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The use of a genetic algorithm to obtain “interesting” initial conditions
for  cellular  automata  of  the  family  of  Conway’s  Game  of  Life  is  de-
scribed in this paper. The conditions have been selected so as to maxi-
mize the number of gliders, R-pentominoes, and similar structures gen-
erated during the execution of the automata. Besides the original Game
of Life rules, we have tested automata with similar rules, such as High-
Life and B38S23, as well  as mixed and time-dependent rules.  We have
concluded  that  the  temporal  invariance  of  the  rules  of  these  automata
does not seem to be a requirement for the existence of the selected struc-
tures. 

1. Introduction  

Informally, a cellular automaton (CA) [1] is a set of finite determinis-
tic automata distributed in discrete cells along a regular grid. The sets
of states of its neighbors are inputs for each automaton, which means
that the next state of each cell depends on its current state and on the
states  of  all  its  neighbors;  the  neighborhood  is  usually  the  same  all
along the grid. CAs can be one-dimensional (1D) if the grid is a string
of  cells,  bi-dimensional  (2D)  when  the  grid  is  a  surface,  or  higher-
dimensional.  At  every  time  step,  also  called  a  generation,  each  cell
computes its  new state by determining the states of  cells  in its  neigh-
borhood and applying transition rules to compute its new state. Every
cell  uses  the  same  update  rules  and  all  cells  are  updated  simultane-
ously.  

When  the  grids  are  finite,  boundary  conditions  become  essential.
They  determine,  for  instance,  which  is  the  left  neighbor  of  the  left-
most  cell. A  typical  boundary  condition  is  called  periodic  (or  cyclic):
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1D  rows  are  turned  into  circles  (their  extreme  cells  become  adjacent
to  each  other);  2D  rectangular  grids  are  turned  into  toroids
(connecting the leftmost column to the rightmost column and the top
row  to  the  bottom  row).  Static  (or  closed)  boundary  conditions  are
also common, where extreme cells are assumed to be connected to per-
manent 0-state cells. 

So far, CAs have proved very powerful in simulating many real-life
applications  and  phenomena.  It  has  been  proved  that  some  1D  and
2D CAs, such as the Game of Life (also known as Life), are computa-
tionally equivalent to the universal Turing machine [2]. 

The  2D  CA  called  the  Game  of  Life  [3,  4]  was  designed  by  John
Conway. It consists of a matrix of cells, where each cell may take one
of  two  states:  alive  and  dead  (respectively  represented  by  one  and
zero).  Each cell  has eight  neighbors,  according to a Moore neighbor-
hood (in the eight main directions of the compass). The next state of a
cell is determined by rule B3S23, which means that cells are born (go
from dead to living state)  if  they have exactly  three  living neighbors,
and  survive  if  they  have  two  or  three  living  neighbors.  In  all  other
cases, a cell dies or remains dead. 

Different variants of the Game of Life have been defined. HighLife,
for instance, differs because its rule is B36S23 (i.e., a cell is also born
if it has six living neighbors). Life-3-4 has rule B34S34 (cells are born
or survive  if  they have three  or  four  living neighbors).  Seeds  is  a  CA
with rule B2S (a cell is born if it has exactly two living neighbors, but
it never survives). We have also used variant B38S23. 

The  behavior  of  a  CA depends  on  two  different  things:  its  defini-
tion  (rules,  neighborhood,  size,  and  boundary  condition)  and  its  ini-
tial  conditions (a  matrix of  initial  states  of  cells  in  the grid).  A given
CA can be tested (executed) with different initial conditions. Depend-
ing  on  the  CA  definition  and  the  initial  conditions  applied  [5,  6],  a
CA can be  classified  into  four  broad categories:  Class  1:  ordered be-
havior  (all  cells  take  the  same  value);  Class  2:  periodic  behavior;
Class!3: random or chaotic behavior; Class 4: complex behavior. The
first  two  are  totally  predictable.  Random  CAs  are  unpredictable.
Somewhere  in  between,  in  the  transition  from  periodic  to  chaotic,  a
complex, interesting behavior can occur. 

Genetic  algorithms  have  been  used  to  evolve  1D  [7–9]  and  2D
[10,!11] CAs to perform particular computational tasks, such as den-
sity  classification or  the  production of  predefined 2D and 3D shapes
(form generation or morphogenesis). Sapin et al. [12] have used them
to search through the rule space for CAs capable of sustaining logical
AND  gates.  Most  of  these  works  have  focused  on  the  selection  of
rules, rather than initial conditions, as in our case. 

Different  modifications  to  the  typical  CA definition have  been ap-
plied  in  the  literature.  In  particular,  rules  may  be  probabilistic  [13],
fuzzy  [14],  or  subject  to  changes,  depending  on  the  position  of  the
cells  [15–17].  Time-dependent  rules  have  also  been  considered
[18,!19], especially  for  music  generation  [20–22].  Somewhat  similar
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to  what  we are  proposing in  this  paper  is  the  work by Chopard and
Droz [23], whose CA applies two different rules in alternative genera-
tions. 

This  paper  describes  our  experiments  to  evolve  interesting  initial
conditions for 2D CAs of the Life type, and to study what happens to
particular  structures  when  the  rules  are  changed.  The  2D  CAs  we
have used share the following definitions: 

† The set of states, in our case 80,1<. 
† The space size, in our case 60ä60. 

† The space boundary conditions, in our case a flat toroid. 

† A  neighborhood,  in  our  case  the  Moore  neighborhood  (each  cell  has
eight neighbors in the main eight directions of the compass). 

† The  CA  rule,  which  describes  the  way  in  which  the  CA  cell  states
change  with  time.  The  types  of  rules  chosen  are  Life,  HighLife,  and
B38S23, as well as mixed cases where rules are time-dependent and al-
ternate in different ways. 

Section 2 describes the genetic algorithm we have used to perform
our  experiments.  Section  3  details  the  results  of  the  experiments.  Fi-
nally, Section 4 states our conclusions and future objectives. 

2. Evolving Initial Conditions with a Genetic Algorithm  

In our experiments, we first select a given CA definition (a rule, since
all  the other  parameters  of  the CA are fixed).  We call  a  set  of  initial
conditions  “interesting”  when  the  evolution  of  the  CA starting  from
them gives rise to one or more small CA structures, especially gliders
(which make it possible to design logical gates, and thus provide Life
with  the  capability  for  universal  computation),  but  also  R-pentomi-
noes  or  exploders  (see  Figure  1).  To  compare  different  initial  condi-
tions  and  compute  how  interesting  they  are,  the  number  of  appear-
ances of these structures (regardless of their type) is counted during a
part of the CA’s life. As gliders can remain unchanged during several
life  steps,  they  will  usually  count  more  than  the  other  structures,
which are ephemeral. 

We  have  developed  a  genetic  algorithm  that  discovers  interesting
initial conditions with the following parameters: 

† Population  size:  64  different  random  initial  conditions  for  the  cho-
sen!CA. 

† Size  of  the  original  population  random  initial  conditions:  30ä30  cen-
tered on a 60ä60 CA space. The remainder of the space is set at state 0
(dead cells). 
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Figure 1. A  few  structures  in  the  Game  of  Life:  (a)  glider,  (b)  R-pentomino,
(c)!exploder.  

† Number of evolutionary steps: 400. We chose a fixed number of steps,
rather  than  an  evaluation  of  the  algorithmic  performance  based  on
achieving a solution of the same quality, because this genetic algorithm
results  in  a  heavy-tail  distribution.  Therefore,  reaching  a  given  prede-
fined  fitness  is  not  always  possible,  requiring  an  infinite  number  of
steps.  This  happens  frequently  in  this  field,  and  the  appropriate  solu-
tion  is  restarting  the  algorithm  after  a  fixed  number  of  steps  [24].  In
this research, we set the restart number at 400. In other words, the algo-
rithm is run for a fixed number of steps. (In the evolutionary algorithm
jargon, steps are usually called generations, but here we call them steps
to avoid misunderstandings with the generations of the CA.)

† The fitness score of each member of the population (each initial condi-
tion)  is  computed  as  the  number  of  appearances  of  interesting  struc-
tures  during  generations  40  to  54  during  the  execution  of  the  CA.
A glider  that  endures  for  several  generations  during  this  period counts
for  as  many points  as  that  number  of  generations.  R-pentominoes  and
exploders, when they appear, are counted only at their first generation.
Therefore gliders are much more strongly selected than the other struc-
tures.  With  these  values,  each  complete  execution  of  the  genetic  algo-
rithm  takes  over  half  an  hour,  because  the  CA  used  by  the  algorithm
must be run for each set of initial conditions in the population through
generations  1  to  54  to  compute  their  fitness.  Reaching  generation  100
would  have  approximately  doubled  the  computing  time.  We  thought
that skipping the first 40 generations would allow the CAs to be suffi-
ciently stabilized. In later experiments we tried different values for this
parameter  and found that  testing  generations  10 to  24 gives  compara-
ble (sometimes identical) results in about half the time.

† After  each  step  in  the  evolutionary  process,  the  eight  individuals  with
the lowest scores are replaced by another eight, obtained from the eight
with the highest scores that are paired randomly using the following ge-
netic operations: 
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– Recombination  (crossover):  the  two  parent  initial  conditions
(raveled in row-first order) are split at a random point (the same for
both) and recombined by appending the second part of each parent
to the first part of the other. After this operation, if both parents are
identical, the children will also be so. 

– Mutation: if both parents are identical, one random position of each
child is always changed to a random state value. If both parents are
different, this mutation is performed with a 10% probability. This is
done  to  increase  genetic  variability  when  crossover  generates  chil-
dren identical to their parents [25]. 

† After  the  indicated  number  of  evolutionary  steps,  the  program returns
the initial condition that obtained the maximum score in the whole pro-
cess.  The  total  behavior  of  the  chosen  CA is  then  analyzed  to  find  all
the interesting structures it generates during its lifetime. 

The number of individuals replaced in every step (eight, one-eighth
of  the  population)  was  chosen  because  it  provides  the  best  balance
between execution time, which is proportional to the number of indi-
viduals  replaced,  and  fitness  results.  We  tested  a  smaller  number
(two)  where  only  the  best  two CAs in  the  population are  allowed to
remain,  but  no  improvement  was  obtained  in  all  the  tests  we  made.
We also tried higher numbers (16 and 32), where one-quarter or half
the members are replaced by the children of the best fitted. They gave
slightly  better  fitness  improvements  to  the  eight  case,  but  required
double  or  quadruple  the  computing  time.  Table  1  shows  a  compari-
son of the results obtained for eight and 16 replacements. In these ex-
periments,  the  same  set  of  seven  random seeds  was  used  for  all  CAs
rules and genetic algorithm combinations.

Replace- Final Life Avg. R- Expl-

ments Rule Fitness Length Gliders Life pent. oders

16 Life!B3S23 45.86 578 106 33.49 23 71

8 Life!B3S23 37.14 776 118 37.03 25 124

16 HL!B36S23 39.29 386 41 53.63 5 24

8 HL!B36S23 27.29 415 43 22.00 18 25

16 LØHLØLØ 41.71 522 65 64.34 13 27

8 LØHLØLØ 34.14 429 63 47.25 14 26

16 LØSLØLØ 38.86 930 170 31.22 44 137

8 LØSLØLØ 42.57 497 68 52.03 14 54

16 All together 41.43 611 382 39.89 85 259

8 All together 35.29 529 292 40.51 71 229

Table 1. Comparisons  of  the  average  of  seven  different  instances  with  differ-
ent replacement numbers in the genetic algorithm (8 and 16).   
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Once the genetic algorithm has provided us with interesting initial
conditions  for  a  given  CA,  its  function  is  finished.  We  then  execute
the CA starting with those initial  conditions for as  many generations
as it keeps an interesting behavior, that is, until its behavior becomes
periodic or static. We can also analyze what happens with these initial
conditions  if  the  rule  of  the  CA  is  changed  permanently  or  periodi-
cally. 

3. Experimental Results  

We  have  performed  20  experiments  for  each  type  of  rule:  Life
(B3S23),  HighLife  (B36S23),  B38S23,  and  two  periodic  mixed
Life/HighLife  and  Life/B38S23  rules  (the  Life  rule  up  to  generation
25; the alternative HighLife/B38S23 rule up to generation 50; and so
on, periodically).  We have selected for maximum appearance of both
gliders and R-pentominoes, although some exploders are also sponta-
neously generated.  

Each experiment is considered to have ended when the CA configu-
ration  goes  into  a  static  situation,  where  the  states  of  all  the  cells
remain the same forever (not necessarily dead), or a periodic configu-
ration,  where  the  states  of  the  cells  oscillate  with  a  certain  period.
Gliders  (see  Figure  2)  are  generated  much  more  frequently  than
R-pentominoes.  This  is  due  to  the  fact  that  they  retain  the  same  ap-
pearance during a number of generations,  which makes them easy to
detect  by  the  algorithm.  R-pentominoes,  on the  other  hand,  are  only
easily  detectable  on  the  generation  they  first  appear.  Therefore  we
measure  from  gliders  their  number  and  their  average  duration;  from
R-pentominoes  and  exploders,  we  just  measure  their  number  of  ap-
pearances. 

This  relative  permanence,  compared  with  the  other  objects,  gives
gliders the opportunity to display several interesting behaviors. Some-
times, for instance, an experiment generates very few gliders, but with
a  large  duration;  in  other  cases,  gliders  are  generated  and  destroyed
immediately. In a few experiments, two of the gliders collided and de-
stroyed  one  another.  In  some cases,  one  or  more  gliders  survive  per-
manently, giving rise to a final periodic configuration with a period of
240 generations. (Since it takes a glider four generations to move a po-
sition diagonally, in a space of size 60ä60, the period of a permanent
glider  is  always  240.)  We  also  show  in  Table  2  the  total  number  of
permanent  gliders.  In  these  experiments,  the  same  set  of  20  random
seeds was used for all different types of CAs rules. 

Table 2 summarizes the results of all the experiments as a function
of the rule type. 

Looking at Table 2 and the detailed results of the individual experi-
ments, the following considerations can be made: 
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† Interesting behavior appears with all the rules (Life, HighLife, B38S23,
and the mixed rules). The longest life and the largest number of gliders
and exploders happened in one experiment with the Life rule, while the
longest  average life  of  the gliders appeared in one experiment with the
HighLife rule. The largest number of R-pentominoes happened in a dif-
ferent experiment with the HighLife rule. 

Figure 2. Five simultaneous gliders at one experiment.  

Type of Avg.  Perm. Glider R- Expl- Int.
Rule Life Gliders Gliders Life pent. oders Exp.

Life 717 307 12 38.24 69 263 12
HL 503 186 4 29.80 60 95 5
LØHLØLØ 448 156 3 51.22 42 90 6
SL 743 339 6 36.16 75 223 13
LØSLØLØ 548 259 7 39.95 53 159 9

Table 2. Summary of  experiments  as  a  function of  rule  type.  The  Life  rule  is
B3S23. The HighLife rule is B36S23. SL represents rule B38S23. The last col-
umn shows the number of interesting experiments obtained.   
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† Sometimes the evolution experiments  do not generate much interesting
behavior  (five  or  less  gliders,  few  additional  objects).  This  happens  in
eight  out  of  the  20  Life  experiments;  12  of  the  HighLife  experiments;
six of the B38S23 experiments; nine of the mixed L Ø HL Ø L Ø experi-
ments; and eight of the mixed L Ø SL Ø L Ø experiments.

† Conversely,  if  we  call  an  experiment  especially  interesting  when  10  or
more gliders are produced with an average life  of  over 10 generations,
and  at  least  another  object  appears  (R-pentominoes  or  exploders),  the
numbers obtained are those shown in the last column in Table 2 (out of
20 experiments). 

† This seems to indicate that the rules of Life and B38S23 are more prone
to  the  appearance  of  interesting  behavior  than  the  rules  of  HighLife.
The same conclusion is  reached by comparing the numbers of interest-
ing objects obtained for each type of rule (see Table 2). 

† There  are  many  different  types  of  exploders  (exploding  structures),  of
which we have chosen to detect just two. Some of them are highly com-
plex  and  interesting  (see  Figures  3  and  4).  We  have  not  selected  these
objects,  but  are  counting  them  anyway  because  they  appear  quite  fre-
quently. 

Figure 3. An exploder at generation 239 in one experiment. A glider is also vis-
ible.  
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Figure 4. A further stage of the explosion at generation 268 in the same experi-
ment. The glider has just collided against the small square at the bottom left.  

3.1 Experiments Applying to a Cellular Automaton with a Given 
Rule an Initial Condition Evolved for a Cellular Automaton with 
a Different Rule  

In the next set  of  experiments,  we used the initial  conditions evolved
for Life with the HighLife rules and vice versa. We also tested the ini-
tial  conditions  evolved  for  Life  with  the  B38S23  rule  and  vice  versa.
The  results  shown  in  Table  3  should  be  compared  with  those  in
Table!2.  When  the  HighLife  rule  is  used  with  the  initial  conditions
evolved  for  Life,  the  results  are  much  less  interesting  (shorter  life
length; very few gliders and similar objects appear; very few especially
interesting  experiments).  In  the  opposite  case,  however,  the  situation
is reversed: we get longer life lengths and a larger number of objects,
with many more interesting experiments.  

On the other hand, when the B38S23 rule is executed with the ini-
tial  conditions selected for Life,  only a slight decrease is  observed. In
the opposite case we also get a more interesting situation, with longer
experiments  and more  objects (although a  slightly  smaller  number  of
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especially interesting experiments). Again, as in previous experiments,
the  HighLife  rule  seems  to  be  less  versatile  than  the  Life  rule.  The
B38S23  occupies  an  intermediate  position,  nearer  to  Life  than  to
HighLife. 

In the next set of experiments, we tried to find the effect of chang-
ing  the  rule  (at  generation  46)  during  the  execution  of  some  of  the
CAs  used  in  the  previous  examples.  So,  if  the  automaton was  gener-
ated  using  the  rules  of  Life,  after  generation  46  the  rules  would
change to HighLife and stay there for the remainder of its “life,” and
vice versa. Generation 46 was chosen because it is inside the training
period  for  the  genetic  algorithm  (generations  40  to  54).  The  results
(averaged  from  10  experiments)  are  shown  in  the  first  four  rows  in
Table 4. 

For comparison, the last  three rows in Table 4 again show the re-
sults for the experiments described in Table 2, where the initial condi-
tions  evolved  for  one  rule  are  executed  on  a  CA with  the  same rule.
Since Table 2 refers to 20 experiments versus the 10 in Table 4, those
figures corresponding to total numbers of objects generated have been
halved. 

Evolved Executed Life Glider R- Expl- Int.
for for Length Gliders Life pent. oders Exp.

Life HighLife 365 88 16.74 27 44 2
HighLife Life 843 396 19.10 97 342 12
Life B38S23 637 302 33.04 64 199 10
B38S23 Life 1384 732 18,39 205 551 11

Table 3. Experiments using a given rule for initial conditions evolved for a dif-
ferent rule.   

Evolved Executed Life Glider R- Expl- Int.
for for Length Gliders Life pent. oders Exp.

Life Life Ø HL 539 100 52.55 23 58 4.0
HL HL Ø Life 767 212 29.63 37 131 4.0
Life Life Ø SL 668 163 45,18 30 116 5.0
SL SL Ø Life 620 140 37.16 18 82 5.0
Life LØHLØL 543 128 45.36 28 91 5.0
Life LØSLØL 504 104 54.44 16 69 5.0
Life LØHLØLØ 481 82 57.85 18 46 3.0
Life LØSLØLØ 646 190 35.44 41 107 4.0
Life Life 717 153 38.24 34 131 6.0
HL HL 503 93 29.80 30 47 2.5
SL SL 743 169 36.16 37 111 6.5

Table 4. Experiments  performed  changing  the  rule  during  the  execution.  SL
represents the rule B38S23.   
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From  the  observation  of  the  results  of  these  experiments,  we  can
get the following conclusions: 

† When the mixed rule of the form Life Ø HighLife was used with initial
conditions  evolved  for  Life,  the  CA displayed  a  less  complex  behavior
(shortest life, less gliders and other interesting objects), compared to ex-
periments where the rules of Life were always applied. A slightly more
complex  behavior  was  shown,  however,  compared  to  a  HighLife  CA
with  initial  conditions  evolved  for  HighLife,  and  a  significantly  more
complex behavior than a HighLife CA provided with initial  conditions
evolved for Life. 

† The  mixed  rules  of  the  form  HighLife  Ø  Life  (with  initial  conditions
evolved  for  HighLife)  and  Life  Ø  B38S23  (with  initial  conditions
evolved  for  Life)  generated  a  behavior  about  as  complex  than  those
where  initial  conditions  evolved  for  Life  or  B38S23  were  applied  to  a
CA running with the same rules. 

† The  mixed  rules  of  the  form  B38S23  Ø  Life  (with  initial  conditions
evolved  for  B38S23)  generated  a  behavior  less  complex  than  those
where  initial  conditions  evolved  for  Life  or  B38S23  were  applied  to  a
CA  running  with  the  same  rules,  but  more  complex  than  those  de-
scribed in the first bullet of this list. 

This  reinforces  the  conclusion  derived  from the  first  set  of  experi-
ments: the rules of Life and B38S23 are more prone to the emergence
of interesting behavior than the rules of HighLife.

In the next  set  of  experiments,  we tried to find out  the effect  of  a
very  small  change  in  the  rules,  rather  than  a  permanent  one.  We
started with 10 initial conditions evolved for CAs of the Life type and
let  them  develop  for  46  generations;  then  we  changed  the  rules  to
HighLife or B38S23 (SL), executed them for four generations, and re-
stored the rules to Life. The results are shown in rows five and six in
Table 4. They show that mixed rules of the type L Ø HL Ø L are less
disruptive than L Ø HL (leaving HL rules act for the remainder of the
CA’s life).  The opposite  effect  happens when HighLife  is  replaced by
B38S23. 

In  the  last  set  of  experiments,  we  tested  the  effect  of  a  periodic
change  in  the  rules  by  executing  10  experiments  with  initial  condi-
tions  evolved  for  Life  on  a  CA  with  periodic  rules  (L  Ø  HL  Ø  L  Ø
and L Ø  SL Ø  L Ø  ).  Rows seven and eight in Table 4 show the re-
sults.  Again,  the  change  to  HighLife  shows  a  more  disruptive  effect
than the change to B38S23, which reaches numbers of objects compa-
rable  to  the  best,  except  for  the  number  of  interesting  experiments.
We can conclude that the latter periodic change in the rules, although
having  perceptible  effects  in  each  particular  case,  seems  to  diminish
slightly the average complexity of the development.

4. Conclusions  

In  this  paper  we  have  found  that  it  is  possible  to  evolve  interesting
initial  conditions for  some  cellular  automata  (CAs)  of  the  Game  of
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Life  type,  which make the  CAs generate  structures  such as  gliders  or
R-pentominoes.  Exploders  are  also  generated  in  any  case,  but  initial
conditions for this case are not easy to select.  

By  testing  different  combinations  where  rules  are  changed  during
the  execution  of  the  CA,  and  through  crossed  application  of  initial
conditions,  we  have  found  that  the  B36S23  (HighLife)  rule  is  less
prone to the emergence of interesting structures than the B3S23 (Life)
and  the  B38S23  rules.  We  have  also  found  (although  this  is  not  dis-
cussed  in  the  paper)  that  CAs  with  very  different  rules,  such  as
Life-3-4  and  Seeds,  do  not  give  good  results  with  our  genetic  algo-
rithm. 

In general, we can conclude that temporal invariance of the rules of
the  Game  of  Life  type  does  not  seem  to  be  an  essential  requirement
for  the  emergence  and  continued  existence  of  potentially  complex
structures in this type of CA. 

In  the  future,  we  intend  to  perform  additional  experiments  with
CAs of the Game of Life  type for these or different objects,  and also
explore  the  effect  of  changing further  the  parameters  and the  genetic
operations of the genetic algorithm.

References  

[1] J.  von  Neumann,  Theory  of  Self-Reproducing  Automata  (A.  W.  Burks,
ed.), Urbana, IL: University of Illinois Press, 1966. 

[2] P.  Sarkar,  “A  Brief  History  of  Cellular  Automata,”  ACM  Computing
Surveys (CSUR), 32(1), 2000 pp. 80–107. doi:10.1145/349194.349202.

[3] M.  Gardner,  “Mathematical  Games:  The  Fantastic  Combinations  of
John Conway’s New Solitaire Game ‘Life,’” Scientific American, 223(4),
1970, pp. 120–123. 

[4] S. Wolfram, Theory and Applications of Cellular Automata, 1st ed., Sin-
gapore: World Scientific, 1986. 

[5] S. Wolfram, “Universality and Complexity in Cellular Automata,” Phys-
ica D, 10, 1984 pp. 1–35. 

[6] S.  Wolfram,  A New Kind  of  Science,  Champaign,  IL:  Wolfram Media,
Inc., 2002. 

[7] M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Revisiting the Edge of
Chaos:  Evolving  Cellular  Automata  to  Perform  Computations,”  Com-
plex Systems, 7(2), 1993 pp. 89–130.
http://www.complex-systems.com/pdf/07-2-1.pdf.

[8] M.  Mitchell,  P.  T.  Hraber,  and  J.  P.  Crutchfield,  “Evolving  Cellular
Automata  to  Perform  Computations:  Mechanisms  and  Impediments,”
Physica D: Nonlinear Phenomena, 75(1–3), 1994 pp. 361–391.
doi:10.1016/0167-2789(94)90293-3.

68 M. Alfonseca and F. J. Soler Gil

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.



[9] M. Mitchell, J. P. Crutchfield, and R. Das, “Evolving Cellular Automata
with Genetic Algorithms: A Review of Recent Work,” in Proceedings of
the First International Conference on Evolutionary Computation and Its
Applications (EvCA96), Moscow, Russia: Russian Academy of Sciences,
1996. http://www.cs.unibo.it/babaoglu/courses/cas06-07/resources/
tutorials/Evolving_Cellular_Automata.pdf.

[10] F. Jiménez Morales, J. P. Crutchfield, and M. Mitchell, “Evolving Two-
Dimensional Cellular Automata to Perform Density Classification: A Re-
port  on  Work  in  Progress,”  Parallel  Computing,  27(5),  2001
pp.!571–585. doi:10.1016/S0167-8191(00)00078-8.

[11] A. Chavoya and Y. Duthen, “Using a Genetic Algorithm to Evolve Cellu-
lar  Automata  for  2D/3D Computational  Development,”  in  Proceedings
of  the  8th  Annual  Conference  on  Genetic  and  Evolutionary  Computa-
tion (GECCO06), New York: ACM, 2006. http://www.cs.york.ac.uk/
rts/docs/GECCO_2006/docs/p231.pdf.

[12] E. Sapin and L. Bull, “Evolutionary Search for Cellular Automata Logic
Gates with Collision-Based Computing,” Complex Systems, 17(4), 2008
pp. 321–338. http://www.complex-systems.com/pdf/17-4-1.pdf.

[13] S.  A.  Billings  and Y.  Yang,  “Identification of  Probabilistic  Cellular  Au-
tomata,” IEEE Transaction on Systems,  Man, and Cybernetics,  Part  B,
33(2), 2003 pp. 225–236. doi:10.1109/TSMCB.2003.810437.

[14] P.  Flocchini,  F.  Geurts,  A.  Mingarelli,  and  N.  Santoro,  “Convergence
and Aperiodicity in Fuzzy Cellular Automata: Revisiting Rule 90,” Phys-
ica  D:  Nonlinear  Phenomena,  142(1–2),  2000  pp.  20–28.
doi:10.1016/S0167-2789(00)00052-X.

[15] A. K. Das, A. Ganguly, A. Dasgupta, S. Bhawmik, and P. P. Chaudhuri,
“Efficient  Characterisation  of  Cellular  Automata,”  IEE  Proceedings-E:
Computers and Digital Techniques, 137(1), 1990 pp. 81–87. 

[16] P.  P.  Chaudhuri,  D.  R.  Chowdhury,  S.  Nandi,  and  S.  Chattopadhyay,
Additive  Cellular  Automata:  Theory  and  Applications,  Vol.  1,  Los
Alamitos, CA: IEEE Computer Society Press, 1997. 

[17] P.  Sarkar  and  R.  Barua,  “The  Set  of  Reversible  90/150  Cellular  Au-
tomata  Is  Regular,”  Discrete  Applied  Mathematics,  84(1–3),  1998
pp.!199–213. doi:10.1016/S0166-218X(98)00004-3.

[18] A.  Deutsch,  Cellular  Automata  and  Biological  Pattern  Formation,
Boston: Birkhauser, 1999. 

[19] N.  Ganguly,  B.  K.  Sikdar,  A.  Deutsch,  G.  Canright,  and  P.  P.  Chaud-
huri,  A  Survey  on  Cellular  Automata,  Centre  for  High  Performance
Computing, Dresden University of Technology, 2003.
http://www.cs.unibo.it/bison/publications/CAsurvey.pdf.

[20] P.  Beyls,  “The Musical  Universe of  Cellular  Automata,” in Proceedings
of  the  1989  International  Computer  Music  Conference  (T.  Wells  and
D.!Butler, eds.), 1989, pp. 34–41. http://quod.lib.umich.edu/cgi/p/pod/
dod-idx?c=icmc;idno=bbp2372.1989.009.

[21] A. R. Brown, “Exploring Rhythmic Automata,” Lecture Notes in Com-
puter Science, 3449, 2005 pp. 551–556. doi:
10.1007/978-3-540-32003-6_57. 

[22] D. Burraston, E. Edmonds, D. Livingston, and E. Reck Miranda, Cellu-
lar Automata in MIDI Based Computer Music, Ann Arbor, MI: Univer-
sity of Michigan, 2004. 

Evolving Interesting Initial Conditions for Cellular Automata 69

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.



[23] B. Chopard and M. Droz, Cellular Automata Modelling of Physical Sys-
tems, Cambridge: Cambridge University Press, 1998. 

[24] M. Cebrián, A. Ortega, and M. Alfonseca, “Acceleration of a Procedure
to  Generate  Fractal  Curves  of  a  Given  Dimension  through  the  Proba-
bilistic  Analysis  of  Execution  Time,”  in  Intelligent  Engineering  Sys-
tems  through  Artificial  Neural  Networks,  Vol.  14,  St.  Louis,  MO
(C. H. Dagli, A. L. Buczak, D. L. Enke, M. J. Embrechts, and O. Ersoy,
eds.), New York: ASME Press, 2004 pp. 265–270.
http://arantxa.ii.uam.es/~alfonsec/docs/annie.pdf. 

[25] A. Ortega, A. A. Dalhoum, and M. Alfonseca, “Grammatical Evolution
to  Design  Fractal  Curves  with  a  Given  Dimension,”  IBM  Journal  of
Research and Development, 47(4), 2003, pp. 483–493
doi:10.1147/rd.474.0483.

70 M. Alfonseca and F. J. Soler Gil

Complex Systems, 21 © 2012 Complex Systems Publications, Inc.



<<
  /ASCII85EncodePages false
  /AllowPSXObjects false
  /AllowTransparency false
  /AlwaysEmbed [
    true
  ]
  /AntiAliasColorImages false
  /AntiAliasGrayImages false
  /AntiAliasMonoImages false
  /AutoFilterColorImages true
  /AutoFilterGrayImages true
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /ColorACSImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /ColorConversionStrategy /LeaveColorUnchanged
  /ColorImageAutoFilterStrategy /JPEG
  /ColorImageDepth -1
  /ColorImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /ColorImageDownsampleThreshold 1.50000
  /ColorImageDownsampleType /Bicubic
  /ColorImageFilter /DCTEncode
  /ColorImageMinDownsampleDepth 1
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /ColorImageResolution 300
  /ColorSettingsFile ()
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /CreateJDFFile false
  /CreateJobTicket false
  /CropColorImages false
  /CropGrayImages false
  /CropMonoImages false
  /DSCReportingLevel 0
  /DefaultRenderingIntent /Default
  /Description <<

  >>
  /DetectBlends true
  /DetectCurves 0
  /DoThumbnails false
  /DownsampleColorImages true
  /DownsampleGrayImages true
  /DownsampleMonoImages true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /EmbedOpenType false
  /EmitDSCWarnings false
  /EncodeColorImages true
  /EncodeGrayImages true
  /EncodeMonoImages true
  /EndPage -1
  /GrayACSImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /GrayImageAutoFilterStrategy /JPEG
  /GrayImageDepth -1
  /GrayImageDict <<
    /HSamples [
      1
      1
      1
      1
    ]
    /QFactor 0.15000
    /VSamples [
      1
      1
      1
      1
    ]
  >>
  /GrayImageDownsampleThreshold 1.50000
  /GrayImageDownsampleType /Bicubic
  /GrayImageFilter /DCTEncode
  /GrayImageMinDownsampleDepth 2
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /GrayImageResolution 300
  /ImageMemory 1048576
  /JPEG2000ColorACSImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /JPEG2000ColorImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /JPEG2000GrayACSImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /JPEG2000GrayImageDict <<
    /Quality 30
    /TileHeight 256
    /TileWidth 256
  >>
  /LockDistillerParams false
  /MaxSubsetPct 100
  /MonoImageDepth -1
  /MonoImageDict <<
    /K -1
  >>
  /MonoImageDownsampleThreshold 1.50000
  /MonoImageDownsampleType /Bicubic
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /MonoImageResolution 1200
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /NeverEmbed [
    true
  ]
  /OPM 1
  /Optimize true
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.25000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXBleedBoxToTrimBoxOffset [
    0
    0
    0
    0
  ]
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXOutputCondition ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputIntentProfile ()
  /PDFXRegistryName ()
  /PDFXSetBleedBoxToMediaBox true
  /PDFXTrapped /False
  /PDFXTrimBoxToMediaBoxOffset [
    0
    0
    0
    0
  ]
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /ParseICCProfilesInComments true
  /PassThroughJPEGImages true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /sRGBProfile (sRGB IEC61966-2.1)
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


