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Abstract 
One of the most popular and better performing approaches to 
language recognition (LR) is Parallel Phonetic Recognition 
followed by Language Modeling (PPRLM). In this paper we 
report several improvements in our PPRLM system that 
allowed us to move from an Equal Error Rate (EER) of over 
15% to less than 8% on NIST LR Evaluation 2005 data still 
using a standard PPRLM system. The most successful 
improvement was the retraining of the phonetic decoders on 
larger and more appropriate corpora. We have also developed 
a new system based on Support Vector Machines (SVMs) that 
uses as features both Mel Frequency Cepstral Coefficients 
(MFCCs) and Shifted Delta Cepstra (SDC). This new SVM 
system alone gives an EER of 10.5% on NIST LRE 2005 
data. Fusing our PPRLM system and the new SVM system we 
achieve an EER of 5.43% on NIST LRE 2005 data, a relative 
reduction of almost 66% from our baseline system. 

Index Terms: Language recognition, PPRLM, SVM. 

1. Introduction 
Automatic Language Recognition (LR) tries to recognize the 
language of a particular speech segment and is usually a first 
step for further processing the speech segment either 
manually (sending the speech segment to an operator 
proficient in the language) or automatically (sending it to an 
adequate automatic dialogue manager). The last years have 
shown an important growth in the field, resulting in a rise in 
the number of sites participating in the LR evaluations 
organized by NIST [1]. 

Along the evolution of automatic LR the most widely 
used and successful approach to LR has been Phone 
Recognition followed by Language Modeling (PRLM) and 
Parallel PRLM (PPRLM) [2, 3]. More recently PPRLM 
systems have been improved further by processing the whole 
lattice instead of just the 1-best solution produced by the 
phonetic decoders [4, 5] and substituting the statistical 
language modeling scoring by Support Vector Machines 
(SVMs) taking as input vectors the n-grams [6]. In this paper 
we will not take into account these possibilities for 
improvement. Rather we will concentrate on classical
PPRLM systems and try to improve their performance as 
much as possible as a first step to then make further 
improvements using lattice decoding and SVMs. In the 
process we will analyze the influence on LR results of several 
improvements over the baseline system [7] we submitted to 
NIST LRE 2005. 

PPRLM systems can be complemented with other types of 
systems possibly operating on different features. In this paper 
we complement our improved PPRLM system with an SVM 
system operating on MFCC and SDC acoustic features.  

In section 2 we describe our baseline system presenting 
results on data taken from NIST LRE 2003. The following 
sections (3, 4 and 5) will analyze the influence on PPRLM 
performance of the use of a different parameterization, an 
explicit Voice Activity Detector (VAD) and phonetic models 
trained on larger and more appropriate corpora. Section 6 
briefly describes our new acoustic SVM system and section 7 
presents results of the fusion of our PPRLM and SVM 
systems. Finally, section 7 presents conclusions. 

2. Baseline System 
Our starting point for this paper is the two PPRLM systems 
we submitted to NIST LRE 2005. These systems used 6 
(ATVS2) or 12 (ATVS1) phonetic decoders trained on the 
OGI Multi-Language Telephone Speech Corpus [8] which 
contains roughly 1-2 hours of speech by language. These 
decoders are based on Hidden Markov Models (HMMs) and 
implemented using HTK [9]. The phonetic HMMs are three-
state left-to-right models with no skips, being the output pdf
of each state modeled as a weighted mixture of Gaussians. In 
ATVS2 we used 10 Gaussians per state, while in ATVS1 we 
used 10 and 20 Gaussians per state to have two phonetic 
decoders with different complexities for each language. The 
acoustic processing uses the Advanced Distributed Speech 
Recognition Standard Front-End [10], based on 12 Mel 
Frequency Cepstral Coefficients (MFCCs) plus a combination 
of energy and C0 and velocities and accelerations for a total 
of 39 components, computing a feature vector each 10ms. It 
also includes mechanisms for robustness against channel 
distortion (blind equalization) and additive noise (double 
Wiener filter). 

Figure 1: Baseline system: results on a subset of NIST 
LRE’03 data using only the 7 languages considered 
in NIST LRE’05.
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The n-grams used as models for the different languages 
were trigrams without cut-off factor adapted from a UBM 
using data from one of the CallFriend (devset) database 
languages. The UBM n-gram was trained using transcriptions 
of speech segments (CallFriend devset) from the 12 
CallFriend database languages. The adaptation coefficient was 
determined empirically and set to 0.6 for the UBM a 0.4 for 
the model only from the language.   

Results from these two systems are shown on figure 1 (for  
a subset of NIST LRE 2003 data containing only test 
segments of the 7 languages considered in NIST LRE 2005). 
For NIST LRE 2003 data we attained a 9.14% EER for the 
30s condition with the ATVS1 system and virtually the same 
with the ATVS2 system. 

3.  Robust vs. standard parameterization 
Our baseline system used a robust front-end standardized by 
ETSI [10]. This front-end includes channel and noise effects 
compensation and has proved to produce better speech 
recognition results in noisy conditions. However, this front-
end was less efficient than standard front-ends and was 
difficult to integrate with our systems. For that reason, we 
compared in a LR task the ETSI front-end to other simpler 
and more efficient. Our new front-end uses 12 MFCCs plus 
C0 and their velocities and accelerations for a total of 39 
components, computing a feature vector each 10ms and 
performing Cepstral Mean Normalization (CMN). 

Figures 2 shows results on NIST LRE 2003 data of 3 
systems identical to the baseline systems, but with the new 
parameterization. The first one uses 6 phonetic decoders with 
10 Gaussians/state, the second 6 with 20 Gaussians/state, and 
the last one all the 12 phonetic decoders. By comparing 
figures 1 and 2 we can conclude that the use of a robust front-
end has very little influence in language recognition 
performance – with both front-ends results are virtually the 
same. By comparing the different systems in Figure 3 we can 
also conclude that the difference in performance achieved by 
using the 12 phonetic decoders (at least for the 30sec 
condition) does not justify the increase in computational cost 
required.  

Figure 2: Baseline system with new front-end: results 
on a subset of NIST LRE’03 data using only the 7 
languages considered in NIST LRE’05. 

4. Adding Voice Activity Detection 
One of the main differences between the NIST LR evaluations 
in 2003 and 2005 is that in 2003 a Voice Activity Detector 
(VAD) was used by NIST to remove silence areas from the 
recordings, while in the 2005 evaluation silence segments 
were kept in the recording to make conditions more realistic. 
Our baseline system did not include an explicit VAD. It tried 
to remove the effect of silence segments by removing 
repetitions of the silence label before training the n-grams and 
computing the scores. We suspected that the lack of a prior 
VAD to remove silences could be one of the reasons for the 
difference in performance between NIST LRE 03 data and 
NIST LRE 05 data. In order to explore this issue we have 
included a VAD based on energy levels and temporal 
restrictions and have obtained results on NIST LRE 03 data 
and NIST LRE 05 data, using in both cases the new 
parameterization and only 6 phonetic decoders with 20 
Gaussians per state.  

The comparison of results obtained for the systems with 
and without VAD on NIST LRE 03 data (figure 3) and NIST 
LRE 05 data (figure 4) shows that results are almost the same 
with and without VAD. This means that the removal of 
repetitions of the silence label seems to be an adequate way of 
removing the influence of the silent segments.  Computational 
efficiency, however, is higher with the inclusion of an 
external VAD that avoids further processing of silences. 

5. Using better phonetic decoders 
Quality of the phonetic decoders has been recently proposed 
as a crucial factor in PPRLM performance for language 
recognition [11]. However, the experiments in [11] were 
performed using a very special phonetic decoder using 
artificial neural networks. Here we will extend the work in 
[11] by checking whether the same conclusions stand for 
more conventional HMM-based phonetic decoders. Towards 
this end, we have substituted the phonetic decoders trained on 
OGI Multi-Language Telephone Speech Corpus, which 
contained around 1-2 hours of speech by language, by new 
phonetic decoders trained on SpeechDat-like corpora, all of 
which contain over 10 hours of training material covering 
hundreds of different speakers. In particular, we have trained 
6 new phonetic decoders in English, German, French, Arabic, 
Basque and Russian using SpeechDat-like corpora. We have 
also included a 7th phonetic decoder in Spanish trained on 
Albayzin [12] downsampled to 8 kHz, which contains about 4 
hours of speech for training, but we report results separately 
for the system with the 6 and 7 recognizers. All the phonetic 
decoders share the same HMM structure – identical to the 
baseline systems, with 20 Gaussians/state. Also, the front-end 
is the same used in former sections and the systems include 
the external VAD.  

With the new phonetic decoders important improvements 
are obtained. For the NIST LRE 2003 data (figure 3) just by 
changing the 6 phonetic decoders trained on OGI by 6 
phonetic decoders trained on SpeechDat-like corpora 
language recognition results improve very significantly 
moving from 10.04% EER to 6.45% EER. Adding the 
Spanish recognizer the EER reduces to only 5.08%. This 
improvement is even more noticeable on NIST LRE 2005 
data (figure 4). Here we move from a 16.38% EER to an 
8.37% EER – a relative reduction of almost 50%. Adding the 
phonetic decoder for Spanish we get a 7.94% EER. These 
results stress the importance of having good quality phonetic 
decoders for language recognition based on PPRLM.  
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Figure 3: The effect of VAD and better phonetic 
models: Comparison of results using models trained 
with OGI (with and without VAD) and models trained 
on SpeechDAT-like corpora on a NIST LRE’03 subset 
using only the 7 languages of NIST LRE’05.

Figure 4: The effect of VAD and better phonetic 
models: Comparison of results using models trained 
with OGI (with and without VAD) and models trained 
on SpeechDAT-like corpora on NIST LRE’05 data.

6. SVM Sytems with MFCC and SDC-
MFCC features 

Besides PPRLM systems, which tend to be the best 
performing individual systems for LR [5], other systems very 
used for LR are acoustic systems that model the acoustic 
features for each particular language, typically using Shifted 
Delta Cepstra (SDC) features. 

Figure 4: Acoustic SVM systems using MFCC and 
SDC features, and the fusion of both. Results on NIST 
LRE’05 data. 

We have developed an acoustic system based on Support 
Vector Machines (SVM) [13]. Actually the system is the sum 
fusion of two SVM systems, one using 19 MFCC coefficients 
plus deltas and the other using SDC-MFCCs (7-2-3-7) [14]. 
In order to avoid channel mismatch effects, Cepstral Mean 
Normalization is applied, followed by RASTA filtering and 
feature mapping [15]. Both systems use a kernel expansion on 
the whole observation sequence, and a separating hyperplane 
is computed between the target language features and the 
background model. ATVS acoustic SVM-GLDS system uses 
a polynomial expansion of degree three [16] followed by a 
Generalized Linear Discriminant Sequence kernel (GLDS) as 
described in [17]. Finally, Tnorm score normalization 
technique is performed in order to scale the scores 
distribution. 

The system has been trained using data from CallFriend, 
NIST LRE 1996, NIST LRE 2003 and has been evaluated on 
NIST LRE 2005 data (figure 4). The SVM system using 
MFCC features achieved a 14% EER and the SVM system 
using SDC-MFCC features achieved a 13.2% EER on NIST 
LRE 2005 data. When these two SVM systems were fused 
together with sum fusion we achieved an EER (figure 5) of 
only 10.5%.   

7. Fusion with acoustic systems 
Systems submitted to NIST LR Evaluations are rarely based 
on a single methodology. Rather they are usually the fusion of 
several systems using different approaches to the problem of 
LR. Even if the other systems are worse in terms of LR 
performance than the PPRLM system, the fusion of different 
systems tend to improve overall LR performance.  

We have fused the results of our improved PPRLM 
system and our new SVM acoustic system with a simple sum 
fusion followed by Tnorm. This fusion has produced the best 
result we have achieved so far on NIST LRE 2005 data 
(figure 5), a 5.43% EER, which implies a relative reduction of 
almost 66% from our baseline system. 

196



Figure 5: Fusion of PPRLM system and acoustic SVM 
system on NIST LRE’05 data. 

8. Conclusions 
In this paper we have improved our baseline PPRLM system 
achieving an EER reduction of almost 50% (from 16.38 to 
8.37%). This improvement was mainly achieved by changing 
the phonetic decoders by other better trained (on more and 
more adequate data). We have also improved our PPRLM 
system by adding an explicit Voice Activity Detector (VAD) 
and a simpler front-end. While the influence of these changes 
on LR performance is very limited, they improve substantially 
the computational efficiency of the PPRLM system.  

We have also developed a new acoustic system based on 
the fusion of two SVM systems, on using standard MFCC 
features and other using SDC features. Each of these systems 
achieves a LR performance of 13-14% EER by itself, but the 
fusion of both achieves an EER of only 10.5%. 

 By fusing our improved PPRLM system with our new 
acoustic SVM system we obtain a remarkable 5.43% EER on 
NIST LRE 05 data, which represents an EER relative 
reduction of around 66% from our baseline system. 
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