

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

CHI '95: Conference Companion on Human Factors in Computing Systems.

New York: ACM, 1995. 236 - 237

DOI: http://dx.doi.org/10.1145/223355.223548

Copyright: © 1995 ACM

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1145/223355.223548

Virtual Slots: Increasing Power and Reusability for User
Interface Development LanguagesFrancisco Saiz;y Javier Contreras;� and Roberto Moriyonyy Instituto de Ingenieria del Conocimiento

Universidad Autonoma de Madrid, SPAIN
E-mail:<saiz, roberto>@lola.iic.uam.es� LIAP-5, Universite Rene-Descartes, Paris, FRANCE

E-mail: conj@descartes.math-info.univ-paris5.fr

ABSTRACT
An extension to constraint-based user interface development
languages is shown. It permits the abstract representation
of constraints which must be applied to objects that are not
accessible in the moment of the constraint definition. Using
this mechanism, more modularity is achieved, as each part of
information is stored where it is needed. Richer libraries of
reusable objects can therefore be built in a natural way.

KEYWORDS Constraints, reusability, user interface imple-
mentation, libraries.

INTRODUCTION
In this paper we propose an extension for constraint-based
languages for user interfaces (UI) development that brings
the developer closer to the conceptual level of specification
of the interface, and at the same time overcomes limitations
for its reusability. The technique we propose, Virtual Slots,
can be implemented as an extension to languages like the
ones used in systems such as Garnet, [4], Rendezvous, [1],
SkyBlue, [5], or ThingLab II, [2]. The use of Virtual Slots
improves the language’s power and expressivity, and makes
some programming tasks easier.

As a simple example that will allow us to introduce both the
limitations of present languages, and the kind of solution we
propose, we consider the development of a folder manager
that allows the dragging of objects (e.g. file icons) and notifies
the user when they can be dropped on the one below them.
This can be done by highlighting this last object, or by a
spoken message.

One of the main features of Virtual Slots is that generic
reusable interaction styles can be defined. In our example,
the interaction style that allows the user to drag objects and
at the same time highlights automatically some others can
be stored in a library for its further reuse in other applica-

tions. Moreover, such objects can be defined in a simple way
without doing general programming, i.e. just defining the
corresponding objects by a declarative specification of their
components. Also, Virtual Slots allow the partial specifi-
cation of qualities of objects (constraints for their position,
visibility, etc.) without making complete commitments about
the kind of objects to be used. These achievements can be
seen as complementary of model-based interface design tools
like Humanoid, [6]. Finally, let us point out that current sys-
tems do not have the above capabilities.

VIRTUAL SLOTS
Constraint-Based UI Systems: Concepts and Drawbacks
In this section we illustrate both the aspects of current con-
straint systems for UIs, and their main drawbacks, that are
relevant for the paper. We shall be concerned with Garnet,
but our main conclusions are also valid for the rest of the
systems mentioned above.

Garnet allows the definition of (uni-directional) constraints
by assigning formulae as values of slots; these symbolic for-
mulae are evaluated whenever the computation of a new value
of the slot is needed. Garnet also includes a limited set of
predefined interactors, objects that model interaction with the
user at the level of mouse and keyboard events, and the ob-
jects present in the interface. The user can instantiate them
according to his needs. But any behavior that can not be
obtained through instantiation of one of the basic interactors
requires a considerable amount of general programming. For
instance, the basic interactors available exhibit only part of
the desired functionality needed in the example presented in
the Introduction. Obtaining a behavior close to the one we
want is highly non trivial.

Interactors that change objects by moving them, highlighting
them, etc. have limitations about their reusability, since they
need special kinds of objects to act upon. For example, an
object to be moved by a move-grow-interactor needs a special
slot called box that has as its value a list of four numbers that
usually determine its position and dimensions. Moreover,
the object must have constraints that fix its actual position
and dimension according to the values in box. A system that
allowed the accumulation of all the information that refers to
an interactor’s behavior in the own interactor would be more
satisfactory, since it would be more reusable. We shall see

how Virtual Slots present this feature.

Description of the System
We start this section by defining a basic concept: a nested
slot of an object is a slot of another object that in turn is the
value of a (possibly nested) slot of the original object. For
example, in the folder manager, the filling-style of the icon
that represents a folder is a nested slot of the window that
displays that icon.

The Virtual Slots system allows the user to specify the value
that nested slots of objects will have, even before the neces-
sary intermediate objects are determined. This information
is kept in a declarative way in the object, and it is interpreted
and used when the intermediate slots are set. The seman-
tics of a specification saying that the Virtual Slot [slot1] ...
[slot(N+1)] of a given <object> has a given <value> is that

IF <object> has a slot, [slot1],
whose value is an object,
that we denote by <slot1>

AND <slot1> has a slot, [slot2],
whose value is an object,
that we denote by <slot2>

...
AND <slot(N-1)> has a slot, [slotN],

whose value is an object,
that we denote by <slotN>

THEN the slot [slot(N+1)] of <slotN>
will have value <value>

Virtual Slots are in the spirit of traditional frame-based knowl-
edge representation systems, which permit an efficient im-
plementation through simple mechanisms of special kinds of
production rules. Our point of view is that a production sys-
tem must be implemented on top of a user interface tool only
in case it is absolutely necessary due to the complexity of the
tasks, as in [3].

For instance, the developer of the folder manager described
in the Introduction can use a moving-feedback-object to rep-
resent the file being dragged (for example, a white bevelled
rectangle), and a static-feedback-object to highlight the object
the dragged file is on (for example, a red rectangle). Using
Virtual Slots, the definition of the dragging interactor can
specify that its nested slot [static-feedback-object] [visible-
p] will have as value a formula that evaluates whenever it
is needed to the current value of the predicate accepts-p
evaluated with arguments [first-obj-over] [object-type] and
[current-obj-over] [object-type]. As a consequence of this,
the static-feedback-object will become visible whenever the
object under the mouse accepts the file being moved. Simi-
larly, the definition can specify that the static-feedback-object
adjusts its size to that of the object under the mouse, and that
the moving-feedback-object will follow the mouse. Finally,
sound generation can be specified as a side effect of the object
highlighting.

The above specification can be part of the definition of a
more general interactor that will allow arbitrary moving and
static feedback objects, an arbitrary accepting function and

an arbitrary action to be performed in case of a drop. This
interactor will be easily reusable in other applications. This
degree of reusability is not present in current systems. The
key fact that allows this level of reusability using the Virtual
Slots system is that all the constraints are specified in the
abstract object that is to be stored in a library.

Finally, we shall give an additional example that will illustrate
further our techniques. It corresponds to a simple tool for the
edition of graphical objects. It is a ruler that can be attached
to a component of an interface, and then it appears over one of
its sides and adapts to its size. After this, any of the ends of the
ruler can be dragged along the ruler direction, and the object
the ruler is attached to changes its size accordingly. Again,
specifying the behavior of this object by means of Virtual
Slots is very simple, and, most important, all the behavior of
the object is encapsulated within it, so it can be stored in a
library.

Conclusions and Future Work
We have shown how Virtual Slots allow a high level of
reusability in UI development by specifying constraints in
abstract objects to be stored in a library. This technique per-
mits the partial specification of qualities of objects without
making complete commitments about the kind of objects to
be used.

A simple prototype of Virtual Slots that includes the function-
ality described in this paper has been implemented in KR, on
top of Garnet. We have plans to develop a more complete
prototype with a bigger declarative expression (including dec-
larations for components of multivalued slots) and to extend
the system to handle UIs developed in Humanoid.

Virtual Slots are a part of KIISS, a project funded by the
National Research Plan of Spain, under grant No. TIC93-
0268.

REFERENCES
1. Hill, R. D., et. al.: The Rendezvous Architecture and

Language for Constructing Multi-User Applications.
ACM Transactions on Computer-Human interaction,
1(2), 1994.

2. Maloney, J.: Using Constraints for User Interface Con-
struction. PhD thesis, Department of Computer Sci-
ence and Engineering, University of Washington, Au-
gust 1991.

3. Moriyon, R., Szekely, P., and Neches, R.: Automatic
Generation of Help from Interfaces Design Models. In
Proceedings CHI’94, pp. 225-231, April 1994.

4. Myers, B.A., et. al.: Garnet: Comprehensive Support
for Graphical, Highly-Interactive User Interfaces. IEEE
Computer 23(11), pp. 71-85, November 1990.

5. Sannella, M.: SkyBlue: A Multi-Way Local Propagation
Constraint Solver for User Interface Construction. In
Proceedings UIST’94, pp. 137-146, November 1994.

6. Szekely, P., Luo, P., and Neches, R.: Beyond Interface
Builders: Model-Based Interface Tools. In Proceedings
INTERCHI’93, pp. 383-390, April 1993.

