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RESUMEN. 

 

En el cerebro, la eficacia de la transmisión sináptica depende en gran medida del control 

dinámico ejercido sobre la adición a las sinapsis y la eliminación de las mismas de ciertas clases 

de receptores de neurotransmisores. Los receptores de glutamato de tipo AMPA (AMPARs) 

median, de forma mayoritaria, la transmisión sináptica excitatoria en el sistema nervioso 

central de los mamíferos. De hecho, la regulación de su tráfico intracelular constituye uno de 

los mecanismos principales por los cuales se modulan los fenómenos de plasticidad sináptica 

en las sinapsis hipocampales. En este trabajo nos hemos propuesto explorar la función de 

MAP1B, una proteína asociada a microtúbulos, en la regulación del tráfico de AMPARs en las 

neuronas piramidales CA1 de hipocampo.  

Mediante una combinación de herramientas moleculares, electrofisiología y microscopía 

confocal, hemos revelado una nueva función de la cadena ligera de MAP1B (MAP1B-LC) como 

elemento regulador del transporte intracelular de una población específica de AMPARs. 

Hemos podido determinar que la sobre-expresión de MAP1B-LC resulta en una reducción neta 

de la fracción móvil en dendritas de los AMPARs constituidos por la subunidad GluA2, y como 

consecuencia, en una acumulación disminuida en espinas, sin que los receptores formados por 

la subunidad GluA1 se vean afectados. En efecto, hemos podido comprobar que es la 

población endógena de receptores GluA2-GluA3 la que se ve afectada específicamente cuando 

se sobre-expresa MAP1B-LC, ya que su transporte constitutivo hacia las sinapsis, y por tanto, la 

transmisión sináptica basal, se ven reducidos en presencia de niveles incrementados de 

MAP1B-LC. Por otra parte, hemos demostrado que la distribución a lo largo de las dendritas de 

GRIP1, una proteína de ensamblaje que interacciona específicamente con las subunidades 

GluA2 y GluA3 y también con MAP1B-LC, se ve así mismo alterada como consecuencia de la 

sobre-expresión de MAP1B-LC. Así, por medio de mutantes de deleción de MAP1B-LC, hemos 

podido concluir que la unión de MAP1B-LC a GRIP1 junto con su interacción con los 

microtúbulos es esencial para regular la expresión en superficie y la presencia en las sinapsis 

de la población GluA2-GluA3 de AMPARs, y por consiguiente, su contribución a la transmisión 

sináptica basal en neuronas hipocampales CA1. 

Es importante destacar que el modelo que proponemos asigna, por primera vez, un significado 

funcional a la interacción entre MAP1B-LC y GRIP1.  
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SUMMARY. 

 

The strength of synaptic transmission in the brain relays largely on the controlled addition and 

removal of neurotransmitter receptors to and from synapses. AMPA-type glutamate receptors 

(AMPARs) mediate the vast majority of excitatory transmission in the mammalian central 

nervous system. Their regulated trafficking has been proposed to be one of the major 

mechanisms underlying the expression of synaptic plasticity at hippocampal synapses. In this 

work, we have explored the potential role of a microtubule-associated protein, MAP1B, in the 

fine-tuning of AMPAR trafficking in CA1 hippocampal neurons.  

Using a combination of molecular tools, electrophysiology and confocal microscopy, we reveal 

a novel role of the light chain of MAP1B (MAP1B-LC) as a key player in the subcellular sorting 

of a specific population of AMPARs.  We demonstrate that MAP1B-LC over-expression results 

in a net reduction of the mobile population in dendrites and their accumulation in spines of 

recombinant GluA2 AMPARs, whereas the dendritic trafficking and delivery to spines of 

recombinant GluA1 AMPARs is unaltered. Indeed, we show that MAP1B-LC targets specifically 

the endogenous GluA2-GluA3 population of AMPARs, as their constitutive cycling toward 

synapses is impaired upon MAP1B-LC over-expression and consequently, basal synaptic 

transmission is decreased. We also demonstrate that the dendritic targeting of GRIP1, a 

specific interactor of GluA2/GluA3 subunits that also binds MAP1B-LC, is altered in the 

presence of enhanced levels of MAP1B-LC. Using deletion mutants of MAP1B-LC, we conclude 

that MAP1B-LC binding to GRIP1 together with its ability to interact with microtubules is 

essential to regulate the surface expression and presence at synapses of the GluA2-GluA3 

population of AMPARs, and consequently, the degree to which they contribute to basal 

synaptic transmission in CA1 hippocampal neurons.  

Importantly, the model we propose assigns a functional meaning to the interaction between 

MAP1B-LC and GRIP1 for the first time.  
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Abbreviation list. 

 

ABD: actin-binding domain. 

ABP: AMPA-type glutamate receptors binding protein.  

ACSF: artificial cerebro-spinal fluid 

AMPA: α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid. 

AMPAR: AMPA-type glutamate receptors.   

APV: (DL)-2-amino-5-phosphopentanoic acid.  

BHK: baby hamster kidney.  

BSA: bovine serum albumin.  

CA1: Cornu ammon 1 (subfield of hippocampus). 

CA3: Cornu ammon 3 (subfield of hippocampus). 

CamKII: calcium/calmodulin-dependent kinase II. 

Cdc2: cell division cycle 2 protein kinase. 

Cdk5: cyclin-dependent kinase 5. 

CMV: cytomegalovirus.  

DH-BB: defective helper, deleted between BspMII and BamHI. 

DHPG: (S)-3,5-dihydroxyphenylglycine.  

DIV: days in vitro.  

DMEM: Dulbecco´s modified Eagle´s medium.  

DTT: dithiothreitol.  

ECL: Immobilon Western Chemiluminescent HRP Substrate.  

EEA-1: early endosomal antigen 1. 

EPSP: excitatory postsynaptic potentials. 

FBS: fetal bovine serum.  

FMRP: Fragile X mental retardation protein. 

FRAP: Fluorescence Recovery After Photobleaching.  
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FXS: Fragile X syndrome. 

GABA: gamma-aminobutyric acid.  

GAN: Giant Axon Neuropathy. 

GFP: green fluorescent protein. 

GRIP1/2: glutamate receptor interacting protein 1/2. 

GTPase: guanosine triphosphatase. 

INF: infected cell.  

IP: immunoprecipitation. 

IPTG: isopropyl-β-D-1-thiogalactopyranoside.  

JNK: c-Jun N-terminal kinase.  

KA: kainate receptors. 

LB: Luria-Bertani liquid medium.  

LTD: long-term depression. 

LTP: long-term potentiation. 

mA: milliamps.   

MAP: microtubule-associated protein. 

MAP1B: microtubule-associated protein 1B. 

MAP1B-HC: heavy chain of MAP1B.  

MAP1B-LC: light chain of MAP1B. 

MAPK: mitogen-activated protein kinases. 

MBD: microtubule-binding domain.  

MEM: minimum essential medium.   

mGluR: metabotropic glutamate receptor. 

MKLP1: mitotic kinesin-like protein.  

MRI: magnetic resonance imaging. 

MT: microtubule(s). 

NMDA: N-methyl-D-aspartate. 
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NMDAR: NMDA-type glutamate receptors. 

NSF: N-ethylmaleimide sensitive fusion protein 

PA: photoactivation. 

PAGE: polyacrylamide gel electrophoresis.  

PAK1: p21 activated kinase. 

PBD: Rac1 binding domain of PAK1. 

PDZ: abbreviation from PSD-95 (postsynaptic density protein of 95 kDa molecular weight), 

DlgA (Drosophila discs-large protein) and ZO-1 (protein of epithelial tight junctions). 

Pep2m: peptide 2m.  

PFA: paraformaldehyde.  

PI3K: phosphoinositide 3-kinase. 

PICK1: protein interacting with C Kinase 1. 

PKA: protein kinase A. 

PKC: protein kinase C. 

PP1: protein phosphatase 1. 

PP2B: calcineurin protein phosphatase. 

PTMs: post-translational modifications of tubulin. 

PVDF: poly(vinylidene fluoride). 

PVP: polyvinylpyrrolidone.  

RBD: RhoA binding domain of Rhotekin. 

RFP: red fluorescent protein.  

SDS: sodium dodecyl sulfate. 

shRNA: short hairpin RNA.  

TARPs: transmembrane AMPA receptor regulatory proteins.  

TBS: Tris-buffered saline.  

TfR: transferrin receptor.  

TM: transmembrane. 
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TRANSF: transfected cell.  

UNB: unbound.  

UNINF: uninfected cell. 

UNTRANSF: untransfected cell. 
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ABP: proteína de unión a receptores de glutamato de tipo AMPA. 

AMPA: ácido α-amino-3-hidroxi-5-metil-isoxazol-propiónico. 

AMPAR: receptores de glutamato de tipo AMPA.  

CA1: Cornu ammon 1 (subcampo del hipocampo).  

CA3: Cornu ammon 3 (subcampo del hipocampo).  

CamKII: calcio calmodulina quinasa II. 

Cdc2: proteína quinasa cdc2 (ciclo de división celular). 

Cdk5: ciclina dependiente de quinasa 5. 

DHPG: (S)-3,5-dihidroxifenilglicina. 

EPSP: potencial postsináptico excitatorio. 

FMRP: proteína del retraso mental X-frágil. 

FXS: Síndrome del X frágil. 

GAN: Neuropatía Axonal Gigante. 

GRIP1: proteína de interacción con receptores de glutamato 1. 

GTPasa: trifosfatasa de guanosina. 

JNK: quinasa c-jun N-terminal. 

LTD: depresión a largo plazo. 

LTP: potenciación a largo plazo. 

MAP: proteína asociada a microtúbulos. 

MAP1B: proteína asociada a microtúbulos 1B.  

MAP1B-HC: cadena pesada de MAP1B. 

MAP1B-LC: cadena ligera de MAP1B.  

MAPK: proteínas quinasas activadas por mitógenos.  

mGluR: receptores metabotrópicos de glutamato.  

MRI: imagen por resonancia magnética. 
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MT: microtúbulos.  

NSF: proteína de fusión sensible a N-etilmaleimida.  

PDZ: abreviatura derivada de: PSD-95 (proteína de la densidad postsináptica de 95 kDa de 

peso molecular), DlgA (proteína de los discos imaginales de la larva de Drosophila) y ZO-1 

(proteína de las uniones estrechas epiteliales). 

PI3K: quinasa de los 3-fosfoinosítidos.  

PICK1: proteína de interacción con la quinasa C 1. 

PKA: proteína quinasa A.  

PKC: proteína quinasa C.  

PP1: proteína fosfatasa 1. 

PP2B: proteína fosfatasa calcineurina.  

TARPs: proteínas transmembrana reguladoras de receptores AMPA.  

TM: transmembrana.  

TfR: receptor de transferrina.  
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1. The hippocampus: a model for synaptic plasticity. 

Higher functions such as sleep, cognition, emotion, language and memory are encoded by 

specific regions of the brain. One of these areas is the hippocampus, a horse-shoe shaped 

structure located in the medial temporal lobe underneath the cortical surface. From an 

historical perspective, the hippocampus has been the structure in which many of the general 

principles of modern neuroscience have been studied and established. Furthermore, it has 

been the preferred neuronal network to study the best characterized form of neuronal 

plasticity, synaptic plasticity (Andersen 2007).   

It is widely accepted nowadays that the hippocampus is involved in the formation and/or 

retrieval of some forms of memory. This notion arose from the early work of Scoville and 

Milner in 1957. They first presented the case of a patient (HM) who had severe anterograde 

amnesia following bilateral medial temporal lobe resection. After the following examination of 

other patients with milder amnesia, they concluded that memory impairments in patients 

were observed whenever the hippocampus was damaged bilaterally (Milner 1972).  

Thereafter, the extensive research conducted mainly in rodents led to the conclusion that the 

hippocampus is required specifically for spatial navigation and spatial memory (O'Keefe and 

Nadel 1978; Burgess et al. 2002). Much of the evidence has come from the observation of 

place cells and lesion studies combined with spatial memory tasks in these animals.  

The identification in hippocampus of place cells, those neurons that selectively increase their 

firing rate only when the animal occupies a well-defined, small patch of the environment, 

rarely firing outside this region, gave rise to the idea that the hippocampus functions as a 

spatial map (O'Keefe and Dostrovsky 1971). Pioneer studies in rodents confirmed impaired 

spatial navigation due to hippocampal lesions (Morris et al. 1982). Subsequent research based 

also on hippocampal damage revealed that the hippocampus is required for scene or context-

specific object memories, as hippocampal lesions erase the memory for the spatial layout of a 

context where an object was recently experienced (Good 2002). Functional MRI studies 

supported the idea that the hippocampus is indeed required for spatial navigation (Maguire et 

al. 1998; Maguire et al. 1999) also in humans.  

Given the complexity of the processes entailing memory formation, it is evident that the 

proper function of many other brain areas apart from hippocampus underlies the ability to 

learn and remember; however, the solid body of evidence pointing to the involvement of the 
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hippocampus in information storage and retrieval has encouraged many investigators over the 

last decades to choose this structure as a model to study the generation of memory (Purves 

2004; Andersen 2007).  

But what is the cellular substrate of memory and learning? Memory and learning are 

extremely convoluted processes that rely on the ability of the plastic brain to adapt to 

environmental variations. Therefore, neuronal plasticity, the ability of the brain to be shaped 

by experience, underlies the acquisition and consolidation of new memories. Synaptic 

plasticity is the most representative example of neuronal plasticity. Synaptic plasticity can be 

defined as a persistent or transient alteration of transmission efficiency at a neuronal synapse 

in response to intrinsic or extrinsic signals. Evidence for synaptic plasticity in the mammalian 

nervous system is largely widespread. Although short-term forms of synaptic plasticity also 

occur, long-lasting forms are plausible substrates for more permanent changes in behavior. 

Because of their duration, these forms of synaptic plasticity are widely believed to be the 

cellular correlates of learning and memory. 

2. Hippocampal pyramidal neurons. 

As previously mentioned, most of the progress in understanding the molecular mechanisms 

underlying synaptic plasticity has emerged from ex vivo studies using slices of living 

hippocampus. The particular arrangement of neurons allows the hippocampus to be sectioned 

such that most of the relevant circuitry is left intact. In such preparations, the cell bodies of 

neurons lie in a single densely packed layer that is readily apparent. This layer is divided into 

several distinct subfields, the major ones being CA1 and CA3. “CA” stands for Cornu Ammon, 

the Latin translation for Ammon´s horn, the ram´s horn that resembles the shape of the 

hippocampus (figure 1A).  

CA3 and CA1 neurons in hippocampus are referred to as “pyramidal” because they are 

characterized by the pyramidal shape of their soma, from which a unique axon and several 

dendrites emerge (figure 1B). The lone axon of each pyramidal neuron typically emanates from 

the base of the soma and branches profusely, making many excitatory glutamatergic synaptic 

contacts along its length. Critical to the function of pyramidal neurons is how they respond to 

synaptic inputs to produce an action potential that excites their postsynaptic targets (Spruston 

2008).  
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On its part, the dendritic tree of a pyramidal neuron has two distinct domains: the basal and 

the apical dendrites, which descend from the base and the apex of the soma, respectively. 

Basal dendrites are relatively short in pyramidal neurons; usually, several oblique apical 

dendrites emanate from one main apical dendrite at various angles. The dendrites of 

pyramidal neurons are profusely covered by dendritic spines that constitute the postsynaptic 

site for most excitatory glutamatergic synapses (Spruston 2008).  

The apical dendrites of pyramidal cells in the CA1 subfield form a thick band (the stratum 

radiatum) where they receive synapses from Schaffer collaterals, the axons of pyramidal cells 

in the CA3 region. The Schaffer collaterals form a homogeneous pathway that can be easily 

activated to study synaptic transmission and plasticity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Pyramidal neurons in 

the hippocampus. A) Neuronal 

network in a hippocampal slice. 

The CA3 pyramidal cells project 

via the Schaffer collaterals 

(“Sch”) to the CA1 pyramidal 

cells. The apical dendrites of CA1 

neurons form the stratum 

radiatum. B) Detail of a 

pyramidal neuron from the CA1 

subfield of hippocampus. CA3-

CA1 synapses are excitatory 

synapses, like the one shown in 

the electron microscopy image 

on the right. In a chemical 

synapse, neuronal 

communication relays on 

neurotransmitters (glutamate in 

the case of excitatory synapses).  

The neurotransmitter is stored in 

synaptic vesicles (“Ves”) in the 

presynaptic terminal (“Pre”).  

Upon depolarization, it is 

released to the synaptic cleft; the 

activation of specific receptors at 

the postsynaptic element 

(“Post”) enables the generation 

of an electrical signal that 

guarantees the flow of 

information. Adapted from 

Ishizuka et al. 1995 and Wedding 

and Stevens 2009.  
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3. Glutamatergic synaptic transmission. 

The main excitatory neurotransmitter in the hippocampus, and elsewhere in the mammalian 

central nervous system (CNS), is glutamate. The glutamate that is released from the 

presynaptic terminal upon depolarization activates several types of receptors at the 

postsynaptic membrane. Glutamate receptors can be divided into two functionally distinct 

categories: ionotropic ligand-gated ion channels and metabotropic glutamate receptors 

(mGluRs), which mediate their effects via coupling to G-protein second messenger systems 

(Simeone et al. 2004).  

Ionotropic ligand-gated ion channels were named after the specific agonists able to activate 

them in a relatively selective fashion: α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid 

(AMPA), N-methyl-D-aspartate (NMDA) and kainate receptors (KA). AMPA and NMDA 

receptors are the members of this family directly involved in the generation and expression of 

synaptic plasticity of excitatory transmission. Their different roles are notably determined by 

their composition and structural particularities.  

 AMPA receptors (AMPARs): they are composed of four subunits (GluA1-GluA4) 

assembled as dimers of dimers. Each subunit contains an extracellular N terminus, four 

hydrophobic domains (TM1-4), and an intracellular C terminus. The N terminus is expressed on 

the exterior surface of the neuron, and contains the ligand-binding core; the TM1, TM3 and 

TM4 regions are all transmembrane spanning domains, whereas TM2 forms a hairpin loop on 

the intracellular side of the cell membrane (Traynelis et al. 2010). The intracellular C terminus 

of AMPARs has been shown to be the interaction site for a range of different proteins, many of 

which are involved in the trafficking of the receptor and in synaptic plasticity (Malinow and 

Malenka 2002; Henley 2003). AMPARs occur at almost all excitatory synapses in the 

hippocampus and all subtypes gate Na+ ions; on the contrary, the entry of Ca2+ ions through 

AMPARs depends on subunit composition. The RNA coding for the GluA2 subunit is edited at 

the 607 position (Q607R); GluA2(R)-containing AMPARs have low permeability to Ca2+ ions 

(Burnashev et al. 1992; Swanson et al. 1997), and show no inward rectification but linear or 

slightly outward rectification (Verdoorn et al. 1991; Dingledine et al. 1992).   

 

 NMDA receptors (NMDARs): NMDARs are composed of four subunits belonging to 

three different categories: GluN1, GluN2 and GluN3. They function as heteromeric assemblies 

in which typically GluN1 subunits associate with GluN2 subunits or a combination of GluN2 and 

GluN3 subunits. Similar to AMPARs, NMDARs subunits consist of four discrete modules: the 
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extracellular N-terminus contains the agonist-binding domain; the transmembrane domain is 

composed of three transmembrane helices plus a pore loop that lines the ion selectivity filter; 

and an intracellular C terminus, particularly long in the case of NMDARs, which is involved in 

receptor trafficking, anchoring and coupling to signaling molecules. Several remarkable 

properties distinguish NMDARs from other ionotropic receptors: 1) the ion channel is subject 

to a voltage-dependent block by Mg2+ that is relieved upon depolarization of the postsynaptic 

terminal; 2) NMDAR channels are highly permeable to Ca2+, whose influx via NMDARs plays a 

central role in long-term synaptic plasticity; 3) their activation requires the presence not only 

of glutamate, but also of a co-agonist (glycine or D-serine) (Traynelis et al. 2010).  

However, not only ionotropic glutamate receptors are involved in synaptic plasticity. Certain 

forms of long-term synaptic plasticity require the activation of metabotropic glutamate 

receptors (mGluRs). Unlike ionotropic glutamate receptors, mGluRs contain seven 

transmembrane segments and are coupled to nucleotide-binding G proteins, which mediate 

most of their actions. Quite differently from the well characterized role of AMPARs and 

NMDARs in synaptic transmission, the physiological roles of mGluRs are not fully understood 

yet. The activation of postsynaptic group I receptors (mGluR1 and 5) leads to cell 

depolarization and increased cell firing and so, increases in neuronal excitability and activation 

of specific signaling pathways (Niswender and Conn 2010). In contrast, presynaptic group II 

(mGluR 2, 3) and group III (mGluR 4, 6, 7, 8) mGluRs inhibit neurotransmitter release 

(Niswender and Conn 2010).  

4. The fine tuning of glutamatergic synaptic transmission: AMPAR trafficking.  

The modulation of synaptic strength, both during neuronal development and experience-

conditioned plasticity, depends intimately on the regulated trafficking of AMPARs (Esteban 

2003). AMPARs are not static entities at synapses, but display a highly dynamic behavior 

(Shepherd and Huganir 2007; Henley et al. 2011). Indeed, the strength of synaptic transmission 

relays at least partly on the addition and/or removal of AMPARs in and out of synapses. Thus, 

to ensure proper neuronal communication, the number and synaptic localization of AMPA 

receptors is subject to a strict control in neurons.  

To maintain such function-specific subcellular distribution of AMPARs, neurons have a variety 

of trafficking proteins that mediate their intracellular targeting, retention and removal at their 

destination sites. The most prevalent type of protein-protein interaction underlying 

intracellular trafficking is the one established between a short amino acid motif typically 
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present at the C-terminal end of the trafficked protein (AMPARs in this case) and a PDZ domain 

of its interactor. The PDZ abbreviation is derived from three proteins originally identified to 

contain this approximately 90-amino-acid structural motif: PSD-95 (postsynaptic density 

protein of 95 kDa molecular weight), DlgA (Drosophila discs-large protein) and ZO-1 (protein of 

epithelial tight junctions) (Sheng and Sala 2001). AMPARs establish PDZ interactions through 

group I and group II PDZ domains, depending on the specific subunit involved in the interaction 

(Barry and Ziff 2002; Malinow and Malenka 2002; Song and Huganir 2002; Bredt and Nicoll 

2003). 

The regulation of the intracellular sorting of AMPARs can occur at several subcellular locations 

and states of activity in neurons:  

 The trafficking of AMPARs from dendrites to spines is differentially modulated in basal 

transmission and during the induction of patterns of activity that trigger synaptic plasticity. 

Moreover, it depends greatly on subunit composition, mainly due to the subunit specificity of 

the PDZ interactions established between AMPARs and their binding partners.  

 On the other hand, before reaching their dendritic destination, AMPARs have to be 

transported from the cell body, where they are mostly synthesized, to the spines vicinity along 

dendrites. This long-range transport is microtubule-dependent and performed by specific 

motor proteins and their adaptors (Hirokawa and Takemura 2005; Kapitein and Hoogenraad 

2011).  

4.1.  Maintenance of basal transmission versus synaptic plasticity. 

AMPARs function as hetero-oligomers composed of different combinations of four subunits, 

GluA1 to GluA4. GluA4 is mostly expressed early in postnatal development (Zhu et al. 2000). In 

adult hippocampus, two major complexes of AMPA receptors have been described: those 

containing GluA1 and GluA2 subunits, and the GluA2-GluA3 oligomers (Wenthold et al. 1996). 

These two distinct populations of AMPARs contribute to synaptic transmission differently. 

GluA2-GluA3 AMPA receptors maintain synaptic strength by cycling continuously in and out of 

synapses; the so called “constitutive pathway” is thus responsible for a continuous addition 

and removal of synaptic AMPARs. On the contrary, the delivery into synapses of the GluA1-

GluA2 population requires the induction of neuronal activity (Passafaro et al. 2001; Shi et al. 

2001). This differential trafficking seems to be largely controlled by the specific interactions 

established between the carboxy-terminal domain of the GluA1 subunit (long tail, group I PDZ 



Introduction 

 

 

7 
 

domains) and GluA2-GluA3 subunits (short tail, group II PDZ domains) with PDZ domain 

containing-proteins.  

According to this scenario, a model in which the local insertion and removal of AMPARs from 

the synapse is governed by two distinct regulatory mechanisms has been proposed (Hayashi et 

al. 2000; Malinow et al. 2000). The “constitutive pathway” (GluA2-GluA3 receptors) would 

allow the maintenance of synaptic strength in the face of protein turnover, acting in a 

relatively fast manner (half-time of minutes). On the contrary, the “regulated pathway” 

(GluA1-GluA2 receptors) would act transiently upon the induction of plasticity leading to the 

long-lasting enhancement of synaptic strength known as long-term potentiation or LTP. The 

regulated pathway would be thus responsible for the formation of memories, whereas the 

constitutive pathway would be responsible for their maintenance. This model implies that 

AMPAR subunit composition dictates the availability of receptors for delivery to or removal 

from synapses through the constitutive or the regulated pathways. 

4.2.  Synaptic plasticity: long-term potentiation (LTP) and long-term depression (LTD). 

LTP and LTD, long-term, activity-dependent changes in synaptic function, are thought to 

underlie the formation of memories (Bliss and Collingridge 1993; Bear 1996; Kemp and 

Manahan-Vaughan 2007). The molecular mechanisms that account for both processes have 

been, therefore, the subject of intense investigation during the last 25 years.   

Long-term potentiation is a long-lasting increase in synaptic strength produced by specific 

patterns of synaptic activity in the CNS. A long-lasting decrease in synaptic strength is known 

as long-term depression.  

4.2.1  Long-term potentiation. 

LTP was first described by Bliss and Lomo (Bliss and Lomo 1973) in the rabbit hippocampus. 

They found that repetitive stimulation of the perforant path fibers resulted in the potentiation 

of the response recorded from granule cells in the dentate gyrus lasting between 30 minutes 

and 10 hours. Thenceforth, however, LTP has been most thoroughly studied at excitatory 

synapses in the rodent hippocampus. Specifically, much of the work on LTP has focused on the 

synaptic connections between the Schaffer collaterals and CA1 pyramidal cells. Electrical 

stimulation of Schaffer collaterals generates excitatory postsynaptic potentials (EPSPs) in the 

postsynaptic CA1 cells. If the Schaffer collaterals are stimulated at a low frequency, the 
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amplitude of the postsynaptic EPSPs remains constant. However, a brief, high-frequency train 

of stimuli causes LTP, which is evident as a long-lasting increase in EPSPs amplitude (figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding its molecular basis, the long-term potentiation of synaptic efficacy is a consequence 

of increases in synaptic AMPAR function (Kauer et al. 1988; Muller and Lynch 1988; Davies et 

al. 1989; Isaac et al. 1995; Liao et al. 1995; Durand et al. 1996) that depend on NMDA receptor 

transient activation (Bliss and Collingridge 1993). AMPAR function might be enhanced through 

changes in the number or composition of receptors at synapses and/or changes in their 

properties, such an increase in conductance (Benke et al. 1998; Derkach et al. 1999). 

The incorporation into synapses of new AMPARs has been demonstrated as a principal 

mechanism underlying LTP. As previously mentioned, subunit specificity in the delivery of 

AMPARs from dendrites to spines after the induction of LTP has been corroborated. It was first 

shown that over-expressed GluA1-GFP was driven to dendritic spines only after the induction 

of LTP in hippocampal slices, and that this redistribution was dependent on NMDAR-activation 

(Shi et al. 1999). In a subsequent study, it was demonstrated that GluA1-containing receptors 

were inserted into synapses upon LTP induction in a process dependent on a PDZ interaction 

established through the GluA1 C-terminal domain (Hayashi et al. 2000). Afterwards, direct 
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Figure 2. Long-term potentiation of Schaffer collaterals-CA1 synapses. A) Schaffer collaterals (axons 

given off by CA3 pyramidal cells that project to CA1 area) are stimulated with a stimulating electrode at 

high frequency (“paired pathway”). The synaptic response from the corresponding CA1 pyramidal cell is 

registered with a recording electrode (“recording”). The “control pathway” activates a separate 

population of Schaffer collaterals that are not subject to high frequency stimulation, thereby acting as 

control. B) Time course of changes in the amplitude of excitatory postsynaptic potentials (EPSP) evoked 

by stimulation of paired and control pathways. A stable and prolonged potentiation results from the 

high frequency stimulation of the paired pathway. Synaptic responses corresponding to the control 

pathway are unchanged. Adapted from Purves 2004. 
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evidence of the role of GluA1 in LTP and in specific forms of learning came from mice that lack 

the GluA1 subunit (Zamanillo et al. 1999; Reisel et al. 2002).  

The signaling pathways activated as a consequence of LTP induction will be discussed below. 

4.2.2  Long-term depression. 

If activity-dependent plasticity operated only to enhance synaptic weights, saturation of 

synaptic efficacy would eventually occur. A neural net composed of synapses whose synaptic 

weights were maximal would be unable to acquire new memories. An activity-driven 

mechanism to allow erasure, or depotentiation, of LTP would therefore guarantee the 

computational flexibility of the network. Besides, if an additional mechanism, independent of 

LTP, permitted activity-dependent LTD from baseline values of synaptic efficacy, the flexibility 

of the system and its storage capacity would be further enhanced.  

Hippocampal long-term depression was first described in Schaffer collaterals-CA1 synapses 

(Dunwiddie and Lynch 1978). This work provided evidence that, in addition to LTP, 

hippocampal synapses could undergo long-term, activity-dependent reductions in synaptic 

efficacy. Dudek and Bear (Dudek and Bear 1992) demonstrated that LTD could be electrically 

induced by prolonged trains of low frequency stimulation (figure 3), and that this induction 

was dependent on NMDAR activation. The initial debate about whether the induction of LTD in 

the CA1 area was NMDAR-dependent, as shown by Dudek and Bear, or mGluR-dependent 

(Bashir and Collingridge 1994) was ended thanks to the work of Oliet et al. (Oliet et al. 1997) 

showing that it was possible to obtain either result by manipulating the induction protocol, 

thus confirming the existence of two independent forms of LTD. In the CA1 area of the 

hippocampus, mGluR-dependent LTD is reliably induced by exposure to the group 1 agonist 

DHPG (Palmer et al. 1997) or by low-frequency trains of pairs of pulses at an appropriate inter-

pulse interval (Kemp et al. 2000). 
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Figure 3. Long-term depression of hippocampal synapses. Low frequency (1 pulse per second) 

stimulation of Schaffer collaterals ensues prolonged and stable depression of excitatory postsynaptic 

potentials (EPSP) recorded from CA1 neurons. Adapted from Purves 2004.  
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The molecular mechanisms responsible for the expression of LTD have been extensively 

studied, particularly in the case of NMDAR-dependent LTD. The induction and expression of 

NMDAR-dependent LTD are postsynaptic whereas the expression of mGluR-LTD appears to 

involve both presynaptic and postsynaptic components. In any case, the activity-dependent 

and regulated endocytosis of AMPARs from synapses is the event that leads to the long-lasting 

depression of synaptic strength. In contrast with the subunit-specific pathways for receptor 

delivery and LTP, it is much less clear which AMPAR subpopulations are targeted by the 

regulated pathways driving LTD in hippocampal neurons. In GluA2, GluA3 double knock-out 

mice, basal synaptic transmission is severely impaired but LTD is completely normal, 

suggesting that GluA1-containing AMPARs are subject to regulated removal (Meng et al. 2003). 

On the other hand, disrupting the function of PDZ domain-containing proteins specifically 

interacting with the GluA2 subunit, like GRIP1/2 and PICK1 (discussed below), has been shown 

to prevent the expression of LTD (Daw et al. 2000), indicating that GluA2 may be essential for 

this form of synaptic plasticity, too. In conclusion, it is possible that, in contrast to LTP, the 

regulated removal of AMPARs during LTD affects all subpopulations of AMPARs (Lee et al. 

2002). 

4.2.3  Signaling pathways underlying synaptic plasticity.  

It is well established nowadays that the opening of NMDARs and the concomitant entry of Ca2+ 

ions into the postsynaptic terminal are the events triggering the regulated addition and 

removal of AMPARs at synaptic sites. Multiple signaling cascades are thought to be activated 

by this rise in postsynaptic calcium, and it is probable that complex interactions between 

different signaling pathways determine either a net increase or decrease of synaptic AMPARs.  

AMPAR phosphorylation plays a crucial role in regulating synaptic plasticity. In the case of LTP, 

there is strong evidence that the opening of NMDARs generates a sufficient increase in calcium 

concentration in the dendritic spine to activate calcium/calmodulin-dependent kinase II 

(CamKII), which is found at very high concentrations in spines and which is clearly required for 

LTP (Lisman et al. 2002). CamKII directly phosphorylates GluA1 at Ser 831 (Mammen et al. 

1997; Barria et al. 1997a; Barria et al. 1997b) during LTP (Lee et al. 2000) increasing AMPAR 

conductance (Benke et al. 1998), another postsynaptic mechanism that contributes to at least 

the early phase of LTP. In addition, the increase in CamKII activity contributes to the insertion 

of AMPARs in the postsynaptic membrane (Ehlers 2000).  
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Although CamKII is well accepted to be one major requisite trigger for LTP, the signaling 

cascades underlying the induction and maintenance of LTP are not completely understood yet. 

More recent findings have shown that CamKII activates the small guanosine triphosphatase 

(GTPase) Ras (Chen et al. 1998), which would in turn lead to synaptic delivery of AMPARs via 

activation of its downstream effectors mitogen-activated protein kinases (MAPK) and/or 

phosphatidylinositol 3-kinase (PI3K) (Seger and Krebs 1995; Zhu et al. 2002). In fact, it has been 

demonstrated that the activity of PI3K and the availability of its phosphorylation product, 

phosphoinositide-3,4,5-trisphosphate (PIP3), are required for the delivery of new AMPARs into 

synapses in response to NMDAR activation (Man et al. 2003) and for the maintenance of 

AMPAR clustering on the synaptic membrane (Arendt et al. 2010).  

The PKA signaling pathway is also involved in the regulation of synaptic plasticity. In particular, 

phosphorylation of GluA1 by PKA is required for AMPAR synaptic delivery (Lee et al. 2000; 

Esteban et al. 2003) and controls also the recycling of receptors between the plasma 

membrane and endosomal compartments (Ehlers 2000). However, it seems that PKA 

phosphorylation of GluA1 is necessary but not sufficient to trigger the regulated delivery of 

AMPARs (Esteban et al. 2003), and that the activation of the above mentioned cascade 

(CamKII-Ras-MAPK) is concomitantly required for AMPAR delivery during LTP. More recently, 

tyrosine kinases, acting on NMDARs and enhancing their function, have also been implicated in 

the induction of long-term potentiation (Salter and Kalia 2004) (figure 4).  

If LTP involves the activation of various kinases and LTD represents the inverse of LTP, a logical 

hypothesis would be that LTD requires preferentially the activation of protein phosphatases. 

Indeed, an early model proposed that NMDAR-dependent LTD depends on the 

calcium/calmodulin-dependent protein phosphatase calcineurin (PP2B) as well as on protein 

phosphatase 1 (PP1) (Lisman 1989). Some excellent works have provided strong evidence of 

the involvement of these two phosphatases in LTD, perhaps by influencing the 

phosphorylation state of AMPARs (Mulkey et al. 1993; Mulkey et al. 1994; Carroll et al. 2001). 

In any case, it is well established that the regulation of the phosphorylation state of AMPARs is 

crucial not only for LTP but also for LTD expression. During hippocampal LTD, the PKA site on 

GluA1, Ser 845, is dephosphorylated, whereas LTD induction in previously potentiated 

synapses leads to dephosphorylation of the CamKII site, Ser 831 (Lee et al. 2000). Mice that 

have these two sites mutated exhibit major deficits in LTD and AMPAR internalization induced 

by NMDAR activation (Lee et al. 2003). The mechanism by which the phosphorylated state of 

GluA1 is translated into AMPAR internalization is currently unknown, but the differential 
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regulation of proteins interacting with AMPARs might be involved. In addition, it is fair to say 

that not only AMPARs but also phosphoinositides are subject to dephosphorylation during LTD. 

Analogous to the connection between PIP3 formation and synaptic potentiation, PIP3 turnover 

by the lipid phosphatase PTEN has been linked to synaptic depression (Wang et al. 2006; 

Jurado et al. 2010). 

Contrary to the original conception of LTD relying on the activation of phosphatases, more 

recent investigations have demonstrated that several kinases do also play a role in LTD 

expression and maintenance. It has been shown that the removal of AMPARs during LTD 

correlates with the phosphorylation of the GluA2 subunit by Protein Kinase C (PKC) (Daw et al. 

2000; Kim et al. 2001). The most accepted model for this regulated removal involves the 

preferential interaction of unphosphorylated GluA2 with the PDZ domain-containing proteins 

GRIP1/ABP (see below), which would favor the stabilization of receptors at synapses. After 

phosphorylation of GluA2 at Ser 880 by PKC, GluA2 would dissociate from GRIP1/ABP and bind 

PICK1 (see below), which would facilitate the removal of AMPARs from synapses. Another 

signaling pathway more recently proposed to be involved in LTD is the MAPK signaling 

pathway, given that Rap (a specific activator of p38 MAPK) increased activity results in the 

occlusion of LTD (Zhu et al. 2002). Surprisingly, autonomous CamKII has been shown lately to 

be required for NMDAR-dependent LTD in hippocampus as well, apparently through the 

phosphorylation of GluA1 at Ser 567 (Coultrap et al. 2014). 

As described, the signaling pathways underlying LTD are considerably complicated (figure 4), 

and clearly more work needs to be done to clarify their precise contribution to the regulated 

endocytosis of AMPARs. Furthermore, many other signaling pathways are required to 

orchestrate the intracellular disposal of AMPARs once they have been endocytosed after the 

induction of LTD. Indeed, to prevent AMPARs from returning to the plasma membrane so that 

depression is maintained, AMPARs might also need to be degraded via lysosomal or 

proteasomal pathways, which are as well subject to a convoluted regulation. Indeed, it has 

been recently shown that the balance between receptor recycling (from recycling endosomes 

to the postsynaptic compartment, in a process depending on Rab11 activation) and 

degradation (Rab7-dependent trafficking towards lysosomes) determines the extent of 

synaptic depression upon LTD induction (Fernandez-Monreal et al. 2012). 
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4.3.  AMPAR interacting proteins.  

4.3.1. N-Ethylmaleimide-Sensitive Fusion protein (NSF). NSF plays a key role in 

membrane fusion events such as synaptic vesicle exocytosis (Rothman 1994). The interaction 

of NSF with the C-terminus of the GluA2 subunit of AMPARs has been described to be a crucial 

factor in the regulation of AMPAR surface expression. Disruption of the interaction between 

NSF and GluA2 results in a fairly rapid decrease of the amplitude of synaptic currents, which 

suggests a loss of synaptic AMPARs (Nishimune et al. 1998; Luscher et al. 1999; Noel et al. 

1999).  

4.3.2. Glutamate Receptor Interacting Protein 1 (GRIP1), AMPAR Binding Protein 

(ABP, also called GRIP2) and Protein Interacting with C kinase 1 (PICK1). GRIP1 and ABP (or 

GRIP2) are multi-PDZ domain proteins that bind to GluA2 and GluA3 subunits of the AMPA 

receptor. GRIP1 binds to GluA2 and GluA3 subunits but not to GluA1 or GluA4 (Dong et al. 

1997). ABP/GRIP2 is a protein closely related to GRIP1 (Dong et al. 1999). GRIP1 contains 7 PDZ 

domains whereas ABP/GRIP2 exists in two isoforms with 6 and 7 PDZ domains, respectively. 

The shorter isoform binds to GluA2/GluA3 subunits (Srivastava et al. 1998) and is functionally 

indistinguishable from GRIP1. 

Figure 4. Postsynaptic expression mechanisms of LTP and LTD. Left, strong activity of the presynaptic 

neuron paired with strong depolarization of the postsynaptic element triggers LTP in part via CamKII, 

receptor phosphorylation and exocytosis. Apart from CamKII, several kinases (inset) have been shown 

more recently to be involved in LTP, too. Right, weak activity of the presynaptic neuron leads to modest 

depolarization and modest calcium influx through NMDA receptors. This preferentially activates 

phosphatases that dephosphorylate AMPA receptors, thus favoring receptor endocytosis. Other proteins 

(inset) have been proposed to mediate the molecular mechanisms triggering AMPAR endocytosis during 

LTD as well. Adapted from Luscher and Malenka 2012. 
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The functions of GRIP1/2 appear to be many and varied, and controversy in the field still exists. 

Some studies addressing GRIP1/2 function in AMPAR trafficking are consistent with the idea of 

GluA2 association with GRIP1/2 being essential for maintaining AMPARs at synapses, perhaps 

by limiting their endocytic rate (Osten et al. 2000). The binding of GRIP1/2 to GluA2/GluA3 has 

also been proposed to stabilize AMPARs in an intracellular pool preventing their reinsertion 

into the synaptic plasma membrane after LTD (Daw et al. 2000). On the contrary, more recent 

publications suggest that GRIP1/2 might be facilitating the recycling back to the plasma 

membrane of the previously endocytosed AMPARs (Mao et al. 2010).  

On its part, PICK1 has been demonstrated to interact with GluA2/GluA3 AMPARs subunits, too, 

(Dev et al. 1999; Xia et al. 1999), via their extreme C-terminal PDZ-binding motifs. As GRIP1/2, 

it has been proposed to play multiple roles in neurons including the regulation of AMPAR 

synaptic insertion and subunit composition at synaptic sites (Daw et al. 2000; Terashima et al. 

2004).  

Interestingly, the binding of GluA2/GluA3 to GRIP1/2 is in dynamic equilibrium with PICK1 due 

to the phosphorylation status of Ser880 (Matsuda et al. 1999; Chung et al. 2000). It may well 

function as a mechanism to coordinate GRIP1/2 and PICK1 in their regulation of AMPAR 

trafficking, both in basal conditions and during LTD (Hanley 2008). 

4.3.3. Synapse-Associated Protein 97 (SAP97) and Protein 4.1. SAP97 is another 

multi-domain structural protein that interacts with AMPA receptors, but via the GluA1 subunit 

(Leonard et al. 1998). The trafficking function of SAP97 appears to be similar for GluA1 as that 

of GRIP1/2 for GluA2. SAP97 has been proposed to play a role in the delivery of GluA1-

containing AMPARs to dendritic spines on the basis of the observation that SAP97 is directed 

to spines under the control of CamKII phosphorylation (Mauceri et al. 2004).  

Protein 4.1R is a cytoskeletal protein first identified in erythrocytes. Protein 4.1 neuronal 

homologues, 4.1N and 4.1G, have been shown to interact with the GluA1 subunit of AMPARs 

(Shen et al. 2000) and are believed to play a role linking the GluA1 subunit to the actin 

cytoskeleton and favoring its stabilization at the postsynaptic membrane.  

4.3.4. Transmembrane AMPA receptor regulatory proteins (TARPs). TARPs, a family of 

small transmembrane AMPA receptor regulatory proteins including stargazing, are also worth 

mentioning. They have recently emerged as primary AMPAR auxiliary subunits that control 

both AMPA receptor trafficking and anchorage at the synapse, and channel gating (Ziff 2007; 

Jackson and Nicoll 2011).  
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4.4.  Microtubule-dependent transport of AMPARs along dendrites.   

AMPARs are mostly synthesized in the cell body. Thus, they need to be transported long 

distances along dendrites to reach their synaptic targets at dendritic spines; this process has 

been demonstrated to occur in a microtubule-dependent manner. Apart from ensuring the 

maintenance of cell shape, the microtubule cytoskeleton running along dendritic shafts 

provide tracks along which membranous organelles embedded in vesicles can be transported. 

This active mode of transport is effectively powered by microtubule-associated motor proteins 

of the kinesin and dynein superfamilies (Goldstein and Yang 2000; Hirokawa and Takemura 

2005).  

The mechanisms governing cargo specificity and directionality of transport towards axons or 

dendrites are not fully understood yet. However, adaptor proteins linking cargo and molecular 

motors are good candidates to mediate such specificity. GRIP1 has been shown to interact 

directly with the heavy chain of conventional kinesin (Setou et al. 2002). As mentioned above, 

GRIP1 interacts with GluA2/GluA3 subunits of AMPARs, and therefore, it may function to link 

AMPARs to the microtubule cytoskeleton and molecular motors. The GRIP1-GluA2 complex 

has also been reported to associate with liprin-α. This interaction seems to be critical for 

AMPAR trafficking as a liprin-α mutant unable to bind GRIP1 disrupts the surface expression of 

AMPARs in hippocampal neurons (Wyszynski et al. 2002). Interestingly, liprin-α interacts with a 

kinesin family member, KIF1, and AMPARs can be immunoprecipitated with KIF1 from brain 

lysates (Shin et al. 2003).  

On the other hand, dendritic spines are mostly devoid of microtubules (MTs) and characterized 

by their rich actin cytoskeleton, which is responsible for orchestrating the structural changes 

underlying plasticity (Matus 2000). Therefore, AMPARs transported along dendritic 

microtubule tracks need to be transferred to the actin-based cytoskeleton in spines at some 

point to reach synapses. The molecular mechanisms underlying this transition are currently 

unknown, but protein 4.1 has been proposed as a reasonable candidate.  It is worth noting, 

however, that recent reports have evidenced the transient entry of dynamic microtubules into 

dendritic spines (Jaworski et al. 2009), too.  

5. Microtubules in neurons. Structural microtubule-associated proteins (MAPs).  

Microtubules play central roles in neurons. They are critical to establish neuronal polarity and 

morphology during development and to maintain cell architecture in mature neurons. They 
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provide a structural basis for intracellular transport in axons and dendrites. In addition, they 

act as scaffolds for signaling molecules (Gundersen and Cook 1999; Davies and Morris 2004; 

Conde and Caceres 2009).  

A characteristic property of microtubules is their ability to undergo cycles of rapid growth and 

disassembly. This behavior of microtubules, observed both in vitro and in vivo, has been 

referred to as “dynamic instability”. The dynamics of microtubules as well as their interactions 

with other cellular components are regulated by microtubule-binding proteins.  

Microtubule-associated proteins (MAPs) were the first microtubule-binding proteins to be 

identified. They favor tubulin assembly into microtubules and remain attached to the 

microtubule surface, resulting in microtubule stabilization. (Davies and Morris 2004; Conde 

and Caceres 2009). One of these microtubule-associated proteins is microtubule-associated 

protein 1B or MAP1B.  

6.  Microtubule-associated protein 1B (MAP1B): physiology and pathology.  

6.1 MAP1B molecular particularities.  

MAP1B is a large protein with an apparent molecular weight of 320 kDa (Noble et al. 1989). It 

is composed of 2464 amino acids. MAP1B is encoded as a polyprotein precursor that is 

subsequently cleaved into a heavy chain (MAP1B-HC) and a light chain (MAP1B-LC) 

(Hammarback et al. 1991), the cleavage site being located near amino acid sequence 2100 

(figure 5). MAP1B-LC associates non-covalently with the N-terminal region of the heavy chain 

to form a protein complex.   

 

 

 

 

 

 

The heavy chain of MAP1B contains a microtubule-binding site near the N-terminus (Noble et 

al. 1989) and an actin-binding site (Cueille et al. 2007); the light chain of MAP1B includes both 

Figure 5. Full length MAP1B. MAP1B is composed of 2464 aminoacids. Actin-binding domains (ABD) 

localize in the N-terminal domain of MAP1B-HC (1-517) and at the MAP1B-LC (2336-2459). The 

microtubule-binding domain of MAP1B-HC (517-848) is characterized by 21 KKEK repeats near the N 

terminus; another MBD is localized at the MAP1B-LC (2210-2336). Adapted from Riederer 2007.  
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a microtubule-binding domain and an actin-binding domain as well (Zauner et al. 1992; Togel 

et al. 1998). As both chains of MAP1B are able to bind microtubules, it has been suggested that 

MAP1B may act as a microtubule cross-linker (Hammarback et al. 1991; Zauner et al. 1992; 

Pedrotti et al. 1996a). 

In homogenates from postnatal rat brain, MAP1B-LC is found in a 6:1 to 8:1 molar ratio to 

MAP1B-HC (Mei et al. 2000). A greater half-life of MAP1B-LC has been proposed to explain 

such stoichiometry, given that both chains are synthesized at a 1:1 ratio (Mei et al. 2000). As 

MAP1B-LC exists in excess over MAP1B-HC in vivo, it has been suggested that MAP1B-LC might 

have additional functions outside of the complex with the heavy chain (Mei et al. 2000). In a 

study addressing possible independent functions of the light chain when it is not complexed by 

the heavy chain, a model has been proposed in which the heavy chain of MAP1B might act as 

the regulatory subunit of the MAP1B complex to control light chain activity (Togel et al. 1998). 

Indeed, one of the main observations of this study is that, although both the heavy chain and 

the light chain of MAP1B contain a microtubule-binding domain, the strongest microtubule 

stabilizing activity corresponds to the light chain by far. Interestingly, MAP1B-LC binding to 

microtubules confers them a characteristic wavy appearance and unusual stability against the 

action of depolymerizing agents (Togel et al. 1998; Noiges et al. 2002) that is distinctive of the 

light chain of MAP1B comparing to other MAPs, like MAP2.  

6.2 MAP1B function.  

MAP1B is the first MAP to be expressed during neuronal development (Tucker et al. 1989). It is 

present in axon, soma and dendrites (Matus and Riederer 1986; Tucker et al. 1989). It is 

specially abundant in developing axons, and its expression declines with age (Schoenfeld et al. 

1989); yet, MAP1B presence in somatodendritic compartments has been corroborated in adult 

brain (Kawakami et al. 2003; Peng et al. 2004; Collins et al. 2005; Tortosa et al. 2011). 

MAP1B has been classically studied as a critical modulator of axogenesis through its interaction 

with the microtubule cytoskeleton (Gonzalez-Billault et al. 2004). According to the classical 

model of neuronal polarization (Kirschner and Mitchison 1986a; Kirschner and Mitchison 

1986b), axon formation is related to dramatic changes in the organization and dynamics of the 

microtubule cytoskeleton in a specific region of a neuron; therefore, an important factor 

influencing this process is the existence of a protein that acts as a microtubule stabilizer, like 

MAP1B. There is strong evidence supporting the role of MAP1B in axon formation and 

elongation during development (Gonzalez-Billault et al. 2004; Montenegro-Venegas et al. 
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2010); in fact, independent groups have reported a severe impairment of brain development 

as a result of the targeted disruption of the MAP1B gene (Edelmann et al. 1996; Takei et al. 

1997; Gonzalez-Billault et al. 2000; Meixner et al. 2000; Takei et al. 2000).  

In addition, the crosstalk between microtubules and actin in growth cones has been revealed 

as a critical factor to enable axonal outgrowth during neuronal development. Because of its 

ability to interact not only with microtubules but also with actin filaments, MAP1B has been 

proposed as a mediator of such crosstalk. This hypothesis is supported by the observation that 

MAP1B modulates Rac1, Cdc42 and RhoA activities, small GTPases involved in the fine tuning 

of the actin cytoskeleton required during axonal outgrowth, elongation and branching 

(Montenegro-Venegas et al. 2010). Interestingly, the ability of MAP1B to regulate Rac1 activity 

through the binding of Tiam1 (Rac1 guanosine nucleotide exchange factor) has been reported 

to reside in the light chain, not in the heavy chain (Henriquez et al. 2012). 

More recently, novel crucial roles for MAP1B in the postsynaptic compartment have been 

proposed in relation with its ability to regulate small GTPases, and therefore, modulate the 

actin cytoskeleton. Apart from being essential during axogenesis, it has been shown to be 

required for proper dendritic spine morphogenesis, too (Tortosa et al. 2011). Furthermore, 

results from our group have also revealed that MAP1B function is essential during synaptic 

plasticity in mature neurons, by providing Rac1 activation during the regulated removal of 

AMPA receptors after LTD induction (Benoist et al. 2013). In fact, previous reports had 

indicated an increase in MAP1B protein levels after treatment of cultured neurons with the 

specific mGluRs agonist DHPG, which induces AMPAR endocytosis, strengthening the notion 

that MAP1B might act as a critical regulator of the trafficking of AMPARs during synaptic 

plasticity paradigms (Davidkova and Carroll 2007). 

It has been proposed, too, that MAP1B may function as a scaffold protein. This role would be 

mainly determined by the fact that MAP1B is able to interact with many different proteins, 

either directly or via tubulin or actin. In addition, these interactions might be different for the 

heavy chain and the light chain (Riederer 2007).  

Interestingly, MAP1B has also been implicated in the subcellular targeting of different types of 

receptors and ion channels, by mediating their interaction with the microtubule cytoskeleton. 

MAP1B has been shown to regulate the synaptic localization of ionotropic GABA receptors at 

retinal synapses through the binding of GABAc ρ1 subunit (Hanley et al. 1999); based on its 

interaction with the NR3A subunit, MAP1B has been suggested to regulate the trafficking of 
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NMDARs, too (Eriksson et al. 2010). Concerning specifically the light chain of MAP1B, it has 

been characterized as a binding partner of the voltage gated sodium channel Nav 1.6, 

facilitating its trafficking to the neuronal cell surface (O'Brien et al. 2012). Two subtypes of 

serotonin receptors have been described to interact directly with the light chain of MAP1B: in 

the case of the 5-HT6 serotonin receptor, its interaction with MAP1B-LC promotes its 

expression in the cell surface (Kim et al. 2014); on the contrary, the surface expression of the 

serotonin receptor 5HT3A is decreased as a result of MAP1B-LC binding (Sun et al. 2008). 

Similarly, over-expression of MAP1B-LC produces a decreased surface expression of the N-type 

Ca2+ channel Cav2.2, apparently by acting as a scaffold protein to increase the UBE2L3-

mediated ubiquitination of the channel by simultaneously binding the channel and the enzyme 

(Gandini et al. 2014). Especially relevant in relation with the trafficking of AMPARs is the 

reported interaction between MAP1B-LC and GRIP1, which has been described to happen via a 

non-PDZ domain of GRIP1 (Seog 2004; Davidkova and Carroll 2007). The functional relevance 

of this interaction has remained unraveled so far.  

It is important to note that MAP1B function is modulated by phosphorylation (Gonzalez-Billault 

et al. 2004; Riederer 2007). Two phosphorylation modes have been described for MAP1B; they 

are independently regulated during brain development and have different subcellular 

distributions in neurons. Mode I phosphorylation is catalyzed by proline-dependent kinases 

(such as cdc2, glycogen synthase kinase 3, cdk5 and JNK), and is present in outgrowing axons 

(with an increasing gradient of phosphorylated MAP1B towards the growth cone); a Casein 

Kinase II (CKII)-dependent mode or mode II phosphorylation can be identified in both axons 

and dendrites and remains into adulthood (Diaz-Nido et al. 1988; Ulloa et al. 1993a; Avila et al. 

1994; Gonzalez-Billault et al. 2004). Protein phosphatases contribute to regulate total 

phosphorylation levels of MAP1B as well; thus, mode I phosphorylation is regulated by protein 

phosphatases PP2A and PP2B (Ulloa et al. 1993c; Gong et al. 2000) and mode II is regulated by 

PP1 and PP2A (Ulloa et al. 1993c; Gong et al. 2000).  

6.3 MAP1B in pathology.  

The strongest evidence of MAP1B involvement in pathology has been gathered for Fragile X 

syndrome (FXS) and Giant Axon Neuropathy (GAN).  

FXS is the most common cause of inherited mental retardation and results from the absence of 

the fragile X mental retardation protein (FMRP). FMRP controls the translation of several 

mRNAs, including that of MAP1B. The lack of FMRP results in the aberrantly elevated 
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expression of MAP1B, which is linked to abnormally increased microtubule stability. 

Anomalous microtubule dynamics due to the lack of FMRP have been suggested as a 

conceivable underlying factor for the pathogenesis of fragile X mental retardation (Lu et al. 

2004). Curiously, delayed dendritic spine development is a hallmark of the disease in patients.  

GAN is an autosomal recessive disorder caused by mutations in gigaxonin, a protein that links 

microtubules and intermediate filaments and has been shown to interact with the light chain 

of MAP1B (Ding et al. 2002). GAN is characterized cytopathologically by cytoskeletal 

abnormalities. The clinical relevance of this interaction has been demonstrated in patients 

(showing axonal degeneration and neuronal death) with two specific mutations in gigaxonin 

that prevented gigaxonin-MAP1B interaction (Ding et al. 2002).  
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1. El hipocampo como modelo para estudiar la plasticidad sináptica.  

En el cerebro, las funciones superiores como el sueño, la cognición, la emoción, el lenguaje y la 

memoria se codifican en regiones específicas. El hipocampo, una estructura con forma de 

herradura situada en el lóbulo medial temporal bajo la superficie cortical, es una de estas 

áreas. Desde un punto de vista histórico, el hipocampo ha sido la estructura en la que se han 

estudiado y establecido muchos de los principios generales de la neurociencia moderna. 

Además, ha sido la red neuronal preferida para el estudio de la forma de plasticidad neuronal 

mejor caracterizada, la plasticidad sináptica (Andersen 2007).   

Hoy en día se sabe que el hipocampo está involucrado en la formación y/o recuperación de 

ciertas formas de memoria. Scoville y Milner fueron los primeros en sugerir la relación entre 

hipocampo y memoria en 1957, al publicar el caso de un paciente (HM) que presentaba una 

amnesia severa tras la resección bilateral del lóbulo temporal medial. Tras examinar otros 

pacientes con amnesia moderada, los autores concluyeron que la lesión bilateral de 

hipocampo conducía a pérdidas irreversibles de memoria (Milner 1972). 

Desde entonces, la intensa investigación llevada a cabo principalmente con roedores permitió 

llegar a la conclusión de que el hipocampo es necesario específicamente para la memoria y la 

navegación espaciales (O'Keefe and Nadel 1978; Burgess et al. 2002). La mayoría de las 

evidencias en este sentido proceden de la observación de células de ubicación en roedores, y 

de estudios basados en la lesión de hipocampo combinados con tareas de memoria espacial 

también en estos animales.  

La identificación en el hipocampo de células de ubicación, aquellas neuronas que aumentan 

selectivamente su tasa de disparo sólo cuando el animal está ocupando una pequeña zona 

bien definida del entorno, dio lugar a la idea de que el hipocampo funciona como un mapa 

espacial (O'Keefe and Dostrovsky 1971). Estudios pioneros con roedores permitieron confirmar 

que, en efecto, las lesiones hipocampales conducen a una deficiente navegación espacial 

(Morris et al. 1982). Investigaciones posteriores basadas también en la generación de daño en 

el hipocampo revelaron que esta estructura es necesaria para la adquisición de memorias 

específicas de escena o contexto, dado que las lesiones hipocampales borran la memoria de la 

disposición espacial de un contexto en el que se ha experimentado recientemente un objeto 

(Good 2002). Estudios de  imagen por resonancia magnética (MRI) permitieron confirmar que 

el hipocampo es necesario para la navegación espacial (Maguire et al. 1998; Maguire et al. 

1999), también en seres humanos.  
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Dada la extraordinaria complejidad de los procesos que subyacen a la formación de la 

memoria, es evidente que se requiere el funcionamiento apropiado de muchas otras áreas 

cerebrales además del hipocampo para tener la habilidad de aprender y recordar; sin 

embargo, la sólida evidencia que apunta a la implicación del hipocampo en el almacenamiento 

de información y recuperación de la misma ha llevado a muchos investigadores a lo largo de 

las últimas décadas a escoger esta estructura como modelo para estudiar la generación de la 

memoria (Purves 2004; Andersen 2007).  

Pero, ¿cuál es el sustrato  celular de la memoria y el aprendizaje? Ambos procesos dependen 

íntimamente de la capacidad plástica del cerebro para adaptarse a cambios en el entorno. Por 

lo tanto, la plasticidad neuronal, entendida como la habilidad del cerebro de ser modelado por 

la experiencia, subyace a la adquisición y consolidación de nuevas memorias. El ejemplo más 

representativo de plasticidad neuronal es la plasticidad sináptica. La plasticidad sináptica se 

define como una alteración persistente o transitoria en la eficacia de la transmisión sináptica 

en respuesta a señales intrínsecas o extrínsecas. Aunque las formas de plasticidad sináptica de 

corta duración también existen, son las formas de larga duración las que constituyen el 

sustrato para los cambios permanentes en el comportamiento. A causa de su duración, se cree 

que estas formas de plasticidad sináptica son de hecho los correlatos celulares de los procesos 

de aprendizaje y memoria.  

2. Neuronas piramidales del hipocampo. 

Como se ha mencionado previamente, la mayor parte del progreso alcanzado en la 

comprensión de los mecanismos moleculares que subyacen a los procesos de plasticidad 

sináptica procede de estudios ex vivo con rodajas de hipocampo. La disposición particular de 

las neuronas en esta estructura permite que el hipocampo pueda ser seccionado de forma que 

la mayor parte del circuito neuronal más relevante quede intacto. En tales preparaciones, los 

cuerpos celulares de las neuronas, que se organizan en una única capa densamente 

empaquetada, se identifican con facilidad. Esta capa se divide a su vez en varios campos, 

siendo los principales CA1 y CA3. “CA” procede de la traducción del latín Cornu Ammon, el asta 

de Amón, el cuerno de carnero cuya forma se parece a la del hipocampo (figura 1A).  

El soma o cuerpo celular de las neuronas CA3 y CA1 del hipocampo tiene forma piramidal, por 

lo que se las conoce como neuronas piramidales; de este cuerpo celular emergen un axón 

único y varias dendritas (figura 1B). El axón único de cada neurona piramidal parte típicamente 
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de la base del soma y se ramifica profusamente, estableciendo múltiples contactos sinápticos 

glutamatérgicos excitatorios a lo largo de todo su recorrido (Spruston 2008).  

Por su parte, el árbol dendrítico de una neuronal piramidal presenta dos dominios bien 

diferenciados: las dendritas basales, que descienden de la base del soma y son relativamente 

cortas, y las dendritas apicales, que parten del ápex. Generalmente existe una dendrita apical 

principal de la que emanan varias dendritas apicales oblicuas desde varios ángulos. Las 

dendritas de las neuronas piramidales aparecen cubiertas extensamente por espinas 

dendríticas, donde se ubican la mayoría de las sinapsis excitatorias glutamatérgicas (Spruston 

2008). 

Las dendritas apicales de las neuronas piramidales del campo CA1 constituyen una banda 

gruesa (el stratum radiatum) donde reciben las sinapsis de las colaterales de Schaffer, los 

axones de las células piramidales de la región CA3. Las colaterales de Schaffer forman una vía 

homogénea que se puede activar fácilmente para estudiar la transmisión sináptica y los 

fenómenos de plasticidad sináptica.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1. Neuronas piramidales en el 

hipocampo. A) Red neuronal en una rodaja 

de hipocampo. Las células piramidales CA3 

proyectan hacia las células piramidales CA1 

por medio de las colaterales de Schaffer 

(“Sch”). Las dendritas apicales de las 

neuronas CA1 forman el stratum radiatum. 

B) Detalle de una neurona piramidal del 

campo CA1 del hipocampo. Las sinapsis 

CA3-CA1 son sinapsis excitatorias, como la 

que se muestra en la imagen de 

microscopía electrónica de la derecha. En 

una sinapsis química, la comunicación 

neuronal depende de la liberación de 

neurotransmisores (glutamato en el caso de 

las sinapsis excitatorias). El neurotransmisor 

se almacena en vesículas sinápticas (“Ves”) 

alojadas en el terminal presináptico (“Pre”).  

Cuando éste se despolariza, el 

neurotransmisor es liberado al espacio 

sináptico; la activación de receptores 

específicos en el terminal postsináptico 

(“Post”) permite la generación de una señal 

eléctrica que garantiza el flujo de 

información. Adaptado de Ishizuka et al. 

1995; Wedding and Stevens 2009.  

A) 

B) 
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3. Transmisión sináptica glutamatérgica. 

El principal neurotransmisor excitatorio en el hipocampo, y en general en el sistema nervioso 

central de los mamíferos, es el glutamato. El glutamato que se libera desde la terminal 

presináptica puede activar diferentes tipos de receptores a nivel de la membrana 

postsináptica. Los receptores de glutamato se dividen en dos categorías funcionalmente 

diferenciadas: los receptores ionotrópicos de glutamato, que son canales iónicos activados por 

ligando, y los receptores metabotrópicos (mGluRs), cuyos efectos están mediados por sistemas 

de segundos mensajeros acoplados a proteínas G (Simeone et al. 2004). 

Los receptores ionotrópicos de glutamato se nombraron en función de los agonistas 

específicos capaces de activarlos de forma selectiva: ácido α-amino-3-hidroxi-5-metilisoxazol-

propiónico (AMPA), N-metil-D-aspartato (NMDA) y receptores de kainato. Los receptores 

AMPA y NMDA son los miembros de esta familia directamente implicados en la generación y 

expresión de la plasticidad sináptica de la transmisión excitatoria.  

 Receptores AMPA (AMPARs): están compuestos por cuatro subunidades (GluA1-

GluA4) que se organizan como dímeros de dímeros. Cada subunidad contiene un extremo N-

terminal extracelular, cuatro dominios hidrofóbicos (TM1-4) y un extremo C-terminal 

intracelular. El extremo N-terminal se expresa en la superficie exterior de la neurona, y 

contiene el centro de interacción con el ligando; las regiones TM1, TM3 y TM4 atraviesan la 

membrana plasmática, mientras que la región TM2 forma un bucle en horquilla en el lado 

intracelular de la membrana (Traynelis et al. 2010). El extremo C-terminal intracelular de los 

AMPARs es el lugar de interacción para una amplia gama de proteínas, muchas de las cuales 

están implicadas en la regulación del tráfico del receptor y los fenómenos de plasticidad 

sináptica (Malinow and Malenka 2002; Henley 2003). Los AMPARs se encuentran en casi todas 

las sinapsis excitatorias del hipocampo y todos los subtipos son permeables a iones Na+; por el 

contrario, la entrada de iones de Ca2+ depende de su composición de subunidades. El ARN que 

codifica para la subunidad GluA2 se edita en la posición 607 (Q607R); los AMPARs cuyas 

subunidades GluA2 contienen arginina tienen una permeabilidad baja a los iones de Ca2+ 

(Burnashev et al. 1992; Swanson et al. 1997), y no presentan rectificación en sentido entrante 

sino una relación intensidad-voltaje lineal o que rectifica ligeramente en sentido saliente 

(Verdoorn et al. 1991; Dingledine et al. 1992).   

 

 Receptores NMDA (NMDARs): Los NMDARs están compuestos por cuatro subunidades 

que pertenecen a tres categorías diferentes: GluN1, GluN2 y GluN3. Funcionan como 
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estructuras heterotetraméricas en las que típicamente las subunidades de tipo GluN1 se 

asocian con las de tipo GluN2 o una combinación de subunidades GluN2 y GluN3. De forma 

similar a los AMPARs, las subunidades de los NMDARs presentan cuatro módulos: el extremo 

N-terminal extracelular contiene el dominio de unión al agonista; el domino transmembrana 

está compuesto por tres hélices transmembrana más un bucle que se alinea con el filtro de 

selectividad de iones; y un extremo C-terminal, particularmente largo en el caso de los 

NMDARs, y que está implicado en el tráfico y anclaje de receptores, y en el acoplamiento de 

moléculas de señalización. Las siguientes características distinguen a los NMDARs de otros 

receptores ionotrópicos: 1) el canal iónico está sujeto a un bloqueo dependiente de voltaje por 

Mg2+, que se anula cuando el terminal postsináptico se despolariza; 2) los canales NMDAR son 

altamente permeables al Ca2+, cuyo influjo a través de los NMDARs juega un papel muy 

importante en la plasticidad sináptica a largo plazo; 3) su activación requiere la presencia no 

sólo de glutamato, sino también de un co-agonista (glicina o D-serina) (Traynelis et al. 2010).  

Sin embargo, se ha visto que los fenómenos de plasticidad sináptica no dependen únicamente 

de los receptores ionotrópicos de glutamato. Algunas formas de plasticidad sináptica a largo 

plazo requieren de la activación de receptores metabotrópicos de glutamato (mGluRs). A 

diferencia de los receptores ionotrópicos, los mGluRs contienen siete segmentos 

transmembrana y están acoplados a proteínas G que unen nucleótidos, las cuales median la 

mayoría de sus acciones. Al contrario que en el caso de los AMPARs y NMDARs, cuyo papel en 

transmisión sináptica ha sido bien caracterizado, los papeles fisiológicos de los receptores 

mGluR todavía no se comprenden en profundidad. La activación del grupo I de receptores 

postsinápticos (mGluR1 y 5) conduce a una despolarización celular y una tasa incrementada de 

disparo y por lo tanto, al aumento de la excitabilidad neuronal y la activación de ciertas vías de 

señalización (Niswender and Conn 2010). Por el contrario, los grupos II (mGluR 2, 3) y III 

(mGluR 4, 6, 7, 8) de receptores presinápticos inhiben la liberación de neurotransmisor 

(Niswender and Conn 2010). 

4. Transmisión glutamatérgica excitatoria y tráfico de receptores AMPA.  

La modulación de la eficacia sináptica, tanto durante el desarrollo neuronal como durante la 

plasticidad condicionada por la experiencia, depende íntimamente del tráfico regulado de 

AMPARs (Esteban 2003). Los AMPARs no son entidades estáticas en las sinapsis, sino que 

presentan un comportamiento eminentemente dinámico (Shepherd and Huganir 2007; Henley 

et al. 2011). De hecho, la eficacia de la transmisión sináptica depende al menos en parte de la 
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adición regulada a las sinapsis y la eliminación de las mismas de los AMPARs. Por lo tanto, para 

asegurar una comunicación neuronal apropiada, el número y la localización sináptica de los 

AMPARs deben estar sujetos a un estricto control.  

Para mantener la distribución subcelular de los AMPARs, específica de función, las neuronas 

cuentan con una amplia gama de proteínas que median su distribución intracelular, su 

retención y su eliminación en los lugares de destino. El tipo de interacción proteína-proteína 

más prevalente cuando se trata de tráfico intracelular de proteínas es la que se establece entre 

una secuencia corta de aminoácidos típicamente presente en el extremo C-terminal de la 

proteína que se transporta (AMPARs en este caso) y un dominio PDZ en la proteína con la que 

interacciona. La abreviatura PDZ procede del nombre de tres proteínas en las que se identificó 

originalmente este motivo estructural de aproximadamente 90 aminoácidos: PSD-95 (proteína 

de la densidad postsináptica de 95 kDa de peso molecular), DlgA (proteína de los discos 

imaginales de la larva de Drosophila) y ZO-1 (proteína de las uniones estrechas epiteliales) 

(Sheng and Sala 2001). Los AMPARs establecen interacciones PDZ con dominios de los grupos I 

y II, dependiendo de la subunidad específica involucrada en la interacción  (Barry and Ziff 2002; 

Malinow and Malenka 2002; Song and Huganir 2002; Bredt and Nicoll 2003). 

La regulación de la distribución intracelular de AMPARs puede tener lugar en diferentes 

localizaciones subcelulares y estados de actividad de las neuronas:  

 El tráfico de AMPARs desde las dendritas hacia las espinas se modula de forma 

diferencial durante la transmisión basal y durante la inducción de patrones de actividad que 

disparan fenómenos de plasticidad sináptica. Además, depende en gran medida de la 

composición de subunidades de los receptores, fundamentalmente debido a que las 

interacciones PDZ que establecen los AMPARs con las proteínas a las que se unen son también 

específicas de subunidad.  

 Por otra parte, antes de alcanzar su destino en las dendritas, los AMPARs tienen que 

ser transportados desde el cuerpo celular, donde se sintetizan mayoritariamente, hasta las 

proximidades de las espinas a lo largo de las dendritas. Este transporte de larga distancia es 

dependiente de microtúbulos (MTs) y llevado a cabo por proteínas motoras específicas y sus 

adaptadores (Hirokawa and Takemura 2005; Kapitein and Hoogenraad 2011).  

4.1. Mantenimiento de la transmisión basal y plasticidad sináptica. 
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Los AMPARs funcionan como hetero-oligómeros compuestos por diferentes combinaciones de 

cuatro subunidades, de GluA1 a GluA4. GluA4 se expresa fundamentalmente durante el 

desarrollo postnatal temprano (Zhu et al. 2000). En el hipocampo adulto, se han descrito dos 

complejos mayoritarios de AMPARs: aquellos que contienen las subunidades GluA1 y GluA2, y 

los oligómeros GluA2-GluA3 (Wenthold et al. 1996). 

Estas dos poblaciones diferenciadas de AMPARs contribuyen a la transmisión sináptica de 

manera distinta. Los AMPARs de tipo GluA2-GluA3 mantienen la eficacia sináptica ciclando 

continuamente hacia las sinapsis y fuera de ellas; la llamada “vía constitutiva” es por tanto 

responsable de la continua adición a las sinapsis y eliminación de las mismas de los AMPARs. 

Por el contrario, el transporte hacia las sinapsis de la población de tipo GluA1-GluA2 requiere 

de la inducción de actividad neuronal (Passafaro et al. 2001; Shi et al. 2001). Este tráfico 

diferencial parece estar controlado en gran medida por las interacciones específicas 

establecidas entre el dominio carboxilo terminal de la subunidad GluA1 (cola larga, grupo I de 

dominios PDZ) y de las subunidades GluA2-GluA3 (cola corta, grupo II de dominios PDZ) con las 

proteínas que contienen los dominios PDZ.  

Así, se ha propuesto un modelo en el que la inserción y eliminación local de AMPARs de las 

sinapsis estarían gobernadas por dos mecanismos regulatorios diferentes (Hayashi et al. 2000; 

Malinow et al. 2000). La “vía constitutiva” (receptores GluA2-GluA3) permitiría el 

mantenimiento de la eficacia sináptica ante el reemplazo proteico, actuando de una forma 

relativamente rápida (vida media de minutos). Por el contrario, la “vía regulada” (receptores 

de tipo GluA1-GluA2) actuaría de forma transitoria como consecuencia de la inducción de 

plasticidad conduciendo a la potenciación de la fuerza sináptica de larga duración que 

conocemos como potenciación a largo plazo o LTP. La vía regulada sería pues responsable de la 

formación de nuevas memorias, mientras que la vía constitutiva lo sería de su mantenimiento. 

Este modelo implicaría que la composición de subunidades de los AMPARs es la que dicta la 

disponibilidad de receptores para su transporte hacia las sinapsis o su eliminación de las 

mismas.  

4.2. Plasticidad sináptica: potenciación a largo plazo (LTP) y depresión a largo plazo (LTD).  

Actualmente se piensa que los fenómenos de LTP y LTD, cambios de larga duración en la 

función sináptica dependientes de actividad, son responsables de la formación de la memoria 

(Bliss and Collingridge 1993; Bear 1996; Kemp and Manahan-Vaughan 2007). Como 
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consecuencia, los mecanismos moleculares que conducen a ambos procesos han sido objeto 

de una intensa investigación durante los últimos 25 años.  

La potenciación a largo plazo es un incremento en la eficacia sináptica de larga duración 

producido por patrones específicos de actividad sináptica en el sistema nervioso central. Una 

disminución de larga duración en la eficacia sináptica se conoce como depresión a largo plazo.  

4.2.1 Potenciación a largo plazo o LTP. 

La potenciación a largo plazo o LTP, por sus siglas en inglés, fue descrita por primera vez por 

Bliss y Lomo en el hipocampo de conejo (Bliss and Lomo 1973). Estos autores encontraron que 

una estimulación repetitiva de las fibras de la vía perforante resultaba en la potenciación de la 

respuesta registrada en la células granulares del giro dentado que duraba entre 30 minutos y 

10 horas.  Desde entonces, la LTP ha sido extensamente estudiada en las sinapsis excitatorias 

del hipocampo de roedores. Concretamente, gran parte del trabajo sobre la LTP se ha 

centrado en las conexiones sinápticas establecidas entre las colaterales de Schaffer y las 

células CA1 piramidales. La estimulación eléctrica de las colaterales de Schaffer genera 

potenciales postsinápticos excitatorios (EPSPs) en las células CA1. Si las colaterales de Schaffer 

se estimulan a baja frecuencia, la amplitud de los EPSPs se mantiene constante. Sin embargo, 

un tren de estímulos breve pero a alta frecuencia provoca LTP, que se manifiesta como un 

incremento en la amplitud de los EPSPs de larga duración.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2. Potenciación a largo plazo de las sinapsis entre las colaterales de Schaffer y las células CA1. 

A) Las colaterales de Schaffer (los axones de las células piramidales CA3 que proyectan hacia el área 

CA1) se estimulan con un electrodo estimulador a alta frecuencia (“vía pareada”). La respuesta sináptica 

de la célula piramidal CA1 correspondiente se registra con un electrodo de registro (“registro”). La “vía 

control” activa una población independiente de colaterales de Schaffer que no se someten a 

estimulación de alta frecuencia, por lo tanto actuando como control. B) Evolución temporal de los 

cambios en la amplitud de los potenciales postsinápticos excitatorios (EPSP, por sus siglas en inglés) 

evocados por estimulación de las vías pareadas y control. Una potenciación estable y prolongada 

resulta de la estimulación a alta frecuencia de la vía pareada. Sin embargo, las respuestas sinápticas que 

corresponden a la vía control no cambian. Adaptado de Purves 2004. 
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Con respecto a su base molecular, la potenciación a largo plazo de la eficacia sináptica es 

consecuencia de aumentos en la función de los AMPARs sinápticos (Kauer et al. 1988; Muller 

and Lynch 1988; Davies et al. 1989; Isaac et al. 1995; Liao et al. 1995; Durand et al. 1996) que 

dependen de una activación transitoria de los NMDARs (Bliss and Collingridge 1993). La 

función de los AMPARs puede verse aumentada por medio de cambios en el número o en la 

composición de los receptores en las sinapsis y/o cambios en sus propiedades, como un 

aumento de su conductancia (Benke et al. 1998; Derkach et al. 1999). 

Se ha demostrado que la incorporación a las sinapsis de nuevos AMPARs es un mecanismo 

fundamental que contribuye a la expresión de LTP, y como se ha mencionado previamente, 

depende de la composición de subunidades de los receptores. Primero se demostró que la 

subunidad GluA1 (fusionada a GFP como proteína recombinante sobre-expresada) era 

transportada a las espinas dendríticas sólo tras la inducción de LTP en rodajas de hipocampo, y 

que esta redistribución era dependiente de la activación de NMDARs (Shi et al. 1999). Un 

estudio posterior evidenció que los receptores que contenían subunidades de tipo GluA1 eran 

insertados en las sinapsis tras la inducción de LTP en un proceso dependiente de las 

interacciones de tipo PDZ establecidas a través del dominio C-terminal de la subunidad GluA1 

(Hayashi et al. 2000). La evidencia definitiva del papel desempeñado por la subunidad GluA1 

en LTP y ciertas formas de aprendizaje se obtuvo poco después por medio de ratones 

modificados genéticamente que no expresan dicha subunidad (Zamanillo et al. 1999; Reisel et 

al. 2002).  

4.2.2 Depresión a largo plazo o LTD. 

Si la plasticidad dependiente de actividad operase sólo para aumentar la fuerza sináptica, al 

final tendría lugar una saturación de la eficacia sináptica. Una red neuronal compuesta 

únicamente por sinapsis cuya fuerza o peso sináptico fueran máximos sería incapaz de adquirir 

nuevas memorias. Un mecanismo disparado por actividad que permitiera un borrado, o de-

potenciación, de la LTP garantizaría la flexibilidad computacional de la red. Además, si un 

mecanismo adicional, independiente de LTP, permitiera una depresión a largo plazo 

dependiente de actividad desde los valores basales de fuerza sináptica, entonces la flexibilidad 

del sistema y su capacidad de almacenamiento se verían potenciados en mayor medida.  

La depresión a largo plazo en el hipocampo fue descrita por primera vez en las sinapsis entre 

las colaterales de Schaffer y las células CA1 (Dunwiddie and Lynch 1978). Este trabajo 
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evidenció que, además de LTP, las sinapsis hipocampales podían experimentar reducciones en 

la eficacia sináptica de larga duración y dependientes de actividad.  

 

 

 

 

Dudek y Bear (Dudek and Bear 1992) demostraron que se podía inducir LTD eléctricamente por 

medio de trenes de estimulación de baja frecuencia (figura 3), y que esta inducción era 

dependiente de la activación de NMDARs. El debate inicial sobre si la inducción de LTD en el 

área CA1 era dependiente de NMDARs, como habían demostrado Dudek y Bear, o 

dependiente de mGluRs (Bashir and Collingridge 1994) se zanjó gracias al trabajo de Oliet et al. 

(Oliet et al. 1997), que demostraba que era posible obtener cualquiera de los dos resultados 

manipulando el protocolo de inducción y por tanto, confirmando la existencia de formas 

independientes de LTD. En el área CA1 del hipocampo, la LTD dependiente de mGluRs se 

induce por exposición a DHPG, un agonista de grupo 1 (Palmer et al. 1997) o por medio de 

trenes de estimulación a baja frecuencia basados en la aplicación de pares de pulsos a un 

intervalo inter-pulso apropiado (Kemp et al. 2000). 

Los mecanismos moleculares responsables de la expresión de LTD se han estudiado 

extensamente, particularmente en el caso de la LTD dependiente de NMDARs. La inducción y 

la expresión de la LTD dependiente de NMDARs son postsinápticas, mientras que la expresión 

de la LTD dependiente de mGluRs parece implicar componentes tanto presinápticos como 

postsinápticos. En cualquier caso, el evento que conduce a la depresión de la eficacia sináptica 

es la endocitosis desde las sinapsis, regulada y dependiente de actividad, de los AMPARs. Al 

contrario de lo que ocurre durante la LTP, está mucho menos claro qué poblaciones de 

AMPARs se ven reguladas por las vías que conducen a LTD en las neuronas hipocampales. En 

ratones dobles knock-out para las subunidades GluA2 y GluA3, la transmisión sináptica basal se 

ve severamente alterada pero la LTD es completamente normal, sugiriendo que los AMPARs 

que contienen GluA1 son objeto de eliminación regulada de las sinapsis (Meng et al. 2003). Por 

otra parte, cuando se interfiere con la función de las proteínas que contienen dominios PDZ y 

que interaccionan específicamente con la subunidad GluA2, como GRIP1/2 y PICK1 (de las que 

se hablará más adelante), no se produce LTD (Daw et al. 2000), indicando así que la subunidad 

Figura 3. Depresión a largo plazo de las 

sinapsis hipocampales. La estimulación 

a baja frecuencia (1 pulso/segundo) de 

las colaterales de Schaffer garantiza una 

depresión prolongada y estable de los 

potenciales postsinápticos excitatorios 

(EPSPs) que se registran en las células 

CA1. Adaptado de Purves 2004.  
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GluA2 podría también ser primordial para esta forma de plasticidad sináptica. En conclusión, es 

posible que, al contrario de lo que ocurre con la LTP,  la eliminación regulada de los AMPARs 

durante la LTD afecte por igual a todas las subpoblaciones (Lee et al. 2002). 

4.2.3 Vías de señalización activadas durante plasticidad sináptica.  

Actualmente se considera suficientemente probado que la apertura de NMDARs y la entrada 

concomitante de iones Ca2+ en la terminal postsináptica son los eventos que disparan la 

adición y eliminación regulada de AMPARs en las sinapsis. Se piensa que son muchas las vías 

de señalización que se activan en respuesta a este aumento de calcio postsináptico, y que son 

las complejas interacciones establecidas entre ellas las que determinan que se produzca un 

aumento o una disminución en el número final de AMPARs en las sinapsis.  

La fosforilación de los AMPARs juega un papel fundamental en la regulación de la plasticidad 

sináptica. En el caso de la LTP, la apertura de los NMDARs genera un aumento suficiente en la 

concentración de calcio en la espina dendrítica como para que se active la calcio calmodulina 

quinasa II (CamKII), la cual se encuentra en espinas en una concentración muy elevada y cuya 

activación es necesaria para que se dispare la LTP (Lisman et al. 2002). La CamKII fosforila 

directamente la subunidad GluA1 en la serina 831 (Mammen et al. 1997; Barria et al. 1997a; 

Barria et al. 1997b) durante la LTP (Lee et al. 2000), aumentando así la conductancia de los 

AMPARs (Benke et al. 1998), uno de los mecanismos postsinápticos que contribuye al menos a 

la fase temprana de la LTP. Además, se ha visto que el incremento en la actividad de CamKII 

contribuye directamente a la inserción de los AMPARs en la membrana postsináptica (Ehlers 

2000). 

Aunque se sabe que la activación de la CamKII es uno de los principales requisitos de disparo 

de la LTP, todavía no se comprenden en su totalidad las cascadas de señalización que se ponen 

en marcha durante la inducción y mantenimiento de la LTP. Más recientemente se ha podido 

demostrar que la CamKII activa la trifosfatasa de guanosina (GTPasa) Ras (Chen et al. 1998), lo 

que conduce a la inserción de AMPARs en la sinapsis vía la activación de efectores como las 

proteínas quinasas activadas por mitógenos (MAPK) y/o la fosfatidil inositol 3-quinasa (PI3K) 

(Seger and Krebs 1995; Zhu et al. 2002). De hecho, se ha demostrado que la actividad de la 

PI3K y la disponibilidad de su producto de fosforilación, el fosfoinosítido-3,4,5-trisfosfato 

(PIP3), son necesarios para el transporte de nuevos AMPARs hacia las sinapsis en respuesta a 

la activación de los NMDARs (Man et al. 2003) y para su anclaje a nivel de la membrana 

postsináptica (Arendt et al. 2010).  
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La vía de señalización de la proteína quinasa A (PKA) está también implicada en la regulación 

de la plasticidad sináptica. En particular, se ha visto que la fosforilación de GluA1 por la PKA es 

necesaria para el transporte hacia las sinapsis de los AMPARs (Lee et al. 2000; Esteban et al. 

2003), controlando así mismo el reciclaje de receptores entre la membrana plasmática y los 

compartimentos endosomales (Ehlers 2000). Sin embargo, parece que la fosforilación de 

GluA1 por la PKA es necesaria pero no suficiente para disparar el transporte regulado de 

AMPARs (Esteban et al. 2003), y que se requiere la activación concomitante de la cascada de 

señalización mencionada anteriormente (CamKII-Ras-MAPK) para el tráfico de AMPARs que 

tiene lugar durante la LTP. Más recientemente se ha implicado también a las tirosina quinasas 

que actúan sobre los NMDARs y favorecen su funcionamiento en la inducción de la LTP (Salter 

and Kalia 2004) (figura 4).  

Si la LTP supone la activación de varias quinasas y la LTD representa la situación inversa a la 

LTP, una hipótesis lógica sería que la LTD requiriera preferentemente la activación de 

fosfatasas. De hecho, uno de los primeros modelos que se dieron a conocer proponía que la 

LTD dependiente de NMDARs requería la activación de la proteína fosfatasa calcineurina 

(PP2B) y de la proteína fosfatasa 1 (PP1) (Lisman 1989). En efecto, excelentes trabajos 

posteriores han permitido demostrar la implicación de ambas fosfatasas en la LTD, quizá por 

medio de la modificación del estado de fosforilación de los AMPARs (Mulkey et al. 1993; 

Mulkey et al. 1994; Carroll et al. 2001). 

En cualquier caso, se considera bien establecido que la regulación del estado de fosforilación 

de los AMPARs es crucial no sólo para la expresión de LTP sino también de LTD. Durante la LTD 

en el hipocampo, el sitio PKA de la subunidad GluA1, la serina 845, se desfosforila, mientras 

que la inducción de LTD en sinapsis previamente potenciadas conduce a la desfosforilación del 

sitio CamKII, la serina 831 (Lee et al. 2000). Los ratones que tienen ambos sitios mutados 

exhiben grandes déficits en LTD y en la internalización de AMPARs inducida por la activación 

de NMDARs (Lee et al. 2003). Actualmente se desconoce el mecanismo por el cual el estado de 

fosforilación de la subunidad GluA1 se traduce en la internalización de AMPARs, pero puede 

que la regulación diferencial de las proteínas que interaccionan con los AMPARs tenga algo 

que ver. Además, cabe recordar que no sólo los AMPARs sino también los fosfoinosítidos se 

desfosforilan durante la LTD. De forma análoga a la conexión entre la formación de PIP3 y la 

potenciación sináptica, se ha visto que el reemplazo de PIP3 por la fosfatasa de lípidos PTEN 

está implicado en la depresión sináptica (Wang et al. 2006; Jurado et al. 2010). 
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No obstante, y contrariamente a la idea original de que la LTD dependía de la activación de 

fosfatasas, investigaciones más recientes han permitido comprobar que de hecho varias 

quinasas también juegan un papel en la expresión y el mantenimiento de la LTD. Así por 

ejemplo, la eliminación de los AMPARs de las sinapsis durante la LTD se correlaciona con la 

fosforilación de la subunidad GluA2 llevada a cabo por la proteína quinasa C (PKC) (Daw et al. 

2000; Kim et al. 2001). Según el modelo más aceptado, la interacción de la subunidad GluA2 

con las proteínas GRIP1/ABP (ver más abajo) estaría favoreciendo la estabilización de los 

receptores en las sinapsis, y su fosforilación en la serina 880 conduciría a la disociación de 

GluA2 de GRIP1/ABP, con su consiguiente unión a PICK1 (ver más abajo) y eliminación de los 

AMPARs de las sinapsis. Otras quinasas implicadas en LTD serían la MAPK, por medio de la vía 

de señalización p38-MAPK (Zhu et al. 2002) y sorprendentemente, y de acuerdo a un trabajo 

recientemente publicado, la CamKII (Coultrap et al. 2014).  

 

 

 

 

 

 

 

 

 

 

Como se ha descrito, las vías de señalización activadas durante la LTD son considerablemente 

complicadas (figura 4), y evidentemente se requiere más trabajo para clarificar el modo en que 

contribuyen a la regulación de la distribución intracelular de los AMPARs una vez que estos 

han sido endocitados. De hecho, para evitar que los AMPARs ya internalizados vuelvan a la 

membrana plasmática, de modo que se mantenga la depresión, los AMPARs pueden ser 

degradados por medio de las vías lisosomal o proteosomal, las cuales están sujetas también a 

una complicada regulación. Así, se ha demostrado recientemente que el balance entre el 

Figura 4. Mecanismos postsinápticos de expresión de LTP y LTD. Izquierda, una potente activación 

presináptica combinada con una fuerte despolarización postsináptica dispara la LTP, en parte por 

medio de la vía CamKII, la fosforilación de receptores y su exocitosis. Además de CamKII, otras quinasas 

(rectángulo) podrían estar implicadas en la expresión de LTP. Derecha, la activación débil de la neurona 

presináptica conduce a una despolarización modesta del terminal postsináptico y al flujo moderado de 

calcio a través de los NMDARs. Este fenómeno activa preferentemente a fosfatasas que desfosforilan a 

los AMPARs, favoreciendo así su endocitosis. Se ha propuesto que muchas otras proteínas (rectángulo) 

podrían estar mediando los mecanismos moleculares que disparan la endocitosis de AMPARs durante 

la LTD. Adaptado de Luscher and Malenka 2012. 
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reciclaje de receptores (desde los endosomas de reciclaje al compartimento postsináptico, en 

un proceso que depende de la activación de Rab11) y su degradación (tráfico dependiente de 

Rab7 hacia los lisosomas) determina el grado de depresión sináptica después de la inducción 

de LTD (Fernandez-Monreal et al. 2012). 

4.3. Proteínas que interaccionan con los AMPARs.  

4.3.1. Proteína de fusión sensible a N-etilmaleimida (NSF). NSF juega un papel 

fundamental en los eventos de fusión de membranas como la exocitosis de vesículas sinápticas 

(Rothman 1994). La interacción entre NSF y el extremo C-terminal de la subunidad GluA2 de 

los AMPARs es un factor crucial en la regulación de la expresión en superficie de éstos. Cuando 

se interfiere con dicha interacción, la amplitud de las corrientes sinápticas disminuye 

rápidamente, lo que sugiere que se están perdiendo AMPARs sinápticos  (Nishimune et al. 

1998; Luscher et al. 1999; Noel et al. 1999).  

4.3.2. Proteína de interacción con receptores de glutamato 1 (GRIP1), Proteína de 

unión a receptores AMPA (ABP, también llamada GRIP2) y Proteína de Interacción con la 

quinasa C 1 (PICK1). GRIP1 y ABP (o GRIP2) son proteínas con múltiples dominios de tipo PDZ 

que se unen a las subunidades GluA2 y GluA3 de los AMPARs (Dong et al. 1997; Srivastava et 

al. 1998; Dong et al. 1999). Mientras que GRIP1 contiene 7 dominios PDZ, ABP/GRIP2 existe en 

dos isoformas con 6 y 7 dominios PDZ respectivamente. La forma más corta se une a las 

subunidades GluA2/GluA3 (Srivastava et al. 1998) y es funcionalmente indistinguible de GRIP1. 

Parece que GRIP1 y ABP/GRIP2 desarrollan muchas y variadas funciones en la célula, aunque 

todavía existe mucha controversia al respecto. Algunos estudios proponen que GRIP1/2 

puedan estar jugando un papel en el mantenimiento de los AMPARs en las sinapsis (Osten et 

al. 2000). Sin embargo, también se ha propuesto que la unión de GRIP1/2 a las subunidades 

GluA2/GluA3 contribuiría a la estabilización intracelular de aquellos AMPARs que han sido 

previamente endocitados, evitando así su reinserción en la membrana sináptica (Daw et al. 

2000). Otros autores defienden que GRIP1/2 podrían estar, por el contrario, favoreciendo la 

reinserción en la membrana postsináptica de los receptores endocitados (Mao et al. 2010). 

PICK1 también une las subunidades GluA2 y GluA3 (Dev et al. 1999; Xia et al. 1999), por medio 

de sus extremos C-terminales. Como en el caso de GRIP1/2, se han propuesto múltiples 

funciones para PICK1, incluyendo la regulación de la inserción y de la composición de 

subunidades de los AMPARs en las sinapsis (Daw et al. 2000; Terashima et al. 2004; Hanley 

2008).  
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4.3.3. Proteína asociada a la sinapsis 97 (SAP97) and Proteína 4.1. SAP97 es otra 

proteína estructural multidominio que interacciona con los AMPARs, pero a través de la 

subunidad GluA1 (Leonard et al. 1998). SAP97 podría estar jugando un papel en el transporte 

de los AMPARs que contienen GluA1 a las espinas dendríticas, puesto que se ha podido 

comprobar que SAP97 llega a las espinas bajo el control de la fosforilación mediada por CamKII 

(Mauceri et al. 2004).  

La proteína 4.1R es una proteína del citoesqueleto que se identificó por primera vez en 

eritrocitos. Los homólogos neuronales de la proteína 4.1, 4.1N y 4.1G, interaccionan con la 

subunidad GluA1 de los AMPARs (Shen et al. 2000); se cree que podrían favorecer la 

interacción de la subunidad GluA1 con el citoesqueleto de actina, promoviendo así su 

estabilización en la membrana postsináptica.  

4.3.4. Proteínas transmembrana reguladoras de receptores AMPA (TARPs). Cabe 

mencionar también esta familia de proteínas, más recientemente descrita, en la que se incluye 

stargazin. Actúan como subunidades auxiliares de los AMPARs que controlan tanto el tráfico 

de receptores y su anclaje a nivel de la membrana postsináptica, como las propiedades del 

canal (Ziff 2007; Jackson and Nicoll 2011). 

4.4. Transporte de AMPARs dependiente de microtúbulos a lo largo de las dendritas.   

Los AMPARs se sintetizan fundamentalmente en el cuerpo celular. Por tanto, necesitan ser 

transportados largas distancias a lo largo de las dendritas para poder alcanzar las espinas 

dendríticas y ser insertados en la membrana postsináptica. Además de garantizar el 

mantenimiento de la forma celular, el citoesqueleto microtubular que se prolonga a lo largo de 

las dendritas proporciona “raíles” a lo largo de los cuales se transportan vesículas que incluyen 

proteínas de membrana como los AMPARs. Las proteínas motoras asociadas a microtúbulos de 

las superfamilias de las kinesinas y las dineínas hacen posible esta forma de transporte activo 

(Goldstein and Yang 2000; Hirokawa and Takemura 2005).  

Los mecanismos que gobiernan la especificidad con respecto al cargo que se transporta y la 

direccionalidad del movimiento no se conocen todavía demasiado bien. Parece que las 

proteínas adaptadoras que sirven de puente entre el cargo y los motores moleculares podrían 

estar mediando dicha especificidad. Así, GRIP1 interacciona directamente con la cadena 

pesada de la kinesina convencional (Setou et al. 2002). Como se ha mencionado 

anteriormente, GRIP1 une las subunidades GluA2 y GluA3 de los AMPARs, y por lo tanto, 

podría funcionar como puente de unión entre los AMPARs y el citoesqueleto microtubular a 
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través de los motores moleculares. Además, el complejo GRIP1-GluA2 puede asociarse con 

liprin-α. Esta interacción parece ser también crítica para el tráfico de los AMPARs, puesto que 

un mutante de liprin-α que no puede unir GRIP1 altera la expresión en superficie de los 

AMPARs en neuronas hipocampales (Wyszynski et al. 2002). Curiosamente, liprin-α 

interacciona con un miembro de la familia de las kinesinas, KIF1, y se ha visto que los AMPARs 

pueden ser co-inmunoprecipitados con KIF1 a partir de lisados de cerebro (Shin et al. 2003). 

Por otra parte, cabe recordar que las espinas dendríticas carecen básicamente de microtúbulos 

y se caracterizan por poseer un rico citoesqueleto de actina, responsable de todos aquellos 

cambios estructurales que subyacen a la inducción de plasticidad sináptica (Matus 2000). Por 

lo tanto, los AMPARs que se transportan a lo largo de los “raíles” constituidos por los 

microtúbulos tienen que ser transferidos en algún momento al citoesqueleto de actina para 

poder alcanzar las sinapsis. Se desconocen los mecanismos moleculares que median esta 

transición, pero se ha propuesto a la proteína 4.1 como candidato razonable. No obstante, 

cabe mencionar así mismo que recientemente se ha demostrado la entrada transitoria de 

microtúbulos dinámicos en las espinas dendríticas (Jaworski et al. 2009). 

5. Los microtúbulos en las neuronas. Proteínas estructurales asociadas a 

microtúbulos.  

Los microtúbulos juegan papeles fundamentales en las neuronas. Son imprescindibles para el 

establecimiento de la polaridad y morfología neuronales durante el desarrollo, y para 

mantener la citoarquitectura de las neuronas maduras. Proveen de una base estructural para 

el transporte intracelular en axones y dendritas, y además, actúan como plataformas para 

moléculas de señalización (Gundersen and Cook 1999; Davies and Morris 2004; Conde and 

Caceres 2009).  

Una propiedad característica de los microtúbulos es su habilidad para experimentar rápidos 

ciclos de crecimiento y desensamblaje. Este comportamiento de los microtúbulos, que se 

observa tanto in vitro como in vivo, se conoce como “inestabilidad dinámica”. La dinámica de 

los microtúbulos y también sus interacciones con otros componentes celulares están reguladas 

por proteínas que se unen a ellos. Las “proteínas asociadas a microtúbulos” o MAPs fueron las 

primeras de estas proteínas en identificarse. Favorecen que la tubulina se ensamble para 

formar microtúbulos y además, permanecen unidas a la superficie de los microtúbulos, 

estabilizándolos (Davies and Morris 2004; Conde and Caceres 2009). Una de estas proteínas es 

la proteína asociada a microtúbulos 1B (MAP1B).  
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6. Proteína asociada a microtúbulos 1B (MAP1B): fisiología y patología.  

6.1 Particularidades moleculares de MAP1B.  

MAP1B es una proteína grande con un peso molecular aparente de 320 kDa (Noble et al. 

1989). Está compuesta por 2464 aminoácidos. MAP1B se codifica como un precursor 

poliproteico que después se corta en una cadena pesada (MAP1B-HC) y una ligera (MAP1B-LC) 

(Hammarback et al. 1991). El sitio de corte se localiza cerca de la posición 2100 de la secuencia 

de aminoácidos (figura 5). MAP1B-LC se asocia de forma no covalente con la región N-terminal 

de la cadena pesada para formar un complejo proteico.  

MAP1B-HC contiene un sitio de unión a microtúbulos cerca del extremo N-terminal (Noble et 

al. 1989) y un sitio de unión a actina (Cueille et al. 2007); la cadena ligera también incluye 

ambos dominios (Zauner et al. 1992; Togel et al. 1998). Como las dos cadenas de MAP1B son 

capaces de unirse a los microtúbulos, se ha propuesto que MAP1B podría estar funcionando 

como una proteína capaz de entrecruzar los microtúbulos (Hammarback et al. 1991; Zauner et 

al. 1992; Pedrotti et al. 1996a). 

 

 

 

 

 

En homogenados de cerebro de rata, MAP1B-LC existe en una proporción de 6:1 a 8:1 con 

respecto a MAP1B-HC (Mei et al. 2000). Se ha propuesto que MAP1B-LC tendría una vida 

media mayor, dado que ambas cadenas se sintetizan en una proporción de 1:1 (Mei et al. 

2000). Como MAP1B-LC existe en exceso sobre MAP1B-HC in vivo, se ha sugerido que la 

cadena ligera podría tener funciones adicionales a aquellas que desempeña la fracción 

acomplejada por la cadena pesada (Mei et al. 2000). En un estudio que pretendía analizar 

posibles funciones independientes de la cadena ligera cuando no está acomplejada por la 

pesada, se propuso un modelo en el que la cadena pesada actuaría como subunidad 

reguladora de la ligera, controlando así su actividad, en el complejo formado por ambas (Togel 

et al. 1998). De hecho, una de las observaciones más importantes del estudio es que, aunque 

las dos cadenas contienen dominios de unión a microtúbulos, la actividad estabilizadora de 

Figure 5. Proteína MAP1B. MAP1B está compuesta por 2464 aminoácidos. Los dominios de unión a 

actina (ABD) se localizan en el extremo N-terminal de la cadena pesada (1-517) y también en la cadena 

ligera (2336-2459). El dominio de unión a microtúbulos (MBD) en MAP1B-HC (517-848) se caracteriza 

por presentar 21 repeticiones de tipo KKEK cerca del extremo N-terminal; MAP1B-LC contiene otro MBD 

(2210-2336). Adaptado de Riederer 2007.   
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microtúbulos más potente corresponde sin duda a la cadena ligera. Cuando MAP1B-LC se une 

a los microtúbulos, les confiere una apariencia ondulada característica y una estabilidad 

incrementada frente a la acción de agentes despolimerizantes (Togel et al. 1998; Noiges et al. 

2002), que es característica de la cadena ligera de MAP1B en comparación con otras MAPs, 

como MAP2.  

6.2 Función de MAP1B.  

MAP1B es la primera MAP que se expresa durante el desarrollo neuronal (Tucker et al. 1989). 

Se encuentra en axones, soma y dendritas (Matus and Riederer 1986; Tucker et al. 1989). Es 

especialmente abundante en los axones en desarrollo, y su expresión disminuye con el 

desarrollo (Schoenfeld et al. 1989); aún así, se ha podido demostrar que MAP1B está presente 

en el compartimento somatodendrítico también en el cerebro adulto (Kawakami et al. 2003; 

Peng et al. 2004; Collins et al. 2005; Tortosa et al. 2011). 

MAP1B se ha estudiado clásicamente como un modulador de la axogénesis por medio de su 

interacción con el citoesqueleto microtubular (Gonzalez-Billault et al. 2004). De acuerdo con el 

modelo clásico de polarización neuronal (Kirschner and Mitchison 1986a; Kirschner and 

Mitchison 1986b), la formación del axón se debe a cambios dramáticos en la organización y la 

dinámica de los microtúbulos en una región concreta de una neurona; por lo tanto, un factor 

importante que influencia este proceso es la existencia de una proteína que actúe como un 

estabilizador de microtúbulos, como MAP1B.  La evidencia que apunta al papel de MAP1B en 

la formación y elongación del axón durante el desarrollo es abundante (Gonzalez-Billault et al. 

2004; Montenegro-Venegas et al. 2010); de hecho, diferentes grupos han podido demostrar 

una alteración severa del desarrollo cerebral como consecuencia de la interrupción del gen de 

MAP1B (Edelmann et al. 1996; Takei et al. 1997; Gonzalez-Billault et al. 2000; Meixner et al. 

2000; Takei et al. 2000). 

Además, se ha visto que la interacción entre los citoesqueletos de microtúbulos y actina en los 

conos de crecimiento es un factor crítico en la elongación axonal durante el desarrollo.  

MAP1B ha sido propuesta como mediadora de dicha interacción, por su habilidad para unirse 

tanto a microtúbulos como a filamentos de actina. La observación de que MAP1B modula la 

actividad de pequeñas GTPasas implicadas en la regulación del citoesqueleto de actina durante 

la elongación y ramificación del axón, como Rac1, Cdc42 y RhoA, apoya esta hipótesis 

(Montenegro-Venegas et al. 2010). Algunos autores han propuesto que es la cadena ligera de 
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MAP1B la que modula la actividad de Rac1 por medio de su unión a Tiam1 (un factor de 

intercambio de nucleótidos de guanosina para Rac1) (Henriquez et al. 2012). 

Más recientemente, se ha propuesto que MAP1B podría estar desarrollando funciones 

novedosas a nivel del compartimento postsináptico en relación con su habilidad para regular 

las pequeñas GTPasas, y por tanto, el citoesqueleto de actina. Se ha visto que MAP1B es 

imprescindible para la correcta morfogénesis de las espinas dendríticas (Tortosa et al. 2011). 

Además, resultados de nuestro grupo de investigación apuntan a que MAP1B sería necesaria 

para mediar la eliminación regulada de los AMPARs de las sinapsis que acontece tras la 

inducción de LTD por medio de la activación de Rac1 (Benoist et al. 2013). De hecho, se ha 

demostrado que los niveles de expresión de MAP1B se incrementan después del tratamiento 

de neuronas en cultivo con DHPG, un agonista específico de los receptores mGluR, lo cual 

también induce endocitosis de AMPARs; esta observación apoyaría la hipótesis de que MAP1B 

actúa como un regulador esencial en el tráfico de AMPARs que ocurre durante los fenómenos 

de plasticidad sináptica en el hipocampo (Davidkova and Carroll 2007). 

Además se ha propuesto que MAP1B podría actuar como proteína de andamiaje, dado que es 

capaz de interaccionar con muchas otras proteínas, tanto directamente como por medio de 

tubulina o actina. Además, estas interacciones podrían ser diferentes para la cadena pesada y 

la cadena ligera (Riederer 2007).  

Cabe destacar que MAP1B ha sido implicada también en la regulación de la distribución 

subcellular de diferentes tipos de receptores y canales iónicos, mediando su interacción con el 

citoesqueleto microtubular. Así por ejemplo, MAP1B regula la localización sináptica de 

receptores GABA ionotrópicos en las sinapsis retinales por medio de su unión a la subunidad 

GABAc ρ1 (Hanley et al. 1999). MAP1B podría estar también regulando el tráfico de NMDARs, 

puesto que interacciona con la subunidad NR3A (Eriksson et al. 2010). En el caso concreto de la 

cadena ligera, se ha visto que puede unirse al canal de sodio voltaje-dependiente Nav 1.6, 

facilitando su transporte a la superficie neuronal (O'Brien et al. 2012). Además, se ha 

demostrado que dos subtipos de receptores de serotonina pueden interaccionar directamente 

con MAP1B-LC: el receptor 5-HT6, cuya interacción con MAP1B-LC favorece su expresión en la 

superficie celular (Kim et al. 2014); y el receptor 5HT3A, que por el contrario se expresa menos 

en superficie cuando se une a MAP1B-LC (Sun et al. 2008). De forma equivalente, la sobre-

expresión de MAP1B-LC produce una disminución de la expresión en superficie del canal de 

calcio tipo N Cav2.2 (Gandini et al. 2014). Especialmente relevante en relación con el tráfico de 

AMPARs es la interacción que se ha descrito entre MAP1B-LC y GRIP1, que parece ocurrir por 
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medio de un dominio no-PDZ de GRIP1 (Seog 2004; Davidkova and Carroll 2007). Actualmente 

se desconoce cuál es el papel de dicha interacción.  

Es importante recordar que la función de MAP1B está modulada por fosforilación (Gonzalez-

Billault et al. 2004; Riederer 2007). Se han descrito dos modos de fosforilación para MAP1B 

que se regulan de forma independiente durante el desarrollo y presentan diferentes 

distribuciones subcelulares en las neuronas. Quinasas dependientes de prolina (como cdc2, 

glucógeno sintasa 3, cdk5 y JNK) catalizan el modo I de fosforilación, que está presente en 

axones en desarrollo (con un gradiente de fosforilación creciente hacia el cono de 

crecimiento). Un segundo modo de fosforilación, el modo II, es dependiente de la caseín 

quinasa II (CKII) y está presente tanto en axones como en dendritas, también en la etapa 

adulta (Diaz-Nido et al. 1988; Ulloa et al. 1993a; Avila et al. 1994; Gonzalez-Billault et al. 2004). 

Las proteínas fosfatasas que contribuyen a regular los niveles totales de fosforilación de 

MAP1B son PP2A y PP2B, que actúan sobre el modo I de fosforilación (Ulloa et al. 1993c; Gong 

et al. 2000) y la fosfatasa PP1, que junto con la PP2A, regula el modo II (Ulloa et al. 1993c; 

Gong et al. 2000). 

6.3 Patología relacionada con MAP1B.  

El Síndrome X-frágil (FXS) y la Neuropatía Axonal Gigante (GAN) son las dos patologías en las 

que más claramente se ha demostrado la implicación de MAP1B.  

El FXS es la causa más frecuente de retraso mental heredado y resulta de la ausencia de la 

proteína del retraso mental X-frágil (FMRP). FMRP controla la traducción de varios ARNm, 

incluyendo el de MAP1B. La falta de FMRP conduce a la expresión anormalmente elevada de 

MAP1B, lo que da lugar a una estabilidad incrementada de los microtúbulos. Se ha propuesto 

que la dinámica anómala de los microtúbulos que resulta de la falta de FMRP podría ser un 

factor relevante en la patogénesis del retraso mental asociado al X-frágil (Lu et al. 2004), dado 

que se ha observado un desarrollo retardado de espinas dendríticas en estos pacientes.  

GAN es un desorden autosómico recesivo causado por una mutación en gigaxonina, una 

proteína que se une a microtúbulos y filamentos intermedios, y que también interacciona con 

la cadena ligera de MAP1B (Ding et al. 2002). La relevancia clínica de esta interacción se ha 

podido demostrar en pacientes que presentaban degeneración axonal y muerte neuronal, en 

los que se han encontrado dos mutaciones específicas en la gigaxonina que impedían la 

interacción gigaxonina-MAP1B (Ding et al. 2002). 
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In this work, we aimed to: 

1. Develop molecular tools to acutely manipulate MAP1B levels in CA1 hippocampal 

neurons.  

2. Characterize the effects on basal synaptic transmission and synaptic plasticity of 

MAP1B over-expression and MAP1B acute down-regulation.  

3. Explore the potential molecular mechanisms through which MAP1B regulates 

AMPAR trafficking in CA1 hippocampal neurons.   
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1. MATERIALS. 

1.1  Reagents and drugs.  

Most of the ordinary reagents and media used to perform the experiments that follow were 

purchased from Sigma-Aldrich, Merck and Bio-Rad. Other providers were: Macherey-Nagel, 

Panreac, Electron Microscopy Sciences, Conda Pronadisa Laboratories, GIBCO, Roche and 

Falcon.  

The following reagents and drugs were also employed: 

PRODUCT REFERENCE 

Syber Safe DNA Gel Stain Life technologies (Invitrogen) 

Complete MINI EDTA-free protease inhibitor cocktail tablets Roche 

Immobilon Western Chemiluminescent HRP Substrate (ECL) Millipore 

Immobilon transfer membranes Millipore 

ProLong Gold Antifade Reagent Life Technologies (Invitrogen) 

Biocytin Life Technologies (Invitrogen) 

Streptavidin-Alexa 555 Life Technologies (Invitrogen) 

Lipofectamine 2000 Transfection Reagent Life Technologies (Invitrogen) 

Actin protein purified from rabbit skeletal muscle (95% pure) Cytoskeleton 

Tubulin protein (>99% pure) from bovine brain Cytoskeleton 

Helios Gene Gun System and accessories Bio-rad 

Protein G sepharose 4 fast flow GE Healthcare 

Glutathione sepharose high performance beads GE Healthcare 

 

DRUG USE REFERENCE 

Rolipram Chemical induction of LTP Sigma-Aldrich 

Forskolin Chemical induction of LTP Sigma-Aldrich 

NMDA Chemical induction of LTD Sigma-Aldrich 

(R,S)-3,5-Dihydroxyphenylglycine (DHPG) mGluR-dependent LTD Biogen (Tocris) 

DL-2-Amino-5-phosphonopentanoic acid (DL-

APV) 

mGluR-dependent LTD 
Biogen (Tocris) 

Vinblastine 
Microtubule 

depolymerization 
Sigma-Aldrich 

Taxol (semi-synthetic paclitaxel) 
Microtubule 

polymerization/stabilization 
Sigma-Aldrich 

Picrotoxin Electrophysiology Sigma-Aldrich 
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2-chloroadenosine Electrophysiology Sigma-Aldrich 

Spermine 
Rectification experiments 

(electrophysiology) 
Sigma-Aldrich 

Chloroquine Lentiviral production Sigma-Aldrich 

 

1.2  Antibodies.  

Listed below are the primary and secondary antibodies used in Western-blot and 

Immunofluorescence procedures. Dilutions of use are also indicated.  

Primary Antibody Protein Species Reference 
Dilution 

WB 

Dilution 

IF 

Anti-MAP1B (N-19) 
MAP1B 

(N-terminus) 
Goat Santa-Cruz 1:1000  

Anti-MAP1B (H-130) 
MAP1B 

(C-terminus) 
Rabbit Santa-Cruz 1:1000 1:100 

Anti-actin, clone C4 Actin Mouse 
Chemicon 

(Millipore) 
1:2000  

Anti-GFP GFP Mouse Roche 1:1000 1:200 

Anti-GFP GFP Rabbit 
Life technologies 

(Invitrogen) 
 1:100 

Anti-tyrosine tubulin, 

clone TUB-1A2  
Tyrosinated tubulin Mouse Sigma-Aldrich  1:2000 

Anti-tubulin, 

detyrosinated 

Detyrosinated 

tubulin 
Rabbit 

Chemicon 

(Millipore) 
 1:200 

Anti-acetylated 

tubulin, clone 6-11B-1 
Acetylated tubulin Mouse Sigma-Aldrich  1:1000 

Anti-DsRed 

RFP 

(tandem dimer 2, 

“tdimer2”) 

Rabbit Clontech  1:200 

Anti-mCherry  mCherry Rabbit GeneTex  1:500 

Anti-GluA2, 

extracellular, clone 

6C4 

GluA2 

(N-terminus) 
Mouse 

Chemicon 

(Millipore) 
 1:100 

Anti-GluA2 glutamate 

receptor, clone 

L21/32 

GluA2 

(C-terminus) 
Mouse Neuromab  1:100 
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Anti-GluA1-NT, clone 

RH95 

GluA1 

(N-terminus) 
Mouse 

Chemicon 

(Millipore) 
 1:500 

Anti-Glutamate 

Receptor 1 (AMPA 

subtype) antibody 

 

GluA1 

(C-terminus) 
Rabbit Abcam  1:500 

Anti-NMDAR2A&B 

antibody, pan 
NR2A and NR2B Rabbit 

Chemicon 

(Millipore) 
1:1000  

Anti-MKLP1 (N-19) 
MKLP1 (KIF23) 

(N-terminus) 
Rabbit Santa Cruz 1:200  

Anti-GRIP1,  

C-terminus 

GRIP1  

(C-terminus) 
Rabbit 

Chemicon 

(Millipore) 
 1:100 

Anti-Rac1 Rac1 Mouse BD Biosciences 1:1000  

Anti-RhoA RhoA Mouse BD Biosciences 1:100  

  

Secondary Antibody Protein Species Reference 
Dilution 

WB 

Dilution 

IF 

Anti-goat IgG (whole 

molecule), peroxidase 
IgG goat Rabbit Sigma-Aldrich 1:10.000  

Anti-rabbit IgG (whole 

molecule), peroxidase 
IgG rabbit Goat Sigma-Aldrich 1:10.000  

Anti-mouse IgG 

(whole molecule), 

peroxidase 

IgG mouse Rabbit Sigma-Aldrich 1:10.000  

Alexa Fluor 488 goat 

anti-mouse IgG1 (γ1) 
IgG1 mouse Goat 

Life technologies 

(Invitrogen) 
 1:500 

Alexa Fluor 555 

donkey anti-mouse 

IgG (H+L) 

IgG heavy chains 

and light chains 

mouse 

Donkey 
Life technologies 

(Invitrogen) 
 1:500 

Alexa Fluor 488 

donkey anti-rabbit IgG 

(H+L) 

IgG heavy chains 

and light chains 

rabbit 

Donkey 
Life technologies 

(Invitrogen) 
 1:500 

Alexa Fluor 555 

donkey anti-rabbit IgG 

(H+L) 

IgG heavy chains 

and light chains 

rabbit 

Donkey 
Life technologies 

(Invitrogen) 
 1:500 
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1.3  Plasmids.  

A complete list of the set of plasmids used in this work is presented below. A thorough 

description of how they were generated is included in the “methods” section.  

Plasmid Expression 

pSR5-MAP1B-LC-GFP MAP1B-LC-GFP 

FG12.CMV-MAP1B-HC-GFP MAP1B-HC-GFP 

pSR5-MAP1B-LC-delABD-GFP MAP1B-LC-delABD-GFP 

pSR5-MAP1B-LC-delMBD-GFP MAP1B-LC-delMBD-GFP 

pSR5-MAP1B-LC-Dendra MAP1B-LC-Dendra 

pSR5-Dendra-tubulin Dendra-tubulin 

KH1-LV-mCherry-shRNA 2012 shRNA against MAP1B 

KH1-LV-mCherry-scrambled shRNA Scrambled shRNA 

pMAP1B-LC-GFP MAP1B-LC-GFP 

pMAP1B-LC-mCherry MAP1B-LC-mCherry 

pGFP-GluR2 (RQ) GFP-GluR2 (RQ) 

pRFP-GluR2 (RQ) RFP-GluR2 (RQ) 

pSR5-GFP-GluR2 (RQ) GFP-GluR2 (RQ) 

pGFP-GluR1-ires-tCamKII GFP-GluR1 + tCamKII 

pBA-TfR-GFP TfR-GFP 

pJPA5-TfR-mCherry TfR-mCherry 

pGEX-GST-PBD Rac1 binding domain of PAK1 (fused to GST) 

pGEX-GST-RBD RhoA binding domain of Rhotekin (fused to GST) 

 

2. METHODS. 

2.1.  Cloning of DNA constructs.  

For the cloning of the DNA constructs of interest, several restriction enzymes together with 

their specific buffers from New England Biolabs were employed, according to manufacturer´s 

instructions. In general, digestions were carried out at 37ºC over-night. The ligation kit from 

Takara (Conda Pronadisa laboratories) was the kit of choice. Ligation proceeded at 16ºC over 

12-16 hours. To ensure efficient transformation, commercial XL2-blue ultracompetent bacteria 

(Stratagene) were required; in some cases, SURE R2 super competent bacteria (Stratagene) 

were needed to avoid recombination of the plasmids being cloned. Heat shock was performed 

at 42ºC for 45 seconds, and afterwards, bacteria were grown in LB medium at 37ºC for two 
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hours. Next, bacteria were plated on agarose plates with antibiotics (ampicillin or kanamycin, 

depending on the specific plasmid, at 100 µg/µL). The appropriate restriction pattern of the 

newly generated plasmids was checked by running the samples on agarose gels and dying the 

DNA with Syber Safe (Life Technologies, Invitrogen). Positive clones were grown over-night in 

liquid LB medium supplemented with antibiotics. DNA was purified with “miniprep” and 

“maxiprep” kits from Macherey-Nagel (“NucleoSpin plasmid” and “NucleoBond Xtra Maxi” kits, 

respectively).  

A complete description of the cloning strategies designed to generate the plasmids of interest 

is following. For those plasmids that weren´t cloned, their origin is indicated: 

 pUHD-10-3-MAP1B-LC-GFP and pSR5-MAP1B-LC-GFP.  

The plasmid pMT22Tet (pUHD-10-3-MAP1B-LC-Myc) (Togel et al. 1998) was kindly provided by 

Dr. Jesús Ávila, from Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Madrid 

(Spain). The Myc tag of the original plasmid was replaced by EGFP through digestion with NheI 

and PspOMI restriction enzymes, to generate pUHD-10-3-MAP1B-LC-GFP.  

Next, MAP1B-LC-GFP sequence was cloned into pSinRep5 vector (for Sindbis virus production). 

To do so, pUHD-10-3-MAP1B-LC-GFP was digested with SpeI and PspOMI. After ligation with 

the fragment resulting from XbaI-PspOMI digestion of pSinRep5, the construct pSR5-MAP1B-

LC-GFP was generated. 

 pUHD-10-3-MAP1B-HC-GFP.  

Similarly to MAP1B-LC, the MAP1B-HC recombinant protein was made by in-frame ligation of 

the EGFP coding sequence with the heavy chain sequence (aminoacids 1-2100) of MAP1B in 

pMT17Tet plasmid (pUHD-10-3-MAP1B-HC-Myc) (Togel et al. 1998), also provided by Dr. Jesús 

Ávila.  

 FG12.CMV-MAP1B-HC-GFP. 

The vector FG12.CMV (Verhaegen et al. 2006) was a generous gift from Dr. María S. Soengas, 

from Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid (Spain). The sequence of 

MAP1B-HC tagged with GFP was cloned into FG12.CMV vector (previously digested with NheI 

and BsrGI) via digestion of pUHD-10-3-MAP1B-HC-GFP construct with SpeI and BsrGI enzymes.   
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 pSR5-MAP1B-LC-delABD-GFP. 

The plasmid pUHD-10-3-MAP1B-LC-GFP was used to make a mutant of the wild type protein 

lacking the actin-binding domain. To do so, the sequence of MAP1B-LC corresponding to the 

actin-binding domain of the wild type protein (aminoacids 2336-2459) was removed by 

digesting the original plasmid with BstAPI and BmtI restriction enzymes. Blunt ends were 

generated (by using T4 DNA polymerase, New England Biolabs) to proceed to ligation. This 

way, the plasmid pUHD-10-3-MAP1B-LC-delABD-GFP was created. The whole sequence 

corresponding to MAP1B-LC-delABD-GFP (selected via digestion of pUHD-10-3-MAP1B-LC-

delABD-GFP with SpeI and PspOMI) was then transferred into pSinRep5 vector (previously 

digested with XbaI and PspOMI) to finally generate pSR5-MAP1B-LC-delABD-GFP.  

 pSR5-MAP1B-LC-delMBD-GFP. 

The generation of this vector was analogous to the previous one in every step, except for the 

restriction enzymes initially used to produce the mutant of interest. The sequence of the wild 

type protein containing only the actin-binding domain (and so, resulting from the deletion of 

the microtubule-binding domain, aminoacids 2210-2336 of the wild type protein) was 

generated by digesting pUHD-10-3-MAP1B-LC-GFP plasmid with AvrII and BstAPI.   

 pSR5-MAP1B-LC-Dendra. 

The pUHD-10-3-MAP1B-LC-GFP vector was digested with NheI and BsrGI enzymes to remove 

the EGFP tag. Then, the EGFP was replaced by Dendra2 tag, previously generated from 

pDendra2-fibrillarin plasmid (Evrogen) via digestion with the same restriction enzymes. The 

whole sequence of MAP1B-LC-Dendra was then recloned into pSinRep5 vector following the 

usual strategy (digestion of pUHD-10-3-MAP1B-LC-Dendra plasmid with SpeI and PspOMI, and 

digestion of pSinRep5 vector with XbaI and PspOMI).  

 pMT-Dendra-tubulin and pSR5-Dendra-tubulin.  

The pMT-Dendra-tubulin construct (Jolly et al. 2010) was a generous gift from Vladimir I. 

Gelfand, from Northwestern University Feinberg School of Medicine, Chicago (USA).  The 

sequence corresponding to Dendra-tubulin was recloned afterwards into pSinRep5 plasmid 

(José A. Esteban´s laboratory at Centro de Biología Molecular “Severo Ochoa”).  
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 KH1-LV-mCherry-shRNA 2012. 

Short 21 bp oligos (Sigma-Aldrich), specifically targeting MAP1B sequence (target sequence at 

position 2012 of the mRNA from mouse: 5´-GCCCAAGAAAGAAGTGGTTAA-3´), were annealed 

and cloned into SmaI-XbaI sites of the lentiviral vector KH1-LV (Lois et al. 2002), kindly 

provided by Dr. María S. Soengas. This vector contains an H1 promoter and independent 

mCherry expression driven by an ubiquitin-C promoter. An additional scrambled shRNA (5´-

GACATACAGTGAGCGGATAAA-3´) was designed and cloned following the same strategy to be 

used as a control.  

 pMAP1B-LC-GFP and pMAP1B-LC-mCherry. 

pMAP1B-LC-GFP was cloned by substitution of EGFP in pC1-EGFP vector (Clontech), digested 

with NheI and PspOMI enzymes, by MAP1B-LC-GFP sequence, taken from pUHD-10-3-MAP1B-

LC-GFP plasmid via digestion with restriction enzymes SpeI and PspOMI. In the resulting 

plasmid, the expression of MAP1B-LC-GFP is driven by CMV promoter (needed for biolistic 

method of expression).   

To generate pMAP1B-LC-mCherry, the green fluorophore in pMAB1B-LC-GFP was exchanged 

by mCherry, via digestion of the precursor plasmid with NheI and BsrGI enzymes.  

 pGFP-GluA2 (RQ), pRFP-GluA2 (RQ), pSR5-GFP-GluA2 (RQ) and pGFP-GluA1-ires-

tCamKII. 

The GFP-tagged AMPA receptor subunits (GFP-GluA2-R607Q and GFP-GluA1), and the 

truncated αCaMKII construct (Shi et al. 1999; Hayashi et al. 2000; Shi et al. 2001) were a 

generous gift from Dr. Roberto Malinow, from the University of California San Diego, California 

(USA). RFP fusion GluA2 construct is equivalent to its GFP counterpart, but using the red 

fluorescent protein variant tdimer2.  

 pBA-TfR-GFP and pJPA5-TfR-mCherry. 

The pBA-TfR-GFP (Burack et al. 2000) and pJPA5-TfR-mCherry (Wang et al. 2008) were kindly 

provided by Dr. Daniel Choquet, from the Interdisciplinary Institute for Neuroscience, 

Bordeaux (France).  

 pGEX-GST-PBD and pGEX-GST-RBD. 
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The pGEX-GST-PBD plasmid (Benard et al. 1999) and the pGEX-GST-RBD plasmid (Ren et al. 

1999) were a generous gift from Dr. Fernando Martin-Belmonte, from Centro de Biología 

Molecular “Severo Ochoa”, Madrid (Spain).  

 

2.2.  Cell culture and tissue culture.  

In this work, two culture systems were used as models:  hippocampal primary culture (cell 

culture) and hippocampal organotypic slice culture (tissue culture). They were prepared 

following the procedures described below.  

2.2.1 Hippocampal primary culture.   

Methods for preparing hippocampal primary cultures have been previously described (Banker 

and Cowan 1977; Dotti et al. 1988). Briefly, hippocampi were dissected from the brains of E18 

mouse embryos or E19 rat embryos, treated with 2.5% trypsin for 20 min at 37ºC, thoroughly 

washed with Hank´s balanced salt solution (supplemented with 10 mM HEPES, pH 7.4 and 

antibiotics) and dissociated by repeated passage through a constricted Pasteur pipette. 

Neurons were then plated onto poly-L-lysine-coated coverslips (12 mm diameter, or 24x24 mm 

square coverslips used in live imaging), and maintained in Minimum Essential Medium (MEM) 

containing 20% D-glucose and 10% Fetal Bovine Serum (FBS) for 3-4 hours at 37ºC and 5% CO2. 

Once the cells had attached to the substrate, the media was replaced with Neurobasal 

medium (Gigco) supplemented with B27 and glutamine.  Cells were cultured at 37ºC and 5% 

CO2 for variable periods of time (from 2 to 3 weeks), depending on the specific experiments.  

 

2.2.2 Hippocampal organotypic slice culture.  

Organotypic slice cultures were prepared as described (Gahwiler et al. 1997; Fuller and Dailey 

2007). Hippocampi were dissected from young rats or mice (postnatal day 5 to 7) in cold 

dissection medium (10 mM D-glucose, 4 mM KCl, 26 mM NaHCO3, 233.7 mM sucrose, 5 mM 

MgCl2, and 1 mM CaCl2) and cut transversely at an interval of 400 µm using a tissue chopper. 

Using thin spatulas, individual slices were then separated in culture medium (MEM 

supplemented with 20% horse serum, 1 mM glutamine, 1 mM CaCl2, 2 mM MgSO4, 1 mg/mL 

insulin, 0.0012% ascorbic acid, 30 mM HEPES, 13 mM D-glucose, 5.2 mM NaHCO3) and 

transferred to a 6-well plate containing culture inserts equipped with semi-porous 

membranes, and placed on culture medium.  The hippocampal slices deposited on culture 
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inserts were maintained at 35.5ºC and 5% CO2 for variable periods of time, depending on the 

requirements of the specific experiments (from 3-4 days to 14 days).  

 

2.3.  Expression of recombinant proteins.   

2.3.1 Viral vectors.   

- Sindbis Expression System.  

The Sindbis expression system can be used to transiently over-express recombinant proteins in 

many eukaryotic cell lines as well as in organotypic hippocampal slice cultures (Schlesinger 

1993; Schlesinger and Dubensky 1999).  

In this work, the Sindbis expression system from Invitrogen was used. This system is composed 

of two different DNA constructs that have first to be linearized for the in vitro production of 

RNA transcripts.  

The gene(s) of interest were previously cloned into pSinRep5 vector. It contains the Sindbis 

virus non-structural protein genes 1-4 for replicating RNA transcripts in vivo under the control 

of the SP6 promoter, and a subgenomic promoter that allows the transcription of the 

heterologous genes (the gene(s) of interest). A multiple cloning site permits the insertion of 

the gene(s) of interest into the vector behind the subgenomic promoter.  

The second plasmid is DH-BB (that stands for Defective Helper, deleted between BspMII and 

BamHI). It is a DNA template that contains the genes for the four structural proteins required 

for packaging of Sindbis viral genome. When RNA from DH-BB is co-transfected by 

electroporation in BHK (Baby Hamster Kidney) cells with the recombinant RNA from pSinRep5, 

expression of the structural proteins allow packaging of the recombinant RNA into virus-like 

particles or pseudovirions. Infection of hippocampal primary neurons or organotypic slices 

with pseudovirions permits the delivery of recombinant RNA into the cytoplasm, resulting in 

the prompt production of high levels of the desired protein(s). These virions can undergo just 

one round of infection as they do not contain the helper RNA (DH-BB plasmid does not contain 

a packaging signal). Pseudovirions are collected 48 hours after the electroporation of BHK cells 

by ultracentrifugation of the supernatant at 30.000 r.p.m. for 2 hours. After making aliquots, 

they are stored at -80 ºC.  
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- Lentivirus.  

To produce a stable down-regulation of MAP1B protein in cells, a short 21 bp oligo specifically 

targeting MAP1B sequence was cloned into KH1-LV lentiviral vector (Lois et al. 2002). 

Lentiviruses are the most suitable vectors for RNAi knockdown in neuronal cells for two 

reasons: 1) they can transduce both actively proliferating and non-dividing cells and 2) the 

genetic material is integrated into the host cell allowing for stable, long-term expression of the 

shRNA.  

In this work, a system composed of three plasmids was used:  

- The transfer vector (KH1-LV) containing the shRNA.  

- A packaging vector (pCMV-dR8.74) (Dull et al. 1998) including several elements of the 

viral genome: Gag, which codes for precursors of structural proteins; Pol, encoding for 

viral enzymes: reverse transcriptase, RNase H, integrase and protease; and Rev, 

regulator of the expression of virion proteins by facilitating the export of unspliced and 

incompletely spliced viral RNAs from the nucleus to the cytoplasm. 

- And an envelope plasmid (in this case, pMD2.G) (Dull et al. 1998), encoding for VSVG 

(glycoprotein of vesicular stomatitis virus), which enables viral entry into the infected 

cell.  

pCMV-dR8.74 and pMD2.G were kindly provided by Dr. Jesús Ávila.  

The defective lentiviral particles were produced by co-transfection of HEK-293T (Human 

Embryonic Kidney) cells with the three plasmids mentioned above. The transfection of HEK 

cells was achieved by calcium phosphate precipitation. Before transfection, normal DMEM 

(Invitrogen)-10% FBS cell medium was replaced by medium containing 25 µM chloroquine (it 

increases transfection efficiency). Transfected cells were incubated at 37ºC and 5% CO2 for 8-

12 hours, before replacing medium with chloroquine by fresh, normal medium to remove the 

drug. After 48 hours, viral particles released to the culture medium were concentrated by 

ultracentrifugation (30.000 r.p.m., 2 hours), aliquoted and stored at -80ºC.   

- Infection of hippocampal primary cultures and organotypic slices.  

Hippocampal primary neurons were infected with Sindbis virus or lentivirus by directly adding 

viral particles into the cell culture medium (Malinow et al. 2010). In the case of organotypic 

slices, a micro-injection of the virus-containing solution with a glass pipette was required 
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(Malinow et al. 2010). The Picospritzer system (Parker Instruments) permits the delivery of the 

solution deep into the tissue by supplying repeatable pressure pulses of nitrogen. 

2.3.2 Transfection of hippocampal primary neurons. 

When transfection or co-transfection of hippocampal primary neurons were required, 

Lipofectamine 2000 (Invitrogen) was the transfection reagent of choice. One-week old 

hippocampal primary neurons were used for efficient transfection. 12-mm round coverslips (3 

coverslips per well) or 24x24 mm square coverslips (used for live imaging, 1 coverslip per well) 

were transferred to 6-well plates, and their culture medium was replaced by 1.5 mL of warm 

Neurobasal medium per well. Per condition, 1 µg of each DNA construct was mixed with 50 µL 

of Neurobasal medium; at the same time, 3 µL of Lipofectamine 2000 were mixed with 50 µL 

Neurobasal medium, and incubated for 5 minutes at room temperature. Then DNA and 

lipofectamine solutions were mixed together, and incubated again for 15 minutes at room 

temperature. The mixture was immediately added dropwise to hippocampal neurons in 

culture. An incubation period of 2 hours at 37ºC and 5% CO2 followed, and afterwards, the 

culture medium was replaced again. The over-expression of the proteins of interest was 

analyzed 48 hours after transfection.  

2.3.3. Biolistic transfection (gene gun).  

In organotypic hippocampal slice cultures, co-expression of several proteins can be achieved 

using the biolistic method (Lo et al. 1994; Wellmann et al. 1999), with a combination of 

different plasmids bearing mammalian expression promoters, such as the cytomegalovirus 

(CMV) promoter. This method of expression may also be appropriate when a DNA construct 

cannot be packed into lentiviral particles because of its size (in the case of MAP1B-HC-GFP in 

this work).  

To proceed to biolistic transfection, the Bio-Rad hand-held Helios gene gun and accessories 

were used. In essence, 1.6 µm gold particles that serve as microcarriers were coated with the 

DNA of interest by precipitation. Then, the DNA-coated gold particles were transferred into a 

polypropylene tube; the internal surface of the tube had been previously covered with a 

solution of polyvinylpyrrolidone (PVP) in ethanol to facilitate adhesion of the gold particles. 

The suspension containing the gold particles was homogenously distributed over the internal 

surface of the tube and dried using a nitrogen flow; then, the plastic tube was cut into small 

pieces to make “bullets”. To finish, the bullets were loaded into the cartridge holder of the 
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hand-held gene gun, and the DNA-coated microcarriers were propelled into cells at high speed 

using a pulse of helium gas.  

 

2.4.  Biochemical procedures.  

2.4.1 Protein extracts.  

To perform biochemical analysis, protein extracts were prepared from organotypic 

hippocampal slices in culture. They were collected and homogenized in cold buffer (80-100 µL 

per insert with 4 to 5 slices) containing 20 mM HEPES, pH 7.4, 100 mM NaCl, 5 mM EDTA and 

1% Triton X-100. A cocktail of protease inhibitors (Complete MINI EDTA-free, protease 

inhibitor cocktail tablets from Roche) was added fresh to the homogenization buffer every 

time. After centrifugation (13.000 r.p.m., 5 min, 4ºC), the supernatant was collected; the total 

concentration of proteins was quantified by Bradford colorimetric assay (after addition of the 

dye, absorbance at 595 nm is measured in a spectrophotometer. The total concentration of 

proteins in every sample is calculated by comparison with the values of absorbance obtained 

for different dilutions of BSA (bovine serum albumin) prepared at known concentrations).            

2.4.2 Protein electrophoresis and Western-blot. 

Polyacrylamide gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS) 

(SDS-PAGE) was used to separate proteins contained in complex mixtures. Protein extracts 

were boiled for 5 minutes after the addition of a loading buffer containing urea (5x loading 

buffer: 120 mM Tris-HCl, pH 6.8; 4% SDS, 4M urea, 20% glycerol, 5% β-mercaptoethanol), and 

then loaded into polyacrylamide gels of different concentrations, according to the specific 

molecular weight of the proteins of interest. In general, 6% polyacrylamide gels were needed 

to visualize MAP1B-HC (apparent molecular weight 243 KDa, Hammarback et al. 1991), and 

10% polyacrylamide gels were used to analyze MAP1B-LC (apparent molecular weight 27 KDa, 

Hammarback et al. 1991), for example.  

Proteins were then electro-transferred to poly(vinylidene fluoride) (PVDF) membranes (at 0.05 

mA over-night at room temperature, or at 0.33 mA at 4ºC for 3 hours). The efficiency of the 

process was verified by Red Ponceau staining of the membranes. Afterwards, membranes 

were blocked in blocking solution (5% dried non-fat milk in TBS-0.1% Tween-20(v/v)) for 1 hour 

at room temperature. The primary antibodies and secondary antibodies (tagged to peroxidase, 

HRP) used for immunodetection were also diluted in blocking solution. The incubation with the 
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primary antibody was maintained for 2 hours at room temperature or over-night at 4ºC, and 

the incubation with the secondary antibody for just 1 hour at room temperature; between 

both, TBS-0.1% Tween-20 solution was used for washing. The ECL system permitted the 

visualization of immunoreactive proteins.  

2.4.3 Co-immunoprecipitation. 

Co-immunoprecipitation is a common technique used to identify physiologically relevant 

protein-protein interactions. It is based on the use of specific antibodies against a target 

protein to capture and purify the primary target as well as other macromolecules that are 

bound to the target by native interactions in the sample solution. These protein complexes can 

then be analyzed to identify new binding partners, binding affinities, the kinetics of binding 

and the function of the target protein.  

In this work, Protein G Sepharose beads (GE Healthcare) were employed as a matrix to 

immobilize the primary antibody against the target protein (the primary antibody is bound to 

the beads through the recognition of its constant fraction). Protein extracts were generated 

from hippocampal organotypic slices by homogenization in the lysis buffer described above. In 

this case, only CA1 region was taken for analysis (micro-dissection under the scope was 

required to cut CA1 region in hippocampal organotypic slices). The aim was to enrich the 

protein sample in the over-expressed protein (viral infection with Sindbis virus was carried out 

just in CA1 region to ensure a post-synaptic effect of the manipulation of protein levels).  

A fraction of the supernatant was put aside for subsequent SDS-PAGE analysis as “input” 

(representative of the total amount of the proteins of interest in the initial protein extracts).  

After equilibration of the beads with lysis buffer, a mixture containing the equilibrated beads, 

the specific primary antibody against the target protein and the total protein extracts was 

incubated at 4ºC for 4 hours in a rotating wheel. A mild centrifugation cycle (at 3.000 r.p.m. for 

1 minute) followed by several washes with lysis buffer permitted the separation of the fraction 

of proteins “bound” to beads (ideally composed of the protein complex immobilized together 

with the beads through interaction of the target protein with the primary antibody) from the 

“unbound” fraction (containing those proteins unable to interact with the target protein). 

After addition of loading buffer, all protein samples were analyzed by SDS-PAGE and western 

blot.   

As a specificity control, the primary antibody against the target protein was replaced by an 

unspecific IgG (produced in the same animal species) in a parallel co-immunoprecipitation. In 
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the co-immunoprecipitation presented in this work, 3 µg of specific primary antibody or 

unspecific IgG as a control (1 µg per 100 µg of total protein), were mixed together with 300 µg 

of total protein and 100 µL of sepharose matrix.  

2.4.4  Actin and microtubule co-sedimentation assays. 

- Actin co-sedimentation assay.  

To assess the ability of the deletion mutants of MAP1B-LC to interact with filamentous actin, 

an actin co-sedimentation assay was performed. A similar procedure has been described 

elsewhere (Pedrotti and Islam 1996; Noiges et al. 2002). The basic principles of the assay 

involve an incubation of the protein of interest with filamentous actin, an ultracentrifugation 

step to pellet filamentous actin and the analysis of the proteins co-sedimenting with it.  

Fist, actin protein (purified from rabbit skeletal muscle, from Cytoskeleton) was solubilized in a 

buffer containing 5 mM Tris pH 8, 0.2 mM CaCl2, 0.2 mM ATP and 0.5 mM DTT, and centrifuged 

at 20.000 g in a Beckman ultracentrifuge for 10 min at 4ºC to remove any aggregates. Then, 

actin was polymerized for 1 hour at room temperature by the addition of 50 mM KCl, 1 mM 

ATP and 2 mM MgCl2. The proteins of interest were extracted from BHK cells previously 

infected with Sindbis viruses carrying the constructs of interest. After 16 to 24 hours, proteins 

were extracted in a buffer containing 10 mM Tris-HCl, pH 7.5 and 1 mM DTT by scrapping and 

sonicating. A first centrifugation to eliminate cellular debris was carried out at 13.000 r.p.m. at 

4ºC for 5 minutes, and supernatants were collected. Then, they were subjected to 

centrifugation at 100.000 g for 20 minutes at 22ºC to pre-clear the mixture of any possible 

aggregate. After that, protein extracts were incubated with filamentous actin (mass ratio actin: 

total protein 3:1) for 1 hour at room temperature. The sedimentation of filamentous actin and 

interacting proteins was driven by ultracentrifugation at 100.000 g for 20 minutes at 22ºC. 

Finally, equal volumes of supernatants and pellets were analyzed by SDS-PAGE and western 

blot.  

- Microtubule co-sedimentation assay.  

Very similarly, the ability of the proteins of interest to interact with microtubules was analyzed 

by a microtubule co-sedimentation assay. This procedure was carried out as described 

(Campbell and Slep 2011) with modifications. Taxol-stabilized microtubules were prepared by 

diluting pure tubulin (> 99% pure from bovine brain, from Cytoskeleton) in BRB80 buffer (80 

mM K-Pipes, 1 mM MgCl2, 1 mM EGTA, pH to 6.8) supplemented with GTP and DTT (1 mM 
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each), incubating at 4ºC for 5 minutes, and then warming at 37ºC and introducing taxol 

stepwise to reach a final concentration of 20 µM.  

Also in this case, BHK cells were used to produce large amounts of recombinant proteins. They 

were infected with Sindbis viruses carrying the constructs of interest, and after 16 to 24 hours, 

proteins were extracted in BRB80 buffer by scrapping and sonicating. After an initial 

centrifugation step (13.000 r.p.m., 5 minutes, 4ºC), supernatants were subjected to a new 

centrifugation at 100.000 g at 25ºC for 30 minutes to clarify. Taxol-stabilized microtubules and 

clarified total protein extracts were mixed (mass ratio 3:1) and incubated at room temperature 

for 20 minutes. Samples were then layered onto a glycerol cushion, and centrifuged at 100.000 

g for 30 minutes at 25ºC. To finish, supernatant and pellet fractions were collected, mixed with 

protein loading buffer and analyzed by SDS-PAGE and western blot.  

A microtubule co-sedimentation assay was also performed to evaluate the potential ability of 

MAP1B-LC to influence the interaction of GluA2 with microtubules. In this case, infected 

hippocampal slices were used as the source of the proteins of interest (a micro-dissection of 

the CA1 subfield was required to enrich the sample in the over-expressed proteins). In 

addition, three different concentrations of tubulin were assessed to test a possible dose-

dependent effect on GluA2 co-sedimentation with assembled microtubules.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of actin/microtubule co-sedimentation assays. The proteins of 

interest are mixed with stabilized microtubules or filamentous actin. After incubation, the mixture is 

centrifuged. Supernatant and pellet fractions are subsequently recovered, and analyzed by SDS-PAGE. 

Proteins that appear in the supernatant do not sediment with microtubules or filamentous actin; 

proteins recovered in the pellet sediment thanks to their interaction with microtubules or filamentous 

actin. This type of assay allows the functional characterization of proteins alleged to bind cellular 

components that pellet under the application of a centrifugal force.  
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2.4.5 Pull-down experiments: assessment of Rac1 and RhoA activities.  

PAK1 (p21 activated kinase) is the effector protein of Rac1, a small GTPase. The region known 

as PBD (p21 binding domain) is able to interact with the active form of Rac1 (Rac1-GTP), but its 

affinity for the GDP-bound form of Rac1 is negligible. That is the reason why PBD is widely used 

in assays evaluating the activity of Rac1 GTPase. In parallel, Rhotekin is a protein able to 

interact with the active form of RhoA GTPase, GTP-RhoA, through its RhoA-Binding Domain 

(RBD).  

The Rac1-binding domain of PAK1 (PBD) and the RhoA-binding domain of Rhotekin (RBD) were 

expressed in Escherichia coli as fusion proteins with glutathione S-transferase (GST). The 

bacteria culture was grown upon IPTG induction. The purification of GST-fused proteins was 

then carried out by generating a bacterial lysate (in “buffer A”: 50 mM Tris-HCl, pH 7.5; 150 

mM NaCl, 5 mM MgCl2, 1 mM DTT, 1% triton and protease inhibitors from Roche) with a 

French press, prior to incubation with GST sepharose beads for 1 hour at 4ºC in a rotating 

wheel and subsequent washing (wash buffer identical to buffer A, except for the concentration 

of triton: 0.5% triton).  

Protein extracts were generated from hippocampal organotypic slices over-expressing the 

proteins of interest via Sindbis virus infection. Only CA1 region was taken for analysis to enrich 

the protein sample in the over-expressed proteins. They were homogenized in a specific lysis 

buffer (0.1% SDS, 1% triton, 10 mM MgCl2, 0.5 mM DTT and protease inhibitors in TBS) and 

centrifuged at 13.000 r.p.m., at 4ºC, for 2 minutes. Supernatants were then incubated with 

PBD or RBD-coated GST sepharose beads for 25 minutes at 4ºC in a rotating wheel. A fraction 

of supernatants was used to generate the “inputs” (representative of the total amount of the 

proteins of interest in the initial lysates). After the incubation period, “bounds” (in this case, 

active Rac1 or RhoA) and “unbounds” (inactive Rac1 or RhoA) fractions were separated. 

Loading buffer was added to inputs, bounds and unbounds before proceeding to SDS-PAGE in 

12% polyacrylamide gels. Immunodetection on PVDF membranes was performed using specific 

antibodies against either Rac1 or RhoA GTPases.   

 

2.7.  Pharmacological treatments.   

When needed, the following pharmacological treatments were applied: 
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2.7.1. Chemical induction of long-term potentiation (LTP) in hippocampal 

organotypic slices. 

To biochemically analyze the effects of LTP induction on protein expression, the inserts 

containing the hippocampal organotypic slices in culture (6-8 days in vitro, DIV) were first 

placed on submersion-type holding chambers containing artificial cerebro-spinal fluid, ACSF 

(119 mM NaCl, 2.5 mM KCl, 1 mM NaH2PO4, 11 mM D-glucose, 26 mM NaHCO3, 4 mM MgCl2, 4 

mM CaCl2, pH 7.4) gassed with carbogen (95% O2, 5% CO2), for 5 minutes. Then, inserts were 

transferred to the LTP-inducing solution, consisting of ACSF without MgCl2, and 0.1 µM 

rolipram, 50 µM forskolin and 100 µM picrotoxin, for 15 minutes at room temperature. 

Rolipram is a phosphodiesterase inhibitor and forskolin acts as a powerful activator of 

adenylate cyclase. Together, they contribute to increase the concentration of cyclic adenosine 

monophosphate inside the cell, which has been proved to induce long-term potentiation in 

hippocampal slices (Slack and Pockett 1991; Barad et al. 1998; Otmakhov et al. 2004). 

Picrotoxin is an antagonist of GABAA receptors; its addition to the mixture of forskolin and 

rolipram seems to facilitate the induction of LTP.  

After the 15-minute incubation, some slices were immediately collected and homogenized in 

cold lysis buffer; others inserts were placed back on holding chambers containing normal ACSF 

for recovery. After variable periods of time, those slices were homogenized, too. To finish, 

total extracts were used for protein analysis via SDS-PAGE and western blot.  

The chemical induction of LTP (using the same cocktail of drugs) was also employed when 

monitoring changes in the mobility of MAP1B-LC-Dendra by live imaging techniques. 

Hippocampal slices were placed in a live imaging chamber and perfused with ACSF gassed with 

carbogen (see below). For LTP induction, the ACSF containing rolipram, forskolin and 

picrotoxin was let flow throughout the perfusion system for 15 minutes. Afterwards, it was 

replaced by normal ACSF.   

2.7.2. Vinblastine. 

Vinblastine is a depolymerizing agent acting on microtubules. It was used to analyze possible 

changes in the sub-cellular distribution of over-expressed MAP1B-LC-GFP in CA1 neurons as a 

consequence of microtubule depolymerization.  

First, hippocampal slices previously infected with Sindbis virus to over-express MAP1B-LC-GFP 

were treated for 3 hours with vinblastine at 10 µM. The drug was added to the culture 
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medium; during treatment, hippocampal slices were maintained at normal culture conditions 

(in an incubator at 35.5ºC, 5% CO2). Afterwards, the treated hippocampal slices were fixed in 

4% PFA, 4% sucrose in PBS over-night at 4ºC, and a typical immunofluorescence experiment 

was performed (see below).  

2.7.3. Induction of mGluR-dependent LTD in organotypic hippocampal slices.  

mGluR-dependent LTD in hippocampal slices was assessed by electrophysiology. To induce 

depression, (R,S)-3,5-dihydroxyphenylglycine (DHPG) was added at 50 µM (Huber et al. 2001) 

to the ACSF filling in the perfusion system. A 5-minute washout of the drug with normal ACSF 

followed.  

2.7.4. Chemical induction of NMDAR-dependent LTD in hippocampal organotypic 

slices. 

The brief application of NMDA at 20 µM has been described to induce NMDAR-dependent LTD 

in hippocampal slices (Lee et al. 1998). The chemical induction of LTD was used in the present 

work when analyzing the mobility of recombinant MAP1B-LC in CA1 neurons by live imaging.  

The hippocampal slices in the live imaging chamber were perfused with ACSF gassed with 

carbogen. To induce LTD, NMDA was added at 20 µM to the perfusion solution in contact with 

the slices, and let fill in the system for 5 minutes. Then, the ACSF containing NMDA was 

replaced by normal ACSF (washout of the drug).   

 

2.6.  Electrophysiology.  

Electrophysiology is the technique that allows the on-line recording of electrical activity in 

neurons. In this work, the properties of the CA3-CA1 hippocampal synapse were studied. 

Schaffer collaterals (axon collaterals given off by CA3 pyramidal cells) were stimulated, and 

subsequent electrical responses were recorded in CA1 neurons.  

All the electrophysiological recordings compiled in this work were performed in whole-cell, 

patch clamp configuration, and most of them, in voltage clamp configuration. The patch clamp 

configuration allows the establishment of a direct contact between the recording 

microelectrode placed inside a glass pipette, and the cytoplasm of the cell whose electrical 

activity is being registered. The glass pipette is filled in with “internal solution”, a solution 

matching the ionic composition of the cytoplasm (115 mM CsMeSO3, 20 mM CsCl, 10 mM 
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HEPES, 2.5 mM MgCl2, 4 mM Na2-ATP, 0.4 mM Na-GTP, 10 mM Na-phosphocreatine, 0.6 mM 

EGTA). The voltage clamp technique is based on the measurement of an electrical current 

while maintaining the membrane potential of the cell at a constant value (the voltage is 

“clamped”).   

A typical electrophysiological setup is composed of the following elements: a plastic chamber 

that holds the biological sample and is connected to a perfusion system to maintain 

physiological conditions. A microscope, usually equipped with a mercury lamp so that the 

fluorescence from the cells under study can be visualized. Micromanipulators, which are used 

to precisely locate two types of electrodes, stimulating electrodes and recording electrodes, on 

the tissue. A recording electrode consists of a silver filament introduced inside a glass pipette 

whose resistance varies between 4 and 6 MΩ. All the components are localized on an air table 

that absorbs mechanical vibrations, and inside a Faraday cage to block the electrical noise. A 

Multiclamp 700 A/B amplifier (Molecular Devices) and a digitizer are needed to accurately 

measure the electrical currents recorded from neurons in the range of picoamps (processing 

done with pClamp software).  

In the experiments listed below, organotypic hippocampal slices placed on a plastic chamber 

were maintained alive by filling in the perfusion system with oxygenated ACSF kept at 29ºC. 2-

chloroadenosine (adenosine receptor agonist, 200 µM) and picrotoxin (antagonist of GABAA 

receptors, 100 µM) were added to the ACSF before starting recordings. Both drugs contribute 

to decrease the excitability and spontaneous activity of neurons in culture.  

2.6.1. Recording of basal transmission. 

In these experiments, whole-cell recordings were simultaneously obtained from nearby pairs 

of CA1 pyramidal neurons, one over-expressing the protein (or shRNA) of interest, and the 

other one as a control neuron (“pair recordings”). Because only CA1 cells (and not CA3 cells) 

were infected or transfected, this configuration ensured that recombinant proteins were 

always expressed exclusively in the post-synaptic cell. Synaptic responses were elicited with 

bipolar electrodes using single-voltage pulses (200 ms, up to 25 V).  

Synaptic AMPAR-mediated responses were measured by setting the membrane potential of 

the cell at -60 mV, and NMDAR-mediated responses at +40 mV, at a latency when AMPAR 

responses had fully decayed (100 ms). 

   2.6.2. Peptide pep2m. 
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Peptide 2m (pep2m) is a decapeptide corresponding to the NSF-binding domain of the GluA2 

subunit of AMPARs. It has been described to produce a marked, progressive decrease of 

AMPAR-mediated synaptic transmission when loaded into CA1 hippocampal neurons 

(Nishimune et al. 1998; Song et al. 1998; Luscher et al. 1999; Noel et al. 1999).  

Peptide 2m was dissolved at 1 mM in internal solution together with the protease inhibitors 

bestatin (100 µM) and leupeptin (10 µM). The addition of the peptide to the internal solution 

permitted its constant infusion into the cell once the seal established between the cellular 

membrane and the glass pipette was opened. AMPAR-dependent synaptic currents were 

recorded as described, considering the first two minutes of recording as the baseline value for 

analysis.   

2.6.3. Rectification experiments. 

For rectification studies, AMPAR responses were recorded at −60 mV and +40 mV in the 

presence of 100 µM D,L-2-amino-5-phosphonovaleric acid (APV, to block NMDA receptors) in 

the perfusion solution, and 100 µM spermine (a voltage-dependent channel blocker of GluA2-

lacking AMPA receptors) in the internal solution. The rectification index was calculated as the 

ratio between the AMPAR synaptic responses at -60 mV and at +40 mV.  

2.6.4. Synaptic plasticity.  

To assess the effects on synaptic plasticity of the manipulation of MAP1B levels in CA1 

pyramidal neurons, different stimulating protocols were applied: 

- NMDAR-dependent LTD was induced by pairing low-frequency pre-synaptic 

stimulation (300 or 500 pulses, as indicated, at 1 Hz) with moderate post-synaptic 

depolarization (at -40 mV).  

- mGluR-dependent LTD: the induction of mGluR-dependent LTD was carried out by 

adding (R,S)-3,5-DHPG at 50 µM to circulating ACSF. The treatment with the drug was 

maintained for 5 minutes; then, a washout period of 5 minutes was required. To 

evaluate the ability of the drug to induce the generation of action potentials in the 

post-synaptic cell, voltage clamp mode was switched to current clamp configuration 

during the application of the drug and the 5-minute washout. The internal solution in 

the patch pipette was, hence, specific for current clamp configuration (115 mM K-

gluconate, 20 mM KCl, 10 mM HEPES, 2 mM MgCl2, 4 mM Na2-ATP, 0.3 mM Na3-GTP, 

pH 7.25). 
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- LTP was induced with a pairing protocol, by stimulating Schaffer collateral fibers at 3 

Hz (300 pulses) while depolarizing the post-synaptic cell at 0 mV.  

2.7.  Fluorescence microscopy.  

2.7.1. Immunofluorescence: hippocampal organotypic slices. 

Hippocampal slices were infected with Sindbis virus to over-express the protein of interest. 16 

to 24 hours later, they were fixed over-night at 4ºC in fixation solution for slices (4% PFA-, 4% 

sucrose in PBS, pH 7.4). After extensive washing with PBS, they were blocked in blocking 

solution (3% BSA, 2% horse serum, 0.3% triton in PBS) for 1 hour at room temperature. The 

incubation with the primary antibody (diluted in blocking solution) was performed over-night 

at 4ºC. After washing repeatedly with PBS, the slices were incubated with the secondary 

antibody (also diluted in blocking solution) for 1 hour at room temperature. To mount the 

samples after washing off the secondary antibody, Prolong Gold antifade reagent was 

employed.  

2.7.2. Immunofluorescence: hippocampal primary cultures.  

To analyze MAP1B-LC-GFP co-localization with post-translationally modified tubulin, and to 

perform the evaluation of GRIP1 distribution along dendrites in primary neurons, fixation with 

methanol was required. Briefly, hippocampal primary neurons plated on coverslips were 

infected with Sindbis virus to over-express the protein of interest. After 16 to 24 hours, they 

were washed with TBS and fixed carefully in methanol supplemented with 1 mM EGTA for 20 

minutes at -20ºC. The subsequent washes were performed with TBS-0.1% triton; an additional 

step of permeabilization with TBS-0.5% triton was required. A solution composed of 3% BSA, 

0.1% triton and 0.1% sodium azide in TBS was used as blocking solution. The blocking step 

lasted just 10 minutes at room temperature. The primary antibody (diluted in blocking 

solution) was incubated with the sample for 1 hour at room temperature; the incubation with 

the secondary antibody (after washing) also lasted 1 hour. Samples were then washed with 

milli Q water, dried and mounted on microscope slides with Prolong Gold.   

To perform GluA2/GluA1 surface versus total staining experiments and evaluation of MAP1B 

down-regulation with a specific shRNA, fixation with PFA was considered the method of 

choice. As with the hippocampal slices, the fixation step was carried out with a solution 

consisting of 4% PFA, 4% sucrose in PBS. Only 20 minutes of fixation at room temperature 

were required in the case of primary neurons. To label only surface receptors, the blocking 
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step was performed primarily with a solution (named PGT) lacking triton (0.22% fish gelatin in 

PBS). After blocking, primary and secondary antibodies (diluted in PGT) were incubated with 

the sample for 1 hour at room temperature each (both incubations were separated by 

extensive washing with PBS). The primary antibodies selected for this step of the procedure 

were the ones directed against the N-terminal region of GluA2/GluA1 subunits. Then, a step of 

permeabilization with triton followed (PGT supplemented with 0.1% triton, for at least 30 

minutes at room temperature). The primary antibodies directed against the C-terminal domain 

of GluA2/GluA1 subunits (to label the whole population of receptors, not just those located on 

the surface) were incubated with the sample for 1 hour at room temperature, and a new 

incubation with the corresponding secondary antibodies was performed afterwards. Once 

rinsed with milli Q water and dried, the coverslips were mounted on microscope slides with 

Prolong Gold.  

2.7.3. Confocal fluorescence imaging on fixed tissue/cultures.  

- Dendritic spine quantification. 

To perform a complete analysis of dendritic spine morphology and density in MAP1B-LC-GFP 

over-expressing CA1 neurons compared to uninfected, control neurons, organotypic 

hippocampal slices were first infected with Sindbis virus.  After 16 to 24 hours, uninfected and 

infected neurons were filled in, in parallel, with biocytin (an intracellular marker that allows 

the visualization of the complete morphology of the cell). To do so, the electrophysiology 

setup described above was required. The patch clamp technique was employed to target the 

cell of interest, and establish a direct contact between its cytoplasm and the internal solution 

supplemented with biocytin contained in the patch pipette. Once the seal membrane-patch 

pipette was opened, biocytin could flow into the cell; this flow was maintained for a period of 

10 minutes, approximately. Immediately afterwards, slices were fixed (4% PFA, 4% sucrose in 

PBS) over-night at 4ºC, and a typical immunofluorescence experiment as the one previously 

described was performed. Streptavidin (that recognizes biocytin) fused to a fluorescent tag 

was added to the solution containing the anti-GFP primary antibody.  

A confocal microscope LSM510 coupled to an inverted microscope Axiovert200 M (Zeiss) was 

used for image acquisition. Images were acquired using a 63x oil immersion objective (zoom 

3x), at a resolution of 1024 x 1024 pixels and setting the pinhole value at 0.8 µm. To image the 

whole apical dendrite, several stacks (at 0.14 µm) were acquired. For quantification, the 

maximum intensity projection of stacks was used.  
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Images were processed for deconvolution with Huygens software. Volume Integration and 

Alignment System (Vias) software was used to reconstruct a whole primary apical dendrite per 

neuron. Quantification of head diameter and length of dendritic spines, as well as number of 

dendritic spines per micron along the selected apical dendrite, was carried out with 

NeuronStudio software.  

- Spine/dendrite ratio for GluA2 and GluA1.  

RFP-GluA2 was co-expressed with MAP1B-LC-GFP (or GFP as a control) in CA1 neurons by 

biolistic transfection. The same technique was employed to co-express GFP-GluA1-ires-tCamKII 

with either MAP1B-LC-mCherry or mCherry alone. A typical immunofluorescence procedure on 

hippocampal organotypic slices was then carried out.  

A multiphoton microscope was used for image acquisition (confocal and multiphoton 

microscopes LSM710 and LSM510 coupled to an inverted microscope AxioObserver and a 

vertical microscope AxioImager M1, respectively, from Zeiss). Images were acquired using a 

63x oil immersion objective. Maximum intensity projections were used for analysis. The 

quantification was performed by measuring fluorescence intensity in dendritic spines, 

fluorescence intensity in the adjacent dendritic branch, and calculating a ratio.   

The same procedure was applied to evaluate GFP-GluA2 presence in spines of CA1 neurons in 

hippocampal organotypic slices prepared from wild type mice (MAP1B +/+) or heterozygous 

animals for MAP1B (MAP1B +/-). To over-express GFP-GluA2, organotypic slices (DIV 5-7) were 

infected with Sindbis virus.  

2.7.4. Epifluorescence imaging on fixed primary cultures. 

- GluA2/GluA1 surface staining versus GluA2/GluA1 total staining. Quantification of 

GRIP1 staining.  

For both experiments, images were acquired with an inverted microscope Axiovert200 coupled 

to a CCD camera (Zeiss), using the 63x oil immersion objective.   

For GluA2/GluA1 surface staining versus GluA2/GluA1 total staining, the analysis was carried 

out as follows. Using the tool “segmented line” from Image J, dendrites were delineated in the 

green channel (corresponding to GFP staining). Having transformed lines into areas, the mean 

fluorescence intensity of each specified area was calculated, in the channel corresponding to 

surface staining and in the channel corresponding to total staining. Three dendrites per neuron 
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were quantified. Mean intensity values for surface and total staining, and ratio between them, 

were compared among cells.  

A similar processing was applied for the analysis of GRIP1 distribution in primary neurons over-

expressing MAP1B-LC-GFP (or GFP as a control). Dendrites were delineated in the green 

channel using the “segmented line” tool of Image J. In this case, only the main prominent 

dendrite coming out from the soma of the cell was considered for analysis. Mean fluorescence 

intensity in the area occupied by the delineated dendrite (50 µm) was then measured in the 

channel corresponding to GRIP1 staining. The mean intensity in the soma of the cell was also 

calculated, and total values of fluorescence in soma and dendrite, as well as the ratio 

dendrite/soma, were compared among different neurons. For cluster analysis, the “Log3D” 

plugin from Image J (Sage et al. 2005) was applied to image selections corresponding to the 

delineated dendrites. This plugin facilitates the definition of clusters. Then, the same intensity 

threshold was applied for every cell, and the thresholded selection was imported into the 

original 32-bit image of the dendrite to calculate the number of clusters per 50 µm of dendrite, 

the total fluorescence intensity and the area of each cluster (using the “analyze particles” 

command of Image J).  

2.7.4. Fluorescence imaging on live tissue: multiphoton.  

- FRAP experiments on dendrites and spines. 

FRAP (Fluorescence Recovery After Photobleaching) experiments were performed in a 

multiphoton microscope. Live hippocampal slices were placed in an imaging chamber 

connected to a perfusion system filled in with ACSF gassed with carbogen. The temperature of 

the circulating ACSF was kept constant (37ºC) thanks to an external heating system.  

During FRAP experiments, a specific region of a CA1 neuron over-expressing the protein of 

interest is “bleached”. This means that the laser used to excite the fluorophore (IR laser, 910 

nm) is flashed at this specific region at a high intensity so that the dye is rendered unable to 

fluoresce again. The idea behind this method is to use FRAP to measure the mobility of the 

protein of interest inside the neuron. If the protein fluorescently tagged is indeed mobile, the 

fluorescence in the bleached area will be recovered over time as a consequence of non-

bleached molecules moving around.   

In the FRAP experiments presented in this work, the bleaching flash of the laser was applied on 

dendrites and/or dendritic spines of CA1 neurons over-expressing the proteins of interest. To 
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compare rates of recovery (for example, to analyze the mobility in dendrites of recombinant 

GluA2/GluA1 in the presence or absence of MAP1B-LC-GFP), the bleached area on the dendrite 

was always of the same size. The quantification consisted of the measurement of fluorescence 

intensity in the bleached area, before (normalized to 1) and at different time points after the 

bleaching event (value normalized to zero immediately after the bleaching). Normalization to 

an adjacent stretch of non-bleached dendrite was required to compensate for ongoing 

photobleaching during image acquisition.  

- Photoactivation experiments on dendrites.  

Photoactivation experiments represent a complementary approach to FRAP experiments to 

study the mobility of a given protein inside the cell. In this case, the protein of interest is 

tagged to a photoactivatable fluorophore (dendra2). The photoactivatable fluorophore emits 

normally in the green channel; when it is irradiated with a high intensity light, green 

fluorescence is converted into red fluorescence. From that moment on, the movement of a 

discreet subcellular protein pool can be monitored in the red channel.  

In the set of experiments presented in this thesis, both MAP1B-LC and tubulin were tagged to 

dendra2. The photoactivation of the protein of interest was carried out by illuminating a 

specific region of a dendrite of a CA1 neuron with 405 nm laser, at 10% intensity for MAP1B-

LC-dendra and 50% intensity for Dendra-tubulin. IR laser (910 nm) was used for image 

acquisition before and after photoactivation. Red fluorescence in the illuminated spot was 

quantified before photoactivation (zero fluorescence) and at different time points afterwards 

(the fluorescence intensity just after photoactivation was normalized to 1). Photoactivation 

experiments were also performed in a multiphoton microscope, using the same setup 

described for FRAP experiments.  

2.7.5. Fluorescence imaging on live tissue: epifluorescence.  

The inverted microscope Axiovert200 coupled to a CCD camera was the one chosen to image 

the movement of transferrin receptor (TfR) clusters along dendrites in live hippocampal 

neurons.  

Primary neurons were either co-transfected with MAP1B-LC-GFP (or GFP as a control) and TfR-

mCherry with Lipofectamine 2000, or first infected with a lentivirus producing a shRNA against 

MAP1B (or scrambled shRNA as a control), and 8 days later, transfected with Lipofectamine 

2000 to over-express TfR-GFP. Live imaging was performed 48 hours after transfection with 
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Lipofectamine 2000 in both cases. At the microscope, primary neurons were maintained alive 

thanks to the incubation system of the microscope (temperature set at 35.5ºC) and the specific 

buffer filling in the chamber used for imaging (146 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 0.6 

mM MgSO4, 1.6 mM NaHCO3, 0.15 mM NaH2PO4, 8 mM D-glucose, 20 mM HEPES, pH 7.4). 63x 

oil immersion objective was employed for acquisition. Images of TfR clusters were acquired 

every 2-3 seconds for a period of 1 minute (the exposure time of the camera was adjusted 

according to the intensity of fluorescence of TfR clusters in every cell under study).  

For analysis, kymographs were obtained from time-lapse images with Image J software 

(“MultipleKymograph” plugin, submitted by J. Rietdorf and A. Seitz, European Molecular 

Biology Laboratory, Heidelberg, Germany). Kymographs are a way to represent a dynamic 

process in a single image. They result from the graphical representation of spatial position (x 

axis) over time (y axis). This way, each cluster in the original set of images is converted into a 

line in the kymograph, representing how its position in the dendrite changed over time. A 

moving cluster results in a diagonal line in the kymograph; if a cluster stays in the same 

position during image acquisition, then it will give rise to a vertical, straight line.  

On kymographs, the tracks generated by every moving particle were manually outlined with 

Image J software. A single track is composed of multiple individual trajectories that we defined 

as “events of transport”. Using the tracks on kymographs, we calculated the instantaneous 

speed of each event of transport (depending on the space travelled and the time of 

movement), with the “read velocities from tsp” macro (also available on-line).  

 

2.8. Statistical analysis.   

All graphs represent average values ± s.e.m. Statistical differences were calculated according 

to non-parametric tests. When significant differences were observed, p-values for pairwise 

comparisons were calculated according to two-tailed Mann-Whitney test (for unpaired data) 

or Wilcoxon test (for paired data). Comparisons between cumulative distributions were 

calculated with the two-sample Kolmogorov-Smirnov test.  
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PART I: modulation of MAP1B levels of expression and its effects on 

synaptic transmission and plasticity. 

 

The main objective of the present study was to analyze the possible involvement of MAP1B in 

the processes regulating synaptic strength of glutamatergic neurotransmission in 

hippocampus. To this aim, we adopted two strategies based on the manipulation of MAP1B 

protein levels and the study of its consequences in hippocampal neurons: 

-  After verifying the increase in MAP1B expression during synaptic plasticity, we decided 

to assess the consequences of MAP1B gain of function through over-expression in CA1 

hippocampal neurons. 

-  To complement the previous approach, we also studied MAP1B loss of function via 

lentiviral-mediated acute down-regulation.  

 

A) MAP1B over-expression.  

1.  MAP1B expression is up-regulated during the induction of LTP.  

A change in the levels of expression of a given protein during the induction or the progression 

of a specific biological process is a good indication of the potential involvement of the protein 

in the process under study. Thus, to assess the potential role of MAP1B in regulating the 

intracellular sorting of AMPARs in hippocampal neurons, we first analyzed changes in the 

expression of MAP1B light chain and heavy chain during synaptic plasticity, specifically during 

the chemical induction of LTP in organotypic hippocampal slices. It is worth noting that a 

translation-dependent increase in the dendritic levels of MAP1B after treatment of cultured 

neurons with DHPG and NMDA was previously reported (Davidkova and Carroll 2007).  

LTP was induced chemically as described (Otmakhov et al. 2004). As shown in figure 1, the 

expression of both MAP1B-LC and MAP1B-HC increases after the induction of LTP. Therefore, it 

seems that the activation of the signaling cascades associated with the insertion of AMPARs at 

synapses during LTP controls also MAP1B expression.  This result would suggest a possible 

involvement of MAP1B in the processes orchestrating the trafficking of AMPARs in CA1 

neurons.  
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The fact that MAP1B expression was enhanced upon the induction of LTP prompted us to 

study possible changes in the strength of synaptic transmission both in basal conditions and 

during synaptic plasticity as a result of MAP1B over-expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  MAP1B-GFP over-expression decreases basal transmission.  

To analyze the potential role of the light chain and the heavy chain of MAP1B in regulating 

synaptic transmission, we decided to over-express both chains of the protein separately in CA1 

hippocampal neurons and measure basal transmission using electrophysiological recordings. 

Thus, we over-expressed either MAP1B-LC-GFP or MAP1B-HC-GFP in CA1 pyramidal neurons 

and measured AMPAR- and NMDAR-dependent synaptic currents (figure 2).  

As shown in figure 2A, MAP1B-LC-GFP over-expression was accompanied by a significant 

decrease in AMPA currents. On the contrary, NMDAR-dependent transmission was unaltered 

in infected cells comparing to uninfected, control neurons. When MAP1B-HC-GFP was over-

A) 

C) 

Figure 1. MAP1B expression is regulated by synaptic plasticity. A) Protein levels were assessed in 

control conditions (“baseline”), just after the chemical induction of LTP (“0 minutes”) with 0.1 µM 

rolipram, 50 µM forskolin and 100 µM picrotoxin, and at different time points during the recovery 

period in ACSF (“15”, “30” and “60 minutes”). B) Representative western blots of MAP1B-LC, MAP1B-HC 

and actin total levels of expression before and after LTP induction. C) Quantification of MAP1B-LC (left) 

and MAP1B-HC (right) levels normalized to the control condition, from experiments as the one shown 

above (MAP1B-LC, n=6 independent experiments; MAP1B-HC, n=5 independent experiments). “p” 

corresponds to the statistical significance value comparing “60 minutes” to the control condition 

calculated with Wilcoxon test. Error bars represent s.e.m. 
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expressed (figure 2B), both AMPAR- and NMDAR-mediated currents were reduced. Therefore, 

the over-expression of MAP1B-HC-GFP was generally affecting synaptic transmission mediated 

by AMPA and NMDA receptors, whereas MAP1B-LC-GFP was specifically acting on AMPA 

receptors, which encouraged us to further study its mechanism of action.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  Over-expressed MAP1B-LC-GFP displays a filamentous pattern of distribution 

probably due to its binding to microtubules.  
 

3.1  Immunofluorescence on fixed hippocampal cultures.  

First, we decided to characterize MAP1B-LC-GFP distribution and behavior when over-

expressed in CA1 pyramidal neurons. To evaluate the ability of MAP1B-LC-GFP to interact with 

endogenous MAP1B-HC, we performed a co-immunoprecipitation with a specific antibody 

raised against MAP1B-HC (figure 3). Endogenous MAP1B-LC was co-immunoprecipitated 

almost completely with MAP1B-HC. On the contrary, recombinant MAP1B-LC was found 

mainly in the unbound fraction. This result demonstrated that MAP1B-LC-GFP was not 

Figure 2. MAP1B-GFP over-expression affects basal transmission. A) Synaptic responses were recorded 

from pairs of neighboring CA1 neurons over-expressing MAP1B-LC-GFP (infected, INF) and control 

neurons (uninfected, UNINF), in the presence of picrotoxin at -60 mV for AMPARs (n=42 pairs), and at 

+40 mV for NMDARs (NMDA responses were collected at a latency of 100 ms; n=29 pairs). B) CA1 

neurons were biolistically transfected with MAP1B-HC-GFP. Synaptic responses were measured from 

pairs of neighboring transfected (TRANSF) and untransfected (UNTRANSF) neurons (AMPARs, n=23 pairs; 

NMDARs, n=14 pairs). “p” corresponds to the statistical significance value calculated by Wilcoxon test. 

Error bars represent s.e.m.  
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primarily forming a complex with the heavy chain in CA1 pyramidal neurons when over-

expressed.  

  

 

 

 

 

 

 

Next, we wondered about the ability of MAP1B-LC-GFP to interact with microtubules, as 

described (Zauner et al. 1992). When over-expressed, MAP1B-LC-GFP appeared clearly 

filamentous in the cell body and dendrites of CA1 hippocampal neurons, resembling a 

microtubule-like pattern of distribution (figure 4). A 3-hour treatment with vinblastine (a drug 

used to depolymerize microtubules) produced a complete loss of the characteristic 

filamentous pattern of distribution of MAP1B-LC-GFP (figure 5), resulting in a diffuse 

cytoplasmic localization of the recombinant protein. This result indicates that, being mainly 

free from MAP1B-HC, over-expressed MAP1B-LC-GFP is probably interacting with microtubules 

inside CA1 pyramidal neurons.  

 

  

 

 

 

 

 

 

Figure 3. MAP1B-HC immunoprecipitation. Total protein 

extracts from hippocampal slices were immunoprecipitated 

with anti-MAP1B-HC (“IP HC”) or with a non-immune (“n.i.”) 

antibody. Input, bound fraction and unbound fraction 

(“UNB.”) for each protein of interest are shown. Western 

blots of immunoprecipitated proteins were performed with 

antibodies against MAP1B-HC (upper panel); MAP1B-LC 

(middle panel), showing endogenous and recombinant 

MAP1B-LC (two different exposures); and GFP (lower panel) 

(two different exposures). The arrowheads mark the 

position of the band corresponding to recombinant MAP1B-

LC, only visible when the exposure of the film is long 

enough. The asterisks point to IgG bands unspecifically 

recognized by the secondary antibody. 

B) A) 

Figure 4. MAP1B-LC-GFP displays a filamentous pattern of distribution. A) Representative confocal 
image of hippocampal CA1 neurons over-expressing MAP1B-LC-GFP after 24 hours from infection with 
Sindbis virus. B) MAP1B-LC-GFP displays a filamentous pattern of distribution in soma and dendrites of 
infected CA1 neurons. Arrows indicate marked filaments in dendrites. 
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To note, recombinant MAP1B-LC was hardly visualized in dendritic spines, despite its reported 

interaction in vitro and in vivo with filamentous actin (Togel et al. 1998). A similar behavior was 

previously described for the endogenous MAP1B in cultured hippocampal neurons (Tortosa et 

al. 2011). MAP1B-LC predominant distribution along dendritic shafts and absence from spines 

could reflect an increased affinity for microtubules comparing to actin filaments, as suggested 

elsewhere (Noiges et al. 2002). 

To gather further evidence of MAP1B-LC-GFP binding to microtubules, we performed 

immunofluorescence experiments on primary hippocampal neurons over-expressing the 

recombinant protein. The immunostaining was performed against three post-translational 

modifications (PTMs) of tubulin: detyrosinated and acetylated tubulin, associated with stable 

microtubules (Kreis 1987; Piperno et al. 1987; Schulze et al. 1987), and tyrosinated tubulin, 

which is considered to be a hallmark of dynamic microtubules (Webster et al. 1987). As 

expected because of its ability to stabilize microtubules (Pedrotti and Islam 1995; Togel et al. 

1998; Noiges et al. 2002), MAP1B-LC-GFP was found to co-localize with stable microtubules 

(figure 6).  

For semi-quantitative analysis, a line was drawn across the dendrites of neurons over-

expressing MAP1B-LC-GFP (cyan) and stained against the corresponding PTM of tubulin 

(magenta). Fluorescence along the dotted line was quantified in both channels to assess the 

degree of coincidence in the pattern of distribution of the proteins under study. Indeed, line 

plots showed spatial coincidence of MAP1B-LC-GFP with detyrosinated and acetylated tubulin, 

and an exclusive pattern with tyrosinated tubulin (figure 6).   

 

5 µm

+ VINBLASTINE

MAP1B-LC-GFP

5 µm

- VINBLASTINE

MAP1B-LC-GFP

Figure 5. MAP1B-LC-GFP 

filamentous pattern of 

distribution is presumably due 

to its binding to microtubules. 

A 3-hour treatment with 

vinblastine (10 µM, microtubule 

depolymerizing agent) results in 

a complete loss of typical 

filamentous appearance 

(arrows) of MAP1B-LC-GFP in 

dendrites of CA1 hippocampal 

neurons.  
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3.2  Live imaging of recombinant MAP1B-LC in CA1 hippocampal neurons.  

3.2.1  Mobility of recombinant MAP1B-LC in dendrites of CA1 neurons.  

To further explore MAP1B-LC-GFP interaction with microtubules, we characterized its mobility 

inside CA1 pyramidal neurons. Performing FRAP (Fluorescence Recovery After Photobleaching) 

experiments on dendrites of neurons over-expressing the recombinant protein, we were able 

A) 

B) 

DETYOROSINATED TUB. 

20 µm 

Figure 6. MAP1B-LC-GFP co-localizes with stable microtubules. A) Immunostaining against different 

post-translational modifications (PTMs) of tubulin (detyrosinated tubulin, tyrosinated tubulin and 

acetylated tubulin) in MAP1B-LC-GFP over-expressing primary neurons (DIV 19-21). Overlay and higher 

magnification of insets are shown in the right panels. Note co-localization or exclusion of MAP1B-LC-GFP 

with each PTM of tubulin (arrows). B) Line plots showing quantification of fluorescence intensity across 

dendrites of neurons over-expressing MAP1B-LC-GFP and stained against detyrosinated, tyrosinated and 

acetylated tubulin, like the ones shown in (A). A. u., arbitrary units. 
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to show (figure 7) that only a 20% fraction of the initial GFP fluorescence was slowly recovered 

after more than 1 hour from the photobleaching event. This slow recovery profile was 

coherent with the idea of MAP1B-LC-GFP being mostly anchored inside the cell.  

 

 

 

 

 

 

 

 

 

 

To test if microtubules behave as MAP1B-LC-GFP, we cloned a photoactivatable form of 

MAP1B-LC and of tubulin, and carried out photoactivation experiments in CA1 neurons over-

expressing either MAP1B-LC-Dendra or Dendra-tubulin, as shown in figure 8. To note, 

photoactivation of Dendra-tubulin was performed after 24 hours from the infection with 

Sindbis virus and only in those dendrites in which Dendra-tubulin appeared as parallel arrays 

(figure 8A), probably indicating that the recombinant tubulin had already been incorporated 

into assembled microtubules. MAP1B-LC and tubulin displayed the same dynamic behavior in 

this set of experiments, with almost over-lapping curves of fluorescence decay over time, 

which was possibly due to a slow turnover of both structural proteins in dendrites of CA1 

neurons. Thus, live imaging experiments allowed us to confirm that MAP1B-LC-GFP/Dendra 

slow mobility was analogous to that of stable microtubules themselves, strengthening the 

possibility that MAP1B-LC-GFP/Dendra could be forming a protein complex with microtubules 

in vivo.  
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Figure 7.  MAP1B-LC-GFP is mainly immobile in dendrites of CA1 neurons. A) Representative images of 

a FRAP experiment performed on the dendrite of a hippocampal CA1 neuron over-expressing MAP1B-

LC-GFP. The inset in the upper picture represents the area amplified in the images below. The dashed 

rectangle in the amplified pictures corresponds to the area that was bleached during the experiment. 

“Baseline”, before photobleaching; “Bleach”, just after the photobleaching event. B) Quantification of 3 

independent experiments. Error bars represent s.e.m. 
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Nevertheless, this scenario changed dramatically when synaptic plasticity was induced in 

hippocampal slices over-expressing MAP1B-LC-GFP. First, we analyzed MAP1B-LC-GFP mobility 

by FRAP experiments that were performed before, immediately after or 30 minutes after 

chemically inducing LTD in hippocampal slices. As shown in figure 9A and 9B, the mobility of 

the recombinant protein increased notably just after the induction of LTD; however, if the 

FRAP experiment was carried out half an hour after applying the pharmacological treatment, 

the mobility of MAP1B-LC-GFP was comparable to that measured under basal conditions 

(figure 9B). This result would point to a transient detachment of MAP1B-LC-GFP from 

microtubules just after the induction of synaptic plasticity in hippocampal slices.  
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Figure 8. The mobility of Dendra-tubulin is equivalent to that of MAP1B-LC-Dendra in CA1 neurons. A) 
Representative images of a photoactivation (PA) experiment performed on the dendrite of a 
hippocampal CA1 neuron over-expressing Dendra-tubulin. The inset in the upper picture represents the 
area amplified in the images below. The dashed rectangle in the amplified pictures represents the 
photoactivated region. “Baseline”, before PA. “PA”, just after performing PA. B) Quantification of 4 PA 
experiments performed on dendrites of CA1 neurons over-expressing Dendra-Tubulin (magenta line). 
The gray line corresponds to the quantification of PA experiments for MAP1B-LC-Dendra (n=8 
independent experiments). Error bars represent s.e.m.  

 

B) A) 

Figure 9. MAP1B-LC-GFP mobilizes transiently during the induction of long-term depression (LTD) 
(FRAP experiments). A) Left, representative picture of a CA1 neuron over-expressing MAP1B-LC-GFP. 
The inset in the left picture represents the area amplified in the images on the right. The dashed 
rectangle in the amplified pictures represents the bleached region (just after LTD, NMDA 20 µM for 5 
min).  Right, representative pictures of the same dendrite before photobleaching (“baseline”), 
immediately after the photobleaching event (“bleach”), and at several time points during fluorescence 
recovery. B) Quantification of FRAP experiments before (cyan) and just after LTD (blue) or 30 minutes 
after LTD (magenta). Error bars, s.e.m.  
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To confirm this hypothesis, we assessed the mobility of recombinant MAP1B-LC after the 

induction of either LTD or LTP via PA experiments, which provide a complementary approach 

to FRAP experiments (figure 10.1). As figure 10.2 demonstrates, both LTD and LTP triggered an 

enhancement in MAP1B-LC-Dendra mobility, manifested as a notorious increase in the slope of 

the line representing the fluorescence decay over time; however, this enhancement was 

transient, as the rate of fluorescence decay previous to the induction of synaptic plasticity was 

quickly recovered after the induction period was over. These data would suggest that the 

signaling cascades activated upon the induction of synaptic plasticity have the potential to 

impact on MAP1B-LC behavior and distribution inside the cell.   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

A) 

Figure 10.1. MAP1B-LC-Dendra mobilizes transiently during the induction of synaptic plasticity (PA 
experiments). A) Left, representative picture of a CA1 neuron over-expressing MAP1B-LC-Dendra before 
undergoing a PA experiment. The inset in the left picture represents the area amplified in the images on 
the right. The dashed rectangle in the amplified pictures represents the area of interest on which the 405 
nm laser was irradiated to proceed to PA. Right, representative images of the dendrite of the same neuron 
before PA (“Pre-PA”), just after undergoing PA (“+0 min”), and at different time points during the 
experiment. B) Same as in A, but for a PA experiment during which LTP was chemically induced (yellow 
dots). C) Same as in A, but for a PA experiment during which LTD was chemically induced (yellow dots). 
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A transient entry of dynamic microtubules from the dendritic shaft into spines was reported in 

primary hippocampal cultures (Jaworski et al. 2009). This event was shown to be promoted by 

the stimulation of synaptic NMDARs (Merriam et al. 2011) and synaptic calcium influx 

(Merriam et al. 2013). As previously mentioned, LTD and LTP have been demonstrated to occur 

upon a more or less sustained local calcium rise inside the spine, too. Thus, we wanted to test 

if the transient mobilization of recombinant MAP1B-LC during the induction of synaptic 

plasticity was an intrinsic property of the protein or could be attributed to some kind of 

modulation of microtubule dynamics. To do so, we performed PA experiments in dendrites of 

CA1 pyramidal neurons over-expressing Dendra-tubulin and compared its fluorescence decay 

profile over time with that of MAP1B-LC-Dendra, previously quantified. Opposite to MAP1B-

LC-Dendra, the mobility of Dendra-tubulin was unaffected by the induction of LTD, as 

evidenced in figure 11. We concluded thereby that the short-term mobilization of recombinant 

MAP1B-LC during the induction of synaptic plasticity was not due to a hypothetical local 

reorganization of microtubules but to the potential of synaptic plasticity paradigms to impact 

on MAP1B-LC functionality.  

  

 

 

 

 

 

 

 

Figure 10.2. MAP1B-LC-Dendra mobilizes 
transiently during the induction of 
synaptic plasticity (PA experiments). 
Quantification of fluorescence intensity 
after PA on dendrites of CA1 neurons 
over-expressing MAP1B-LC-Dendra, for 
experiments like those shown in figure 
10.1.  

 

A) B) 

5 µmDendra-
tubulin

GREEN CHANNEL

Figure 11. The mobility of Dendra-tubulin does not change upon the induction of LTD. A) Left, 
representative picture of a neuron over-expressing Dendra-tubulin. The inset corresponds to the area 
amplified in the pictures on the right. Right, representative images of a PA experiment performed on the 
dendrite of the neuron on the left. LTD (yellow dots) was induced after PA. Dashed rectangles represent 
the photoactivated area. B) Quantification of PA experiments for Dendra-tubulin as the one shown in A, 
and comparison with PA experiments for MAP1B-LC-Dendra. Error bars, s.e.m.  
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3.2.2  Mobility of recombinant MAP1B-LC in spines of CA1 neurons.  

Next, we wanted to evaluate if the infrequent detection of MAP1B-LC-GFP in dendritic spines 

in fixed samples could be due to a transient, short-term entry of the recombinant protein into 

the spine compartment as described for dynamic microtubules. To test this possibility, we 

imaged MAP1B-LC-GFP in dendritic spines in live CA1 hippocampal neurons for a period of 

thirty minutes. As shown in figure 12, once in dendritic spines, MAP1B-LC-GFP stayed stably at 

this location and did not seem to become mobile. Therefore, we concluded that MAP1B-LC-

GFP localized rarely at dendritic spines in the absence of stimulation, but if found in any spine, 

it seemed to be accumulated enduringly in this subcellular compartment, maybe anchored to 

the actin cytoskeleton. 

 

 

 

 

 

 

 

 

 

In parallel to the assessment of MAP1B-LC-GFP/Dendra mobility in dendrites upon the 

induction of synaptic plasticity, we decided to evaluate if the recombinant protein found in 

dendritic spines could also mobilize during LTD or LTP. To do so, we chemically induced LTD or 

LTP after photoactivation in neurons over-expressing MAP1B-LC-Dendra. Indeed, although only 

a few examples were collected, we could image MAP1B-LC-Dendra slowly leaving dendritic 

spines after the induction of both LTD and LTP (figure 13). This result would strengthen the 

notion that MAP1B-LC mobilization triggered upon the induction of synaptic plasticity is an 

intrinsic property of the protein independent of its specific subcellular location.  

 

5 µm

MAP1B-LC
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Figure 12. MAP1B-LC-GFP stays stably in spines in the absence of stimulation. Left, representative 
picture of a CA1 neuron over-expressing MAP1B-LC-GFP in which the recombinant protein appears 
accumulated in a dendritic spine.  The inset shows the area amplified in the images on the right. Right, 
the same spine was imaged along 30 minutes in the absence of stimulation. No movement of MAP1B-LC-
GFP could be detected.  
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4. LTP is enhanced in MAP1B-LC-GFP over-expressing neurons.  

To fulfill MAP1B-LC characterization, we wondered if the over-expression of MAP1B-LC-GFP 

could have any impact on the induction or expression of synaptic plasticity in CA1 pyramidal 

neurons. Importantly, MAP1B has been demonstrated to be required for the regulated 

endocytosis of AMPA receptors after the induction of LTD (Benoist et al. 2013). Therefore, we 

first assessed NMDAR-dependent LTD in CA1 neurons over-expressing MAP1B-LC-GFP and in 

non-infected, control neurons (figure 14A). After stimulation (300 pulses at 1 Hz) at mild 

depolarization (-40 mV), AMPAR-mediated synaptic responses were equally depressed in both 

conditions.  

A selective role of MAP1B in DHPG-mediated endocytosis of AMPA receptors has been 

proposed (Davidkova and Carroll 2007), so we next tested mGluR-dependent LTD expression in 

infected and non-infected cells. As shown in figure 14B, no difference in the level of depression 

in infected cells versus non-infected cells could be observed. We concluded, then, that the 

A) 

B) 

GREEN CHANNEL 

GREEN CHANNEL 

RED CHANNEL 

Figure 13. MAP1B-LC-Dendra 
leaves dendritic spines when 
synaptic plasticity is induced. 
A) Left, representative picture 
of a CA1 neuron over-
expressing MAP1B-LC-Dendra; 
the recombinant protein is 
accumulated in a dendritic 
spine.  The inset shows the 
area amplified in the images 
on the right. Right, 
representative pictures of a 
dendritic spine containing 
MAP1B-LC-Dendra. After PA, 
LTP was chemically induced 
(yellow dots).  B) Left, 
representative picture of a 
CA1 neuron over-expressing 
MAP1B-LC-Dendra in which a 
dendritic spine containing the 
recombinant protein was 
detected.  The inset shows the 
area amplified in the images 
on the right. Right, 
representative pictures of a 
dendritic spine containing 
MAP1B-LC-Dendra. After PA, 
LTD was chemically induced 
(yellow dots).   
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over-expression of the light chain of MAP1B does not have any effect either on NMDAR-

dependent or mGluR-dependent LTD in CA1 hippocampal neurons.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We then induced LTP in neurons over-expressing MAP1B-LC-GFP and control neurons with a 

pairing protocol following a baseline period of transmission. A 2-fold potentiation was 

observed in uninfected neurons (figure 15). Nevertheless, the potentiation was significantly 

higher in infected neurons, of approximately 4 fold. Two different models could fit into this 

scenario: either the increased potentiation is a consequence of the decrease in AMPAR-
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Figure 14. MAP1B-LC-GFP over-expression does not affect LTD. AMPAR-mediated synaptic responses 
were recorded from CA1 neurons and normalized to the average baseline value before the induction of 
plasticity. A) Left, time course of NMDAR-dependent LTD (300 pulses at 1 Hz, depolarization at -40 mV) 
in control neurons (black) and neurons over-expressing MAP1B-LC-GFP (cyan), with representative 
traces above. Right, average responses collected from the last 5 minutes of the recording and 
normalized to the baseline. Left columns (paired) correspond to the induced pathway; both uninfected 
and infected cells were significantly depressed with respect to their baseline. “p” values correspond to 
the statistical significance values calculated according to the Wilcoxon test. Right columns (unpaired) 
correspond to the pathway that was not stimulated during the induction. B) Left, mGluR-dependent LTD 
was induced with 50 µM of (RS)-3,5-DHPG for 5 minutes, as indicated with the black bar. Representative 
traces are shown above. Right, average responses collected from the last 5 minutes of the recording, 
and normalized to the baseline; uninfected and infected cells were significantly depressed with respect 
to their baseline. “p” corresponds to the statistical significance value calculated with the Wilcoxon test. 
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dependent basal transmission due to the over-expression of MAP1B-LC-GFP or MAP1B-LC is 

somehow promoting the induction or expression of LTP in CA1 hippocampal neurons. To 

answer this question, we proceed to characterize the effects on basal transmission and 

synaptic plasticity of MAP1B down-regulation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

B) MAP1B down-regulation.  

1.  MAP1B is effectively down-regulated with a lentiviral-mediated strategy. 

As described in Materials and Methods, a short hairpin RNA (shRNA) targeting mouse MAP1B 

gene was cloned into a lentiviral vector. To test its efficiency in down-regulating MAP1B in 

vivo, two different strategies were followed. First, the lentiviral vector carrying the shRNA 

against MAP1B was used to infect mouse hippocampal primary neurons. MAP1B depletion was 

corroborated with an immunofluorescence performed against endogenous MAP1B ten days 

after the infection (figure 16A). 

On the other hand, CA1 neurons in hippocampal slices were infected with the lentiviral vector 

and a SDS-PAGE analysis of protein expression was carried out ten days after. As shown in 
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Figure 15. LTP is enhanced upon MAP1B-LC-GFP over-expression. AMPAR-mediated synaptic responses 
were recorded from CA1 neurons and normalized to the average baseline value before the induction of 
LTP. A) Time course of LTP (300 pulses at 3 Hz, depolarization at 0 mV) for control neurons and neurons 
over-expressing MAP1B-LC-GFP, with representative traces shown above. B) Average responses 
collected from the last 5 minutes of the recording and normalized to the baseline. Left columns (paired) 
correspond to the induced pathway; uninfected and infected cells were significantly potentiated with 
respect to their baseline (“p” values shown just above each column correspond to the statistical 
significance values calculated according to the Wilcoxon test). The “p” value on top of the graph (in 
magenta) corresponds to the statistical significance value comparing the extent of potentiation in 
uninfected versus infected neurons (Mann-Whitney test). Error bars represent s.e.m. Right columns 
(unpaired) correspond to the pathway that was not stimulated during the induction.  
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figure 16B, MAP1B level of expression in protein extracts was comparable to that of MAP1B 

heterozygous mice (MAP1B +/-). To perform a semi-quantitative analysis of MAP1B down-

regulation, CA1 subfields in theory containing a majority of infected cells were microdissected 

before proceeding to protein extraction. However, the rate of viral infection never reaches 

100% of the cells in a specific area, so it is very likely that the region selected for analysis 

contained also non-infected cells expressing normal levels of MAP1B. Still, a considerable 

degree of protein down-regulation could be observed, supporting the idea that MAP1B 

depletion upon shRNA expression was almost complete in the infected cells.  
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Figure 16. Acute down-regulation of MAP1B. A) Representative confocal pictures of hippocampal 
primary neurons (DIV 20) infected with a lentiviral vector expressing either a shRNA against MAP1B 
protein (upper panel) or a scrambled shRNA (lower panel). The immunostaining was performed against 
MAP1B HC (left) and mCherry (middle). The image on the right depicts the merge of the two previous 
ones. B) Up, western blot showing the expression levels of MAP1B in organotypic slices from wild-type 
(MAP1B +/+) and heterozygous (MAP1B +/-) mice, and from wild-type animals after the expression of 
the shRNA against MAP1B. Down, western blot showing mCherry expression in lentiviral-infected wild-
type slices. 
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2. MAP1B down-regulation does not alter basal synaptic transmission.  

Notably, the effects of MAP1B deficiency on basal synaptic transmission and synaptic plasticity 

were previously explored in our group (Benoist et al. 2013). In this work, adult hypomorphus 

mice for MAP1B were used to obtain acute brain slices in which AMPA/NMDA ratios and 

LTD/LTP expression were measured, with specific stimulation protocols for field recordings. 

Thereby, both the system and the protocols used were different from the ones presented 

below. In addition, in such a study, it is difficult to discern which effects might be due to the 

continuous lack of MAP1B during the development of the nervous system and to a 

hypothetical compensational mechanism of such a deficiency. Therefore, to complete MAP1B 

characterization in synaptic plasticity, we decided to complement the previous study with a 

different approach: the acute down-regulation of the full-length MAP1B protein in CA1 

pyramidal neurons in cultured hippocampal slices.  

We first tested basal synaptic transmission in CA1 neurons expressing the shRNA against 

MAP1B. As shown in figure 17, no difference in either AMPAR- or NMDAR-mediated 

transmission was observed between infected and non-infected, control cells. This result was 

coherent with that reported in the study by Benoist et al. showing no change in AMPA/NMDA 

ratios in MAP1B +/- comparing to MAP1B +/+ mice.  
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Figure 17. The acute down-
regulation of MAP1B does not 
affect basal synaptic 
transmission. A) Representative 
traces for AMPAR and NMDAR 
responses recorded from 
control, uninfected CA1 neurons 
(black), or neurons expressing 
the shRNA against MAP1B 
(magenta). B) Synaptic 
responses were recorded from 
pairs of neighboring control CA1 
neurons (uninfected, UNINF) and 
infected neurons expressing the 
shRNA against MAP1B (INF), in 
the presence of picrotoxin at -60 
mV for AMPARs (n=21 pairs), 
and at +40 mV for NMDARs 
(n=13 pairs). Error bars, s.e.m.  
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3. MAP1B down-regulation impairs NMDAR-dependent LTD but does not affect 

LTP.  

Next, we decided to evaluate NMDAR-dependent LTD in MAP1B-depleted CA1 neurons 

comparing to control neurons. A low-frequency train of stimuli was delivered to induce 

depression (500 pulses at 1 Hz). As indicated in figure 18, uninfected neurons showed a 50% 

degree of depression; however, this was not paralleled by shRNA-expressing neurons, which 

only experienced a mild (20%) long-lasting depression. A scrambled shRNA sequence was 

included in the experiment to rule out a blockade of depression due to lentiviral-infection.  

This result was consistent with the lack of depression in MAP1B +/- mice reported by Benoist 

et al. and strengthened the idea that MAP1B is required for AMPAR-endocytosis during LTD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Benoist et al. reported no change in LTP in MAP1B +/- mice comparing to MAP1B +/+ animals 

when potentiation was induced with high frequency stimulation. Nevertheless, when a milder 
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Figure 18. Effect of MAP1B down-regulation on LTD. AMPAR-mediated synaptic responses were 
recorded from CA1 neurons and normalized to the average baseline value before the induction of 
plasticity. A) Time course of NMDAR-dependent LTD (500 pulses at 1 Hz) in control neurons, and 
neurons expressing either the shRNA against MAP1B, or a scrambled control. Representative traces are 
shown above the graph. B) Average responses collected from the last 5 min of the recording and 
normalized to the baseline. Left columns (paired) correspond to the induced pathway. Uninfected and 
infected cells (expressing either the shRNA against MAP1B, or the scrambled shRNA) were significantly 
depressed with respect to their baseline (“p” values shown just above each column correspond to the 
statistical significance values calculated according to the Wilcoxon test). “p” corresponds to the 
statistical significance value comparing the extent of depression in uninfected versus infected neurons 
expressing the shRNA against MAP1B (Mann-Whitney test) (in magenta). Right columns (unpaired) 
correspond to the pathway that was not stimulated during the induction. Error bars, s.e.m.  
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protocol of stimulation was applied, an enhanced potentiation could be observed in slices 

from heterozygous animals comparing to slices from control animals.  

In CA1 neurons expressing the shRNA against MAP1B, the degree of potentiation after LTP 

induction (300 pulses, 3 Hz) was comparable to that expressed by control neurons (figure 19). 

It is likely that a ceiling effect of the stimulation protocol explains the unaltered LTP we 

observe upon MAP1B depletion, similarly to the phenotype described by Benoist and 

colleagues with high frequency stimulation. However, we did not explore the potential 

involvement of MAP1B in LTP any further.  
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Figure 19. The acute down-regulation of MAP1B does not alter LTP. AMPAR-mediated synaptic 
responses were recorded from CA1 neurons and normalized to the average baseline value before the 
induction of LTP. A) Time course of LTP (300 pulses at 3 Hz) for control neurons and neurons expressing 
the shRNA against MAP1B. Representative traces for uninfected and infected neurons are shown above. 
B) Average responses collected from the last 5 min of the recording and normalized to the baseline. Left 
columns (paired) correspond to the induced pathway; uninfected (UNINF) and infected cells (shRNA) 
were significantly potentiated with respect to their baseline (“p” values shown just above each column 
correspond to the statistical significance values calculated according to the Wilcoxon test). Right 
columns (unpaired) correspond to the pathway that was not stimulated during the induction. Error bars, 
s.e.m. 
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PART II: dissecting the molecular mechanism of action of MAP1B-LC. 

 

The over-expression of the light chain of MAP1B gave us information about its potential to 

impact on AMPAR-mediated basal transmission, and therefore, to modify some forms of long-

term synaptic plasticity in CA1 hippocampal neurons. We next aimed to uncover its molecular 

mechanism of action: 

- First, we tried to ascertain the possible role of each functional domain of MAP1B-LC 

(actin-binding domain and microtubule-binding domain) in the AMPAR-dependent 

depression subsequent to the over-expression of the wild type protein.  

- Then, we wondered whether the depression in basal transmission observed in the 

presence of enhanced levels of MAP1B-LC could be due to an alteration in the number 

or morphology of dendritic spines and/or to defects in AMPAR trafficking.  

- Further research allowed us to finally identify GRIP1 as the molecular link between 

MAP1B-LC and AMPAR trafficking in CA1 neurons.  

 

 

A) MAP1B-LC mutants: MAP1B-LC-delABD and MAP1B-LC-delMBD.  
 

1. Testing the functionality of MAP1B-LC mutants.  

As described, MAP1B-LC harbors two distinct domains: a microtubule-binding domain (MBD) 

and an actin-binding domain (ABD). We initially hypothesized that the reduced AMPAR-

dependent transmission observed upon the over-expression of the wild type MAP1B-LC could 

be due to its potential to modulate the microtubule cytoskeleton, the actin cytoskeleton or 

both. To evaluate this possibility, we decided to generate two deletion mutants of MAP1B-LC, 

one lacking the ABD and the other one lacking the MBD, and test the consequences of their 

over-expression in CA1 neurons.   

Once the mutants were generated, we first analyzed their distribution in CA1 pyramidal 

neurons. The mutant lacking the ABD (the so called MAP1B-LC-delABD-GFP) was expected to 

be absent from dendritic spines and to display a filamentous pattern of distribution (similar to 

the wild type protein) as it was the one supposedly maintaining the ability to interact with 
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microtubules. As shown in figure 20A, this pattern was not as evident as with the whole 

MAP1B-LC, but a certain degree of filamentous arrangement could be observed in the 

periphery of the soma and the initial stretch of apical dendrites in CA1 neurons.  

In the case of the mutant lacking the MBD (MAP1B-LC-delMBD-GFP), as it was the mutant 

supposedly able to interact with the actin cytoskeleton, our original expectation was to find it 

concentrated in dendritic spines, a compartment where filamentous actin is largely 

accumulated in neurons. To our surprise, we could not clearly identify spines containing this 

mutant of MAP1B-LC when it was over-expressed. As shown in figure 20B, MAP1B-LC-delMBD-

GFP displayed a patchy distribution in the cell body and dendrites of CA1 neurons.  

 

  

 

 

 

 

 

 

 

 

The analysis of the distribution of MAP1B-LC mutants in CA1 neurons was not really 

informative about their binding to the microtubule or actin cytoskeletons. To clearly test their 

functionality, we performed in vitro co-sedimentation experiments, which are based on the 

ability of a protein that interacts with microtubules (or microfilaments) to co-sediment with 

them. In these experiments, a protein extract containing the protein of interest is mixed with 

purified microtubules (or microfilaments) and after centrifugation, its presence in supernatant 

and pellet fractions is analyzed.  
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Figure 20. Over-expression of MAP1B-LC mutants in CA1 neurons. A) Confocal pictures showing the 
pattern of distribution in CA1 neurons of a deletion mutant of MAP1B-LC-GFP obtained when the actin-
binding domain of the wt protein is removed (MAP1B-LC-delABD-GFP). The rectangle in the left picture 
shows the area amplified in the right picture. Arrows point to filamentous appearance in the soma and 
apical dendrites. B) Same as in A, but corresponding to the over-expression of a mutant of MAP1B-LC-
GFP generated by deleting the microtubule-binding domain of the wt protein (MAP1B-LC-delMBD-GFP). 
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In the case of the mutant lacking the ABD, its distribution in supernatant and pellet fractions 

was equivalent in the absence and in the presence of filamentous actin (figure 21A, upper 

panel), meaning that filamentous actin does not change the ability of the mutant to sediment 

because both proteins do not interact. On the contrary, if assembled microtubules were added 

to the protein extract containing MAP1B-LC-delABD-GFP, the mutant shifted its distribution 

from being exclusively in the supernatant to being concentrated mainly in the pellet (figure 

21A, lower panel). The interaction with microtubules, which sediment under the centrifugal 

force applied during the procedure, drags the mutant to the pellet, too.   

The opposite scenario is observed with the mutant lacking the MBD. MAP1B-LC-delMBD-GFP 

maintains the ability of the wild type protein to interact with actin, and so, it is present mainly 

in the pellet when filamentous actin is added to the protein extract (figure 21B, upper panel). 

The fact that it is recovered in the supernatant in the absence of exogenously added actin 

indicates that the mutant does not sediment on its own in these conditions. In contrast, its 

distribution between supernatant and pellet does not change if microtubules are incubated 

with the protein extract prior to the centrifugation step. In any case, the protein tends to be 

present in the pellet (figure 21B, lower panel).  

In sum, these experiments confirmed that, although they do not display the expected 

subcellular distribution, the generated mutants of MAP1B-LC were effectively able to interact 

with either the microtubule cytoskeleton or the actin cytoskeleton, and so, they were valid to 

be tested as potential modulators of AMPAR-dependent basal transmission in CA1 pyramidal 

neurons.  
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Figure 21. MAP1B-LC-delABD-GFP co-sediments with microtubules and MAP1B-LC-delMBD-GFP co-
sediments with actin. A) Western-blots of actin and microtubule co-sedimentation assays for MAP1B-
LC-delABD-GFP. F ACTIN= filamentous actin; SUP=supernatant; PELL=pellet. B) Same as in C, but for 
MAP1B-LC-delMBD-GFP. 
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2. The over-expression of MAP1B-LC mutants does not affect basal synaptic 

transmission in CA1 neurons.  

 

To analyze the potential role of the interaction with microtubules and/or actin in the decrease 

in basal transmission mediated by the wt protein, we over-expressed MAP1B-LC-delABD-GFP 

and MAP1B-LC-delMBD-GFP in CA1 neurons and recorded AMPAR and NMDAR currents. As 

shown in figure 22, no change in either AMPAR- or NMDAR-mediated transmission was 

observed upon the over-expression of the mutant lacking the ABD or the mutant lacking the 

MBD. Having previously tested their functionality, this result pointed to the fact that both 

domains of MAP1B-LC were required to mediate the effect of the wild type protein on AMPAR-

dependent transmission in CA1 neurons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B) Dendritic spine remodeling or AMPAR trafficking?  
 

1. MAP1B-LC over-expression does not alter the size or number of dendritic 

spines.  

MAP1B has been previously reported to be necessary for dendritic spine development and 

maturation (Tortosa et al. 2011). In cultured neurons from MAP1B knock-out mice (which die 

perinatally), dendritic spines are less abundant and more immature (most of them are 

Figure 22. The over-expression of deletion mutants of MAP1B-LC does not affect basal synaptic 
transmission in CA1 neurons. A) Synaptic responses were recorded from pairs of neighboring CA1 
neurons over-expressing MAP1B-LC-delABD-GFP (infected, INF) and control neurons (uninfected, 
UNINF), in the presence of picrotoxin at -60 mV for AMPARs (n=12 pairs), and at +40 mV for NMDARs 
(NMDAR responses were collected at a latency of 100 ms; n=11 pairs). Representative traces are shown 
above. B) Same experiment as in A, but corresponding to the over-expression of MAP1B-LC-delMBD-
GFP (AMPAR responses, n=22 pairs; NMDAR responses, n=17 pairs). Error bars, s.e.m.  
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filopodia, long thin protrusions without a distinguishable head). This phenotype correlates with 

a decreased postsynaptic function evidenced by the recording of AMPAR-mediated miniature 

synaptic currents in cultured neurons from MAP1B knock-out animals (Tortosa et al. 2011). 

Therefore, we first tested the possibility that the decrease in AMPAR-dependent transmission 

observed upon MAP1B-LC over-expression could result from an alteration in dendritic spine 

morphology or number. Similar to the data reported by Tortosa et al., one could expect a 

decrease in dendritic spine number or size/maturity in the face of a reduced basal synaptic 

transmission.  

To perform a morphometric analysis of dendritic spines in the presence of MAP1B-LC-GFP, 

infected and uninfected, control neurons were intracellularly labeled with biocytin (figure 

23A). After a 3D-reconstruction and quantification, we did not find any difference in head 

diameter, spine length or density between neurons over-expressing MAP1B-LC-GFP and 

control neurons (figure23B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Rac1/RhoA activities are not altered upon MAP1B-LC-GFP over-expression.  

UNINFECTED
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Figure 23. Neither morphology nor number of dendritic spines are affected upon MAP1B-LC-GFP over-
expression. A) Upper panel, representative image of a CA1 neuron over-expressing MAP1B-LC-GFP that 
was filled in with biocytin to reveal its complete morphology. Lower panel, representative confocal 
deconvoluted images of dendritic spines in apical dendrites of uninfected, control CA1 neurons and 
infected neurons over-expressing MAP1B-LC-GFP. B) Quantification of average head diameter, spine 
length and spine density in uninfected (n=5) and infected (n=4) neurons. Error bars represent s.e.m.   
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The ability of MAP1B to regulate axonal development (Montenegro-Venegas et al. 2010), 

dendritic morphogenesis (Tortosa et al. 2011) and AMPAR endocytosis after LTD induction 

(Benoist et al. 2013) has been reported to rely on its ability to modulate the activity of small 

GTPases, and therefore, the actin cytoskeleton. It has been shown that MAP1B deficiency is 

associated with decreased Rac1 activity and increased RhoA activity (Montenegro-Venegas et 

al. 2010; Tortosa et al. 2011). Furthermore, it has been proposed that it is the light chain of 

MAP1B the one that binds Tiam1 (Rac1 GEF), and thus, directly mediates changes in Rac1 

activation (Henriquez et al. 2012). Therefore, we wondered if the over-expression of MAP1B-

LC-GFP could have any impact on Rac1 or RhoA activity that could explain the observed 

phenotype.  

In organotypic hippocampal slices over-expressing MAP1B-LC-GFP versus GFP-expressing, 

control slices, no difference in the activity of small GTPases Rac1 or RhoA could be assessed 

(figure 24A and B). Importantly, this result fits well with the above described normal dendritic 

spine morphology and number in MAP1B-LC-GFP over-expressing neurons. 

   

 

 

 

 

 

 

 

 

 

 

 

 

A) B) 

Figure 24. The over-expression of the light chain of MAP1B does not seem to imbalance neither Rac1 
nor RhoA activity in CA1 neurons. A) Upper panel, representative western blot of a pull-down 
experiment to measure Rac1 activity using protein extracts from hippocampal slices previously infected 
with Sindbis virus to over-express either GFP (as a control) or MAP1B-LC-GFP. Lower panel, 
quantification of active Rac1 versus total Rac1 (left), and total levels of Rac1 (right), in MAP1B-LC-GFP-
expressing hippocampal slices relative to control (n=7 experiments). B) Upper panel, same as in A, but 
showing a pull-down experiment to measure active RhoA. Lower panel, same as in A, but referred to 
active RhoA versus total RhoA (left),  and total levels of RhoA (right) (n=6 experiments). Error bars, 
s.e.m. 
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3.  The constitutive cycling of GluA2-GluA3 AMPA receptors is impaired upon the 

over-expression of recombinant MAP1B-LC.   

3.1  Imaging of fluorescently-tagged GluA2 in hippocampal slices.  

3.1.1  Co-expression of recombinant MAP1B-LC.  

As the over-expression of MAP1B-LC-GFP in CA1 neurons did not seem to affect dendritic spine 

morphology or small GTPases activity, we next tested if recombinant MAP1B-LC was exerting 

any effect on the trafficking of AMPARs from dendritic compartments to spines.  

As previously mentioned, the GluA2-GluA3 population of AMPARs is the one thought to be 

responsible for the maintenance of basal synaptic transmission in the face of protein turnover, 

as this pathway replaces continuously existing synaptic receptors in a manner not requiring 

neuronal activity (Passafaro et al. 2001; Shi et al. 2001). Hence, this population would be the 

one expected to be specifically targeted by MAP1B-LC-GFP.  

To corroborate this hypothesis, we first analyzed GluA2 accumulation in dendritic spines in the 

presence or absence of MAP1B-LC-GFP. To this end, we co-expressed RFP-GluA2 together with 

MAP1B-LC-GFP, or GFP as control, in organotypic hippocampal slices via biolistic transfection 

(figure 25A). Homomers of recombinant GluA2-GluA2 subunits have been proved to 

constitutively traffic to synapses like the endogenous GluA2-GluA3 population (Shi et al. 2001).  

The spine/dendrite ratio of RFP fluorescence is a measurement of RFP-GluA2 accumulation in 

spines comparing to dendritic shafts. As shown in figure 25C, the cumulative distribution of 

spine/dendrite ratios in neurons over-expressing MAP1B-LC-GFP was left-shifted when 

compared to the GFP condition. Therefore, the whole population of quantified spines in 

MAP1B-LC-GFP over-expressing neurons contained less RFP-GluA2 in spines than GFP over-

expressing neurons, as the average value of spine/dendrite ratios for both conditions (figure 

25D) demonstrates as well.  

To rule out a general effect on AMPAR trafficking independent of subunit composition, we 

repeated the same experiment but co-expressing the GluA1 subunit of AMPARs instead of 

GluA2 together with MAP1B-LC-mCherry or mCherry as a control (figure 25B). The co-

expression of the catalytic domain of CamKII (tCamKII) is required to guarantee GluA1 

homomers gaining access into dendritic spines (Hayashi et al. 2000). As shown in figure 25C, 

cumulative distributions of spine/dendrite ratios for GluA1 in the presence of MAP1B-LC-
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mCherry or mCherry alone were basically overlapping. There was no difference in the average 

value of spine/dendrite ratios for both conditions either (figure 25D). These results would 

point to a specific impairment in the trafficking of GluA2-GluA3 AMPARs in the presence of 

enhanced levels of MAP1B-LC. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

3.1.2  Down-regulation of MAP1B.  

If the over-expression of MAP1B-LC results in a reduced presence of GluA2-GluA3 AMPARs in 

dendritic spines, MAP1B deficiency may be translated into an accumulation of this population 

of AMPARs in the spine compartment.  To test this possibility, we prepared hippocampal slices 

out of MAP1B +/+ and MAP1B +/- animals and quantified GFP-GluA2 presence in spines of CA1 

neurons after infection. As shown in figure 26, the cumulative distributions and average values 

of spine/dendrite ratios are similar for both genotypes. Therefore, the excess of MAP1B-LC 

A) B) 

Figure 25. Over-expression of MAP1B-LC-GFP decreases GluA2, but not GluA1, accumulation in 
dendritic spines. A) Representative confocal images of dendritic spines from neurons co-expressing RFP-
GluA2 and MAP1B-LC-GFP, or GFP as a control. B) Representative confocal images of GFP-GluA1 in 
dendritic spines of neurons co-expressing MAP1B-LC-mCherry, or mCherry as a control. C) Quantification 
of fluorescence intensity in spines versus adjacent dendrite from neurons like those in (A and B). Data 
are presented as cumulative distributions of spine/dendrite ratios. Significance calculated by 
Kolmogorov-Smirnov test. D) Average spine/dendrite ratio for recombinant GluA2 and GluA1 in the 
presence of over-expressed MAP1B-LC, or in control conditions. “p” corresponds to the statistical 
significance value calculated by Mann-Whitney test, considering the total number of quantified dendritic 
spines per condition. Error bars represent s.e.m. 
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impacts negatively on GluA2-GluA3 accumulation in spines whereas the deficiency of the full 

length protein does not seem to alter this process. This result is consistent with the unaffected 

basal transmission recorded in CA1 neurons expressing the shRNA against MAP1B and in slices 

from MAP1B heterozygous mice (Benoist et al. 2013).  

 

 

 

 

 

 

 

 

 

 

3.2  Electrophysiological recordings in the presence of pep2m peptide.   

The constitutive cycling of GluA2-GluA3 AMPARs in and out of synapses has been 

demonstrated to depend on the interaction between NSF and the C-terminus of the GluA2 

subunit. A small peptide termed “pep2m” mimicking the NSF-binding site of GluA2 can be used 

to interfere with this interaction (Nishimune et al. 1998; Song et al. 1998; Luscher et al. 1999; 

Noel et al. 1999). When pep2m is infused intracellularly, a continuous reduction of AMPAR-

mediated synaptic transmission can be observed as a consequence of AMPARs being removed 

from synapses, but failing to be inserted (or stabilized at synapses) again.  

To corroborate that the impaired ability of GluA2 homomers to accumulate in spines was 

responsible for the decrease in basal transmission observed upon MAP1B-LC-GFP over-

expression, we recorded AMPAR-dependent basal transmission in CA1 neurons over-

expressing MAP1B-LC-GFP and in uninfected, control neurons adding pep2m to the internal 

solution contained in the patch pipette. As shown in figure 27, a rundown of AMPAR-mediated 

synaptic transmission was observed in uninfected neurons, as expected. Nevertheless, synaptic 
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Figure 26. GluA2 accumulation in dendritic spines is unchanged upon MAP1B depletion. A) 
Representative confocal pictures of GFP-GluA2 in spines of CA1 neurons from MAP1B +/+ and MAP1B +/- 
mouse hippocampal slices. B) Quantification of fluorescence intensity in spines versus the adjacent 
dendritic shaft from neurons like those in (A). Data are presented as cumulative distributions of 
spine/dendrite ratios. C) Average spine/dendrite ratio for GFP-GluA2 in CA1 neurons from MAP1B +/+ 
and MAP1B +/- slices. Error bars correspond to s.e.m. 
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transmission was stable over time in MAP1B-LC-GFP over-expressing CA1 neurons. This result 

clearly illustrates that, in the presence of MAP1B-LC-GFP, less GluA2-GluA3 AMPARs reach the 

synapse. As a consequence, infusing pep2m in CA1 hippocampal neurons over-expressing 

MAP1B-LC-GFP does not decrease basal synaptic transmission as it does in control neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3  Rectification index of endogenous AMPARs in the presence of MAP1B-LC-GFP.   

To confirm that the only population of AMPARs targeted by the over-expressed MAP1B-LC was 

the GluA2-GluA3 population, we measured the rectification properties of AMPARs in CA1 

neurons over-expressing MAP1B-LC-GFP versus uninfected neurons (figure 28).  

Opposite to the AMPARs that contain the GluA2 subunit, GluA2-lacking AMPARs (mainly 

GluA1-GluA1 homomers) are inwardly rectifying (Boulter et al. 1990; Hollmann et al. 1991; 

Verdoorn et al. 1991). Their presence at synapses can be estimated by measuring their 

rectification index, defined as the ratio of AMPAR-mediated responses recorded at -60 mV 

divided by the amplitude of AMPAR currents at +40 mV. As shown in figure 28, no difference in 

Figure 27. MAP1B-LC-GFP over-expression impairs the constitutive cycling of GluA2-GluA3 AMPA 

receptors. Time course of AMPAR EPSCs recorded in patch clamp configuration at -60 mV in the 

presence of picrotoxin, during the infusion of pep2m (included in patch pipette) in neurons over-

expressing MAP1B-LC-GFP (cyan) and control neurons (black). Uninfected neurons undergo a significant 

depression of AMPAR response (p=0.007, between average response during 2-minute baseline, and 

average response between 20 and 25 minutes of recording, significance calculated with Wilcoxon test), 

whereas infected neurons do not (p=0.46, significance calculated with Wilcoxon test). The level of 

depression of AMPAR-dependent responses between 20 and 25 minutes of recording in uninfected cells 

is significantly different from that measured in infected cells. “p” corresponds to the statistical 

significance value calculated by Mann-Whitney test.  Error bars represent s.e.m. Sample traces for 

uninfected and infected cells are shown above the plot. 
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rectification index could be observed in CA1 neurons over-expressing MAP1B-LC-GFP versus 

uninfected neurons. Thus, the synaptic delivery of GluA2-lacking receptors is not affected by 

the over-expression of MAP1B-LC-GFP.  

 

 

 

 

 

 

 

 

Taken together, these data demonstrate that MAP1B-LC has the potential to specifically 

modulate the trafficking of the GluA2-GluA3 population of AMPARs. The over-expression of 

MAP1B-LC-GFP affects the ability of GluA2-GluA3 AMPARs to reach dendritic spines, and as a 

consequence, it has an impact on basal synaptic transmission.  

4.  MAP1B-LC over-expression reduces the mobile fraction of recombinant GluA2 

AMPA receptors in dendrites.   

4.1  Analysis of GFP-GluA2 mobility in spines.  

To better understand how MAP1B-LC-GFP impairs the mobility of GluA2-GluA3 receptors, we 

co-expressed GFP-GluA2 with either MAP1B-LC-mCherry, or mCherry as a control, in 

organotypic hippocampal slices via biolistic transfection and analyzed GFP-GluA2 mobility in 

different compartments of the cell.  

First, we assessed the mobility of recombinant GluA2 homomers in dendritic spines (figure 

29A). A FRAP experiment was performed on spines expressing GFP-GluA2 in the presence or 

absence of recombinant MAP1B-LC; after the photobleaching event, the extent of fluorescence 

recovery was measured over 30 minutes (figure 29B). To our surprise, the same recovery 

profile was obtained for GFP-GluA2 in spines of cells expressing either MAP1B-LC-mCherry or 

Figure 28. Rectification index 
in CA1 neurons over-
expressing MAP1B-LC-GFP 
(cyan) and control neurons 
(black). AMPAR-mediated 
responses were recorded at -
60 mV and +40 mV in the 
presence of spermine in the 
patch pipette. The 
rectification index was 
calculated as the ratio of 
responses at both holding 
potentials. Error bars 
represent s.e.m. Sample 
traces are shown above the 
corresponding columns of the 
plot.  
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mCherry alone. The fraction of recovery and the dynamics of recovery were almost identical in 

both conditions. This was a striking result given the reduced accumulation of recombinant 

GluA2 in dendritic spines in the presence of augmented levels of the light chain of MAP1B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2  Analysis of GFP-GluA2 mobility in dendrites. 

Next, we tested the mobility of recombinant GluA2 homomers in dendrites. Photobleaching of 

GFP-GluA2 was performed on the dendritic shafts of CA1 neurons co-expressing either MAP1B-

LC-mCherry or mCherry alone, and the recovery of green fluorescence was followed for 20 

minutes. As shown in figures 30A and 30B, a fast and almost complete fluorescence recovery 

could be measured in dendrites of mCherry-expressing cells. Already at 5 minutes, an 80% of 

the initial fluorescence was restored in the area of the dendrite that had undergone 

photobleaching. On the contrary, a much smaller fluorescence recovery was measured in the 

dendrites of cells over-expressing MAP1B-LC-mCherry. At 20 minutes after the bleaching, only 

a 50% fraction of the initial fluorescence was restored. Nevertheless, the dynamics of 

fluorescence recovery were comparable in both situations, as revealed by the fitting of both 

time courses to single exponentials. This result allowed us to hypothesize that the over-
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expression of MAP1B-LC was yielding a smaller fraction of GluA2-GluA3 AMPARs able to traffic 

along dendrites, and as a consequence, it was reducing the pool of AMPARs available to be 

continuously delivered into dendritic spines. Yet, those that reached dendritic spines did it 

with the same dynamics as in control conditions. 

In accordance with previous experiments, we then evaluated if the observed effect on AMPARs 

mobility along dendrites was specific for the homomeric GluA2 population. We repeated the 

FRAP experiments on dendrites described above, but co-expressing GFP-GluA1 instead of GFP-

GluA2 with either MAP1B-LC-mCherry or mCherry alone. As shown in figures 30C and 30D, the 

recovery profile for both conditions was basically overlapping. This result again supported our 

hypothesis that MAP1B-LC exerts its effects on a specific population of AMPARs.  
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Figure 30. MAP1B-LC-mCherry over-expression impairs GluA2 trafficking along dendrites. A) 
Representative confocal images of GFP-GluA2 in dendritic branches of neurons expressing either mCherry 
or MAP1B-LC-mCherry during a FRAP experiment. Images were acquired before photobleaching 
(“baseline”), immediately after photobleaching (“bleach”) and at indicated times during fluorescence 
recovery. Bleached regions, dashed squares. B) Quantification of GFP-GluA2 fluorescence at the dendrite 
normalized to the baseline value before photobleaching. Fluorescence intensity at the bleached area is 
normalized to a reference, “non-bleached” region of the dendrite to compensate for ongoing 
photobleaching during image acquisition. Time courses in both conditions were fitted to single 
exponentials. “p” values correspond to statistical significance values calculated according to Mann-
Whitney test. Error bars represent s.e.m. C) and D) Same experiment as in (A) and (B), but co-expressing 
GFP-GluA1 with either mCherry or MAP1B-LC-mCherry, instead of GFP-GluA2. 
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5.  The surface expression of the endogenous GluA2 subunit of AMPARs is 

diminished upon MAP1B-LC-GFP over-expression.   

To verify if the immobilization of AMPARs we had observed upon MAP1B-LC over-expression 

could result in intracellular trapping, we aimed to characterize the surface expression of the 

GluA2 subunit of AMPARs in hippocampal primary neurons in culture. Primary neurons were 

infected with Sindbis virus to over-express either MAP1B-LC-GFP or GFP, as a control, and 

immunostained against either the surface population or the total population of GluA2-

containing AMPARs.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

As shown in figures 31A and 32A, a significant decrease in the surface expression of the 

endogenous GluA2 subunit was observed in neurons over-expressing MAP1B-LC-GFP. This 

Figure 31. MAP1B-LC-GFP over-expression impairs GluA2 surface delivery in hippocampal primary 
neurons (DIV 16-21). A) Left, representative images of hippocampal primary neurons over-expressing 
GFP and stained against surface and total GluA2. Right, hippocampal neurons over-expressing MAP1B-
LC-GFP and stained against surface and total GluA2. White rectangles indicate insets of representative 
dendritic branches shown in lower panels. B) Same experiment as in A, but staining against surface and 
total GluA1 instead of GluA2. 
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reduction was not due to a down-regulation of total expression levels of the protein (figures 

32A and 32B).  

To demonstrate the subunit specificity of this effect, we performed the same experiment but 

looking at the GluA1 subunit. As expected, the surface levels of expression of this subunit were 

unaffected in the presence of over-expressed MAP1B-LC-GFP (figures 31B and 32A); total 

levels of expression were not changed either (figures 32A and 32B). This result supported the 

idea that MAP1B-LC is able to modulate the surface delivery of endogenous GluA2-containing 

AMPARs without affecting the GluA1 population.  

 

 

 

 

 

 

 

 

 

 

 

6. MAP1B regulates microtubule-dependent transport of transferring receptor.   

6.1  Over-expression of MAP1B-LC.  

We had demonstrated that MAP1B-LC is able to regulate the surface delivery of a specific 

population of AMPARs. As a consequence, it modulates the strength of synaptic transmission 

in neurons. Still, the molecular mechanism underlying these effects on AMPARs needed to be 

unraveled.  
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Figure 32. Quantification of the impairment in GluA2 surface delivery observed upon MAP1B-LC-GFP 
over-expression. A) Quantification of fluorescence intensity corresponding to surface, total and surface 
over total GluA2 and GluA1 in dendritic branches of neurons over-expressing either GFP or MAP1B-LC-
GFP, like those shown in figures 30A and 30B. Statistical significance calculated according to Wilcoxon 
test (n=20 cells per condition, 2 independent experiments). B) Upper panel, western blot of total GluA2 
and GluA1 levels in hippocampal primary neurons over-expressing either GFP or MAP1B-LC-GFP. Lower 
panel, quantification of total GluA2 and GluA1 levels from 3 independent experiments. Error bars, s.e.m. 
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MAP1B-LC has been shown to associate with microtubules and stabilize them against the 

action of depolymerizing drugs (Pedrotti and Islam 1995; Togel et al. 1998). Actually, we have 

been able to show in this work that, when over-expressed, MAP1B-LC-GFP co-localizes mainly 

with stable microtubules (figure 6). In neurons, vesicles containing AMPARs as well as many 

other membrane-associated proteins are transported along dendrites in a microtubule-

dependent manner, thanks to microtubule-associated motor proteins as kinesins and dyneins 

(Hirokawa and Takemura 2005; Kapitein and Hoogenraad 2011). Some authors have suggested 

a certain degree of interference between microtubule-associated proteins, which decorate 

microtubules, and motor proteins that traffic and carry their cargo along them (Seitz et al. 

2002; Tokuraku et al. 2007; Dixit et al. 2008).  

To test the possibility that MAP1B-LC might be modulating the trafficking of AMPARs along 

dendrites through the regulation of microtubule-dependent transport, we analyzed the speed 

of transport of transferring receptor (TfR) along dendrites of hippocampal primary neurons 

over-expressing either MAP1B-LC-GFP or GFP as a control (figure 33). TfR has been 

characterized as a transmembrane protein specifically sorted into dendrites by means of 

microtubule-dependent transport (West et al. 1997; Burack et al. 2000), and so, it has been 

largely used as a reporter of such a process in neurons.  

 

 

 

 

 

 

 

 

After co-transfection, a series of time-lapse images were acquired in neurons co-expressing 

TfR-mCherry and MAP1B-LC-GFP or GFP; the movement of TfR-mCherry clusters along 

dendrites was followed and measured using kymographs (figure 33). As shown in figure 34, the 

cumulative distribution corresponding to the instantaneous speed of events of transport (see 

B) 
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Figure 33. Imaging of TfR-mCherry clusters moving along dendrites of primary hippocampal neurons 
(DIV 9-10) co-expressing either GFP or MAP1B-LC-GFP. A) Representative sequential pictures of TfR 
clusters imaged over time in dendrites of hippocampal primary neurons co-transfected with TfR-mCherry 
+ GFP, or TfR-mCherry + MAP1B-LC-GFP. B) Representative examples of kymographs generated from 
time-lapse images like those shown in (A). 
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“Materials and Methods”) for TfR-mCherry clusters in neurons co-expressing MAP1B-LC-GFP 

was clearly left-shifted. That is, TfR-mCherry clusters moved significantly slower in the 

presence of over-expressed MAP1B-LC-GFP. This result suggested that indeed enhanced levels 

of MAP1B-LC have the potential to slow down microtubule-dependent transport of TfR. 

    

 

 

 

  

6.2  Down-regulation of MAP1B.  

Nevertheless, the ability of MAP1B-LC to modulate microtubule-based transport was observed 

upon over-expression. We wanted to test if such a capacity was only due to over-expression or 

could be attributed to the endogenous MAP1B protein, too. To this end, we chose to down-

regulate MAP1B expression in hippocampal primary neurons, using a scrambled shRNA 

sequence as a control. We then transfected these neurons with TfR-GFP and followed the 

movement of TfR-GFP clusters along dendrites. As shown in figure 35, the cumulative 

distribution of instantaneous speed for TfR-GFP clusters was right-shifted if MAP1B protein 

was down-regulated, meaning that microtubule-dependent transport seemed to be 

accelerated in the absence of MAP1B. This result was supported by a previous report linking 

MAP1B to retrograde transport of mitochondria in axons (Jimenez-Mateos et al. 2006). 

 

 

 

 

 

 

Figure 34. MAP1B-LC-GFP over-expression 
delays microtubule-dependent transport 
of TfR. Cumulative distribution of 
instantaneous speed of events of transport 
for TfR in primary neurons (DIV 9-10) co-
expressing GFP (black) (N=2663 events of 
transport, 3 cells from 2 independent 
experiments) or MAP1B-LC-GFP (cyan) 
(N=2943 events, 3 cells, 2 independent 
experiments). 
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Figure 35. MAP1B acute down-regulation slightly 
accelerates microtubule-dependent transport of 
TfR. Hippocampal primary neurons were infected at 
DIV 0 with lentiviral vectors expressing a shRNA 
against MAP1B or a scrambled shRNA, and 
transfected with TfR-GFP at DIV 8. The graph shows 
the cumulative distribution for instantaneous speed 
of events of transport for TfR in neurons (DIV 10) 
expressing a shRNA against MAP1B (N=2819 events 
of transport, 4 cells, 4 independent experiments) or 
a scrambled shRNA (N=2125 events, 4 cells, 4 
independent experiments). Statistical significance 
calculated according to Kolmogorov-Smirnov test. 
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The quantification of the percentage of immobile events of transport (velocity <0.1 µm/s) and 

the mean speed of mobile events of transport (velocity >0.1 µm/s) upon MAP1B-LC over-

expression or MAP1B down-regulation is shown in figure 36. In a coherent manner, the over-

expression of MAP1B-LC-GFP yields a higher proportion of immobile events of transport and a 

lower velocity of those that are mobile, whereas the down-regulation of the protein is 

associated with a lower proportion of immobile events, and a higher mean velocity of those 

that move at the expected velocities for microtubule-dependent transport. Hence, these 

results would imply a bi-directional modulation of microtubule-dependent transport by 

MAP1B, so that transport will get delayed if MAP1B levels are increased, and accelerated upon 

MAP1B depletion.  

 

 

 

 

 

 

 

 

7.  MAP1B-LC might enhance the interaction of GluA2 with microtubules.  

The quantification of TfR transport along dendrites is informative about the global process of 

microtubule-dependent transport in neurons, but does not provide a direct evidence of how 

specific populations of AMPARs are transported along dendrites. Our premise is that MAP1B-

LC targets specifically the GluA2-GluA3 population of AMPARs without affecting the GluA1-

GluA2 population. The fact that direct imaging of AMPARs being transported along 

microtubules in dendrites has been proven technically unfeasible so far has made it impossible 

to demonstrate our hypothesis of a subunit-specific effect of MAP1B-LC also in the 

microtubule-dependent transport of AMPARs.   

Although still lacking a molecular link between AMPARs and MAP1B-LC, we reasoned that if 

MAP1B-LC was able to decrease the mobile population of GluA2-GluA3 AMPARs in dendrites, it 
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Figure 36. MAP1B modulates microtubule-dependent transport of Transferrin Receptor (TfR) in 
hippocampal primary neurons (DIV 9-10). A) Quantification of the frequency of immobile events of 
transport for TfR in neurons co-expressing either GFP or MAP1B-LC-GFP, or a shRNA against MAP1B or a 
scrambled shRNA. B) Mean speed of mobile events of transport. Error bars, s.e.m. 
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could maybe be due to an increased interaction of AMPARs with microtubules upon the over-

expression of MAP1B-LC.  

As an attempt to demonstrate an increased interaction of AMPARs with microtubules in the 

presence of MAP1B-LC-GFP, we designed a microtubule co-sedimentation experiment in which 

three different concentrations of assembled microtubules were used to potentially co-

sediment GluA2. We were expecting to observe a dose-dependent effect in GluA2-microtubule 

interaction with the increasing concentration of tubulin polymers. After centrifugation, three 

fractions were distinguished and analyzed separately by SDS-PAGE: supernatant, interphase 

and pellet. Hippocampal slices over-expressing GFP instead of MAP1B-LC-GFP were used as 

control.  

We first analyzed the amount of tubulin present in each fraction in MAP1B-LC-GFP and GFP 

conditions. As shown in figure 37A, tubulin was equally distributed in the three fractions in 

both conditions. The quantification of tubulin in the soluble fraction (supernatant plus 

interphase) (figure 37C) shows no difference between MAP1B-LC-GFP- and GFP-expressing 

slices. This uniformity prevented the possible bias of more sedimented GluA2 in the condition 

with more sedimented tubulin, if that had been the case.  

Next, we analyzed GluA2 presence in supernatant, interphase and pellet. In protein samples 

from GFP-expressing slices, GluA2 was mainly present in the pellet fraction but could also be 

detected in the soluble fraction, more clearly in the case of the two extreme concentrations of 

tubulin (1.3 mg/mL and 0.14 mg/mL). Interestingly, the over-expression of MAP1B-LC-GFP 

seemed to facilitate GluA2 accumulation in the pellet, as supernatant and interphase fractions 

appeared devoid of the protein at least for the concentrations of tubulin previously mentioned 

(figure 37C). As a dose-dependent effect of microtubule concentration on GluA2 ability to co-

sediment was not obvious, we quantified GluA2 presence in soluble and insoluble fractions for 

the three concentrations of tubulin used in the assay and pooled these data together. A clear 

difference in the amount of GluA2 in the soluble fraction could be ascertained in GFP- versus 

MAP1B-LC-GFP-expressing samples (figure 37C).  

To validate this result, negative controls were considered next. GluA1 was not probably a good 

control, as its possible presence in the insoluble fraction could just reflect its ability to interact 

with the GluA2 subunit. We had previously shown that MAP1B-LC decreases AMPAR-

dependent transmission but does not affect NMDAR-dependent transmission, so it is 

reasonable to think that the trafficking of NMDARs is not altered in the presence of MAP1B-LC-
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GFP. Indeed, the distribution of the NMDARs subunits 2A and 2B in soluble and insoluble 

fractions did not change in the MAP1B-LC-GFP condition comparing to the GFP condition 

(figure 37B).   

KIF23 (a member of the kinesin family playing a role in the organization of the mitotic spindle 

during mitosis) was also used as a negative control. KIF23 interacts with microtubules, but 

being involved in a biological process independent of microtubule-based transport of AMPARs 

in neurons, such interaction was not expected to be modulated by MAP1B-LC. As shown in 

figure 37B, KIF23 equally co-sediments with microtubules in samples from GFP-expressing 

slices and MAP1B-LC-GFP-expressing slices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth noting that the results presented above correspond to two independent 

experiments. In further repetitions, we frequently found that the distribution of tubulin among 

supernatant, interphase and pellet was variable; this rendered the direct comparison of GluA2 
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Figure 37. MAP1B-LC-GFP over-expression 
might enhance GluA2 interaction with 
microtubules. A) Western blots of GluA2 and 
α-tubulin corresponding to a microtubule co-
sedimentation assay performed using three 
different concentrations of tubulin (1.3 mg/mL, 
0.43 mg/mL and 0.14 mg/mL). Blue boxes 
indicate the strongest differences in the 
presence of the protein of interest in soluble 
and insoluble fractions between GFP and 
MAP1B-LC-GFP conditions. S=supernatant, 
I=interphase, P=pellet. B) Western blots of 
NMDAR 2A/2B and KIF23 for the same 
experiment. For simplicity, only the western 
blots corresponding to the highest 
concentration of tubulin are shown. C) 
Quantification of the percentage of total GluA2 
and total α-tubulin in the soluble fraction 
(supernatant plus interphase) for experiments 
as the one shown in (A) (n=2 experiments). 
Error bars represent s.e.m.  
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amount in soluble and insoluble fractions between the GFP and the MAP1B-LC-GFP conditions 

invalid. Independently, we performed microtubule co-sedimentation assays with protein 

extracts from MAP1B +/+ and MAP1B +/- animals, in an attempt to confirm a bi-directional 

modulation of the interaction between GluA2 and microtubules by MAP1B (data not shown). 

Again, we obtained very variable results. In sum, we decided that this approach might not be 

reproducible among experiments and that in any case, it was not solving the question about 

the molecular link between MAP1B-LC and AMPARs.  

 

C) GRIP1 as the molecular link between MAP1B-LC and AMPAR 

trafficking.  

 

1. MAP1B-LC-GFP impairs GRIP1 dendritic targeting in hippocampal primary 

neurons.   

Regarding the trafficking of AMPARs along dendrites, we demonstrated that the over-

expression of MAP1B-LC-GFP exerts a specific effect on the GluA2-GluA3 population of 

AMPARs but not on the GluA1-GluA2 population. In this scenario, a new intervening partner 

was required to justify such specificity.  

MAP1B-LC has been shown to interact with GRIP1 (Seog 2004; Davidkova and Carroll 2007). On 

the other hand, GRIP1 has been proposed to act as the adaptor protein for GluA2-containing 

AMPARs in kinesin-dependent transport along microtubules in dendrites (Setou et al. 2002). To 

test if the observed effect of MAP1B-LC on the dendritic trafficking of AMPARs could be 

related to MAP1B-LC interaction with GRIP1, we measured GRIP1 distribution in hippocampal 

primary neurons over-expressing MAP1B-LC-GFP or GFP as a control.  

As shown in figure 38A, dendritic regions of 50 µm length were defined in neurons over-

expressing either MAP1B-LC-GFP or GFP, and the mean fluorescence intensity due to GRIP1 

was measured. The average fluorescence intensity in the cell body was also quantified. In 

neurons over-expressing MAP1B-LC-GFP, the fluorescence intensity corresponding to GRIP1 

was increased in the cell body and decreased in dendrites, yielding a reduced dendrite/soma 

ratio of intensities comparing to neurons over-expressing GFP (figure 38B). These data would 

point to an altered delivery of GRIP1 from the cell body towards the dendrites in the presence 

of MAP1B-LC-GFP. 
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Then, we measured total number, size and total fluorescence intensity of GRIP1 clusters in 50-

µm dendritic regions, as described in figure 39A. As shown in figure 39B, the number of GRIP1 

clusters was significantly reduced in neurons over-expressing MAP1B-LC-GFP comparing to 

those over-expressing GFP, although the size of these clusters and the quantity of GRIP1 in 

them (related to the total fluorescence intensity of each cluster) seemed to be equivalent in 

both conditions. Taken together, these data would support the idea that GRIP1 dendritic 

targeting is impaired upon the over-expression of MAP1B-LC-GFP; as a consequence, the 

dendritic transport of GluA2-containing AMPARs would be delayed. Under these 

circumstances, the constitutive access of the GluA2-GluA3 population of AMPARs to dendritic 

spines and synapses might be impeded resulting in a net reduction of basal synaptic 

transmission.  

 

Figure 38. The over expression of MAP1B-LC-GFP impairs the dendritic targeting of GRIP1 in 
hippocampal primary neurons (DIV 19-22). A) Representative examples of hippocampal primary 
neurons over-expressing either GFP (control) or MAP1B-LC-GFP, and stained against GRIP1. Insets 
correspond to dendrites shown below in higher magnification. A precise delineation of dendrites (cyan 
lines) was carried out before proceeding to quantification of mean fluorescence intensity for GRIP1. B) 
Quantification of fluorescence intensity for GRIP1 in dendrites (top) and soma (middle) of cells 
expressing either GFP (n=36 cells) or MAP1B-LC-GFP (n=30 cells) from 3 independent experiments. A.u., 
arbitrary units. The ratio dendrite/soma for both types of neurons is shown below. Statistical 
significance calculated according to Mann-Whitney test. Error bars, s.e.m. 

0.2

0.3

0.4

0.5

GFP MAP1B-LC-GFP

Fl
u

o
re

sc
e

n
ce

 In
t.

 
D

EN
D

R
IT

E 
(a

.u
.)

p=0.0003

      GFP       MAP1B-LC-GFP 

A) B) 

Over-expression of 
MAP1B-LC-GFP

GFP GRIP1

10 
µm

10 
µm

Over-expression of 
GFP

GFP GRIP1

10 
µm

10 
µm

1

1.5

2

GFP MAP1B-LC-GFP

Fl
u

o
re

sc
e

n
ce

 
in

t.
 S

O
M

A
 (

a.
u

.)

p=0.01

      GFP      MAP1B-LC-GFP 

0.1

0.2

0.3

0.4

GFP MAP1B-LC-GFP

R
at

io
 

D
EN

D
R

IT
E/

SO
M

A

p<0.0001

     GFP       MAP1B-LC-GFP 



Results 

 

 

117 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) 

B) 

Figure 39. The over-expression of MAP1B-LC-GFP decreases the number of clusters of GRIP1 along 
dendrites of hippocampal primary neurons (DIV 19-22). A) Left, the number of clusters of GRIP1 along 
50 µm of dendrite was analyzed in GFP-expressing hippocampal neurons, like the one shown in the 
picture. The delineated segment of dendrite (“dendrite”) was used as template for the Log3D-plugin 
(Image J) transformation (“Log3D”), and the generation of a mask that illustrates the result of the 
application of an intensity threshold (“mask”) on the Log3D image. Right, the same kind of analysis was 
performed in neurons over-expressing MAP1B-LC-GFP. B) Quantification of density, size and total 
fluorescence intensity of GRIP1 clusters for hippocampal primary neurons over-expressing GFP (n=26 
cells) or MAP1B-LC-GFP (n=23 cells) from 3 independent experiments. Statistical significance according 
to Mann-Whitney test. Error bars represent s.e.m. A.u., arbitrary units.  
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The main goal of the work compiled in this thesis has been to describe the role played by the 

light chain of MAP1B in the trafficking of AMPARs in hippocampal CA1 neurons. As a result, 

MAP1B-LC has been characterized as a crucial factor mediating the dendritic trafficking and 

surface expression of the GluA2-GluA3 population of AMPARs, very likely through its 

interaction with GRIP1.  

 

A) Dynamics of MAP1B-LC in CA1 hippocampal neurons.  

1.  Anchoring to microtubules vs. transient mobilization during the induction of 

synaptic plasticity.  

1.1  MAP1B-LC is mainly bound to microtubules.  

Regarding MAP1B-LC distribution inside CA1 neurons, the data previously presented indicate 

that MAP1B-LC is likely anchored to microtubules. Immunofluorescence experiments on 

hippocampal slices demonstrate that over-expressed MAP1B-LC displays a filamentous pattern 

of distribution that is reminiscent of the microtubular network; in addition, this appearance is 

lost when neurons are pre-treated with a microtubule-depolymerizing drug (vinblastine). In 

primary hippocampal neurons, MAP1B-LC staining is coincident with that of stable 

microtubules in dendrites (detyrosinated and acetylated tubulin), and live imaging 

experiments evidence that its basal mobility is comparable to that of microtubules themselves.  

A co-immunoprecipitation experiment using an antibody against MAP1B-HC revealed that 

MAP1B-LC-GFP hardly interacts with the heavy chain of the endogenous protein in vitro. This 

circumstance would be in favor of MAP1B-LC-GFP binding to microtubules. It has been 

described that the light chain of MAP1B exerts distinct effects on the morphological 

appearance and stability of the microtubule network as long as it is free from the heavy chain.  

Indeed, as the interaction of the light chain of MAP1B with microtubules has been shown to be 

diminished in the presence of the heavy chain, MAP1B-HC has been proposed to act as the 

inhibitory subunit of the full length protein (Noiges et al. 2002). Therefore, the observations 

reported in the present work would result from MAP1B-LC acting on its own on the 

microtubule network, without the inhibitory influence of the heavy chain. 

 At this point, it is important to recall that MAP1B-LC exists naturally in a considerable excess 

over the heavy chain (Mei et al. 2000); thereby, it is reasonable to think that the light chain 
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might have additional functions in vivo outside of the complex with the heavy chain. The over-

expression of MAP1B-LC would represent a suitable model for this situation.    

1.2 Dynamics in basal conditions vs. dynamics during the induction of synaptic plasticity.  

In basal conditions, the mobility of recombinant MAP1B-LC is negligible, as shown by live 

imaging experiments. In FRAP experiments, only a 20% of the initial fluorescence is recovered 

after more than 60 minutes from the bleaching event. Complementarily, a very slow decay of 

fluorescence can be observed after photoactivation of MAP1B-LC-Dendra, which could be due, 

at least in part, to photobleaching. It is interesting that a similar behavior can be observed for 

Dendra-tubulin in photoactivation experiments.  

In neurons, different organelles and membrane-associated proteins are rapidly transported 

along axons in a motor-based process known as “fast axonal transport”; dendritic transport of 

this kind has been demonstrated to occur as well. In contrast, the term “slow axonal 

transport” refers to the movement of the proteins that comprise the cytoskeleton itself, 

including tubulin and microtubule-associated proteins, which occurs at a much lower rate 

(Baas and Buster 2004). It is likely that the slow mobility of recombinant MAP1B-LC and tubulin 

observed in live imaging experiments corresponds to this modality of transport taking place in 

dendrites, too; it could also reflect a slow turnover of both structural proteins. In any case, it 

strengthens the idea that recombinant MAP1B-LC is forming a complex with microtubules in 

dendrites of CA1 pyramidal neurons.  

Surprisingly, a transient increase in MAP1B-LC mobility could be assessed upon the induction 

of both LTD and LTP. Such an increase could not be observed for Dendra-tubulin in 

photoactivation experiments, indicating that it is probably an intrinsic property of MAP1B-LC.  

The binding of MAP1B to microtubules and microfilaments seems to be modulated by 

phosphorylation, although the underlying mechanism is not well understood yet. Concerning 

MAP1B interaction with microtubules, current evidence is conflicting. On the one hand, it has 

been described that the inhibition of PP2A and PP2B, two of the protein phosphatases that act 

on MAP1B (Ulloa et al. 1993c), is correlated with a decreased binding of MAP1B to 

microtubules (Gong et al. 2000). This would imply that the lack of dephosphorylation, and so 

an increased phosphorylation, detaches MAP1B from microtubules. On the other hand, the 

depletion of the catalytic subunits of CKII, one of the kinases known to phosphorylate MAP1B, 

has been reported to reduce MAP1B binding to the microtubule cytoskeleton (Ulloa et al. 
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1993b; Ulloa et al. 1993c), suggesting that it is phosphorylation and not dephosphorylation 

that promotes MAP1B attachment to microtubules.  

Both PP2B and CKII have been involved in hippocampal synaptic plasticity (Charriaut-

Marlangue et al. 1991; Mulkey et al. 1993). It is tempting to speculate that the signaling 

cascades activated during synaptic plasticity in hippocampus, involving the activation of 

numerous mediators such as kinases and phosphatases whose activity is interconnected, might 

lead to temporal changes in the phosphorylation state of MAP1B that result in a transient 

detachment from the microtubule cytoskeleton.  However, the phosphorylation sites identified 

in MAP1B sequence so far are all located at the heavy chain (Riederer 2007). We have 

demonstrated that over-expressed MAP1B-LC is not primarily forming a complex with MAP1B-

HC, so it does not seem very reasonable that the binding of recombinant MAP1B-LC to 

microtubules is modulated by putative changes in MAP1B-HC phosphorylation. One possibility 

would be that the light chain harbors also phosphorylation sites that have not been described 

yet, or that its binding to microtubules is regulated through an alternative post-translational 

modification.   

Intriguingly, the mobility of MAP1B-LC is enhanced only during the induction of synaptic 

plasticity in CA1 neurons, but not shortly afterwards. This observation would suggest that the 

transient activation of signaling cascades subsequent to the induction of synaptic plasticity in 

hippocampus might have the potential to impact on MAP1B functionality. Furthermore, the 

precise temporal regulation of MA1PB-LC dynamics would imply a possible participation of the 

protein in processes occurring only during the induction but not during the expression or 

maintenance of LTD or LTP.  

MAP1B-LC transient mobilization could also suggest that it needs to change its subcellular 

location to play a specific role during the induction of LTD or LTP. Our observations point to the 

fact that MAP1B-LC detaches from microtubules but stays in the dendritic shaft during synaptic 

plasticity induction, as we did not observe the recombinant protein moving into other 

subcellular compartments such as dendritic spines. Two possible mechanisms might explain 

this observation. On the one hand, we have demonstrated that recombinant MAP1B-LC is 

largely decorating microtubules in our preparations; it is possible that its detachment from 

microtubules responds to the fact that the microtubule lattice needs to be unobstructed for 

the movement of organelles to occur during the induction of synaptic plasticity. On the other 

hand, MAP1B-LC might function to locate other components in the proximity of the 

microtubule cytoskeleton in basal conditions; the transient mobilization of MAP1B-LC during 
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LTD or LTP induction may reflect the subcellular reorganization or relocation of such 

components as a result to stimulation.  

2. MAP1B-LC presence in dendritic spines. 

The study of MAP1B-LC subcellular distribution in CA1 neurons revealed that the protein is 

occasionally present in dendritic spines. Such an observation has been made before for the 

endogenous MAP1B (Tortosa et al. 2011). In this work, the authors indicated that 

approximately 1% of dendritic spines contained MAP1B, and it was suggested that MAP1B 

presence at this compartment might be a consequence of the reported transient entry of 

dynamic microtubules into dendritic spines (Jaworski et al. 2009).  However, live imaging 

experiments of MAP1B-LC-GFP presented in this thesis support the notion that the 

recombinant protein is stably anchored inside dendritic spines. MAP1B-LC could be acting as a 

stabilizing factor for dynamic microtubules that would have transiently penetrated dendritic 

spines; alternatively, it may reside in dendritic spines as a consequence of its binding to the 

actin cytoskeleton.  

Remarkably, MAP1B-LC-GFP seems to leave dendritic spines after the induction of synaptic 

plasticity. This phenomenon was observed both after LTD and LTP induction. Opposite to 

MAP1B-LC behavior in dendrites, the process of mobilization seems to be initiated slowly after 

the induction phase, lasting for several minutes and resulting in an irreversible disappearance 

of MAP1B-LC-GFP from dendritic spines.  This interesting observation was not explored any 

further in the present work, but it may well parallel dynamic changes of the actin cytoskeleton 

inside dendritic spines resulting from synaptic plasticity occurrence.  

B) Regulation of basal synaptic transmission and plasticity by MAP1B-

LC.  

1. Over-expression of MAP1B-LC. 

The over-expression of MAP1B-LC-GFP in CA1 neurons was shown to produce a decrease in 

basal transmission unrelated to dendritic spine morphology or Rac1/RhoA activation. Other 

authors have reported increased Rac1 activity subsequent to MAP1B-LC over-expression 

(Henriquez et al. 2012). However, these experiments were performed in a heterologous 

system because, as the authors declare, the presence of endogenous MAP1B masks the effect 
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of the light chain on Rac1 activity, which would perfectly fit with the results presented in this 

thesis.   

Interestingly, the decrease in basal synaptic transmission observed upon MAP1B-LC-GFP over-

expression was shown to be specific for AMPAR-mediated transmission, as NMDA currents 

resulted unaffected. In contrast, the over-expression of MAP1B-HC-GFP yielded a general 

depression of transmission, involving both AMPA and NMDA receptors. The mechanisms by 

which the heavy chain of MAP1B unspecifically depresses transmission were not explored any 

further; however, as it also contains a microtubule-binding domain (Noble et al. 1989; Zauner 

et al. 1992), it is tempting to speculate that enhanced levels of MAP1B-HC might drive a 

change in the organization of the microtubule cytoskeleton that may affect general processes 

of trafficking of AMPA and NMDA receptors towards synapses.  

On the basis of several imaging experiments, it can be argued that AMPARs are retained in 

dendrites upon the over-expression of MAP1B-LC. This effect is, importantly, subunit-

dependent. The decreased surface expression of endogenous GluA2 versus GluA1 in primary 

hippocampal neurons points to a subunit-specific intracellular retention of AMPARs in the 

presence of enhanced levels of MAP1B-LC. In addition, FRAP experiments show a reduction in 

the mobile population of recombinant GluA2 receptors, while the GluA1 population results 

unaffected. Indeed, the quantification of fluorescence intensity of recombinant GluA2 

receptors in spines versus dendrites evidences that such retention at the level of dendrites 

impairs the accumulation of receptors in spines, again in a subunit-specific manner.  

As a consequence of MAP1B-LC retention of the GluA2-GluA3 population of AMPARs in an 

intracellular compartment, most probably at the level of dendrites, these receptors cannot 

continuously cycle and contribute to basal transmission; therefore, basal synaptic transmission 

is reduced. As previously mentioned, this population is the one thought to maintain basal 

synaptic transmission in neurons in the face of protein turnover (Shi et al. 2001). 

Concerning the impact of MAP1B-LC over-expression on synaptic plasticity, a model can be 

proposed in which the effects seen on LTP and LTD can be explained on account of the initial 

decrease in basal transmission. On the one hand, it has been shown that LTP induction drives 

the insertion of the GluA1-GluA2 population of AMPARs into synapses (Hayashi et al. 2000; 

Passafaro et al. 2001; Shi et al. 2001). In the presence of MAP1B-LC-GFP, a fraction of the 

GluA2-GluA3 population would be retained in dendrites whereas the GluA1-GluA2 population 

would be able to traffic freely towards synapses upon the appropriate stimuli. Under these 
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circumstances, a normal amount of LTP combined with a decreased basal transmission would 

yield an increased potentiation (figure 1). Actually, a similar phenotype has been described in a 

knock-out mouse for the GluA2 subunit of AMPARs (Jia et al. 1996).  

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the regulated endocytosis of AMPARs after LTD induction has been 

proposed to be subunit-independent (Chung et al. 2000; Kim et al. 2001; Perez et al. 2001; Lee 

et al. 2002; Meng et al. 2003). Therefore, GluA1-GluA2 and GluA2-GluA3 populations of 

AMPARs would be equally removed from synapses so that transmission is reduced to a certain 

extent, independently of the initial level of transmission prior to LTD induction (figure 2).  

 

 

 

 

 

 

Figure 1. Mechanism of LTP enhancement upon MAP1B-LC over-expression. Left, in a normal synapse, 

GluA1-GluA2 and GluA2-GluA3 AMPARs are present at the synapse. Upon LTP induction, only GluA1-

GluA2 AMPARs are driven to the synapse. The final enhancement of transmission depends on the net 

increase in the total number of AMPARs at the synapse. Right, when MAP1B-LC is over-expressed, 

GluA2-GluA3 AMPARS are retained in dendrites and do not contribute to basal transmission. As a result, 

the net increase in transmission is larger when GluA1-GluA2 AMPARs are driven to the synapse upon 

LTP induction.  

Figure 2. LTD is unaltered upon 

MAP1B-LC over-expression. LTD has 

been proposed to involve the 

endocytosis of both populations of 

AMPARs (GluA1-GluA2 and GluA2-

GluA3). Independently of the initial 

level of transmission, AMPARs are 

endocytosed to a certain extent to 

generate depression. The degree of 

depression is equivalent in a normal 

synapse (left) and in a synapse over-

expressing MAP1B-LC (right).   



Discussion 

 

 

127 
 

2. MAP1B acute depletion. 

MAP1B acute depletion in CA1 neurons does have an impact on synaptic plasticity as well. 

With the protocol of stimulation we have used for cultured slices, LTP seems unaffected. 

However, we have previously reported an increased LTP in heterozygous animals for MAP1B. 

In this case, a milder protocol was required to avoid a possible ceiling effect (Benoist et al. 

2013). It is likely that the unaffected LTP reported in this thesis is also due to a ceiling effect of 

the stimulation protocol. We did not characterize MAP1B role in LTP any further.  

On the contrary, LTD is partially impaired. We have shown that MAP1B deficiency results in 

decreased Rac1 activation, which is required to drive AMPAR endocytosis after LTD (Benoist et 

al. 2013). Nevertheless, we do not know if the light chain of MAP1B is specifically playing any 

role during this process, although it has been shown that it is the light chain the one that binds 

Tiam1 (a GEF of Rac1) (Henriquez et al. 2012). At this point, it is important to note that the 

depletion of the complete MAP1B protein does not represent the opposite situation to the 

over-expression of its light chain. The lack of the heavy chain of MAP1B may influence the 

phenotype observed upon acute depletion of the protein and thereby, embroil the 

interpretation of the results.  

C) MAP1B regulates the dendritic transport of AMPARs.  

According to live imaging experiments following the movement of TfR clusters along dendrites 

in primary hippocampal neurons, MAP1B would have the potential to modulate microtubule-

dependent transport bidirectionally. MAP1B-LC over-expression reduces the fraction of mobile 

clusters and the mean speed of those that move, whereas MAP1B down-regulation accelerates 

transport by increasing the proportion of clusters that move and the speed at which they 

travel along dendrites. Indeed, MAP1B deficiency was previously associated to an increased 

velocity of microtubule-based transport of mitochondria in axons (Jimenez-Mateos et al. 

2006). 

AMPARs are transported along dendrites in an active process powered by molecular motors 

(Hirokawa and Takemura 2005; Kapitein and Hoogenraad 2011).  GluA2-containing AMPARs 

are linked to different proteins of the kinesin superfamily through GRIP1 (Setou et al. 2002; 

Shin et al. 2003). However, it is not clear how the transport of GluA1-containing AMPARs 

proceeds. SAP97, a PDZ domain-containing protein that interacts with the C-terminus of 

GluA1, has been proposed to play a role in regulating AMPAR addition to hippocampal 
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pyramidal cell synapses (Leonard et al. 1998; Sans et al. 2001). As a binding partner of KIF1Bα 

(Mok et al. 2002), SAP97 would seem a reasonable candidate to mediate GluA1 transport 

along dendrites; nevertheless, further investigations would be required to clarify this aspect.  

As previously mentioned, FRAP experiments in the presence of enhanced levels of MAP1B-LC 

revealed a subunit-specific effect on AMPAR transport along dendrites; this would suggest that 

GluA1 and GluA2 are transported in different vesicles along microtubules. In studies 

addressing the subcellular location and distribution of vesicles containing AMPARs in neurons, 

distinct profiles were obtained for GluA1 and GluA2 subunits in biochemical fractionation 

experiments (Lee et al. 2001). Indeed, GluA2 seems to be present in many of the fractions 

containing also TfR. Furthermore, in a study aiming at characterizing the dendritic transport of 

GluA1 and GluA2 in hippocampal primary neurons, different dynamics of movement along 

dendrites were found for both varieties of recombinant receptors; this observation would be 

suggestive of distinct mechanisms of dendritic transport for different populations of AMPARs 

(Perestenko and Henley 2003).  

Does the delay in microtubule-dependent transport upon MAP1B-LC over-expression explain 

the specific retention in dendrites of the GluA2-GluA3 population of AMPARs? Or is it the 

consequence of AMPARs being immobilized on microtubular tracks? TfR is a valid tool to study 

microtubule-dependent transport in neurons because it has been widely characterized as a 

transmembrane protein specifically sorted into dendrites by means of this type of transport 

(West et al. 1997; Burack et al. 2000); however, it is not useful to solve the question about the 

subunit-specific effect of MAP1B-LC over-expression on AMPAR trafficking along dendrites.  

Some authors have suggested a certain degree of interference between microtubule-

associated proteins, which decorate microtubules, and motor proteins that traffic and carry 

their cargo along them (Seitz et al. 2002; Tokuraku et al. 2007; Dixit et al. 2008). However, as 

GluA1 trafficking along dendrites is not affected in the presence of enhanced levels of MAP1B-

LC, it seems unlikely that the observed delay in TfR transport results from a general 

impairment of microtubule-dependent transport in CA1 neurons. A possible explanation might 

be that GluA2 and TfR travel together in the same vesicles whereas GluA1-containing AMPARs 

are transported in independent vesicles or by alternative mechanisms. This could respond to 

the fact that GluA2 and TfR trafficking and sorting are constitutive in neurons, whereas the 

processes regulating the trafficking of GluA1-containing AMPARs seem to be tightly controlled 

by activity.  
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D) MAP1B-LC and GRIP1: an integrated model.  

The series of experiments presented in this thesis support a novel role for MAP1B-LC as a 

crucial mediator of AMPAR trafficking in CA1 hippocampal neurons. According to our data, 

MAP1B-LC has the potential to regulate the subcellular distribution of AMPARs and 

consequently, their specific contribution to basal transmission and synaptic plasticity. On the 

basis of imaging experiments revealing an altered dendritic distribution of GRIP1 in the 

presence of over-expressed MAP1B-LC, we speculate that MAP1B-LC mediates AMPAR 

trafficking in CA1 neurons via its specific interaction with GRIP1.  

1.  Proposed functions of GRIP, PICK1 and NSF in AMPAR trafficking.  

GRIP1/GRIP2 (collectively referred to as GRIP hereafter) and PICK1 are PDZ domain-containing 

proteins well characterized as interacting partners of the GluA2/GluA3 subunits of AMPARs 

(Dong et al. 1997; Srivastava et al. 1998; Xia et al. 1999). Despite decades of investigation, their 

specific contribution to the trafficking of AMPARs is still a matter of intense debate. This 

situation is favored by the existence of a complex network of proteins that cooperate to 

regulate the subcellular sorting of AMPARs, both during the constitutive and regulated 

processes that orchestrate AMPAR delivery from dendrites to spines and backwards. 

A classical model proposes a dual role for GRIP in neurons. On the one hand, GRIP would be 

favoring the clustering and stabilization of GluA2-containing AMPARs at synapses, by limiting 

their endocytic rate (Osten et al. 2000). To enable endocytosis, the phosphorylation of GluA2 

at Ser 880 would be required. Phosphorylation by PKC at this site has been described to 

disrupt GluA2 interaction with GRIP without affecting the binding to PICK1 (Matsuda et al. 

1999; Chung et al. 2000); additionally, the induction of LTD in hippocampal neurons was shown 

to increase phosphorylation of GluA2 at Ser 880 (Daw et al. 2000; Kim et al. 2001). Thereby, it 

has been proposed that PICK1 would be substituting GRIP in GluA2-binding during LTD to 

promote the endocytosis of AMPARs. 

On the other hand, for AMPARs to stably incorporate into an intracellular pool of receptors 

after endocytosis, interaction with GRIP has also been proposed to play a part (Daw et al. 

2000). Using a short peptide that disrupts GluA2 interactions with PDZ proteins, the authors 

propose that GRIP would be acting as a retention factor for AMPARs in an undefined 

intracellular compartment whereas PICK1 would favor AMPARs recycling back to the plasma 

membrane. This way, GRIP would function to prevent unregulated reinsertion whereas PICK1 
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would associate with the “mobile” pool of receptors. The hypothesis of GRIP acting as a 

mechanism to retain AMPARs intracellularly after stimulation would also be supported by the 

work of Braithwaite and colleagues (Braithwaite et al. 2002).  

Nevertheless, the models discussed above are not devoid of controversy. More recently, the 

work by Mao and colleagues (Mao et al. 2010) has completely challenged the previous 

conception of the role played by GRIP in AMPAR trafficking. Via an acute deletion of GRIP1 in 

hippocampal primary cultures obtained from GRIP2 knock-out animals, they show that neither 

the surface expression nor the endocytosis rate of AMPARs (after NMDA application) is altered 

upon GRIP depletion. In contrast, the recycling of the endocytosed AMPARs is retarded.  

Rather strikingly, these data would imply that GRIP is not needed to cluster or stabilize 

AMPARs neither at the postsynaptic membrane nor at intracellular compartments; on the 

contrary, it would be required to promote AMPARs recycling back to the plasma membrane 

after their regulated endocytosis.  This result would be supported by a subsequent work from 

the same group showing that the palmitoylation of GRIP1b (an isoform of GRIP1), which favors 

GRIP1b association to membranes, accelerates GluA2 recycling after regulated endocytosis 

(Thomas et al. 2012). Still, this last result would contradict the data reported by Hanley and 

Henley (Hanley and Henley 2010) that suggest that GRIP1a (the non-palmitoylatable form of 

GRIP1) would be involved specifically in restricting NMDAR-induced AMPAR endocytosis or, 

alternatively, promoting recycling of GluA2-containing AMPARs whereas GRIP1b (the 

palmitoylatable isoform) would either contribute to endocytosis or reduce receptor recycling.  

The analysis of GRIP subcellular and ultrastructural distribution in neurons did not help to 

settle this controversy. Via biochemical studies, GRIP was originally described to be membrane 

associated and concentrated at the postsynaptic density (Wyszynski et al. 1998; Dong et al. 

1999), although to a lesser extent than PSD95. In a subsequent study based on electron 

microscopy, GRIP was found to be associated with asymmetric synapses, mainly concentrated 

over the postsynaptic membrane and the postsynaptic density. In addition, GRIP was described 

to be present not only within spines but also along dendrites, typically associated with 

microtubules (Wyszynski et al. 1999). When analyzing its subcellular distribution in 

hippocampal neurons in culture with immunocytochemical techniques, GRIP appeared to be 

concentrated in sparse puncta of large diameter along the soma and dendrites, a distribution 

highly similar to the one reported in this thesis.  More recently, GRIP1 has been described to 

appear also at recycling endosomes, co-localizing with Rab11 and TfR but not with EEA-1 (a 

marker of early endosomes) (Mao et al. 2010). On the contrary, Hanley and Henley (Hanley 
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and Henley 2010) have shown that GRIP1 co-localizes with EEA-1, and so with early 

endosomes, after NMDA-mediated stimulation of hippocampal primary cultures.  

Apart from GRIP and PICK1, NSF protein interacts with the GluA2 subunit of AMPARs as well. 

The pep2m-mediated disruption of the NSF-GluA2 interaction was originally described to 

result in a reduction of AMPAR surface expression and a rundown of AMPAR-dependent basal 

transmission in CA1 neurons (Luscher et al. 1999; Noel et al. 1999). In the complex scenario of 

AMPAR trafficking routes seemingly dominated by GRIP and PICK1, how would NSF fit? 

Although its involvement in AMPAR trafficking was reported decades ago, it is not clear yet 

whether NSF is responsible for the insertion of AMPARs at the postsynaptic membrane or for 

their later stabilization at this location. NSF being involved in the direct insertion of GluA2-

containing AMPARs at synapses would be compatible with studies showing no synaptic 

incorporation of GluA2 mutated at the NSF-interacting site (Shi et al. 2001). Other studies, 

however, have suggested that NSF would be required for the stabilization of AMPARs at 

synapses, preventing their regulated endocytosis (Braithwaite et al. 2002).  

2.  A model for MAP1B-LC/GRIP1 interaction in AMPAR trafficking.  

As previously mentioned, GRIP1 dendritic targeting is impaired upon MAP1B-LC over-

expression in hippocampal primary neurons. MAP1B-LC has been reported to interact with 

GRIP1, specifically via its actin-binding domain (Seog 2004; Davidkova and Carroll 2007). In 

addition, GRIP1 has been shown to link the GluA2 subunit of AMPARs to the heavy chain of 

conventional kinesin (Setou et al. 2002), thereby acting as an adaptor protein in the 

microtubule-dependent transport of AMPARs along dendrites. Thus, it is possible that MAP1B-

LC interaction with GRIP1 is retaining the GRIP1/GluA2-3 complex in the proximity of the 

microtubule lattice. As a consequence, the progression of the GRIP1/GluA2-3 tandem along 

the microtubule tracks towards the distal part of dendrites would be retarded or impeded, 

resulting in the abnormal dendritic distribution of GRIP1 we have observed.   

What would be then the function of the interaction between MAP1B-LC and GRIP1 in CA1 

hippocampal neurons? Considering the evidence presented in this thesis, we propose a model 

in which MAP1B-LC plays a role in the regulation of the subcellular distribution of the 

GRIP1/GluA2-3 complex via its direct interaction with GRIP1. The fine tuning of the subcellular 

allocation of the GRIP1/GluA2-3 complex would have a direct impact on its availability to 

interact with other key players such as NSF and PICK1, and consequently, it would result in the 
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modulation of AMPAR trafficking both during basal conditions and synaptic plasticity (figure 

3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

As over-expressed MAP1B-LC is very likely anchored to microtubules, it is reasonable to think 

that it could be retaining the GRIP1/GluA2-3 complex at the level of the microtubule 

cytoskeleton. This idea sounds reasonable considering that electron microscopy studies have 

evidenced that GRIP1 appears frequently associated with microtubules in dendrites (Wyszynski 

et al. 1999). In addition, we have shown via FRAP experiments that a fraction of GluA2-

containing AMPARs are indeed immobilized at dendrites in the presence of over-expressed 

MAP1B-LC. According to the different models previously discussed, this anchoring might be 

preventing the interaction between NSF/PICK1 and the GluA2 subunit of AMPARs that controls 

the surface expression of the constitutive pool (figure 3.2).  

One can think of two consequences derived from the intracellular retention of the 

GRIP1/GluA2-3 complex in the proximity of the microtubule cytoskeleton. First, the decreased 

availability of mobile receptors would be somewhat mimicking the effect of peptide pep2m, 

Figure 3.1. GRIP1 subcellular 

distribution and functions in a 

physiological situation. GRIP1 has 

been proposed to play a role in 

AMPARs stabilization at synapses 

and intracellular retention after 

regulated endocytosis (LTD). In 

addition, GRIP1 functions as an 

adaptor protein in the microtubule-

dependent transport of AMPARs 

along dendrites. We propose 

GRIP1/GluA2-3 intracellular 

retention is mediated by MAP1B-LC 

through the anchoring to 

microtubules.  

Figure 3.2. The GRIP1/GluA2-3 

complex is retained in the 

proximity of microtubules upon 

MAP1B-LC over-expression. The 

intracellular retention of the 

GRIP1/GluA2-3 complex prevents it 

to interact with NSF/PICK1, which 

mediate the constitutive cycling of 

the receptor. The dendritic 

trafficking of GluA2-GluA3 AMPARs 

is also impaired.  
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designed to interfere with the NSF-GluA2 interaction. This would be the reason why infusing 

pep2m in CA1 neurons over-expressing MAP1B-LC does not have any impact on basal synaptic 

transmission. Second, the immobilization of a fraction of GluA2-containing AMPARs at 

dendrites would impair its surface expression and consequently, AMPAR-dependent 

transmission would be decreased in basal conditions, as demonstrated.  

At this point, it is worth recalling that MAP1B-LC modulates specifically the trafficking of the 

GluA2- but not the GluA1-containing population of AMPARs. According to our model, what 

would be the reason for this specificity? The possibility that MAP1B-LC regulates the 

intracellular sorting of AMPARs via its interaction with GRIP1 would explain also this 

observation, because GRIP1 has been demonstrated to interact with the GluA2 and GluA3 

subunits of AMPARs (the ones that integrate the constitutive pool of receptors (Shi et al. 

2001)) but not with the GluA1 or GluA4 subunits (Dong et al. 1997).  

Interestingly, the behavior of both mutants of MAP1B-LC, MAP1B-LC-delABD-GFP and MAP1B-

LC-delMBD-GFP, would support this theory as well. MAP1B-LC mutants were generated to 

examine the possible contribution of each domain to the function of the wild type protein. We 

concluded actin-binding and microtubule-binding were both required to mediate the decrease 

in AMPAR-dependent basal transmission observed upon MAP1B-LC over-expression.  

In fact, the actin-binding domain of MAP1B-LC is the one described to interact with GRIP1 as 

well. Thereby, it would make sense that the interaction with GRIP1 via the actin-binding 

domain together with the binding to microtubules via the microtubule-binding domain were 

both essential to mediate the anchoring of the GRIP1/GluA2-3 tandem to the microtubule 

cytoskeleton. Therefore, this interpretation would justify why both domains of the wild type 

protein need to function cooperatively. Furthermore, it would suggest that it is not only 

MAP1B-LC binding to GRIP1 but the concomitant anchoring to the microtubule cytoskeleton 

that modulates AMPAR trafficking.  

According to the work by Daw and colleagues, GRIP1 would be playing a role in the 

intracellular retention of AMPARs after its regulated endocytosis (Daw et al. 2000). The model 

we propose would be compatible with this possibility as well. As MAP1B-LC over-expression 

does not affect LTD, the interpretation would be that GRIP1 binding to MAP1B-LC does not 

prevent GRIP1 from executing its function in the intracellular retention of the endocytosed 

receptors.  
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On the other hand, it is worth noting that MAP1B-LC mobilizes transiently during the induction 

of synaptic plasticity. Hanley and Henley (Hanley and Henley 2010) have shown that both 

isoforms of GRIP1, GRIP1a and GRIP1b, co-localize with endosomal markers only after NMDA 

application, suggesting a reorganization of the endosomal trafficking machinery driven by 

GRIP1 upon LTD induction. It is possible, then, that MAP1B-LC mobilization is required to 

release GRIP1 from microtubules so that GRIP1 is free to orchestrate the trafficking of 

endosomes after the induction of LTD. Furthermore, this assumption would also make our 

model compatible with the role for GRIP1 in AMPAR recycling after LTD proposed by Mao and 

colleagues (Mao et al. 2010). These authors have shown that AMPAR recycling after LTD is 

retarded in GRIP1/GRIP2 knock out neurons. Our model would imply that upon MAP1B-LC 

mobilization, GRIP1 release from its anchoring to microtubules would allow it to favor AMPAR 

recycling to the plasma membrane to maintain a given degree of depression after LTD 

induction.  

Regarding the effects of MAP1B-LC over-expression on synaptic plasticity in CA1 neurons, our 

model would also be consistent with an increased potentiation after LTP induction resulting 

from a decreased basal transmission. To date, GRIP1 has not been directly involved in the 

induction, expression or maintenance of LTP. As explained in a previous section, the 

phenotype observed upon MAP1B-LC over-expression would be a consequence of the 

intracellular retention of the GluA2-containing population of AMPARs via GRIP1 in basal 

conditions and would not necessarily respond to a specific effect of MAP1B-LC on LTP.  

On the other hand, how would the proposed model explain the phenotype observed upon 

MAP1B depletion? MAP1B acute depletion through a specific shRNA does not affect basal 

synaptic transmission. In the absence of MAP1B, the GluA2-GluA3 population of AMPARs 

would not be retained intracellularly; it would normally interact with NSF/PICK1, which adjust 

the surface expression of the constitutive cycling pool of receptors to maintain basal 

transmission. Or alternatively, GRIP1 would be free from intracellular anchoring to locate at 

the synaptic plasma membrane and play a role in the stabilization of AMPARs at this location.  

On the contrary, MAP1B knock-down has been demonstrated to impair LTD expression in CA1 

neurons, both in heterozygous animals and after its acute depletion through a specific shRNA. 

According to our model, the lack of anchoring to the microtubule cytoskeleton or the absence 

of regulation of the intracellular population of GRIP1 would prevent it from retaining AMPARs 

after LTD (figure 3.3). This idea would not be incompatible with the impaired activation of Rac1 

GTPase that has been demonstrated to underlie the insufficient endocytosis of AMPARs after 
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LTD induction in MAP1B +/- neurons.  It could be indicating a dual role for MAP1B in regulating 

the subcellular distribution of the GRIP1/GluA2-3 complex and providing enough Rac1 activity 

during LTD.  

The idea of misallocation of GRIP1 in the absence of MAP1B would also be consistent with the 

proposed role for GRIP1 in favoring the recycling of AMPARs after LTD (Mao et al. 2010; 

Thomas et al. 2012). The lack of intracellular retention of GRIP1 could be promoting its 

association with trafficking vesicles, and therefore, the increased recycling of AMPARs after 

LTD that would decrease the degree of depression. As previously mentioned, palmitoylation of 

GRIP1b has been shown to favor its association with recycling endosomes and has been linked 

to an accelerated recycling of receptors after NMDA application in hippocampal primary 

neurons (Thomas et al. 2012). Although we looked at the total population of GRIP1 including 

GRIP1b and GRIP1a, it is tempting to speculate that the anchoring of GRIP1 to the microtubule 

cytoskeleton by MAP1B-LC might be restricting the access of palmitoylating enzymes to GRIP1, 

and therefore, might be regulating its association with the endosomal compartment to 

promote AMPAR recycling.  

 

 

 

 

 

 

In sum, the evidence compiled in this thesis points to a novel role of the light chain of MAP1B 

as a key player in the subcellular sorting of a specific population of AMPARs. Its binding to 

GRIP1 together with its ability to interact with microtubules would be essential to determine 

the surface expression of the GluA2-GluA3 population of AMPARs, and consequently, the 

degree to which they contribute to basal transmission in neurons. Furthermore, this model 

would assign a functional meaning to the interaction between MAP1B-LC and GRIP1 for the 

first time and would strengthen the increasing evidence on the role of microtubules and 

microtubule-associated proteins in the regulation of AMPAR dynamics in and out of dendritic 

spines and therefore, of synaptic transmission.  

Figure 3.3. MAP1B depletion 

eliminates GRIP1/GluA2-3 

intracellular retention. The lack of 

intracellular retention of the 

GRIP1/GluA2-3 complex does not 

affect its availability to interact 

with NSF/PICK1 but accelerates its 

recycling after LTD, resulting in a 

reduced depression.  
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The following conclusions can be drawn from the experimental evidence presented in this 

thesis: 

1. The light chain of MAP1B decreases specifically AMPAR-dependent synaptic 

transmission in CA1 hippocampal neurons, whereas the heavy chain depresses globally 

AMPAR-dependent and NMDAR-dependent basal transmission upon over-expression. 

2.  When over-expressed, the light chain of MAP1B co-localizes mainly with stable 

microtubules in dendrites. It hardly interacts with the endogenous heavy chain, which possibly 

facilitates MAP1B-LC binding to microtubules. Our experimental model could be reproducing 

the behavior of the fraction of MAP1B-LC that exists naturally in excess over the heavy chain 

and that is thought to play an independent role. Upon the induction of synaptic plasticity, 

MAP1B-LC is transiently dynamic. This mobilization is not a consequence of the 

depolymerization of microtubules in dendrites.  

3.  MAP1B-LC acts on AMPAR-dependent synaptic transmission through the modulation 

of the trafficking of the GluA2-GluA3 subtype of AMPARs. In the time scale of our 

experiments, neither the activity of small GTPases (Rac1, RhoA) nor the morphology or number 

of dendritic spines are altered upon MAP1B-LC over-expression.  

4. The over-expression of the light chain of MAP1B results in a partial retention of 

GluA2-GluA3 AMPARs at the level of dendrites. As a consequence, these receptors cannot 

accumulate in dendritic spines, reach synapses and contribute to basal transmission through 

their constitutive cycling.   

5.  MAP1B-LC targets exclusively the GluA2-GluA3 population of AMPARs without 

affecting the normal trafficking of the GluA1-GluA2 population. Recombinant GluA1 AMPARs 

are ordinarily transported along dendrites and accumulate in spines to a normal extent in the 

presence of over-expressed MAP1B-LC. The decreased synaptic incorporation of GluA2-

containing receptors does not result in an enhanced incorporation of GluA2-lacking receptors.  

6.  The retention of a fraction of GluA2-GluA3 AMPARs at dendrites upon MAP1B-LC over-

expression does not prevent a normal induction and expression of LTD in CA1 hippocampal 

neurons. On the contrary, LTP is enhanced, very likely as a consequence of the initial 

depression in basal transmission. 

7.  Probably, MAP1B-LC regulates the trafficking of the GluA2-GluA3 population of 

AMPARs through its direct interaction with GRIP1.  
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8. Both domains of MAP1B-LC, the actin-binding domain and the microtubule-binding 

domain, need to function cooperatively to regulate AMPAR trafficking. The actin-binding 

domain is the one that interacts with GRIP1 as well. The fact that microtubule-binding is also 

required suggests that MAP1B-LC might be anchoring the GRIP1/GluA2-3 complex to the 

microtubule cytoskeleton.  

9.  Preliminary data point to the fact that MAP1B-LC over-expression might be 

potentiating the interaction of the GluA2 subunit of AMPARs with microtubules. If MAP1B-LC is 

regulating the anchoring of the GRIP1/GluA2-3 complex to the microtubule cytoskeleton, it is 

likely that an excessive retention of the complex upon MAP1B-LC over-expression results in 

an impairment of microtubule-dependent transport. We used TfR as a reporter of 

microtubule-dependent transport, although it does not provide information about the 

specificity of the effect. 

10. MAP1B depletion has distinct effects on synaptic plasticity and microtubule-dependent 

transport. The fact that both chains of the protein are depleted makes it difficult to directly 

compare the effects due to full-length MAP1B down-regulation with the phenotype 

observed upon MAP1B-LC over-expression. It is possible that the light chain and the heavy 

chain of MAP1B have distinct functions related to the regulation of AMPAR trafficking in basal 

conditions and synaptic plasticity; however, more experiments would be required to clarify 

this aspect.  
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A partir de los datos experimentales recopilados en esta tesis, podemos extraer las siguientes 

conclusiones: 

1. La cadena ligera de MAP1B reduce de forma específica la transmisión sináptica 

dependiente de receptores AMPA en neuronas hipocampales CA1, mientras que la cadena 

pesada deprime globalmente tanto la transmisión basal dependiente de receptores AMPA 

como la dependiente de receptores NMDA cuando se sobre-expresa.  

2. Cuando se sobre-expresa, la cadena ligera de MAP1B co-localiza fundamentalmente 

con microtúbulos estables en dendritas. Apenas interacciona con la cadena pesada endógena, 

lo que probablemente facilita su unión a los microtúbulos. Nuestro modelo experimental 

podría estar reproduciendo el comportamiento de la fracción de MAP1B-LC que existe 

naturalmente en exceso con respecto a la cadena pesada y que podría estar jugando un 

papel autónomo o independiente. Cuando se induce plasticidad sináptica, la cadena ligera de 

MAP1B se moviliza de forma transitoria. Dicha movilización no es consecuencia de la 

despolimerización de microtúbulos en dendritas.  

3. MAP1B-LC actúa sobre la transmisión sináptica dependiente de receptores AMPA por 

medio de la modulación del tráfico del subtipo de receptores GluA2-GluA3. En la escala 

temporal de nuestros experimentos, ni la actividad de las pequeñas GTPasas (Rac1, RhoA) ni la 

morfología o número de espinas dendríticas se vieron alteradas como consecuencia de la 

sobre-expresión de MAP1B-LC.  

4. La sobre-expresión de la cadena ligera de MAP1B resulta en la retención parcial de 

los receptores AMPA GluA2-GluA3 a nivel de las dendritas. Como consecuencia, estos 

receptores no se acumulan en espinas dendríticas, no alcanzan las sinapsis y no contribuyen al 

mantenimiento de la transmisión sináptica basal por medio de su reciclaje constitutivo.  

5. MAP1B-LC actúa exclusivamente sobre la población GluA2-GluA3 de receptores 

AMPA, sin afectar el tráfico normal de la población GluA1-GluA2. Cuando MAP1B-LC se 

sobre-expresa, los receptores AMPA GluA1 recombinantes se transportan de manera ordinaria 

a lo largo de las dendritas y se acumulan normalmente en las espinas. La incorporación 

disminuida a las sinapsis de los receptores que contienen GluA2 no se traduce en una 

incorporación incrementada de aquellos que carecen de la subunidad GluA2. 

6. La retención de una fracción de receptores GluA2-GluA3 en las dendritas cuando 

MAP1B-LC se sobre-expresa no impide la normal inducción y expresión de LTD en neuronas 
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hipocampales CA1. Por el contrario, la LTP se ve incrementada, probablemente como 

consecuencia de una reducción inicial en la transmisión basal.  

7. Probablemente, MAP1B-LC regula el tráfico intracelular de los receptores AMPA de 

tipo GluA2-GluA3 por medio de su interacción directa con GRIP1. 

8. Los dos dominios de MAP1B-LC, el dominio de unión a actina y el dominio de unión a 

microtúbulos, necesitan funcionar de forma conjunta para regular el tráfico de receptores 

AMPA. El dominio de unión a actina es también el que interacciona con GRIP1. El hecho de 

que se requiera la unión a microtúbulos de forma concomitante sugiere que MAP1B-LC podría 

estar actuando por medio del anclaje del complejo GRIP1/GluA2-3 al citoesqueleto 

microtubular.  

9. La sobre-expresión de MAP1B-LC podría estar potenciando la interacción de la 

subunidad GluA2 de receptores AMPA con los microtúbulos, de acuerdo con los datos 

preliminares presentados en esta memoria. Si, en efecto, MAP1B-LC es capaz de regular el 

anclaje del complejo GRIP1/GluA2-3 al citoesqueleto microtubular, es posible que una 

retención excesiva de dicho complejo debida a la sobre-expresión de MAP1B-LC resulte en 

un enlentecimiento del transporte mediado por microtúbulos. En este trabajo, hemos 

empleado el receptor de transferrina (TfR) como reportero del transporte mediado por 

microtúbulos, aunque no nos proporciona información sobre la especificidad del efecto 

observado.  

10. La depleción de MAP1B tiene efectos característicos sobre plasticidad sináptica y sobre 

el transporte dependiente de microtúbulos. El hecho de que ambas cadenas de la proteína 

resulten eliminadas hace que la comparación directa de los efectos debidos a la regulación a 

la baja de la proteína MAP1B completa y el fenotipo observado como consecuencia de la 

sobre-expresión de su cadena ligera sea muy complicada. Es posible que la cadena ligera y la 

cadena pesada ejerzan diferentes funciones en relación a la regulación del tráfico de 

receptores AMPA tanto en condiciones basales como durante los fenómenos de plasticidad 

sináptica; sin embargo, se requieren más experimentos para clarificar este punto.  
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