
Towards a Ubiquitous End–User Programming System
for Smart Spaces

Manuel García-Herranz
(Universidad Autónoma de Madrid, Spain

manuel.garciaherranz@uam.es)

Pablo Haya
(Universidad Autónoma de Madrid, Spain

pablo.haya@uam.es)

Xavier Alamán
(Universidad Autónoma de Madrid, Spain

xavier.alaman@uam.es)

Abstract: This article presents a rule–based agent mechanism as the kernel of a ubiquitous
end–user, UI–independent programming system. The underlying goal of our work is to allow
end–users to control and program their environments in a uniform, application–independent
way. The heterogeneity of environments, users and programming skills, as well as the
coexistence of different users and domains of automation in the same environment are some of
the main challenges analyzed. For doing so, we present our system and describe some of the
real–environments, user studies and experiences we have had in the development process.

Key Words: Ubiquitous Computing, Human-centered computing, Rule-based processing,
Command and control
Categories: H.1.2, I.2.5, I.2.4

1 Introduction

Many computers in the world run the same operating system and almost every one of
them is based in the same screen–windows interaction paradigm. They are compact
elements segregated of the environment, with an exiguous set of hardware, in which
all their capabilities are within reach. Applications are designed with a defined
purpose and users tend to use them just for it. Real spaces, on the other hand, are
composed of a disaggregated, sizable set of elements, operated and managed by
different people (preferences, needs and goals) and whose objects may be used in
different ways.

The computational capabilities of intelligent environments extend their control
possibilities from direct control to indirect control, in which the actions are not
explicitly commanded or executed directly by the user but inferred from the on going
context i.e. context–aware applications. While in the former the user is “on the loop”
by definition, in the latter the inference process can be left up to the artificial
intelligence of the environment [see see Mozer (1998) and Youngbloodet al. (2005)],
commended to some third parties such as managers or developers [see Román et al.

Journal of Universal Computer Science, vol. 16, no. 12 (2010), 1633-1649
submitted: 29/12/09, accepted: 5/5/10, appeared: 28/6/10 © J.UCS

(2002), Kulkarni (2002) and Schmidt (2000)] or brought closer to end–users, in an
effort to put them back “on the loop”.

As stated by Davidoff et al. [see Davidoff et al. (2006)], personal spaces such as
the home play a role in group and individual self–definition: rather than just using
them for a specific function, users pour their personalities and lives in the way they
use and transform their personal environments. Therefore, allowing users to keep the
control they used to have, as their environments become populated with
computational elements must become a major concern.

In addition, this statement has a second implication when we look at independent
living. In an aging society as ours more and more people are forced to trade their
homes for institutions or to move to relatives’ houses in order to get the assistance
they need. While doing so results in loosing independence and a big part of what
define themselves, dangerous situations may arise from not willing to: daily activities
become more difficult, health issues and accidents harder to prevent and detect and, at
the end, independence turns out into loneliness and risks. The dilemma between social
alienation and proper care is common to elders and other collectives such as people
with Down Syndrome trying to live and independent life. Thus, Ambient Intelligence
is of especial importance to this collectives with special needs, relying on the
assistance of others to help and supervise them in their daily living. Ambient
Intelligence, should consider not only issues such as supporting daily activities or
ambient diagnostics [see Cai and Klein-Seetharaman (2004)] but also closing the gap
that separates individuals in modern societies as well as allowing them to extend the
control they have over their environments (limited by their special conditions)
reinforcing the role they play in their sef–definition.

This is the example of Alfred [see Gajos et al. (2002)] (designed for the IRoom),
a multi–modal macro recorder allowing users to create automatic direct control
structures that can be executed according to some hardware trigger (but with no
possible conditionals) in a first step to end–user indirect control. Following this line,
our work pursues an application–independent indirect control programming system
combining the necessary flexibility to program complex behaviors with the
simplicity required to allow novice users to program their environments.

2 Related work

Besides some projects such as House_n [see Intille and Larson (2003)] in which the
system puts the user “on the loop” by giving information rather than by acting on her
behalf, most systems have pursued a way for users to program their environments,
exploring different kinds of easy programming paradigms. Thus most of them are
based and focused on a particular UI.

MediaCubes [see Hague (2005)] is based on a script piping mechanism in which
scripts are created and piped through a Tangible UI (TUI) based on cubes whose faces
can be connected. While the keystone of the system is the Do-when cube,
programming is seen like a chain of scripts rather than as rules.

CAMP [see Truong et al. (2004)] focus in programming capture applications such
as “When Jim and Jane talk, record”. This is done through a GUI in which English
sentences are constructed using word tokens (i.e. Fridge Magnet Poetry metaphor).

1634 Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

Accord [see Rodden et al. (2004)], a jigsaw puzzle based TUI, emphasizes easy
reconfiguration rather than programming while iCap [see Dey et al. (2006)] is a
simple GUI to create if–then rules by drag and dropping elements into a matrix. While
we share several design goals with iCap, we believe that this particular interface is
best suited for novice users than for experience ones. In addition the lack of events as
triggers limits the expressiveness of the language.

In contrast to those, Zhang and Brügge [see Zhang and Brügge (2004)], focus on
a more flexible language, using JESS as the basis rule specification language to define
ECA rules. Nevertheless, JESS syntax is not easy to understand and has not been
designed to deal with end–user programming. Thus Zhang and Brügge’s system relies
on a Rule Builder and Rule Debugger to limit complexity and deal with end–user’s
limited programming skills.

In this work we pursue a system whose potentials can be compared to those
designed for professional programmers such as Gaia [see Román et al. (2002)].
Contrary to JESS based solutions, we believe that the system must be end–user
oriented from the underlying programming language and programming structure up to
the UI. In such a language, flexibility and expressiveness is achieved incrementally,
starting on a simple base language, designed to deal with novice users, extended with
new concepts of self–contained complexity. In addition, the language should be
designed to be UI–free, focusing on a natural reasoning structure rather than in a
natural manipulation mechanism. Finally we pursue a domain–free system in which
any element of the environment can be equally controlled and in which different users
and sets of preferences can cohabit, allowing end–users to also create their
coordination structures.

3 Controlling the environment

Indirect control can be classified into two subcategories: preprogrammed indirect
control and programmable indirect control. The former refers to applications
programmed by professionals to deal with specific tasks. Even though these
applications may automatically adapt to some changes their goal and means are fixed.
Providing parameters to allow end–users to personalize them has two associated
drawbacks: personalization becomes application–dependent (i.e. each application
has different parameters) and an inverse relationship between flexibility and
simplicity arise (i.e. more flexibility implies more parameters).

These two drawbacks affect to what we believe is the core of a “disappearing
technology”: Naturalness and Easiness. In this sense, we understand naturalness as the
way in which a system preserves the basic human structures and methods, and
easiness as the manipulation capabilities it provides: i.e. preserving the status–quo
while increasing the potential.

While these kind of preprogrammed applications are well suited to deal with
common, transparent or complex problems they lack the flexibility to deal with most
of the small personal preferences of user’s daily life.

1635Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

4 Indirect control

To deal with programmable indirect control without the application–dependent and
adaptability–simplicity drawbacks, we propose a rule–based language as the kernel of
every indirect control interface [see García-Herranz et al. (2008)].

In other words, every UI “speaks” the same kernel language so control structures
can be created and accessed through any of them. From the end–user point of view,
the underlying programming language remains invariable and UIs will be chosen just
in terms of interaction capabilities: different UI would be preferred while driving a car
(with less time, resources and attention) than while working on a PC but the mental
plans will be the same. The closer the kernel language is to the end–user’s original
mental plan, the easier it would be the programming process and the more UI’s
designers can focus just on interface issues. Among others, Myers pointed at rule-
based languages as the ones naturally used by users in solving problems [see Myers et
al. (2004)]. For a more detailed discussion on the matter [see García-Herranz et al.
(2008)].

4.1 Few natural concepts, many alternatives: Rule’s Grammar

The system described in this article runs over the Blackboard middleware developed
by Haya [see haya04prototype]. This middleware abstracts every physical or logical
object into a high–level Blackboard entity (e.g. lamp_1), of a type (e.g. light), with
some properties (e.g. status [ON/OFF]), and possible relations with other entities
(e.g. located_at room:lounge).

Basically, our rule language describes actions associated to context. Special
attention is paid to short–term effort and long–term restrictions (as in Paperts’ ideal of
“low–threshold no ceiling” [see Papert (1980)]). We believe, as Repenning and
Ioannidou [see Repenning and Ioannidou (2006)] that “anxiety results if challenges
outweigh the skills, while boredom results if skills outweigh the challenges”.

In order to balance the language’s description power and its simplicity, we based
our design in two principles: keeping a simple base language and isolating
complexity in the elements requiring it.

Regarding the simple base language, we chose a “photographic” representation of
the world [see Haya et al. (2004)], in which the TV is either ON or OFF and no event
is directly represented but indirectly inferred from the TV changing from ON “in one
picture” to OFF in the next one. This forces the differentiation of triggers (e.g. the TV
turning ON) and conditions (e.g. The TV turned ON) in the rule but preserves a
unique and simple view of the world. Actions, on the other hand, just refer to either
changing the state of the world (e.g. turning on a light), expanding it (i.e. creating a
new agenda event) or restricting it. The only flexibility the base language provides is
the use of “wildcards” to write generic rules such as “When a bathroom becomes
empty turn off all the lights of the bathroom”. A more detailed description of the base
language can be found in [see García-Herranz et al. (2008)].

Regarding the base language, a user study has been conducted to measure the
adequateness of the triggers–conditions–actions structure and the event–free
representation of the world to end–user programming. The study was conducted over
30 Spanish speaker subjects, each of which received by email a short description of a

1636 Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

hypothetical smart home (described through some plans)1 . Participants were
categorized into two groups: those with programming experience (P) and those
without it (NP).

They were told that the home understands rules constructed by filling a template
with three boxes: triggers (WHEN), conditions (IF) and actions (THEN), as long as
they refer to the elements present in the plans, and were given two simple examples.
Secondly, they were asked to write rules codifying the automatic behaviors of 5
animations showing scenes recorded in the automated house, e.g. turning off the stove
when it has been unused for three minutes or turning on and off the lights as people
enter or leave the rooms (see [Figure 1]).

Figure 1: Screenshoot of an exercise of the end–user study. It shows the animation
and plans of the elements involved in the animation in the middle of the web page and
a short description of what is the video showing below it.

Their answers were evaluated by an expert to measure: (I1) Grammar: they use
only elements present in the plans, (I2) Differentiation: they separate triggers and
conditions in different sets and (I3) Identification: they correctly assign these sets to
their respective boxes. Performance was measured in a three value scale (G for good,
M for medium and B for bad). I1 indicates the naturalness of context representation
while I2 and I3 measure the adequateness of the triggers–conditions–actions structure.
The results are summarized in Table 1.

1Questionnaire, plans and videos can be accessed from
http://amilab.ii.uam.es:8080/encuesta

1637Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

 I1 I2 I3
 G M B G M B G M B

NP 63.75% 28.75% 7.50% 87.50% 6.25% 6.25% 57.5% 3.75% 38.75%
P 60.00% 27.69% 12.31% 90.77% 6.15% 3.08% 80.0% 9.23% 10.77%
p 0.17 0.68 0.0029

Table 1: I1 (Grammar), I2 (Differentiation of Triggers/Conditions) and I3
(Identification of Triggers/Conditions) results (in % for G=Good, M=Medium,
B=Bad) for end–users with (P) and without (NP) programming knowledge and their
corresponding Mann–Whitney U test p–value.

According to the results obtained, we extracted the following results: a) Even
though P performs better than NP in I1, there is no significant statistical difference
between both groups (p–value of Mann–Whitney U test of 0.17) obtaining a G
63.75% and 60.00%. b) I2 resulted an easy task for both groups: 87,50% of NP
obtained a G (2,81 ± 0,53 in average) as 90,77% of P (2,88 ± 0,41), showing no
significant statistical difference between their performance (p–value of 0.68) and c) I3
was complicated for NP: 57,50% obtained a G against the 38,75% with a B (2,19 ±
0,96). It is statistically significant that P perform better in I3 (80,00% of P obtained a
G) than NP (p–value of 0.0029).

The great majority of tasks were solved using just one or two rules (both by NP
and P), while only one participant used more than three rules to encode a task. Every
scenario was encoded using less than three minutes on average.

In addition, users were asked to imagine two more scenarios, defining the
elements they need for them and creating their corresponding rules. Since I1 resulted
much better in this case than in the previous one we conclude that the bad
performance of I1 was due to the unfamiliar home we were presenting, making
difficult to remember the names and elements of a complete house within minutes. I2
and I3 present more interesting conclusions. First, that the differentiation between
triggers and conditions can be made naturally both by programmers and non
programmers. Second, that the Spanish words for “when” and “if” are
semantically close (as they are in English) and may lead to misprints among
users unfamiliar with the inflexibility of computing languages e.g. sentences such
as “when I enter the house, if it is empty...” can be also expressed as “If I enter the
house when it is empty...”. Thus, while triggers and conditions are easily
differentiated, natural language does not make their identification easy to non–
programmers.

4.2 Isolating complexity: Time–dependent actions

Some scenarios require more expressiveness than others, but adapting the whole
language to deal with it spreads their complexity to the whole language. Thus, we
isolated complexity in the elements requiring it, so users only need to deal with it
when needed. Additionally, complexity is expressed in the base language terms,
making easy to understand and evolve to complex concepts when the basics are
known (see [Figure 2]).

As an example of complexity, not every indirect controlled action is to be

1638 Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

executed immediately, some contexts trigger special situations in which the required
action depends on some time factor e.g. “Turn off the oven in 20 minutes”. Other
research has focused on temporal reasoning by embedding time concepts in the whole
representation and reasoning system [see Augusto and Nugent (2004)], making it
especially suited to deal with time issues but messy to deal with time–independent
scenarios.

In our approach, we isolated time constraints into a special kind of action: the
TIMER. The TIMER is composed of four different parts ending time, on–running
rules, on–load rules and on–finished rules. The ending time represents the ending
time horizon (e.g. “in three minutes”, “11:35, July 24th 2008” or “infinity”). The on–
running rules is a set of rules (same grammar as the base language) running from the
moment the TIMER was started until it is stopped. On–running rules can use the
TIMER status as part of the context, being able to restart, pause or stop it according to
context or use its value in the conditions. Finally, the on–load and on–finished rules
are sets of rules to be executed when the TIMER is initiated/ended, respectively.

Figure 2: Triggers–Conditions–Actions structure of the base language and
description of the TIMER complex extension.

TIMERS can be used in a very complex and powerful way. UIs may hide the low–
level details of the TIMER to allow end–users to easily use them. This is the case of a
GUI we developed to allow supervisors of Alzheimer patients to program alerts and
reminders to guide and control their patients activities (e.g. “the pills must be taken at

1639Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

least 30 minutes before eating”).

4.3 A programming example

The base language allows the user to build simple rules, imposing a triggers–
conditions–actions structure in which any element, property or relation of the
blackboard can be used equally (see [Rule 1]).

Rule 1 Example of a rule that, when the alarm clock sounds, opens the drapes and
turns on the radio.

device:alarm_clock:status ::

device:alarm_clock:status = ON

=>

device:drapes:status := OPEN &&

device:radio:status := ON

;

Generic rules can be created through the use of wildcards. The special symbols *
and $ are used to manage and filter sets of entities instead of a single entity in any part
of the ECA–rule. They can replace the entity or property in the pattern
type:entity:property. Thus, while light:lamp_1:status refers to “lamp_1” status,
light:*:status refers to every lamp’s status or, more accurately, to any lamp status; e.g.
the condition light:*:status=ON would be the set of all the lights turned on (evaluating
to false if it is the empty set ∅, and true otherwise). While the event light:*:status can
be translated as if any light changes its status..., the symbol * acts as a variable
holding the set of matching entities. This set can be accessed through the use of $
followed by the id of the * they have to access. This id is assigned automatically to *
from left to right according to the order of appearance in the rule, starting from 0. If a
condition has a $ on the left hand side (LHS), the $ set would be filtered to just those
elements evaluating the condition to true. Thus, the conditions “light:*:locatedat =
room:lab_b403&&light:$0:status = 1” will take all the lights turned on in lab b403 by
first obtaining all the lights in b403 and then filtering this set to those turned on.
Wildcards can be used by experienced programmers as filters to create more complex
rules. An example of a simple rule using wildcards can be seen in Rule 2])

1640 Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

Rule 2 Example of a rule that, when a window is opened, if nobody is in the house
it turns on the main alarm. Note that the window must have be opened from
outside since nobody is in the house

window:*:status ::

 window:$0:status = OPEN &&

space:myhouse:habitants = 0

=>

alarm:main_alarm:status := ON

;

On the other hand, the TIMER action can be used to create time dependent

behaviors (see [Rule 3]). Experienced users (or novice users if the programming UI
interfaces abstracts the low level details) can use TIMERS to create more complex
behaviors, define composite events or different event consumption policies.

Rule 3 Example of a rule codifying When the egg has been boiling in for 12
minutes, turn off the stove. This rule takes on account that the egg may be removed
or the water stopped boiling before the 12 minute period elapsed, for what the
minute counting must be restarted, when the conditions meet again, from the point
it was left

TRIGGERS

device:pot:contains || device:pot:boiling ::

CONDITIONS

device:pot:contains = egg:egg && device:pot:boiling = 1 =>

ACTION(S)

TIMER 12m 1

on finished rules

{

device:stove:status := 0 ;

}

on running rules

{

device:pot:contains :: device:pot:contains != egg:egg

1641Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

=> TIMER.pause ;

device:pot:boiling :: device:pot:boiling != 1

=> TIMER.pause ;

device:pot:contains || device:pot:boiling ::

device:pot:contains = egg:egg &&

device:pot:boiling = 1 && TIMER.pause

=>TIMER.start ;

}

;

The examples of this paper are shown in their kernel code version. Since the

kernel language is designed with the end–user in mind, using natural programming
structures and isolating complexity, different UIs can be easily created to deal with
different interaction scenarios or degrees of expertise. At this moment three different
UIs have been implemented: a drag and drop advance interface (see [Figure 3(a)] and
[Figure 3(b)]), a simple GUI based on word tokens (see [Figure 3(c)]) and a menu
based web interface to easily create reminders for assisted elders2 (see [Figure 3(d)]).

4.4 Structuring and Managing preferences

Even though rules are the basic programming unit, preferences may be composed by
many rules. This is represented in our system by agents, a software structure holding
and executing a set of rules, irrespective of the UI used to program them. They are a
way for users to organize and manage their preferences rather than AI entities.
Contrary to other systems, forcing activity or space bundles for the rules (e.g.
 Youngblood et al. (2005)), we believe that the organization of rules must be up to
end–users. Knowing their preferences better than developers do, they may group rules
according to many bundles (e.g. the object they affect, an activity, a space, a person or
any combination of them). Forcing users to group their behaviors in any fixed way
may result in stressful situations. However, some kind of mechanism for organizing
and managing preferences is necessary.

2Intelligent Reminders can be accessed from http://anahita.ii.uam.es/reminder/

1642 Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

Figure 3(a): Location based
navigator window of the GUI rule
creation tool. Coded by Carlos
Pimentel.

Figure 3(b): New rule window of the GUI
rule creation tool. Elements are dragged from
the navigator window and dropped in the
corresponding area of this one (triggers,
conditions or actions).

Figure 3(c): Base layout of the
Magnet Poetry GUI, showing the
different zones for different types of
magnets (nouns, verbs, values and
links) and the working zone at the
bottom. Partially coded by Amanda
Vidal.

Figure 3(d): Snapshot of the Personal
Ambient Intelligent Reminders web
application for creating time–based
Reminders for assisted living. Created by Dr.
Leila Shafti.

Figure 3: Snapshots of different GUIs to create rules.

4.5 Reproducing hierarchies

Multiple users inhabiting the same space makes the interaction dependent on the rest
of the users’ preferences. Any system for home automation ignoring this matter would
fail at some point.

Co–living is a complex human–dependent problem and humans have developed a
wide range of hierarchies to deal with it. The structure of the hierarchy (e.g.

1643Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

centralized, pyramidal or decentralized), the generating principles and the acceptance
reasons depend on the particular scenario. Thus, we believe that any system intended
to manage hierarchies must take into account both the diversity of structures and the
human generation–acceptation factor if it is to succeed. That is, instead of imposing a
hierarchy structure we should provide tools for end–users to build their own.

The replication of personal hierarchies is of special significance in an environment
in which preferences are automated since the same rules that used to coordinate them
have to be automated too. Our system takes advantage of the separation between the
context layer (i.e. the Blackboard) and the logical layer (i.e. agent–rules system) to
deal with different types of prioritization policies (see [Figure 4]). Thus, while the
context layer allows preprogrammed device default policies (see [Haya et al. (2006)],
[Esquivel et al. (2007)]), the interation or logic layer allows programmable
prioritization policies, as indirect control commands. A more detailed description of
this filter mechanism can be found in [see García-Herranz et al. (2009)]. As for the
scope of this paper we will explore in more detail the use of the agent–rules system as
a mechanism for end–users to express their coordination preferences using the same
tools they use to express their automation preferences.

Figure 4: Layers and conflict resolution flow diagram for indirect control. This
article focus in the rule–based multi–agent mechanism of the Interaction layer.
Agents are software structures which inference process is drive by a set of rules that
can be generated from different UI. They also present a natural mechanism to allow
users to create coordination rules to solve conflicts between different indirect control
commands.

In addition, agents are represented with a set of properties designed to help both
organizing and managing the preferences they hold. Those are: status, to activate or
deactivate the agent, name, to easily identify it, owner, referring to the person(s) for

1644 Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

which it works and task, the abstract goal for which it is programmed. In addition, its
location (the physical bounds within which it acts) may be represented through a
relation. Finally, a relation affects is automatically created between the agent and all
entities affected by its rules (those in the actions part). Thus, users can create rules
that activate/deactivate agents of a person, in a particular location, affecting a device,
or associated with an scenario, automating their own coordination structures.
Therefore, hierarchies are not constrained to be based in social, task or device factors,
but they can combine all of them. Their structure can be highly organized or
extremely loose, multilayer or singled layered, according to the natural hierarchies of
the people involved in the environment. Moreover, the coordination structure is
reflected in the Blackboard as the graph created by the persons, their agents and the
relations affects (see [Figure 5]).

Figure 5: An example of the control graph created by the connections between people
and their agents (is_owner), and the agents with the objects they affect (affects).

In this sense, each agent is represented in the blackboard as another entity of the
environment, i.e. a virtual assistant. Thus, users can define rules whose actions refer
to or affect an agent, as if it was just another light. Agents holding this type of rules
are no different from any other agent but can be thought of as meta–agents (see
[Rule 4]).

Rule 4 Example of a meta–agent rule activating every inactive agent in a loca- tion
when its owner enters that location. Note that, when using wildcards (*), $0 refers
to the first * appearing in the rule, $1 to the second and so on.

person:*:locatedAt ::

agent:*:locatedAt = person:$0:locatedAt

1645Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

&& agent:$1:owner = person:$0

&& agent:$1:status = INACTIVE

=>

agent:$1:status := ACTIVE

;

Whether a group of persons will encode their preferences together in rules

considereing their hierarchies (e.g. “When A enters the house, if B is not present, turn
on the TV”) or will split them in different agents and coordinate them through meta–
agents(e.g. “When B is in the house deactivate A’s TV agent”) will be up to the group
and its idiosyncrasy.

5 Deployment experiences and conclusions

The system is currently running in three laboratories: exploring Ambient Intelligence
in personal environments (AmiLab, Universidad Autónoma of Madrid, Spain),
teaching environments (ITSZN, Zacatecas, Mexico) and security environments (Indra,
Madrid, Spain), allowing several real experiences with users with computer
background (with and without programming knowledge). In addition, the system has
been tested as a tool to easily combine and seemlessly merge in the environment other
state of the art ubicomp technologies.

From these experiences, the most important lessons learned, regarding indirect
control in different environments, can be summarized as follows.

First, in personal environments users tend to have a more limited (in scale) and
varied idea of their preferences. This resulted in a wide variety of agents, normally
dedicated to simple tasks (such as controlling the coffeemaker) within a wide
diversity of bundles, added and removed organically, as new preferences arose. This
forced our system to allow an organic evolution of the indirect control structures,
provide some means of scrutability and support a flexible organization of
behaviors to allow users to decide the bundles for their preferences, leaving structure
to them.

Second, teaching environments (and working environments in general) presented
an example of impersonal spaces, governed more strictly, in which preferences
depend less on the individuals than in their roles. Thus, rules hardly ever refer to a
particular person or a particular room but they tend to express general preferences
such as “When a teacher enters a room in which a class is taking place...”. Thus, we
had to provide means to express generality and to filter generality according to
context as e.g. “...any unused screen of a room participating in the same remote class
should show the image of the room in which the teacher is located”.

Finally, security environments, as an example of specialized spaces, are normally
managed by experienced users with strict requirements for more complex preferences.
In this sense we found that many scenarios required a powerful event algebra for
creating composite events, as well as to define different event consumption policies.
This problem was solved with the TIMERS, keeping in mind that the flexibility and

1646 Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

expression power must not interfere with the simplicity required to deal with
novice end–users. Timers, sequences, periods or probability present great challenges
of expression. Isolating their complexity and reproducing already used structures to
build them allows to to balance the language’s description power with its simplicity.

Along with their diversity, Intelligent Environments are heterogeneous spaces and
any system for indirect control must be designed to integrate and easily incorporate
new technologies to the environment. For doing so, separating the environment
representation and the programming system has proved extremely useful. This has
been experienced in three experiments combining state of the art systems into an
already existing Intelligent Environment and using the rule–based agent mechanism
to seemlessly control them.

Firstly, to test the integration of new hardware technologies we integrated the
Phidgets system [see herranz07easingAugmenting] to allow user to easily expand
their environments not only with new software behaviors but with new hardware too.

Secondly, to test the integration of new software technologies, we incorporated
the anthropomorphic virtual character “Maxine” [see seron06maxineppt] of the
University of Zaragoza (Spain) to deliver messages in the environment. What to say,
when to say it and with which mood were behaviors programmed through the agent
mechanism.

Finally, to test the integration of complex hardware–software systems, we
combined the Smart–its technology and steerable projection system [see
molyneaux2007cooperative] of Lancaster University (UK). We tested the integration
by creating a cooking scenario in which the system guided the user to cook by
projecting over the different elements involved in the recipe (e.g. salt, pans or stove).
The logic of the system was delivered by the agents mechanism while the new
sensing and intelligent projection capabilities was brought by Lancaster University’s
work. All merging and programming was done easily and fast while most of the time
was spent in side–work such as creating the hardware (pans, stove, salt...).

In summary, even though no application is as efficient as that designed by
professionals, we believe that any ubicomp environment should be programmed by
their inhabitants in an application–independent way, bringing together every
controllable element to the end–user. For doing so, the concept of programming must
be kept static to users, no matter the UI they use to program, and carefully balance
flexibility and simplicity to deal with the heterogeneity of environments, preferences
and skills on Intelligent Environments.

Acknowledgments

This work has been partially funded by the following projects: HADA (Ministerio de
Ciencia y Educación de España, TIN2007-64718), Vesta (Ministerio de Industria,
Turismo y Comercio de España, TSI-020100-2009-828) y eMadrid (Comunidad de
Madrid, S2009/TIC-1650). We thank Dr. David Molyneaux, for many comments and
suggestions and Dr. Leila Shafti, Amanda Vidal and Carlos Pimentel for their work
with the GUIs.

1647Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

References

Augusto, J. C., Nugent, C. D.: “The use of temporal reasoning and management of
complex events in smart homes”; R. L. de Mántaras, L. Saitta, eds., ECAI; 778–782;
IOS Press, 2004.

Cai, Y., Klein-Seetharaman, J.: “Ambient intelligence for scientific discovery”;
CHI’04 extended abstracts on Human factors in computing systems; 1706; ACM,
2004.Davidoff, S., Lee, M., Zimmerman, J., Dey, A.: “Socially-aware requirements
for a smart home”; Procs of the International Symposium on Intelligent Environ-
ments; 41–44; 2006.

Dey, A., Sohn, T., Streng, S., Kodama, J.: “icap: Interactive prototyping of context-
aware applications”; Lecture Notes in Computer Science; 3968 (2006), 254–271.

Esquivel, A., Haya, P. A., García-Herranz, M., Alamán, X.: “Managing pervasive
environmentprivacyusingthe ‘fairtrade’ metaphor”;InternationalWorkshop on
Pervasive Systems, PerSys 2007; 2007.

Francisco Serón, S. B., Cerezo, E.: “Maxineppt: Using 3d virtual characters for
natural interaction”; II International Workshop on Ubiquitous Computing and
Ambient Intelligence (wUCAmI’2006); Puertollano, Ciudad Real, Spain, 2006.

Gajos, K., Fox, H., Shrobe, H.: “End user empowerment in human centered per-
vasive computing”; First International Conference on Pervasive Computing,
Pervasive 2002; 134–140; 2002.

García-Herranz, M., Haya, P., Alamán, X.: “Easing the smart home: Translating
human hierarchies to intelligent environments”; IWANN’2009. Lecture Notes in
Computer Science; volume 5517 of LNCS; 1529–1544; Springer-Verlag, Sala-
manca, Spain, 2009.

García-Herranz, M., Haya, P. A., Alamán, X., Martín, P.: “Easing the smart home:
augmenting devices and defining scenarios”; 2nd International Sym- posium on
Ubiquitous Computing & Ambient Intelligence - 2007; 2007; best paper award.

García-Herranz, M., Haya, P. A., Esquivel, A., Montoro, G., Alamán, X.: “Easing the
smart home: Semi-automatic adaptation in perceptive environments”; Journal of
Universal Computer Science; 14 (2008), 9, 1529–1544.

Hague, R.: “End-user programming in multiple languages”; Technical report ucam-cl-
tr-651, phd thesis; University of Cambridge, Computer Laboratory (2005).

Haya, P. A., Montoro, G., Alamán, X.: “A prototype of a context-based archi- tecture
for intelligent home environments”; International Conference on Cooperative
Information Systems (CoopIS 2004); volume 3290 of Lecture Notes in Computer
Science (LNCS); Larnaca, Cyprus, 2004.

Haya, P. A., Montoro, G., Esquivel, A., García-Herranz, M., Alamán, X.: “A
mechanism for solving conflicts in ambient intelligent environments”; Journal Of
Universal Computer Science; 12 (2006), 3, 284–296.

Intille, S. S., Larson, K.: “Designing and evaluating supportive technology”;

1648 Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

IEEE/ASME International Conference on Advanced Intelligent Mechatron- ics 2003;
501–518; IEEE Press, 2003.

Kulkarni, A.: A reactive behavioral system for the intelligent room; Ph.D. thesis;
Massachusetts Institute of Technolohy (2002).

Molyneaux, D., Gellersen, H., Kortuem, G., Schiele, B.: “Cooperative augmen- tation
of smart objects with projector-camera systems”; J. Krumm, G. D. Abowd, A.
Seneviratne, T. Strang, eds., UbiComp; volume 4717 of Lecture Notes in Computer
Science; 501–518; Springer, 2007.

Mozer, M. M.: “The neural network house: An environment that adapts to its
inhabitants”; Proceedings of the AAAI Spring Symposium on Intelligent En-
vironments; AAAI Press, 1998.

Myers, B. A., Pane, J. F., Ko, A.: “Natural programming languages and
environments”; Commun. ACM; 47 (2004), 9, 47–52.

Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas; Basic Books, New
York, 1980.

Repenning, A., Ioannidou, A.: “What makes End-User Tick? 13 Design Guidelines”;
chapter 4, 51–85; Human-Computer Interaction Series, Vol. 9; Springer- Verlag,
2006.

Rodden, T., Crabtree, A., Hemmings, T., Koleva, B., Humble, J., Akesson, K.- P.,
Hansson, P.: “Between the dazzle of a new building and its eventual corpse:
assembling the ubiquitous home”; D. Benyon, P. Moody, D. Gruen, I. McAra-
McWilliam, eds., Conference on Designing Interactive Systems; 71–80; ACM, 2004.

Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R., Nahrstedt, K.:
“A middleware infrastructure for active spaces”; IEEE Pervasive Computing; 1
(2002), 4, 74–83.

Schmidt, A.: “Implicit human computer interaction through context”; Personal and
Ubiquitous Computing; 4 (2000), 2/3.

Truong, K. N., Huang, E. M., Abowd, G. D.: “Camp: A magnetic poetry interface for
end-user programming of capture applications for the home”; N. Davies, E. D.
Mynatt, I. Siio, eds., Ubicomp; volume 3205 of Lecture Notes in Computer Science;
143–160; Springer, 2004.

Youngblood, G. M., Cook, D. J., Holder, L. B.: “Managing adaptive versatile
environments”; Pervasive and Mobile Computing; 1 (2005), 4, 373–403.

Zhang, T., Brügge, B.: “Empowering the user to build smart home applications”;
Toward A Human-Friendly Assistive Environment: ICOST’2004, 2nd International
Conference on Smart Home and Health Telematics; 170; IOS Press, 2004.

1649Garcia-Herranz M., Haya P., Alaman X.: Towards a Ubiquitous End-User ...

