
Evolving Interesting Initial Conditions
for Cellular Automata of the Game of
Life Type

Manuel Alfonseca

Escuela Politécnica Superior
Universidad Autónoma de Madrid, 28049 Spain
manuel.alfonseca@uam.es

Francisco José Soler Gil

Universidad de Sevilla, Spain
and
Technische Universität Dortmund, Germany
soler@uni-bremen.de

The use of a genetic algorithm to obtain “interesting” initial conditions
for cellular automata of the family of Conway’s Game of Life is de-
scribed in this paper. The conditions have been selected so as to maxi-
mize the number of gliders, R-pentominoes, and similar structures gen-
erated during the execution of the automata. Besides the original Game
of Life rules, we have tested automata with similar rules, such as High-
Life and B38S23, as well as mixed and time-dependent rules. We have
concluded that the temporal invariance of the rules of these automata
does not seem to be a requirement for the existence of the selected struc-
tures.

1. Introduction

Informally, a cellular automaton (CA) [1] is a set of finite determinis-
tic automata distributed in discrete cells along a regular grid. The sets
of states of its neighbors are inputs for each automaton, which means
that the next state of each cell depends on its current state and on the
states of all its neighbors; the neighborhood is usually the same all
along the grid. CAs can be one-dimensional (1D) if the grid is a string
of cells, bi-dimensional (2D) when the grid is a surface, or higher-
dimensional. At every time step, also called a generation, each cell
computes its new state by determining the states of cells in its neigh-
borhood and applying transition rules to compute its new state. Every
cell uses the same update rules and all cells are updated simultane-
ously.

When the grids are finite, boundary conditions become essential.
They determine, for instance, which is the left neighbor of the left-
most cell. A typical boundary condition is called periodic (or cyclic):

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

1D rows are turned into circles (their extreme cells become adjacent
to each other); 2D rectangular grids are turned into toroids
(connecting the leftmost column to the rightmost column and the top
row to the bottom row). Static (or closed) boundary conditions are
also common, where extreme cells are assumed to be connected to per-
manent 0-state cells.

So far, CAs have proved very powerful in simulating many real-life
applications and phenomena. It has been proved that some 1D and
2D CAs, such as the Game of Life (also known as Life), are computa-
tionally equivalent to the universal Turing machine [2].

The 2D CA called the Game of Life [3, 4] was designed by John
Conway. It consists of a matrix of cells, where each cell may take one
of two states: alive and dead (respectively represented by one and
zero). Each cell has eight neighbors, according to a Moore neighbor-
hood (in the eight main directions of the compass). The next state of a
cell is determined by rule B3S23, which means that cells are born (go
from dead to living state) if they have exactly three living neighbors,
and survive if they have two or three living neighbors. In all other
cases, a cell dies or remains dead.

Different variants of the Game of Life have been defined. HighLife,
for instance, differs because its rule is B36S23 (i.e., a cell is also born
if it has six living neighbors). Life-3-4 has rule B34S34 (cells are born
or survive if they have three or four living neighbors). Seeds is a CA
with rule B2S (a cell is born if it has exactly two living neighbors, but
it never survives). We have also used variant B38S23.

The behavior of a CA depends on two different things: its defini-
tion (rules, neighborhood, size, and boundary condition) and its ini-
tial conditions (a matrix of initial states of cells in the grid). A given
CA can be tested (executed) with different initial conditions. Depend-
ing on the CA definition and the initial conditions applied [5, 6], a
CA can be classified into four broad categories: Class 1: ordered be-
havior (all cells take the same value); Class 2: periodic behavior;
Class!3: random or chaotic behavior; Class 4: complex behavior. The
first two are totally predictable. Random CAs are unpredictable.
Somewhere in between, in the transition from periodic to chaotic, a
complex, interesting behavior can occur.

Genetic algorithms have been used to evolve 1D [7–9] and 2D
[10,!11] CAs to perform particular computational tasks, such as den-
sity classification or the production of predefined 2D and 3D shapes
(form generation or morphogenesis). Sapin et al. [12] have used them
to search through the rule space for CAs capable of sustaining logical
AND gates. Most of these works have focused on the selection of
rules, rather than initial conditions, as in our case.

Different modifications to the typical CA definition have been ap-
plied in the literature. In particular, rules may be probabilistic [13],
fuzzy [14], or subject to changes, depending on the position of the
cells [15–17]. Time-dependent rules have also been considered
[18,!19], especially for music generation [20–22]. Somewhat similar

58 M. Alfonseca and F. J. Soler Gil

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

!

to what we are proposing in this paper is the work by Chopard and
Droz [23], whose CA applies two different rules in alternative genera-
tions.

This paper describes our experiments to evolve interesting initial
conditions for 2D CAs of the Life type, and to study what happens to
particular structures when the rules are changed. The 2D CAs we
have used share the following definitions:

† The set of states, in our case 80,1<.
† The space size, in our case 60ä60.

† The space boundary conditions, in our case a flat toroid.

† A neighborhood, in our case the Moore neighborhood (each cell has
eight neighbors in the main eight directions of the compass).

† The CA rule, which describes the way in which the CA cell states
change with time. The types of rules chosen are Life, HighLife, and
B38S23, as well as mixed cases where rules are time-dependent and al-
ternate in different ways.

Section 2 describes the genetic algorithm we have used to perform
our experiments. Section 3 details the results of the experiments. Fi-
nally, Section 4 states our conclusions and future objectives.

2. Evolving Initial Conditions with a Genetic Algorithm

In our experiments, we first select a given CA definition (a rule, since
all the other parameters of the CA are fixed). We call a set of initial
conditions “interesting” when the evolution of the CA starting from
them gives rise to one or more small CA structures, especially gliders
(which make it possible to design logical gates, and thus provide Life
with the capability for universal computation), but also R-pentomi-
noes or exploders (see Figure 1). To compare different initial condi-
tions and compute how interesting they are, the number of appear-
ances of these structures (regardless of their type) is counted during a
part of the CA’s life. As gliders can remain unchanged during several
life steps, they will usually count more than the other structures,
which are ephemeral.

We have developed a genetic algorithm that discovers interesting
initial conditions with the following parameters:

† Population size: 64 different random initial conditions for the cho-
sen!CA.

† Size of the original population random initial conditions: 30ä30 cen-
tered on a 60ä60 CA space. The remainder of the space is set at state 0
(dead cells).

Evolving Interesting Initial Conditions for Cellular Automata 59

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

Figure 1. A few structures in the Game of Life: (a) glider, (b) R-pentomino,
(c)!exploder.

† Number of evolutionary steps: 400. We chose a fixed number of steps,
rather than an evaluation of the algorithmic performance based on
achieving a solution of the same quality, because this genetic algorithm
results in a heavy-tail distribution. Therefore, reaching a given prede-
fined fitness is not always possible, requiring an infinite number of
steps. This happens frequently in this field, and the appropriate solu-
tion is restarting the algorithm after a fixed number of steps [24]. In
this research, we set the restart number at 400. In other words, the algo-
rithm is run for a fixed number of steps. (In the evolutionary algorithm
jargon, steps are usually called generations, but here we call them steps
to avoid misunderstandings with the generations of the CA.)

† The fitness score of each member of the population (each initial condi-
tion) is computed as the number of appearances of interesting struc-
tures during generations 40 to 54 during the execution of the CA.
A glider that endures for several generations during this period counts
for as many points as that number of generations. R-pentominoes and
exploders, when they appear, are counted only at their first generation.
Therefore gliders are much more strongly selected than the other struc-
tures. With these values, each complete execution of the genetic algo-
rithm takes over half an hour, because the CA used by the algorithm
must be run for each set of initial conditions in the population through
generations 1 to 54 to compute their fitness. Reaching generation 100
would have approximately doubled the computing time. We thought
that skipping the first 40 generations would allow the CAs to be suffi-
ciently stabilized. In later experiments we tried different values for this
parameter and found that testing generations 10 to 24 gives compara-
ble (sometimes identical) results in about half the time.

† After each step in the evolutionary process, the eight individuals with
the lowest scores are replaced by another eight, obtained from the eight
with the highest scores that are paired randomly using the following ge-
netic operations:

60 M. Alfonseca and F. J. Soler Gil

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

– Recombination (crossover): the two parent initial conditions
(raveled in row-first order) are split at a random point (the same for
both) and recombined by appending the second part of each parent
to the first part of the other. After this operation, if both parents are
identical, the children will also be so.

– Mutation: if both parents are identical, one random position of each
child is always changed to a random state value. If both parents are
different, this mutation is performed with a 10% probability. This is
done to increase genetic variability when crossover generates chil-
dren identical to their parents [25].

† After the indicated number of evolutionary steps, the program returns
the initial condition that obtained the maximum score in the whole pro-
cess. The total behavior of the chosen CA is then analyzed to find all
the interesting structures it generates during its lifetime.

The number of individuals replaced in every step (eight, one-eighth
of the population) was chosen because it provides the best balance
between execution time, which is proportional to the number of indi-
viduals replaced, and fitness results. We tested a smaller number
(two) where only the best two CAs in the population are allowed to
remain, but no improvement was obtained in all the tests we made.
We also tried higher numbers (16 and 32), where one-quarter or half
the members are replaced by the children of the best fitted. They gave
slightly better fitness improvements to the eight case, but required
double or quadruple the computing time. Table 1 shows a compari-
son of the results obtained for eight and 16 replacements. In these ex-
periments, the same set of seven random seeds was used for all CAs
rules and genetic algorithm combinations.

Replace- Final Life Avg. R- Expl-

ments Rule Fitness Length Gliders Life pent. oders

16 Life!B3S23 45.86 578 106 33.49 23 71

8 Life!B3S23 37.14 776 118 37.03 25 124

16 HL!B36S23 39.29 386 41 53.63 5 24

8 HL!B36S23 27.29 415 43 22.00 18 25

16 LØHLØLØ 41.71 522 65 64.34 13 27

8 LØHLØLØ 34.14 429 63 47.25 14 26

16 LØSLØLØ 38.86 930 170 31.22 44 137

8 LØSLØLØ 42.57 497 68 52.03 14 54

16 All together 41.43 611 382 39.89 85 259

8 All together 35.29 529 292 40.51 71 229

Table 1. Comparisons of the average of seven different instances with differ-
ent replacement numbers in the genetic algorithm (8 and 16).

Evolving Interesting Initial Conditions for Cellular Automata 61

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

Once the genetic algorithm has provided us with interesting initial
conditions for a given CA, its function is finished. We then execute
the CA starting with those initial conditions for as many generations
as it keeps an interesting behavior, that is, until its behavior becomes
periodic or static. We can also analyze what happens with these initial
conditions if the rule of the CA is changed permanently or periodi-
cally.

3. Experimental Results

We have performed 20 experiments for each type of rule: Life
(B3S23), HighLife (B36S23), B38S23, and two periodic mixed
Life/HighLife and Life/B38S23 rules (the Life rule up to generation
25; the alternative HighLife/B38S23 rule up to generation 50; and so
on, periodically). We have selected for maximum appearance of both
gliders and R-pentominoes, although some exploders are also sponta-
neously generated.

Each experiment is considered to have ended when the CA configu-
ration goes into a static situation, where the states of all the cells
remain the same forever (not necessarily dead), or a periodic configu-
ration, where the states of the cells oscillate with a certain period.
Gliders (see Figure 2) are generated much more frequently than
R-pentominoes. This is due to the fact that they retain the same ap-
pearance during a number of generations, which makes them easy to
detect by the algorithm. R-pentominoes, on the other hand, are only
easily detectable on the generation they first appear. Therefore we
measure from gliders their number and their average duration; from
R-pentominoes and exploders, we just measure their number of ap-
pearances.

This relative permanence, compared with the other objects, gives
gliders the opportunity to display several interesting behaviors. Some-
times, for instance, an experiment generates very few gliders, but with
a large duration; in other cases, gliders are generated and destroyed
immediately. In a few experiments, two of the gliders collided and de-
stroyed one another. In some cases, one or more gliders survive per-
manently, giving rise to a final periodic configuration with a period of
240 generations. (Since it takes a glider four generations to move a po-
sition diagonally, in a space of size 60ä60, the period of a permanent
glider is always 240.) We also show in Table 2 the total number of
permanent gliders. In these experiments, the same set of 20 random
seeds was used for all different types of CAs rules.

Table 2 summarizes the results of all the experiments as a function
of the rule type.

Looking at Table 2 and the detailed results of the individual experi-
ments, the following considerations can be made:

62 M. Alfonseca and F. J. Soler Gil

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

† Interesting behavior appears with all the rules (Life, HighLife, B38S23,
and the mixed rules). The longest life and the largest number of gliders
and exploders happened in one experiment with the Life rule, while the
longest average life of the gliders appeared in one experiment with the
HighLife rule. The largest number of R-pentominoes happened in a dif-
ferent experiment with the HighLife rule.

Figure 2. Five simultaneous gliders at one experiment.

Type of Avg. Perm. Glider R- Expl- Int.
Rule Life Gliders Gliders Life pent. oders Exp.

Life 717 307 12 38.24 69 263 12
HL 503 186 4 29.80 60 95 5
LØHLØLØ 448 156 3 51.22 42 90 6
SL 743 339 6 36.16 75 223 13
LØSLØLØ 548 259 7 39.95 53 159 9

Table 2. Summary of experiments as a function of rule type. The Life rule is
B3S23. The HighLife rule is B36S23. SL represents rule B38S23. The last col-
umn shows the number of interesting experiments obtained.

Evolving Interesting Initial Conditions for Cellular Automata 63

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

† Sometimes the evolution experiments do not generate much interesting
behavior (five or less gliders, few additional objects). This happens in
eight out of the 20 Life experiments; 12 of the HighLife experiments;
six of the B38S23 experiments; nine of the mixed L Ø HL Ø L Ø experi-
ments; and eight of the mixed L Ø SL Ø L Ø experiments.

† Conversely, if we call an experiment especially interesting when 10 or
more gliders are produced with an average life of over 10 generations,
and at least another object appears (R-pentominoes or exploders), the
numbers obtained are those shown in the last column in Table 2 (out of
20 experiments).

† This seems to indicate that the rules of Life and B38S23 are more prone
to the appearance of interesting behavior than the rules of HighLife.
The same conclusion is reached by comparing the numbers of interest-
ing objects obtained for each type of rule (see Table 2).

† There are many different types of exploders (exploding structures), of
which we have chosen to detect just two. Some of them are highly com-
plex and interesting (see Figures 3 and 4). We have not selected these
objects, but are counting them anyway because they appear quite fre-
quently.

Figure 3. An exploder at generation 239 in one experiment. A glider is also vis-
ible.

64 M. Alfonseca and F. J. Soler Gil

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

Figure 4. A further stage of the explosion at generation 268 in the same experi-
ment. The glider has just collided against the small square at the bottom left.

3.1 Experiments Applying to a Cellular Automaton with a Given
Rule an Initial Condition Evolved for a Cellular Automaton with
a Different Rule

In the next set of experiments, we used the initial conditions evolved
for Life with the HighLife rules and vice versa. We also tested the ini-
tial conditions evolved for Life with the B38S23 rule and vice versa.
The results shown in Table 3 should be compared with those in
Table!2. When the HighLife rule is used with the initial conditions
evolved for Life, the results are much less interesting (shorter life
length; very few gliders and similar objects appear; very few especially
interesting experiments). In the opposite case, however, the situation
is reversed: we get longer life lengths and a larger number of objects,
with many more interesting experiments.

On the other hand, when the B38S23 rule is executed with the ini-
tial conditions selected for Life, only a slight decrease is observed. In
the opposite case we also get a more interesting situation, with longer
experiments and more objects (although a slightly smaller number of

Evolving Interesting Initial Conditions for Cellular Automata 65

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

especially interesting experiments). Again, as in previous experiments,
the HighLife rule seems to be less versatile than the Life rule. The
B38S23 occupies an intermediate position, nearer to Life than to
HighLife.

In the next set of experiments, we tried to find the effect of chang-
ing the rule (at generation 46) during the execution of some of the
CAs used in the previous examples. So, if the automaton was gener-
ated using the rules of Life, after generation 46 the rules would
change to HighLife and stay there for the remainder of its “life,” and
vice versa. Generation 46 was chosen because it is inside the training
period for the genetic algorithm (generations 40 to 54). The results
(averaged from 10 experiments) are shown in the first four rows in
Table 4.

For comparison, the last three rows in Table 4 again show the re-
sults for the experiments described in Table 2, where the initial condi-
tions evolved for one rule are executed on a CA with the same rule.
Since Table 2 refers to 20 experiments versus the 10 in Table 4, those
figures corresponding to total numbers of objects generated have been
halved.

Evolved Executed Life Glider R- Expl- Int.
for for Length Gliders Life pent. oders Exp.

Life HighLife 365 88 16.74 27 44 2
HighLife Life 843 396 19.10 97 342 12
Life B38S23 637 302 33.04 64 199 10
B38S23 Life 1384 732 18,39 205 551 11

Table 3. Experiments using a given rule for initial conditions evolved for a dif-
ferent rule.

Evolved Executed Life Glider R- Expl- Int.
for for Length Gliders Life pent. oders Exp.

Life Life Ø HL 539 100 52.55 23 58 4.0
HL HL Ø Life 767 212 29.63 37 131 4.0
Life Life Ø SL 668 163 45,18 30 116 5.0
SL SL Ø Life 620 140 37.16 18 82 5.0
Life LØHLØL 543 128 45.36 28 91 5.0
Life LØSLØL 504 104 54.44 16 69 5.0
Life LØHLØLØ 481 82 57.85 18 46 3.0
Life LØSLØLØ 646 190 35.44 41 107 4.0
Life Life 717 153 38.24 34 131 6.0
HL HL 503 93 29.80 30 47 2.5
SL SL 743 169 36.16 37 111 6.5

Table 4. Experiments performed changing the rule during the execution. SL
represents the rule B38S23.

66 M. Alfonseca and F. J. Soler Gil

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

From the observation of the results of these experiments, we can
get the following conclusions:

† When the mixed rule of the form Life Ø HighLife was used with initial
conditions evolved for Life, the CA displayed a less complex behavior
(shortest life, less gliders and other interesting objects), compared to ex-
periments where the rules of Life were always applied. A slightly more
complex behavior was shown, however, compared to a HighLife CA
with initial conditions evolved for HighLife, and a significantly more
complex behavior than a HighLife CA provided with initial conditions
evolved for Life.

† The mixed rules of the form HighLife Ø Life (with initial conditions
evolved for HighLife) and Life Ø B38S23 (with initial conditions
evolved for Life) generated a behavior about as complex than those
where initial conditions evolved for Life or B38S23 were applied to a
CA running with the same rules.

† The mixed rules of the form B38S23 Ø Life (with initial conditions
evolved for B38S23) generated a behavior less complex than those
where initial conditions evolved for Life or B38S23 were applied to a
CA running with the same rules, but more complex than those de-
scribed in the first bullet of this list.

This reinforces the conclusion derived from the first set of experi-
ments: the rules of Life and B38S23 are more prone to the emergence
of interesting behavior than the rules of HighLife.

In the next set of experiments, we tried to find out the effect of a
very small change in the rules, rather than a permanent one. We
started with 10 initial conditions evolved for CAs of the Life type and
let them develop for 46 generations; then we changed the rules to
HighLife or B38S23 (SL), executed them for four generations, and re-
stored the rules to Life. The results are shown in rows five and six in
Table 4. They show that mixed rules of the type L Ø HL Ø L are less
disruptive than L Ø HL (leaving HL rules act for the remainder of the
CA’s life). The opposite effect happens when HighLife is replaced by
B38S23.

In the last set of experiments, we tested the effect of a periodic
change in the rules by executing 10 experiments with initial condi-
tions evolved for Life on a CA with periodic rules (L Ø HL Ø L Ø
and L Ø SL Ø L Ø). Rows seven and eight in Table 4 show the re-
sults. Again, the change to HighLife shows a more disruptive effect
than the change to B38S23, which reaches numbers of objects compa-
rable to the best, except for the number of interesting experiments.
We can conclude that the latter periodic change in the rules, although
having perceptible effects in each particular case, seems to diminish
slightly the average complexity of the development.

4. Conclusions

In this paper we have found that it is possible to evolve interesting
initial conditions for some cellular automata (CAs) of the Game of

Evolving Interesting Initial Conditions for Cellular Automata 67

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

Life type, which make the CAs generate structures such as gliders or
R-pentominoes. Exploders are also generated in any case, but initial
conditions for this case are not easy to select.

By testing different combinations where rules are changed during
the execution of the CA, and through crossed application of initial
conditions, we have found that the B36S23 (HighLife) rule is less
prone to the emergence of interesting structures than the B3S23 (Life)
and the B38S23 rules. We have also found (although this is not dis-
cussed in the paper) that CAs with very different rules, such as
Life-3-4 and Seeds, do not give good results with our genetic algo-
rithm.

In general, we can conclude that temporal invariance of the rules of
the Game of Life type does not seem to be an essential requirement
for the emergence and continued existence of potentially complex
structures in this type of CA.

In the future, we intend to perform additional experiments with
CAs of the Game of Life type for these or different objects, and also
explore the effect of changing further the parameters and the genetic
operations of the genetic algorithm.

References

[1] J. von Neumann, Theory of Self-Reproducing Automata (A. W. Burks,
ed.), Urbana, IL: University of Illinois Press, 1966.

[2] P. Sarkar, “A Brief History of Cellular Automata,” ACM Computing
Surveys (CSUR), 32(1), 2000 pp. 80–107. doi:10.1145/349194.349202.

[3] M. Gardner, “Mathematical Games: The Fantastic Combinations of
John Conway’s New Solitaire Game ‘Life,’” Scientific American, 223(4),
1970, pp. 120–123.

[4] S. Wolfram, Theory and Applications of Cellular Automata, 1st ed., Sin-
gapore: World Scientific, 1986.

[5] S. Wolfram, “Universality and Complexity in Cellular Automata,” Phys-
ica D, 10, 1984 pp. 1–35.

[6] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[7] M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Revisiting the Edge of
Chaos: Evolving Cellular Automata to Perform Computations,” Com-
plex Systems, 7(2), 1993 pp. 89–130.
http://www.complex-systems.com/pdf/07-2-1.pdf.

[8] M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Evolving Cellular
Automata to Perform Computations: Mechanisms and Impediments,”
Physica D: Nonlinear Phenomena, 75(1–3), 1994 pp. 361–391.
doi:10.1016/0167-2789(94)90293-3.

68 M. Alfonseca and F. J. Soler Gil

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

[9] M. Mitchell, J. P. Crutchfield, and R. Das, “Evolving Cellular Automata
with Genetic Algorithms: A Review of Recent Work,” in Proceedings of
the First International Conference on Evolutionary Computation and Its
Applications (EvCA96), Moscow, Russia: Russian Academy of Sciences,
1996. http://www.cs.unibo.it/babaoglu/courses/cas06-07/resources/
tutorials/Evolving_Cellular_Automata.pdf.

[10] F. Jiménez Morales, J. P. Crutchfield, and M. Mitchell, “Evolving Two-
Dimensional Cellular Automata to Perform Density Classification: A Re-
port on Work in Progress,” Parallel Computing, 27(5), 2001
pp.!571–585. doi:10.1016/S0167-8191(00)00078-8.

[11] A. Chavoya and Y. Duthen, “Using a Genetic Algorithm to Evolve Cellu-
lar Automata for 2D/3D Computational Development,” in Proceedings
of the 8th Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO06), New York: ACM, 2006. http://www.cs.york.ac.uk/
rts/docs/GECCO_2006/docs/p231.pdf.

[12] E. Sapin and L. Bull, “Evolutionary Search for Cellular Automata Logic
Gates with Collision-Based Computing,” Complex Systems, 17(4), 2008
pp. 321–338. http://www.complex-systems.com/pdf/17-4-1.pdf.

[13] S. A. Billings and Y. Yang, “Identification of Probabilistic Cellular Au-
tomata,” IEEE Transaction on Systems, Man, and Cybernetics, Part B,
33(2), 2003 pp. 225–236. doi:10.1109/TSMCB.2003.810437.

[14] P. Flocchini, F. Geurts, A. Mingarelli, and N. Santoro, “Convergence
and Aperiodicity in Fuzzy Cellular Automata: Revisiting Rule 90,” Phys-
ica D: Nonlinear Phenomena, 142(1–2), 2000 pp. 20–28.
doi:10.1016/S0167-2789(00)00052-X.

[15] A. K. Das, A. Ganguly, A. Dasgupta, S. Bhawmik, and P. P. Chaudhuri,
“Efficient Characterisation of Cellular Automata,” IEE Proceedings-E:
Computers and Digital Techniques, 137(1), 1990 pp. 81–87.

[16] P. P. Chaudhuri, D. R. Chowdhury, S. Nandi, and S. Chattopadhyay,
Additive Cellular Automata: Theory and Applications, Vol. 1, Los
Alamitos, CA: IEEE Computer Society Press, 1997.

[17] P. Sarkar and R. Barua, “The Set of Reversible 90/150 Cellular Au-
tomata Is Regular,” Discrete Applied Mathematics, 84(1–3), 1998
pp.!199–213. doi:10.1016/S0166-218X(98)00004-3.

[18] A. Deutsch, Cellular Automata and Biological Pattern Formation,
Boston: Birkhauser, 1999.

[19] N. Ganguly, B. K. Sikdar, A. Deutsch, G. Canright, and P. P. Chaud-
huri, A Survey on Cellular Automata, Centre for High Performance
Computing, Dresden University of Technology, 2003.
http://www.cs.unibo.it/bison/publications/CAsurvey.pdf.

[20] P. Beyls, “The Musical Universe of Cellular Automata,” in Proceedings
of the 1989 International Computer Music Conference (T. Wells and
D.!Butler, eds.), 1989, pp. 34–41. http://quod.lib.umich.edu/cgi/p/pod/
dod-idx?c=icmc;idno=bbp2372.1989.009.

[21] A. R. Brown, “Exploring Rhythmic Automata,” Lecture Notes in Com-
puter Science, 3449, 2005 pp. 551–556. doi:
10.1007/978-3-540-32003-6_57.

[22] D. Burraston, E. Edmonds, D. Livingston, and E. Reck Miranda, Cellu-
lar Automata in MIDI Based Computer Music, Ann Arbor, MI: Univer-
sity of Michigan, 2004.

Evolving Interesting Initial Conditions for Cellular Automata 69

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

[23] B. Chopard and M. Droz, Cellular Automata Modelling of Physical Sys-
tems, Cambridge: Cambridge University Press, 1998.

[24] M. Cebrián, A. Ortega, and M. Alfonseca, “Acceleration of a Procedure
to Generate Fractal Curves of a Given Dimension through the Proba-
bilistic Analysis of Execution Time,” in Intelligent Engineering Sys-
tems through Artificial Neural Networks, Vol. 14, St. Louis, MO
(C. H. Dagli, A. L. Buczak, D. L. Enke, M. J. Embrechts, and O. Ersoy,
eds.), New York: ASME Press, 2004 pp. 265–270.
http://arantxa.ii.uam.es/~alfonsec/docs/annie.pdf.

[25] A. Ortega, A. A. Dalhoum, and M. Alfonseca, “Grammatical Evolution
to Design Fractal Curves with a Given Dimension,” IBM Journal of
Research and Development, 47(4), 2003, pp. 483–493
doi:10.1147/rd.474.0483.

70 M. Alfonseca and F. J. Soler Gil

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.

<<
 /ASCII85EncodePages false
 /AllowPSXObjects false
 /AllowTransparency false
 /AlwaysEmbed [
 true
]
 /AntiAliasColorImages false
 /AntiAliasGrayImages false
 /AntiAliasMonoImages false
 /AutoFilterColorImages true
 /AutoFilterGrayImages true
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CheckCompliance [
 /None
]
 /ColorACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorConversionStrategy /LeaveColorUnchanged
 /ColorImageAutoFilterStrategy /JPEG
 /ColorImageDepth -1
 /ColorImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /ColorImageDownsampleThreshold 1.50000
 /ColorImageDownsampleType /Bicubic
 /ColorImageFilter /DCTEncode
 /ColorImageMinDownsampleDepth 1
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /ColorImageResolution 300
 /ColorSettingsFile ()
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /CreateJDFFile false
 /CreateJobTicket false
 /CropColorImages false
 /CropGrayImages false
 /CropMonoImages false
 /DSCReportingLevel 0
 /DefaultRenderingIntent /Default
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006E0067007300200074006F0020006300720065006100740065002000410064006F00620065002000500044004600200064006F00630075006D0065006E0074007300200066006F00720020007100750061006C0069007400790020007000720069006E00740069006E00670020006F006E0020006400650073006B0074006F00700020007000720069006E007400650072007300200061006E0064002000700072006F006F0066006500720073002E002000200043007200650061007400650064002000500044004600200064006F00630075006D0065006E00740073002000630061006E0020006200650020006F00700065006E00650064002000770069007400680020004100630072006F00620061007400200061006E0064002000410064006F00620065002000520065006100640065007200200035002E003000200061006E00640020006C0061007400650072002E>
 >>
 /DetectBlends true
 /DetectCurves 0
 /DoThumbnails false
 /DownsampleColorImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /EmbedOpenType false
 /EmitDSCWarnings false
 /EncodeColorImages true
 /EncodeGrayImages true
 /EncodeMonoImages true
 /EndPage -1
 /GrayACSImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageAutoFilterStrategy /JPEG
 /GrayImageDepth -1
 /GrayImageDict <<
 /HSamples [
 1
 1
 1
 1
]
 /QFactor 0.15000
 /VSamples [
 1
 1
 1
 1
]
 >>
 /GrayImageDownsampleThreshold 1.50000
 /GrayImageDownsampleType /Bicubic
 /GrayImageFilter /DCTEncode
 /GrayImageMinDownsampleDepth 2
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /GrayImageResolution 300
 /ImageMemory 1048576
 /JPEG2000ColorACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000ColorImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayACSImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /JPEG2000GrayImageDict <<
 /Quality 30
 /TileHeight 256
 /TileWidth 256
 >>
 /LockDistillerParams false
 /MaxSubsetPct 100
 /MonoImageDepth -1
 /MonoImageDict <<
 /K -1
 >>
 /MonoImageDownsampleThreshold 1.50000
 /MonoImageDownsampleType /Bicubic
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /MonoImageResolution 1200
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /NeverEmbed [
 true
]
 /OPM 1
 /Optimize true
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.25000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXBleedBoxToTrimBoxOffset [
 0
 0
 0
 0
]
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXOutputCondition ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputIntentProfile ()
 /PDFXRegistryName ()
 /PDFXSetBleedBoxToMediaBox true
 /PDFXTrapped /False
 /PDFXTrimBoxToMediaBoxOffset [
 0
 0
 0
 0
]
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /ParseICCProfilesInComments true
 /PassThroughJPEGImages true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /sRGBProfile (sRGB IEC61966-2.1)
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

