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Introduction

The recent LHC discovery of a new scalar resonance [1,2] and its experimental confirma-

tion as a particle resembling the Higgs boson [3–5] have finally established the Standard

Model (SM) as a successful and consistent framework of electroweak symmetry break-

ing (EWSB). Even so, the hierarchy problem, related with the stabilization of the Higgs

mass against larger physics scales which may communicate with the Higgs properties via

radiative loop corrections, is still pending to be solved. Indeed, no new particles -which

could indicate beyond the Standard Model (BSM) physics curing the problem- have been

detected so far. Many models attempting to palliate the electroweak hierarchy problem

have appeared in the last decades, such as the Minimal Supersymmetric extension of the

SM (MSSM) [6–8] and several other BSM scenarios, playing a role at the TeV-scale.

The way in which the Higgs particle participates in the EWSB mechanism determines

different BSM scenarios. In one class of models, the Higgs is introduced as an elementary

scalar doublet transforming linearly under the SM gauge group SU(2)L × U(1)Y . An

alternative is to postulate its nature as emerging from a given strong dynamics sector at

the TeV or slightly higher scale, in which the Higgs participates either as an EW doublet

or as a member of other representations: a singlet in all generality. Both cases call for new

physics (NP) around the TeV scale, but concrete BSM models of the former type (EWSB

linear realisations) tend to propose the existence of lighter exotic resonances which have

failed to show up in data so far.

The alternative case mentioned assumes a non-perturbative Higgs dynamics associated

to a strong interacting sector at Λs-scale, with a explicitly non-linear implementation of

the symmetry in the scalar sector. These strong dynamics frameworks all share a reminis-

cence of the long ago proposed “Technicolor” formalism [9–11], in which no Higgs particle

was proposed in the low-energy physical spectrum and only three would-be-Goldstone

bosons were present with an associated scale f identified with the electroweak scale

f = v ≡ 246 GeV (respecting f ≥ Λs/4π [12]), and responsible a posteriori for the

weak gauge boson masses. The experimental discovery of a light Higgs boson, not accom-

panied of extra resonances, has led to a revival of a variant of that idea: that the Higgs
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particle h may be light because being itself a Goldstone boson resulting from the sponta-

neous breaking of a strong dynamics with symmetry group G at the scale Λs [13–18]. A

subsequent source of explicit breaking of G would allow the Higgs boson to pick a small

mass, much as the pion gets a mass in QCD, and develops a potential with a non-trivial

minimum 〈h〉. Only via this explicit breaking would the EW gauge symmetry be bro-

ken and the electroweak scale v -defined from the W mass- be generated, distinct from

f . Three scales enter thus in the game now: f , v and 〈h〉, although a model-dependent

constraint will link them. The strength of non-linearity is quantified by a new parameter

ξ ≡ v2

f 2
, (1)

such that, f ∼ v (ξ ∼ 1) characterizes non-linear constructions, whilst f � v (ξ � 1)

labels regimes approaching the linear one. As a result, for non-negligible ξ there may be

corrections to the size of the SM couplings observable at low energies due to new physics

(NP) contributions.

A systematic and model-independent procedure to account for those corrections is

their encoding via an Effective Field Theory (EFT) approach. The idea is to employ

a non-linear σ model to account for the strong dynamics giving rise to the Goldstone

bosons, that is the W± and Z longitudinal components, and a posteriori to couple this

effective Lagrangian to a scalar singlet h in a general way. In a given model, relations

between the coefficients of the most general set of operators will hold, remnant of the initial

EW doublet or other nature of the Higgs particle. But in the absence of an established

model, it is worth to explore the most general Lagrangian, which may even account for

scenarios other than those discussed above, for instance that in which the Higgs may be

an “impostor” not related to EW symmetry breaking, such as a dark sector scalar, and

other scenarios as for instance the presence of a dilaton. We will thus try to construct

here the most general electroweak effective non-linear Lagrangian (often referred to also

as “chiral” Lagrangian) in the presence of a light scalar h, restricted to the bosonic sector.

A very general characteristic differentiating linear from non-linear effective expansions

goes as follows. In the SM and in BSM realizations of EWSB the EW scale v and the h

particle enter in the Lagrangian in the form of polynomial dependences on (h + v), with

h denoting here the physical Higgs particle. In chiral realisations instead, that simple

functional form changes and will be encoded by generic functionals F(h). To parametrize

them, it may be useful a representation of the form [19]

F(h) = g0(h, v) + ξg1(h, v) + ξ2g2(h, v) + . . . (2)

where g(h, v) are model-dependent functions of h and of v, once 〈h〉 is expressed in terms

of ξ and v. Furthermore, for a generic h singlet, the number of independent operators
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constituting a complete basis will be larger than that for linear realizations of EWSB,

and also larger than that for the EW non-linear Lagrangian constructed long ago in the

absence of a light scalar particle (the so-called Applequist-Longhitano-Feruglio effective

Lagrangian [21–25]), entailing as a consequence a richer phenomenology.

The EFT developed here should provide the most general model-independent descrip-

tion of bosonic interactions in the presence of a light Higgs particle h: pure gauge, gauge-h

and pure h couplings, up to four derivatives in the chiral expansion [19, 20]. We identi-

fied first [19] the tower of independent operators invariant under the simultaneous action

of charge conjugation (C) and parity (P) transformations (named as CP-conserving or

CP-even); next, the bosonic tower of CP-odd operators has also been determined [20].

While some of the operators in our CP-even and CP-odd bases had been individually

identified in recent years in Refs. [26–29], the present analysis is the first determination of

the complete set of independent bosonic operators and their impact. Some of the bosonic

operators discussed in Chapter 2 had not been explored in previous literature on non-

linear effective Lagrangians, but traded instead by fermionic ones via the equations of

motion [30]. It is very interesting to identify and analyse the complete set of independent

bosonic operators, though, both from the theoretical and from the phenomenological point

of view. Theoretically, because they may shed a direct light on the nature of EWSB,

which takes place precisely in the bosonic sector. Phenomenologically, because given

the present and future LHC data, increasingly rich and precise constraints on gauge and

gauge-Higgs couplings are becoming available, up to the point of becoming increasingly

competitive with fermionic bounds in constraining BSM theories. This fact may be further

strengthened with the post-LHC facilities presently under discussion.

One of the phenomenological explorations of CP-violation contained in this work deals

with the differential features expected in the leading anomalous couplings and signals of

non-linear realisations of EWSB versus linear ones. Phenomenological constraints result-

ing from limits on electric dipole moments (EDMs) and from present LHC data will be

derived, and future prospects briefly discussed. We will go beyond interesting past and

new proposals to search for Higgs boson CP-odd anomalous couplings to fermions and

gauge bosons [31–67], which rank from purely phenomenological analysis to the identifi-

cation of expected effective signals assuming either a linear or a non-linear realisation of

EWSB.

Another aspect explored in this work is that of BSM flavour physics in the context of

the EW chiral Lagrangian with a light Higgs particle h. While we will not attempt to

derive in this case a complete fermionic and bosonic EFT basis, some salient features will

be explored. This will be implemented in the framework of a very predictive and promising

flavour tool: the so called Minimal Flavour Violation hypothesis (MFV) [69–71], based
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on promoting the Yukawa couplings to spurions transforming under the global flavour

symmetry that the SM exhibits in the limit of massless fermions (we restrict to the quark

sector here): Gf = SU(3)QL × SU(3)UR × SU(3)DR . In this setup, each operator is

weighted by a coefficient made out of Yukawa couplings so as to make each term in the

EFT Lagrangian Gf -invariant; those weights will for instance govern and maintain under

safe control all the Flavour Changing Neutral Currents processes (FCNC). As a result, the

low-energy predictions turn out to be suppressed by Yukawa couplings, i.e. by the observed

quark masses and small mixing angles. Indeed, what data are telling us is that whatever

is the BSM theory of flavour it should align at low-energies with SM predictions, in other

words, with all flavour-changing effects resulting from the SM sources. The only source

of flavour in the SM are Yukawa couplings and the MFV construction ensures precisely

that Yukawa coupling are the only low-energy messengers of BSM flavour physics.

The content of this manuscript is organized as follows: Chapter 1 contains a brief

SM description, followed by an also brief non-linear sigma model presentation and of

the MFV ansatz. Chapter 2 develops the EFT approach for the EW chiral Lagrangian

in the presence of a light scalar h. The corresponding complete basis of CP-even and

CP-odd effective operators in the non-linear regime for the pure gauge, gauge-h and pure

h sectors are listed in there 1. Phenomenological bounds on CP-odd couplings resulting

from EDMs limits and from present LHC data are derived as well in Chapter 2. Chapter 3

is dedicated to flavour effects, and therefore, to the inclusion of the fermion-gauge and

fermion-gauge-h sectors, within the assumed chiral EFT framework and the MFV ansatz.

Finally, Chapter 4 summarizes the main results. Complementary tools and results are

given in the appendices.

1The Fi(h) functions will be restricted to CP-even ones, though.



Introducción

El reciente descubrimiento de una nueva resonancia de tipo escalar en el LHC [1, 2] y su

confirmación experimental e identificación con el bosón de Higgs [3–5], han establecido

finalmente al Modelo Estándar (ME) como marco consistente de rotura de la simetŕıa

electrodébil (RSE). Aun aśı, el problema de la jeraqúıa, relacionado con la estabilización

de la masa del Higgs frente a mayores escalas de f́ısica que pueden comunicarse con las

propiedades del Higgs v́ıa correcciones radiativas, sigue sin ser resuelto. De hecho, nuevo

contenido de part́ıculas -el cual podŕıa indicar f́ısica más allá del Modelo Estándar (MME)

que cure el problema- no ha sido detectado hasta ahora. Muchos modelos que intentan re-

solver tal problema han aparecido en las últimas décadas, tales como la extensión Mı́nima

Supersimétrica del Modelo Estándar (MSME) [6–8] y diversos modelos de MME a la

escala del TeV.

La manera en que el bosón de Higgs participa del RSE determina dos escenarios

diferentes. En un tipo de modelos, el Higgs es introducido como doblete escalar elemental

que transforma linealmente bajo el grupo gauge SU(2)L×U(1)Y del ME. Una alternativa

es postular su naturaleza como emergente de un sector dinámico fuerte a la escala del TeV

o ligeramente mayor, en el cual el Higgs participa ya sea como un doblete electrodébil

o como parte de otras representaciones: un singlete en toda generalidad. Ambos casos

requieren de nueva f́ısica (NF) cerca de la escala del TeV, pero modelos concretos de

MME del primer tipo (realizaciones lineales de RSE) tienden a proponer la existencia

de resonancias exóticas livianas las cuales no han aparecido en los datos experimentales

hasta ahora.

El caso alternativo asume una dinámica no-perturbativa del Higgs asociada al sector

fuertemente interactuante a una escala Λs, con una implementación expĺıcita de la simetŕıa

no-lineal en el sector escalar. Estos escenarios de dinámica fuerte comparten todos una

reminiscencia del antiguo formalismo de “Technicolor” [9–11], sin part́ıcula de Higgs en

el espectro f́ısico de bajas enerǵıas y solo tres bosones de Goldstone estando presentes

con una escala asociada f identificada con la escala electrodébil (EE), f = v ≡ 246 GeV

(con f ≥ Λs/4π [12]) y responsable a posteriori de la masas de los bosones de gauge. El
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descubrimiento experimental de bosón de Higgs liviano, no acompañado de resonancias

extra, ha llevado a un resurgimiento de una variante de esa idea: que la part́ıcula de Higgs

h puede ser liviana siendo aśı misma un bosón de Goldstone resultante del rompimiento

espontáneo de una dinámica fuerte con grupo de simetŕıa G a la escala Λs [13–18]. Una

fuente subsecuente de rompimiento expĺıcito de G permitiŕıa al bosón de Higgs obtener

su masa pequeña, aśı como el pión obtiene su masa en QCD, y desarrollar un potencial

con un mı́nimo no trivial 〈h〉. Sólo mediante este rompimiento espontáneo la simetŕıa

de gauge electrodébil seŕıa rota y la EE v -definida por la masa del bosón de gauge W -

seŕıa generada y distinta de la escala f . Tres escalas entran en el juego ahora: f , v y

〈h〉, y estarán vinculadas entre ellas mediante alguna relación dependiente del modelo.

La no-linealidad del modelo está cuantificada por el nuevo parámetro

ξ ≡ v2

f 2
, (3)

tal que f ∼ v (ξ ∼ 1) caracteriza escenarios no-lineales, mientras que f � v (ξ � 1) dis-

tingue a escenarios de régimen lineal. Como resultado, para valores no despreciables de ξ

pueden haber correcciones al tamaño de los acoplos del ME debido a nuevas contribuciones

de NF.

Un procedimiento sistemático para explicar esas correcciones consiste en codificarlas

v́ıa una Teoŕıa Efectiva de Campos (TEC). La idea es emplear un modelo σ no-lineal

para dar cuenta de la dinámica fuerte que da lugar a los bosones de Goldstone, que son

las componentes longitudinales de los bosones de gauge W± y Z, y acoplar a posteriori

este Lagrangiano efectivo a un singlete escalar h del modo más general posible. En

un modelo dado, se tendrán relaciones entre los coeficientes del conjunto más general

de operadores, remanentes de un doblete electrodébil incial o de otra naturaleza de la

part́ıcula de Higgs. Pero en ausencia de un modelo establecido como tal, vale la pena

explorar el Lagrangiano más general, el cual puede dar cuenta de escenarios distintos a

los descritos anteriormente, por ejemplo en los cuales el Higgs pueda ser un “impostor” no

relacionado con la RSE, tal como un sector escalar oscuro, y otros escenarios que incluyan

la presencia de un dilatón. Intentaremos construir aqúı el Lagragiano efectivo no-lineal

más general (a menudo llamado Lagrangiano “quiral”) en presencia de un escalar liviano

h, restringido al sector bosónico.

Una caracteŕıstica muy general que distingue expansiones efectivas lineales de no-

lineales va como sigue. En el ME y en realizaciones MME de RSE, la EE v y la part́ıcula

h entran en el Lagrangiano en la forma de dependencias polinomiales en (h+v), con h de-

notando la part́ıcula de Higgs f́ısica. En realizaciones quirales, esa simple forma funcional

cambia y será codificada mediante funcionales genéricas F(h). Para parametrizarlas,
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puede ser útil una representación de la forma [19]

F(h) = g0(h, v) + ξg1(h, v) + ξ2g2(h, v) + . . . (4)

con g(h, v) funciones de h y v, dependientes del modelo, una vez que 〈h〉 es expresada

en términos de ξ and v. Además, para un singlete h genérico, el número de operadores

independientes que constituye una base completa será mayor que para las realizaciones

lineales de RSE, y también mayor que para los Lagrangianos electrodébiles no-lineales

construidos años atrás en ausencia de una part́ıcula escalar liviana (el llamado Lagrangiano

efectivo de Applequist-Longhitano-Feruglio [21–25]), conllevando como consecuencia una

fenomenoloǵıa más rica.

La TEC aqúı desarrollada debeŕıa proporcionar la descripción más general indepen-

diente del modelo de las interacciones bosónicas en presencia de una part́ıcula de Higgs

liviana h: puramente gauge, gauge-h y acoplos puramente h, hasta cuatro derivadas en

la expansión quiral [19,20]. Hemos identificado primeramente [19] la torre de operadores

independientes invariantes bajo la acción simultánea de transformaciones de carga (C) y

paridad (P) (denominados operadores que conservan CP); la torre bosónica de operadores

que violan la simetŕıa CP también ha sido determinada [20].

Mientras algunos de los operadores que conservan y violan CP han sido individual-

mente indentificados en años recientes en las Refs. [26–29], el análisis presente es la

primera determinación del conjunto completo de operadores independientes bosónicos

y de su impacto. Algunos de los operadores bosónicos discutidos en el Caṕıtulo 2 no

hab́ıan sido explorados en literatura previa de Lagrangianos efectivos no-lineales, pero

śı reemplazados por operadores fermiónicos v́ıa ecuaciones de movimiento [30]. Es muy

interesante identificar y analizar el conjunto completo de operadores bosónicos, desde el

punto de vista teórico y fenomenológico. Teóricamente, porque pueden arrojar alguna

luz en la naturaleza de la RSE, la cual tiene lugar justamente en el sector bosónico.

Fenomenológicamente, porque dado el potencial de los datos presentes y futuros del LHC,

cotas más precisas en acoplos gauge y gauge-Higgs son disponibles, llegando a ser com-

petitivas con ĺımites fermiónicos que acotan teoŕıas MME. Caracteŕıstica ésta que puede

ser fortalecida con las facilidades del LHC a futuro.

Una de las exploraciones fenomenológicas de violación de CP contenidas en éste trabajo

trata con las caracteŕısticas diferenciales esperadas en acoplos anómalos y señales de

realizaciones no-lineales de la RSE versus realizaciones lineales. Cotas fenomenológicas

de ĺımites de momentos dipolares eléctricos (MDEs) y de datos presentes del LHC son

derivadas a posteriori, y futuras perspectivas son brevemente discutidas. En este trabajo

iremos más allá de las interesantes propuestas pasadas y actuales para buscar acoplos

anómalos que violan CP a los fermiones y bosones de gauge [31–67], los cuales van desde



xv

análisis puramente fenomenológicos a identificación de señales efectivas asumiendo ya bien

sean realizaciones lineales o no-lineales de la RSE.

Otro aspecto explorado en este trabajo es de f́ısica de sabor MME en el contexto de

Lagrangianos quirales electrodébiles con un Higgs liviano h. Si bien no vamos a intentar

derivar en este caso una completa base de TEC fermiónica y bosónica, algunas carac-

teŕısticas serán exploradas. Esto será implementado es un escenario de una herramienta

de sabor muy predictivo y prometedor: la llamada hipótesis de Violación Mı́nima de Sabor

(VMS) [69–71], basada en acoplos de Yukawa propuestos como espuriones transformando

bajo la simetŕıa global que el ME exhibe en el ĺımite de fermiones no masivos (restringi-

mos aqúı al sector de quarks): Gf = SU(3)QL × SU(3)UR × SU(3)DR . En este escenario,

cada operador es sopesado por un coeficiente construido a base de acoplos de Yukawa

con el fin de hacer cada término en el Lagrangiano de TEC invariante bajo Gf ; dichos

coeficientes gobernarán y mantendrán bajo control, por ejemplo, todos los procesos de

corrientes neutras que cambian el sabor (CNCS). Como resultado, las predicciones de ba-

jas enerǵıas resultan estar suprimidas por la dependencia en acoplos de Yukawa, es decir

masas de quarks y ángulos de mezcla. Ciertamente, lo que los datos experimentales nos

dicen es que cualquiera sea la teoŕıa MME de sabor, ella debe alinearse a bajas enerǵıas

con las predicciones del ME, en otras palabras, con todos los efectos que cambian sabor

y que resultan de las fuentes de ME. La única fuente de sabor en el ME son los acoplos

de Yukawa, y la hipótesis de VMS asegura precisamente que los acoplos de Yukawa sean

los únicos mensajeros a bajas enerǵıas de f́ısica de sabor MME.

El contenido de éste manuscrito está organizado como sigue: Caṕıtulo 1 contiene

una breve descripción de las principales caracteŕısticas del ME, seguida por una breve

presentación del modelo σ no-lineal y de la hipótesis de VMS. El Caṕıtulo 2 desarrolla

el escenario de TEC para el Lagrangiano quiral electrodébil en presencia de un escalar

liviano h. La base completa de operadores no-lineales efectivos que conservan y violan la

simetŕıa CP en el sector gauge y gauge-h es igualmente listada en dicho caṕıtulo 2. Cotas

fenomenológicas en acoplos que violan CP y provenientes de ĺımites de MDEs y de datos

del LHC son presentados en el Caṕıtulo 2. El Caṕıtulo 3 es dedicado a efectos de sabor, y

por consiguiente, a la inclusión de los sectores fermion-gauge y fermion-gauge-h, dentro del

marco quiral de TEC y la hipótesis de VMS asumidos. Finalmente, el Caṕıtulo 5, resume

los principales resultados de este trabajo. Resultados y herramientas complementariass

son dados en los apéndices.

2Las funciones Fi(h) serán restringidas funciones que conservan CP.



Chapter 1

Standard Model interactions

The known physical interactions playing a role in nature are described by the following

forces: electromagnetic, weak, strong and gravitational. The first three form part of

the so called Standard Model of particle physics (SM), a local invariant gauge theory

built upon the group SU(3)c × SU(2)L × U(1)Y , with SU(3)c the color group for the

Chromodynamics theory [72–74], and SU(2)L × U(1)Y the electroweak group unifying in

a single picture electromagnetic and weak interactions, the so called Electroweak theory

(EW) [75–77]. Gravitation remains to be properly incorporated in the SM framework as

no viable and convincing quantum picture for it has emerged so far. The SM lagrangian

density is written as

LSM = LQCD + LEW + LScalar + LYukawa , (1.1)

where the QCD and EW sectors are described by

LQCD + LEW = −1

4
Ga
µνG

µν
a −

1

4
W i
µνW

µν
i −

1

4
BµνB

µν+

+ i Q̄L /DQL + i ūR /D uR + i d̄R /D dR + i L̄ /D L+ i ēR /D eR , (1.2)

the first line accounting for the strength of the gauge kinetic tensor

Ga
µν = ∂µG

a
ν − ∂ν Ga

µ − gs fabcGb
µG

c
ν ,

W i
µν = ∂µW

i
ν − ∂νW i

µ − i g εijkW j
µW

k
ν , (1.3)

Bµν = ∂µBν − ∂νBµ ,
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the second one for the lepton and quark kinetic terms with

Dµ = ∂µ + i
gs
2
Ga
µ λ

a + i
g

2
W i
µ τi + i g′ Y Bµ (1.4)

covariant derivative with λa Gell-Mann and τi Pauli matrices acting on SU(3)c color and

SU(2)L indices respectively, Y the corresponding U(1)Y hypercharge quantum number

assigned from Qψ = T3,ψ + Yψ, where ψ covers the left handed lepton and quark doublets

LT = (νL, eL) and QT = (uL, dL) respectively, as well as the right handed electron and

quark fields eR, uR and dR, respectively. The coupling constants gs, g and g′ correspond

to each symmetry group respectively, and color and flavour indices are omitted. The SM

interactions of the gauge and fermion fields are normalized in Tables 1.1 and 1.2.

Matter field SU(3)c T3 [SU(2)L] Y [U(1)Y ](
uL

dL

)
3

3

+1
2

−1
2

+1
6

+1
6

uR

dR

3

3

0

0

+2
3

−1
3

(
νL

eL

)
1

1

+1
2

−1
2

−1
2

−1
2

eR 1 0 −1

Table 1.1: SM fermion field content and their quantum numbers.

Interaction Gauge group Gauge field SU(3)c SU(2)L Y [U(1)Y ]

Strong SU(3)c Ga
µ 8 1 0

Weak SU(2)L W a
µ 1 3 0

Hypercharge U(1)Y Bµ 1 1 0

Table 1.2: SM interactions and their gauge field content (before EWSB) and quantum

numbers.
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1.1 EWSB in the SM

The scalar sector in (1.1), represented by the SU(3)c color singlet SU(2)L doublet field

Φ, defined as

Φ(x) =

(
Φ+

Φ0

)
=

1√
2

(
φ1(x)− i φ2(x)

h(x) + i φ3(x)

)
, (1.5)

and its covariant derivative as

DµΦ =

(
∂µ + i

g

2
W i
µ τi + i

g′

2
Bµ

)
Φ , (1.6)

has a corresponding lagrangian

LScalar = (DµΦ)†(DµΦ)− V (Φ) , (1.7)

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
, (1.8)

where LScalar is invariant under SU(3)c × SU(2)L × U(1)Y . Necessarily λ is positive to

have a stable potential and, as soon as the potential gets minimized by the conditions

µ2 < 0 and λ > 0 at the vacuum expectation value (VEV)

〈Φ†Φ〉 = v2 = −µ
2

2λ
(1.9)

the ground state will lose the SM invariance, keeping just the electromagnetic U(1)em

invariance, and triggering thus EWSB. In polar coordinates, Φ can be written as

Φ(x) =
1√
2

exp

[
i
τ · π(x)

2 v

](
0

v + h(x)

)
, (1.10)

and reabsorbing the triplet of Goldstone bosons, π = (π1, π2, π3), by SU(2)L-rotations

(i.e. going to the unitary gauge)

Φ(x) =⇒ 1√
2

(
0

v + h(x)

)
(1.11)

the scalar kinetic term will reduce to

(DµΦ)†(DµΦ) =
1

2
(∂µh)2 +M2

W W+
µ W

−µ
(

1 +
h

v

)2

+
1

2
M2

Z Z
2
µ

(
1 +

h

v

)2

, (1.12)
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with W±
µ and Zµ fields defined as

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
,

(
Zµ

Aµ

)
=

(
cW −sW
sW cW

)(
W 3
µ

Bµ

)
, (1.13)

and the parameters and masses

sW = sin θW =
g′√

g2 + g′2
, cW = cos θW =

g√
g2 + g′2

, (1.14)

MW =
1

2
gv , MZ =

gv

2 cos θW
. (1.15)

Also from the scalar potential one obtains

M2
h = 2λ v2 = −2µ2 . (1.16)

The Lagrangian term in Eq. (1.12), exhibits SM interactions coupled to the light Higgs

h, up to quadratic powers. Later on, when dealing with a non-linear EFT approach,

this interaction will be considered in a more general manner by incorporating a generic

h dependence, including higher powers of h. This will be implemented not only for the

corresponding non-linear kinetic term, but also extended to any effective operator in the

approach.

Finally, fermion masses can be accounted via EWSB through the Yukawa interactions,

they are described in the next section as well as the SM flavour dynamics stemming from

the Yukawa interactions.

1.2 SM flavour structure

Quarks and charged leptons become massive via gauge invariant Yukawa coupled to the

SM Higgs doublet as

LYukawa = QL Y
u Φ̃uR +QL Y

d Φ dR + L̄ Y e Φ eR + h.c. , Φ̃ = i τ2 Φ∗ , (1.17)

with Y u, Y d and Y e denoting Yukawa coupling matrices. Triggering EWSB via the Higgs

field VEV value v, the Yukawa interactions in Eq. (1.17) result in quark and charged

lepton mass matrices

Mu = Y u v√
2
, Md = Y d v√

2
, Me = Y e v√

2
, (1.18)
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with v = 〈Φ〉 ' 246 GeV. The mass matrices can be diagonalized by rewriting the quark

flavour states (u′,d′) to the mass eigenstates (u,d),

uL = VuLu
′
L, uR = VuRu

′
R , (1.19)

dL = VdLd
′
L, dR = VdRd

′
R ,

with V being unitary such that

V T
uL
MuVuR = diag (mu,mc,mt) , V T

dL
MdVdR = diag (md,ms,mb) . (1.20)

Masses matrices Mu,d are simultaneously diagonalized, remaining therefore no SM flavor

changing neutral Higgs-mediated current at tree level. Electromagnetic and neutral EW-

currents are also diagonal in the mass basis, e.g., u′Lγµu
′
LZ

µ ⇒ uLγµuLZ
µ, and thus no

flavor changing neutral Z0-γ currents (FCNC) in the SM .

The charged current sector (CC) behaves differently, as they involve, in the mass basis,

two different unitary matrices: those from the up and down sectors respectively, and being

misaligned in the flavour space in general

LCC =
g√
2
W+
µ ū

′
L γ

µ d′L ⇒
g√
2
W+
µ ūL γ

µ V dL , V = V †uLVdL =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ,

(1.21)

with V = V †uLVdL Cabbibo-Kobayashi-Maskawa (CKM) matrix [78,79]. Flavour changing

current processes thus appear in the SM charged current sector.

Neutrino masses lead to an analogous situation in the mass basis

LCC =
g√
2
W+
µ ν̄

′
L γ

µ e′L ⇒
g√
2
W+
µ ν̄L γ

µ U eL , U = V †ν VeL =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 ,

(1.22)

with U = V †ν VeL being the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix describing

flavour mixing for the lepton sector [80, 81]. Massless neutrinos as in the SM allow us to

choose Vν = VeL such that U = I3×3. Nonetheless, BSM extensions with massive neutrinos

require a non-trivial U . Note that for the Majorana neutrino case U contains a priori two
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physical phases more than the CKM matrix for quarks, which are Dirac fermions. In fact

for the Majorana neutrino case, U can be written in the standard parametrization as

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

UP (1.23)

with sij = sin θij, cij = cos θij, and UP the diagonal matrix UP = diag
(
eiα1/2, eiα2/2,mt

)
,

where α1, α2 and α3 are the Majorana phases1.

As a conclusion the diagonalization of the mass matrices leads to the quark mixing

pattern and no Flavor Changing Neutral Currents (FCNC) at tree level in the SM. The

same thing happens for the leptonic sector once neutrino masses are turned on.

Quark mixing matrix

Mixing between generations is explicitly manifested in the quark charged weak currents as

seen in Eq. (1.21). Conventionally, the mixing may be describes as assigned to the down

quark sector as d′L = V dL, although what counts is the relative misalignment of the up

and down quark sectors. The CKM matrix is unitary as it is the product of two unitary

matrices. An n× n unitary matrix is described by n2 real-valued parameters, n(n− 1)/2

of them being real (angles) and n(n+1)/2 phases, all the latter with no physical meaning

as 2n − 1 can be absorbed by quark rephasings. Indeed, for the n-family case, the 2n-

rephasings uL,α → ei θ
u
αuL,α and dL,α → ei θ

d
αdL,α, with α = 1, ..., n, lead the CKM-matrix

element Vαβ to Vαβ → Vαβ e
i(θdβ−θuα), and factorizing one phase as a global overall phase, it

tends to 2n− 1 effective rephasings, and therefore (n− 1)(n− 2)/2. For the CKM matrix

case, one has 3 mixing angles and 1 CP -violating phase, all that parametrized as [82]

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.24)

with sij = sin θij, cij = cos θij, and δ the phase, responsible for all the CP -violating

phenomena in the SM flavour changing processes. Experimentally the mixing among

quark families is small, with s13 � s23 � s12 � 1, and a convention may be introduced

to account for this hierarchy, the so called Wolfenstein parametrization [83]

1Only two relative phases, α21 ≡ α2 − α1 and α31 ≡ α3 − α1 are physical, the remaining one being

absorbed by redefining the fields. For the Dirac neutrno case, such phases are also absorbable via field

redefinitions of the right handed neutrinos.
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s12 = λ =
|Vus|√

|Vus|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣VcbVus

∣∣∣∣ ,

s13 e
i δ = V ∗ub = Aλ3 (ρ+ i η) =

Aλ3 (ρ̄+ i η̄)
√

1− A2 λ4

√
1− λ2 [1− A2 λ4 (ρ̄+ i η̄)]

. (1.25)

Written in terms of λ, A, ρ̄ and η̄, and expanded up to order O(λ4) it reads:

V =

 1− λ2/2 λ Aλ3 (ρ− i η)

−λ 1− λ2/2 Aλ2

Aλ3 (1− ρ− i η) −Aλ2 1

+O(λ4) . (1.26)

The unitarity of the CKM matrix imposes the relations

∑
i

VijV
∗
ik = δjk ,

∑
j

VijV
∗
kj = δik . (1.27)

In consequence, six vanishing combinations are obtained, which can be represented as

triangles in the complex plane, all of them with the same area. It is useful to define the

Jarlskog invariant J , a phase convention-independent measure of CP -violation defined by

Im
[
VijVklV

∗
ilV
∗
kj

]
= J

∑
m,n

εikmεjln . (1.28)

A very useful unitary triangle results from the relation VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0,

normalized by the experimentally well determined product VcdV
∗
cb, and projected on the

ρ̄-η̄ plane. Such triangle is shown in Fig. 1.1, and the angles it gives rise to defined as

α = arg

(
− V

∗
tbVtd

V ∗ubVud

)
,

β = arg

(
−V

∗
cbVcd
V ∗tbVtd

)
,

γ = arg

(
−V

∗
ubVud
V ∗cbVcd

)
.

(1.29)

One of the aims of the ongoing research in flavour physics research intends to overconstrain

the CKM elements, comparing many measurements.

In Chapter 3 slightly modifications are induced in the angles of the unitary triangle from

the framework assumed there.
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Figure 1.1: CKM unitary triangle.

1.3 Going beyond the Standard Model

For the sake of description, I will first discuss SM extensions in the linear EWSB context,

i.e. with the explicit presence of a Higgs doublet properly transforming under the SM

gauge group, and later on will focus on non-linear EWSB realizations.

The BSM signals can be tackled by assuming the existence of NP at some scale Λ

above the electroweak one, i.e. v � Λ, and encoding NP interactions in a set of effective

operators Oi such that their Lagrangian will be

δL =
∑
i

ci
Λ2
Oi + h.c. + ... , (1.30)

where Oi are generic gauge invariant effective operators of dimension six, emerging after

integrating out new degrees of freedom at the scale Λ, scale that can be bounded by

experimental constrains. Dots in Eq. (1.30) account for operators of dimension higher

than six, in principle less relevant as they are suppressed by higher powers of the NP

scale. Among these operators, we can have

• Pure gauge interactions

OW = εijkW iν
µ W

jρ
ν W

kµ
ρ , OW̃ = εijkW̃ iν

µ W
jρ
ν W

kµ
ρ . (1.31)

• Pure scalar interactions as

OΦ = (Φ†Φ)3 , OΦ� = (Φ†Φ)�(Φ†Φ) . (1.32)



9

• Yukawa-like interactions coupled to Φ

OΦu = (Φ†Φ)(Q̄L Φ̃uR) , OΦd = (Φ†Φ)(Q̄L Φ dR) . (1.33)

• Gauge-Φ interactions

OΦW = Φ†ΦW i
µνW

iµν , OΦB = Φ†ΦBµνB
µν , OΦWB = Φ†τ iΦW i

µνB
µν ,

(1.34)

OΦW̃ = Φ†Φ W̃ i
µνW

iµν , OΦB̃ = Φ†Φ B̃µνB
µν , OΦW̃B = Φ†τ iΦ W̃ i

µνB
µν .

(1.35)

• Magnetic penguin-like operators

OuW = (Q̄L σ
µνuR)τ iΦ̃W i

µν , OuB = (Q̄L σ
µνuR)Φ̃Bµν , (1.36)

OdW = (Q̄L σ
µνdR)τ iΦW i

µν , OdB = (Q̄L σ
µνdR)ΦBµν . (1.37)

• Fermion vector currents coupled to scalar gauge currents

O(1)
Φq = (Φ†i

↔
Dµ Φ)(Q̄L γ

µQL) , OΦu = (Φ†i
↔
Dµ Φ)(ūR γ

µ uR) , (1.38)

O(3)
Φq = (Φ†i

↔
D j
µ Φ)(Q̄L τ

jγµQL) , OΦd = (Φ†i
↔
Dµ Φ)(d̄R γ

µ dR) . (1.39)

Colour and generation indices are implicit. Operators containing gluon-Φ, gluon self-

interactions, gluon magnetic penguin-like operators, as well as operators properly having

lepton fields instead of quark fields (either left or right handed fields), are all them fully

listed in Refs. [84, 85]. Four fermion operators are also included in those references, and

summing up a total of 59 independent dimension-six operators, so long as B-conservation

is imposed and finally reported in Refs. [85]. Many studies of the effective Lagrangian

in Eq. (1.30) for the linear expansion have been carried out over the years, analysing

its effects on Higgs production and decay [87, 88], with a revival of activity [89, 90] after

the Higgs discovery [91, 92] (see also Refs. [64, 93–119] for studies of Higgs couplings in

alternative and related frameworks).
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Operator Bounds on Λ in TeV Bounds on cij Observables

Re Im Re Im

(s̄Lγ
µdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK ; εK

(c̄Lγ
µuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; |q/p|, φD
(b̄Lγ

µdL)2 5.1× 102 9.3× 102 3.3× 10−6 1.0× 10−6 ∆mBd ; SψKS
(b̄R dL)(b̄LdR) 1.9× 103 3.6× 103 5.6× 10−7 1.7× 10−7 ∆mBd ; SψKS

(b̄Lγ
µsL)2 1.1× 102 7.6× 10−5 ∆mBs

(b̄R sL)(b̄LsR) 3.7× 102 1.3× 10−5 ∆mBs

Table 1.3: Bounds on Λ assuming cij = 1, or alternatively, bounds on cij assuming Λ = 1

TeV (here the coefficient ci in Eq. (1.30) has been replaced by cij as the corresponding

operator implies two family indexes). Some operators ∆F = 2 of dimension 6 has been

used, and experimental bounds from the corresponding observables have been implemented.

Table from Ref. [86].

Assuming now the adimensional coefficients ci to be of order one, which is a reasonable

assumption for generic new physics, the lower bounds for Λ can even reach the level of

thousands of TeV, which would preclude any related observation in foreseen experiments.

This is shown in Table 1.3, extracted from Ref. [86]. Notice that the lower limits on the

scale Λ in are in many cases of the order O(103 − 104) TeV, reaching 105 TeV in the

case of the contribution of the operator (s̄R dL) (s̄L dR) to the CP-violating parameter in

neutral kaon decays εK (defined in Appendix C). This implies that, if some NP appears

at a scale Λ < 104 TeV, then the flavour and CP structure of the NP theory has to be

highly non trivial. One way-out would be to assume some hypothesis allowing us to write

the effective Lagrangian as

δL =
∑
i

ci
Λ2
αiOi + h.c. , (1.40)

where αi are small parameters controlled by some hypothesis, preferably a symmetry

justifying such suppression, such that Λ could be lower and near the TeV region, if the

Lagrangian in Eq. (1.40) is in agreement with all current data and with coefficients ci of

the order O(1).
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Minimal Flavour Violation

The smallness of αi could be caused by some flavour hypothesis, a flavour symmetry.

The most popular attempt in this direction is the so called Minimal Flavour Violation

hypothesis (MFV) [69–71], based on the flavour symmetry which the SM kinetic terms

exhibit [120–127]

Gf = SU(3)QL × SU(3)UR × SU(3)DR (1.41)

with SU(2)L doublet QL and singlets UR and DR transforming under it as

QL ∼ (3, 1, 1) , UR ∼ (1, 3, 1) , DR ∼ (1, 1, 3) . (1.42)

To recover Gf in the presence of Yukawa interactions, the MFV ansatz promotes Yukawa

couplings to be spurions transforming under Gf as

YU ∼ (3, 3̄, 1) , YD ∼ (3, 1, 3̄) . (1.43)

Quark masses and mixings are correctly reproduced once these spurion fields get back-

ground values as

YU = V † yU , YD = yD , (1.44)

with yU,D diagonal matrices whose elements are the Yukawa eigenvalues, and V a unitary

matrix that in good approximation coincides with the CKM matrix. The flavour group

Gf is broken by these background values, providing therefore contributions to FCNC

observables suppressed by specific combinations of quark mass hierarchies and mixing

angles. Indeed, a Gf -invariant coupling

λF ≡ YU Y
†
U + YD Y

†
D , (1.45)

transforming as (8, 1, 1) under Gf , will govern FCNC processes for 4-fermion operators

by inserting it into the effective operators from the assumed EFT framework. As a nice

feature, low-energy effects are suppressed by the quark masses and mixing angles encoded

in λF , not contradicting therefore the FCNC experimental bounds. In this way, one

obtains parameters αi equal to some power of the CKM matrix elements (depending on

the specific operator Oi), in such a way that a scale Λ ∼ 10 TeV can be allowed by all

experimental data. This is illustrated in Table 1.4 from Ref. [71], where the complete basis

of gauge-invariant 6-dimensional FCNC operators has been constructed for the case of a

linearly realized SM Higgs sector, in terms of the SM fields and the YU and YD spurions.

Operators of dimension d > 6 are usually neglected due to the additional suppression



12

Minimally flavour violating main Λ [TeV]

dimension six operator observables − +

O0 = 1
2
(Q̄LλFCγµQL)2 εK , ∆mBd 6.4 5.0

OF1 = H†
(
D̄RλdλFCσµνQL

)
Fµν B → Xsγ 9.3 12.4

OG1 = H†
(
D̄RλdλFCσµνT

aQL

)
Ga
µν B → Xsγ 2.6 3.5

O`1 = (Q̄LλFCγµQL)(L̄LγµLL) B → (X)`¯̀, K → πνν̄, (π)`¯̀ 3.1 2.7

O`2 = (Q̄LλFCγµτ
aQL)(L̄Lγµτ

aLL) B → (X)`¯̀, K → πνν̄, (π)`¯̀ 3.4 3.0

OH1 = (Q̄LλFCγµQL)(H†iDµH) B → (X)`¯̀, K → πνν̄, (π)`¯̀ 1.6 1.6

Oq5 = (Q̄LλFCγµQL)(D̄RγµDR) B → Kπ, ε′/ε, . . . ∼ 1

Table 1.4: Bounds either on Λ or cij (again cij instead of ci, as the implied operators

have two family indexes) implementing MFV ansatz. Notice the TeV scales for Λ compared

with those in Table 1.3. Table from Ref. [71].

in terms of the cut-off scale. NP may be also as low as few TeV in several distinct

contexts [128–131].

As the non-linear EWSB setup is considered in this thesis work, the MFV ansatz has

to be realized in such a context as well, and will be developed in Chapter 3, by including

additionally the light Higgs particle contribution in the framework.



Chapter 2

Bosonic Chiral Lagrangian for a

Light Dynamical “Higgs Particle”

If the EWSB is non-linear, the low energy effective Lagrangian can be parametrized via

a chiral formalism. This leads to deal with a non-linear σ-model construction, useful

to parametrize Goldstone field contributions. Additionally, realistic approaches have to

account for a light Higgs particle, explaining thus gauge-h interactions and pure Higgs

h-interactions. When building up the non-linear realization of the Goldstone boson me-

chanism implemented with a light Higgs, in general four scales may be relevant, Λs, f ,

〈h〉 and v:

i) Λs denotes the strong dynamics scale and the characteristic size of the heavy res-

onances (in the context of QCD, it corresponds to ΛχSB, the scale of the chiral

symmetry breaking [12]).

ii) The Goldstone boson scale f , satisfying Λs ≤ 4πf (in the context of QCD, it

corresponds to the pion coupling constant fπ).

iii) 〈h〉 refers to the order parameter of EW symmetry breaking, around which the

physical scalar h oscillates.

iiii) EW scale v, defined through MW = gv/2.

Diagramatically, these scales can be arranged as in Fig. 2.1. In a general model 〈h〉 6= v

and this leads to an 〈h〉-dependence in the low-energy Lagrangian through a generic

functional form F(h+ 〈h〉). In non-linear realizations such as Technicolor-like models, it

may happen that 〈h〉 = v = f . In the setup considered here with a light h, they do not

need to coincide, and typically a relation links v, 〈h〉 and f . Thus, a total of three scales
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Figure 2.1: Hierarchy representation of the involved scales, where the arrow sense points

towards higher energies and CHM stands for Composite Higgs Models.

will be useful in the analysis, for instance Λs, f and v. Indeed, the ratio of the two latter

measures the strength of non-linearity and is quantified by a new parameter

ξ ≡ v2

f 2
, (2.1)

such that ξ encodes the strength of the effects at the electroweak scale for theories which

exhibit strong coupling at the new physics scale Λs ≤ 4πf , and measuring thus the degree

of non-linearity for the low-energy effective theory, with f � v (ξ � 1) pointing towards

linear regime, whereas f ∼ v (ξ ∼ 1) to the non-linear ones.

2.1 The SM vs. σ-model parametrization

A hidden global symmetry is underlying the Lagrangians in Eq. (1.7) and (1.8). Instead

of introducing the scalar fields as a complex doublet as in Eq. (1.5), an adimensional 2×2

matrix field can be used in order to highlight that symmetry

U(x) =
1

v
[σ(x) + i τ · π(x)] , (2.2)
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with σ(x) being a scalar field and π(x) = (π1(x), π2(x), π3(x)) the triplet of would-be Gold-

stone boson fields. U(x) can be linked to the doublet representation if the corresponding

isospin 1/2 and hypercharge −1 field Φ̃ is introduced, and the following correspondence

is assumed, see Eq. (1.5)

(π1(x), π2(x), π3(x)) = (−φ2(x), φ1(x),−φ3(x)) , (2.3)

obtaining thus

U(x) ≡
√

2

v

(
Φ̃(x) Φ(x)

)
=

√
2

v

(
Φ0∗(x) Φ+(x)

−Φ−(x) Φ0(x)

)
. (2.4)

Writing the scalar potential in Eq. (1.8) in terms of U(x)

V (U) =
1

4
λ

[
v2

2
Tr
(
U†U

)
+
µ2

λ

]2

(2.5)

emerges the aforementioned hidden global symmetry, SU(2)L×SU(2)R with U(x) trans-

forming under it as

U→ LUR† , L ≡ ei εL·τ/2 , R ≡ ei εR·τ/2 (2.6)

with the L and R global transformations L ∈ SU(2)L and R ∈ SU(2)R, and εL,R global

parameters. Imposing now local SU(2)L × U(1) gauge invariance, Φ(x) transforms as

Φ(x)→ Φ′(x) = ei[−ε0(x)+ε(x)·τ ]/2Φ(x) (2.7)

and therefore U(x) will do it as

U(x)→ L(x) U(x)R†(x) , L(x) = ei ε·τ/2 , R(x) = eiε0(x)τ3/2 (2.8)

being possible to introduce its associated covariant derivative as

DµU ≡ ∂µU +
i g

2
τiW

i
µ U − i g′

2
Bµ U τ3 , (2.9)

and therefore the Lagrangians in Eq. (1.7) and (1.8), which are SU(2)L × U(1) gauge

invariant, can be rewritten as

LScalar =
v2

4
Tr
(

(DµU)† DµU
)
− V (U) . (2.10)

Triggering now EWSB with µ2 < 0 and λ > 0, the unitary relation holds 〈U†U〉 = I2×2

and the global symmetry breaks down to the custodial one, i.e. SU(2)L × SU(2)R ⇒
SU(2)V .
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Decoupling Higgs: non-linear σ-model

The latter unitary relation implies σ2 + π2 = v2, and by replacing σ =
√
v2 − π2 in U(x)

U(x) =

√
1− π2(x)

v2
+
i τ · π(x)

v
, (2.11)

the σ-particle is removed from the physical spectrum1, obtaining therefore a SU(2)L×U(1)

Yang-Mills theory coupled to a non-linear σ-model2

L =
v2

4
Tr
(

(DµU)† DµU
)
− V (U)− 1

4
W i
µνW

µν
i −

1

4
BµνB

µν , (2.14)

where the SU(2)L×U(1) strength gauge kinetic sector has been introduced and the space-

time dependence of U is implicit there and below. To construct the effective Lagrangian

are introduced two chiral objects, a vector Vµ and a scalar T, transforming covariantly

under the SM gauge group

T = Uτ3U
† , T → LTL† ,

Vµ = (DµU)U† , Vµ → LVµ L
† ,

(2.15)

and with these the Eq. (2.14) can be rewritten as

L = LV V − V (U)− 1

4
W i
µνW

µν
i −

1

4
BµνB

µν , (2.16)

where now LV V is the Lagrangian containing two derivative operators (remind that mass

dimension comes from gauge fields and derivatives applied on U only) and expressed as

LV V = −v
2

4
Tr (Vµ Vµ) + cT

v2

4
Tr (T Vµ) Tr (T Vµ) . (2.17)

Vµ-antihermiticity has been used for the first term, and the second operator is the two

derivative custodial symmetry breaking operator inducing a shift in the mass MZ with

respect to the mass MW . This coupling tends to be unacceptably large in naive models

1Goldstone bosons degrees of freedom can also be encoded in a local invariant exponential represen-

tation as

U(x) = eiτ ·π(x)/v , U(x)→ L(x)U(x)R†(x) , (2.12)

with i = 1, 2, 3, such that U(x) can be expanded as

U(x) = cos

(
π̃

v

)
+ sin

(
π̃

v

)
i τ · π(x)

π̃
, π̃(x) =

√
πi(x)πi(x) (2.13)

2Gauge fixing and Faddeev-Popov Lagrangians are not discussed here as quantizations issues will not

be relevant for the analysis below.
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of a strong interacting Higgs sector, from the original technicolor formulation [9, 10] to

its modern variants, if not opportunely protected by some additional custodial symmetry.

Quantitatively, realistic models need to limit the intensity of this induced coupling to

cT < 0.001, as it is well-known.

The above construction has been repeatedly used in the past to represent a hypothe-

tical dynamical sector of EWSB, with a heavy (decoupled) Higgs particle, by identifying

the Higgs particle with σ. Nowadays we know that the Higgs is light, so it is compelling

and necessary to generalize the effective Lagrangian to still account for a strong dynamics

with a light Higgs.

2.2 Chiral effective expansion and light Dynamical

Higgs h

The transformation properties of the three longitudinal degrees of freedom of the weak

gauge bosons will still be encoded3 in the dimensionless unitary matrix U(x) in Eq. (2.2).

The adimensionality of U(x) is the key to understand that the dimension of the lead-

ing low-energy operators, describing the dynamics of the scalar sector and the tower of

operators differs for a non-linear Higgs sector [21–25] (ξ ∼ 1) and a purely linear regime

(ξ � 1), as insertions of U(x) do not exhibit a scale suppression.

Linear regime

For ξ � 1 the hierarchy between d ≥ 4 effective operators mimics the linear expansion,

where the operators are written in terms of the Higgs doublets Φ: couplings with higher

number of (physical) Higgs legs are suppressed compared to the SM renormalizable ones,

due to higher powers of 1/f or, in other words, of ξ. The power of ξ keeps then track of

the h-dependence of the higher dimension operators.

In the extreme linear limit 〈h〉 = v, the Higgs sector enters in the tower of operators

through powers of the SM Higgs doublet Φ and its derivatives. It is illustrative to write Φ

and its covariant derivative in terms of the Goldstone bosons matrix U and the physical

3Notice that in this low-energy expression for U(x), the scale associated to the eaten GBs is v and

not f . Technically, the scale v appears through a redefinition of the GB fields so as to have canonically

normalized kinetic terms.
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scalar h:

Φ =
(v + h)√

2
U

(
0

1

)
,

DµΦ =
(v + h)√

2
DµU

(
0

1

)
+
∂µh√

2
U

(
0

1

)
,

(2.18)

with DµU being the covariant derivative previously defined in Eq. (2.9). The Higgs

kinetic energy term in the linear expansion reads then

(DµΦ)†(DµΦ) =
1

2
(∂µh)2 − v2

4

(
1 +

h

v

)2

Tr (VµV
µ) . (2.19)

Notice that the right-hand side of this equation contains, besides of the h-kinetic term,

part of the Lagrangian Ldχ=2 in Eq. (2.14) for f → ∞, i.e. ξ = 0, and a = b = c = 1

(disregarding higher order terms in h/f), which corresponds to the SM case. Also notice

a (1 + h
v
)-structure coupled to the non-derivative term, feature that the tower of d ≥ 4

operators would inherit generically encoded as a h-dependence in powers of (v + h)/f =

ξ1/2(1 + h/v), and of ∂µh/f
2 [26–28]. This motivates and reinforces a realistic chiral

expansion accounting for a light Higgs h contribution and their interactions with the SM

particle content. That feature is achieved in the effective chiral approach by introducing

a generic polynomial expansion on h [19]

F(h) = g0(h, v) + ξg1(h, v) + ξ2g2(h, v) + . . . (2.20)

with g(h, v) model-dependent functions of h and of v, once 〈h〉 is expressed in terms of

ξ and v. As large ξ is, more terms in the expansion are considered and higher h-powers

retained.

A priori, the F(h) functions would also inherit the aforementioned universal behavior

in powers of (1 +h/v) such that any operator weighted by ξn would have a corresponding

expected dependence F(h) = (1+h/v)2n. Nevertheless, the use of the equations of motion

and integration by parts to construct the basis below will translate into combinations of

operator coefficients, which lead to a generic h dependence that, for instance at order ξ

(i.e. for d = 6 operators), reads [19]

Fi(h) = 1 + 2 ai
h

v
+ bi

h2

v2
, (2.21)

where ai and bi are expected to be O(1). An obvious extrapolation applies to couplings

weighted by higher powers of ξ (i.e. for d > 6 operators).
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Non-linear regime

For ξ ≈ 1, the ξ dependence does not entail a suppression of operators compared to

the renormalisable SM operators and the chiral expansion should instead be adopted,

although it should be clarified at which level the effective expansion on h/f should stop.

In fact, for any BSM theory in the non-linear regime the dependence on h will be a

general function. For instance, in the SO(5)/SO(4) strong-interacting model with a com-

posite light Higgs [132], the tower of higher-dimension operators is weighted by powers

of sin ((〈h〉+ h) /f), and in this case ξ = sin2 (〈h〉/f). Below, the F(h) functions en-

code the non-linear interactions of the light h and will be considered completely general

polynomials of 〈h〉 and h (not including derivatives of h). Notice that, when using the

equations of motion and integration by parts to relate operators, F(h) would be assumed

to be redefined when convenient, much as one customarily redefines the constant operator

coefficients.

2.2.1 Pure gauge and gauge-h operator basis

As for the gauge-h sector is concerned, all gauge invariant CP-conserving and CP-violating

operators are listed in this work up to four derivatives. The connection to the linear

regime will be made manifest exploiting the operator dependence on ξ. The effective

chiral Lagrangian can thus be decomposed as

Lchiral = LSM + ∆LCP + ∆L��CP , (2.22)

where the first term is the usual SM chiral term

LSM =
1

2
(∂µh)(∂µh)− 1

4
BµνB

µν − 1

4
W i
µνW

µν
i −

1

4
Ga
µνG

µν
a − V (h)

− (v + h)2

4
Tr (VµV

µ) + iQ̄ /DQ+ iL̄ /DL

− v + h√
2

(
Q̄LUYQQR + h.c.

)
− v + h√

2

(
L̄LUYLLR + h.c.

)
− g2

s

16π2
θsG

a
µν G̃

a
ρσ .

(2.23)

As it can be seen the first line of LSM accounts for the Higgs and strength gauge kinetic

sectors and also the scalar potential V (h), the second line provides W and Z-masses plus

gauge-h interactions V V h and V V hh (V = W,Z), as well as the fermion kinetic terms,
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whilst third line provides Yukawa terms for both of the quark and lepton sector, with

Yukawa matrices

YQ ≡ diag (YU , YD) , YL ≡ diag (Yν , Yl) , (2.24)

and LR and QR doublets grouping the corresponding leptons and quarks right handed

fields. Finally, the last term in Eq. (2.23) corresponds to the well-known total derivative

CP-odd gluonic coupling, for which the notation used is that in which the dual field-tensor

of any field strength Xµν is defined as X̃µν ≡ 1
2
εµνρσXρσ.

Finally, the departures with respect to the SM Lagrangian LSM are encoded in the

remaining part ∆LCP + ∆L��CP of Lchiral in Eq. (2.22). In the follow the CP-even contri-

butions ∆LCP are analysed.

2.2.2 CP-conserving ∆LCP

CP-even contributions are encoded in ∆LCP as [19]

∆LCP =ξ [cB PB(h) + cW PW (h) + cGPG(h) + cC PC(h) + cT PT (h) + cΦPΦ + c�ΦP�Φ] +

+ ξ
10∑
i=1

ciPi(h) + ξ2

25∑
i=11

ciPi(h) + ξ4 c26P26(h) . (2.25)

First line in ∆LCP accounts for the kinetic gauge terms, custodial breaking PT (h) and

custodial conserving operators PC(h), all of them coupled to F(h)

PB(h) = −1

4
BµνB

µν FB(h)

PW (h) = −1

4
W a
µνW

µν
a FW (h)

PG(h) = −1

4
Ga
µνG

µν
a FG(h)

PC(h) = −v
2

4
Tr (VµVµ) FC(h)

PT (h) =
v2

4
Tr (TVµ) Tr (TVµ)FT (h) ,

(2.26)

and the second line containing the effective CP-even operator basis Pi(h), weighted by

the corresponding ξ-powers, and with ci the operator coefficient corresponding to each

one of the operators Pi(h). Such weighting is done for keeping track the corresponding

linear siblings to each one of the operators Pi(h), where linear sibling means basically a
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determined operator made out of gauge fields and with the explicit presence of the SM

Higgs doublet Φ. The corresponding siblings are listed in Appendix C.

The guideline to establish the complete set of pure gauge and pure gauge-h operators

consists in

• Straightforwardly to couple strength gauge kinetic sector to F(h).

• Directly to couple the already existing CP-even operators in the literature.

• Consider operators containing DµVµ and no derivatives of F(h).

• Consider also operators with one or two derivatives of F(h).

• Those operators that were disregarded via integration by parts has to be reconsi-

dered as they will give rise to extra operators depending on derivatives of F(h).

After this procedure is done, we are able to provide the complete tower of effective chiral

operators accounting for pure gauge and gauge-h interactions (initially listed in Ref. [19])

and extended a posteriori with pure Higgs interactions (in Ref. [133]) as

P1(h) = g g′BµνTr (TW µν) F1(h) , P14(h) = 2 gTr (TVµ) Tr
(
Vν W̃ρλ

)
F14(h) ,

P2(h) = i g′BµνTr (T [Vµ,Vν ])F2(h) , P15(h) = Tr(TDµVµ) Tr(TDνVν)F15(h) ,

P3(h) = i gTr (Wµν [Vµ,Vν ])F3(h) , P16(h) = Tr([T ,Vν ]DµVµ) Tr(TVν)F16(h) ,

P4(h) = i g′BµνTr(TVµ) ∂νF4(h) , P17(h) = i gTr(TWµν)Tr(TVµ) ∂νF17(h) ,

P5(h) = i gTr(WµνV
µ) ∂νF5(h) , P18(h) = Tr(T[Vµ,Vν ])Tr(TVµ)∂νF18(h) ,

P6(h) = (Tr (Vµ Vµ))2F6(h) , P19(h) = Tr(TDµVµ)Tr(TVν) ∂
νF19(h) ,

P7(h) = Tr (Vµ Vµ) ∂ν∂
νF7(h) , P20(h) = Tr(VµV

µ)∂νF20(h)∂νF ′20(h) ,

P8(h) = Tr (Vµ Vν) ∂
µF20(h)∂νF̃8(h) , P21(h) = (Tr(TVµ))2∂νF21(h)∂νF ′21(h) ,

P9(h) = Tr
(
(DµVµ)2

)
F9(h) , P22(h) = (Tr(TVµ)∂µF22(h))2 ,

P10(h) = Tr(Vν DµVµ) ∂νF10(h) , P23(h) = Tr(VµV
µ)(Tr(TVν))

2F23(h) ,

P11(h) = (Tr(VµVν))
2F11(h) , P24(h) = Tr(VµVν)Tr(TVµ)Tr(TVν)F24(h) ,

P12(h) = g2 (Tr (TW µν))2F12(h) , P25(h) = (Tr(TVµ))2∂ν∂
νF25(h) ,

P13(h) = i gTr (TWµν) Tr (T [Vµ,Vν ])F13(h) , P26(h) = (Tr (TVµ) Tr (TVν))
2F26(h) ,

(2.27)
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Finally, concerning pure Higgs operators, the two derivative operator PΦ and the four

derivative one P�Φ in ∆LCP, weighted both of them by ξ, are

PΦ(h) =
1

2
(∂µh)2FΦ(h) , P�Φ =

1

v2
(�h)2F�Φ(h) . (2.28)

Additionally, more pure Higgs operators with linear siblings of dimension higher than 6

(i.e. weighted by ξ≥2) are possible, like PDΦ(h) [134,135] and P∆Φ

PDΦ(h) =
1

v4
((∂µh)(∂µh))2FDΦ(h) , P∆Φ =

1

v3
(∂µh)2�h . (2.29)

These operators correspond to three major categories: a) pure gauge and gauge-h ope-

rators P1−3(h), P6(h), P11−14(h), P23−24(h) and P26(h) which result from a direct ex-

tension of the original Appelquist-Longhitano chiral Higgsless basis already considered

in Refs. [21–25] with additional F(h) insertions. They appear in the Lagrangian with

different powers of ξ. b) Operators containing the contraction DµVµ and no derivatives

of F(h). c) Operators with one or two derivatives of F(h).

In all the effective operators listed so far, the light Higgs dependence is encoded

through the generic Fi(h)-functions of the scalar singlet h defined as [19]

Fi(h) ≡ 1 + 2 ai
h

v
+ bi

h2

v2
+ . . . , (2.30)

with dots standing for terms with higher powers in h/v which will not be considered

below. It is worth to comment that the standard structure Tr (VµV
µ) together with the

custodial breaking term Tr (T Vµ) Tr (T Vµ), as well as the Yukawa terms of the SM

Lagrangian in Eq. (2.23), can be extended in a more general manner by coupling them to

the corresponding light Higgs dependence functions. In fact

−v
2

4
Tr (VµVµ) FC(h) , cT ξ

v2

4
Tr (TVµ) Tr (TVµ)FT (h) , (2.31)

− v√
2

(
Q̄L U YQFQ(h) QR + h.c.

)
− v√

2

(
L̄L U YLFL(h)LR + h.c.

)
, (2.32)

where FH(h), FC(h), FT (h), FQ(h) and FL(h) defined similarly as in Ec. (2.19), and

with FQ(h) and FL(h) diagonal 2× 2 matrices defined as

FQ(h) ≡ diag (FU(h), FD(h)) , FL(h) ≡ diag (Fν(h), Fl(h)) , (2.33)
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where the entries FU,D(h) and Fν,l(h) are as in Eq. (2.19). For the particular cases

of FC(h) and FY (h), specific forms (alike in Eq. (2.20)) were already provided in the

literature [26,27] as

FC(h) =

(
1 + 2a

h

v
+ b

h2

v2
+ . . .

)
,

FU,D(h) =

(
1 + cU,D

h

v
+ . . .

)
.

The constants a, b and cU,D are model-dependent parameters, and specifically, a and cT

parameters are constrained from electroweak precision tests as 0.7 . a . 1.2 [106] and

−1.7× 10−3 < cT ξ < 1.9× 10−3 [28] at 95% CL.

The Lagrangian Lgauge−h is useful in describing an extended class of “Higgs” models:

• Mimicking the SM scenario with a linear Higgs sector after neglecting higher h-

powers, and if 〈h〉 = v, a = b = cU,D = cl = 1 as well as Fν(h) = 0 as the neutrinos

are massless in the SM.

• Technicolor-like ansatz (for f ∼ v and omitting all terms in h) and intermediate

situations with a light scalar h from composite/holographic Higgs models [11, 13–

18,132,136,137] (in general for f 6= v)

• Dilaton-like scalar frameworks [134,138–143] (for f ∼ v), where the dilaton partici-

pates to the electroweak symmetry breaking.

In concrete models, electroweak corrections imply ξ . 0.2− 0.4 [144], even though the ξ

parameter will be free and general here, only accounting for the constraints on custodial

symmetry through limits on the d = 2 and higher-dimensional chiral operator coefficients.

So far, all the aforementioned operators are invariant under CP transformations and

the CP-even gauge-h effective operator basis was established in Eqs. (2.25)-(2.27). Taking

into consideration the corresponding CP-violating counterpart, such basis is enlarged and

completed through ∆L��CP. The latter contribution is considered in the follow.

2.2.3 CP-violating ∆L��CP

The effective CP-odd lagrangian expansion ∆L��CP will be parametrised as [20]
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∆L��CP = ξ
[
c2D S2D(h) + cB̃ SB̃(h) + cW̃ SW̃ (h) + cG̃ SG̃(h)

]
+

+ ξ

3∑
i=1

ci Si(h) + ξ2

14∑
i=4

ci Si(h) + ξ3

16∑
i=15

ci Si(h), (2.34)

where ci are model-dependent constant coefficients and

SB̃(h) ≡ −1

2
g′2Bµν B̃µν FB̃(h) , S7(h) ≡ gTr (T [W µν ,Vµ]) ∂νF7(h) ,

SW̃ (h) ≡ −1

2
g2Tr

(
W µνW̃µν

)
FW̃ (h) , S8(h) ≡ 2 g2Tr

(
T W̃ µν

)
Tr (TWµν)F8(h) ,

SG̃(h) ≡ −1

2
g2
s G

aµν G̃a
µν FG̃(h) , S9(h) ≡ 2 i gTr

(
W̃ µν T

)
Tr (T Vµ) ∂νF9(h) ,

S2D(h) ≡ i
v2

4
Tr (TDµVµ) F2D(h) , S10(h) ≡ iTr (VµDνVν) Tr (T Vµ) F10(h) ,

S1(h) ≡ 2g g′ B̃µνTr (TWµν) F1(h) , S11(h) ≡ iTr (TDµVµ) Tr (Vν Vν) F11(h) ,

S2(h) ≡ 2 i g′ B̃µν Tr (T Vµ) ∂νF2(h) , S12(h) ≡ iTr ([Vµ,T]DνVν) ∂µF12(h) ,

S3(h) ≡ 2 i gTr
(
W̃ µν Vµ

)
∂νF3(h) , S13(h) ≡ iTr (TDµVµ) ∂ν∂νF13(h) ,

S4(h) ≡ gTr (W µνVµ) Tr (T Vν)F4(h) , S14(h) ≡ iTr (TDµVµ) ∂νF14(h) ∂νF ′14(h) ,

S5(h) ≡ iTr (Vµ Vν) Tr (T Vµ) ∂νF5(h) , S15(h) ≡ iTr (T Vµ) Tr (T Vν)2 ∂µF15(h) ,

S6(h) ≡ iTr (Vµ Vµ) Tr (T Vν) ∂νF6(h) , S16(h) ≡ iTr (TDµVµ) Tr (T Vν)2 F16(h) ,

(2.35)

with the Fi(h)-functions for all operators4 but SG̃(h), being defined as in Eq. (2.30).

FG̃(h) will be understood to be also of this form but for the first term in Eq. (2.30), as

the Higgs-independent part of SG̃(h) has already been included in the SM Lagrangian,

Eq. (2.23).

Note that the number of independent operators in the non-linear expansion turned

out to be larger than for the analogous basis in the linear expansion [133, 145], a generic

feature when comparing both type of effective Lagrangians; see Appendix C. The basis

is also larger than that for chiral expansions developed in the past for the case of a very

heavy Higgs particle (i.e. absent at low energies) [21–23, 25], as: i) terms which in the

absence of the Fi(h) functions were shown to be equivalent via total derivatives, are now

independent; ii) new terms including derivatives of h appear.

4The Higgs-independent term in this functional is physically irrelevant for operators SB̃(h), S
W̃

(h),

S2D(h).
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The Lagrangian in Eqs. (2.25) and (2.34) describes both of the CP-conserving and

CP-violating low-energy effects of a high-energy strong dynamics responsible for the elec-

troweak GBs, coupled to a generic scalar singlet h. For the former case, the gauge-h

CP-even sector, the phenomenology that ∆LCP in Eqs. (2.25) entails, is analysed in

Ref. [133], where the complete sets of gauge and gauge-Higgs operators are considered,

the Feynman rules for the non-linear expansion are derived, and additionally, are con-

sidered possible discriminating signals including decorrelation in the non-linear case of

signals correlated in the linear one, for instance, some pure gauge versus gauge-Higgs cou-

plings and also between couplings with the same number of Higgs legs. Furthermore, in

Ref. [133], are analysed some anomalous signals expected at first order in the non-linear

realization that may appear only at higher orders of the linear one, and vice versa. The

impact of both type of discriminating signals on LHC physics is also studied there.

For this Thesis work the phenomenology impact implied by the CP-violating contri-

bution encoded in ∆L��CP is analysed following the Ref. [20], and presented in detail in

the next subsection.

2.3 ∆L���CP-phenomenology

The physical impact of the operators in the CP-odd bosonic basis determined previously

is analysed below. Some phenomenological bounds and future prospects are discussed as

well.

2.3.1 CP-odd two-point functions

Only the operators S2D(h) and S13(h) among those defined in Eq. (2.35) may a priori

induce renormalisation effects on the fields and couplings of the SM Lagrangian. S2D(h)

is a two-derivative coupling and thus part of the leading order of the chiral expansion;

in contrast, note that it has no analogue in the leading order of the linear expansion –in

other words in the SM Lagrangian– as its lower-dimensional linear sibling would be a

dimension six (d = 6) operator, see Appendix B.

S2D(h) and S13(h) contain two-point functions which explicitly break the CP symmetry

and as a consequence the Lagrangian eigenstates may not be CP-eigenstates. Those two

couplings result in a mixing of h with the Goldstone bosons which in the SM give masses

to the W and Z bosons, see below. Their physical impact reduces simply to anomalous

CP-odd Higgs-fermion and Higgs-Z couplings, as it is shown detailed in the next.

Consider the linear combination of the two operators S2D(h) and S13(h), together with

the h-kinetic term and the gauge-boson mass term in the Lagrangian of Eq. (2.22), and
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let us focus first on their contribution to two-point functions:

Lchiral ⊃
1

2
∂µh ∂µh−

(v + h)2

4
Tr (Vµ Vµ) + ξ c2D S2D(h) + ξ2 c13 S13(h)

⊃ 1

2
∂µh ∂µh+

v2

4
Tr
(
∂µU† ∂µU

)
+
i

2
vTr

[
T (∂µ∂

µU) U†
]

(â2D h+
4

v2
â13�h)+

(2.36)

+
i

2
g′Bµ

{
v2

4
Tr
[
(∂µU) τ3 U† −U τ3

(
∂µU

†)]+ i ξ v

[
â2D ∂µh+

4

v2
â13 ξ ∂µ (�h)

]}
+
i

2
gW i

µ

{
v2

4
Tr
[(
∂µU†

)
τ iU−U†τ i (∂µU)

]
− iv

2
ξ

[
â2D ∂µh+

4

v2
â13 ξ ∂µ (�h)

]
Tr
(
T τ i

)}
,

where for simplicity the definitions

âi ≡ ciai (2.37)

have been implemented, with ci being the operator coefficients in Eq. (2.34) and ai the

coefficients of the terms linear in the Higgs field in Eq. (2.30).

In what concerns the Lagrangian two-point functions, the dependence on â2D and â13

in Eq. (2.36) can be reabsorbed via a phase redefinition of the Goldstone boson U matrix

defined either in Eq. (2.4), (2.11), or (2.12), of the form

U = Ũ exp

[
− i
v
ξ

(
â2D h+ 4 â13 ξ

�h
v2

)
τ3

]
, (2.38)

at first order in the âi coefficients. This redefinition is a non-linear version of the simple

Higgs-field redefinition proposed in Ref. [146] when analysing the effective linear axion

Lagrangian. Ũ is then the resulting physical matrix of the Goldstone bosons eaten by the

W and Z bosons, to be identified with the identity in the unitary gauge. The gauge-fixing

terms can now be written in the standard form,

L GF
B = − 1

4 η
Tr

{[
∂µB

µ − i

4
η g′ v2

(
Ũτ3 − τ3Ũ

†
)]2
}

L GF
W = −1

η
Tr

{[
∂µW

µ +
i

8
η g v2

(
Ũ− Ũ†

)]2
}
,

(2.39)

removing all mixed gauge boson-Goldstone bosons and gauge boson-h two-point couplings.

After the redefinition in Eq. (2.38), restraining to vertices involving at most two Higgs

particles5 and at first order on the operator coefficients, the SM Lagrangian Eq. (2.23)

5 Vertices cubic in h and originated by S2D and S13 result: i) from the impact of Eq. (2.38) on the

standard term ∝ Tr (VµVµ) combined with the h2 dependence of its (v+h)2 prefactor; ii) from the third

order in the h expansion of the Fi(h) functions. If considered, they would induce for instance additional

contributions to the vertex in Eq. (FR.26).
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gets physical corrections given by

∆LYukawa + ∆LBosonic , (2.40)

with

∆LYuk =
i

v
ξ

(
â2D h+ 4 â13 ξ

�h
v2

)
(v + h)√

2

(
Q̄L Ũ YQ τ3QR − h.c.

)
+ [QL,R =⇒ LL,R] ,

(2.41)

and

∆LBos =− i ξ
(

1 +
h

v

)
∂µhTr

(
T
(
∂µŨ

)
Ũ†
)(

â2D h+ 4 â13 ξ
�h
v2

)
− i ξ Tr

(
T
(
∂µ∂

µŨ
)

Ũ†
) [(

â2D −
b̂2D

4

)
h2 + 4

(
â13 −

b̂13

2

)
ξ
h�h
v2

−2b̂13 ξ
∂νh∂

νh

v2
+
h2

2v

(
â2D h+ 4 â13 ξ

�h
v2

)]
− ξ

[
gTr (TW µ)− g′Bµ

][(
â2D −

b̂2D

2

)
h ∂µh+ 4

(
â13 −

b̂13

2

)
ξ
h ∂µ�h
v2

− 2 b̂13 ξ

(
�h ∂µh
v2

+ 2
∂νh ∂µ∂

νh

v2

)
+
h2

2v

(
â2D ∂µh+ 4 â13 ξ

∂µ�h
v2

)]
(2.42)

where b̂i ≡ cibi. The “tilde” over Ũ will be dropped from now on.

Anomalous qqh, ``h and Zhh vertices follow; the corresponding Feynman rules can

be found in Appendix D. It is worth to remark that if a generic Fi(h) function is consi-

dered also for the Yukawa terms instead of the SM-like dependence in Eq. (2.23), further

quartic qqhh and ``hh anomalous vertices will be revealed in addition to those shown in

Eq. (2.41). The consideration of these two-Higgs exotic interactions it is postponed to

a future analysis [20]. Furthermore, it is easy to derive the form of couplings involving

three Higgs particles from the formulae above.

In addition to the tree-level impact discussed, S2D(h) and S13(h) induce one-loop

corrections to the Higgs gauge-boson couplings, see Sec. 2.3.3, which in turn can be

bounded from the strong experimental limits on fermionic EDMs, see Eq. (2.75).

2.3.2 Triple gauge boson couplings

The operators in Eq. (2.35) induce tree-level modifications of the self-couplings of the

electroweak gauge bosons as well as of the Higgs-gauge boson vertices involving three or

more particles: their impact on the Feynman rules of the theory are given in Appendix D.
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The focus is first now on the CP-violating triple gauge boson couplings W+W−γ and

W+W−Z, originated from the operators in Eq. (2.35). Following Ref. [147], the CP-

odd sector of the Lagrangian that describes triple gauge boson vertices (TGVs) can be

parametrised as:

LWWV
eff,��CP = gWWV

(
gV4 W

†
µWν(∂

µV ν + ∂νV µ)− iκ̃VW †
µWνṼ

µν − i λ̃V
M2
W
W †
σµW

µ
ν Ṽ

νσ +

+g̃V6 (W †
ν∂µW

µ +Wν∂µW
†µ)V ν + g̃V7 W

†
µW

µ∂νVν

)
, (2.43)

where V ≡ {γ, Z} and gWWγ ≡ e = g sin θW , gWWZ = g cos θW . In this equation W±
µν

and Vµν stand exclusively for the kinetic part of the corresponding gauge field strengths,

and the dual tensor Ṽµν has been defined in Sect. 2.2.1. In writing Eq. (2.43) have been

introduced the coefficients g̃V6 and g̃V7 associated to operators that contain the contraction

DµVµ; its ∂µV
µ part vanishes only for on-shell gauge bosons; in all generality DµVµ

insertions could only be disregarded in the present context when fermion masses are

neglected. In the SM all couplings in Eq. (2.43) vanish.

Electromagnetic gauge invariance requires gγ4 = 0, while the CP-odd bosonic opera-

tors in Eq. (2.35) give the following contributions to the phenomenological coefficients in

Eq. (2.43):

κ̃γ = −4e2

s2
θ

ξ (c1 + 2c8 ξ) , κ̃Z =
4e2

c2
θ

ξ

(
c1 − 2

c2
θ

s2
θ

c8 ξ

)
,

gZ4 =
e2

2c2
θs

2
θ

c4 ξ
2 , g̃Z6 =

e2

2c2
θs

2
θ

(c4 + c10) ξ2 ,

g̃Z7 = − e2

2c2
θs

2
θ

(c4 − 2c11) ξ2 , g̃γ6 = g̃γ7 = λ̃γ = λ̃Z = 0 .

(2.44)

For completeness, note that there is an additional contribution to the ZZZ vertex of the

form:

L3Z
eff,��CP = g̃3Z ZµZ

µ∂νZ
ν , (2.45)

with

g̃3Z =
e3

2c3
θs

3
θ

ξ2 (c10 + c11 + 2c16 ξ) , (2.46)

which, alike to the phenomenological couplings g̃V6 and g̃V7 in Eq. (2.43), vanishes for on-

shell Z bosons and in general can be disregarded in the present context when the masses

of fermions coupling to the Z are neglected.

The strongest constraints on CP violation in the W+W−γ vertex arise from its con-

tributions to fermionic EDMs that they can induce at one-loop, while constraints on CP-
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violating W+W−Z couplings can be obtained from the study of gauge-boson production

at colliders. Later on further analysis is done in these two types of signals.

CP violation in WWγ: fermionic EDMs

Electric dipole moments for quarks and leptons are generically the best windows on

BSM sources of CP-violation, due to the combination of the very stringent experimental

bounds with the fact that they tend to be almost free from SM background contributions:

fermionic EDMs are suppressed in the SM beyond two electroweak boson exchange, while

in most BSM theories they are induced at one-loop level.

Although none of the operators in the chiral basis above – Eq. (2.35) – induces tree-

level contributions to EDMs, two of them, S1(h) and S8(h), contain gauge boson couplings

involving the photon, of the form

+
i

2
εµνρσW

+
µ W

−
ν A

ρσ , (2.47)

where Aρσ denotes the photon field strength, see Eqs.(2.43) and (2.44) and Appendix D.

This coupling induces in turn a one-loop contribution to fermion EDMs, see Fig. 2.2.

γ

W W

f ff ′

q

p2p1

Figure 2.2: A CP-odd TGV coupling inducing a fermionic EDM interaction.

The amplitude corresponding to this Feynman diagram can be parametrised as

Af ≡ −i df u (p2) σµνq
νγ5 u (p1) , (2.48)

where df denotes the fermionic EDM strength. The corresponding integral diverges loga-

rithmically; assuming a physical cut-off Λs for the high energy BSM theory and following
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the generic computation in Ref. [148], it is obtained the contribution from S1(h) and

S8(h):

df = ξ (c1 + 2 ξ c8)
e3GF T3L csc2 θW√

2 π2
mf

[
log

(
Λ2
s

M2
W

)
+O(1)

]
, (2.49)

where T3L stands for the fermion weak isospin, θW denotes the Weinberg angle and GF

the Fermi coupling constant. The present experimental bound on the electron EDM [149],∣∣∣∣dee
∣∣∣∣ < 8.7× 10−29 cm , at 90% CL , (2.50)

implies then a limit∣∣∣∣ξ (c1 + 2 c8 ξ)

[
log

(
Λ2
s

M2
W

)
+O(1)

]∣∣∣∣ < 5.2× 10−5 . (2.51)

Using as values for the constituent quark masses mu = md = mN/3, the experimental

limit on the neutron EDM [150],∣∣∣∣dne
∣∣∣∣ < 2.9× 10−26 cm , at 90% CL , (2.52)

allows to set an even stronger limit on the combination of S1(h) and S8(h) operator

coefficients: ∣∣∣∣ξ (c1 + 2 c8 ξ)

[
log

(
Λ2
s

M2
W

)
+O(1)

]∣∣∣∣ < 2.8× 10−5 . (2.53)

Weaker but more direct bounds on these operators can be imposed from the study of Wγ

production at colliders. For example the recent study in Ref. [151] concluded that the

future 14 TeV LHC data with 10 fb−1 can place a 95% CL bound

|κ̃γ| ≤ 0.05 =⇒ |ξ (c1 + 2 c8 ξ) | ≤ 0.03 . (2.54)

CP violation in WWZ: Collider bounds and signatures

At present the strongest direct constraints on CP-violating effects in the WWZ vertex

are imposed by the combination of results using the LEP collaboration studies on the

observation of the angular distribution ofW ′s and their decay products inWW production

at LEPII [152–154]. The combination yields the following 1σ (68% CL) constraints [82]

−0.47 ≤ gZ4 ≤ −0.13 , −0.14 ≤ κ̃Z ≤ −0.06 , −0.16 ≤ λ̃Z ≤ −0.02 , (2.55)

which in terms of the coefficients of operators in Eq. (2.35) and the TGV couplings in

Eq. (2.44) implies

−1.8 ≤ c4 ξ
2 ≤ −0.50 , −0.29 ≤ ξ

(
c1 − 2

c2
θ

s2
θ

c8 ξ

)
≤ −0.13 . (2.56)
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Note that the bounds in Eq. (2.55) are obtained assuming one effective coupling in

Eq. (2.43) being different from zero at a time, which is consistent with the predictions from

the dynamical Higgs Lagrangian, Eq. (2.44), since different operators lead to independent

modifications of the effective couplings gZ4 and κ̃Z .

In what concerns Tevatron and LHC data, anomalous CP-odd TGV interactions have

not been studied in detail yet. To fill this gap, it is presented in this work our analysis

of the LHC potential to measure deviations or set exclusion bounds on CP-odd WWZ

anomalous TGVs, extending our preliminary study [155]. At LEP the experimental ana-

lyses which lead to the bounds in Eq. (2.55) were based on the study of the angular

distributions of the final state particles in the event. In contrast, at the LHC, the higher

collision energy – well above the WW and WZ thresholds – makes the use of kinematic

variables related to the energy of the event more suitable for the measurement of TGV.

The study in Ref. [155] concluded that the pp → W±Z process has higher potential

to observe gZ4 than the pp → W+W− channel, while both channels have a similar power

to study κ̃Z and λ̃Z . Furthermore, it was also discussed the use of several kinematic

distributions to characterize the presence of a non-vanishing CP-violating coupling and

the use of some asymmetries to characterize its CP nature. So far the LHC has already

collected almost 25 times more data than the luminosity considered in that preliminary

study which it is updated in here. In addition, this update takes advantage of a more

realistic background evaluation, by using the results of the experimental LHC analysis on

other anomalous TGV interactions [156]6.

In this section it is studied the process

pp→ `′±`+`−Emiss
T , (2.57)

where `(′) = e or µ. The main background for the detection of anomalous TGV interactions

is the irreducible SM production of W±Z pairs. In addition there are further reducible

backgrounds like W or Z production with jets, ZZ production followed by the leptonic

decay of the Z’s with one charged lepton escaping detection, and tt̄ pair production.

We simulate the signal and the SM irreducible background using an implementation

of the anomalous vertices gZ4 , κ̃Z , and λ̃Z in FeynRules [157] interfaced with MadGraph

5 [158] for event generation. We account for the different detection efficiencies by rescaling

our simulation of the SM production of W±Z pairs to the values quoted by ATLAS [156]

for the study of ∆κZ , gZ1 and λZ . However, we have also cross-checked the results using

a setup where the signal simulation is based on the same FeynRules [157] and Mad-

Graph5 [158] implementation, interfaced then with PYTHIA [159] for parton shower and

6This strategy was also the starting point for the study of the CP conserving, but C and P violating

coupling gZ5 presented in Ref. [133].
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hadronization, and with PGS 4 [160] for detector simulation. Finally, the reducible back-

grounds for the 7 TeV data analysis are obtained from the simulations presented in the

ATLAS search [156], and they are properly rescaled for the 8 and 14 TeV runs.

In order to make our simulations more realistic, we closely follow the TGV analysis

performed by ATLAS [156]. The kinematic study of the W±Z production starts with

the usual detection and isolation cuts on the final state leptons. Muons and electrons

are considered if their transverse momentum with respect to the collision axis z, pT ≡√
p2
x + p2

y, and their pseudorapidity η ≡ 1
2

ln |~p|+pz|~p|−pz , satisfy

p`T > 15 GeV , |ηµ| < 2.5 ,

|ηe| < 1.37 or 1.52 < |ηe| < 2.47 .
(2.58)

To guarantee the isolation of muons (electrons), we require that the scalar sum of the pT

of the particles within ∆R ≡
√

∆η2 + ∆φ2 = 0.3 of the muon (electron), excluding the

muon (electron) track, is smaller than 15% (13%) of the charged lepton pT . In the cases

when the final state contains both muons and electrons, a further isolation requirement

has been imposed:

∆Reµ > 0.1 . (2.59)

It is also required that at least two leptons with the same flavour and opposite charge are

present in the event and that their invariant mass is compatible with the Z mass, i.e.

M`+`− ∈ [MZ − 10, MZ + 10] GeV . (2.60)

In what follows we refer to pZ as the momentum of this `+`− pair, pZ ≡ p`
+

+ p`
−

. We

further impose that a third lepton is present which passes the above detection requirements

and whose transverse momentum satisfies in addition

p`
′

T > 20 GeV . (2.61)

Moreover, with the purpose of suppressing most of the Z + jets and other diboson pro-

duction backgrounds, we require

Emiss
T > 25 GeV and MW

T > 20 GeV , (2.62)

where Emiss
T is the missing transverse energy and the transverse mass is

MW
T =

√
2p`TE

miss
T (1− cos(∆φ)), with p`

′
T being the transverse momentum of the third

lepton, and ∆φ the azimuthal angle between the missing transverse momentum and the

third lepton. Finally, it is required that at least one electron or one muon has a transverse

momentum complying with

p
e(µ)
T > 25 (20) GeV . (2.63)
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Our Monte Carlo simulations have been tuned to the ATLAS ones [156], so as to incor-

porate more realistic detection efficiencies. Initially, a global k-factor is introduced to

account for the higher order corrections to the process in Eq. (2.57) by comparing our

leading order predictions to the NLO ones used in the ATLAS search [156], leading to

k ∼ 1.7. Next, we compare our results after cuts with the ones quoted by ATLAS in Table

1 of Ref. [156]. We tune our simulation by applying a correction factor per flavour channel

(eee, eeµ, eµµ and µµµ) that is almost equivalent to introducing a detection efficiency

of εe = 0.8 (0.95) for electrons (muons). These efficiencies have been employed in our

simulations for signal and backgrounds.

After the selection procedure, in the presence of anomalous TGVs the cross section

for the process pp→ `′±`+`−Emiss
T can be qualitatively described by:

σ = σbck + σSM +
∑
i,j>i

σijanog
i
anog

j
ano . (2.64)

Here σSM corresponds to the irreducible SM W±Z background, while σbck stands for all

background sources except for the SM EW W±Z production. Additionally σijano are the

pure anomalous contributions. Notice that because of the CP-violating nature of the

anomalous couplings there is no interference between those and the SM contributing to

the total cross section. Furthermore in the present study we assume only one coupling

departing from its SM value at a time (i.e. always i = j) which, as mentioned above, is

consistent with the expectations from the dynamical Higgs effective operators, Eq. (2.44),

since they lead to independent modifications of the two relevant effective couplings gZ4 and

κ̃Z . We present in Table 2.1 the values of σSM , σbck and σano for center–of–mass energies

of 7, 8 and 14 TeV7.

COM Energy σSM (fb) σbck (fb) σ
gz4
ano (fb) σκ̃zano σλ̃zano

7 TeV 47.7 14.3 846 56.0 1914

8 TeV 55.3 16.8 1117 67.7 2556

14 TeV 97.0 29.0 3034 134 7471

Table 2.1: Values of the cross section predictions for the process pp → `′±`+`−Emiss
T

after applying all the cuts described in the text. σSM is the SM contribution coming from

EW W±Z production, σiano are the pure anomalous contributions and σbck corresponds to

all the background sources except for the electroweak SM W±Z production.

7For completeness we make our study for the most general CP-violating WWZ vertex in Eq. (2.43)

and evaluate the sensitivity to λ̃Z as well, even though this coupling is generated at higher order in the

chiral expansion as shown in Eq. (2.44).
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In order to quantify the reachable sensitivity on the determination of the different

anomalous TGVs, advantage has been taken in this analysis of the fact that anomalous

TGVs enhance the cross sections at high energies. Ref. [155] shows that the variables M rec
WZ

(the reconstructed WZ invariant mass), p` max
T and pZT are able to trace well this energy

dependence, leading to similar sensitivities to the anomalous TGVs. Here, we chose pZT
because this variable is strongly correlated with the subprocess center–of–mass energy (ŝ),

and, furthermore, it can be directly reconstructed with good precision from the measured

lepton momenta. In the left (right) panel of Fig. 2.3 we show the number of expected

events with respect to the transverse momentum of the Z candidate for the 7 (14) TeV

run, assuming an integrated luminosity of L = 4.64 (300) fb−1. The figure captures the

enhancement of events at the higher values of pZT that the presence of anomalous TGV

interactions causes. We can also observe how the effect of κ̃Z is weaker than the effect of

introducing gZ4 or λ̃Z .

Figure 2.3: Distribution of events with respect to pZT for the 7 (14) TeV run assuming

L = 4.64 (300) fb−1 of integrated luminosity in the left (right) panel. The black histogram

contains all background sources, except for the SM W±Z production, the red histogram

represents the sum of all the backgrounds and finally the solid (dashed) [dotted] distribution

corresponds to the addition of the contribution of an anomalous TGV with a value gZ4 = 0.1

(κ̃Z = 0.1) [λ̃Z = 0.1] for the 7 TeV run and gZ4 = 0.05 (κ̃Z = 0.05) [λ̃Z = 0.05] for the

14 TeV run. The last bin contains all the events with pZT > 180 GeV.

We have followed two procedures to estimate the LHC potential to probe anomalous

CP-violating couplings. In a more conservative approach, we have performed a simple
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event counting analysis assuming that the number of observed events corresponds to the

SM prediction, and we look for the values of the corresponding anomalous couplings

which are inside the 68% and 95% CL allowed regions. In this case an additional cut

pZT > 90 GeV was applied in the analysis to enhance the sensitivity [155]. On a second

analysis, a simple χ2 has been built based on the contents of the different bins of the

pZT distribution, with the binning shown in Fig. 2.3. Once again, it is assumed that the

observed pZT spectrum corresponds to the SM expectations and we seek the values of the

corresponding anomalous couplings that are inside the 68% and 95% allowed regions. In

general the binned analysis yields 10%−30% better sensitivity. The results of the binned

analysis are presented in Table 2.2.

68% C.L. range 95% C.L. range

7+8 TeV 7+8+14 TeV 7+8 TeV 7+8+14 TeV

gZ4 (−0.019, 0.019) (−0.007, 0.007) (−0.027, 0.027) (−0.010, 0.010)

κ̃Z (−0.12, 0.12) (−0.047, 0.047) (−0.17, 0.17) (−0.067, 0.067)

λ̃Z (−0.012, 0.012) (−0.004, 0.004) (−0.018, 0.018) (−0.006, 0.006)

c4 (−0.074, 0.074) (−0.027, 0.027) (−0.10, 0.10) (−0.039, 0.039)

c1 − 2
c2θ
s2θ
c8 (−0.25, 0.25) (−0.099, 0.099) (−0.36, 0.36) (−0.14, 0.14)

Table 2.2: Expected sensitivity on gZ4 , κ̃Z and λ̃Z at the LHC, and the corresponding

precision reachable on the non-linear operator coefficients. We assume L = 4.64 fb−1 for

the 7 TeV run, L = 19.6 fb−1 for the 8 TeV one and L = 300 fb−1 for the future 14 TeV

expectations.

From Table 2.2 we read that the 7 and 8 TeV data sets could clearly increase the

existing limits on gZ4 , and consequently on c4, and the future 14 TeV run would rapidly

approach the few per cent level. Conversely, as it was expected, the reachable sensitivity

on κ̃Z is weaker. Nevertheless, the future 14 TeV run has the potential to improve the

direct bounds that LEP was able to derive, and settle consequently the strongest direct

available limits on the corresponding combination of c1 and c8 couplings. Notice that

this combination is different from the c1 and c8 combination contributing to κ̃γ, which is

bounded from EDM measurements, see Eqs. (2.44) and (2.54). Thus, both measurements

are complementary.

Up to this point the analysis that we have performed has not benefitted from the CP-

odd nature of the TGV interactions. Different studies [155, 161–163] have addressed the

CP-odd nature of the anomalous TGVs by constructing some CP-odd or T̂ -odd observable.

In particular, in Ref. [162] it was shown that ideally in pp → W±Z an asymmetric
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observable based on the sign of the cross–product pq · (pZ × p`′) could be a direct probe

of CP-violation, where here pq is the four-momentum of the incoming quark. At the

LHC, however, pq cannot be fully determined and for this reason we build instead as a

reconstructable correlated sign variable

Ξ± ≡ sign(p`
′
)z sign(p`

′ × pZ)z , (2.65)

where z is the collision axis. We define the sign-weighted cross section as

∆σ ≡
∫
dσ Ξ± ≡

∑
i

giano ∆σiano . (2.66)

A CP-odd TGV gives a measurable contribution to this sign-weighted cross section which

is linearly dependent on the coupling. On the contrary the SM background is symmetric

with respect to Ξ± and it gives a null contribution to the sign-weighted cross section in

Eq. (2.66). This behaviour is illustrated in Fig. 2.4 where we show the distribution of

events at 14 TeV, assuming 300 fb−1 of integrated luminosity, with respect to the related

variable

cos θΞ ≡ cos θ`
′
cos θZ×`

′
, (2.67)

where the angles are defined with respect to the z axis. In this form sign(cos θΞ) = Ξ±.

The corresponding sign-weighted cross sections at 14 TeV are

∆σg
Z
4

ano = −59 fb , ∆σκ̃Zano = −9.7 fb , ∆σλ̃Zano = −137 fb . (2.68)

With a luminosity of 300 fb−1 this CP-violation induced asymmetry could be observed

with 95% CL above the statistical fluctuations of the SM background for

|gZ4 | ≥ 0.02 , |κ̃Z | ≥ 0.13 , |λ̃>| ≥ 0.01 , (2.69)

or what is equivalent for

|c4 ξ
2| ≥ 0.08 ,

∣∣∣∣ξ(c1 − 2
c2
θ

s2
θ

c8 ξ

)∣∣∣∣ ≥ 0.27 . (2.70)

2.3.3 CP violation in Higgs couplings to gauge-boson pairs

The effective operators described in Eq. (2.35) also give rise to CP-odd interactions in-

volving the Higgs particle and two gauge bosons, to which we refer as HVV couplings.

The CP-odd interactions can be phenomenologically parametrized as

LHVV
eff,��CP =g̃Hgg hG

a
µνG̃

aµν + g̃Hγγ hAµνÃ
µν + g̃HZγ hAµνZ̃

µν

+ g̃
(2)
HZZ hZµνZ̃

µν + g̃
(2)
HWW hW+

µνW̃
−µν

+
[
g̃

(1)
HWW

(
W+
µνW

−µ∂νh
)

+ h.c.
]

+
[
g̃

(5)
HWW

(
∂µW

+µW−
ν ∂

νh
)

+ h.c.
]
,

(2.71)
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Figure 2.4: Distribution of pp → `′±`+`−Emiss
T contributions with respect to cos θΞ,

for 300 fb−1 of integrated luminosity collected at 14 TeV, after the cuts described from

Eqs. (2.58)–(2.62). The sign-symmetric electroweak SM W±Z distribution is shown as the

red histogram and the distribution for the SM plus the contribution of gZ4 = 0.2 (κ̃Z = 0.2)

[λ̃Z = 0.2] is shown as the solid (dashed) [dotted] line. All the distributions are normalized

to one for an easier comparison.

with tree level contributions

g̃Hgg = −g
2
S

v
âG̃ ξ, g̃Hγγ =

4e2

v
ξ

(
−1

4
âB̃ + â8 ξ + â1 −

1

8
âW̃

)
,

g̃HZγ = −8e2sθ
vcθ

ξ

[
−1

4
âB̃ −

c2
θ

2s2
θ

(
−1

4
âW̃ + 2â8 ξ

)
+

1

8s2
θ

(2â2 + â3 + 2â9 ξ)−
c2θ

2s2
θ

â1

]
,

g̃
(2)
HZZ =

4e2s2
θ

vc2
θ

ξ

(
−1

4
âB̃ +

c4
θ

s4
θ

â8 ξ −
c2
θ

s2
θ

â1 +
1

2s2
θ

â2 −
c4
θ

8s4
θ

âW̃ −
c2
θ

2s4
θ

â9 ξ −
c2
θ

4s4
θ

â3

)
,

g̃
(2)
HWW = −2e2

vs2
θ

ξ

(
1

2
âW̃ + â3

)
, g̃

(1)
HWW =

2e2

vs2
θ

i â7 ξ
2 , g̃

(5)
HWW = −2e2

vs2
θ

i â12 ξ
2 ,

(2.72)

and where the âi coefficients have been defined in Eq. (2.37). Additionally, the effective

CP-odd Higgs-fermion couplings induced by the mixing effects described in Sec. 2.3.1

generate one-loop induced HVV couplings such as

g̃Hgg =
αS
8πv

ξ

(
â2D −

4p2
h

v2
â13 ξ

)
FCP

odd(xf ) =
3

8

αS
αem

g̃Hγγ , (2.73)

where FCP
odd(xf ) is the form factor from the fermionic one-loop processes [164], that in the

limit of high fermion masses (xf ≡ 4M2
f /M

2
h � 1) is approximately FCP

odd = 1, almost
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equal to the form factor for the CP-even Yukawa-fermion contribution to hGa
µνG

aµν and

hAµνA
µν in the same limit, FCP

even(xf ). In addition to effects on the Higgs signals, these

operators, together with those giving direct contributions to g̃Hγγ in Eq. (2.72) give also

a contribution to the fermion EDMs [165] of the form8

df =
e3mf

π2v2
ξ

[
−1

4
âB̃ + â8 ξ + â1 −

1

8
âW̃ +

1

48π2
â2D

(
FCP

odd(xtop) +
2

3
FCP

even(xtop)

)]
×

×
[
log

Λ2
s

m2
H

+O(1)

]
,

(2.74)

whose size can be constrained, for example, from the present bound on the electron EDM

in Eq.(2.52):∣∣∣∣ξ [−1

4
âB̃ + â8 ξ + â1 −

1

8
âW̃ +

1

48π2
â2D

(
FCP

odd(xtop) +
2

3
FCP

even(xtop)

)]
×

×
[
log

(
Λ2
s

m2
H

)
+O(1)

]∣∣∣∣ < 5.6× 10−5 .

(2.75)

Measuring the CP properties of the Higgs couplings is a subject with an extensive litera-

ture before and after the Higgs discovery. For the sake of concreteness we focus here on the

experimental results on the most studied channel, h→ ZZ → `+`−`′+`′−, for which com-

bined results of the full 7+8 TeV LHC runs have been presented both by CMS [166,167]

and ATLAS [168,169] collaborations.

Historically the key observables for measuring the CP properties of the Higgs in this

channel were established in the seminal works in Refs [31–33], that were followed by

an abundant literature on their applications to the LHC [34–40]. Most of these early

phenomenological studies were based on the study of single variable observables. Most

recently, an almost together with the first LHC collisions, two different new multivariable

methods [41, 42] were proposed to use all the kinematic information of the event as in-

put into the likelihood, to compare and exclude between different Higgs spin and parity

hypothesis. These phenomenological studies set the roots of the first LHC experimental

analyses of spin and CP properties of the Higgs in this channel [166–169].

In particular the results of the experimental constraints from the CMS analysis [166,

167] can be translated into the language of the effective operators of a light dynamical

Higgs in Eq. (2.35). With this purpose we notice that in Ref. [167] the h→ ZZ vertex is

8In writing Eq. (2.74) we have only considered the relevant loop of top quarks in the loop-induced

part of the hγγ vertex (both CP-odd and CP-even) generated by S2D(h) and we have neglected the

corresponding O(m2
f/m

2
H) contribution from S13(h).
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described using the notation in [41]:

A(h→ ZZ) = v−1
(
d1m

2
Z ε
∗
1 ε
∗
2 + d2 f

∗(1)
µν fµν∗(2) + d3 f

∗(1)
µν f̃µν∗(2)

)
, (2.76)

where f
(i)
µν = εiµ q

i
ν−εiν qiµ, f̃

(i)
µν = 1

2
εµναβ f

αβ(i) = εµναβ ε
α
i q

β
i , with ε1,2 being the polarization

vectors of the Z bosons and q1,2 the corresponding four-momenta. In the SM d1 = 2i,

while d2 only receives marginally contributions from high order diagrams, that can be

safely neglected leading to d2 = d3 = 0. The d3 term is CP-odd and its interference with

the CP-conserving terms d1 or d2 leads to the CP-violating signals that are analyzed.

The effective operators in Eq. (2.35) give a non-vanishing contribution to d3 which,

from Eqs. (2.71) and (2.72), reads

d3 = −2 i v g̃
(2)
HZZ , (2.77)

while as long as no CP-conserving operators are considered d2 = 0 and d1 = d1,SM .

In Ref. [167] a measure of CP-violation in the h→ ZZ∗ → 4l observables was defined

as

fd3 =
|d3|2 σ3

|d1|2 σ1 + |d3|2 σ3

, (2.78)

where σ1 (σ3) corresponds to the cross section for the process h → ZZ when d1 = 1

(d3 = 1) and d3 = 0 (d1 = 1). For Mh = 125.6 GeV, σ1
σ3

= 6.36. In Ref. [167] fd3 was fitted

as one of the parameters of the multivariable analysis, obtaining the measured value

fd3 = 0.00+0.17
−0.00 =⇒ |d3|

|d1|
= 0.00+1.14

−0.00 , (2.79)

pointing to the CP-even nature of the state. Furthermore, 95% CL exclusion bounds on

fd3 were derived,

fd3 < 0.51 =⇒ |d3|
|d1|

< 2.57 . (2.80)

We can directly translate the bounds in Eq. (2.80) to 68(95)% CL constraints on the

coefficients of the relevant CP-violating operators,∣∣∣∣ξ (−1

4
âB̃ +

c4
θ

s4
θ

â8 ξ −
c2
θ

s2
θ

â1 +
1

2s2
θ

â2 −
c4
θ

8s4
θ

âW̃ −
c2
θ

2s4
θ

â9 ξ −
c2
θ

4s4
θ

â3

)∣∣∣∣ ≤ 10.3 (23.3) .

(2.81)

In Ref. [170] the same analysis was applied to derive the future expectations when

300(3000) fb−1 are collected at 14 TeV. The corresponding expected sensitivities at 95%

CL are

fd3 ≤ 0.13 (0.04) for 300 (3000) fb−1 . (2.82)
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They can be translated into the following sensitivity at 95% CL to the relevant combina-

tion of operators:∣∣∣∣ξ (−1

4
âB̃ +

c4
θ

s4
θ

â8 ξ −
c2
θ

s2
θ

â1 +
1

2s2
θ

â2 −
c4
θ

8s4
θ

âW̃ −
c2
θ

2s4
θ

â9 ξ −
c2
θ

4s4
θ

â3

)∣∣∣∣ ≤ 8.8 (4.6) , (2.83)

for 300 (3000) fb−1.

Observables to study the CP properties of the Higgs couplings have also been proposed

in the production channel pp → hjj followed by the Higgs decay into τ+τ−, W+W−, or

γγ [43–53]. Depending on the kinematic cuts imposed, the study is most sensitive to

CP-violating effects in the hWW (from SW̃ (h), S3(h) and/or S7(h)) and hZZ (from

SB̃(h), SW̃ (h), S1(h), S2(h), S3(h), S8(h) and/or S9(h)) vertices contributing to Higgs

production through vector boson fusion, or in the hgg vertex (from SG̃(h), and from loop

induced S2D(h) and S13(h)) contributing to production by gluon fusion. The sensitivity

to CP violating observables in associated production processes pp → hZ → bb̄`+`− and

pp→ hW → `+jjEmiss
T has also been studied in Refs. [51,54–58], and in pure gluon fusion

production followed by Higgs decay into γγ or to Zγ [59–62].

Finally, it is also possible to quantify the potential to observe or bound CP-odd inter-

actions from global analyses of the Higgs signal strengths [63–65]. However in this case

the analysis does not contain any genuinely CP-violating observable and consequently it

is always sensitive to combinations of CP-even and CP-odd interactions.

So far only the pure gauge and gauge-h sector have been analysed for the effective chiral

approach. As soon as the fermion sector is coupled to the gauge fields, Flavor physics

has to be analysed also, as it will be sensitive to the assumed flavor prescription for the

fermion-gauge couplings. In Chapter 3 the Minimal Flavor Violation (MFV) hypothesis is

assumed and implemented within the the effective chiral approach previously described.



Chapter 3

Fermion-h sector and flavour effects

In the previous chapters, the gauge and gauge-h sectors were tackled via and effective

chiral Lagrangian formalism and the tower of effective CP-conserving and CP-violating

operators was also established. Now, if we extend this formalism in order to cover the

fermion sector, flavour physics has to be accounted for some flavour prescription. We

are considering non-linear EWSB scenarios, and when facing flavour we will do it via

the MFV ansatz, where NP operator coefficients will have a flavour structure dictated

by such hypothesis, within a strong dynamics at the scale Λs and in the presence of a

light Higgs particle. For the case of a Higgs degree of freedom integrated out from the

physical spectrum, the MFV hypothesis was already analysed in the presence of a strong

interacting dynamics and introduced in Ref. [171], where the relevant flavour-changing

chiral operators at the leading order of the expansion were listed. A realistic approach

leads to couple them to a light scalar Higgs, and to consider as well their main loop-induced

effects as in Ref. [68]. A more complete and extended list of this type of operators cab be

found in the Ref. [30]. In here we only focus on those ones relevant for flavour-changing

processes and couple to a light Higgs contribution [68].

3.1 Fermion-gauge-h couplings

Fermion-gauge operators involving two right-handed (RH) or two left-handed (LH) fields

can be constructed by implementing the chiral buidling blocks T and Vµ defined in

Ec. (2.15), and FCNC processes could appear from them if a MFV ansatz, encoded in the

spurion coupling λF of Eq. (1.34), is incorporated in the approach.

A total of four independent chiral operators containing LH fermion fields1 can be

1Only operators built with two LH fermions can induce flavour-changing effects at leading order in

the spurion expansion, and therefore terms with two RH fermions will not be considered here.
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constructed [171–174], namely:

O1 =
i

2
Q̄L λF γ

µ {T,Vµ} QL , O2 = i Q̄L λF γ
µ VµQL ,

O3 = i Q̄L λF γ
µ T Vµ TQL , O4 =

1

2
Q̄L λF γ

µ [T,Vµ] QL .
(3.1)

Under CP-transformations, the set O1−O3 turn out to be CP-even, while O4 transforms

as CP-odd [171]. The remarkable presence of the CP-odd operator O4, violating CP at

leading order in this framework with no complex coefficients introduced (as in Refs. [175,

176]), is a slight modification of the MFV ansatz2 with respect to the standard MFV

hypothesis with EWSB linearly realized in Ref. [71], the which exhibits at its leading

order (d = 6) four operators involving the Higgs field and two fermions, named OH1 , OH2 ,

OG1 and OF1 . Only two of them, OH1 and OH2 , produce the same low-energy effects (for

energy E � v) than our operators O1 and O2, connected by the correspondences

O1 ⇐⇒ OH1 = −i
(
QLλFCγ

µQL

) (
Φ†
←→
DµΦ

)

O2 ⇐⇒ OH2 = −i
(
QLλFCγ

µτ iQL

) (
Φ† τi

←→
DµΦ

)
whereas the linear siblings of our leading operators O3 and O4 in Eq. (A.12) have not

been considered in Ref. [71], as they would have dimension d = 8 in the linear realization,

O3 ⇐⇒ OH3 = −i
(
QLλFCγ

µτ iQL

) (
H†τiH

) (
H†
←→
DµH

)

O4 ⇐⇒ OH4 = −iεijk
(
QLλFCγ

µτiQL

) (
H†τjH

) (
H† τk

←→
DµH

)
.

Conversely, the siblings of the other two operators in the linear expansion, OG1 and OF1 ,

do not appear at dimension dχ = 4 in the non-linear expansion, as they are only at

2Our only requirement is the invariance under the flavour group Gf for all operators built out of the

SM model fields (and U) and the spurions YU,D. In Ref. [71] the invariance under CP was additionally

assumed by restraining all operator coefficients to be real; no genuine CP-odd operator stems at leading

order of the linear expansion (the sibling of O4 would appear in it only at higher order). In our approach

we will keep the new source of CP violation naturally present at leading order only for the non-linear

expansion, for its theoretical and phenomenological interest.
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dχ = 5. In consequence, the phenomenological signals of MFV is expected to exhibit

notable differences between the two scenarios.

So far only fermion-gauge interactions have been described in the set of Eq. (3.1). A

more general and realistic scenario would account for a light Higgs contribution in those

interactions. Indeed, letting the operators Oi be coupled to a corresponding light Higgs

expansion as

Oi(h) ≡ OiFi(h) , (3.2)

fermion-gauge-h interacting vertexes are obtained at tree level in the unitary gauge. Again

the functions Fi(h) are (h + 〈h〉)-dependent3. The operators coefficients of O1 − O4 are

bounded from analysing ∆F = 1 and ∆F = 2 observables in Ref. [171], and commented in

Appendix C. Bounds obtained there are not sensitive to a light scalar h contribution and

the overall operator coefficients in Eq. (3.2) may differ from their Higgsless counterparts

in Eqs. (A.12) only through a (negligible) loop contribution.

To realize now to which linear siblings the operators in Eq. (A.12) correspond to,

consider the effective Lagrangian expansion

L f
eff = ξ

3∑
i=1

âiOi(h) + ξ2â4O4(h) (3.3)

where a redefinition by powers of ξ of the operators coefficients defined in Ref. [171] has

been implemented, ai ≡ ξ âi for i = 1, 2, 3, while a4 ≡ ξ2 â4. Notice that the lowest-

dimension siblings of O1 and O2 arise at d = 6, whereas for O4 is at d = 8 [171]. For

O3 the situation is indeed special, as it corresponds to a combination of d = 6 and d = 8

operators in the linear expansion [171]. In fact, for ξ � 1, the functions Fi(h) can be

expanded into combinations of F (h) similar as that in Eq. (2.20), such that

O1(h) ≡ O1 F (h) (1 + α1 ξ F (h)) , O2(h) ≡ O2 F (h) (1 + α2 ξ F (h)) ,

O3(h) ≡ O3 F (h) (1 + α3 ξ F (h)) , O4(h) ≡ O4 F
2(h) ,

(3.4)

the contribution from siblings up to d = 8 have been accounted for O3 (further contribu-

tions will arise considering higher-dimension siblings), but not only for O3, also possible

d = 8-siblings contributions for O1 and O2.

The ξ � 1-limit keeps linear terms in ξ, being negligible contributions from O4(h)4

3Only terms linear in h should be retained in Eq. (3.3); for the same reason it is neither pertinent to

consider couplings containing ∂µh (that is, derivatives of F(h)).
4O3(h) coincides with −O2(h) [171], then only two linearly-independent flavoured operators remain

(e.g. O1(h) and O2(h)), as previously studied in the literature.
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For the ξ ∼ 1 limit all four operators are relevant and higher order terms in ξ may

contribute. And one recognizes the need of a QCD-like resummation. In particular any

chiral operator is made up by an infinite combination of linear ones, an effect represented

by the generic Fi(h) functions, which admit in general an expansion in powers of ξ as

discussed previously.

Finally, the low-energy effective flavour Lagrangian induced byO1(h)−O4(h) operators

in Eq. (3.3), in the unitary gauge reads

L f
eff = − g√

2
W+
µ ŪLγ

µ

[
aW

(
1 + βW

h

v

)
+ i aCP

(
1 + βCP

h

v

)] (
y2
UV + V y2

D

)
DL + h.c.+

− g

2 cos θW
Zµ

[
auZŪLγ

µ
(
y2
U + V y2

DV
†)UL (1 + βuZ

h

v

)
+

+adZD̄Lγ
µ
(
y2
D + V †y2

UV
)
DL

(
1 + βdZ

h

v

)]
, (3.5)

where

auZ ≡ a1 + a2 + a3 , adZ ≡ a1 − a2 − a3 ,

aW ≡ a2 − a3 , aCP ≡ −a4 .
(3.6)

Coefficients βi in Eq. (3.5) are similarly defined as the coefficients ai in Eq. (3.6), once

the F(h) functions are expanded to first order in h, Fi(h) ∼ (1 + βi h + ...); in gene-

ral each βi may receive contributions from all orders in ξ for large ξ. In Eq. (3.5) are

present at low-energies vertices with additional external h-legs, differing with respect to

the strongly interacting heavy Higgs scenarios, and implying interesting phenomenological

consequences illustrated later on. Coefficients adZ , aW and aCP are bounded in Ref. [171]

from tree-level contributions to observables.

When considering loop-level impact from these coefficients to radiative processes such

as the b → sγ decay, possible bounds are also obtained and the effective next to leading

order operators in the expansion, i.e. those operators suppressed by the strong dynamics

scale Λs, have to be considered in the analysis as they contribute at tree-level to that

process. Such operators and their phenomenological consequences are considered in the

next section.
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3.2 Operators suppressed by Λs

Gauge invariant operators suppressed by Λs and relevant for flavour must have a bilinear

structure in the quark fields of the type Q̄L (· · ·) U(x)QR, where dots stand for objects

that transform in the trivial or in the adjoint representation of SU(2)L. Besides the vector

and scalar chiral fields Vµ and T, they can contain either the rank-2 antisymmetric tensor

σµν or the strength tensors Bµν , Wµν and Gµν . Moreover, operators constructed from the

antisymmetric rank 2 chiral tensor, transforming in the adjoint of SU(2)L and defined as

Vµν ≡ DµVν −DνVµ = i gWµν − i
g

2
Bµν T + [ Vµ,Vν ] . (3.7)

are not linearly independent from those listed in Eqs. (3.8)-(3.9), as the second equality

in Eq. (3.7) shows.

According to their Lorentz structure, the resulting independent chiral couplings can

be classified in three main groups:

i) dipole-type operators:

X1 = g′ Q̄L σ
µν UQRBµν , X2 = g′ Q̄L σ

µν T UQRBµν ,

X3 = g Q̄L σ
µν σiUQRW

i
µν , X4 = g Q̄L σ

µν σiT UQRW
i
µν ,

X5 = gs Q̄L σ
µν UQRGµν , X6 = gs Q̄L σ

µν T UQRGµν ,

X7 = g Q̄L σ
µν Tσi UQRW

i
µν , X8 = g Q̄L σ

µν TσiT UQRW
i
µν ;

(3.8)

ii) operators containing the rank-2 antisymmetric tensor σµν:

X9 = Q̄L σ
µν [Vµ,Vν ] UQR , X10 = Q̄L σ

µν [Vµ,Vν ] T UQR ,

X11 = Q̄L σ
µν [Vµ T,Vν T] UQR , X12 = Q̄L σ

µν [Vµ T,Vν T] T UQR ;

(3.9)

iii) other operators containing the chiral vector fields Vµ:

X13 = Q̄L Vµ Vµ UQR , X14 = Q̄L Vµ Vµ T UQR ,

X15 = Q̄L Vµ T Vµ UQR , X16 = Q̄L Vµ T Vµ T UQR ,

X17 = Q̄L T Vµ T Vµ UQR , X18 = Q̄L T Vµ T Vµ T UQR .

(3.10)

The effective chiral Lagrangian contribution from these fermion-gauge flavour-changing

operators turns out to be

∆LX =
18∑
i=1

bi
Xi
Λs

, (3.11)
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with all the operators suppressed by the strong dynamics scale5 Λs, and bi arbitrary O(1)

operator coefficients. Redefining the latter it is possible to link them to their lowest-

dimension siblings in the linear expansion

∆LX =
√
ξ

8∑
i=1

b̂i
Xi
Λs

+ ξ
√
ξ

18∑
i=9

b̂i
Xi
Λs

. (3.12)

X1−6 correspond to d = 6 operators in the linear expansion, while X7 and X8 to combi-

nations from d = 6 and d = 8 siblings. Furthermore, X9−18 will have linear siblings of

d = 8, but X17 and X18 that are combinations of d = 8 and d = 10 operators in the linear

regime. For the small ξ limit the lowest siblings are retained in Eq. (3.12), all them being

listed in Appendix C.

Interactions encoded in ∆LX of Eq. (3.11) can be split in the unitary gauge as

δLX = ∆L u
X + ∆L d

X + ∆L u−d
X , (3.13)

where

∆L d
X =

g2

4 cos θ2
W

bdZ
Λs

D̄LDRZµZ
µ +

g2

2

bdW
Λs

D̄LDRW
+
µ W

−µ + g2 c
d
W

Λs

D̄L σ
µνDRW

+
µ W

−
ν +

+ e
ddF
Λs

D̄L σ
µνDRFµν +

g

2 cos θW

ddZ
Λs

D̄L σ
µνDRZµν + gs

ddG
Λs

D̄L σ
µνDRGµν + h.c. ,

(3.14)

∆L u−d
X =

g2

2
√

2 cos θW

(
b+
WZ

Λs

ŪLDRW
+
µ Z

µ +
b−WZ

Λs

D̄LURW
−
µ Z

µ

)
+

+
g2

2
√

2 cos θW

(
c+
WZ

Λs

ŪL σ
µνDRW

+
µ Zν +

c−WZ

Λs

D̄L σ
µνURW

−
µ Zν

)
+

+
g√
2

(
d+
W

Λs

ŪL σ
µνDRW

+
µν +

d−W
Λs

D̄L σ
µνURW

−
µν

)
+ h.c. ,

(3.15)

and analogously for ∆L u
X as in ∆L d

X interchanging d ↔ u and DL,R ↔ UL,R. In these

equations W±
µν = ∂µW

±
ν − ∂νW±

µ ± i g
(
W 3
µW

±
ν −W 3

νW
±
µ

)
, while the photon and Z field

strengths are defined as Fµν = ∂µAν − ∂νAµ and Zµν = ∂µZν − ∂νZµ, respectively. Coeffi-

cients in Eqs. (3.14) and (3.15) are related to those defined in Eq. (3.11) and reported in

Appendix D.

5It is worth to underline that for the analysis of the non-linear operators Xi, the relevant scale is Λs

and not f as for the analysis in the previous section. Indeed, f is associated to light Higgs insertions,

while Λs refers to the characteristic scale of the strong resonances that, once integrated out, give rise to

the operators listed in Eqs. (3.8)-(3.10).
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Tree level impact to b → sγ decay from these fermion-gauge chiral operators Xi are

possible, in addition to the loop-level contributions from the leading order operators

Oi in Eqs. (A.12), (3.5) and (3.6). Before dealing with the bounds from both of the

contributions, let us recall the bounds existing in the literature [171] on the coefficients

in Eq. (3.6) from ∆F = 1 and ∆F = 2 observables.

3.3 Phenomenological analysis

The phenomenological impact from the effective operators, encoded in the expansions

of Eq. (3.5) and (3.13)-(3.15) are analysed in this section, where bounds existing in the

literature [171] on the coefficients of the flavour-changing chiral operators are resumed

and updated, and then discussed new bounds and other phenomenological considerations

with and without a light Higgs:

- Loop level impact of fermion-gauge chiral operators (O1 to O4) on those same ra-

diative decays;

- Tree-level bounds on the fermion-gauge chiral operators Xi, from radiative decays;

- Light Higgs to fermions couplings, from operators O1(h) to O4(h).

3.3.1 ∆F = 1 and ∆F = 2 observables

Operator coefficients in Eq. (3.5) have been bounded from ∆F = 1 and ∆F = 2 obser-

vables, in a MFV ansatz within a strong Higgs dynamics approach in Ref. [171], and can

be straightforwardly applied to non-linear regimes with a light h scalar. In fact, tree-level

Z-mediated FCNC (Fig. 3.1) induced from O1−3 in Eq. (3.5), together with the MFV

structure playing role there, allow sizeable flavour-changing effects that, for the down

quark sector6 turns out to be constraining adZ as

−0.044 < adZ < 0.009 at 95% of C.L. (3.16)

from K+ → π+ν̄ν, B → Xs`
+`− and B → µ+µ− data providing the strongest constraints.

Appendix C summarizes another similar bounds, as well as the set of tree level Wilson

coefficients modifications from O1−3 employed for bounding the coefficient adZ .

6For the purposes of the present work, only ∆F = 1 processes involving K and B mesons need

to be considered. New up-type tree-level FCNC contributions in Eq. (3.5) neglected in here as being

strengthened by a non-diagonal spurion combination V y2
DV
†, subleading with respect to that one in the

down sector, V †y2
UV , by at least a factor y2

b/y
2
t .
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Z

f

f̄

d̄i

dj

Figure 3.1: Tree-level Z-mediated FCNC from O1−3. f accounts for any SM fermion

field.

In addition, W -mediated box diagrams (Fig. 3.2) suffer from couplings modifications

in Eq. (3.5) from O2−4 contributions, and consequently ∆F = 2 transitions are sentitive

too7. Regarding these transitions, in Ref. [171] have been analysed

- The CP-violating parameter εK of the K0− K̄0 system and the mixing-induced CP

asymmetries SψKS and Sψφ in the decays B0
d → ψKS and B0

s → ψφ. Induced correc-

tions to εK are proportional to y2
t , whereas those to SψKS and Sψφ are proportional

to y2
b . Consequently, possible large deviations from the predicted SM values are only

allowed in the K system.

- The ratio among the meson mass differences in the Bd and Bs systems, R∆MB
≡

∆MBd/∆MBs . The NP contributions on the mass differences almost cancel in this

ratio and therefore departures with respect to the SM prediction for this observable

are negligible.

- The ratio among the B+ → τ+ν branching ratio and the Bd mass difference,

RBR/∆M ≡ BR(B+ → τ+ν)/∆MBd . This observable is clean from theoretical

hadronic uncertainties and the constraints on the NP parameters are therefore po-

tentially strong.

7Tree-level FCNC Z diagrams can be relevant also and considered later soon, while Z-mediated boxes

and weak penguin diagrams are safely neglected as being suppressed wrt tree-level Z contributions.
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WW

Figure 3.2: W -mediated box diagrams sensitive to couplings modifications in Eq. (3.5)

from O2−4 contributions, impacting thus in ∆F = 2 transitions. f accounts for any SM

fermion field.

Small and slight departures with respect to the SM prediction for SψKS are allowed, and

then only values close to the exclusive determination for |Vub| are favoured (Appendix C

summarizes this, Ref. [171] discusses it in detail.). A |Vub| − γ parameter space, with γ

being one of the angles of the unitary triangle, is bounded by requiring that both SψKS
and R∆MB

observables are inside the 3σ experimental determination. Choosing, as an

example, the reference point (|Vub|, γ) = (3.5 × 10−3, 66◦) from the parameter space, is

possible to predict SM values for εK and RBR/∆M as8

εK = 1.88× 10−3 , RBR/∆M = 1.62× 10−4 , (3.17)

that should be compared to the corresponding experimental determinations9

The errors on these quantities are ∼ 15% and ∼ 8%, estimated considering the uncertain-

ties on the input parameters and the analysis performed in Ref. [177].

A correlation between εK and RBR/∆M , and therefore a aCP − aW parameter space

are obtained by requiring that εK and RBR/∆M lie inside their own 3σ experimental de-

8The predicted SM value for εK differs from that in Ref. [171] due to the new input parameters used:

in particular B̂K = 0.7643± 0.0097 has sensibly increased [179].
9
(
RBR/∆M

)
exp

has been computed considering the recent world average BR(B+ → τ+ν) =

(0.99± 0.25)× 10−4 from Ref. [180].,

(εK)exp = (2.228± 0.011)× 10−3 ,
(
RBR/∆M

)
exp

= (1.95± 0.49)× 10−4 , (3.18)
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termination, as it can be seen in Fig. B.3 from Ref. [171]. Finally, the allowed aCP − aW
parameter space leads to the mixing-induced CP-asymmetry Sψφ and the B semileptonic

CP-asymmetry to be near the SM prediction, in agreement with the recent LHCb mea-

surements [178].

(a) Correlation plot between εK and RBR/∆M .

aW , aCP ∈ [− 1, 1], adZ ∈ [− 0.1, 0.1]

(b) aW − aCP parameter space for the observables on

the left panel inside their 3σ error ranges and adZ ∈
[− 0.044, 0.009].

Figure 3.3: Results for the reference point (|Vub|, γ) = (3.5 × 10−3, 66◦). Left panel:

in red the SM prediction and its 1σ theoretical error bands for εK and RBR/∆M for this

reference point; in orange (green) the 1σ, 2σ and 3σ (from the darker to the lighter) ex-

perimental error ranges for εK (RBR/∆M), in blue the correlation between εK and RBR/∆M

induced by NP contributions. Right panel: allowed values for aW and aCP upon the setup

of the left panel. See Ref. [171] for further details.

In Appendix C are summarized all the bounds from the implemented ∆F = 1 and

∆F = 2 observables in the framework. More specifically, the set of Wilson coefficients

departures with respect to the SM value and the limits obtained from ∆F = 1 con-

straints are provided, whilst the corresponding box diagrams modifications contributing

to the corresponding ∆F = 2 observables are analysed together with the allowed bounds,

correlations and parameter space therein.

Additionally to the aforementioned aCP−aW parameter space from εK-RBR/∆M corre-

lations, new limits on aW and aCP are possible from their loop-level impact on radiative B

decays. Processes that also receive tree level contributions from the set of chiral operators

Xi in Sect. 3.210 Next section focus on the former contributions.

10They are expected a priori to be all of comparable strength, the most powerful experimental con-

straints should result from the tree-level impact of dipole operators X1 to X8, as they include vertices
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3.3.2 B̄ → Xsγ branching ratio

The current experimental value of the B̄ → Xsγ branching ratio [181] is

Br(B̄ → Xsγ) = (3.31± 0.16± 0.30± 0.10)× 10−4 , (3.19)

for a photon-energy cut-off Eγ > 1.6 GeV. On the other hand, its NNLO SM prediction

for that same energy cut-off and in the B̄-meson rest frame, reads [182–184]

Br(B̄ → Xsγ) = (3.15± 0.23)× 10−4 . (3.20)

NP can impact on this SM prediction and can also be bounded by the precision from the

experimental measure. SM contribution to the b → sγ decay can be accounted by the

effective Lagrangian at the µb = O(mb) scale as

Leff =
4GF√

2
V ∗tsVtb

[
6∑
i=1

Ci(µb)Qi(µb) + C7γ(µb)Q7γ(µb) + C8G(µb)Q8G(µb)

]
, (3.21)

with Q1,2, Q3,...,6 and Q7γ,8G current-current, QCD penguin and magnetic dipole operators,

respectively, and terms proportional to V ∗usVub have been neglected11.

Wilson coefficients Ci(µb) at the scale µb are derived via QCD renormalisation group (RG)

running of the corresponding Wilson coefficients at the higher effective scale µ of the

underlying theory, which is the matching scale linking the effective and full descriptions,

and turning out to be the electroweak scale µ = O(MW ) for the SM case. RG effects are

in general non-negligible, enhancing at the end the SM b → sγ decay rate by a factor

of 2− 3 [183] after including those effects, sourced dominantly by the mixing of charged

current-current operators with the dipole operators, and to a smaller extent from the

mixing with QCD-penguin operators. These QCD effects can be formally encoded as

Ci(µb) = Uij(µb, µ)Cj(µ) , (3.22)

where Uij(µb, µ) are the RG evolution matrix elements running from the effective scale µ

down to µb [185].

The expression for the B̄ → Xsγ branching ratio can be compactly written as

Br(B̄ → Xsγ) = R
(
|C7γ(µb)|2 +N(Eγ)

)
, (3.23)

involving just three fields, one of them being a light gauge boson. Photonic penguins and also gluonic

penguins and tree-level four-fermion diagrams (through renormalization group mixing effects) will be

explored below and contrasted with radiative B decays.
11The same applies to the contributions from the so-called primed operators, similar to those appearing

in Eq. (3.21) although with opposite chirality structure, which are suppressed by the ms/mb ratio.
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where R = 2.47 × 10−3 is simply an overall factor as discussed in Refs. [182, 184] and

N(Eγ) = (3.6± 0.6)× 10−3 a non-perturbative contribution for the photon-energy cut-off

Eγ > 1.6 GeV. C7γ(µb) can be split into SM and NP contributions as

C7γ(µb) = CSM
7γ (µb) + ∆C7γ(µb) , (3.24)

where, for µb = 2.5 GeV, the SM contribution at the NNLO level, is given by [182–184]

CSM
7γ (µb) = −0.3523.

Non-unitarity CKM matrix modifications and flavour violating Z-fermion couplings

induced by the chiral operators O1−4, as well as direct contributions from the chiral

operators X1−8 will be the source for NP impact in ∆C7γ(µb). Focus first in the former

effects.

O1−4 impact

The effective scale of the chiral operators is f ≥ v, but no contributions to the Wilson

coefficients relevant for b→ sγ arise at scales above the electroweak one. As a result, the

analysis of these contributions is alike to that in the SM, except for the fact that the NP

operators modify the initial conditions at µW . The Wilson coefficients at the scale µW

can be written as

Ci(µW ) = CSM
i (µW ) + ∆Ci(µW ) , (3.25)

with the SM coefficients at the LO given by [186]

CSM
2 (µW ) = 1 ,

CSM
7γ (µW ) =

7xt − 5x2
t − 8x3

t

24(xt − 1)3
+
−2x2

t + 3x3
t

4(xt − 1)4
log xt ,

CSM
8G (µW ) =

2xt + 5x2
t − x3

t

8(xt − 1)3
+

−3x2
t

4(xt − 1)4
log xt ,

(3.26)

where xt ≡ m2
t/M

2
W . Non-unitarity CKM matrix modifications induce corrections to all

the three Wilson coefficients encoded [68] as

∆C2(µW ) = (aW − i aCP ) y2
b +

(
a2
W + a2

CP

)
y2
b y

2
c ,

∆C7γ(µW ) =
(
2aWy

2
t +

(
a2
W + a2

CP

)
y4
t

)(23

36
+ CSM

7γ (µW )

)
,

∆C8G(µW ) =
(
2aWy

2
t +

(
a2
W + a2

CP

)
y4
t

)(1

3
+ CSM

8G (µW )

)
.

(3.27)
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Contributions throughW boson exchange are proportional to aW and aCP , modifying tree-

level vertex couplings for Q2 as well as vertexes for the 1-loop penguin diagrams giving

rise to Q7γ and Q8G (more details in Appendix C). On the other hand, the new flavour-

changing Z-fermion vertices participate in penguin diagrams contributing to the b → sγ

decay amplitude, with a Z boson running in the loop [187]. These contributions can be

safely neglected, though, because they are proportional to the au,dZ parameters, which are

already severely constrained from their tree-level impact on other FCNC processes.

Including the QCD RG corrections, the NP contributions at LO to the Wilson coeffi-

cients are given by:

∆C7γ(µb) = η
16
23 ∆C7γ(µW ) +

8

3

(
η

14
23 − η 16

23

)
∆C8G(µW ) + ∆C2(µW )

8∑
i=1

κiη
σi , (3.28)

with

η ≡ αs(µW )

αs(µb)
= 0.45 . (3.29)

Here κ’s and σ’s are the magic numbers listed in Tab. 3.1, while η has been calculated

taking αs(MZ = 91.1876 GeV) = 0.118. Due to the simple additive structure of the NP

contributions in Eq. (3.25), these magic numbers are the same as in the SM context.

i 1 2 3 4 5 6 7 8

σi
14
23

16
23

6
23
−12

23
0.4086 −0.4230 −0.8994 0.1456

κi 2.2996 −1.0880 −3
7
− 1

14
−0.6494 −0.0380 −0.0185 −0.0057

Table 3.1: The magic numbers for ∆C7γ(µb) defined in Eq. (3.28).

The NP parameter space from the set O1−4 is bounded by the experimental value for

BR(B̄ → Xsγ) in Fig. 3.4. Shadowed (grey) exclusion regions from the present loop-level

impact on BR(B̄ → Xsγ) are superimposed with Fig. B.3b, based on the analysis of

∆F = 2 observables for the reference point (|Vub|, γ) = (3.5 × 10−3, 66◦). Combining

both of the analysis is possible to reduce the allowed parameter space in the scatter plot

of Fig. B.3b, by eliminating about half of the points as it is shown in Fig. 3.4.

Fig. 3.4 shows that aCP , the overall coefficient of the genuinely CP-odd coupling O4, and

thus of O4(h) in Eq. (3.2), is still loosely constrained by low-energy data. This has an

interesting phenomenological consequence on Higgs physics prospects, since it translates
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Figure 3.4: aW −aCP parameter space for εK and BR(B+ → σ+ν)/∆MBd observables

inside their 3σ error ranges and adZ ∈ [ − 0.044, 0.009] (see [171] for details). The gray

areas correspond to the bounds from the BR(B̄ → Xsγ) at 1σ, 2σ, and 3σ, from the

lighter to the darker, respectively.

into correlated exotic Higgs-fermion couplings, which for instance at leading order in h

read:

δL h
χ=4 ⊃ aCP

(
1 + βCP

h

v

)
O4 . (3.30)

For intermediate values of ξ (for which the linear expansion could be an acceptable guide-

line), the relative weight of the couplings with and without an external Higgs particle

reduces to -see Eq. (3.4)-

βCP ∼ 4 . (3.31)

These are encouraging results in the sense of allowing short-term observability. In a

conservative perspective, the operator coefficients of the non-linear expansion should be

expected to be O(1). Would this be the case, the possibility of NP detection would

be delayed until both low-energy flavour experiments and LHC precision on h-fermion

couplings nears the O(10−2) level, which for LHC means to reach at least its 3000 fb−1

running regime. Notwithstanding this, a steady improvement of the above bounds should

be sought.
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Xi-contributions

For the chiral operators Xi considered, the effective scale weighting their overall strength

is Λs ≤ 4πf . In the numerical analysis that follows, we will consider for Λs the smallest

value possible, i.e. Λs = 4πv. For this value, the effects due to the operators Xi are

maximized: indeed, for higher scales, the initial conditions for the Wilson coefficients

are suppressed with the increasing of Λs. This effect is only slightly softened, but not

cancelled, by the enhancement due to the QCD running from a higher initial scale. For

the analytical expressions, we will keep the discussion at a more general level and the

high scale will be denoted by µs, µs � v. At this scale the top and W bosons are still

dynamical and therefore they do not contribute yet to any Wilson coefficients. The only

operators relevant for b → sγ decay and with non-vanishing initial conditions are thus

Q7γ and Q8G, whose contributions arise from the dipole chiral operators Xi. At the scale

µs the Wilson coefficients can thus be written as

Ci(µs) ≡ CSM
i (µs) + ∆CXi (µs) , (3.32)

where the only non-vanishing contributions are

∆CX7γ(µs) = ddF
(4π)2 v y2

t√
2µs

, ∆CX8G(µs) = ddG
(4π)2 v y2

t√
2µs

, (3.33)

with ddF and ddG denoting the relevant photonic and gluonic dipole operator coefficients in

Eq. (3.14), respectively.

The QCD RG analysis from µs down to µb should be performed in two distinct steps:

i) A six flavour RG running from the scale µs down to µW . Focusing on the Wilson

coefficients corresponding to the SM and to the Xi-couplings as well, at the scale

µW the coefficients read

Ci(µW ) ≡ CSM
i (µW ) + ∆CXi (µW ) , (3.34)

where the only non-vanishing contributions from the set Xi are those given by

CX7γ(µW ) =
8

3

(
1− η2/21

µs

)
η2/3
µs ∆CX8G(µs) + η16/21

µs ∆CX7γ(µs) ,

CX8G(µW ) = η2/3
µs ∆CX8G(µs) ,

(3.35)

with

ηµs ≡
αs(µs)

αs(µW )
. (3.36)

In the numerical analysis ηµs = 0.67 will be taken.
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ii) A five-flavour RG running from µW down to µb. This analysis is alike to that

described in the previous section, substituting the initial conditions for the Wilson

coefficients in Eq. (3.25)-Eq. (3.27) for those in Eqs. (3.34)-(3.36).

It is interesting to focus on the final numerical result for the BR(B̄ → Xsγ), leaving

unspecified only the parameters bdF,G:

BR(b→ sγ) = 0.000315− 0.00175 bdeff + 0.00247
(
bdeff

)2
, (3.37)

where

bdeff ≡ 3.8 bdF + 1.2 bdG . (3.38)

The corresponding plot is shown on the left-hand side of Fig. 3.5, which depicts the

dependence of the branching ratio on bdeff , together with the experimental 3σ regions.

Two distinct ranges for bdeff are allowed:

−0.07 . bdeff . 0.04 or 0.67 . bdeff . 0.78 . (3.39)

Using the expression for bdeff in Eq. (3.38), it is possible to translate these bounds onto

the bdF − bdG parameter space, as shown on the right-hand side of Fig. 3.5. The two narrow

bands depict the two allowed regions.
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(a) BR(B̄ → Xsγ) vs. bdeff
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(b) bdF − bdG parameter space

Figure 3.5: BR(B̄ → Xsγ) vs. bdeff (left panel) and bdF − bdG parameter space (right

panel). Horizontal bands in the left panel are the experimentally excluded regions at 1σ,

2σ, and 3σ, from the lighter to the darker, respectively. The 3σ corresponding allowed

bdF − bdG parameter space is depicted as two separate narrow bands in the right panel.

Analogously to the case of O1(h) . . .O4(h) operators discussed in the previous subsec-

tion, a correlation would hold between a low-energy signal from these Xi-couplings and
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the detection of exotic fermionic couplings at LHC, upon considering their extension to

include h-dependent insertions. Nevertheless, a consistent analysis would require in this

case to consider d = 6 couplings of the non-linear expansion, which are outside the scope

of the present work.
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Conclusions

The lack of indications of new resonances at LHC data other than a strong candidate to

be the SM scalar boson h, together with the alignment of the couplings of the latter with

SM expectations, draws a puzzling panorama with respect to the electroweak hierarchy

problem. If the experimental pattern persists, either the extended prejudice against fine-

tunings of the SM parameters should be dropped, or the new physics scale is still awaiting

discovery and may be associated for instance to a dynamical origin of the SM scalar boson.

This thesis work has been inspired by the generic scenario in which a strong dynamics

lies behind the origin of a light Higgs particle h, such as in the so-called composite Higgs

scenarios, within an effective Lagrangian framework. In fact, it has derived the most

general effective couplings in the presence of one light scalar particle h, be it linked to the

origin of EWSB or a generic scalar unrelated to it.

The results generalize the operator basis for the bosonic sector of the electroweak non-

linear EFT in Refs. [21–25] (which assumed no light scalar in the low-energy spectrum

other than the longitudinal components of the W and Z bosons) to the case in which a

light scalar h particle is present, up to four-derivatives in the chiral expansion. The basis

of independent bosonic operators is now larger, with new couplings present. Furthermore,

the functional dependence on h is no more expected to follow in general the pattern in

powers of (v + h) characteristic of the SM and of BSM linear-realizations of EWSB,

and has been parametrized by generic F(h) functions, see Eqs. (2.20) and (2.21). The

complete set of four-derivative chiral CP-even and CP-odd effective operators has been

given in Eqs. (2.27)-(2.35), showing the existence of extra operators also with respect to

those recently identified in the literature taking into account a light scalar h [26–29]. The

construction of these bases is one of the main results of this work.

In specific composite Higgs models, in which the Higgs is a pseudo-Goldstone boson

of a strong dynamics, the parameter describing the degree of non-linearity is the rate
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ξ = (v/f)2, where v denotes the EW scale and f the characteristic Goldstone boson scale.

ξ must lie in the range 0 < ξ < 1. Small values indicate a linear regime of EWSB and for

ξ → 0 lead to a low-energy theory undistinguishable from the SM, since all the effects of

the strong interacting theory at the high scale become negligible. Larger values indicate

a non-linear regime of the EWSB mechanism, and a chiral expansion describes then well

the effects of the strong dynamics in a model-independent way. In an EFT approach ξ

is not a physical observable, and the analysis of data should be implemented directly to

measure/constraint the operator coefficients. Nevertheless, as that parameter allows an

easy comparison between the leading correction expected in linear realizations of EWSB

versus non-linear ones, we have often redefined the operator coefficients so as to extract

and make explicit the ξ dependence expected for each type of coupling. The explicit

dependence on ξ for each non-linear operator obtained can be found in Eqs. (2.25)-(2.34),

which allowed to establish the correspondence of each non-linear operator with the lowest-

dimension operator of the linear expansion that would lead to the same low-energy leading

phenomenological couplings. This analysis showed that linear operators of dimensions 6, 8

and 12 are needed to encompass the leading four-derivative effects of the CP-even bosonic

non-linear expansion, while linear operators of dimensions 6, 8 and 10 are required in the

analogous comparison for CP-odd operators. Details are given in Appendix C.

A curious aspect of CP-violating basis in Eq. (2.35) is the presence among the leading

two-derivative corrections of the operator S2D(h), which impacts the renormalisation of

the SM parameters, inducing finally a CP-odd component in the fermion-h and Z-h

interactions, see Eqs. (2.41) and (2.42) respectively. No analogous effect is present at the

leading order of the linear expansion, i.e. in the SM Lagrangian, as its would-be linear

sibling turns out to be a d = 6 operator. Similar effects and physical impact stem as

well from the four-derivative operator S13(h). In addition, bounds on the CP-odd non-

linear operator coefficients, mainly from anomalous triple vertices, have been established

in Sects. 2.3.2-2.3.3. Specifically,

* Bounds for the relevant non-linear operator coefficients contributing to the fermionic

EDMs at 1-loop from the anomalous CP-odd WWγ vertex have been obtained, see

Eqs. (2.51) and (2.53).

* Anomalous CP–odd WWZ vertices have been bounded from both CP-blind and

from CP-sensitive observables. The strongest limits are still those resulting from

LEP analyses, and we have translated them into bounds for the non-linear operator

coefficients, see Eq. (2.56). The possible direct measurement of the CP-odd WWZ

vertex through CP-blind signals in gauge boson single or pair production at colliders

has been analyzed as well.
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* Bounds on the combinations of non-linear operators contributing to the hγγ vertex

from their contribution to the fermionic EDMs have been determined, as illustrated

in Eq. (2.75).

* We have determined the bounds on combinations of CP-odd TGV couplings from

the CMS study of the LHC Higgs boson data at 7 and 8 TeV on the leptonic

channels induced by h→ ZZ, see Eq. (2.81). The future CMS sensitivity with the

expected 14 TeV data on the same combination of coefficients has been explored,

see Eq. (2.83).

By performing a realistic collider analysis of WZ pair production, the present and future

potential of LHC to measure anomalous CP-odd TGVs have been estimated in Sec. 2.3.2,

via the dependence on kinematic variables that traces the energy behaviour produced

in the cross sections by the anomalous TGVs. As a conclusion, LEP bounds can be

improved by using the 7 and 8 TeV collected LHC data sets, as shown in Table 2.2, whilst

the precision reachable in the future 14 TeV run will approach the per cent level on the

anomalous coefficients, proving thus the LHC potential. Furthermore, by means of CP-

odd sensitive asymmetries defined in Eq. (2.66), it has been shown that the future LHC

run will have the capability to establish the CP nature of the WWZ vertex for a large

range of the parameter space that can be covered in that run, see Eqs. (2.69) and (2.70).

Concerning flavour effects in the assumed chiral effective framework, focus has also

been given to possible implications for fermionic couplings of a strong interacting origin of

electroweak symmetry breaking dynamics with a light scalar h, and with mass around 125

GeV. Flavour-changing operators Oi for the non-linear regime, as well as those operators

Xi at the next to leading order in the expansion and suppressed by the strong dynamics

scale Λs, have been identified in Chapter 3. Moreover, taking into account the QCD

RG evolution, the coefficients of the latter have been constrained from a plethora of low-

energy transitions. In particular we have analyzed in detail and in depth the constraints

resulting from the data on B̄ → Xsγ branching ratio. Its impact is important on the global

coefficients of the four relevant flavour-changing chiral couplings at the loop level, and on

those of the dipole operators. The limits obtained constrain in turn the possible fermion-h

exotic couplings to be explored at the LHC. A particularly interesting example is that

of the intrinsically CP-odd operator O4 of the non-linear expansion, whose coefficient

is loosely constrained by data: a correlation is established between the possible signals

in low-energy searches of CP-violation and anomalous h-fermion couplings at the LHC.

Their relative strength is explored for the case of a relatively small ξ. A similar correlation

between low-energy flavour searches and LHC signals also follows for all other operators.



61

The complete set of independent CP-even and CP-odd leading effective bosonic opera-

tors identified here, together with the exploration of certain fermionic effective operators,

the new bounds on the strength of the exotic interactions established, and the new phe-

nomenological tools developed, should hopefully be useful in shedding light on the origin

of the electroweak symmetry breaking mechanism underlying nature.



Chapter 5

Conclusiones

La no observación de nuevas resonancias en los datos del LHC aparte de la confirmación

experimental de la existencia del bosón de Higgs del Modelo Estándar, junto con el ali-

neamiento de los acoplos de dicho bosón con las predicciones teóricas del ME, plantean un

panorama desafiante respecto al problema de la jerarqúıa electrodébil. Si los resultados

experimentales persisten, entonces el prejuicio contra el ajuste de los parámetros del ME

debe ser abandonado, o la escala de nueva f́ısica está aún por ser descubierta y podŕıa

estar asociada, por ejemplo, a un origen dinámico del boson de Higgs. Este trabajo ha

sido inspirado por el escenario genérico en el cual una dinámica fuerte subyace al origen

de un Higgs liviano h, tal como en los escenarios de Higgs compuesto, y dentro de un

marco de Lagrangiano efectivo. De hecho, han sido derivados los acoplos efectivos más

generales en presencia de una part́ıcula escalar h, ya sea vinculada al origen de la RSE o

un escalar genérico no relacionada con ella.

Este trabajo generaliza la base de operadores para el sector bosónico de una TEC

electrodébil no-lineal de las Refs. [21–25] (el cual asume la no presencia de escalares

livianos en el espectro de bajas enerǵıas diferentes a las componentes longitudinales de

los bosones W y Z) al caso en el cual un escalar liviano h está presente, hasta cuatro

derivadas en la expansión quiral. La base de operadores bosónicos independientes es

ahora más grande, con acoplos nuevos presentes. Además, la dependencia funcional en h

no sigue más el patrón en potencias de (v + h) caracteŕıstico del ME y de realizaciones

lineales MME de RSE, y ha sido parametrizada mediante funciones genéricas F(h), ver

Eqs. (2.20) and (2.21). La base completa de operadores quirales de cuatro derivadas que

conservan y violan la simetŕıa CP ha sido dadas en las Ecs. (2.27)-(2.35), exhibiendo la

existencia de operadores extra respecto también a aquellos que dan cuenta de un escalar

liviano h recientemente identificados en la literatura [26–29]. La construcción de estas

bases es uno de los resultados principales de este trabajo.
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En modelos espećıficos de Higgs compuesto, en el cual el Higgs es un bosón de pseudo-

Goldstone de una dinámica fuerte, el parámetro que cuantifica el grado de no-linealidad es

el cociente ξ = (v/f)2, donde v denota la EE y f la escala caracteŕıstica de los bosones de

Goldstone. ξ debe estar en el rango 0 < ξ < 1. Valores pequeños de ξ describen reǵımenes

lineales de RSE y para el caso ξ → 0 se tienen teoŕıas de bajas enerǵıas indistinguibles

del ME, al ser despreciables todos los efectos de teoŕıas fuertemente interactuantes a altas

enerǵıas. Valores más grandes caracterizan un régimen no-lineal del mecanismo de RSE,

y una expansión quiral describe bien entonces los efectos de dinámica fuerte de manera in-

dependiente del modelo. En un escenario de TEC, ξ no es un observable f́ısico y el análisis

de datos debeŕıa implementar directamente medidas y restricciones para los coeficientes

de operadores. No obstante, puesto que el parámetro permite comparar fácilmente correc-

ciones dominantes esperadas en realizaciones lineales de RSE versus no-lineales, hemos

redefinido los coeficientes de operadores para extraer y hacer expĺıcita la dependencia

esperada en ξ para cada tipo de acoplo. Dicha dependencia para cada operator no-lineal

puede ser vista en las Ecs. (2.25)-(2.34), la cual permite establecer la correspondencia

de cada operador no-lineal con los operadores de más baja dimensión de la expansión

lineal que conllevaŕıan a los mismos acoplos fenomenológicos de bajas enerǵıas. Éste

análisis ha mostrado que operadores lineales de dimensiones 6, 8 y 12 son necesarios para

vincularlos con los efectos dominantes de cuatro derivadas de la expansión bosónica li-

neal que conserva CP, mientras operadores lineales de dimensión 6, 8 y 10 son necesarios

análogamente para el caso de operadores que violan la simetŕıa CP. Más detalles han sido

dados en Apéndice C.

Un aspecto curioso de la base de operadores que no conserva CP en la Ec. (2.35)

es la presencia del operador de dos derivadas S2D(h), el cual afecta la renormalización

de los parámetros del ME, induciendo finalmente una componente que viola CP en las

interacciones fermión-h y Z−h, ver Ecs. (2.41) y (2.42) respectivamente. Efectos análogos

en la expansión lineal al orden dominante, es decir en el ME, no están presentes al ser

el correspondiente operador lineal de dimensión d = 6. Efectos e impacto f́ısico similares

provienen aśı mismo del operador de cuatro derivadas S13(h). Adicionalmente, cotas para

los coeficientes de los operadores no-lineales que violan CP, principalmente aquellos que

contribuyen a los vértices cúbicos anómalos, han sido establecidos en las Secciones 2.3.2-

2.3.3. Espećıficamente,

* Cotas para los coeficientes de los operadores no-lineales que contribuyen a 1-lazo al

MDEs fermiónico proveniente del vértice anómaloWWγ que viola CP, ver Ecs. (2.51)

y (2.53).

* Vértices anómalos WWZ que violan CP han sido acotados mediante observables
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sensibles a contribuciones de operadores que conservan y violan la simetŕıa CP. Los

ĺımites más fuertes aún provienen de los análisis de LEP, y han sido implementados

en cotas para los coeficientes de los operadores no-lineales, ver Ec. (2.56). La posible

medición directa de vértices WWZ que violan CP mediante señales no sensibles a

efectos de CP, en bosones de gauge o en producción de pares en colisionadores

también han sido analizada.

* Cotas en la combinación de operadores no-lineales que contribuyen al vértice hγγ

han sido determinadas por su contribución al MDE fermiónico, ilustrado en Ec. (2.75).

* Cotas en combinaciones de acoplos que violan CP han sido determinadas mediante

estudios de CMS sobre propiedades del bosón de Higgs en el canal leptónico inducido

por h→ ZZ, ver Ec. (2.81). La sensibilidad futura de CMS con los datos esperados

a 14 TeV también ha sido explorada en la misma combinación de coeficientes, ver

Ec. (2.83).

Realizando un análisis realista de producción de pares WZ en colisionadores, el potencial

presente y futuro del LHC para medir acoplos anómalos TGV que violan CP han sido

estimados en la Sección 2.3.2, mediante el uso de variables cinemáticas que dan cuenta del

comportamiento en la enerǵıa producido en las secciones transversales debido a los efectos

de acoplos anómalos TGV. Como conclusión, las cotas de LEP pueden ser mejoradas

usando datos del LHC a 7 y 8 TeV, como se puede apreciar en las Tablas 2.2, mientras que

la precisión alcanzable en el futuro a 14 TeV se acercará al nivel del 1% en los coeficientes

anómalos, demostrando aśı el potencial del LHC. Además, mediante la asimetŕıa definida

en Ec. (2.66), ha sido mostrado que el futuro del LHC tendrá la capacidad de establecer

la naturaleza CP de los vértices WWZ para un gran rango del espacio de parámetros que

puede ser cubierto por los datos del LHC, ver Ecs. (2.69) y (2.70).

En lo que a efectos de sabor en el escenario efectivo quiral asumido se refiere, se ha

centrado la atención en posibles implicaciones para los acoplos fermiónicos de un origen

interactuante fuerte de RSE con un escalar liviano h, y masa cercana a 125 GeV. Ope-

radores no-lineales que cambian el sabor Oi, aśı como también aquellos operadores Xi
subdominantes en la expansión y suprimidos por la escala de dinámica fuerte Λs, han

sido identificados en el Caṕıtulo 3. Además, al tener en cuenta la evolución de QCD

con la enerǵıa, los coeficientes provenientes de los operadores Xi han sido constreñidos de

diversas transiciones a bajas enerǵıas. En particular, han sido analizados en detalle cotas

resultantes de la intensidad del proceso B̄ → Xsγ. Su impacto es relevante en los coefi-

cientes globales de los acoplos quirales que cambian el sabor a 1-lazo en las correcciones

readiativas, y en aquellos de los operadores dipolares. Los ĺımites obtenidos constriñen los
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posibles acoplos exóticos fermiones-h explorables en el LHC. Un ejemplo particularmente

interesante es el operador que viola CP O4 de la expansión no-lineal, cuyos coeficientes

están ligeramente constreñidos por los datos: una correlación es establecida entre las

posibles señales de violación de CP a bajas enerǵıas y acoplos anómalos h-fermión en el

LHC. Su intensidad relativa es explorada para el caso de valores pequeños de ξ. Similar

correlación entre búsquedas de sabor a bajas enerǵıas y señales del LHC también se aplica

al resto de operadores.

El conjunto completo de operadores bosónicos efectivos que conservan y violan CP

identificados aqúı, junto con la exploración de ciertos operadores fermiónicos, las nuevas

cotas en la intensidad de las interacciones exóticas establecidas, y las herramientas feno-

menológicas desarrolladas, debeŕıan ser útiles para esclarecer el origen del mecanismo de

rompimiento de la simetŕıa electrodébil subyacente a la naturaleza.



APPENDIXES



Appendix A

Useful Formulas for non-linear dχ = 4

basis

In this appendix, only operators involving fermions and the strong Higgs sector are ana-

lyzed. For the complete basis of operators, including all the gauge-strong Higgs interac-

tions, one can refer to [21–23,172,173,188–190].

The main quantities needed in the construction are the basic “covariant” quantities

under the SM gauge group are T and Vµ in Eq. (2.15). All these quantities are traceless

Tr (T) = Tr (Vµ) = 0, and decomposable via generic 2 × 2 matrix properties, one can

therefore decompose them as T = 1
2
Tr (Tτ i) τi and Vµ = 1

2
Tr (Vµτ

i) τi. Relevant traces

in the unitary gauge are

Tr
(
Tτ i

)
U

= 2 δi3 , Tr (Vµτ
a)U = igW a

µ , Tr (TVµ)U = i
g

cW
Zµ , (A.1)

for i = 1, 2, 3 and a = 1, 2 and the suffix index U standing for unitary gaugee expressions.

Additionally one has the relations

Vµ =
1

2
Tr
(
Vµτ

i
)
τi ,

(TVµ + VµT) = Tr (TVµ) I2×2 ,

(TVµ −VµT) =
i

2
εijk Tr (Tτi) Tr (Vµτj) τk ,

TVµT =
1

2

[
Tr (TVµ) Tr

(
Tτ i

)
− Tr

(
Vµτ

i
)]
τi .

(A.2)

Employing previous relations operators defined in Eqs. (A.12) can be written alternatively
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as

O1 =
1

2
Jµ Tr (TVµ) , O2 =

1

2
Jµi Tr

(
Vµτ

i
)
,

O3 =
1

2
Jµi
[
Tr (TVµ) Tr

(
Tτ i

)
− Tr

(
Vµτ

i
)]
, O4 =

i

4
εijk Tr (Tτi) Tr (Vµτj) J

µ
k ,

(A.3)

with Jµ and Jµi the SU(2)L singlet and triplet currents, respectively:

Jµ = iQ̄LλFγ
µQL , Jµi = iQ̄LλFγ

µτiQL . (A.4)

A.1 CP transformation properties

Under charge (C) and parity (P) symmetries, T and Vµ will behave as [23]

T(t, x)
CP−→ −τ2 T(t,−x) τ2 , (A.5)

Vµ(t, x)
CP−→ τ2 Vµ(t,−x) τ2 . (A.6)

By means of Eqs.(A.5) and (A.6) it is straightforward to recover the transformation

properties of the traces:

Tr (Tτi)
CP−→ Tr (Tτ ∗i ) , (A.7)

Tr (Vµτi)
CP−→ −Tr (Vµτ ∗i ) , (A.8)

Tr (TVµ)
CP−→ −Tr (TVµ) . (A.9)

Using in addition the transformation properties of the singlet and triplet SU(2)L fermionic

currents:

QLγ
µQL

CP−→ −Q̄LγµQL , (A.10)

QLγ
µτiQL

CP−→ −Q̄Lγµτ
∗
i QL , (A.11)

one can easily verify that O1,2,3 are CP-even, while O4 is CP-odd.

One of the most relevant differences of the strong interacting Higgs scenario, with res-

pect to the linear case, is the presence of a new source of CP violation at chiral dimension

dχ = 4.
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A.2 Relation with the linear representation

Linking the operators in the non-linear basis with the corresponding ones in the linear

realization one has

O1 ←→ − 1

v2
OΦ1 , O2 ←→ 1

v2
OΦ2 ,

O3 ←→ 4

v4
OΦ3 −

1

v2
OH2 , O4 ←→ − 2

v4
OΦ4 ,

(A.12)

with OΦi

OΦ1 = i
(
QLλFCγ

µQL

) [
Φ†(DµΦ)− (DµΦ)†Φ

]
, (A.13)

OΦ2 = i
(
QLλFCγ

µτ iQL

) [
Φ†τi(DµΦ)− (DµΦ)† τiΦ

]
, (A.14)

OΦ3 = i
(
QLλFCγ

µτ iQL

) [
Φ†τiΦ

) (
Φ†(DµΦ)− (DµΦ)†Φ

]
, (A.15)

OΦ4 = iεijk
(
QLλFCγ

µτiQL

) [
Φ†τjΦ

) (
Φ†τk(DµΦ)− (DµΦ)† τkΦ

]
, (A.16)

where the first two operators [71] appear in the linear expansion at dimension d = 6,

while the last two appear only at dimension d = 8, and the following relations have been

employed

Tr[TVµ] −→ − 2

v2

[
Φ†(DµΦ)− (DµΦ)†Φ

]
(A.17)

Tr[Vµτ
i] −→ 2

v2

[
Φ†τ i(DµΦ)− (DµΦ)† τ iΦ

]
(A.18)

Tr[Tτ i] −→ − 4

v2
(Φ†τ iΦ) . (A.19)

A.3 Formulae for the Phenomenological Analysis

In this appendix we provide details on the results presented in sects. B.3 and B.4.

A.3.1 ∆F = 2 Wilson Coefficients

The Wilson coefficients of the ∆F = 2 observables in presence of NP can be written

separating the contributions from the box diagrams and the tree-level Z diagrams, so

that

C(M) = ∆
(M)
BoxC + ∆

(M)
Z C , (A.20)
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where M = K, Bd, Bs. Taking into account only the corrections to the W -quark vertices,

we find the following contributions to the Wilson coefficient relevant for M0− M̄0 system

at the matching scale µt ≈ mt(mt) (mt(mt) is the top quark mass mt computed at the

scale mt in the MS scheme):

∆
(M)
BoxC(µt) =

∑
i,j=u,c,t

λ̃i λ̃j Fij , (A.21)

where for the K and Bq systems we have respectively

λ̃i = Ṽ ∗is Ṽid , λ̃i = Ṽ ∗ib Ṽiq , (A.22)

with Ṽ the modified CKM matrix. The Fij are the usual box functions with the exchange

of W and up-type quarks (Fig. A.1) defined by

Fij ≡ F (xi, xj) =
1

4

[
(4 + xi xj) I2(xi, xj)− 8xi xj I1(xi, xj)

]

I1(xi, xj) =
1

(1− xi)(1− xj)
+

[
xi log(xi)

(1− xi)2(xi − xj)
+ (i↔ j)

]

I2(xi, xj) =
1

(1− xi)(1− xj)
+

[
x2
i log(xi)

(1− xi)2(xi − xj)
+ (i↔ j)

]
,

(A.23)

with xi = (mi/MW )2 (with mi should be understood as mi(mi)).

In the SM limit, i.e. switching off the modifications of the W -quark couplings, Ṽ → V

and therefore λ̃i → λ and it is possible to rewrite the previous expression in eq. (A.21) in

terms of the usual Inami-Lim functions S0(xt), S0(xc) and S0(xc, xt), using the unitarity

relations of the CKM matrix:

S0(xt) ≡
4xt − 11x2

t + x3
t

4(1− xt)2
− 3x3

t log xt
2(1− xt)3

S0(xc) ≡ xc

S0(xc, xt) ≡ xc

[
log

xt
xc
− 3xt

4(1− xt)
− 3x2

t log xt
4(1− xt)2

]
.

(A.24)

When the NP contributions are switch on, the modification of the CKM factors λi are,

for instance for the K system,

λ̃i ≡ Ṽ ∗id2 Ṽid1 = λi
[
1 + i aCP ∆d

12 + aW (Σd
1i + Σd

2i) + (a2
W + a2

CP ) Σd
1iΣ

d
2i

]
,(A.25)

λ̃′i ≡ Ṽ ∗u2i Ṽu1i = λ′i
[
1 + i aCP ∆u

12 + aW (Σu
1i + Σu

2i) + (a2
W + a2

CP ) Σu
1iΣ

u
2i

]
,(A.26)
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Figure A.1: W -mediated box diagrams contributing to the neutral kaon system (d and

s quarks in the external legs) and meson system Bq as well (b and q = d, s quarks in the

external legs)

.

with λi = V ∗id2 Vid1 , λ
′
i = V ∗u2i Vu1i and

∆x
12 = y2

x1
− y2

x2
, Σx

1i = y2
x1

+ y2
i , Σx

2i = y2
x2

+ y2
i . (A.27)

For the Bs and Bd one has to replace accordingly the quark labels. Deviations of λ̃i λ̃j

with respect to the SM expression can be parametrized as follows:

λ̃i λ̃j = λi λj (1 + δλij) (A.28)

where for the K system

δλij =2 i aCP ∆x
12 + aW Axij + a2

CP B
x
ij + a2

W Cx
ij + i aCP aW ∆x

12B
x
ij+

+ (a2
CP + a2

W )(i aCP D
x
ij + aW Ex

ij) + (a2
CP + a2

W )2 Lxij ,
(A.29)
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with
Axij = Σx

1i + Σx
1j + Σx

2i + Σx
2j ,

Bx
ij = Σx

1i Σ
x
2i + Σx

1j Σx
2j − (∆x

12)2 ,

Cx
ij = Σx

1i Σ
x
1j + Σx

2i Σ
x
2j + Σx

1i (Σ
x
2i + Σx

2j) + Σx
1j (Σx

2i + Σx
2j) ,

Dx
ij = ∆x

12 (Σx
1i Σ

x
2i + Σx

1j Σx
2j) ,

Ex
ij = (Σx

1i + Σx
2i) Σx

1j Σx
2j + (Σx

1j + Σx
2j) Σx

1i Σ
x
2i ,

Lxij = Σx
1i Σ

x
1j Σx

2i Σ
x
2j .

(A.30)

Previous expressions hold for both of the K and the for Bq systems, only ∆x
12, Σx

1i and

Σx
2i distinguish the different systems. With such notation, we can write the expression in

eq. (A.21) as follows:

∆
(K)
BoxC(µt) = λ2

t S
′
0(xt) + λ2

c S
′
0(xc) + 2λt λc S

′
0(xc, xt) ,

∆
(Bq)
Box C(µt) = λ2

t S
′
0(xt) ,

(A.31)

where

S ′0(xt) ≡ (1 + δλtt)Ftt + (1 + δλuu)Fuu − 2 (1 + δλut)Fut ,

S ′0(xc) ≡ (1 + δλcc)Fcc + (1 + δλuu)Fuu − 2 (1 + δλuc)Fuc ,

S ′0(xc, xt) ≡ (1 + δλct)Fct + (1 + δλuu)Fuu − (1 + δλuc)Fuc − (1 + δλut)Fut .

(A.32)

Integrating the Z boson at the µt scale1, the following contributions to the Wilson coef-

ficients are obtained

∆C
(K)
Z (µt) =

4π2

G2
F M

2
W

1

2M2
Z

(Cd,s)2 , ∆C
(Bq)
Z (µt) =

4π2

G2
F M

2
W

1

2M2
Z

(Cq,b)2 ,

(A.33)

with

Cd,s =
g

2 cos θW
adZ (λFC)∗12 , Cd,b =

g

2 cos θW
adZ (λFC)∗13 , Cs,b =

g

2 cos θW
adZ (λFC)∗23 .

(A.34)

The Wilson coefficients given above are evaluated at the µt scale and therefore the com-

plete analysis requires the inclusion of the renormalisation group (RG) QCD evolution

down to low energy scales, at which the hadronic matrix elements are evaluated by lattice

methods.

In our model we can apply the same RG QCD analysis as in the SM context: indeed,

both the effective operator, that arises from the modified box diagrams and the tree-level

1Integrating out the Z boson at µt or at MZ introduces a subleading error in our computation, that

can be safely neglected.
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Z diagrams by integrating out the heavier degrees of freedom, and the matching scale

are the same as in the SM. In particular no new effective operators with different chiral

structure from that one in eq. (B.12) and no higher scales than µt are present. All the

NP effects are encoded into the Wilson coefficients.

By the use of the Wilson coefficients reported in this appendix and having in mind

the previous discussion on the QCD evolution, we find the following full expressions for

the mixing amplitudes:

MK
12 = RK

[
η2 λ

2
t S
′
0(xt) + η1 λ

2
c S
′
0(xc) + 2 η3 λt λc S

′
0(xc, xt) + η2 ∆C

(K)
Z (µt)

]∗
,

M q
12 = RBq

[
λ2
t S
′
0(xt) + ∆C

(Bq)
Z (µt)

]∗
.

(A.35)

A.3.2 Approximate Analytical Expressions

Expanding in aW and aCP up to the first terms, the relevant parameters δλij are simplified,

for the K system, as

δλuu = 2 (aW − i aCP ) y2
s , δλcc = 4 aW y2

c − 2 i aCP y
2
s ,

δλtt = 4 aW y2
t − 2 i aCP y

2
s , δλuc = 2 aW y2

c − 2 i aCP y
2
s .

δλut = δλct = 2 aW y2
t − 2 i aCP y

2
s ,

(A.36)

while for the Bq systems

δλuu = δλcc = δλuc = 2 (aW − i aCP ) y2
b ,

δλtt = 2 aW (2 y2
t + y2

b )− 2 i aCP y
2
b (1 + 2 aW y2

t ) ,

δλut = δλct = 2 aW (y2
t + y2

b )− 2 i aCP y
2
b (1 + aW y2

t ) ,

(A.37)

where the terms of order O(a2
W , a

2
CP , aW aCP ) have been neglected. The coefficients Cd,s,

Cd,b and Cs,b that enter the tree level Z contributions are now

Cd,s =
g

2 cos θW
adZ y

2
t V
∗
ts Vtd , Cd,b =

g

2 cos θW
adZ y

2
t V
∗
tb Vtd , Cs,b =

g

2 cos θW
adZ y

2
t V
∗
tb Vts .

(A.38)

Finally we report the explicit expressions for G(xi) and H(xi, xj) appearing in the ex-
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pressions in sect. B.3:

G(xt) = 2(Ftt − Fut) =
4xt + 2xt log xt

1− xt
− 7x2

t − x3
t

2 (1− xt)2
+

2x2
t − 5x3

t

(1− xt)3
log xt ,

G(xc) = 2(Fcc − Fuc) = 2xc (2 + log xc)

H(xt, xc) = Ftc − Fut = xc

(
4− 11xt + 7x2

t

4 (1− xt)2
+

4− 8xt + x2
t

4 (1− xt)2
log xt

)
,

H(xc, xt) = Fct − Fuc = −xc log xc + xt
4− 3xc

4 (1− xt)
+

4xt + xc(4− 8xt + x2
t )

4 (1− xt)2
log xt .



Appendix B

MFV in a Strong Higgs Dynamics

scenario

Implementing a MFV hypothesis in a Strong Higgs Dynamics framework, as in Ref. [171],

non-unitarity effects for the CKM matrix are allowed from the modified W -fermion cou-

plings in Eq. (3.5), and limits for them are obtained from ∆F = 1 and ∆F = 2 observables

as well. Let us analyse first the CKM matrix modifications.

B.1 Non Unitarity and CP Violation

CKM matrix unitarity is dropped off in the Lagrangian of Eq. (3.5) by

Ṽij = Vij

[
1 + (aW + iaCP )(y2

ui
+ y2

dj
)
]
, (B.1)

and keeping top Yukawa coupling as the most relevant contribution1, unitarity deviations

are driven by2,

∑
k

Ṽ ∗ikṼjk ' δij +
[
2 aW y2

t + (a2
W + a2

CP ) y4
t

]
δitδjt , (B.2)∑

k

Ṽ ∗kiṼkj ' δij +
[
2 aW y2

t + (a2
W + a2

CP ) y4
t

]
V ∗tiVtj . (B.3)

1These relations should be modified if one works in a framework in which yb ≈ yt.
23rd quarks family mediated transitions present sizable unitarity corrections as expected from

Eq. (1.45) and still not severely constrained by experiments, whilst those on the first two family sec-

tors, as being Yukawa and mixing angles-suppressed, are O(10−4), perfectly in agreement with present

bounds. Notice from Eqs. (B.2) and (B.3) the quadratic aCP -dependence for non-unitarity corrections.
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and the parametrization-invariant definition of the angles of the unitarity triangles is

arg

(
− Ṽ

∗
ikṼil

Ṽ ∗jkṼjl

)
= arg

(
− V

∗
ikVil

V ∗jkVjl

)
+ aCP

[
2 aW

(
y2
uj
− y2

ui

) (
y2
dl
− y2

dk

)
+

−
(
3 a2

W − a2
CP

) (
y2
uj
− y2

ui

) (
y2
dl
− y2

dk

) (
y2
ui

+ y2
uj

+ y2
dk

+ y2
dl

) ]
+ O(a4) ,

(B.4)

remarking that

- aCP -dependent corrections, as expected from the fact that the SM source of CP-

violation is the only one remaining in the absence of O4;

- Non-degenerate up and down sectors for the two quark families case necessary and

sufficient to induce aCP -dependent physical CP-odd effects that are not present in

the one-family case;

- CP-odd effects playing role at quadratic order O(aCPaW ). O4 solely (e.g. aW =

auZ = adZ = 0 in Eq. (3.5)) leads to cubic correction O(a3
CP ) or higher.

Operator coefficients in Eq. (3.5) can be bounded from ∆F = 1 and ∆F = 2 observables

data. Focus first on the former observables.

B.2 ∆F = 1 Observables

Tree-level Z-mediated FCNC induced from O1−3 in Eq. (3.5), diagrammatically sketched

in Fig. B.1, are encoded in the low-energy effective Lagrangian3 as

GFα

2
√

2πs2
W

V ∗tiVtj
∑
n

CnQn + h.c., Cn = CSM
n + CNP

n , (B.5)

with Cn the Wilson coefficient corresponding to the FCNC operators Qn4

Qν̄ν = d̄iγµ(1− γ5)dj ν̄γ
µ(1− γ5)ν , Q7 = eq d̄iγµ(1− γ5)dj q̄γ

µ(1 + γ5)q ,

Q9V = d̄iγµ(1− γ5)dj ¯̀γµ` , Q9 = eq d̄iγµ(1− γ5)dj q̄γ
µ(1− γ5)q ,

Q10A = d̄iγµ(1− γ5)dj ¯̀γµγ5` ,

(B.6)

3Only ∆F = 1 processes involving K and B mesons are considered. New up-type tree-level FCNC

contributions in Eq. (3.5) are neglected in here as being strengthened by a non-diagonal spurion com-

bination V y2
DV
†, subleading with respect to that one in the down sector, V †y2

UV , by at least a factor

y2
b/y

2
t .

4All quark species are summed in Q7,9, with their corresponding eq quark electric charge.
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Z

f

f̄

d̄i

dj

⇒

f

f̄dj

d̄i

Figure B.1: Tree-level Z-mediated currents (left) contributing to the FCNC operators

Qn (right). Black dot vertex in the right figure symbolizes the non-zero contributions CNP
n

to the Wilson coefficient Cn for the corresponding effective operator Qn.

Operator Observable Bound (@ 95% C.L.)

O9V B → Xsl
+l− −0.811 < adZ < 0.232

O10A B → Xsl
+l− ,B → µ+µ− −0.050 < adZ < 0.009

Oν̄ν K+ → π+ν̄ν −0.044 < adZ < 0.133

Table B.1: FCNC bounds [191] on the combination of the operator coefficients adZ ,

obtained from a tree-level analysis.

receiving NP contributions contained in CNP
n as

CNP
νν̄ = −κ y2

t a
d
Z , CNP

7 = +2κ s2
W y2

t a
d
Z ,

CNP
9V = κ (1− 4s2

W ) y2
t a

d
Z , CNP

9 = −2κ c2
W y2

t a
d
Z .

CNP
10A = −κ y2

t a
d
Z ,

(B.7)

where κ ≡ πs2
W/(2α) reflects the relative strength of the NP tree-level contribution with

respect to the loop-suppressed SM one. Different mesons rare decays can constrain [191]

to adZ , those with less hadronic uncertainties are reported in Table B.1 with the overall

range −0.044 < adZ < 0.009 at 95% of CL5.

Concerning tree level W -mediated CC, the branching ratio for B+ → τ+ν is sensitive

5Likewise auZ can be limited from ∆F = 1 FCNC transitions among up-type quarks, turning out to

be of order O(adZ y
2
b/y

2
t ) and consequently are negligible.
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to their contributions and from the modified CKM matrix element Ṽub in Eq. (B.1):

BR(B+ → τ+ν) =
G2
F mB+ m2

τ

8π

(
1− m2

τ

m2
B+

)2

F 2
B+ |Vub|2

∣∣1 + (aW + i aCP ) y2
b

∣∣2 τB+ ,

(B.8)

with FB+ the B decay constant6. Z-mediated FCNC contributions to this process appear

at one-loop level and can be safely neglected.

B.3 ∆F = 2 Observables

Neutral kaon oscillations

W -mediated box diagrams suffer from couplings modifications in the effective low-energy

Lagrangian of Eq. (3.5) and consequently ∆F = 2 transitions get modified too. Fur-

thermore, tree-level FCNC Z diagrams can be relevant also for ∆F = 2 transitions7. In

particular, neutral kaon and meson oscillations mixing amplitudes MK
12 and M q

12 (q = d, s)

respectively defined as

MK
12 =

〈K̄0|H∆S=2
eff |K0〉∗

2mK

, M q
12 =

〈B̄0
q |H∆B=2

eff |B0
q 〉∗

2mBq

, (B.9)

are sensitive to those modifications, and therefore, the KL −KS mass difference and the

CP-violating parameter εK

∆MK = 2 Re(MK
12) , εK =

κε e
i ϕε

√
2 (∆MK)exp

Im
(
MK

12

)
, (B.10)

are also affected, with ϕε and κε (see these used input values in Table 2 of Ref. [171]) ac-

counting for ϕε 6= π/4 and including long-distance contributions to Im(Γ12) and Im(M12).

The effective Hamiltonian in Eq. (B.9) accounting for ∆F = 2 processes is usually written

as

H∆F=2
eff =

G2
F M

2
W

4π2
C(µ)Q , (B.11)

6The SM lepton-W couplings have been assumed in writing Eq. (B.8). Even if we are not considering

the lepton sector in our scenario, those couplings are strongly constrained by the SM electroweak analysis

and therefore any analogous NP modification in the lepton sector should be safely negligible.
7Z-mediated boxes and weak penguin diagrams are safely neglected as being suppressed wrt tree-level

Z contributions.
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with C(µ) Wilson coefficient at the scale µ, corresponding to the effective operator Q

describing neutral meson mixing as

Q = (d̄αi γµ PL d
α
j )(d̄βi γ

µ PL d
β
j ) . (B.12)

NP contributions can be distinguished in MK
12 by splitting it into its SM and NP con-

tributions8 MK
12 = (MK

12)SM + (MK
12)NP , and neglecting all contributions proportional to

yu,d,s and ync with n > 2

(MK
12)SM = RK

[
η2 λ

2
t S0(xt) + η1 λ

2
c S0(xc) + 2 η3 λt λc S0(xc, xt)

]∗
,

(MK
12)NP = RK

[
η2 λ

2
t S̃0(xt) + η1 λ

2
c S̃0(xc) + 2 η3 λt λc S̃0(xc, xt)

]∗
,

RK ≡ G2
F M

2
W

12π2
F 2
KmK B̂K , (B.13)

with ηi containing QCD higher order effects, λi = Ṽ ∗is Ṽid, B̂K the scale-independent

hadronic B-mixing matrix element [179], and

S̃0(xt) = y2
t (2 aW + y2

t a
2
CP )G(xt) +

(4 π y2
t a

d
Z)2

g2
,

S̃0(xc) = 2 aW y2
c G(xc) (B.14)

S̃0(xc, xt) = y2
t (2 aW + a2

CP y
2
t )H(xt, xc) + 2 aW y2

c H(xc, xt)

with S0, G and H loop functions defined in Appendix A. Notice the tree-level FCNC Z

diagrams contribution in S̃0(xt). Other contributions are negligible because of the Yukawa

suppression.

Neutral meson oscillations

Bd,s systems have different SM and NP contribution distinction for the mixing amplitude9

M q
12

(M q
12)SM = RBq

[
λ2
t S0(xt)

]∗
,

(M q
12)NP = (M q

12)SM CBq e2 i ϕBq ,

RBq ≡
G2
F M

2
W

12π2
F 2
Bq mBq B̂Bq ηB , (B.15)

8The expression for MK
12 is phase-convention dependent. In the following we will give all the results

in the convention in which the phase of the K → ππ decay amplitude is vanishing.
9The expression for Mq

12 is phase-convention dependent and we adopt the convention in which the

decay amplitudes of the corresponding processes, B0
d → ψKS and B0

s → ψφ, have a vanishing phase.
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where CBd,s and ϕBd,s parametrize NP effects, and FBq and B̂Bq denote neutral B decay

constant and mixing hadronic matrix elements, respectively. The mass differences in the

Bd,s systems are given by

∆Mq = 2 |M q
12| ≡ (∆Mq)SM CBq , (B.16)

with

CBd = CBs =

∣∣∣∣∣1+2 aW

(
y2
t

G(xt)

S0(xt)
+ y2

b

)
+

(4 π y2
t a

d
Z)2

g2 S0(xt)
+2 i aW aCP y

2
t y

2
b

G(xt)

S0(xt)

∣∣∣∣∣ . (B.17)

ϕBq enters in the mixing-induced CP asymmetries SψKS and Sψφ for the decaysB0
d → ψKS

and B0
s → ψ φ, respectively as

SψKS = sin(2 β + 2ϕBd) , Sψφ = sin(2 βs − 2ϕBs) , (B.18)

where β and βs are angles in the unitary triangles,

β ≡ arg

(
−V

∗
cb Vcd
V ∗tb Vtd

)
, βs ≡ arg

(
−V

∗
tb Vts
V ∗cb Vcs

)
, (B.19)

and the new phases are given by

ϕBd = ϕBs = 2 aW aCP y
2
t y

2
b

G(xt)

S0(xt)
. (B.20)

In looking for clean observables affected by NP contributions, the ratioR∆MB
≡ ∆MBd/∆MBs

suffers no modification as ∆MBd and ∆MBs are equal (see Eq. (B.17)), then any devia-

tion from the SM value of this observable is then negligible in our framework. Another

observable is the ratio between ∆MBd and the B+ → τ+ν branching ratio [192]:

RBR/∆M =
3 π τB+

4 ηB B̂Bd S0(xt)

m2
τ

M2
W

|Vub|2

|V ∗tb Vtd|2
(

1− m2
τ

m2
Bd

)2 |1 + (aW + i aCP ) y2
b |

2

CBd
, (B.21)

where we took mB+ ≈ mBd , well justified considering the errors in the other quantities in

this formula.

B Semileptonic CP-Asymmetry

Finally, a fourth observable provides rich information on meson mixing, the like-sign

dimuon charge asymmetry of semileptonic b decays Absl

Absl ≡
N++
b −N−−b

N++
b +N−−b

, (B.22)
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with N++
b and N−−b denoting the number of events containing two positively or negatively

charged muons, respectively. In pp̄ colliders, such events can only arise through B0
d −

B̄0
d or B0

s − B̄0
s mixings. Due to the intimate link with meson oscillations, Absl is also

called semileptonic CP-asymmetry and gets contributions from both Bd and Bs systems

[193,194]:

Absl = (0.594± 0.022) adsl + (0.406± 0.022) assl , (B.23)

where

adsl ≡
∣∣∣∣∣
(
Γd12

)
SM(

Md
12

)
SM

∣∣∣∣∣ sinφd = (5.4± 1.0)× 10−3 sinφd ,

assl ≡
∣∣∣∣ (Γs12)SM
(M s

12)SM

∣∣∣∣ sinφs = (5.0± 1.1)× 10−3 sinφs ,

(B.24)

with

φd ≡ arg

{
−
(
Md

12

)
SM(

Γd12

)
SM

}
= −4.3◦ ± 1.4◦ , φs ≡ arg

{
−(M s

12)SM
(Γs12)SM

}
= 0.22◦ ± 0.06◦ .

(B.25)

NP contributions are parametrized analogously as for Γq12 in M q
12,

Γq12 = (Γq12)SM C̃Bq with C̃Bq = 1 + 2 aW y2
b , (B.26)

in the approximation used here. With such a notation, it follows that

aqsl =

∣∣∣∣ (Γq12)SM
(M q

12)SM

∣∣∣∣ C̃BqCBq sin
(
φq + 2ϕBq

)
, (B.27)

with CBq given in Eq. (B.17).

B.4 Phenomenological analysis

A more detailed phenomenological discussion completing the analysis done in Sect. 3.3.1

can be found in Ref. [171]. The physical parameters we considered in the analysis and their

present experimental values are summarized in there. Additionally the tension between

the exclusive and the inclusive experimental determinations for |Vub| and the well known

εK − SψKS and BR(B+ → τ+ν) anomalies were also discussed there. The exclusive

determination for |Vub| was assumed in Ref. [171], due to the negligible NP contributions

to SψKS through ϕBd (suppressed by y2
b ), while NP contributions to εK are sizable, as it

can be seen in Eq. (B.18) of Sect. B.3 The |Vub|− γ parameter space was also constrained
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(a) εK (b) ∆MBd

(c) ∆MBs (d) RBR/∆M

Figure B.2: SM predictions for εK , ∆MBd,s and RBR/∆M in the reduced |Vub| − γ

parameter space. See [171] for more details.

in Ref. [171] from independent measurements of R∆MB
and SψKS . Fig. B.2 shows the

SM predictions for εK , ∆MBd,s and RBR/∆M in such |Vub| − γ parameter space, where

RBR/∆M ≡ BR(B+ → τ+ν)/∆MBd , useful in order to reduce most of the theoretical

uncertainties on ∆MBd . These particular patterns of the SM predictions are going to be

relevant when discussing NP effects, because it is a common feature of all the points in

the “reduced” |Vub| − γ parameter space.

FCNC Constraints on aCP , aW and adZ

None of the observables considered here get contributions from auZ , the analysis will be

restricted only to the constraints on aCP , aW and adZ from εK and RBR/∆M in Fig. B.3.

The analytic expressions for the NP contributions were considered in previous sections.
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Observables Sψφ and Absl are also presented separately in Fig. B.4. See [171] for a more

complete and detailed discussion.

(a) aW = adZ = 0, aCP ∈ [− 1, 1]. (b) aCP vs. εK . RBR/∆M inside its 3σ error.

(c) aW ∈ [−1, 1], adZ ∈ [−0.1, 0.1] and aCP = 0. (d) aW vs. adZ . Observables inside their 3σ error.

(e) aW , aCP ∈ [− 1, 1], adZ ∈ [− 0.1, 0.1] (f) aW vs. aCP , adZ ∈ [− 0.044, 0.009].

Figure B.3: εK vs. RBR/∆M for different values of aW , aCP and adZ (left), and aW−aCP
parameter space (right) for εK and RBR/∆M inside their 3σ error ranges. Results for the

reference point (|Vub|, γ) = (3.5× 10−3, 66◦). More details in Ref. [171].
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(a) aW = adZ = 0, aCP ∈ [− 1, 1]. (b) aW ∈ [− 1, 1], aCP = 0, adZ ∈ [− 0.044, 0.009].

(c) aW , aCP ∈ [− 1, 1], adZ ∈ [− 0.044, 0.009].

Figure B.4: Correlation between Absl and Sψφ. For all points, εK and RBR/∆M are inside

their 3σ error ranges. See [171] for a detailed description.



Appendix C

Linear siblings of the CP-odd chiral

operators Si(h)

The interactions described by the chiral operators in Eq. (2.35) can also be described

in the context of a linearly realised EWSB, through linear operators built in terms of

the SM Higgs doublet. In this Appendix, the connection between the two expansions is

discussed1. In the following some useful relations involving the Higgs doublet Φ are used

to establish the connection.

Useful relations

Φ† τi
←→
DµΦ = (DµΦ)† τiΦ− Φ†τi(DµΦ) (C.1)

3∑
i

(
τ i
)
αβ

(τi)γδ = 2

(
δαδ δβγ −

1

2
δαβ δγδ

)
(C.2)

1As the number and nature of the leading order operators in the chiral and linear expansions are not

the same, an exact correspondence between the two kind of operators can be found only in the cases when

d = 6 linear operators are involved, as only for them complete bases of independent terms have been

defined. Otherwise, it will be indicated which chiral operators should be combined in order to generate

the gauge interactions contained in specific d > 6 linear operators.
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εijk

(
Φ† τ i

←→
DµΦ

) (
Φ† τ j

←→
DνΦ

) (
Φ† τk Φ

)

= i 2
[(
DµΦ†

)
(DνΦ)

(
Φ†Φ

) (
Φ†Φ

)
−
(
DµΦ†

)
Φ Φ† (DνΦ)

(
Φ†Φ

)]
− {µ↔ ν} (C.3)

εijk

(
Φ† τ i

←→
DµΦ

) (
Φ† τ j

←→
DνΦ

)

= i
[(
DµΦ†

)
(DνΦ)

(
Φ† τ k Φ

)
−
(
DµΦ†

)
τ k (DνΦ)

(
Φ†Φ

)]
+

− i
[(
DµΦ†

)
Φ
(
DνΦ

†) τ k Φ− Φ† (DµΦ) Φ† τ k (DνΦ)
]
− {µ↔ ν} (C.4)

(
Φ† τi

←→
DµΦ

) (
Φ† τ i Φ

)
=
(

Φ†
←→
DµΦ

) (
Φ†Φ

)

(
Φ† τ i

←→
DµΦ

)2

=
[(
DµΦ†

)
Φ
]2

+
[
Φ† (DµΦ)

]2 − 4
(
DµΦ†

)
(DµΦ)

(
Φ†Φ

)
+ 2

(
DµΦ†

)
Φ Φ† (DµΦ) (C.5)

(
Φ† τi

←→
DµΦ

) (
Φ† τi

←→
DνΦ

)

=
(
DµΦ†

)
Φ
(
DνΦ

†) Φ + Φ† (DµΦ) Φ† (DνΦ)− 2
(
DµΦ†

)
(DνΦ)

(
Φ†Φ

)
+

− 2
(
DνΦ

†) (DµΦ)
(
Φ†Φ

)
+
(
DµΦ†

)
Φ Φ† (DνΦ) +

(
DνΦ

†)Φ Φ† (DµΦ) (C.6)
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For chiral operators connected to d = 6 linear operators:

SB̃(h)→ g′2 εµνρσBµν Bρσ

(
Φ†Φ

)
SW̃ (h)→ g2 εµνρσ Tr (WµνWρσ)

(
Φ†Φ

)
SG̃(h)→ g2

s ε
µνρσGa

µν G
a
ρσ

(
Φ†Φ

)
S2D(h)→

(
Φ†
←−−→
DµDµΦ

) (
Φ†Φ

)
S1(h)→ g g′ εµνρσ BµνW

j
ρσ

(
Φ† τj Φ

)
S2(h)→ g′ εµνρσ Bµν

[(
Φ†
←−−→
DσDρΦ

)
+ 2 (DρΦ)†DσΦ

]
S3(h)→ g εµνρσW i

µν

[(
Φ† τi

←−−→
DσDρΦ

)
+ 2 (DρΦ)† τiDσΦ

]
(C.7)

For chiral operators connected to d > 6 linear operators:

S4(h)→ gW µν
i

(
Φ† τ i

←→
DµΦ

) (
Φ†
←→
DνΦ

)
(d = 8)

S5(h),S10(h)→ (DµΦ)† (DνΦ)
(

Φ†
←−−→
DµDνΦ

)
(d = 8)

S6(h),S11(h)→ (DµΦ)† (DµΦ)
(

Φ†
←−−→
Dν DνΦ

)
(d = 8)

S7(h)→ εijkW
i
µν

(
Φ† τ j

←−−→
DµDνΦ

) (
Φ† τ k Φ

)
(d = 8)

S8(h)→ g2 εµνρσW i
µνW

j
ρσ

(
Φ† τi Φ

) (
Φ† τj Φ

)
(d = 8)

S9(h)→ g εµνρσW i
µν

(
Φ† τ i Φ

) (
Φ†
←−−→
DρDσΦ

)
(d = 8)

S12(h),S13(h),S14(h)→
(

Φ†
←−−→
DµDµΦ

)
DνDν

(
Φ†Φ

)
(d = 8)

S15(h),S16(h)→
(

Φ†
←→
DµΦ

) (
Φ†
←→
DµΦ

) (
Φ†
←−−→
Dν DνΦ

)
(d = 10)

(C.8)

where in the brackets the dimension of the specific linear operator is explicitly

reported.



Appendix D

Linear siblings of the operators Xi

The first set of non-linear operators listed in Eq. (3.8) corresponds to the following eight

linear operators containing fermions, the Higgs doublet Φ, the rank-2 antisymmetric tensor

σµν and the field strengths Bµν , Wµν and Gµν :

XΦ1 = g′ Q̄L σ
µν ΦDRBµν

XΦ2 = g′ Q̄L σ
µν Φ̃URBµν

XΦ3 = g Q̄L σ
µνWµν ΦDR

XΦ4 = g Q̄L σ
µνWµν Φ̃UR

XΦ5 = gs Q̄L σ
µν ΦDRGµν

XΦ6 = gs Q̄L σ
µν Φ̃URGµν ,

XΦ7 = g Q̄L σ
µν σi ΦDR Φ†Wµν σ

i Φ

XΦ8 = g Q̄L σ
µν σi Φ̃UR Φ† σiWµν Φ .

(D.1)

The operators XΦ7,Φ8 have mass dimension d = 8, while all the others have (linear) mass

dimension d = 6. The correspondence among these linear operators and those non-linear

listed in Eq. (3.8) is the following: for i = 1, . . . , 8,

Xi ↔
8∑
j=1

CijXΦj with C =

√
2

f



1 1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 −1 1 0 0

0 0 1 −1 0 0 −4/f 2 4/f 2

0 0 −1 −1 0 0 4/f 2 4/f 2


(D.2)
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The second set of non-linear operators listed in Eq. (3.9) corresponds to the following four

linear operators containing fermions, the Higgs doublet Φ and the rank-2 antisymmetric

tensor σµν :
XΦ9 = Q̄L σ

µν ΦDR

[
(DµΦ)†DνΦ− (µ↔ ν)

]
,

XΦ10 = Q̄L σ
µν Φ̃UR

[
(DµΦ)†DνΦ− (µ↔ ν)

]
,

XΦ11 = Q̄L σi σ
µν ΦDR

[
(DµΦ)† σiDνΦ− (µ↔ ν)

]
,

XΦ12 = Q̄L σi σ
µν Φ̃UR

[
(DµΦ)† σiDνΦ− (µ↔ ν)

]
,

(D.3)

all of them of mass dimension d = 8. The correspondence among these linear operators

and those non-linear listed in Eq. (3.9) is the following

Xi ↔
12∑
j=9

CijXΦj with C =
2
√

2

f 3


0 0 1 1

0 0 −1 1

1 −1 0 0

−1 −1 0 0

 (D.4)

for i = 9, . . . , 12. For the third set in Eq. (3.10), we consider the following six linear

operators involving fermions and the Higgs doublet Φ:

XΦ13 = Q̄L ΦDR (DµΦ)†DµΦ ,

XΦ14 = Q̄L Φ̃UR (DµΦ)†DµΦ ,

XΦ15 = Q̄L σi ΦDR (DµΦ)† σiDµΦ ,

XΦ16 = Q̄L σi Φ̃UR (DµΦ)† σiDµΦ ,

XΦ17 = Q̄L ΦDR (DµΦ)†Φ Φ†DµΦ ,

XΦ18 = Q̄L Φ̃UR (DµΦ)†Φ Φ†DµΦ ,

(D.5)

where XΦ13−Φ16 have mass dimension d = 8, while XΦ17−Φ18 have mass dimension d =

10. The correspondence between these linear operators and those non-linear listed in

Eq. (3.10) for i = 13, . . . , 18, is

Xi ↔
18∑
j=13

CijXHj with C =
2
√

2

f 3



−1 −1 0 0 0 0

1 −1 0 0 0 0

0 0 1 1 0 0

0 0 −1 1 0 0

2 2 1 −1 −8/f 2 −8/f 2

−2 2 −1 −1 8/f 2 −8/f 2


.

(D.6)
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Operator coefficients in the unitary basis

The relations between the coefficients appearing in the Lagrangians Eq. (3.14)-(3.15) and

the ones defined in Eq. (3.11) for the effective Lagrangian in the unitary basis

cuW
cdW
c+
WZ

c−WZ

duF
ddF
duZ
ddZ
d+
W

d−W
duG
ddG



= A



b1

· · ·

b12



,



buZ
bdZ
buW
bdW
b+
WZ

b−WZ


= B



b13

· · ·

b18


(D.7)

A =



0 0 2i 2i 0 0 2i 2i −1 −1 1 1

0 0 −2i 2i 0 0 2i −2i 1 −1 −1 1

0 0 0 0 0 0 0 0 4 −4 0 0

0 0 0 0 0 0 0 0 −4 −4 0 0

1 1 1 1 0 0 1 1 0 0 0 0

1 −1 −1 1 0 0 1 −1 0 0 0 0

−2s2
W −2s2

W 2c2
W 2c2

W 0 0 2c2
W 2c2

W 0 0 0 0

−2s2
W 2s2

W −2c2
W 2c2

W 0 0 2c2
W −2c2

W 0 0 0 0

0 0 2 −2 0 0 2 −2 0 0 0 0

0 0 2 2 0 0 −2 −2 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0



(D.8)

B =



−1 −1 −1 −1 −1 −1

−1 1 1 −1 −1 1

−1 −1 1 1 1 1

−1 1 −1 1 1 −1

0 0 −2 2 −2 2

0 0 −2 −2 2 2


(D.9)



Appendix E

Feynman rules

This Appendix provides a complete list of all Feynman rules resulting from the CP-odd

operators in the Lagrangian ∆L�CP of Eqs. (2.34) and (2.35). Greek indexes denote the

flavour of the fermionic legs and are assumed to be summed over when repeated; whenever

they do not appear, it should be understood that the vertex is flavour diagonal. Moreover,

yf (f = U,D,E) denotes the eigenvalue of the corresponding Yukawa coupling matrix

defined in Eq. (2.32). Chirality operators PL,R are defined as

PL =
1

2

(
1− γ5

)
, PR =

1

2

(
1 + γ5

)
. (E.1)

Flow in momentum convention is assumed in all diagrams. η-parameter in diagrams

Eq. (FR.1)-(FR.4) stands for the gauge fixing parameter. Only diagrams with up to four

legs are shown and the expansion for Fi(h) in Eq. (2.30) has been adopted, together with

the definitions of the âi coefficients in Eq. (2.37) and b̂i = cibi. Vertices cubic in h have

been omitted below, but for Eq. (FR.26) which results from the product of two Fi(h)

functions, see Footnote 5 in Chapter 2. Finally, the SM and BSM Lorentz structures are

reported in two distinct columns, on the left and on the right, respectively. Notice that all

the pure gauge and gauge-h interactions have no SM contribution. All quantities entering

in the Feynman rules below have resulted after the Z-renormalization scheme has been

implemented.



9
2

SM

(FR.1) Aµ(p) Aν(p)
−i
p2

[
gµν − (1− η)

pµpν

p2

]

(FR.2) Zµ(p) Zν(p)
−i

p2 −m2
Z

[
gµν − (1− η)

pµpν

p2 − η m2
Z

]

(FR.3) W+
µ (p) W−

ν (p)
−i

p2 −m2
W

[
gµν − (1− η)

pµpν

p2 − η m2
W

]

(FR.4) Ga
µ(p) Gb

ν(p)
−igµν
p2

[
gµν − (1− η)

pµpν

p2

]

(FR.5) h(p) h(p)
−i

p2 −m2
h

(FR.6) f(p) f(p)
i(/p+mf )

p2 −m2
f

; mf = −v yf√
2
, f = U,D,E



9
3

Non-SM

(FR.7)

W+
α (p) W−

β (q)

Zρ(r)

ξ2 e3 csc2 θW csc (2θW )
{
− 2c11g

αβ (pρ + qρ) + c10

(
gβρpα + gαρqβ

)
+

+ c4

[
gβρ (pα + rα) + gαρ

(
qβ + rβ

)
+ gαβ (pρ + qρ)

] }
+

+8i ξ e3 [ξ c8 cot θW csc2 θW − c1 csc (2θW )] (pσ + qσ) εαβρσ

(FR.8)

W+
α (p) W−

β (q)

Aρ(r)

4i ξ e3 csc2 θW (2 ξ c8 + c1) (pσ + qσ) εαβρσ

(FR.9)

Zα(p) Zβ(q)

Zρ(r)

8 ξ2 e3 (2 ξ c16 + c10 + c11) csc3 (2θW )
[
gβρpα + gαρqβ − gαβ (pρ + qρ)

]

(FR.10)

W+
α (p) W−

β (q)

Aρ(r) Zσ(s)

ξ2 (c4 + c10) e4 csc2 θW csc (2θW )
(
gασgβρ − gαρgβσ

)



9
4

Non-SM

(FR.11)

Aα(p) Aβ(q)

h(r)

8i
v
ξ e2

[
2
(
−1

4
âB̃ + ξ â8 + â1

)
− 1

4
âW̃
]
pµqνε

αβµν

(FR.12)

Zα(p) Zβ(q)

h(r)

−4i
v
ξ e2

[
4
(
−1

4
âB̃ + ξ â8 + â1

)
− 2

(
−1

2
âB̃ + â2

)
sec2 θW+

+ csc2 θW
(

1
2
âW̃ − 4 ξ â8 + 2 ξ â9 + â3

)
− 1

2
âW̃

]
pµqνε

αβµν

(FR.13)

Aα(p) Zβ(q)

h(r)

−4i
v
ξ e2

[
− âB̃ tan θW − 2 cot θW

(
−1

4
âW̃ + 2 ξ â8

)
+

+ (2 ξ â9 + 2 â2 + â3) csc (2θW )− 4 â1 cot (2θW )
]
pµqνε

αβµν



9
5

Non-SM

(FR.14)

Ga
α(p) Gb

β(q)

h(r)

−4 i
v
g2
s δ

ab ξ âG̃ pµqνε
αβµν

(FR.15)

W+
α (p) W−

β (q)

h(r)

2
v
ξ2 e2 csc2 θW

[
â7 g

αβ(p · p− q · q)− (â7 − â12)
(
pαpβ − qαqβ

)]
+

−4i
v
ξ e2 csc2 θW

(
â3 + 1

2
âW̃
)
pµqνε

αβµν

(FR.16)

h(r) h(s)

Zα(p)

2
v2
ξ e csc (2θW )

{
8 ξ â14 a

′
14 (r · s) pα + v2

[(
â2D −

b̂2D

2

)
pα+

+ 4
v2
ξ â13 (r2 rα + s2 sα) + 2

v2
ξ b̂13 p

2 pα

]}
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6

Non-SM

(FR.17)

W+
α (p) W−

β (q)

Zρ(r) h(s)

1
v ξ

2 e3 csc3 θW sec θW

{
â10 g

βρpα + â7

[
gβρ (pα + qα + rα) + gαρ

(
pβ + qβ + rβ

)]
+ â12

[
gβρ (pα + qα + rα) +

+gαρ
(
pβ + qβ + rβ

) ]
+ â10g

αρqβ − 2 â6g
αβ (pρ + qρ + rρ)− 2 â7g

αβ (pρ + qρ + rρ) + 2 â11 g
αβrρ+

−â5

[
gβρ (pα + qα + rα) + gαρ

(
pβ + qβ + rβ

)]
− â4

[
gβρqα + gαρpβ − gαβ (pρ + qρ)

]
+

+ cos (2θW )
[

(â7 − â12)
(
gβρ (pα + qα + rα) + gαρ

(
pβ + qβ + rβ

))
− 2 â7g

αβ (pρ + qρ + rρ)
]}

+

+2 i
v ξ e

3 csc3 θW sec θW

{
4 cos2 θW

[
1
4 âW̃ (pσ + qσ + rσ)− 2 ξ â8rσ

]
+ 2 ξ â9 (pσ + qσ + rσ) +

+ â3 [cos (2θW ) + 2] (pσ + qσ + rσ) + 4 â1rσ sin2 θW

}
εαβρσ

(FR.18)

W+
α (p) W−

β (q)

Aρ(r) h(s)

2
v
ξ2 e3 csc2 θW

{
(â7 − â12)

[
gβρ (pα + qα + rα) + gαρ

(
pβ + qβ + rβ

)]
− 2 â7g

αβ (pρ + qρ + rρ)
}

+

−4i
v
ξ e3 csc2 θW

[
−1

2
âW̃ (pσ + qσ + rσ)− â3 (pσ + qσ + rσ) + 2 (2 ξ â8 + â1) rσ

]
εαβρσ

(FR.19)

Zα(p) Zβ(q)

Zρ(r) h(s)

16
v
ξ2 e3 csc3 (2θW )

{
(2 ξ â16 + â10 + â11)

(
gβρpα + gαρqβ + gαβrρ

)
+

− (2 ξ â15 + â5 + â6)
[
gβρ (pα + qα + rα) + gαρ

(
pβ + qβ + rβ

)
+

+ gαβ (pρ + qρ + rρ)
]}



9
7

Non-SM

(FR.20)

Ga
α(p) Gb

β(q)

Gc
ρ(r) h(s)

4
v
f abcg3

s ξ âG̃ (pµ + qµ + rµ) εαβµρ

(FR.21)

Aα(p) Aβ(q)

h(r) h(s)

8i
v2
ξ e2

[
2
(
−1

4
b̂B̃ + ξ b̂8 + b̂1

)
− 1

4
b̂W̃

]
pµqνε

αβµν

(FR.22)

Zα(p) Zβ(q)

h(r) h(s)

− 4i
v2
ξ e2

[
4
(
−1

4
b̂B̃ + ξ b̂8 + b̂1

)
− 2

(
−1

2
b̂B̃ + b̂2

)
sec2 θW+

+ csc2 θW

(
1
2
b̂W̃ − 4 ξ b̂8 + 2 ξ b̂9 + b̂3

)
− 1

2
b̂W̃

]
pµqνε

αβµν

(FR.23)

Aα(p) Zβ(q)

h(r) h(s)

− 4i
v2
ξ e2

[
− b̂B̃ tan θW − 2 cot θW

(
−1

4
b̂W̃ + 2 ξ b̂8

)
+

+
(

2 ξ b̂9 + 2 b̂2 + b̂3

)
csc (2θW )− 4 b̂1 cot (2θW )

]
pµqνε

αβµν



9
8

Non-SM

(FR.24)

W+
α (p) W−

β (q)

h(r) h(s)

2
v2
ξ2 e2 csc2 θW

{
b̂7

[
gαβ(q · r − p · r) + pβrα − qαrβ

]
+ b̂12

(
qβrα − pαrβ

)}
+

− 2i
v2
ξ e2

(
b̂3 + b̂W̃

)
csc2 θW pµqν ε

αβµν

(FR.25)

Ga
α(p) Ga

β(q)

h(r) h(s)

−4 i
v2
g2
s δ

ab ξ b̂G̃ pµqνε
αβµν

(FR.26)

Zα(p) h(q)

h(r) h(s)

2
v3
ξ e csc (2θW )

{
8 ξ pα (r · q + q · s+ r · s)

(
â14 b

′
14 + b̂14 a

′
14

)
+

+ v2
[
â2D p

α + 4
v2
ξ â13 (q2 qα + r2 rα + s2 sα)

] }



9
9

SM Non-SM

(FR.27)

Uα(p) Uβ(q)

h(r)

− i√
2

[
PL

(
Y †U

)
αβ

+ PR (YU)αβ

]
+ 1√

2 v2
ξ (â2D v

2 − 4 ξ â13 r
2)

[
PL

(
Y †U

)
αβ
− PR (YU)αβ

]

(FR.28)

Dα(p) Dβ(q)

h(r)

− i√
2

[
PL

(
Y †D

)
αβ

+ PR (YD)αβ

]
− 1√

2 v2
ξ (â2D v

2 − 4 ξ â13 r
2)

[
PL

(
Y †D

)
αβ
− PR (YD)αβ

]

(FR.29)

Eα(p) Eβ(q)

h(r)

− i√
2

[
PL

(
Y †E

)
αβ

+ PR (YE)αβ

]
− 1√

2 v2
ξ (â2D v

2 − 4 ξ â13 r
2)

[
PL

(
Y †E

)
αβ
− PR (YE)αβ

]



1
0
0

Non-SM

(FR.30)

Uα(p) Uβ(q)

h(r) h(s)

+
√

2
v3
ξ [â2D v

2 − 2 ξ â13 (r2 + s2)]

[
PL

(
Y †U

)
αβ
− PR (YU)αβ

]

(FR.31)

Dα(p) Dβ(q)

h(r) h(s)

−
√

2
v3
ξ [â2D v

2 − 2 ξ â13 (r2 + s2)]

[
PL

(
Y †D

)
αβ
− PR (YD)αβ

]

(FR.32)

Eα(p) Eβ(q)

h(r) h(s)

−
√

2
v3
ξ [â2D v

2 − 2 ξ â13 (r2 + s2)]

[
PL

(
Y †E

)
αβ
− PR (YE)αβ

]
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