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Emerging role of glial cells in the control of
body weight
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ABSTRACT
Glia are the most abundant cell type in the brain and are indispensible for the normal execution of neuronal actions. They protect neurons from
noxious insults and modulate synaptic transmission through affectation of synaptic inputs, release of glial transmitters and uptake of
neurotransmitters from the synaptic cleft. They also transport nutrients and other circulating factors into the brain thus controlling the energy
sources and signals reaching neurons. Moreover, glia express receptors for metabolic hormones, such as leptin and insulin, and can be activated
in response to increased weight gain and dietary challenges. However, chronic glial activation can be detrimental to neurons, with hypothalamic
astrocyte activation or gliosis suggested to be involved in the perpetuation of obesity and the onset of secondary complications. It is now accepted
that glia may be a very important participant in metabolic control and a possible therapeutical target. Here we briefly review this rapidly
advancing field.
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1. INTRODUCTION

Glia were historically considered by many to be the cellular ‘‘glue’’ of
the brain, providing only passive support for neurons. The contempor-
ary view of glial cells is quite distinct as we now know that they are
involved in all aspects of neuronal function, including regulation of
neuronal metabolism, neuroprotection, synaptogenesis and neurotrans-
mission, amongst numerous other functions [1–6]. Indeed, both
neurons and glial cells are required for normal functioning of the brain
during development and throughout adult life. Glia are the most
abundant cell type in the brain and can be broadly classified as
macroglia or microglia depending on their cellular origin. Macroglia are
derived from the neuroectoderm and include both astrocytes and
oligodendrocytes [7]. However, the origin of microglia remains under
debate [8,9], with these cells believed to be derived from either the
neuroepithelia [10–12] or from the hematopoietic cells (i.e., monocytes)
[13,14]. As both astrocytes and microglia have been shown to be
activated in response to metabolic signals [15,16], they will be the
primary focus of this review.
Glial activation is a process by which astrocytes and microglia develop
a hypertrophic or reactive phenotype that is also referred to as gliosis.
Astrocytes are stellate cells with multiple fine processes that radiate
from the cell body and terminate in end-feet on blood vessels, in direct
contact with other astrocytes or as ensheathment of neuronal somas or
synapses [17–21]. Most astrocytes contain an exclusive protein called
glial fibrillary acidic protein (GFAP) that acts as an intermediate filament
and is up-regulated in reactive astrocytes, as is another structural
filament called vimentin [22]. Microglia are considered brain
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macrophages and like astrocytes can switch to an activated state
undergoing structural and functional transformations [23], including the
over-expression of major histocompatibility complex II and inducible
nitric oxide [23–25]. Therefore, both astrocytes and microglia respond
to injury or disease by developing a reactive phenotype that can lead to
functional changes resulting in beneficial effects on neurons, such as
the clearance of damaged or dead cells [23] or reducing oxidative
stress [26,27]. However, the long-term activation of these glial cells
can have detrimental results, such as increasing tissue damage
through the release of inflammatory factors (e.g., reactive oxygen
species, cytokines), as observed in various chronic central nervous
system (CNS) diseases [28–30].
Although the role of glial cells has been extensively studied in
neurodegenerative diseases, their function in the development of
metabolic diseases such as obesity has only recently come to the
forefront [15,31–33]. Indeed, hypothalamic inflammation is now
thought to be an important process in both the development and
perpetuation of obesity and glial cells are a fundamental player in these
inflammatory processes [30,34,35]. However, there is still much to be
discovered regarding the mechanisms involved.
2. GLIAL CELLS ACT AS METABOLIC SENSORS IN THE BRAIN

The brain is very sensitive to metabolic fluctuations with both neurons
and glial cells expressing a wide array of metabolite receptors,
transporters and regulators [36–42]. Blood-borne glucose is considered
to be the major nutrient in the brain [43], but neurons also use lactate
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that can either be taken up from the circulation or synthesized by
astrocytes [44], as well as fatty acids (FAs) and ketone bodies. Like
glucose, these metabolites are transported into and within the CNS
[45,46] mainly by astrocytes [47,48]. Energy requirements of the brain
are linked to activity and these requirements are met depending on the
type of nutrients available, with astrocytes cells playing a crucial role in
this process. This also includes modulating the local environment of
specialized nutrient sensing neurons in the hypothalamus.
2.1. Lipid transporters
The brain is the most cholesterol-rich region in the body [49] and lipid
homeostasis, which is essential for normal functioning of neurons, is
primarily controlled by astrocytes [50–52]. In the CNS, FAs are derived
either from the diet [53] or de novo synthesis [54] and both glia and
neurons require FAs to maintain their metabolic homeostasis [55].
Under normal conditions, astrocytes are the primary source of
lipoproteins in order that synaptogenesis, synaptic remodeling and
axonal growth can occur [56,57]. During periods of fasting or high fat
diet (HFD) intake astrocytes transport higher concentrations of FAs and
ketone bodies from the peripheral circulation to the brain [58,59] to be
used as alternative fuels and long-term imbalances in brain lipid
metabolism are associated with the development of obesity [60].
Apolipoprotein E (ApoE) is the most abundant lipid transporter in the
CNS and it is produced mainly by astrocytes [61–63]. Not only does
ApoE regulate the uptake of lipids into target cells, but in the
hypothalamus it also acts as a satiety factor [64]. It is suggested that
the inhibitory effects of leptin on feeding are partially mediated through
ApoE, as central ApoE levels are reduced in both fasting and obesity
and can be restored by leptin treatment [61]. Another critical sensor of
lipid concentrations in the brain is peroxisome proliferator-activated
receptor gamma (PPARg), which is expressed both by astrocytes and
neurons [65]. PPARg is involved in central regulation of energy
metabolism in states of leptin resistance [66]. Diano and colleagues
have recently demonstrated that HFD intake induces the expression of
PPARg in the hypothalamus and this reduces ROS production in
proopiomelanocortin (POMC) neurons thereby altering the ability to
inhibit food intake in lean mice on a HFD [66]. ATP-binding cassette
transporters (ABCA) also participate in cellular lipid processes in the
brain [67]. These transporters are expressed by both astrocytes and
neurons and mediate the release of ApoE-containing glial lipoproteins
Arc
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Fig. 1: Microphotographs of double immunofluorescence for glial fibrillary acidic protein (GFAP; red) and leptin receptor (LepR; gre

mouse anti-GFAP (1:1000, Sigma) and goat anti-LepR (1:250, Santa Cruz) for 48 h at 4 1C. Sections were then incubated wit

confocal microscope. Solid arrows indicate cells that are GFAP and LepR positive and hollow arrows cells that are positive for LepR

nucleus; ME: median eminence; PVN: hypothalamic paraventricular nucleus; Hippo: hippocampus; CTX: cortex.
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such as cholesterol [67–69]. Therefore, ABCA-1 expression determines
cholesterol and ApoE concentrations in the brain, but its implication in
metabolic diseases remains to be investigated.
Ketone bodies, which can be taken up from the bloodstream or
produced through FA oxidation by astrocytes, are another important
energy source for the brain [46,70]. The main transporter of ketone
bodies into and out of cells in the CNS is monocarboxylate transporter
(MCT)-1 [71]. This transporter is reported to be expressed by
astrocytes, neurons and endothelial cells, although this expression
may depend on age and anatomical location [44,72–74], as well as
activational state as it is up-regulated in gliosis [75]. Brain MCT-1
levels can be enhanced by HFD intake [59,76] in response to the
increased concentration of circulating ketone bodies. Although the
effect of ketogenic diets on energy homeostasis remains under debate,
ketone bodies have been shown to have direct effects on energy
homeostasis and glucose metabolism through modulation of both leptin
and insulin signaling in the hypothalamus [77]. How lactate transport by
astrocytes is regulated remains to be determined, but one mechanism
by which these glial cells could modify systemic metabolism is through
control of central ketone body concentrations.
2.2. Hormone receptors
In the hypothalamus both neurons and glia respond to hormones to
regulate neuroendocrine systems [39]. Indeed, glial cells express a vast
array of receptors including those for hormones involved in controlling
appetite and food intake [36–38,78]. Insulin and leptin inform the brain
regarding energy availability and regulate food intake and lipid
metabolism [79], having effects on both glia and neurons [37,80,81].
Leptin, the adipocyte secreted hormone, is well known for its role as a
satiety factor [82] and astrocytes express various isoforms of its
receptor [81]. However, diet-induced obesity is often associated with
high concentrations of serum leptin suggesting that leptin resistance
exists and that the central anorexic effects of this hormone are reduced
[83]. Several mechanisms for leptin resistance have been proposed
including impaired transport of leptin across the blood–brain barrier
(BBB) [84] or the attenuation of leptin signaling due to the presence of
suppressors of leptin signaling pathways [85–87]. Moreover, the
observation that diet-induced obesity results in opposite changes of
leptin receptor (LepR) in hypothalamic neurons and astrocytes, with an
increase being found in these glial cells and a decrease in neurons
PVN
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[88], suggests that both cell types are involved in central leptin
responsiveness and that their functions may be quite different.
Moreover, LepR expression in astrocytes does not appear to be uniform
throughout the brain, with apparently higher levels being found in some
areas such as the arcuate nucleus (Fig. 1) indicating that leptin’s effects
on astrocytes may also be anatomically specific. Microglia also express
LepRs and this hormone can modify their activational state and
production of cytokines [89,90].
Energy consumption by brain cells is considered to be insulin-
independent as glucose uptake is not significantly stimulated by insulin
[91]. However, insulin receptors are expressed by neurons and glia with
both of these cell types contributing to the central actions of this
hormone [37,92]. Insulin’s effects in the hypothalamus clearly have
important repercussions on systemic energy balance. For example,
short-term HFD intake very rapidly induces hypothalamic insulin
resistance [15] and can be reversed by exercise induced weight loss
[93]. Insulin is not only important for astrocyte proliferation, but it
promotes glycogen storage [94] and increases glutamate transporters
[95] in these glial cells. However, the role of astrocytes in regulating
insulin sensitivity in the hypothalamus remains to be clarified.

2.3. Glucose transporters
Central glucose concentrations play a critical role in the regulation of
energy metabolism [96]. Glucose is the primary metabolite for the brain
and is stored in astrocytes as glycogen to safeguard against
hyperglycemia [97,98]. Electrophysiological studies have shown that
some brain areas, including the hypothalamus, have a population of
neurons possessing specialized mechanisms to act as glucosensors
[99–102]. These neurons modify their firing rates with changing
external glucose concentrations, with glucose-excited neurons increas-
ing and glucose-inhibited neurons decreasing their activity as ambient
glucose levels rise [101,102]. These glucose sensing systems are
involved in the control of food intake and glucose homeostasis [103];
however, they do not function alone. Astrocytes also participate in
glucose transport and metabolism [104,105], modulating peripheral
and central glucose levels [106] and providing glucose to the
extracellular space in the brain for uptake by neurons.
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Fig. 2: Schematic representation of glucose and glutamate transport, metabolism and secretion by astrocytes and neurons. The
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Communication between astrocytes and neurons is required for glucose
to be used as a fuel source, with astrocytes, neurons and blood vessels
working together as functional units [17] (Fig. 2). Blood vessels in the
brain are almost completely surrounded by a network of astrocytes that
highly express glucose transporters (GLUTs) [107], raising the possi-
bility that regulation of glucosensing neurons by changes in glucose
concentrations is, at least in part, indirectly controlled by astrocytes.
Astroglia are the main metabolizers of glucose in the brain and they
respond to alterations in glucose levels by modifying their release of
lactate, which is then provided to neurons as an energy substrate
[108,109]. Astrocytes that surround capillaries express GLUT-1 and
transport glucose into the brain [107,110]. Recent studies show that
diabetes-related hyperglycemia reduces GLUT-1 expression in hypotha-
lamic glial cells resulting in the inability of increased intra-hypothalamic
glucose to reduce systemic glucose production, with this reduction in
glucose-sensing capacity being restored with over-expression of GLUT-
1 in GFAP-positive cells in the hypothalamus [111]. GLUT-2 is
expressed in brain areas involved in controlling food intake, such as
the hypothalamus [112,113]. In the hypothalamus this transporter is
located in astrocytes, ependymal cells, tanycytes and glucose-sensitive
neurons [41,42,113–115] and it is essential for central glucose sensing
and regulation of food intake [116]. In the brain GLUT-3 is almost
exclusively expressed in neurons, acting as their main glucose
transporter [117–121].
Astrocytes, through GLUT-1 and GLUT-2, capture and store glucose
as glycogen from which they produce lactate that is transferred to
neurons as an energy substrate. Indeed, some authors suggest that
lactate is the primary energy source for neurons. As mentioned
above, lactate is transported through MCTs, including MCT-1 located
in astrocytes, neurons and epithelial cells, MCT-2 in neurons and
MCT-4 in astrocytes during all stages of development
[71–74,122–124]. Lactate is transported out of the cell through
MCT-4 [125], indicating that astrocytes regulate extracellular concen-
trations of lactate. Neuronal populations involved in metabolic control
not only use lactate as an energy source, but the activity of orexin
neurons is reported to be lactate sensitive with this lactate being
derived from astrocytes [126].
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2.4. Glutamate transporters
Glutamate transporters, or excitatory amino acid transporters (EAATs),
are highly expressed in astrocytes and have an important role in the
communication between these glial cells and neurons [127]. Glial
glutamate transporter (GLT)-1 is found almost exclusively in astrocytes
and glutamate aspartate transporter (GLAST) is expressed in astrocytes
and other glial cells [128–130]. These transporters are ion pumps that
transport L-glutamate, coupling it to Naþ and Kþ symport/antiport
[131,132]. Glutamate uptake by astrocytes is fundamental for control-
ling extracellular concentrations of this excitatory amino acid, thus not
only modulating synaptic transmission, but also impeding excitotoxicity.
Moreover, glutamate transport into astrocytes activates intracellular
glycolysis, increasing lactate production and its distribution to neurons
[105,109,133,134], thus controlling their nutrient availability. Therefore,
changes in the number, morphology or function of hypothalamic
astrocytes could significantly modify neuronal responses and hence,
metabolism.

2.5. Glucose and glutamate transport in tanycytes
Tanycytes, glial cells present in the lateral lower portion and the floor of
the third ventricle, also appear to have a role in glucose metabolism.
These cells are in close proximity to the ventromedial hypothalamic
nucleus and arcuate nucleus and thus, to neurons responsible for
regulation of energy balance [135]. Not only do they have a strategic
location, contacting both the cerebrospinal fluid and blood circulation,
but they also express genes involved in glucose sensing including
GLUT-2, glucokinase and MCT-1 and -4 [113,136–138]. Indeed, recent
studies have demonstrated that these specialized glial cells respond
rapidly to changes in glucose concentrations [139].
Tanycytes express a broad array of receptors for different hormones,
enzymes and growth factors and their location close to the hypotha-
lamus suggests that they are involved in neuroendocrine control,
including metabolism and nutrient sensing [137]. Tanycytes also
express both GLAST and GLT-1 [140], glutamate receptors [141] and
dopamine-responsive elements [142], indicating that they participate in
glutamate uptake and can respond to changes in neurotransmitters.
However, to date very little is known regarding the functions of this
specialized glial cell in systemic metabolic control.
3. IMPLICATION OF GLIAL CELLS IN METABOLIC
DISRUPTIONS

Throughout its lifetime the organism attempts to modulate its metabolic
state in response to a continuously changing environment (e.g., diet,
exercise, stress). However, homeostasis is not always achieved due to
a mismatch between food intake and energy expenditure, with this
resulting in modifications in circulating metabolic signals [143]. The
degree to which a specific metabolic substrate is used by the brain
depends on its concentration in the plasma and the brain’s ability to
capture and metabolize it, which as mentioned above depends largely
on astrocytes, in addition to tanycytes. Moreover, the low or high
availability of a specific substrate such as lipids or glucose can lead to
undesirable effects on the target cells responsible for their uptake.

3.1. Physical activity and caloric restriction
Excessive intake of high fat foods increases oxidative rates in the
organism and can cause detrimental effects on neurons [15,144–146].
Indeed, many neurological disorders are associated with increased
oxidative stress and reduction of these stressors can improve their
40 MOLECULAR METAB
prognosis [147]. Exercise and dietary modifications have clear health
benefits including not only improvement in systemic metabolism, but
also protection or improvement of neurological function by diverse
mechanisms including increasing important neurotrophic factors and
antioxidants [148–151]. Antioxidant effects in the brain are highly
coupled to astrocyte activity, with these glial cells being the main
defence against excitotoxicity and other insults [152,153]. In addition to
reducing body weight, dietary restriction also restores the rate of
neurogenesis in obese mice [154] and attenuates the age-related
astrogliosis in the hypothalamus [155]. This gliosis is often related to
neuronal dysfunction in chronic neurodegenerative diseases [156,157],
with astrocyte activation first being protective and if prolonged having
damaging effects. Likewise, hypothalamic gliosis is most likely involved
in neuroendocrine changes associated with aging or other processes.
However, this possibility has been largely ignored. Indeed, overfeeding
and weight gain increase astroglia and microglia activation [15] and
neuronal apoptosis in the hypothalamus [145], but how this glial
activation participates in neuronal dysfunction in obesity remains
largely unknown.

3.2. Genetic obesity
3.2.1. Leptin signaling deficient models
The complete absence of leptin (ob/ob) causes severe obesity in mice
[158] and humans [159] and exogenous leptin treatment leads to
reduced body weight in these individuals [160]. Likewise, mice with a
global mutation in the leptin receptor (db/db) develop an obese
phenotype that is indistinguishable from that of ob/ob mice, but that
is not reversible by leptin treatment [161]. Apart from the action of
leptin in regulating energy balance, leptin plays a key role in brain
development during early life [158] and the lack of leptin signaling in
both ob/ob and db/db mice results in a reduction in brain weight and in
hypothalamic glial proteins such as GFAP [158] and ApoE that, as
stated above, acts as a mediator of the inhibitory effects of leptin on
food intake [61]. In addition, Pinto and colleagues have shown that ob/
ob mice differ from wild type mice by having more excitatory, compared
to inhibitory, synapses on neuropeptide Y (NPY) and POMC neurons, which
can be rapidly reversed by leptin treatment [61,162]. GFAP protein levels
and astrocyte coverage of POMC neurons are inversely correlated with the
number of synaptic inputs to these neurons in the hypothalamus of obese
mice [32]. Our studies have demonstrated that leptin can modulate the
morphology of astrocytes in the arcuate nucleus, increasing the length of
their projections, which is associated with a decrease in synaptic protein
concentrations [163]. In other neuroendocrine systems astrocyte coverage
and the number of synaptic inputs to specific neurons in the hypotha-
lamus have been shown to be inversely related and modulated by
hormonal signals [164]. Therefore, these data suggest that astrocytes
regulate synaptic inputs to hypothalamic neurons controlling metabolism
and these morphological changes could occur in response to specific
hormonal signals.

3.2.2. The agouti viable yellow mouse model (Avy)
The spontaneous mutation in Avy mice provides a unique model to
study the effects of melanocortin receptor signaling deficits [165]. Avy

mice exhibit two prominent phenotypical features, an agouti coat color
and adult-onset-obesity [166]. Recently, Pan and colleagues demon-
strated that the onset of obesity in adulthood in these mice is
associated with region-specific up-regulation of astrocytic LepR
expression [167]. In the hypothalamus, Ay mice show a reduction in
the expression of LepR in neurons and a corresponding increase in
astrocytes [168]. When astrocyte activity is inhibited in these mice by
OLISM 1 (2012) 37–46 & 2012 Elsevier GmbH. All rights reserved. www.molecularmetabolism.com



fluorocitrate administration, neuronal leptin signaling is enhanced in the
hypothalamus [167]. However, the mechanism by which up-regulation
of LepR expression in astrocytes affects neuronal leptin signaling is still
unclear.

3.3. Diet-induced obesity
In the last two decades, there has been a dramatic increase in obesity
partly due to increased intake of energy-dense foods with a high fat
content [169] and the study of hypothalamic dysfunction associated with
the development of obesity is currently an important area of investigation
in attempt to understand and curtail this phenomenon [15,31,145,170].
The multisystemic effects of obesity, including an increase in circulating
cytokines [170,171] and a decrease in protective factors, confirm that the
communication between inflammatory and metabolic cells is an important
aspect of this process [170,172]. Obesity induces a chronic low-grade
inflammation in diverse tissues, including the hypothalamus, resulting in
alterations in insulin and leptin sensitivity [173], with the central
inflammatory responses being promoted primarily by microglia and
astrocytes. Interestingly, central inflammation in response to infection or
infusion of proinflammatory cytokines to the hypothalamus can induce a
state of negative energy balance [174]. Thus, comparing the mechanisms
underlying these two inflammatory situations and determining cause and
effect relationships may give insight into how the different metabolic
outcomes are achieved.
During the past few years, several studies have reported that in addition
to the well-known weight gain and peripheral inflammatory responses,
long-term HFD intake increases the number and size of glial cells (gliosis)
[15], reduces neurogenesis [15,145,175,176] and promotes astrocyte
coverage of specific neuronal populations and blood vessels in the
hypothalamus [32], possibly altering the passage of circulating factors to
target receptors in the CNS. Moreover, mice exposed to only one day of
HFD develop inflammation that is only detected in the hypothalamus,
suggesting that hypothalamic inflammation is an event prior to substantial
Fig. 3: Schematic representation of known changes in hypothalamic astrocytes, microglia and proopiomelanocortin (POMC) neurons

bodies; GFAP: glial fibrillary acidic protein; GLUT: glucose transporter; IL: interleukin; LepR: leptin receptor; MHC: major histocompa
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weight gain [15]. This can be explained by the fact that both astrocyte and
microglia respond rapidly when faced with an injury or insult, resulting in
inflammation and gliosis in attempt to prevent neuronal injury. However,
chronic exposure to HFD could exceed their protective ability, with
neuronal damage and loss no longer being avoidable [15]. Recently,
in vitro studies have demonstrated that metabolic factors derived from
HFD such as saturated FAs directly induce reactive gliosis and the release
of pro-inflammatory cytokines in cultured primary astrocytes [177,178].
Likewise, diet-induced obese (DIO) mice exhibit a lipid imbalance in the
hypothalamus, resulting in increased PPARg [66] and decreased ApoE
expression [61] that might participate in the development of central leptin
resistance. These data further suggest that glial cells, the main regulators
of inflammation and lipid metabolism in the brain, actively participate in
the development of obesity and metabolic syndrome.
Another recent concern for Western countries is the growing rate of
childhood obesity and type II diabetes [179]. This is particularly problematic
given that both diseases progress more rapidly and are harder to treat in
children than in adults [179]. During early stages of life, the brain is more
susceptible to long-lasting effects of nutritional changes as there is a critical
period during which neural circuits involved in regulating energy balance
are developing [180]. In this critical period inadequate nutrition can have
permanent outcomes in the brain [180,181] that result in a greater
susceptibility to obesity [181,182], with some of these changes being the
result of modifications in leptin concentrations [183]. Neonatal over-nutrition
due to a reduction in litter size also increases body weight in adulthood and
affects astrocytes [163], as well as the number of microglia in specific
hypothalamic nuclei [16]. These glial changes are associated with
modifications in synaptic protein and hypothalamic cytokine concentrations.
Thus, nutritional signals from HFD are not the sole cause of glial affectation
in states of positive energy balance. What signals underlie glial activation in
non-HFD induced weight gain remain to be identified. Likewise, how early
modifications in nutrition affect glial development and their functioning in
adulthood remains to be determined.
in response to a high fat diet (HFD). ABCA: ATP-binding cassette transporters; ApoE: apolipoprotein E; FA: fatty acids; KB: ketone
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4. CONCLUDING REMARKS

Rapidly accumulating evidence indicates that glial cells play a key role in
the development of obesity, with some of their functions and hormonal
responses summarized in Fig. 3. Neuronal output is closely associated to
astrocytic functions throughout the brain; however, astrocytes are not
identical in all brain areas, nor are neuronal functions. The hypothalamic
gliosis associated with obesity could be one of the main causes of altered
nutritional sensing in the brain, resulting in further body weight gain and
secondary metabolic complications. However, much more investigation is
needed to understand this process, including the signals involved in its
onset and perpetuation. Moreover, it would be of great interest to identify
processes that are specific to glial cell participation in systemic metabolic
control. This could open the door for possible new targets for drug therapy.
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