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EVOLVING AN ECOLOGY OF MATHEMATICAL EXPRESSIONS WITH

GRAMMATICAL EVOLUTION

Manuel Alfonsech— Francisco José Soler &il

! Escuela Politécnica Superior, Universidad Auténat@aiadrid
2 Universidad de Sevilla & Technische Universitatrfond

This paper describes the use of grammatical evoluth to obtain an ecology of artificial beings

associated with mathematical functions, whose fitrss is also defined mathematically. The system
allows “parasite” species and “parasites of paraséis” to develop, and supports the simultaneous
evolution of several ecological niches. The use efandard measurements makes it possible to
explore the influence of the number of niches or # presence of parasites on “biological” diversity

and similar functions. Our results suggest that soe of the features of biological evolution depend
more on the genetic substrate and natural selectidihan on the actual phenotypic expression of that
substrate.
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Ecological diversity

1. Introduction

Ecological simulation has a long history. Ever siito Volterra developed his famous predator-prey
equations (Volterra, 1931) continuous simulatioa baen used to represent artificial ecologicalesyst
(Alfonseca et al, 1998). Discrete simulation ha® ddeen used frequently, using such tools as aellul
automata and Lindenmayer systems (Alfonseca @088). Agent-based artificial life ecosystems are
relatively old (Conrad and Pattee, 1970) and hased with artificial life research since the endhaf
1980s (see Dorin et al, 2008, for a relatively recirvey of the field). Typical recent simulatianghis
field tend to define predator-prey systems and dimatie the agents by embodying them with fuzzy

cognitive maps and similar constructs (Gras e2@09).

In biological evolution, a genetic substrate, embddn nucleic acids, is subject to a certain nundfe
random actions (mutation, recombination, etc.). diffierent genetic compositions are not selected
directly. They are translated into phenotypes whostual interaction gives rise to natural selectionr
hypothesis is that many of the features of biolalggvolution depend more on the genetic substrade a

the mechanism of natural selection than on theahptuenotypic expression of that substrate.

This paper describes our experiments to build aitveng ecology of artificial beings which compets f

a limited resource environment. The underlying giersructure is not too dissimilar to that of lmgical
beings (a series of codons, represented as injebetsts phenotypic expression is completelyatit.

In our artificial ecologies, the genomes are suttiggenetic algorithms similar to those in biology
Grammatical evolution (GE) is then used to genefaten the genetic substrate, phenotypic countéspar
completely different from living beings (a set ahple mathematical expressions). Natural selegdon

then applied to these phenotypes, after computiaignematically the fitness of the different indivédst



Some of the typical features of biological evolatltave been reproduced successfully in this sireglif

environment. Other features we have found couldideonew ideas about biological evolution.

Grammatical evolution, a standard technique in iepeogramming (see O’Neill and Ryan, 2003,
Dempsey et al, 2009, Byrne et al, 2010), suggeattel as the proper method, since it separatesrgen
from phenotypes and improves ttiesure problem (the need to eliminate individuals with invalid
phenotypes), by protecting phenotypes against syotarrors. Extensions to grammatical evolutiarghs
as attribute grammatical evolution or Christiangeammatical evolution (de la Cruz et al, 2005, Gate
et al, 2007) can also protect from semantic erides.did not need to use those extensions, becamse o

individuals are protected from semantic errors diferent way (see below).

Our agents are very simple, as they only embodwathematical expression, which is executed to
compare their respective fitness. Besides nornaivithuals, we have also introduced a second kind of
agents, the parasites, whose phenotype functimkes/the phenotype function of a different indiatu
(and thus copies its fithess). The environmentss gery simple: agents do not have a spatial iocat
although they can belong to one of several ecogiiches, which evolve simultaneously, but
independently. In biology, an ecological niche seation of a population that has its own way iy
and evolves relatively independently from thosetimer niches. We represent niches by applying

different fithess functions to those individualddmging to each niche.

Both the expressions and the grammatical evolw@iorironment are written in the APL2 language

(Alfonseca and Selby, 1989), which has been saleaxdehe language of choice for the following reaso

» APL2is a very powerful language, especially far generation of expressions, with a large
number of primitive functions and operators avddab

» The APL2 expression grammar is very simple andbeaimplemented with just four non-
terminal symbols, which makes the grammatical ei@iuprocess simpler.

e APL2 instructions can be protected to prevent s¢imand execution errors giving rise to
program failures. In this way, we can rest assthatlall the programs in the benchmark will
execute (although their results may not be a gostver to the assignment). The grammatical
evolution technique also becomes simpler thankBisofeature, because it is not necessary to
include any semantic information.

* Being an interpretive language, APL2 makes it gilesb create programming functions at
execution time, thus providing the feasibility @inaputing fithess during the execution of the
genetic algorithm. With a compiling language susiCathis would be very difficult.

This paper is divided in the following way: sectidrescribes our procedure (grammatical evolutimh a

the generation of mathematical expression phenstyipem a genome). Section 3 describes our
experiments, and explains three of them in moraidebection 4 shows the results of those three
experiments, followed by a global analysis of tesutts of all the 200 experiments we have performed

Finally, section 5 discusses and summarizes owlgsions and lists our future work objectives.



2. Grammatical Evolution (GE)

GE is an Evolutionary Automatic Programming (EARjogithm based on strings, independent of the
language used. Genotypes are represented by sbfingegers (each of which is named codon) and the
context-free grammar of the target programming lagg is used to deterministically map each genotype
into a syntactically correct phenotype (a progrdm}his way, GE avoids one of the main difficuttie
EAP: the results of genetic operators are guardrttebe syntactically correct, while allowing the
inclusion of multiple types.

The following scheme shows the way in which GE cioveb traditional genetic algorithms with

genotype-to-phenotype mapping.

1) An initial population of N genomes is generatedaastdom. A genome is a vector of n integers in the
[0-255] interval. The role of each element in tlemgme depends on its position and is redundant
(several different integers in the same positie gise to the same phenotype).

In our experiments, the value of N is a parametackvcan be set for each experiment. The value of
n is random for each genome, in the [50-199] irtkiwe have also introduced the concept of
“niche,” which makes it possible to split the pagtidn in several sub-populations, each using a
different fitness function. The first element irckagenome defines the ecological niche the
individual belongs to.

2) The phenotypes associated to all the members iimitied population are generated, using a
grammar. In our experiments, each genome is assigmique function number nnn in the interval
[000-N). A phenotype is an APL2 function of theldaling form:

[0] Z«Fnnn X
[1]1 Z<(pX)pO
[2] >(5<pOLC)/0
[3] '' OEA 'Z<«APL2 expression'
Only the APL2 expression in line 3 is generatednftbe genome. The remainder of the functions is
the same for all.
« Line [0] defines a monadic function with explicgtsult, called Fnnn.
* Line [1] assigns to the function result a vectoreros.
« Line [2] stops the execution of the function if &tilon call depth is greater than 5 (this
eliminates infinite recursion).
< Line [3] executes the expression generated frongémome and, if no error is detected, returns
its value as the result of the function. Otherwasegsult of all zeros is returned (this is whae li
[1] is for).
Parasite functions can be generated by this algoriParasite function expressions have the
following form:
(Fmmm X)
In APL2, this expression invokes monadic functmmm (where mmm represents any three digit

number) with right argumerX. In our experiments, the value Xfis a vector of integers from 1 to



3)

4)

5)

10. The expression is written enclosed in pareigtedsolate it from other possible expressions
around it (this is a future objective). A paraditaction expression thus calls a different functifum
instance, function 437 may cdl5 21, where mmm=521 is the function number associaied t
different individual. Therefore, the parasite (widual 437) is copying the fitness value of
individual 521. This makes it also possible forgsites of parasites to appear (i.e. individualssgho
phenotype function invokes another function, wrochits side invokes a third function).
The genotype population is sorted according tosgr{eomputed from the phenotypes). In our
experiments, the fithess of a function is defingdbnathematical expression, which can be different
for different ecological niches. For instance,tadgs function could be:
((+/|2-/2-/2-/2-/Z2)++|+/2-/2-/2-/Z)x(.2 5)[50<pX]

where Z represents the result of applying the functiomeisdéed to one individual to the input
values (in our experiments, all the integers frotn 10) andX is the genome of the individual. This
fithess function selects for those mathematicatesgions whose fourth difference is minimal, their
third difference is maximal, (i.e. polynomials agtee 3) and whose genome is shorter than 50
integers. In APL22 - /applied to a vector computes its difference (he.result is a vector with
one element less, whose elements are the diffesdreteveen two consecutive elements in the
original vector).+/ | adds the absolute values of all the elements diinédifference vector. The
fithess value is multiplied by 0.2 if the lengthtb& genome is no longer than 50; otherwise, it is
multiplied by 5, penalizing long genomes (the optifitness value is 0). The following expression
represents this fitness function in standard magtiead notation:

12 + (e

| XA°Z]

where n=0.2 if the genome of the individual is ander than 50 elements, and 5 otherwise.

)]xn

The individuals in the population are ordered kmjrtfitness. In our experiments, this is done
independently for all ecological niches, so thailetion takes place independently in each niché. Al
those individuals whose fitness values are grehtar 1000 are eliminated, together with their
associated phenotype functions and all those pesasiat use them.

Create the next generation from a mating pool.umnexperiments, the mating-pool is chosen from
the 100 best fitted individuals in the population those that remain, if they are less than 100)r F

different genetic operations are applied to themthg:

e Single point recombination of parent genomes. ©hpisration is performed always.

e Mutation (random change of a component of the gex)ofrhis operation is performed after

recombination has taken place, with 100% probgbiitien the two parents are identical and
10% probability otherwise, to compensate the flaat tecombination has no effect in that case.
This is not the standard mutation procedure, buhst been used before in genetic programming
(Ortega et al, 2003, Byrne et al, 2010). The Btsment of a genome can also mutate, which
means that the offspring may belong to a differécihe than their parents. This makes niche

colonization after extinction possible.



« Extension: with a certain probability, a part of thhenome of one parent is added at the end of
the offspring genome.

e Shortening: with a certain probability, one companaf the offspring genome is deleted
randomly.

6) The offspring genomes are added to the populatioour experiments, if the total number of
individuals exceeds N, the worst genomes in theipus population are eliminated (together with
their phenotypes and parasites) until the numbiras less. The offspring genomes are associated
with phenotype numbers that are of have becomesafitee this operation.

7) The phenotypes associated to all the new membeéhe gfopulation are generated, using the same
grammar.

8) Go to step 3.

The following grammar is used to generate a phemofsom a genotype:

E =U | U/| ... | U| (FNNN X) (right part U is repeated 30 times)
U ::= 0 | o0 | 000 (non-parasite expression)

0 =N | X | (U) (operands)

o=+ | - | x| x|+ | o] T | L ]| e]| | | (operators)

N ::=0 | 1] 2| 3| 4| 5] 6| 7] 8] 9 (digits)

where F, X, the digits and operators {- ,x,*,+,0,l ,L ,®, !, |} are the terminal symbols of
the grammar, while§ ,U, 0,0 , N } are the non-terminal symbols, or variables,inéermediate
symbols that will transform into other symbols gsome of the indicated rules. Table 1 shows the
functions the APL2 operators compute.

Table 1: APL2 operators generated by the grammar

Operator Monadic Dyadic
+ Identity Addition
- Sign change Subtraction
x Sign function Multiplication
* Exponential Power
+ Inverse Division
o Pi times Circular functs.
r Higher integer Maximum
L Lower integer Minimum
@ Natural log Base log
: Factorial Combinatorial
Absolute value Residue




A phenotype is generated from a genotype in tHeviahg way:

1) Variable V is initialized with the axiom of the gmanar, ‘E’

2) If V does not contain a non-terminal symbol, thegass has finished and the value of variable V is
the phenotype expression. If step 2 has been ee@&00 times, the process finishes and returns an
empty expression. Otherwise:

a. Let N be the first non-terminal symbol in V.

b. Let K be the number of rules in the grammar whe$epart is N. If K=1, the only available
right part replaces the first appearance of N iand step 2 is repeated. Otherwise:

c. Let G be the next element of the genome underlatms. If all the elements of the genome
have been used, the first one is used again (genareecircular).

d. The first appearance of N in V is replaced by ttieright part of the rule whose left part is
N (numbered in zero origin), where n=mod(G,K).

e. Repeat step 2.

Example: let the genome be [120, 86, 37, 47, 12/@tep 1, we start with V="E’.

1. The first non-terminal symbol in V is E. The numioéright parts of the rule with left part E is
K=31. The next element in the genome is G=120. dfoee n=mod(120,31)=27. The 27th right part
(in zero origin) for the rule with left part E is. We replace E by U in V. After this step, V="U".

2. The first non-terminal symbol in V is U. The numloéright parts of the rule with left part U is K=3
The next element in the genome is G=86. Thereferead(86,3)=2. The 2nd right part (in zero
origin) for the rule with left part U is 000. Weplace U by OoO in V. After this step, V="0O00'.

3. The first non-terminal symbol in V is O. The numleéright parts of the rule with left part O is K=3
The next element in the genome is G=37. Thereferead(37,3)=1. The 1st right part (in zero
origin) for the rule with left part O is X. We reggge O by X in V. After this step, V="X00O'.

4. The first non-terminal symbol in V is 0. The numleéright parts of the rule with left part o is K1
The next element in the genome is G=47. Thereferead(47,11)=3. The 3rd right part (in zero
origin) for the rule with left part o is *. We regale o by * in V. After this step, V="X*O'.

5. The first non-terminal symbol in V is O. The numleéright parts of the rule with left part O is K=3
The next element in the genome is G=127. Therefersod(127,3)=1. The 1st right part (in zero
origin) for the rule with left part O is X. We regqge O by X in V. After this step, V="X*X".

6 . Now V does not contain any non-terminal symbolréfere the generation is completed and the
result is expression ‘X*X’, i.e. X to the X poweFhe APL2 function generated is

[0] Z<«Fnnn X
[1] Z<«(pX)pO
[2]1 »~(5<p0LC)/0
(3] '' OEA 'Z<«X=*X"
A parasite function is generated with a 1/31 prdbgpas there is a single right part for axionwhich

generates a parasite, against 30 that give risedinary arithmetical expressions.



3. Simulation experiments

In our experiments, we first define the followingrameters:

e The initial and maximum sizes of the population.

e The number of ecological niches.

« Interbreeding between different niches allowedatr(applicable only if more than one niche).

e The set of values used as arguments for the pheadiyctions. In all our experiments this was

a vector of integers from 1 to 10.

e The fitness function(s).

* The random seed.

Each of the experiments we performed were repelidd 30 times, with different values for the rando

seed and the interbreeding percentage, so as &dtatistically meaningful results. Although in thext

section we give the global results for all the 28@eriments, we will describe three of them in deta

signal interesting effects we have detected.

1.

((+/|

In all our experiments with a single niche, thedis function was
(C+/|2-/2-/2-/2-/Z)++|+/2-/2-/2-/Z)x(20[pX)+100

which selects for third degree polynomials (the l&stipossible fourth difference) with a

large coefficient for the third degree term (theyksst possible third difference), and genomes

of about 20 elements.

In our first experiment described in more detaihiethh belongs to this type, we chose an

initial/maximum population of 500/1000 individuatse random seed chosen was 16807.

For the experiments with two niches, the fithneggfions were:
((1E=6+|+/2-/(2-/2)+1¥Z)++|+/2-/Z)x(.2 5)[50<pX]
(C+/12-/2-/2-/2-/Z)++|+/2-/2-/2-/Z)x(.2 5)[50<pX]

The first function selects for exponential functpthe second for third degree polynomials.

In both cases, genomes of less than 50 elementoaitively selected (to prevent runaway

genome length).

In our second experiment described in more detallich belongs to this type, the

parameters were the following: initial/maximum plgiion of 1000/2000 individuals;

interbreeding between niches was fully allowed;rdredom seed was 282475249.

For the experiments with three niches, the fitriesstions were:
((1E=6+|+/2-/(2-/2)+1¥Z)++|+/2-/Z)x(.2 5)[50<pX]
(C(+/12-/2-/2-/2-/Z)++|+/2-/2-/2-/Z)x(.2 5)[50<pX]

2-/2-/2-/2-/2-/Z)+%|+/2-/2-/2-/2-/Z)x(.2 5)[50<pX]

The first function selects for exponential funcgpthe second for third degree polynomials;

the third for fourth degree polynomials, in allébrcases with the largest possible absolute

value. Genomes of less than 50 elements are palyittelected to prevent runaway genome

length.



For our third detailed experiment, which belongshis type, we chose an initial/maximum
population of 2000 individuals; no interbreedingviieen niches was allowed; the random
seed chosen was 16807.
To select our fitness functions, we have trieddmbine mathematical expressions which can be
considered “near” and “far”, measured by their giendistance. For example, the distance between a
third and a fourth degree polynomial is smallenthiize distance from each of them to an exponential
function. To see it, notice that function ‘x*3’ céie converted to ‘x*4’ by a single mutation (andevi
versa) while two mutations are needed to convé® to ‘3*x’. In future experiments, we intend to
measure the relative ease with which the offspgegerated in our experiments can migrate from one
niche to another, depending on the genetic distahteir fithess functions.
Biological populations are almost never geneticalgntical, they embody a certain degree of vanmti
even when they belong to a single species. Amofigréint ways to measure biodiversity, the Shannon

diversity index (Shannon, 1948) is frequently usdus index is defined by the following formula:

n
- Z p;ilog p;
i=1

where n is the number of different species and the frequency of species number i (the number o
individuals belonging to that species divided by tbtal number of individuals).

To study the evolution of diversity in our simutatiexperiments by means of Shannon’s diversityxnde
we group the individuals in “species.” Two indivada belong to the same “species” when their
phenotypes are identical (even though their gerstypay not be, due to the redundancy of the genetic
code). Phenotypes are considered identical whemé#ibematical expressions in their phenotype

functions are identical. Expressions that alwaye gise to the same values, but are not identicel,
considered to belong to different species. Fomimse,( 2xX ) * 3 and 8 xX x 3 are different

species, even though their results (and thereFaie fitness value) are always the same.

4. Results

Table 2 shows some of the dominant functions (thelsieh reached the maximum fitness) during the

evolution of the ecology simulated in our firstaittd experiment.

Table 2: Evolution of the dominant function in thefirst experiment

Dominant Generation Fitness
function

(ZX)3 100 0.00083

(F023 X) 300 0.00059
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Figure 1: Results of the first experiment: red, toal population size; green, number of parasites.
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Figure 2: Results of the first experiment: red, nomal population size; green, number of parasites.
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Figure 3: Shannon’s diversity index for the first experiment: red, total population; green: normal
population.

This ecology endured for 305 generations, therpgisared (the size of its population became zero).
Figure 1 shows the total size of the populatioa &sction of the generation number, as well addted
number of parasite individuals. Figure 2 displdyes ¢volution of the normal individuals and the
parasites. It is easy to see that, since parasiigsormal individuals are competing for reproduttbut
parasites also depend on their hosts to surviegdiationship between them becomes somewhat simila
to that between prey and predator described byevfaliLotka equations. It is clear in the figurestth
when parasites get into a runaway situation, thay end up destroying the whole population (as in
generation 305) or stopping their own developm#mns happens several times in this experiment), in
which case the normal population is able to recofarinteresting feature is the appearance of jtesas
of parasites.
Figure 3 shows the value of the Shannon diversigx in this experiment, in red for the total pcian,
in green for normal individuals only. It can be is¢leat the latter diversity is always very low st
experiment, with index values usually much smatan 1.

Table 3 shows some of the dominant functions inseaond detailed experiment.
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Table 3: Evolution of the dominant functions in thesecond experiment

Niche 1 Niche 2
Dominant Generation Dominant Generation
function function
e 100 8x3 100
gexe 600 9x(9X)* 400
e 1100 X(X+6) logsX 800
81xX?(3-X) 900
Ox9IxX3 1100
9x9°x9Ix X 1500

This ecology seemed to endure more or less perrtignsn we stopped the experiment after 2000
generations. Figure 4 shows the total size of tmufation as a function of the generation number, a
well as the total number of parasite individuai€an be seen that there is a big parasite attarkg
which the number of parasites explodes and the ruwitnormal individuals drops, until the loss of
hosts puts a stop on the parasite runaway growghré5 displays a zoom on the normal individuald a
the parasites during the parasite attack (genesat60 to 600).

Figure 6 shows what happened to the two niche ptipulk during the experiment. It can be seen teat t
population of the second niche totally disappearétlle before generation 500, obviously as altexu
parasite runaway growth for that niche. As soothshappened, all the parasites for the secorftenic
also disappeared. The system then became esseata@ile-niche system, and remained like that fer ov
200 generations. Due to a curious chance, therficbie was also affected by parasites at the semnee t
(in all our two niche experiments, this only hapgeionce). First niche parasites then also expetédem
runaway growth which was almost put an end to #peement (the population of the first niche came
down to 5 at generation 571), but the collapséefdarasites saved the issue and those 5 indigidual
were able to recover, reaching again the maximupuladion at generation 600. Later, just before
generation 800, the second niche was colonizechbynwutated individual, progeny of two individuafs o
the first niche, and a new evolution started at tiighe from a lower fitness, which later grew tgraater
fitness than that reached before (see Table 3).

Figure 7 shows the value of Shannon’s diversityinith this experiment. It can be seen that therditye

is larger than in the previous experiment, remgmost of the time between 1 and 2, and reaching a

maximum value of 6 just when the second niche ve@isgore-colonized.
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Figure 4: Results of the second experiment: red, tal population size; green: number of parasites.

A similar situation took place in another experineith three niches, full interbreeding and a pagioh
of 2000 individuals. In this case, the third nieh&s wiped out between generations 545 and 660rd-igu

8 shows how the population was divided into theéhmiches.
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Figure 5: Zoom on the results of the second experient: red, normal population size; green:

number of parasites.
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Figure 6: Population distribution among the two nihes for the second experiment: red, first niche;

green: second niche.
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Figure 7: Shannon’s diversity index for the seconéxperiment: green, total population; red, normal

population.
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Figure 8: Population distribution among the three nches for another experiment: red, first niche;

green: second niche; blue: third niche.
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Table 4 shows some of the dominant functions dutireg evolution of our third detailed experiment.
Observe that the combinatorial numbers in thetlastrows for niches 2 and 3 are actually polynomial
of the third degree, and in the third niche theymaultiplied by X, to become a fourth degree potyiad,

as expected.

In this experiment, the total number of individuslractically constant and equal to the maximum
population. There are very few parasites (69 imtligls at most) during a few generations. Figure 9
represents the evolution of diversity, measurethbyShannon index. The value of diversity is atsgér
than in the first two experiments: it remains mafsthe time at a value between 2 and 3.

Table 4: Evolution of the dominant function in thethird experiment

Niche 1 Niche 2 Niche 3
Dominant Generation | Dominant Gener. Dominant function Gener.
function function
(Bx7H* 100 —4 100 5 100
X X
NX 700 X 800 X 900
- " ()
3 3
X 1800 X 1700
—g324 (3) (X—<3)> (3677 X)

" 1 . | | | . . 1 | | 1 | " | . " | . |
o jalules 1000 1500 200

Figure 9: Shannon’s diversity index for the third experiment: green, total population; red: normal

population.
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We have performed a total of 200 experiments, with, two and three niches, with three different
degrees of interbreeding (100%, 50% or 0%), withaég@r unequal partitioning of the population. The
latter is obtained by increasing the number of es;Hbut having some of them share the same fitness
functions. For instance, in some cases we usedifobies with interbreeding, two of them with thenga
fitness function, which gave rise to a populatiantiion between niches of 50%, 25% and 25%. Tte: be
individuals in the two niches sharing the sameefigxfunction were almost always identical, since
interbreeding made it highly probable that the Ispsicies of one of the two niches sharing the same
fithess function would spread to the other. Usyallgen a mutation to some offspring makes it change
niches, they will be speedily eliminated, as tffiiress will be much lower than that of the domihan
species in the target niche, but this will not lhe tase when both fitness functions are very sifrola
when the niche has become empty, as in the seaiaded experiment. This, and the smaller number of
parasites, also explains why early extinction fethe first experiment) never takes place in thétimu
niche case.

Table 5 shows the global results we have obtainedir 200 experiments. All of them were performed
with an initial population of 1000, except for tieosith only one niche, where the initial populatiwas
500. Only for a single niche and a maximum popaiatf 1000 some of the experiments (40%) ended in
premature extinction. The rows marked 3* were etextwith 4 niches, two of which share the same
fitness function, which corresponds to 3 nicheshwitequal population distribution (50/25/25%). IIn a
the measurements computed, the first 15 generadi@nsxcluded, to allow the ecology to go into a
permanent regime. The last two columns show thaqmar number of normal/parasite species, and the
average diversity during the experiment, with aritheut considering parasites. In the last thre@mwis,
averages were taken for all the experiments in &auily.

Table 6 details the effect when different degrdd@aterbreeding are allowed between niches. Theaea
why this was tested is because, in biological systéndividuals that occupy different niches maiohg
either to the same or related species, or to cdsipldifferent species. In the first case, niche
interbreeding would be allowed, in the second itilddye forbidden. Depending on the nearness of the
corresponding species, interbreeding can also timpa

In some experiments where interbreeding is allowetlhave detected some evolutionary flow between
niches 2 and 3. The best functions are first foatngiche 2, then copied by niche 3, or vice vefsas
happens when two individuals, one belonging to eache, produce hybrids which copy sections of
expressions from one niche to the other. Thisabably made possible because the fitness functions

(third and fourth degree polynomials) for those niches are related.
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Table 5: Summary of all the experiments

Number | Nr. of Max. Extinct Max. Max. Aver.
of exper. | population before parasites | species | diversity
niches gen. 2000
1 10 500 0 152 28/4.1 | 0.46/0.37
1 10 1000 4 939 47/16 | 1.08/0.55
2 30 1000 0 93 35/2.4 | 1.66/1.65
3 30 1000 0 57 37/2.6 |2.07/2.07
3* 30 1000 0 60 41/3.2 | 2.25/2.24
2 30 2000 0 380 210/4.8 | 1.78/1.76
3 30 2000 0 209 192/3.5 | 2.12/2.11
3* 30 2000 0 404 218/4.7 | 2.30/2.27

The following behavior can be observed at table 5:

e The maximum number of parasites seems to be ctedeleith the number of individuals per
niche, obtained by dividing the total populationtbg number of niches. Runaway parasite
growth happens mostly for a single niche. With muodes and greater population sizes, the
effect of the parasites is smaller, although omaway (but not fatal) parasite growth occurred
once for both 2 and 3 niches and a 2000 max papolat

e It can be seen that the maximum number of nornediep depends only on the size of the
population, regardless of the number of niches. Aumaber of parasite species, however, has a
more complicated dependence.

e The occurrence of more than one niche has thewollp effects:

0 Ecologies are more stable and never get completeigct (up to 2000 generations).

0 The influence of parasites is reduced (they almeser go into a runaway growth).

0 The diversity of the population increases propodity to the number of niches. If our
general hypothesis is correct, this effect wasst@kpected, as a greater number of
niches with independent evolution must give risa greater diversity. This has been
detected (theoretically and in practice) in realdjical ecosystems.
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Table 6: The effect of interbreeding

Max. Number | Inter- Max. Max. Aver.
population of breed. | parasites | species | diversity
niches
1000 2 100% 134 42/3 1.62/1.61
50% 122 39/2.7 | 1.78/1.78
0% 24 24/1.6 | 1.57/1.57
3 100% 103 51/2.6 | 2.11/2.10
50% 37 32/3,7 | 2.08/2.08
0% 30 28/1.5 | 2.01/2.01
3% 100% 71 44/29 | 2.18/2.17
50% 80 49/4.7 | 2.43/2.42
0% 30 31/2 2.15/2.14
2000 2 100% 795 215/6.4 | 1.73/1.67
50% 209 219/4.2 | 1.92/1.91
0% 135 198/3.7 | 1.71/1.69
3 100% 490 203/4.4 | 2.21/2.19
50% 75 194/3.4 | 2.10/2.10
0% 63 179/2.6 | 2.06/2.05
3% 100% 544 227/4.6 | 2.41/2.38
50% 566 223/5.8 | 2.32/2.26
0% 103 204/3.8 | 2.16/2.16
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The following behavior can be observed at table 6:

« Allowing full interbreeding between niches giveserito a much higher number of parasites (2 to
7 times larger than disallowing it).

e The maximum number of parasites seems to be pelsitiorrelated with interbreeding.

e The maximum number of normal and parasite speembtio decrease when niche interbreeding
is reduced or not allowed.

< Diversity does not depend (or depends very littiie)nterbreeding.

* 50% interbreeding gives numbers intermediate batvie¢h extremes, although sometimes they
get near to either one of them.

5. Conclusions

In this paper we have designed a procedure thargess artificial ecologies that exhibit some daf th

features of natural evolution, among them the feiihg:

The appearance of parasite species. Parasitesasifea also happen.

A Volterra-like relationship between parasites aodts.

Different numbers of niches are supported, with witbout interbreeding. Average diversity
increases with the number of niches.

When a niche becomes empty, it can be colonizetidopffspring of a different niche.

To do this, we have used the following ideas:

Grammatical evolution, which separates genomes frbemotypes (this is a standard technique in
genetic programming).

Individual genotypes are represented by means tfenatical expressions. Fitness functions
become simple mathematical tests on those expresditathematical expressions (using lambda-
calculus, rather than APL2, without grammaticallation) have been used before in artificial life
experiments (Fontana, 1991, Fontana and Buss, 189g)inciple, lambda-calculus and APL2
should be equivalent for the representation of ematitical functions.

Simultaneous evolution of several “niches” is aigai by means of changes in the genome
interpretation (the first element selects the nichad by using several fitness functions (one per
niche). We believe this is an original idea.

Parasites are represented as individuals whosepipenfunction invokes the phenotype function of
a different individual (and thus copies its fitneds the way we have implemented it, this is an
original idea. Previous work in the area of ari#fidife, such as TIERRA (Ray, 1992, Ray and Haxt,
1998), also gave rise to parasites, but baseddiffeaent approach (individuals were computer
programs executing in a virtual machine, and pteagumped to sections of those programs).

We believe our results provide support for the ligpsis that many features displayed by biological

evolution depend on chance modifications of theogem plus natural selection, rather than on the

particular form adopted by the phenotypes. Theegfour experiments could help detect other features

not so easy to discover in biology, such as sombenfiependences indicated in the previous section.

In the future we intend to explore the followinguss:

Partial interbreeding between different niches.

To measure the relative ease with which the offgpgenerated during our experiments can migrate
from one niche to another, depending on the distafitheir fitness functions.

To extend the expressions representing parasitewjreg for a call to another function to be
embedded in a more complicated expression.

To complicate the ecology by introducing predators.
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