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Abstract

This paper reports an experimental analysis of footsteps as a biometric. The focus here is on

information extracted from the spatial domain of signals collected from an array of piezoelectric sensors.

Results are related to the largest footstep database collected to date, with almost 20,000 valid footstep

signals and more than 120 persons. A novel feature approach is proposed, obtaining 3D images of

the distribution of the footstep pressure along the spatial course. Experimental work is based on a

verification mode with a holistic approach based on PCA and SVM, achieving results in the range of

6 to 10% EER depending on the experimental conditions of quantity of data used in the client models

(200 and 40 signals per model respectively). Also, this paper includes the analysis of two interesting

factors affecting footstep signals and specially spatial domain features, which are the influence in the

performance of the sensor density and the special case of high heels.

Index Terms

Biometrics, footstep recognition, gait recognition, feature extraction, piezoelectric sensor density

I. INTRODUCTION

Footstep recognition is a relatively new biometric, which aims to discriminate persons using

walking characteristics extracted from floor-based sensors. One significant benefit of footsteps

over other, better known modes is that footstep signals can be collected unobtrusively with

minimal or no person cooperation, which can be very convenient for the users. Other benefits

lie in the robustness to environmental conditions, with minimal external noise sources to corrupt

the signals. Also, footstep signals do not reveal an identity to other humans like the face or the

voice, making footsteps a less compromising mode.

Different techniques have been developed using different sensors, features and classifiers as

described in [1]. The identification rates achieved of around 80-90% are promising and give an

idea of the potential of footsteps as a biometric [2], [3]. However, these results are related to

relatively small databases in terms of number of persons and footstep signals, typically around 15

people and perhaps 20 footsteps per person [4]. In this paper, results relate to the largest footstep

database collected to date, with more than 120 people and almost 20,000 signals, enabling

assessment with statistical significance.

Regarding the sensors employed to capture the footstep signals, two main approaches have

been followed in the literature: switch sensors [5], [6], [7] have been used with a relatively high
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sensor density (ranging from 50 to 1024 sensors per m2) in order to detect the shape and position

of the foot. On the other hand, different types of sensors that capture transient pressure [4], [8],

[9], [10], [11] have been used with relatively low sensor density (typically 9 sensors per m2),

more focused in the transient information of the signals along the time course.

The capture system considered here uses a high density of approximately 650 piezoelectric

sensors per m2 which gives a good spatial information and measures transient pressure, in contrast

to previous works.

This paper is focused on the analysis of the spatial information of the footstep signals. A novel

feature approach is proposed, obtaining 3D images of the distribution of the footstep pressure

along the spatial course. Verification results achieved are in the range of 6% to 10% of EER

depending on the quantity of data used to train the client models (200 and 40 signals per model

for the given results respectively). A similar analysis was presented in [12], but focusing on

the temporal information of the signals. In addition, we consider in this paper the effect of two

factors affecting footstep signal performance, namely, sensor density and the case of high heel

shoes.

The paper is organized as follows. Section II describes the footstep signals and the collection

of the database. Section III presents the feature extraction process, focused on spatial information.

Section IV describes the experimental protocol followed, Section V presents the experimental

results; and finally conclusions are drawn in Section VI.

II. FOOTSTEP SIGNALS AND DATABASE COLLECTION

As mentioned above, the main objective regarding the footstep signals was to obtain signals

with biometric information in both time and spatial domains. Therefore, the capture system

developed to collect the footstep database uses piezoelectric sensors with a relatively high density,

this way footstep signals collected contain information in both time and spatial domains. This is

in contrast to previous related works, e.g. [6], [7], [8]. Piezoelectric sensors have some properties

which make them very appealing for the application including low cost, robustness and a very

thin profile which is ideal for under floor concealment. As stated in [9], ‘piezoelectric sensors

seem perfectly adequate for this application even with their low cost’. Piezoelectric sensors

provide a differential voltage output which is directly proportional to the applied pressure.

The sensors were mounted on a large printed circuit board and placed under a conventional
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mat. There are two such mats positioned appropriately to capture a typical (right, left) stride

footstep. Each mat contains 88 piezoelectric sensors in an area of 30 × 45 cm, with a sampling

frequency of 1.6 kHz. The footstep sensor area, illustrated in Figure 1(a), is positioned in the

entrance of a laboratory.

[Figure 1 about here.]

Figure 1(b) shows a diagram of the distribution of the sensors in each array. The sensors have

2.7 cm of diameter and the distance between two adjacent sensors is 1.2 cm. The geometry

(60 degree cellular layout) ensures a compact layout with uniform intersensor distance. Figure

2 shows an example footstep signal with information in both time and spatial domains obtained

with the sensor distribution described. Figure 2(a) shows the amplitude of the 88 pressure signals

of one footstep against time, and Figure 2(b) shows the accumulated pressure in time for the 88

sensors for the X and Y spatial axis.

[Figure 2 about here.]

Regarding the collection of the database, one of the main objectives was to collect a database

as large as possible. The first session of each person was a supervised enrolment, where a

supervisor explained how to provide the footstep data. In this sense persons were asked to walk

at a natural speed a few meters before the sensor mats (see Figure 1(a)) in order to produce

more realistic signals. Persons were encouraged to return as often as they could to provide

further sample signals. These following sessions, and therefore the majority of the database was

collected on an unsupervised mode. The enrolment of persons in the system was continuous

during the collection period (16 months). Also, different people provided data during different

periods of time and in different number of sessions (different days), because as stated before

the objective was to obtain a large database.

The main characteristic of the database collected is that it contains a large amount of data

for a small subset of people (>200 signals for 15 people) and a smaller quantity of data for a

larger group of people (>10 signals for 60 people). This reflects the mode of capture which was

voluntary and without reward.

Figure 3 shows the number of footstep signals per person in the database. There is a total

of 9,990 stride footstep signals, that is 19,980 single (right, left) footstep signals from the 127
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persons enroled. A diagram of the divisions of the data into different sets for the experiments

is shown in Figure 6.

[Figure 3 about here.]

Regarding the type of footwear employed, persons were free to walk with different types of

footwear such as shoes, trainers, boots, flip-flops, barefoot, and even high heels (as reported in

Section V-B). Also, people were allowed to carry weights such as office bags. The associated

biometric data from the different conditions was absorbed in the experiments reported, meaning

that the results are more realistic in terms of the breadth of conditions encompassed.

The population of the database is mainly constrained to university students (undergraduates

and postgraduates), as shown in Figure 4(a). The mean age value is 23.7 years, and the ratio

male/female is of 65% of males and 35% of females.

Figure 4(b) shows the distribution of the height, having an overall average of 174 cm. Figure

4(c) shows the distribution of the weight, which is mainly between values of 50 and 90 kg with

a mean of 69.8 kg. Figure 4(d) shows the distribution of the shoe sizes of the population, which

is quite broad, having a mean value of 8.1 UK size.

More information about the collection and labelling of the database can be found in [13],

[14].

[Figure 4 about here.]

III. FEATURE EXTRACTION AND MATCHING

This section describes the spatial domain features that are used to assess the footstep signals

as a biometric. A feature approach based on time domain information was proposed in [12].

As a brief description, three features were extracted from the time domain information of the

signals. The first was the popular ground reaction force (GRF) used previously in [2], [4], [8],

[11], [15], in this case an average across all sensors was carried out to obtain a global profile

for the GRF. The other two features were the spatial average of the sensors, which results in

a single average profile of all sensors of the footstep signal; and finally the upper and lower

contour profiles of the time domain signal. These three features were fused at the feature level,

data dimensionality was reduced using principal component analysis (PCA) and finally, support

vector machines (SVM) were used to carry out the matching.
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In this paper the feature extraction is carried out over the spatial domain information contained

in the footstep signals. In this case the time domain information is not considered, so a single

value of the pressure of each sensor of the mat is obtained by integrating the signals across the

time axis. It is worth noting that due to the differential nature of the footstep signals obtained

from the piezoelectric sensors, a simple integration of the signal across the time would produce

an approximate zero value. To solve this, the integration is carried out over the related ground

reaction force signal of each sensor (GRFi). This way we obtain the accumulated pressure (APi),

which is the measure used to study the distribution of the pressure across the spatial domain of

the signals, as shown in Figure 2(b).

In the preprocessing stage, an energy detector across the 88 sensors of the signals is used to

obtain the beginning of each footstep in order to align the signals to a common time position.

Formally, si[t] is the output of the piezoelectric sensor i, i = 1,...,88 and t = 1,...,Tmax are the

time samples. Tmax was set to a value of 2000 time samples large enough for all footstep signals

considered. Then, the GRFi and APi are defined by:

GRFi[t] =
t∑

τ=0

(si[τ ]) (1)

APi =
Tmax∑
t=0

(GRFi[t]) (2)

The GRFi[t] results in a profile per sensor which is the integration of the output signal from

the piezoelectric sensor. The APi gives a single value of the accumulated pressure for each

sensor of the mat. Figure 2(b) represents the 88 values of APi in the X and Y spatial axes for an

example footstep signal. In this case, we have used an image resolution of one pixel per mm2,

giving the values APi to the positions with sensors and zeros to the rest of the image, keeping

this way the original geometry of the sensors. This resolution was chosen for simplicity, but in

a real time application it is likely that similar recognition results could be obtained with a lower

image resolution.

[Figure 5 about here.]

The following step is the alignment and rotation of the spatial images to a fixed central

June 22, 2011 DRAFT



8

position, but before, the images were smoothed using a Gaussian filter (defined in Equation 3)

in order to obtain a continuous image as if we had a much higher sensor resolution. Bicubic

spline interpolation was also tried but better results were obtained using the Gaussian filter.

Figures 5(a) and 5(b) show the result image for the given example after the Gaussian filter from

a lateral and a top view respectively. Best result images were obtained using values of x,y =

1,...,100 and σ = 14 for the filter.

G(x,y) =
1

2πσ2
e−

x2+y2

2σ2 (3)

These images are then aligned and rotated based on the points with maximum pressure,

corresponding with the toe and the heel areas respectively. The aligned and rotated image is

shown in Figure 5(c), which is used to carry out the biometric classification.

The rows of the resulting image, which has a dimension of 280 × 420 pixels, are concatenated

to form a feature vector of dimension 117,600. Data dimensionality is also reduced using principal

component analysis (PCA) [16], retaining more than 96% of the original information by using

the first 140 principal components. For the case of the stride (right and left) footstep, the feature

vector is comprised of the concatenation of the 140 component feature vectors for the right

and left foot plus the relative angle and length of the stride, i.e., 282 features. Regarding the

classifier, a support vector machine (SVM) [17] was adopted with a radial basis function (RBF)

as the kernel, due to very good performance in previous studies in this area [2], [3].

IV. EXPERIMENTAL PROTOCOL

Regarding the experimental protocol followed to assess footsteps as a biometric, special

attention has been paid to the partitioning of the data into three sets, namely Training, Validation

and Evaluation sets. Figure 6 shows a diagram of the partitioning of the database into these three

data sets.

The Training set is comprised of a set of in-class data used to train one model per client, and

a set of out-class data from a cohort of impostors, which is also used in the training process

to obtain better statistical models. PCA transformation is only carried out with the data from

the Training set, and the coefficients of the PCA transformation are then applied to the data of

the Validation and Evaluation sets to reduce their dimensionality too. Also, SVM is used in the

training stage to train a model per client.
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Validation and Evaluation sets are two test sets, the main difference being that the Evaluation

set is a balanced set comprised of the last 5 footstep signals provided by persons P1 to P110,

while the Validation set is an unbalanced set which contains a larger number of test signals for

subjects included in the Training data. The Validation set is used to tune the system, i.e., type of

features, number of PCA components, SVM parameters, etc., in order to obtain the best results.

The Evaluation set is comprised of unseen data, not used in the development of the system.

It is worth noting that in this paper the data used in the different sets keeps the chronological

time of the collection. Therefore, the training data is comprised of the first data provided by each

user, and the data used in the Evaluation set is the last collected. This is a realistic approach

reflecting actual usage in contrast to previous related works, e.g., [3], [5], [6], which randomly

divide the data into training and test sets, or use a leave-one-out approach.

[Figure 6 about here.]

The influence of the quantity of data used to train and test the system is a key factor in

any performance assessment; while common in more established biometric modes this aspect

is not considered in many cases of footstep studies, for example in [4], [8], [9], due to limited

numbers of data per person in the databases. Different applications can be simulated using

different quantities of data in the client models. In the present work we simulate important

applications such as smart homes and access control scenarios. In the case of a smart home

there would be potentially a very large quantity of training data available for a small number of

clients, while in security access scenarios such as a border control, limited training data would

be available, but potentially for a very large group of clients.

Two benchmark points have been defined in order to simulate conditions of different appli-

cations, as can be seen in Figure 6: benchmark 1 (B1), which could simulate a security access

scenario, is set to use 40 footstep signals per client to train the models having available a group

of 40 clients (and therefore 40 models); and benchmark 2 (B2), which could simulate a smart

home scenario, is set to use 200 footstep signals per client to train the models having available

a group of 15 clients.

Table I shows the quantity of data used in benchmarks B1 and B2 for the different data sets.

Each signal from the test sets is matched against all the trained models (40 models in B1 and 15

in B2). As can be seen in the table, the total number of stride signals in the database is 9,990,
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i.e. 19,980 single (right and left) signals in total.

[Table 1 about here.]

V. EXPERIMENTAL RESULTS

This section describes the assessment of the spatial domain features described in Section III

following the protocols defined in Section II.

Figure 7 shows the DET curves obtained for the Validation set for the cases of the stride and

single (right, left) footstep signals for the spatial features described in Section III. Figure 7(a)

shows the results for B1, i.e. using 40 client models and 40 signals to train each model. Error

rates of 10.5% are achieved for the case of stride footsteps and an average of 13.6% for the

case of single footsteps. Figure 7(b) shows the DET curves results for B2, i.e. using 15 models

and 200 signals per model. Error rates of 6.2% are achieved for the case of stride footsteps and

an average of 9.6% for the case of single footsteps.

[Figure 7 about here.]

As can be seen in both cases there is an improvement of around 3% EER when single footstep

signals are concatenated to produce a stride footstep signal. Previous experiments [2] showed an

identification accuracy of 63% using a single footstep signals as a test, and improving to a 92%

when six consecutive footstep were used. This implies that even better EER results could be

obtained in case of concatenating more than two footstep signals. It is worth noting that results

in the same range were achieved in [12], which presented a similar experimental protocol but

for the case of the time domain information of the signals.

Although the conditions of B1 and B2 are not directly comparative there is a improvement

of performance of 4.4% EER for the stride case for B2 compared to B1. This increment of

performance could be an effect of the different amounts of signals in the client models or due

to the different number of clients in the two benchmarks.

In order to study this difference in performance, a further experiment was designed keeping

the number of client models and varying the number of signals in the models. Figure 8 shows

the EER against different quantities of signals used to train each client model for the case of

stride footsteps. There are three profiles, one considering 15 client models giving values of EER
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from 1 to 200 signals used to train the models, another profile considering 5 client models but

giving values of EER from 1 up to 500 signals used to train the models, and the case of using the

maximum number of client models available at each condition, i.e., 5 models for 500 signals, 20

models for 200 signals, 40 models for 40 signals, etc. The three profiles have a similar overall

shape with a great improvement in performance when using 1 to 20 footstep signals for training,

falling from an average of 33% to 11% EER, and then the performance keeps improving slowly

to 4% EER with 500 signals to train the system (for the case of using 5 client models). Results

obtained in the three cases are very similar, so it can be concluded that the improvement of

performance is mainly due to the number of signals used to train the client model rather than

to the number of models considered.

[Figure 8 about here.]

Figure 9 shows the DET curves obtained for the Evaluation set for benchmarks B1 and B2 for

the stride footsteps. In both cases, the result obtained for the Evaluation set is compared with the

case of the Validation set as shown in Figure 7. The data used in the Validation and Evaluation

sets is specified in Table I. In both cases of B1 and B2 there is a superior performance for the

case of the Validation set compared with the Evaluation, with an absolute increment of 5.5%

and 2.6% EER for B1 and B2 respectively. This degradation of performance for the case of

the Evaluation set could be due to the big time gap between the data used for training and test

signals because in this case the Evaluation set is comprised of the last signals collected for each

person and the signals comprising the Training set are the first 40 and 200 signals per person for

B1 and B2 respectively (see Figure 6). This effect of the relationship of the time gap between

training and test data and performance is an interesting line of further investigation.

[Figure 9 about here.]

A. Influence of the Sensor Density in the Performance

This section studies the influence of the sensor density, and how it affects the performance, as

this has not been considered in previous works. It is obvious that if the sensor density is higher,

more information can be extracted, but up to a spatial sampling limit.

Figure 10 shows a diagram of the geometry and density of the piezoelectric sensors, for an

example 9 UK size foot (27.5 cm long). A standard 88 sensor density (∼ 650 sensors per m2)
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plus two sub-sampling conditions are considered. The sub-sampling process is illustrated in the

figure with the geometry of the sensors used for Density 1 and for Density 2.

Density 1 reduces the original sensor density by a 34%, i.e. from 88 to 58 sensors (∼ 430

sensors per m2), and Density 2 reduces the original sensor density by a 66%, i.e. from 88 to

30 sensors (∼ 220 sensors per m2). Density 2 was the optimal sampling distribution having the

sensors in a hexagonal array. In order to have another sampling distribution with a higher sensor

density, sensors not used in Density 2 were used to form Density 1.

[Figure 10 about here.]

Figure 11 shows EER results for benchmarks B1 and B2 for the three densities for the case

of the stride footstep. The trends of EER are very similar for both benchmarks, with an average

increment of 7.7% EER for Density 1 compared to the baseline, and an average increment of

13.2% EER for Density 2 compared to the baseline. As can be seen the spatial features are very

affected by the reduction of the sensor density.

It can be concluded that at least 650 sensors per m2 are required to give the good performance

presented in this paper when only spatial information is considered. Given the trends of profiles

in Figure 11, a higher density might provide even better results.

[Figure 11 about here.]

B. Analysis of the Special Case of High Heels

This section analyses the effect of the special case of high heels in the performance. Persons

contributing to the database do so under different conditions such as different types of footwear

or extra weight. These conditions are absorbed in the experiments, meaning that the results are

more realistic because of the breadth of conditions encompassed.

Here the effect of high heels is analyzed using an illustrative example of 40 footstep signals

provided by one subject wearing high heels in three different sessions (two different pairs of

heels). Figure 12 shows two footstep examples for this subject; in (a), (b) and (c) the person is

wearing trainers and in (d), (e) and (f) the person is wearing high heels. As expected, high heel

data looks completely different, as can be seen in Figure 12; and therefore, higher error rates

are to be expected for these signals.
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[Figure 12 about here.]

The analysis was carried out using the same experimental protocol described in Section II

for B1, i.e. having 40 client models, each comprised of 40 signals to train each model, and the

Validation test set. Two different experiments were considered:

• Experiment 1. In this case no data with high heels was included in the model for the subject

under study, and errors produced by 20 test signals with high heels for that person were

analyzed.

• Experiment 2. In this case 10 signals with high heels were included in the model for the

subject under study (25% of the total training data for that subject), and errors produced

by the same 20 test signals as in Experiment 1, which were collected in a different session

were analyzed.

Table II shows the results of the error analysis carried out for the two experiments. The 20

test signals analyzed with high heels for the subject under study were compared to the 40 client

models available, having for each test one genuine comparison (with the model from the subject

under study) and 39 false comparisons with the rest 39 client models; so in total there are 20

genuine comparisons and 780 impostor comparisons. This error analysis was carried out for the

cases of time domain features (as in [12]) and spatial domain features (as described in Section

III). Percentages of ‘False Rejection Rate’ (FRR) and ‘False Acceptance Rate’ (FAR) are given

in Table II. Percentages are obtained by using the threshold which gave the EER.

[Table 2 about here.]

As could be expected, results shown in Table II for Experiment 1 are significantly worse

compared to those obtained for Experiment 2, the case where signals with high heels condition

are present in both training and test sets. In the case of Experiment 1 the FRR is very high as

there is a greater number of true tests below the threshold. It is interesting to note that results

are slightly worse for the case of spatial domain features compared to the time domain features,

as the distribution of the pressure across the space is more affected by the condition of high

heels (as can be seen in Figures 12 (c) and (f)). It can be concluded that high heels degrade the

performance, but this effect can be significantly reduced when the same condition is included

in the training data (as in Experiment 2).
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An equivalent analysis of this could be done on other footwear conditions or extra weight,

which is proposed as further work.

VI. CONCLUSIONS

This paper studies footstep signals as a biometric focusing on the spatial information of the

signals. A novel feature approach extracts biometric information from the distribution of the

pressure of the footsteps signals along the spatial domain.

The experimental protocol is designed to study the influence of the quantity of data used in

the client models, simulating conditions of possible extreme applications such as smart homes

or border control scenarios. Results in the range of 6 to 10% EER are achieved in the different

conditions for the case of the stride footstep. These results are in the same range that those

achieved in [12] for a similar approach but considering the temporal information of the signals,

which implies that the time and spatial information extracted from the footstep signals have

similar discriminatory properties.

It is worth noting that the experimental setup here is the most realistic at least in two factors: i)

it considers the largest footstep database to date, and ii) it keeps the time lapse between training

and test data, in contrast to most previous works, for example [3], [5], [6], which randomize the

time sequence of the data in the experiments.

This paper also analyses two important factors not taken into account in previous studies

in the area. Capturing systems have used different sensor densities, but there is no study of

the influence of the variation of sensor density in the performance, which is considered here

for the first time. Experiments show that reduction of the sensor density affects significantly

the recognition performance. This indicates that a relative high density is necessary and might

well contribute to the good recognition performance reported here compared with that in related

publications [2], [9].

Also, the special case of the high heels has been analysed, which is a good illustrative

example of the capacity of the database considered here. The error analysis shows that high heels

affect significantly the performance; however, this can be reduced when the same conditions are

included in the training data.

For further work, it would be interesting to carry out a fusion of both approaches of time

and spatial domain information, as well as a holistic feature approach to extract both time and
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spatial information from the signals simultaneously.
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FIGURES 17

(a) (b)

Fig. 1. (a) Two footstep sensor arrays in the laboratory where the capture system is installed. Sensors are shown here with the
mats removed. (b) Dimension of the sensors and geometry between adjacent sensors.
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FIGURES 18

(a) Time Domain Signal
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(b) Spatial Domain Signal

Fig. 2. Example of a footstep signal. (a) Sensor signals against time. (b) Accumulated pressure for the 88 sensors for the X
and Y spatial axis.
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FIGURES 19

Fig. 3. Number of footstep signals against number of persons in the footstep database.
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FIGURES 20
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(d)

Fig. 4. Statistics of the population of the database. (a) Distribution of the age of the population, the mean being 23.7 years.
(b) Distribution of the height of the population, the mean being 174 cm. (c) Distribution of the weight of the population, the
mean being 69.8 kg. (d) Distribution of the shoe size of the population, the mean being 8.1 UK shoe size.
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FIGURES 21

(a) As Fig. 2(b) after smoothing
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(b) As Fig. 2(b) after smoothing
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(c) After alignment and rotation

Fig. 5. Feature extraction in spatial domain for a footstep signal. (a) 3D view image result of the smoothing of signal from
Figure 2(b) with a Gaussian filter. (b) Same as (a) but from a top view. (c) Footstep spatial image after alignment and rotation
to a common centre.
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FIGURES 22
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(a) Benchmark B1
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(b) Benchmark B2

Fig. 6. Number of footstep signals against number of subjects in the database. Diagram of the database with the different
divisions of Training, Validation and Evaluation sets for benchmarks B1 and B2. Training data (in yellow) is comprised of client
and impostor data, Validation in green, and Evaluation data in blue. Numbers are described in Table I.
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FIGURES 23
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(a) Validation B1 (40 models, 40 signals/model)
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(b) Validation B2 (15 models, 200 signals/model)

Fig. 7. DET curves for spatial features extracted from the signals for the Validation set. (a) Results for benchmark B1 and (b)
for benchmark B2.
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Fig. 8. EER against number of signals used to train the client models in different benchmarks for the stride footstep for the
cases of using 5, 15 client models and using the maximum number of client models available at each condition.
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FIGURES 25
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Fig. 9. DET curves for the Evaluation set of stride footstep signals. Comparison of results for the Evaluation set for benchmarks
B1 and B2.
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FIGURES 26

Fig. 10. Density of piezoelectric sensors. Example of a 9 UK size foot (27.5 cm long). Sensors used for Density 1 in green
and sensors used for Density 2 in yellow.
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FIGURES 27
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Fig. 11. EER against three different sensor densities for benchmarks B1 and B2 and stride footstep. Baseline density (650
sensors per m2), Density 1 (430 sensors per m2) and Density 2 (220 sensors per m2).
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FIGURES 28

(a) Trainers
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(c) Trainers (Spatial signal)

(d) High heels
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(e) High heels (Time signal)
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(f) High heels (Spatial signal)

Fig. 12. Examples of footstep signals. (a) Person wearing trainers. (b) Response of the piezoelectric sensors against time for
example in (a). (c) Accumulated pressure in the spatial domain for example in (a). (d), (e) and (f) the same but for the case of
high heels for the same person.
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TABLES 29

Benchmark B1

Training Set Validation Set Evaluation Set

Clients P1 – P40 P1 – P40 P1 – P40

Signals per client 40 170 (8-650) 5

Total signals clients 1,600 6,697 200

Cohort impostors P41 - P127 P41 - P78 P41 - P110

Total signals impostors 763 380 350

Total signals per set 2,363 7,077 550

Total 9,990

Benchmark B2

Training Set Validation Set Evaluation Set

P1 – P15 P1 – P15 P1 – P15

200 210 (15-490) 5

3,000 3,113 75

P16 - P127 P16 - P78 P16 - P110

2,697 630 475

5,697 3,743 550

9,990

TABLE I

DATABASE CONFIGURATION FOR BENCHMARKS B1 AND B2. B1 CONTAINS 40 MODELS AND 40 SIGNALS PER MODEL AND

B2 CONTAINS 15 MODELS AND 200 SIGNALS PER MODEL.
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TABLES 30

Exp 1: No heels in Training Exp 2: Heels in Training
Condition FRR FAR FRR FAR
Time 70% 12.3% 0% 9.2%
Space 75% 12.8% 10% 11.3%

TABLE II

ERROR ANALYSIS FOR THE CASE OF HIGH HEELS. RESULTS OBTAINED FOR 20 SIGNALS WITH HIGH HEELS TESTED

AGAINST 40 CLIENT MODELS.
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