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Abstract—In this paper, we introduce an algorithm to generate
a score from the matched templates derived by the forensic
examiner at the ACE-V stage. Such a score can be viewed
quantitatively as a measure of confidence of the forensic examiner
for the given latent and impression prints. This quantitative
measure can be used in statistics-based evidence evaluation
frameworks. Together with the description and evaluation of
new realistic forensic casework driven score computation, we also
exploit this experimental framework to show the importance of
type attributes for minutiae in terms of its discriminating ability
in forensic scenarios. We derive the conclusion that together with
reliably extracted typical minutiae features, the presence of rare
minutiae features helps to improve the measure of confidence of
the forensic examiner at the ACE-V stage.

I. INTRODUCTION

The friction ridge examination currently followed in foren-
sic domain is known as ACE-V (analysis, comparison, eval-
uation and verification). But recently this procedure has been
criticized for lacking a proper methodology in capturing any
uncertainty involved in the decision yielded by a forensic
examiner. The perception and the decision making ability
among forensic examiners vary, e.g, the decision made by a
novice examiner is not always consistent with the decision
made by an experienced examiner for the same casework [1].
One of the most popularly cited examples where an erroneous
individualization was made is with the Brandon Mayfield case
[2]. Other similar cases of erroneous individualization have
been reported in [3].

The latent fingerprints which are the unintentionally left
impressions of the friction ridge skins obtained from the crime
scene followed by chemical processing of the latent print and
photographing it are of poor quality in nature [4] [5] [6]. From
such poor quality latent fingerprint images, reliable manual
feature extraction depends on the perception, decision making
ability and experience of the forensic examiner. The ultimate
objective of the examiner here is the identification of the
perpetrator from a population of suspects based on these poor
quality images. The first step usually followed is to manually
extract the minutiae features from the latent fingerprint images
(Stage 1 in Fig.1) and then search against a large database of
known suspects using an Automated Fingerprint Identification
System (AFIS). The AFIS generates a set of possible suspects
on a rank basis using a similarity score (Stage 2 in Fig.1).
Once there is a shortlist of suspects, a forensic examiner
will manually compare the latent fingerprint with each of
the shortlisted impression fingerprints following the ACE-V
methodology (Stage 3 in Fig.1) to yield a decision as to

Fig. 1: Stage 1 to Stage 3 captures the Latent fingerprint
examination methodology currently practiced. In Stage 4, we

propose our framework to generate a score from matched
template obtained from Stage 3.

whether the given latent and impression print match, do not
match or the comparison is inconclusive.

The Stage 3 in Fig.1 (ACE-V) comprises of the following
four phases [7] [2]:

1) Analysis : The examiner looks for sufficiency of
the details present in the given latent print. This
comprises of checking for ridge clarity, quantity of
Level 1, Level 2 and Level 3 details.

2) Comparison : Once the latent print passes the analysis
phase, many useful friction ridge details are extracted
manually and are compared against one or more ex-
emplar/reference fingerprints shortlisted by an AFIS
to determine whether they are in agreement.

3) Evaluation : Based on the conclusions derived from
the analysis and comparison phases, the forensic
examiner yields a decision as individualization (iden-
tification or match), exclusion (non-match) or incon-
clusive for the given latent and impression fingerprint
image pair.

4) Verification : In this phase, another qualified forensic
examiner reexamines the decision made by the pre-
vious examiner by following the above three phases
once again.

The latent examiner following the ACE-V methodology not
only uses minutiae configuration (Level 2 features), but also
extended information like general ridge flow (Level 1 features),
number of ridges between two minutiae, presence of creases
and other Level 3 features [2] [6]. Several studies have been



Fig. 2: Minutiae types used in Guardia Civil Database.
Names corresponding to individual type numbers can be

found in Table I.

made towards including extended features like ridge quality
map, ridge flow map, skeletanized images, dots and incipient
ridges [6] as well as use of minutiae based descriptors [13]
to improve the performance of automated latent fingerprint
matchers. Importance of rarity in the configuration of finger-
print features were emphasized by latent print examiners while
making decisions at the ACE-V stage [2].

There is no scientific framework in use at the criminal
justice system to characterize the uncertainty involved in the
ACE-V procedure, as well as to express the strength of opinion
of the forensic examiner quantitatively [2]. Such a requirement
has been articulated in several influential reports [2] like the
NRC 2009 report [8] and the NIST Human Factors report [7].
The new paradigm coming forward in this regard [9] avoids
hard identification decisions by considering evidence reporting
methods that incorporate uncertainty and statistics. Among all
the methods of evidence evaluation, the likelihood ratio is
receiving greater attention [10] [2].

In this work, we propose an algorithm to generate a
score from the matched templates derived by the forensic
examiner at the ACE-V level (Stage 4 in Fig.1). Such a score
can be viewed as a measure of confidence of the examiner
quantitatively in place of a logical decision (individualization,
exclusion or inconclusive). Such a score can be used in a
statistics-based evidence evaluation framework to quantify the
fingerprint evidence. We exploit this proposed experimental
framework to study the importance of reliably-extracted type
information for minutiae by a forensic examiner. Together
with typical minutiae features, the importance of rare minutiae
features has been established based on its discriminating ability
in a forensic scenario.

The remainder of the paper is organized as follows. We first
explain in detail about the real forensic casework databases
used in this study, then the method developed to generate a
score as a measure of confidence for a forensic examiner. We
then present the experimental protocol and results, followed by
a discussion on the discriminating capability of rare minutiae
features.

II. DATABASE

Two different forensic databases were used in this study.
One is the publicly available NIST Special Database (SD)
27, and the other one is acquired from Guardia Civil, the
law enforcement agency of the Government of Spain. NIST
SD27 minutiae template database is broadly classified into
two: 1) ideal, and 2) matched minutiae database. The ideal

TABLE I: List of typical and rare minutiae in Guardia Civil
Database. Numbering with respect to Fig.2.

No TypeName No TypeName No TypeName

1 Ridge Ending 6 Interruption 11 Circle

2 Bifurcation 7 Enclosure 12 Delta

3 Deviation 8 Point 13 Assemble

4 Bridge 9 Ridge Crossing 14 M-structure

5 Fragment 10 Transversal 15 Return

minutiae set for latents was manually extracted by a forensic
examiner without any prior knowledge of its corresponding
impression image. The ideal minutiae for impressions was
initially extracted using an AFIS, and then these minutiae
were manually validated by at least two forensic examiners.
The matched minutiae templates contains those minutiae which
are in common between the latent and its mated impression
image. There is a one-to-one correspondence in the minutiae
between the latent and its mate in the matched template. This
ground truth was established by a forensic examiner looking
at the images and the ideal minutiae following an ACE-V
procedure. For NIST SD27 database, only the ideal-latent
templates had type information for each minutiae in addition
to location and orientation attributes. The other three datasets
(ideal-impression, matched-latent and matched-impression) do
not have type information but only location and orientation
attributes.

The Guardia Civil database (GCDB) is similar to the NIST
SD27 database except that all the templates in ideal and
matched sets in GCDB have type information. Apart from
having typical minutiae types (ridge-endings, bifurcations),
GCDB also comprises rare minutiae types like fragments,
enclosures, points/dots, interruptions, etc [11]. Please refer
to Fig.2 and Table I for a comprehensive list of all minutiae
feature types present in GCDB. Table II shows the statistics of
various types of minutiae features present in the 258 template
pairs available in GCDB. Rest of the minutiae types were not
observed so far in this collection of GCDB.

We will follow the notation GCDB-M and NIST-SD27-M
to denote the matched template database of GCDB and NIST
SD27 respectively. In Fig.3, we show a latent fingerprint and
its corresponding impression with typical features and some
of the rare features annotated with their correspondences. The
latent and impression images used here were taken from NIST
SD27 database, and the typical and rare minutiae features were
manually annotated on them.

III. ALGORITHM

We propose an algorithm to generate a score for the
templates in GCDB-M. This algorithm can be adapted to
templates from NIST-SD27-M by discarding the weights for
type information when calculating typeError explained in the
algorithm. The various stages involved in the computation of
the score are as follows:



Fig. 3: Typical and some rare minutiae features on a latent and its mated impression fingerprint. The latent image G004L8U
and the impression image G004T8U were taken from NIST SD27 database.

TABLE II: Statistics of typical and rare minutiae present in
Guardia Civil Database. Numbering with respect to Fig.2.

No Contribution No Contribution No Contribution

1 56% 4 0.265% 7 2.058%

2 36.38% 5 4.515% 8 0.332%

3 0.166% 6 0.232% 10 0.0332%

A. Alignment and correspondence

Since the framework is developed to deal with matched
databases, we expect that for genuine matches, superimposing
the centroids of both latent and impression minutiae points
with appropriate rotation alignment would lead to an approx-
imate fitting of point patterns based on mated pairs with
minimum overall fitting error, and for impostors it would lead
to a high fitting error.

As typical minutiae features are the majority with 92% (see
Table II), we only use typical features to estimate the rotation
parameters. By rotating the latent template over the impression
template w.r.t centroid in a range of [−45◦,+45◦], we find
the closest matching minutiae pairs, and add their distance.
The rotation for which the average sum of closest pairs is the
minimum is considered to be the best rotation alignment for

their approximate pattern fitting.

After the alignment, all those minutiae pairs which are
within a threshold distance are considered to be mated pairs,
and their correspondences are established.

B. Fitting and Orientation errors

Once the correspondences are established for all the typical
minutiae features, the scores are computed hierarchically look-
ing at each of minutiae attributes, namely location, orientation
and type information. Scores based on type information are
discussed in the next subsection.

For all the typical minutiae which established correspon-
dences based on optimal rotation, we find a fitting error using
an affine transformation for the mated minutiae patterns by
least square fitting. This score is denoted as fittingError, which
is averaged w.r.t total number of mated minutiae pairs.

Again for all the mated minutiae pairs, we sum up all the
orientation differences of corresponding minutiae and average
this sum of degrees w.r.t total number of mated pairs. When
averaging the orientations, the circularity of degrees are taken
care of. This score is denoted as orientationError.

C. Type errors

If the mated pairs disagree w.r.t type information, which
otherwise are mated based on only location and orientation



attributes, we associate a penalty for such type of mismatches.
The penalty for each typical minutiae type is a constant factor
estimated from Table II. This score is denoted as typeError.
This is possible because the type information for both latent
and impression are estimated manually by a forensic examiner,
and we assume type information is available here.

Based on the alignment estimated using typical minutiae,
we also look for the presence of rare minutiae correspon-
dences. If they are within a location and orientation threshold,
then they constitute mated pairs, and thus correspondence is
established. As the percentage of occurrence of rare minutiae
is very small, around 8%, we only estimate typeError for rare
minutiae. The penalty for each rare minutiae type is a constant
factor estimated from Table II.

D. Final Score

Since all the individual scores we have generated are of
different nature, namely fittingError in distance, orientation-
Error in degrees, typeError in probability based cost, these
scores are combined using logistic regression to generate the
final score [12]:

finalScore = (α× fittingError)
+ (β × orientationError)
+ (γ × typeError)

(1)

where α, β, γ are the logistic regression coefficients for each
classifier respectively.

This final score can be viewed as a measure of confidence
of the forensic examiner numerically, otherwise the forensic
examiner only have a logical decision at the stage of ACE-
V. Note that the finalScore is a dissimilarity score, so the
higher the score the higher the distance between a match and
non-match.

IV. EXPERIMENTS

A. Experimental protocol

The total number of latent fingerprint templates in GCDB-
M is 258, with their corresponding matched impression finger-
print templates. This size of GCDB is equivalent to the publicly
available NIST-SD27-M. This way, we could do some perfor-
mance comparisons between databases, unbiased in terms of
partitioning for train and test dataset sizes. For training the
logistic regression coefficients, we used 129 template pairs and
129 for testing.

We performed experiments to study the performance of
the developed approach by comparing the degree of overlap
between matching and non-matching scores in the matched
databases. Various parameters like the distance and orientation
thresholds were finetuned to minimize this degree overlap. We
also exploit the developed framework to understand the impor-
tance of minutiae feature types, as well as the contributions of
rare minutiae features in terms of discriminating power. All
experiments have 129 matching and 129× 128 non-matching
test comparisons.

B. Results using location and orientation

In this experiment, we only used the location and orien-
tation attributes, because NIST-SD27-M does not have type
attributes for the minutiae. This helps in evaluating the per-
formance of the developed algorithm in a more transparent
way, comparing its behavior in both GCDB-M and NIST-
SD27-M. We obtained good discrimination for both GCDB-M
and NIST-SD27-M, with only 3.8760% and 6.9767% score
overlaps respectively.
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Fig. 4: Performance of our algorithm on GCDB-M. No type
information of GCDB-M is used.
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Fig. 5: Performance of our algorithm on NIST-SD27-M. No
type information is present in the database.

Fig.4 and Fig.5 shows the degree of overlap of scores
on both GCDB-M and NIST-SD27-M using our proposed
algorithm respectively. The average number of minutiae per
template for GCDB-M is 12 and that of NIST-SD27-M is 21.
Referring to Fig.4 and Fig.5, we were able to obtain good
discrimination between match and non-match.
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Fig. 6: Performance of our algorithm on GCDB-M when
only typical minutiae features are used.
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Fig. 7: Performance of our algorithm on GCDB-M when
both typical and rare minutiae features are used.

C. Results using location, orientation and type

In this experiment to study the importance of type informa-
tion, we only used the GCDB-M database. Together with the
location and orientation attributes, we tested the performance
of the algorithm by first adding only typical minutiae features
and then both typical and rare minutiae features. The weight
for each minutiae type is a constant factor estimated from the
values corresponding to the minutiae as shown in Table II.

Fig.6 and Fig.7 show the degree of overlap of scores
on GCDB-M when using only typical minutiae features, and
when using both typical and rare minutiae feature respectively.
We obtained a score overlap of 3.1008% when only typical
features were used as compared against 3.8760% of score
overlaps when no type information was used (refer Fig.4). This

helps us to understand the importance of reliably extracted
typical minutiae features by a forensic examiner.

Typical minutiae features constituted of 92% of minutiae
present in GCDB-M. Together with typical minutiae features,
when rare minutiae features are combined, we see a further
improvement from 3.1008% to 2.3256% of score overlaps.
Also, comparing visually Fig.6 and Fig.7 we can see that match
and non-match distributions when consisting rare features
(Fig.7) are much more separated than when not (Fig.6). From
this, we conclude that rare minutiae features if present improve
the discrimination ability, and consequently improving the
measure of confidence of the forensic examiner.

V. DISCUSSIONS

We developed a framework to generate a score from
matched templates generated by the forensic examiner as a
result of ACE-V. This score can be viewed as a measure of
confidence of the forensic examiner numerically in place of
a logical decision. We tested the algorithm on GCDB-M as
well as on the publicly available NIST-SD27-M database. We
also exploited this framework to understand the importance
of minutiae type information in forensics, as well as the
importance of rare minutiae type.

The discriminating ability of type attributes for minutiae
is clearly evident from the above experiments. We started
by discarding type information in the first experiment and
then incrementally added the type information from typical
to rare minutiae to see if there is any improvement in the
discrimination ability and we found that a reliably extracted
type information help significantly in discriminating match and
non-match templates at the ACE-V stage.

A deeper analysis about how to exploit the developed score
computed as a confidence measure for the forensic examiner,
as well as an implementation of the likelihood ratio approach
based on these scores to express the strength of opinion of
forensic examiners quantitatively is in order.
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