfully implemented that generates dynamically
packets without any pre-knowledge and adds the time-stamp at the sending packets using a GPS
system that provides high accuracy. In addition, a high precision receptor on the FPGA is used
for time-stamping the received packets and the storing them to the hard disk for further o�ine
processing. The ability of our system to generate packets without the pre-capture of any tra�c
n�ows makes it more �exible than other similar implementations.

The measurements revealed that the packet generator can dynamically generate and send
time-stamped packets at the theoretical throughput limits of the 802.3 with low jitter. This
concludes that the project can measure 10 Gigabit networks with high precision with few packets
with the technique of the packet time-stamping. The o�-line analysis that provides the projects
gives the opportunity to examine the �ow more than one time. The limitation of the storing

37

High precision packet time-stamping using NetFPGA 10G platform

packets that is observed for big and small payload �ows is because of the standard hardware
module that the NetFPGA hardware library o�ers. Even this problem can be solved by cutting
and soring a small part of big packets. The software implementations have a big impact at the
calculated throughput. Even for the simplest process of the packet retransmission, the software
reduces the throughput dramatically and adds a high jitter at the packets.

6.1 Future Work

As with almost all areas of research, there exist areas of continual improvement in design and
implementation. Here are some aspects for future consideration:

• The current design can produce UDP �ows. This can be extended by implementing the
TCP protocol on the NetFPGA for dynamic generating of TCP �ows. The big size of the
FPGA of the NetFPGA 10G permits to be developed a complex protocol like TCP.

• Until now, the calculation of the network performance is done o�ine. Changes at the
receiving part can be performed in order to have live calculation of the network parameters
on the hardware. In addition, with this technique it will not have packet losses because of
the packet storing.

• The Graphical User Interface (GUI) makes a program more accessible to the end user. A
nice friendly GUI can be implemented in order the packet generator to be set easily and
to have a nice live visualization of the calculated results.

• Extended testing can be done with more network devices in order to make a ranked per-
formance of more commercial network devices.

38 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] C. Liu, �Transmit/receive switch for 10base-t home network,� May 21 2002, uS Patent
6,393,050. [Online]. Available: http://www.google.com/patents/US6393050

[2] M. Palmer, Hands-On Networking Fundamentals, 2nd ed. Boston, MA, United States:
Course Technology Press, 2012, ch. 4.

[3] H. J. Lee, M. S. Kim, J. W. Hong, and G. H. Lee, �QoS Parameters to Network Performance
Metrics Mapping for SLA Monitoring,� 2002.

[4] A. Botta, A. Dainotti, and A. Pescape, �Do you trust your software-based tra�c generator?�
Communications Magazine, IEEE, vol. 48, no. 9, pp. 158�165, Sept 2010.

[5] �What is an fpga,� 2014. [Online]. Available: http://www.xilinx.com/training/fpga/
fpga-�eld-programmable-gate-array.htm

[6] �Netfpga,� 2014. [Online]. Available: http://netfpga.org/

[7] G. Covington, G. Gibb, J. Lockwood, and N. McKeown, �A packet generator on the netfpga
platform,� in Field Programmable Custom Computing Machines, 2009. FCCM '09. 17th

IEEE Symposium on, April 2009, pp. 235�238.

[8] �Ixchariot,� 2014. [Online]. Available: http://www.ixiacom.com/products/ixchariot/

[9] �Iperf,� 2014. [Online]. Available: http://code.google.com/p/iperf/

[10] �apcom,� 2014. [Online]. Available: http://www.apcon.com/products/
network-latency-measurement-time-stamping

[11] Z. Zhou, L. Cong, G. Lu, B. Deng, and X. Li, �Hats: High accuracy timestamping
system based on netfpga,� in Advances in Computer Science and Information

Technology, ser. Lecture Notes in Computer Science, T.-h. Kim and H. Adeli,
Eds. Springer Berlin Heidelberg, 2010, vol. 6059, pp. 183�195. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13577-4_16

[12] M. Shahbaz, G. Antichi, Y. Geng, N. Zilberman, A. Covington, M. Bruyere, N. Feamster,
N. McKeown, B. Felderman, M. Blott, A. W. Moore, and P. Owezarski, �Architecture for
an open source network tester,� Architectures for Networking and Communications Systems,
vol. 0, pp. 123�124, 2013.

[13] �Osnt,� 2014. [Online]. Available: http://osnt.org/

[14] J. J. Garnica, V. Moreno, I. Gonzalez, S. Lopez-Buedo, F. J. Gomez-Arribas, and J. Aracil,
�Argos: A gps time-synchronized network interface card based on netfpga,� 2010.

[15] �One-way delay measurement techniques,� Accedian Networks, vol. 1.0, 2010. [Online].
Available: www.accedian.com/en/library/download/1054

39

http://www.google.com/patents/US6393050
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://netfpga.org/
http://www.ixiacom.com/products/ixchariot/
http://code.google.com/p/iperf/
http://www.apcon.com/products/network-latency-measurement-time-stamping
http://www.apcon.com/products/network-latency-measurement-time-stamping
http://dx.doi.org/10.1007/978-3-642-13577-4_16
http://osnt.org/
www.accedian.com/en/library/download/1054

High precision packet time-stamping using NetFPGA 10G platform

[16] N. Krasner, �Method and apparatus for determining time for gps receivers,� Nov. 21 2000,
uS Patent 6,150,980. [Online]. Available: http://www.google.com/patents/US6150980

[17] H.-G. Berns, T. Burnett, R. Gran, and R. Wilkes, �Gps time synchronization in school-
network cosmic ray detectors,� in Nuclear Science Symposium Conference Record, 2003

IEEE, vol. 2, Oct 2003, pp. 789�792 Vol.2.

[18] �spectaracom,� 2014. [Online]. Available: http://www.spectracomcorp.com/

[19] E. A. Hall, Internet core protocols - the de�nitive guide: an owner's manual for the internet.

O'Reilly, 2000.

[20] J. Postel, �Internet Protocol,� RFC 791 (INTERNET STANDARD), Internet Engineering
Task Force, Sep. 1981, updated by RFCs 1349, 2474, 6864. [Online]. Available:
http://www.ietf.org/rfc/rfc791.txt

[21] R. Braden, �Requirements for Internet Hosts - Communication Layers,� RFC
1122 (INTERNET STANDARD), Internet Engineering Task Force, Oct. 1989,
updated by RFCs 1349, 4379, 5884, 6093, 6298, 6633, 6864. [Online]. Available:
http://www.ietf.org/rfc/rfc1122.txt

40 BIBLIOGRAPHY

http://www.google.com/patents/US6150980
http://www.spectracomcorp.com/
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc1122.txt

A
Packet Headers

A.1 IEEE 802.3 Ethernet frame

Ethernet is the most common local area networking technology, and, with gigabit and 10 gigabit
Ethernet, is also being used for metropolitan-area and wide-area networking. Ethernet refers to
the family of LAN products covered by the IEEE 802.3 standard that de�nes the carrier sense
multiple access collision detect (CSMA/CD) protocol. 802.3 speci�es the physical media and
the working characteristics of Ethernet. Four data rates are currently de�ned for operation over
optical �ber and twisted-pair cables: 10Base-T Ethernet (10 Mb/s), Fast Ethernet (100 Mb/s),
Gigabit Ethernet (1000 Mb/s) and 10-Gigabit Ethernet (10 Gb/s).

The IEEE 802.3 standard provides MAC (Layer 2) addressing, duplexing, di�erential services,
and �ow control attributes, and various physical (Layer 1) de�nitions, with media, clocking, and
speed attributes.

The �gure A.1 shows the complete Ethernet frame, as transmitted, for the payload size up
to the Maximum transmission unit (MTU) of 1500 octets. Some implementations of Gigabit
Ethernet support larger frames, known as jumbo frames.

• Preamble: 64bits. It consists of seven bytes all of the form 10101010. It is used by the
receiver to allow it to establish bit synchronization

• Destination MAC address: 48 bits. This �eld speci�es the receiver MAC address of
the packet. A destination MAC address of �:�:�:�:�:� indicates a Broadcast, meaning the
packet is sent from one host to any other on that network.

• Source MAC address: 48 bits. This �eld speci�es the sender MAC address of the packet.

• Type / Length �eld: 16bits. It can be used for two di�erent purposes. If the type/length
�eld has a value 1500 or lower, it's a length �eld, otherwise it's a type �eld and is followed
by the data for the upper layer protocol. When the length/type �eld is used as a length
�eld the length value speci�ed does not include the length of any padding bytes.

• User Data: 46 octets - 1500 octets. Non-standard jumbo frames allow for larger maximum
payload size.

41

High precision packet time-stamping using NetFPGA 10G platform

• Frame check sequence (FCS): 32bits. It is a 4-octet cyclic redundancy check which
allows detection of corrupted data within the entire frame.

• Interpacket gap: 96bits. Idle time between packets. After a packet has been sent,
transmitters are required to transmit a minimum of 96 bits (12 octets) of idle line state
before transmitting the next packet.

Figure A.1: 802.3 Ethernet packet

A.2 IPv4 Network Layer

IPv4 is a protocol that is used for routing the data packets between di�erent auto-organized
networks. It operates on a best e�ort delivery model, in that it does not guarantee delivery, nor
does it assure proper sequencing or avoidance of duplicate delivery. The internet protocol uses
�ve key �elds/values in the header in providing its service:IP address, Type of Service, Time to
Live, and Header Checksum.

Each device that participate in a computer network should have an IP address. With this
way the hosts and the network interfaces are identi�ed. An address indicates where the device
is.

The Type of Service mechanism is used to indicate the quality of the service desired by
changing the priority of the packet queuing and routing on the routers.

Time to Live is an indication of an upper bound on the lifetime of an internet datagram.
It is set by the sender of the datagram and reduced at the points along the route where it is
processed. If the time to live reaches zero before the internet datagram reaches its destination,
the internet datagram is destroyed. The time to live mechanism can be thought of as a self
destruct time limit.

The Header Checksum provides a veri�cation that the information used in processing internet
datagram has been transmitted correctly. The data may contain errors. If the header checksum
fails, the internet datagram is discarded at once by the entity which detects the error.

The internet protocol does not provide a reliable communication functionality. There are
no acknowledgements either end-to-end or hop-by-hop. There is no error control for data, no
retransmissions and no �ow control. [19]

The header of the IPv4 is consist of 20 bytes and 13 �elds as it is shown at the �gure A.2. [20]

• Version: 4 bits. Indicates the version of the IP. Always assigned to 4.

• Internet Header Length (IHL): 4 bits. Size of IP header in 32-bit words. The minimum
value is 5, which is a length of 5x32 = 160 bits = 20 bytes. The maximum value is 15
words, 15x32 =480 bits = 60 bytes.

• Di�erentiated Services Code Point (DSCP): 6 bits. Originally de�ned as the Type
of service �eld.

• Explicit Congestion Noti�cation (ECN): 2 bits. ECN is an optional feature that
allows end-to-end noti�cation of network congestion without dropping packets.

42 APPENDIX A. PACKET HEADERS

High precision packet time-stamping using NetFPGA 10G platform

• Total Length: 16 bits.It de�nes the entire packet (fragment) size, including header and
data, in bytes. The minimum-length packet is 20 bytes (20-byte header + 0 bytes data)
and the maximum is 65,535 bytes. The largest datagram that any host is required to be
able to reassemble is 576 bytes, but most modern hosts handle much larger packets.

• Identi�cation: 16 bits. An identifying value assigned by the sender to aid in assembling
the fragments of a datagram.

• Various Control Flags: 3 bits. Bit 0: reserved, must be zero Bit 1: 0 = May Fragment,
1 = Don't Fragment. Bit 2: 0 = Last Fragment, 1 = More Fragments.

• Fragment O�set: 13 bits. This �eld indicates where in the datagram this fragment
belongs. The fragment o�set is measured in units of 8 octets (64 bits). The �rst fragment
has o�set zero.

• Time to Live: 8 bits. This �eld indicates the maximum time the datagram is allowed to
remain in the internet system. If this �eld contains the value zero, then the datagram must
be destroyed. This �eld is modi�ed in internet header processing.The intention is to cause
undeliverable datagrams to be discarded, and to bound the maximum datagram lifetime.

• Protocol: 8 bits. This �eld indicates the next level protocol used in the data portion of
the internet datagram.

• Header Checksum: 16 bits. A checksum on the header only. Since some header �elds
change (e.g., time to live), this is recomputed and veri�ed at each point that the internet
header is processed.

• Source Address: 32 bits. This �eld is the IPv4 address of the sender of the packet.

• Destination Address: 32 bits. This �eld is the IPv4 address of the receiver of the packet.

Figure A.2: IP header's �elds

A.3 UDP Transport Layer

User Datagram Protocol(UDP) together with Transmission Control Protocol(TCP) are the two
types of Internet Protocol. UDP is not a connection oriented protocol as TCP. Data can be sent
bidirectionally with no more e�ort. Multiple messages are sent as packets in chunks using UDP.
UDP protocol is used in DNS, TFTP, SNMP, RIP, VOIP packets and it is very simple because it
does not have an inherent order as all of its packets are independent from each other. Moreover,
it does not use acknowledgements to check the missing packets; it does not have �ow control
and, lastly, it does not need handshake for establishing the connection. If ordering or reliability
is required, it has to be managed by the application layer. [21]

The header of UDP is 8 byte length and consists of 4 �elds of 16 bits, Source port, Destination
port, length and checksum as it shows the �gure A.3.

APPENDIX A. PACKET HEADERS 43

High precision packet time-stamping using NetFPGA 10G platform

• Source Port: 16bits. It indicates the port of the sending process, and may be assumed to
be the port to which a reply should be addressed in the absence of any other information.
If not used, a value of zero is inserted.

• Destination Port: 16bits. This �eld identi�es the receiver's port and is required. Similar
to source port number, if the client is the destination host then the port number will likely
be an ephemeral port number and if the destination host is the server then the port number
will likely be a well-known port number.

• Length: 16bits. Length is the length in octets of this user datagram including this header
and the data.The minimum value of the length is eight.

• Checksum: 16bits. The checksum �eld is used for error-checking of the header and data.
It is computed from the IP header, UDP header and the data. If the checksum is cleared
to zero, then check summing is disabled. If the computed checksum is zero, then this �eld
must be set to 0xFFFF.

Figure A.3: UDP header's �elds

44 APPENDIX A. PACKET HEADERS

B
Xilinx's Protocol Handshakes

B.1 AXI4-STEAM

The AXI4-Stream Interconnect is a key Interconnect Infrastructure IP which enables connection
of heterogeneous master/slave AMBA AXI4-Stream protocol compliant endpoint IP. The AXI4-
Stream Interconnect routes connection from one or more AXI4-Stream master channels to one or
more AXI4-Stream slave channels. The protocol gives the ability for multiple master to multiple
slave (up to 16x16) con�guration implementing a cross-point switch. In addition the clock rate
conversion can be synchronous and asynchronous as multiple clock domains are supported.

Figure B.1 shows the transfer of data in an AXI4 sream channel. TVALID is driven by the
source side of the channel and TREADY is driven by the receiver . TVALID indicates that the
value in the payload �elds (TDATA, TUSER and TLAST) is valid. TREADY indicated that the
slave is ready to receive data. When bot TVALID and TREADY are true in a cycle, a transfer
occurs. The master and slave will set TVALID and TREAD respectively for the next transfer
appropriately.

Figure B.1: Data Transfer in an AXI-Stream Channel

45

	Introduction
	Objective
	Motivation
	Thesis Organization

	NetFPGA 10G and OSTN
	The NetFPGA board
	How to design into NetFPGA project
	The OSNT project
	OSNT traffic monitor

	Measuring Network parameters
	GPS synchronized frequency/time source

	Implementation
	Packet Generator Module
	Rate module
	Generator Module
	Register System
	Software Analysis

	System Integration
	System verification

	Evaluation
	Theoretical limits
	Testing equipment
	Experiments
	Experiment 1: Theoretical Limits of 10Gbps Link
	Experiment 2: Packet Losses
	Experiment 3: Virtual Network
	Experiment 4: Virtual Network with Delay and Packet Losses

	Conclusions

	Conclusions and future work
	Future Work

	Packet Headers
	IEEE 802.3 Ethernet frame
	IPv4 Network Layer
	UDP Transport Layer

	Xilinx's Protocol Handshakes
	AXI4-STEAM

