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Abstract. In this paper, the contributions of different linguistic units to the 

speaker recognition task are explored by means of temporal trajectories of their 

MFCC features. Inspired by successful work in forensic speaker identification, 

we extend the approach based on temporal contours of formant frequencies in 

linguistic units to design a fully automatic system that puts together both forensic 

and automatic speaker recognition worlds. The combination of MFCC features 

and unit-dependent trajectories provides a powerful tool to extract 

individualizing information. At a fine-grained level, we provide a calibrated 

likelihood ratio per linguistic unit under analysis (extremely useful in 

applications such as forensics), and at a coarse-grained level, we combine the 

individual contributions of the different units to obtain a highly discriminative 

single system. This approach has been tested with NIST SRE 2006 datasets and 

protocols, consisting of 9,720 trials from 219 male speakers for the 1side-1side 

English-only task, and development data being extracted from 367 male speakers 

from 1,808 conversations from NIST SRE 2004 and 2005 datasets.  

Keywords: automatic speaker recognition, forensic speaker identification, temporal 

contours, linguistic units, cepstral trajectories.  

1 Introduction1  

Automatic speaker recognition has focused in the last decade on two concurrent 

problems: the compensation of session variability effects, mainly through 

highdimensional supervectors and latent variable analysis [2] [7] [8], and the 

production of an application-independent calibrated likelihood ratio per speaker 

recognition trial [1], able to elicit useful speaker identity information to the final user 

with any given application prior. The results are highly efficient text-independent 

systems in controlled conditions, as NIST SRE evaluations, where lots of data from 

hundreds of speakers in similar conditions are available. Thus, all the speech available 
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in every trial is used to produce detection performances difficult to imagine a decade 

ago.  

However, in the presence of strong mismatch (as e.g. in forensic conditions, where 

acoustic and noise mismatch, apart from highly different emotional contexts, speaker 

roles or health/intoxication states can be present between the control and questioned 

speech), those acoustic/spectral systems could be unusable as all our knowledge about 

the two speech samples is deposited into a single likelihood ratio, obtained from all the 

available speech in the utterance, that could be strongly miscalibrated (being then 

highly misleading) as the system has been developed under severe database mismatch 

between training and testing data. Moreover, it is difficult (or even impossible) to 

collect enough data to develop a system robust to every combination of mismatch 

factors present in actual case data, an important problem in real applications.  

A usual procedure in forensic laboratories is that a speech expert, typically a 

linguist/phonetician, can isolate or mark segments of compatible/comparable speech 

between both samples, segments being from seconds long to just some short phonetic 

events in given articulatory contexts. The number and types of comparable units for 

analysis is always a case-dependent subject, and therefore flexible strategies for 

analysis and combination are needed.  

The proposed approach gives an answer to this application framework, providing 

informative calibrated likelihood ratios for every linguistic unit under analysis. 

Moreover, the combination of the different units yields good discrimination capabilities 

allowing to obtain speaker detection performance levels similar to equivalent 

acoustic/spectral systems when enough usable units are available.  

The remainder of the paper is organized as follows. In Sections 2 and 3 we present, 

respectively, our proposed front-end for feature extraction over linguistic units and the 

system in use. Section 4 describes the databases and the experimental protocol used for 

testing the system. Section 5 shows results for the different linguistic units individually 

and for several combination methods, to finally conclude in Section 6 summarizing the 

main contributions and future extensions of this work.  

2 Cepstral trajectories extraction from linguistic units  

Many attempts have been made to incorporate the temporal dynamics of speech into 

features, from the simplest use of the velocity (delta) and acceleration (delta-delta) 

derivative coefficients to modulation spectrograms, frequency modulation features or 

even TDCT (temporal DCT) features (see [9] for a review). However, to the best of our 

knowledge none of the previous approaches, with the exception of SNERFs [4] and 

[12] for prosodic information, take advantage of the linguistic knowledge provided by 

an automatic speech recognizer (ASR) to extract non-uniform-length sequences of 

spectral vectors to be converted into constant-size feature vectors characterizing the 

spectro-temporal information in a given linguistic unit. In our proposed front-end, we 

obtain a constant-size feature vector from non-uniform-length MFCC features sequence 

within a phone unit.  

2.1 ASR region conditioning  

In this work, both phone and diphone units have been used for defining time intervals 

in order to extract the temporal contours over the MFCC features. For this purpose, the 



phonetic transcription labels produced by SRI’s Decipher conversational telephone 

speech recognition system [6] were used first. For this system, trained on English data, 

the Word Error Rate (WER) of native and nonnative speakers on transcribed parts of 

the Mixer corpus, similar to NIST SRE databases used for this work, was 23.0% and 

36.1% respectively. These labels define both phonetic content and time interval of 

speech regions containing the phone units to be segmented. For this work, 41 phone 

units from an English lexicon were used, represented by the Arpabet phonetic 

transcription code [13]. Diphone units are defined by the combination of any two 

consecutive phone units, although only a subset of 98 diphones of the possible 

combinations was used (those presenting higher frequency of occurrence).  

2.2 Cepstral trajectories parameterization  

By means of SRI’s Decipher phone labels, trajectories (i.e., the temporal evolution of 

each MFCC vector dimension) of 19 static MFCC are extracted from phone and 

diphone units, yielding a MFCC matrix of 19 coefficients x #frames/unit for each 

linguistic unit. This variable-length segment is duration equalized to a number of 

frames equivalent to 250 ms. Finally, those trajectories are coded by means of a fifth 

order discrete cosine transform (DCT), yielding our final 19 x 5 fixed-dimension 

feature vector for each linguistic unit.  

3 System description  

3.1 Unit-dependent acoustic systems  

Proposed systems are based on the well known GMM-UBM framework [11], using 

duration-equalized DCT-coded MFCC trajectories per linguistic unit as feature vectors. 

The GMM-UBM systems have been the state-of-the-art in the text-independent speaker 

recognition field for many years until the emergence of JFA [7] and total variability [2] 

techniques, which have outperformed the former ones through accurately modeling the 

existing variability in the supervector feature space. For this work, GMM-UBM 

systems have been chosen for two main reasons: i) as we are using a new type of 

features, we need first to find the optimal configuration for this GMMUBM new-

framework, which is the basis of supervector-based systems; and ii) because we aim to 

model speakers in a unit-dependent way, a much smaller amount of data is available 

for training purposes, so probably not enough data would be available to capture the 

existing variability in each unit domain (also having into account that we only have 

ASR labels from the SRE04, SRE05 and SRE06 datasets).  

Three different unit-dependent GMM-UBM configurations were tested previously 

to perform experiments reported in this paper:   

1. UBM and speaker models trained on unit-independent data; evaluation trials 

performed on unit-dependent test data (as we did in our first approach [5]).  

2. UBM trained on unit-independent data; speaker models adapted from unitdependent 

training data; evaluation trials performed on unit-dependent test data.  

3. UBM and speaker models trained on unit-dependent data; evaluation trials 

performed on unit-dependent test data (fully unit-dependent).  



For each configuration, different numbers of mixtures were tested, ranging from 2 

up to 1024 mixtures increasing in powers of 2. It was found out that best results were 

obtained for the fully unit-dependent configuration, using 8 mixtures in the case of 

phone units and 4 mixtures in the case of diphone units. These configurations are those 

used to obtain the individual linguistic unit results reported in this paper.  

3.2 Fusion schemes and linguistic units combinations  

Both individual unit performance and different unit combinations have been analyzed 

in this paper. On the one hand, individual linguistic-unit systems allow us to report 

useful speaker verification LR’s for very short speech samples where usual state-ofthe-

art systems are not directly applicable (as it is the case of forensic applications). On the 

other hand, when more data is available, individual units can be combined to achieve 

better discriminative capabilities.  

In addiction to obtaining test results for each linguistic unit, these individual systems 

were combined in both intra- and inter-unit manners, i.e. fusing phone/diphone units 

between them and fusing phone and diphone units together. Two different fusion 

techniques were used: sum fusion and logistic regression fusion. The former one was 

performed after linear logistic regression calibration, while the latter one was performed 

in a single calibration/fusion step.  

Another issue is what should be the selected units to be fused. Two strategies have 

been used in this work. The first of them is to select the n-best performing units by 

setting a threshold for the EER of the units to be fused, leaving out those performing 

worse. However, this procedure do not guaranty that the best fused system will be 

achieved because some units with lower performance by itself could contribute to the 

fused system if its LR’s are sufficiently low correlated with those produced by the other 

units to be fused. On the other hand, testing all of the possible combinations would be 

a very complex task, so we used a unit selection algorithm (similar to that used in [3]) 

based on the following steps:  

1. Take the best performing unit in terms of EER as the initial units set.  

2. Take the next best performing unit and fuse with the previous set. If the fusion 

improves the performance of the previous set, this unit is added to the units set, 

otherwise rejected.  

3. The previous step is repeated for all the units in increasing EER order.  

This procedure allows us to find complementarities between units that otherwise 

would not have been revealed, but avoiding the complex task of testing each possible 

combination.  

4 Datasets and experimental setup  

NIST SRE datasets and protocols have been used to develop and test our proposed 

system, in particular those of years 2004, 2005 and 2006. As region conditioning for 

linguistic units definition and extraction rely on SRI’s Decipher ASR system (trained 

on English data), English-only subsets of the NIST SRE datasets have been used. SRE 

2004 and 2005 datasets were used as the background dataset for UBM training, 

consisting of 367 male speakers from 1,808 conversations (only male speakers were 

used for this work). English-only male 1side-1side task from SRE 2006 was used for 



testing purposes. This dataset and evaluation protocol comprises both native and 

nonnative speakers across 9,720 same-sex different-telephone-number trials from 298 

male speakers. SRE 2005 evaluation set was also used to obtain scores in order to train 

the calibration rule (linear logistic regression).  

Performance evaluation metrics used are the Equal Error Rate (EER) and the 

Detection Cost Function (DCF) as defined in the NIST SRE 2006 evaluation plan [10]. 

Cllr and minCllr [1] (and its difference, calibration loss) are also used to evaluate the 

goodness of the different detectors after the calibration process.  

5 Results  

5.1 Reference system performance  

As we are using the GMM-UBM framework to model unit-dependent systems, our 

baseline reference system is also a GMM-UBM system based on MFCC features. A 

classical configuration with 1024 mixtures and diagonal covariance matrices was used, 

and MFCC features include 19 static coefficients plus first order derivatives, cepstral 

mean normalization, RASTA filtering and feature warping. The performance of this 

system in the English-only male 1side-1side task from SRE 2006 is EER=10.26% and 

minDCF=0.0457. This system does not include any type of score normalization.  

5.2 Phone units: individual and combined systems performances  

Table 1 shows individual performance of phone units for the NIST SRE 2006 English-

only male 1side-1side task. It can be seen that, although most of the phones have high 

EER and minDCF values, almost all of them are well calibrated (low difference 

between Cllr and minCllr). This allows us to obtain informative calibrated likelihood 

ratios from very short speech samples (as low as some phone units), as we can see in 

the tippet plot in Figure 1 for the best performing phone unit (‘N’). Moreover, there are 

lots of units that can be combined, and despite their lower individual performance 

(around 60% worse than the reference system for the best performing phone), combined 

system can outperform reference system by means of sum or logistic regression fusion, 

as it can be seen in Figure 2. This is due to the highly complementarity of acoustic 

systems coming from different linguistic content.  

Phone unit  EER (%)  minDCF  Cllr  minCllr  

AA  32.20  0.0983  0.8633  0.8452  

AE  18.98  0.0813  0.6087  0.5832  

AH  29.39  0.0969  0.8235  0.7967  

AO  34.36  0.0992  0.9065  0.8838  

AW  36.99  0.0991  0.9241  0.9111  

AX  27.08  0.0947  0.7882  0.7512  

AY  21.68  0.0869  0.6822  0.6428  

B  34.50  0.0986  0.8922  0.8778  

CH  42.59  0.1000  0.9686  0.9538  

D  32.07  0.0965  0.8661  0.8500  



DH  28.43  0.0934  0.8403  0.7857  

DX  40.44  0.0998  0.9670  0.9484  

EH  31.69  0.0975  0.8574  0.8283  

ER  35.18  0.0987  0.9107  0.8901  

EY  26.40  0.0925  0.7713  0.7515  

F  39.63  0.0993  0.9561  0.9397  

G  35.71  0.1000  0.9291  0.9040  

HH  39.80  0.0992  0.9527  0.9414  

IH  26.95  0.0948  0.7964  0.7495  

IY  23.32  0.0923  0.7453  0.7002  

JH  39.69  0.0997  0.9487  0.9339  

K  27.76  0.0961  0.8219  0.7832  

L  26.51  0.0935  0.7789  0.7451  

M  22.28  0.0857  0.6824  0.6583  

N  15.92  0.0713  0.5520  0.5082  

NG  29.37  0.0934  0.9977  0.7958  

OW  24.65  0.0987  0.7917  0.7396  

P  39.50  0.0988  0.9466  0.9335  

PUH  24.18  0.0908  0.7359  0.7149  

PUM  34.15  0.0953  0.8644  0.8419  

R  24.65  0.0887  0.7295  0.7116  

S  30.04  0.0973  0.8451  0.8059  

SH  39.36  0.0996  1.0546  0.9294  

T  27.89  0.0921  0.8256  0.7647  

TH  38.37  0.1000  1.1207  0.9298  

UH  41.53  0.1000  0.9717  0.9593  

UW  24.79  0.0898  0.7391  0.7198  

V  35.86  0.0990  0.9093  0.8932  

W  35.82  0.0993  0.9167  0.8966  

Y  24.00  0.0906  0.7313  0.7062  

Z  32.07  0.0968  0.8487  0.8312  

Table 1. EER (%), minDCF, Cllr and minCllr for phone units in the NIST SRE 2006 

Englishonly male 1side-1side task.  

  

It should be noted that results equivalent to that of the reference system can be 

achieved by combining only 4 phone units (‘AE’, ‘AY’, ‘M’, ‘N’). Also, it can be seen 

that the unit selection algorithm used can achieve better fusion results than simply 

setting a threshold for the EER of the units to be fused, both for sum and logistic 

regression fusions. Furthermore, it is worth noting that some of the phone units selected 

to be fused have very low performance (‘CH’ in the sum fusion, ‘AO’ in both sum and 

logistic regression fusions).  



 

Fig. 1. Tippet plot for the best performing phone unit (‘N’) in the NIST SRE 2006 English-only 

male 1side-1side task.  

 
  

Fig. 2. DET curves for sum and log. reg. fused systems in the NIST SRE 2006 English-only 

male 1side-1side task for different phone selection schemes.  

5.3 Diphone units: individual and combined systems performances  

Table 2 shows individual performance for the ten best performing diphone units for the 

NIST SRE 2006 English-only male 1side-1side task. As it can be seen, diphone units 

have much lower performance than phone units. This may be due to the fact that, while 

diphones cover a longer time span that can present more complex trajectories, we are 

still using a 5 order DCT to code these trajectories. However, as it can be seen in Figures 

3, diphone fusions can achieve as good performance as the phones unit fusions, 

although more units are needed to be fused.  

  

Diphone unit  EER (%)  minDCF  Cllr  minCllr  



AEN  30.72  0.0993  0.8479  0.823  

AET  31.89  0.0969  0.872  0.8526  

AXN  23.84  0.0899  0.7583  0.7097  

AYK  32.45  0.0970  0.8494  0.8356  

LAY  29.11  0.0972  0.8156  0.7955  

ND  24.92  0.0876  0.7563  0.7037  

NOW  30.86  0.0995  0.8455  0.8185  

UWN  32.20  0.0953  0.8417  0.8188  

YAE  29.78  0.0976  0.8383  0.8094  

YUW  27.18  0.0960  0.8223  0.7812  

Table 2. . EER (%), minDCF, Cllr and minCllr for the 10 best performing diphone units in the 

NIST SRE 2006 English-only male 1side-1side task.  

 
  

Fig. 3. DET curves for sum and log. reg. fused systems in the NIST SRE 2006 English-only 

male 1side-1side task for different diphone selection schemes.  

5.4 Inter-unit combined system performance  

In the previous paragraphs we have seen how well combine different units from each 

type (i.e., different phones between them and different diphones between them), but it 

is also interesting to see how can be combined units from different types between them. 

For this purpose, same fusion techniques and combination schemes have been used 

putting together both phones and diphones, yielding results show in Figure 4.  



 
  

Fig. 4. DET curves for sum and log. reg. fused systems in the NIST SRE 2006 English-only 

male 1side-1side task for different phone-diphone selection schemes.  

It can be seen that better results can be achieve by combining phones and diphones 

units than working in a intra-unit manner, taking advantage of different linguistic levels. 

This way, it is possible to achieve improvements around 35% in terms of EER over the 

reference system, as it can be seen in Table 3.  

6 Summary and conclusions  

In this paper we have presented an analysis of the contributions of individual linguistic 

units to automatic speaker recognition by means of their cepstral trajectories, showing 

that some of them can be used to obtain informative likelihood ratios very useful in 

forensic applications, with the advantage of being a completely automatic system and 

using parameters similar to those used by linguists or phoneticians. This way it is 

possible to deal with uncontrolled scenarios where only some short segments are 

available to be compared, making it possible to infer a conclusion about the speaker 

identity in the speech sample. This procedure cannot be done by the usual automatic 

speaker recognition systems because they use all available speech data as a whole, and 

usually they are tuned to work with fixed-length training and testing segments. 

Furthermore, when more testing data is available, individual units can be combined to 

improve the discrimination capabilities of the resulting system, having shown that these 

combinations, both at intra- and inter-unit levels, can outperform the results obtained 

with the same system framework based on MFCC features.  

  

System  # fused units  EER (%)  minDCF  

Reference  -  10.26  0.0457  



Phones – best fused system (sum)  17  7.11  0.0420  

Diphones – best fused system (log. reg.)  31  8.05  0.0473  

Phones+diphones – best fused system (sum)  22  6.57  0.0366  

Table 3. Performance comparison between the reference system and unit-based fused systems 

in the NIST SRE 2006 English-only male 1side-1side task  
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