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Abstract

A dynamic signature verification system based on Hid-
den Markov Models is presented. For each user model,
the number of states and Gaussian mixtures of the Hidden
Markov Model is automatically set in order to optimize
the verification performance. By introducing this user-
dependent structure in the statistical modeling of signa-
tures, the system error rate is significantly decreased in
the challenging scenario of dynamic signature verification
on handheld devices. Experimental results are given on a
subset of the recently acquired BIOSECURE multimodal
database, using signatures captured with a PDA.1

Keywords: Biometrics, signature verification, Hidden
Markov Models, handheld, PDA

1. Introduction
Security has raised a great amount of interest in our

society during the last few years. Biometric systems have
become popular in secure applications like access control
and user verification as they free the user from tokens or
passwords. These systems may be based on behavioral
biometric traits (e.g. voice, signature) or biological traits
(e.g. fingerprint, iris) [1]. One of the main advantages of
biometric traits is the fact that they cannot be easily stolen,
forgotten or forged.

Within biometrics, signature is one of the most so-
cially accepted traits. It has been used in legal and finan-
cial transactions for centuries, and is still now the prin-
cipal mean of user authentication in most retail commer-
cial transactions and other applications. Despite the wide
range of systems proposed by researchers and commer-
cial developers [2, 3], automatic signature verification is
nowadays still a challenging task.

1This work has been supported by the Spanish Ministry of Educa-
tion under project TEC2006-13141-C03-03. J. Fierrez is supported by a
Marie Curie Fellowship from the European Commission.

The main difficulties in automatic signature verifica-
tion are derived from the variability among signatures.
Signatures from the same user may vary depending on
the signing conditions or evolve during medium to large
periods of time, leading to a considerable intra-class vari-
ability. Moreover, the existence of skilled forgers, which
can imitate signatures with high precision can cause a very
low inter-class variability among signatures. Forgeries are
additionally difficult to model during the design phase of
a system (and to obtain during the acquisition of research-
oriented databases), as highly skilled or motivated forgers
are rarely available.

Automatic signature verification systems can be clas-
sified in two types: off-line verification systems employ
captured static signature images, which may have been
scanned or acquired with a camera, to perform veri-
fication; dynamic or on-line systems capture signature
time-functions via digitizer tablets or touch-screens (e.g.
Tablet-PCs, smartphones, etc.). Dynamic systems have
traditionally achieved a better verification performance
than off-line systems as more levels of information than
the signature static image are available [2].

On-line signature verification has followed two main
approaches. Feature-based or global systems extract a
set of global features from each signature and create a
holistic n-dimensional vector describing it. Signatures
are then compared using distance measures like Euclidean
or Mahalanobis distance or statistical classifiers such as
Parzen-Windows or GMMs (Gaussian Mixture Models).
Function-based systems operate directly with captured
or derived time sequences (position, velocity, inclination,
etc.). These systems perform signature matching via elas-
tic or statistical techniques such as DTW (Dynamic Time
Warping) [4], or HMMs (Hidden Markov Models) [5].
Some authors have proposed the fusion of the two previ-
ous approaches (feature- and function-based) reporting a
better performance than the individual systems [6]. The
typical architecture of an on-line signature verification
system is represented in Fig. 1.



Feature
Extraction

SIGNATURE

VERIFICATION

Enrolled
Models

Identity claim

Similarity
Computation

Score
Normalization

Decision
Threshold

Accepted or
Rejected

Pre-
Processing

User signature

Figure 1. Signature Verification System Architecture.

Smartphones, PDAs and other portable devices that
feature pen-based inputs provide a feasible platform to
host a dynamic signature verification system. A great so-
cial and commercial interest on smart devices has raised
in the last few years in the context of convergence and
ubiquitous access to information and services [7]. In these
devices, user validation and network access relies mostly
on traditional PIN codes.

In this paper, an automatic signature verification sys-
tem based on user-dependent Hidden Markov Models is
presented and its performance is analyzed for the case
of handheld devices. While some authors have reported
HMMs with a variable number of states per user [8, 9, 10],
no HMM approach has been reported in the literature with
a varying number of Gaussian mixtures per state, to the
extent of our knowledge. We present a verification sys-
tem in which each user model has a variable number of
states and Gaussian mixtures, allowing a significant im-
provement in the verification performance.

The system is a modified version of the one presented
in our previous works [5] to adapt it to the challenging
handheld scenario. The goal is to automatically find the
HMM for each user that produces the best verification per-
formance. The signatures used for experiments were cap-
tured on a PDA and belong to the recently acquired mul-
timodal database under the BIOSECURE European Net-
work of Excellence [11].

The work is structured as follows: the problem of sig-
nature verification on handheld devices is addressed in
Sect. 2. Hidden Markov Models and related works are
summarized in Sect. 3. The proposed user-depentent sys-
tem is presented in Sect. 4. Experiments and results are
reported in Sect. 5 and conclusions are finally drawn in
Sect. 6.

2. Automatic Signature Verification on
Handheld Devices

Touch-screen enabled handheld devices provide an ap-
propriate hardware platform for a signature verification
system. Most commercial handheld devices in the market
are already able to perform handwritten character recog-
nition as a text input alternative [7]. Signature verifica-
tion systems on handheld devices allow multiple applica-
tions, including remote payments and legal transactions,

network login or client validation. Documents can be
electronically signed with a verifiable signature (includ-
ing a confidence measure), leading to applications such as
ubiquitous access to services or the paperless office.

2.1. Challenges of Signature Verification on
Handheld Devices

Despite representing a very promising and convenient
application, many challenges must be faced during the de-
sign of a signature verification system on handheld de-
vices. Signature verification on such devices is affected
by factors not present in other scenarios. Smartphones
and PDAs usually have a reduced pen-input size, as they
must combine both usability and portability. Processing
power or memory is no longer a constraint while design-
ing these devices, which are mostly limited by their screen
and keypad size. As a consequence of small input areas,
poor ergonomics or the fact that the user may be in move-
ment, the signing process is degraded. The users must also
face a new signing scenario, which presents differences in
the signing surface (touch screen instead of paper) and in
the signing instrument (PDA stylus instead of traditional
pen).

Handheld device screens may also provide a poor sam-
pling quality, with a variable sampling rate and sampling
errors. Moreover, only position signals are made available
by touch-screens, while pen azimuth or pressure among
other signals that may enhance the verification perfor-
mance [3], cannot be captured. The recent BIOSECURE
Multimodal Evaluation Campaign [12], in which several
independent research institutions have participated, has
shown that there exists still room for improvement in the
signature verification task on handheld devices, as veri-
fication results have been significantly lower than those
with other databases captured using a pen tablet [13].

Another key concern while developing a signature
verification application on handheld devices is security.
The user template must be appropriately secured and en-
crypted as well as communication channels over which
signature information may be transmitted.
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Figure 2. Graphical representation of a left-to-right
N -state HMM, with M -component GMMs represent-
ing observations and no skips between states.

3. Related Work
3.1. Hidden Markov Models for Dynamic Sig-

nature Verification

Hidden Markov Models have been widely used by the
speech recognition community as well as in many hand-
writing recognition applications. Several approaches us-
ing HMMs for dynamic signature verification have been
proposed in the last years [5, 8, 9, 14]. An HMM rep-
resents a double stochastic process, governed by an un-
derlying Markov chain with a finite number of states and
a set of random functions (GMMs in most speech and
handwriting recognition applications) that generate sym-
bols each of which is associated with one state [14].

Finding a reliable and robust model structure for dy-
namic signature verification is not a trivial task. While too
simple HMMs may not be able to model properly the user
signatures, too complex models may not be able to model
future realizations due to overfitting. On the other hand, as
simple models have less parameters to be estimated, their
estimation may be more robust than for complex models.
Two main parameters are commonly considered while se-
lecting an optimal model structure: the number of states
and the number of Gaussian mixtures per state [5]. Most
of the proposed systems consider a left-ro-right configu-
ration without skips between states, also known as Bakis
topology (Fig. 2).

3.2. User-dependent Hidden Markov Models

A recent study [10] has proven the benefits of using
user-dependent models by specifically setting the num-
ber of states and Gaussian mixtures for each user in an
HMM-based dynamic signature verification system. Nev-
ertheless, results are obtained using exhaustive search for
the best EER (Equal Error Rate) over all possible con-
figurations, reflecting consequently a theoretical upper
bound for the system performance and being thus non-
implementable in practice.

Few works have been carried out to study user-
dependent HMMs in the field of automatic signature veri-
fication. Examples of systems using a specifically selected

number of states per user can be found in the literature.
For example, in [8, 9], the number of states is proportional
to the length of the training signatures, while in [15] the
number of states is determined by the number of changes
on the quantized pen trajectory. In all these referenced
works, using a subject-dependent number of HMM states
provided enhanced verification performance as compared
to a fixed number of states. None of these works, how-
ever, studied the use of varying number of Gaussian mix-
tures for different subjects (in this way modulating the
model complexity for different signers), as it is done in
the present work.

Another closely related work is described in [16],
where a modified version of the Minimum Description
Length (MDL) criterion is applied to on-line signature
verification based on GMM with user-dependent com-
plexity (number of Gaussian mixtures either 16 or 32).
The MDL criterion increases with the likelihood of the
model with respect to the training data and decreases with
the increase of the model complexity (i.e. the number of
parameters to be estimated). They demonstrate that mini-
mizing the MDL criterion to automatically set the number
of Gaussian Mixtures, the verification performance is en-
hanced with respect to fixed structure models.

4. Proposed System

The system implemented in this work is based on
the one described in [5]. Each signature is modeled
with 6 functions and their first differences leading to a
12−dimensional time function describing it. The ex-
tracted time functions are the pen trajectory (coordinates
x and y), path tangent-angle, path velocity magnitude, log
curvature radius and total acceleration magnitude. A de-
tailed description of the individual functions can be found
in [5], where pressure information was additionally used
as it was available in the considered pen tablet scenario.

An initial step is added to the original HMM train-
ing scheme, leading to the following stages: i) the global
mean and covariance of the training signatures is assigned
to all the mixtures, ii) k-means segmentation and Maxi-
mum Likelihood training is performed, iii) Baum-Welch
re-estimation is finally carried out. The first step allows to
have a trainable model for step iii (despite being inaccu-
rate) in the case where step ii fails due to the large num-
ber of parameters to be estimated, or other computational
problems.

Similarity scores are computed as the log-likelihood of
the signature (using the Viterbi algorithm) divided by the
total number of samples of the signature. No score align-
ment between users is applied [17], so this approach is
equivalent to the baseline system proposed in [5] without
using pen pressure information.
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Figure 3. (a) Signature capture process. (b) Signatures and associated signals from a user of the database. From
left to right: genuine signature without preprocessing, genuine signature and skilled forgery. Pen-ups are marked with
circles in the x- and y-coordinate time series. The signatures on the picture and the graphs are from different users.

4.1. Selection of the Number of States

A simple approach for the adaptation of the number of
states is taken in this work. The number of states Nopt for
a given user is obtained by dividing the mean length of the
training signatures by a constant as follows:

Nopt =

K∑
i=1

Ti

K ·D (1)

where Ti is the number of sample points of the i-th train-
ing signature of a given user, K is the number of training
signatures per user and D is a division factor that is set by
the system designer. The result is rounded to obtain inte-
ger values, being Nopt = 1 the smallest allowed value.

4.2. Selection of the Number of Gaussian Mix-
tures

The selection of the number of Gaussian mixtures for
each specific user is performed for the whole HMM in-
stead of for each state. Thus, all the states of the HMM
model for each user have the same number M of mix-
tures. Preliminary experiments performing adaptation of
the number of mixtures for each state (e.g. using Gaussian
splitting approaches [18]) proved poor verification perfor-
mances and were outperformed by models with the same
number of mixtures for all states.

In our system, the optimum number of mixtures is se-
lected as the one that maximizes the average likelihood
of the training signatures. More precisely, the optimum
number of mixtures Mopt is computed as follows:

Mopt = arg max
M<Mmax

K∑
i=1

l(Si, λ)/T i

K
(2)

where K is the number of training signatures and l(Si, λ)
is the likelihood of the training signature Si given the user
model λ (normalized by the number of samples Ti of the
signature Si). A maximum number of Guassian mixtures
Mmax is manually set to avoid overfitting.

This approach can be considered a simplified ver-
sion of the MDL criterion proposed in [16], as no infor-
mation about the model complexity is used to compute
Mopt. This simplification is based on the following rea-
sons. First, in [16], the proposed MDL criterion did pro-
vide positive results for full covariance matrices but not
for diagonal, which are the ones used in our system (full
covariance matrices are impractical in HMMs with scarce
training data). Additionally, Mopt is computed by averag-
ing the likelihood of all the training signatures from the
enrolled user, providing enough variability to allow the
model to generalize over unseen signatures. Moreover, as
our approach could lead to overfitting, Mmax is used to
limit the number of mixtures.

5. Experiments
5.1. Database and Experimental Protocol

A subset of the signature corpus of the BIOSECURE
multimodal biometric database is used for experiments.
This subset was released prior to the Biosecure Multi-
modal Evaluation Campaign [11] to all participants for
development purposes. It consists of 50 users, with 20
genuine signatures and 20 skilled forgeries per user, lead-
ing to 50×(20+20) = 2000 signatures. The genuine sig-
natures were acquired in two different sessions separated
by an average period of two months, being 5 signatures
from the first session and the remaining 15 from the sec-
ond session. In each session, signatures were produced by
the user in blocks of 5, leaving a gap of some minutes be-
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Figure 5. Histograms of Nopt and Mopt for D = 42

and Mmax = 32. Mopt was computed in steps of 2.

tween each block. Signatures were captured with an HP
iPAQ 2790 PDA while the user was standing and hold-
ing the PDA with one hand (Fig. 3.a). This emulates real
operating conditions.

Only the x and y position signals and the sample times-
tamps were captured by the PDA. Skilled forgeries for
each user were performed by 4 different users (5 forg-
eries each) in a “worst case” scenario: each forger had
visual access to the dynamics of the genuine signature and
a tracker tool allowing to see the original strokes.

An example of the capture process is shown in Fig. 3.a
and examples of a genuine captured signature and a skilled
forgery are shown in Fig. 3.b. Due to the degraded capture
conditions, a pre-processing step is first performed, where
incorrectly detected samples (see Fig. 3.b, left column)
are linearly interpolated. As no pen pressure information
is provided, pen-ups are assigned and linearly interpolated
wherever a gap of 50 or more milliseconds between two
consecutive samples exists.

In our experiments, training of the user models is per-
formed with the 5 genuine signatures from the first acqui-
sition session. The remaining genuine signatures from the
second session are left for testing. Random forgery scores
(the case where a forger uses his own signature claiming
to be another user of the system) are obtained by com-

paring the user model to one signature sample of all the
remaining users (thus, 50× 49 random forgery scores are
computed). Skilled forgery scores are computed by com-
paring all of the 20 available skilled forgeries per user with
its own model (leading to 50× 20 skilled forgery scores).

Experimental results are presented as follows. Base-
line results with the original system, for different values
of the number of HMM states and mixtures are first pre-
sented. Next, results for the proposed scheme, automati-
cally setting the number of states N and mixtures M for
each user using Eqs. (1) and (2) are analyzed.

5.2. Experimental Results

Baseline results are represented in Fig. 4.a. As can
be seen, the verification performance for skilled forgeries
and random forgeries is relatively stable when the number
of states N varies for the case of a low number of mix-
tures M . More complex models (M = {16, 32}) lead to a
poorer verification performance, due to the low amount of
training data compared to the high number of parameters
to be estimated.

Intermediate experiments, automatically setting either
the number of states or the number of mixtures led to no
significant improvements in the system performance.

Final experiments, where both the number of mix-
tures and states are specifically set for each user, show
a considerable improvement in the system performance
(Fig. 4.b), reaching an EER of 15.8% (with D = 42 and
Mmax = 32) for skilled forgeries compared to results no
lower than 20% for the baseline system. The improve-
ment in the system performance is mainly observed for
the skilled forgery scenario. In Fig. 5, histograms of Nopt

and Mopt for D = 42 and Mmax = 32 are presented. As
can be seen, 30 models (60% of the 50 users) are set to the
maximum allowed number of mixtures. This shows the
tendency to overfitting for some of them, which is con-
trolled by Mmax. Results with higher values of Mmax

proved this, with poorer verification performances.



Table 1. EER values for random (rd) and skilled (sk)
forgeries.

Scenario EERrd EERsk

Baseline(N = 4, M = 16) 7.3% 20.5%
User-dependent(D = 42, Mmax = 32) 5.2% 15.8%

In Table 1 we finally summarize the verification per-
formance for a selected operating point with the base-
line and the user-dependent system. The performance im-
provement with the proposed user-dependent scheme can
be clearly observed.

6. Conclusions and Future Work
Experimental results have shown a significant im-

provement of 20% in the verification performance when
both the number of states and mixtures are specifically set
for each user. The best results are obtained for a high di-
vision factor D (thus, HMMs with a low number of states
as seen in Fig. 5) and a high value for the maximum num-
ber of Gaussian mixtures Mmax. This is aligned with the
results presented in [5], where the best verification perfor-
mance was found for a 2-state and 32 Gaussian mixtures
HMM fixed structure. On the contrary, intermediate ap-
proaches where only the number of states or mixtures are
specifically set have led to similar or even worse results
than the baseline system.

As a result, we have observed the need of highly user-
specific models to achieve a reasonable improvement in
the verification performance for the challenging handheld
scenario. The lack of pressure signals and the higher qual-
ity of skilled forgeries in the database (due to the tracking
tool) may be also affecting the verification performance.
Moreover, only raw scores have been used to study the
system performance. The use of normalization techniques
to align scores can reveal other behaviors of the system
performance against variations of its structure or different
user-dependent model setups [17].

The acquisition scenario offers challenges not stud-
ied in depth in related works using pen tablets, such as
the interpolation of missing samples and the absence of
pressure signals. The higher intra-user variability due
to the adverse capture conditions can affect the system
performance, contrary to more favorable capture condi-
tions present in most research works like the user sitting
while signing on a pen tablet. The adverse effect of the
higher variability can be increased by the reduced amount
of training data, leading to poor model parameter esti-
mates. A more comprehensive comparison of traditional
schemes for signature recognition between the established
pen tablet scenario and the increasingly important hand-
held scenario, is therefore needed and will be the source
of future research.
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