

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Engineering Human Computer Interaction and Interactive Systems:
Joint Working Conferences EHCI-DSVIS 2004, Hamburg, Germany, July
11-13, 2004, Revised Selected Papers . Lecture Notes in Computer Science,

Volumen 3425. Springer, 2005. 164-178.

DOI: http://dx.doi.org/10.1007/11431879_10

Copyright: © 2005 Springer-Verlag

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/11431879_10

Finding Iteration Patterns in Dynamic Web Page
Authoring

José A. Macías and Pablo Castells

E.P.S. Universidad Autónoma de Madrid
Ctra. de Colmenar, km. 15
28049 – Madrid – Spain
+ 34 91 497 22{41, 84}

{j.macias, pablo.castells}@uam.es
http://www.ii.uam.es/~{jamacias, castells}

Abstract. Most of the current WWW is made up of dynamic pages. The
development of dynamic pages is a difficult and costly endeavour, out-of-reach
for most users, experts, and content producers. We have developed a set of
techniques to support the edition of dynamic web pages in a WYSIWYG
environment. In this paper we focus on specific techniques for inferring
changes to page generation procedures from users actions on examples of the
pages generated by these procedures. More specifically, we propose techniques
for detecting iteration patterns in users’ behavior in web page editing tasks
involving page structures like lists, tables and other iterative HTML constructs.
Such patterns are used in our authoring tool, DESK, where a specialized
assistant, DESK-A, detects iteration patterns and generates, using Programming
by Example, a programmatic representation of the user’s actions. Iteration
patterns help obtain a more detailed characterization of users’ intent, based on
user monitoring techniques, that is put in relation to application knowledge
automatically extracted by our system from HTML pages. DESK-A relieves
end-users from having to learn programming and specification languages for
editing dynamic-generated web pages.

1 Introduction

Since its emergence in the early 90’s, the WWW has become not only an information
system of unprecedented size, but a universal platform for the deployment of services
and applications, to which more and more activity and businesses have been shifting
for more than a decade. The user interfaces of web applications are supported by a
combination of server-side and client-side technologies, such as CGIs, servlets,
JSP/ASP, XML/XSLT, JavaScript, Flash, or Java applets, to name a few. For most
applications, client-side GUI facilities are not enough or, as in the case of applets,
have unsolved portability problems. Architectural characteristics of web systems
typically bring about an inherent need for not only creating web pages that contain
interactive interface components, but for generating the pages dynamically on servers
or intermediate web nodes. Moreover, using as simple client-side technologies (i.e.
client-side requirements) as possible is usually the preferred approach for businesses

2 José A. Macías and Pablo Castells

for which reaching the widest audience possible is a critical concern. As a matter of
fact, dynamic pages make up the vast majority of the current web ([23] gave an
estimate of 80% in year 2000).

With dynamic web pages, user interfaces can be generated whose contents,
structure, and layout are made up on the fly depending on application data or state,
user input, user characteristics, and any contextual condition that the system is able to
represent. However the development of dynamic pages is a quite complex task that
requires advanced programming skills. The proliferation of tools and technologies
like the ones mentioned above require advanced technical knowledge that domain
experts, content producers, graphic designers or even average programmers usually
lack. Development environments have been provided for these technologies that help
manage projects and provide code browsing and debugging facilities, but one still has
to edit and understand the code. As a consequence, web applications are expensive to
develop and often have poor quality, which is currently an important hurdle for the
development of the web.

The research we present here is an effort to leverage these problems by
developing Programming By Example (PBE) techniques [5, 9, 16] to allow regular
users, with minimum technical skills, to edit dynamic web pages. Our work can be
situated in the End-User Development (EUD) area [19], concerned with enabling a
non-expert user to deal with a software artifact in order to modify it easily. Many
WYSIWYG tools are available today for the construction of static HTML pages, but
is it not clear how procedural constructs, like the ones needed for creating dynamic
web pages, can be defined within the WYSIWYG principle. Our proposal consists of
letting the user edit the product of the page generation procedures, i.e. one or more
examples of the type of dynamic pages that will be generated at runtime, and build a
system that is able to generalize the actions of the user on the examples, and modify
the page generation procedure accordingly.

We have worked our proposal through the development of a purely WYSIWYG
authoring tool, DESK [10, 11, 12], which supports the customization of page
generation procedures in an editing environment that looks like an HTML editor from
the author point of view. With DESK, users edit dynamic pages produced by an
automatic page generation system; DESK keeps track of all user’s actions on edited
documents, finds a semantic meaning to the editing actions, and carries the changes to
the page generation system. A differential aspect of our approach with respect to
previous PBE techniques is the explicit use of an application-domain model, based on
ontologies, to help characterise the user’s actions in relation to system objects and
interface components. Semantic relationships between application objects underlying
HTML constructs are used by DESK to trace back the inverse path from generated
pages up to the generation procedure.

In this paper we focus on the inference mechanisms by which DESK infers the
user’s intent, by means of data models and characterizations of user actions. A
particularly interesting and complex problem to make sense of the user’s actions is
when the user manipulates complex layout structures made of tables, lists, trees, or
combinations thereof. The need for these layout primitives is unavoidable in any but
most trivial HTML pages and, when it comes to dynamic pages, they are often used in
correspondence to application information structures. A specialized assistant, DESK-
A, attempts to find out iteration patterns in the user behavior when s/he handles these

Finding Iteration Patterns in Dynamic Web Page Authoring 3

structures, in order to infer the user’s intent and provide with assistance in addressing
complex high-level tasks. An iteration pattern involves –and provides a means to
correlate– a layout structure, application information structures, and a likely structure
in user’s actions. How to correctly identify and find the relation between these three
parts of the equation is a problem addressed by the work presented here.

This paper is organized as follows: Section 2 describes how our system deals with
iteration patterns as well as the metrology used for extracting and classifying different
types of patterns. Additionally, an specific case of use will be presented and deployed
throughout the paper in order to show how DESK-A works and finds out iteration
patterns from user actions. Section 3 describes related work on EUD and PBE
systems that mostly exploit user monitoring techniques. Finally, in Section 4, some
conclusion will be provided.

2 Iteration patterns

Iteration patterns can be though of as a generalization of common user actions that
can appear more than once, so that they can be used to apply similar behavior on
future interaction. Iteration patterns help be able for the system to suggest the user to
achieve cumbersome tasks on her behalf.

Action 1Action 1

Action 2Action 2

Action NAction N
…

End-User User Actions User Interface Domain Model

User Monitoring

History of User Actions
(Enriched with semantics)

Inference Engine.
Detecting Iteration Patterns

Providing the user
with help/assistance

DESKDESK--AA

Action 1Action 1

Action 2Action 2

Action NAction N
…

End-User User Actions User Interface Domain Model

User Monitoring

History of User Actions
(Enriched with semantics)

Inference Engine.
Detecting Iteration Patterns

Providing the user
with help/assistance

DESKDESK--AA

Fig. 1. Our approach. The end-user interacts with the system that extracts information from her
actions. A domain model is in turn used to create a detailed history of user actions enriched
with semantics from the domain model. Finally DESK processes all this information to detect
high-level tasks on the monitoring model, in order to provide the end-user with assistance at the
interaction.

4 José A. Macías and Pablo Castells

In order to address iteration patterns, our approach needs the system to record the
user’s actions by building a specialized monitoring model. The monitoring model can
be regarded as a built-in low-level task model, where all the actions the user achieves
on the web interface are stored and enriched with add-on implicit information about
the interface itself. This way, one of the advantages in using a monitoring model is
that a semantic history of user actions can be built in real time. Therefore in our
approach the system analyses and manages such history to find iteration patterns.

Fig. 1 shows how the system tracks the user’s actions and then uses domain
information to generate a semantic history. Such history is in turn added on with
references of the interface’s components as well as with internal annotations. The
system also detects and models presentation structures like tables and selection lists.
An inference engine (i.e. DESK-A) processes the history of user actions and detects
iteration patterns than can be applied to assist the user. Finally the system provides the
end-user with help and performs task as a user’s surrogate.

2.1 Detecting iteration patterns

Detecting iteration patterns consists of analyzing the history of user actions (i.e. the
monitoring model) to find out meaningful information about the user’s high level
tasks. To carry out this challenge, the system implements a set of heuristics for
finding relationships between the user’s actions and the interface’s presentation
elements (i.e. widgets) than are being manipulating by the end-user in the interaction.
The system detects linear relationships between the geometry features of the widgets
and, basically, divides interaction patterns into two different categories: regular
pattern and non-regular patterns.

Regular patterns are meant to be iteration sequences on certain widget attributes
that define linear relationships between the widget’s features (such as table columns
and rows, selection list items and so on), whereas non-regular patterns are meant to be
iteration sequences without regular relationships (i.e. no linear relationships can be
found out) between widget attributes, and they have to be tackled apart.

Regular patterns
Regular patterns are detected and processed by means of specialized heuristics called
Iteration Patterns Algorithms (hereafter IP Algorithms). IP Algorithms are a set of
algorithms specialized in studying widgets geometry and extracting specific
properties about them. Such properties will help find suitable iteration masks for
copying elements automatically from one widget into another, holding the same
domain model properties and mappings.

Fig. 2 shows two snapshots of DESK environment where a transformation of
widgets takes place. This example will be used throughout the paper to put into
context the algorithms for dealing with iteration patterns. That figure depicts how the
user is attempting to copy elements from a selection list into a table previously
created. After a couple of intents, DESK asks the user for confirmation to transform
the selection list into a table, and finally the tool accomplishes the transformation.
Therefore, it results in removing the list and replacing it by a table which has the same
number of items and internal domain model mappings.

Finding Iteration Patterns in Dynamic Web Page Authoring 5

Fig. 2. Two snapshots from DESK. The scenario depicts an automatic transformation from a
selection list into a table. The system detects the user’s intent while s/he copies elements from a
selection list into a table (left window), so the system suggests her (central message box) to
convert the whole list into a table automatically (right window after the end-user has accepted
the suggestion)

There are several IP Algorithms that can are applied depending on the type of the
widget the system deals with. A sample code of one of these algorithms (inspired in
Fig. 2) for managing transformation of tables and selection lists is as follows:

IP_Algorithm (Widget W1, W2, Set TG) {
 ColumnSequence = A.getColumnSequence(W2);
 RowSequence = A.getRowSequence(W2);
 ElemIndexSequence = A.getElementIndexSequence(W1);
 ColJumpSet = ColSequence.getColJumpSet();
 RowJumpSet = RowSequence.getRowJumpSet();
 ColShiftSet = BuildColShiftSet(ColumnSequence,
 ColJumpSet,RowJumpSet);
 RowShiftSet = BuildRowShiftSet(RowSequence,
 ColJumpSet,RowJumpSet);
 Iterator = BuildIterator(W2.getBounds(),
 TG, ColShiftSet, RowShiftSet,
 ElemIndexSequence);
 ...
 While (Iterator.hasNext()) {
 i = Iterator.getNexti(i);
 j = Iterator.getNextj(j);
 k = Iterator.getNextk(k);
 W2.setElementAt(i,j,W1.getElementAt(k));
 }
}

W1 represents the source widget (i.e. a selection list) and W2 is the destination one (i.e.
a table). TG contains information about the widget’s properties (i.e. number of fixed
columns and rows). A is a set that stores information about actions that concern the

6 José A. Macías and Pablo Castells

process of copying elements from one widget into another. This set is very useful in
order to obtain common properties about the widget’s manipulation sequence (for
example, the column insertion sequence of elements into a table), as well as to obtain
an abstract model about the widgets are being manipulated by the user throughout the
interaction. Properties stored in A can be accessed by means of specialized methods:

– A.getSize(Widget)
– A.getElementIndexSequence (Widget)
– A.getColumnSequence(Widget)
– A.getRowSequence (Widget)
– A.getElementAt(Widget,i[,j])
– A.getID(Widget)
– A.getClassName(Widget)
– A.getObjectName(Widget)
– A.getExistsRelation(Widget1,Widget2)

The main goal of above operators is to provide the inference engine with
information about the widget (and its properties), such as the size of a given widget,
the insertion sequence of elements (index, column and row), the class and the object’s
names as they appear in the domain model, and the existing relationships between the
source widget and the destination one. Therefore it is be able for the engine to build-
in an iteration mask (Iterator) which provides with a mechanism for copying
automatically elements from the source widget to the destination one, and adapting
the properties of the destination widgets as the original one appears in the underlying
models of the interface.

Fig. 3 depicts an example (based on Fig. 2) as the result of executing the above
algorithm for copying elements from the selection list into the table. As shown in this
figure, ColumnSequence and RowSequence sets store the insertion sequence
achieved at each user step on the table. On the other hand, ElemIndexSequence
stores the followed-up sequence of item selection on the selection list. Furthermore,
the IP Algorithm calculates the column (ColJumpSet) and the row (RowJumpSet)
jump’s sets by processing A. The algorithm also detects whether the insertion is
carrying out either on rows or columns by comparing both jump sets. This way, if
RowJumpSet is greater (in size) than ColJumpSet, the insertion is achieved by
iterating the rows, if not the insertion is achieved by iterating the columns. Otherwise,
if both sets have the same size, special considerations has to be taken since there is a
straight linear relationship between row and column on the insertion sequence. Next
an increment mask is calculated for columns (ColShiftSet) and rows
(RowShiftSet) by using an operator, namely ∆Average defined in equation (1).

Finding Iteration Patterns in Dynamic Web Page Authoring 7

RowSequence = {1,1,1,3,3,3} ColumnSequence = {2,4,6,2,4,6}
RowJumpSet = {4} {=> Row-Based Insertion} ColJumpSet = {2,3,4,5,6}
ElementIndexSequence = {1,2,3,4,5,6} ∆Average (ElementIndexSequence,1,6) = 1

∆Average (RowSequence,1,2) = ∆Average {1,1} = 0 ∆Average (ColunmSequence,1,2) = ∆Average {2,4} = 2
∆Average (RowSequence,2,3) = ∆Average {1,1} = 0 ∆Average (ColunmSequence,2,3) = ∆Average {4,6} = 2
∆Average (RowSequence,3,4) = ∆Average {1,3} = 2 ∆Average (ColunmSequence,4,5) = ∆Average {2,4} = 2
∆Average (RowSequence,4,5) = ∆Average {3,3} = 0 ∆Average (ColunmSequence,5,6) = ∆Average {4,6} = 2
∆Average (RowSequence,5,6) = ∆Average {3,3} = 0

RowShiftSet = {(Row:1),0,0,2,0,0} ColShiftSet = {(Col:2),2,2,#,2,2}

X5 X6

X1 X2

X4

X3

TableSelection List
1

....
2 3 4 5 6 N...

1

2

3

...

M

Fig. 3. Execution of an IP Algorithm for a table and a selection list. Before transforming the
selection list intro a table, the system generates specific sets that store information concerning
the rows and columns involved as well as the jump sequence’s sets. Finally, a couple of
iteration masks are calculated for both column and row, those intended to create an automatic
iteration process for carrying out the transformation among widgets

⎪⎩

⎪
⎨
⎧

−
−

=
⎪⎩

⎪
⎨
⎧

≤

>
−

−++−+−
=∆

−

,0

,
1

1,0

1,
1

)(...)()(
),...,,,(

112312

321 n
xx

n

n
n

xxxxxx
xxxx

nnn

nAverage (1)

Equation (1) represents an operator that calculates the average sequence of
jumps. The operator is applied to obtain a couple of masks (ColShiftSet and
RowShiftSet sets) which include the increments used in the loop for column and
row jumps. Initial positions are also considered at loop starting (Col:2 and Row:1),
resulting in this case as follows: increasing 2 columns for the first time, jumping then
two more rows (# in RowShifSet and 2 in ColShiftSet), next jumping 2
columns, and finally repeating the sequence all over again.

All these sets are finally used to create the iteration index to iterate though the
widgets and to easily complete the iteration sequence previously calculated.

Fig. 4 shows examples of similar transformation processes, where different cases
of tables with different types of insertion sequences are depicted. Those result in
different values for each set depending on widget geometry. As shown, the algorithm
can face correctly a great deal of cases where cut-in columns and rows are detected as
a part of the iteration mask, using & symbol for row-based jumps and # one for
colum-based jumps. Fig. 4 also shows a case where the iteration pattern is defined as
an identity function (i.e. the same number of row jumps than column ones), finely
detected by DESK-A as well.

8 José A. Macías and Pablo Castells

ColunmSequence = {1,3,5,1,2,3,4,5,6,1,3,5}
RowSequence = {1,1,1,2,2,2,2,2,2,3,3,3}

ColJumpSet = {2,3,4,5,6,7,8,9,10,11,12}
RowJumpSet = {4,10} => Row-Based Insertion

ColShiftSet = {(Col:1),2,2,#,1,1,1,1,1,#,2,2}
RowShiftSet = {(Row:1),0,0,1,0,0,0,0,0,1,0,0}

X1 X3
X4 X6 X8 X9

X11 X12

....

X2

X10

X5 X7

 X8

X1
X2
X3
X4

X5
X6
X7

ColunmSequence = {1,1,1,1,3,3,3,3}
RowSequence = {1,2,3,4,1,2,3,4}

ColJumpSet = {5} => Column-Based Insertion
RowJumpSet = {2,3,4,5,6,7,8}

ColShiftSet = {(Col:1),0,0,0,2,0,0,0}
RowShiftSet = {(Row:1),1,1,1,&,1,1,1}

X1 X2 X3 X4 X5
X6 X7 X8 X9 X10

....

ColunmSequence = {1,2,4,5,6,1,2,4,5,6}
RowSequence = {1,1,1,1,1,2,2,2,2,2}

ColJumpSet = {2,3,4,5,6,7,8,9,10}
RowJumpSet = {6} => Row-Based Insertion

ColShiftSet = {(Col:1),1,2,1,1,#,1,2,1,1}
RowShiftSet = {(Row:1),0,0,0,0,1,0,0,0,0}

....

X1
X2

X3

ColunmSequence = {1,2,3}
RowSequence = {1,2,3}

ColJumpSet = {2,3} => Row-Based Insertion
RowJumpSet = {2,3} => Column-Based Insertion

ColShiftSet = {(Col:1),1,#} = {1}
RowShiftSet = {(Row:1),1,&} = {1}

Fig. 4. Some examples of iteration patterns. These examples are generated using IP Algorithms,
as it depicted in Fig. 3. So that Figure shows the iteration patterns for copying elements to the
table as well as the sets generated for achieving the final transformation among the selection list
and the table.

Non-regular patterns
Unfortunately it is not always able to create an iteration pattern that best fits a
sequence started by the user. Actually, when the system is not able to find out linear
relationships in iterative sequences on widget geometry then had-hoc or specific-
purpose iteration patterns have to be considered.

The system faces the challenge of non-regular patterns by allowing the user to
create a pool of pre-defined iteration patterns. Therefore s/he can customize the
design and tell the system how to resolve the iteration in order to accomplish the
transformation successfully. The pool of non-regular patterns can be included in the
engine configuration, specifying the behavior for how the assistant (i.e. DESK-A) has
to deal with each type of widget.

Fig. 5 shows an example of two iteration patterns that can be defined in the non-
regular part of the DESK-A configuration file (see Section 2.2). This example reflects
non-regular patterns where linear relationships are hard to find out, since there is not a

Finding Iteration Patterns in Dynamic Web Page Authoring 9

straight relationship among the widget’s attributes (i.e. column and row insertion
sequences), so that IP Algorithms cannot be applied directly.

X1
X2 X3

X4

....

X1 X2 X3
X4 X5 X6

....

Fig. 5. Two examples of non-regular iteration patterns detected while copying elements from a
selection list into a table. Here the relationship between rows and columns is not easy to find
out since non linear sequences make IP Algorithms unlikely to deal with those cases. Anyway,
those kinds of patterns are not usual to find in mostly common practice, so that a customized
pool of predefined patterns is enough in order for the system to tackle non-regular patterns.

2.2 DESK-A

DESK-A (DESK-Agent) is a specialized inference assistant for finding out high level
tasks (i.e. changes) related to the user’s actions. DESK-A is based on the idea of the
Information Agent [1] focused on wrappers paradigm [8, 16]. By contrast, in our
approach the agent searches the monitoring model, which has an explicit semantic
representation of the user’s actions, rather than searching the HTML code directly.
Therefore it is able for DESK-A to activate more complex heuristics [13] in order to
find out transformation of presentation widgets, such as transforming a combo box
into a table or transforming a table into a selection list. DESK-A can also infer more
complex intents such as sorting a selection list and copying attributes from one table
cell into another [13].

DESK-Agent detects and manages both regular and non-regular patterns by
monitoring the user input. Basically, DESK-Agent comprises three main states:
– pre-activation: where the agent checks up the monitoring model for detecting high

level tasks. This depends on the configuration set.
– activation: where the agent searches for specific widget values on the monitoring

model once is pre-activated. Here, DESK-A analyzes in-depth the history of user
actions and makes up different models for each widget involved in the interaction.

– execution: where the agent executes the transformations taking into account the
values found at the activation step.
DESK-Agent searches the monitoring model for primitives that better fit the

requirements defined at its configuration. The agent can be set-up by defining a
configuration file at client-side. That configuration reflects the agent’s behavior:

<TransformationHint>
 ...
 <widget type="List" changeTo="Table">
 <Condition action="Creation"

10 José A. Macías and Pablo Castells

 widget="Table" />
 <Condition action=”PasteFragment"
 from="Table" to="List" />
 <Non_Regular_Pattern_Pool>
 <Pattern col_sequence=“1,1,2,2”
 row_sequence=“1,2,2,3”
 elem_sequence=“1,2,3,4”>
 <Resolve i=“from 1 to List.getSize(); i++1”
 next_col_sequence=“col[i],col[i]”
 next_row_sequence=“row[i],row[i+1]”
 next_elm_sequence=“elm[i]” />
 </Pattern>
 <Pattern col_sequence=“1,2,3,2,3,4”
 row_sequence=“1,1,1,2,2,2”
 elm_sequence=“1,2,3,4,5,6”>
 <Resolve
 next_col_sequence=“3,4,5,4,5,6,...”
 next_row_sequence=“3,3,3,4,4,4,...”
 next_elm_sequence=“7,8,9,10,11,...” />
 </Pattern>
 ...
 </Non_Regular_Pattern_Pool>
 </widget>
 ...
</TransformationHint>

The above code is a fragment of the DESK-A configuration, where
<TransformationHint> elements are pre-activation directives the agent will
check for arranging transformations between both widgets (<widget>), in that case
a selection list (type="List") and a table (changeTo="Table"). Furthermore,
DESK-A checks the creation status (action="Creation") of the table, as
reflected in <Condition> elements, and analyses the copy sequence of elements
(action=”PasteFragment") from the table into the selection list, making up
dependences between the two widgets.

When all these prerequisites are satisfied, the agent executes transformation
heuristics for detecting iteration patterns (see IP Algorithms at regular patterns
Section) by selecting meaningful information from the monitoring model. Finally, the
process results in transforming the widgets and keeping the same structure that holds
the source widget by firstly asking the user for confirmation.

DESK-Agent also deals with non-regular patterns by allowing the user to create a
pool of pre-defined iteration pattern (<Pattern> element inside
<Non_Regular_Pattern_Pool>, at agent configuration code). This way
DESK-A completes and resolves (<Resolve> element) the iteration sequence in
order to accomplish the transformation successfully. Non-regular patterns are
represented by using an indexed-construction, defining a for-like loop to iterate
trough columns, rows and selection list items (<Resolve i=“from 1 to
List.getSize(); i++1”). Furthermore DESK-A allows a numerical

Finding Iteration Patterns in Dynamic Web Page Authoring 11

representation of iteration sets (<Resolve next_col_sequence =
“3,4,5,4,5,6,...”) for column, row and item indexes. This kind of
specification becomes more natural and easy-to-understand for non-expert users.

3 Related work

One of the main limitations of early PBD systems that monitor actions [5] is that they
are too literal. Some of these systems replay a sequence of actions at the keystroke
and mouse-click level, without taking any account of context or attempting any kind
of generalization. By contrast, later works are based on recording the user’s actions at
a more abstract level and making explicit attempts to generalize them. However, they
have been demonstrated only in special, non-standard, often tailor-made software
environments (see [9]).

Our approach aims at providing PBD techniques for domain-independent web-
based interfaces, focused on dealing with high level tasks where different domains
have been proposed in order to evaluate the level of trust of the tool. DESK-A is
comparable to Predictive Interfaces [6] and Learning Information Agents [1]
approaches, where the system observes the user while she interacts with the
environment. These approaches assist the user by predicting and suggesting some
commands to carry out tasks automatically.

Eager [5] is one of the most famous PBD attempts to bring together PBD and
Predictive Interfaces. Eager is a Macintosh-based assistant which detects consecutive
occurrences of a repetitive task, thus Eager proposes the user to complete the loop
automatically. The loop is inferred by observing the user’s actions. Eager needs the
user to enter two consecutive tasks. This becomes a limitation since occurrences do
not have to appear consecutive.

Familiar [22] overcomes some Eager’s limitations but it also does not address the
previous mentioned problem. Other works, like APE and SMARTEdit (both
described in [9]) attempt to solve this difficulty by using machine-learning
mechanisms in order to learn efficiently and rapidly when to make a suggestion and
which sequence of actions to suggest to the user.

DESK-A analyses the monitoring model, regardless of the number and the
sequence of user actions, and finds meaningful high-level information about the
user’s intents. DESK-A does not need to learn about the user’s behavior and operates
in-real time, without the necessity of machine-learning algorithms. As well as
Familiar, DESK-A is domain-independent, but in DESK-A the domain information is
used in order to enhance the inference process.

Some Lieberman’s earlier work like Mondrian (described in [5]) was based on
AppleScript to monitor the user and control applications, but it does not exploit its
domain independence and high-level application knowledge. Similarly, in TELS [17]
the system takes into account the user’s actions, inferring iteration patters for
addressing loops and conditions. TELS enables the end-user to meet the inference
process, by asking for her opinion. In DESK-A, the system avoids the user from
having to make assumptions of the inference mechanism, the PBE-based inference
process is being as transparent as possible.

12 José A. Macías and Pablo Castells

The use of data models was already present in PBE systems like Peridot [16] and
HandsOn [3]. In a very simple form, Peridot enables the user to create a list of sample
data to construct lists of user interface widgets. The data model in Peridot consists of
lists of primitive data types. In HandsOn, the interface designer can manipulate
explicit examples of application data at design-time to build custom dynamic displays
that depend on application data at run-time. Our view in this regard is that it is
interesting to lift these restrictions and support richer information structures. To this
end, DESK-A uses ontology-based domain information for user intent
characterization.

Concerning EUD related work, there has been interesting approaches during last
two years. WebRevenge [20] makes the reverse path of a web page. WebRevenge
generates a CCTT (ConCurTaskTrees, see [21]) based task model by analyzing the
interaction as well as the web interface elements: tags and links. WebRevenge works
together with TERESA [15], an abstract authoring tool for modeling applications
from CCTT based task models. TERESA makes the straight engineering and
WebRevenge the reserve one, in order to carry through an approach that allows for
migration to different platforms. By contrast DESK is intended to assist the user while
s/he interacts with the system rather than using it as a multi-modal generation system.
DESK also takes into account user interaction and, in addition, an ontological data
model as well as information extracted from the interaction. DESK uses a low-level
task model rather than a CCTT based task model, where interface objects, domain
information and user actions are embedded to enrich the semantic of the monitoring
model.

Another interesting work also closely tied to EUD paradigm is LAPIS [14].
LAPIS is a web scraper that allows for rendering high conceptual level information by
means of a pattern library using a simple web browser. LAPIS parsers the HTML and
transforms tag and link level elements into conceptual representations that help end-
user understand web information easily. As well as LAPIS, DESK parsers HTML and
characterizes information from the page by using a data model. By contrast DESK
enables the user to authoring the web page, so the user’s actions are taking into
account and analyzed as an important step of the process.

Personal Wizards [2] is also a great contribution to EUD as a PBE-based system.
This approach tracks user actions and records interaction from an expert. The system
generates a wizard in order to guide a non-expert user throughout the application.
Personal Wizards are intended to help users configure Windows based applications
easily.

4 Conclusions

We have presented an approach for inferring the user’s intents in a WYSIWYG web-
based authoring environment. Our approach is based on PBE strategies such as
monitoring the user during the interaction. In addition our system features data
models for enriching the user’s actions with semantics. We have also reported on a
model-based representation of user actions for detecting and processing iteration
patterns.

Finding Iteration Patterns in Dynamic Web Page Authoring 13

Our authoring environment, DESK, features a specialized assistant, namely
DESK-Agent detects the user’s high level tasks throughout the interaction and
executes heuristics to achieve transformations on presentation widgets for automating
iterative tasks. DESK-A checks up on pre-activation condition and searches the
monitoring model for obtaining meaningful information about widget characteristics.
Therefore IP Algorithms exploit widget models to build an iterator for moving
elements from one widget to another. This automates a great deal of transformation
processes and provides the user with assistance to complete iterative tasks on her
behalf. Furthermore, DESK-A can deal with non-regular patterns by defining a pool.
This information is part of the agent configuration and can be set-up by the user. This
allows to build more sophisticated patterns for automatically DESK-A to address.

The main idea of DESK-A is to provide with an assistant to help end-user carry
out different, somehow hard to achieve, kind of actions in editing web pages.
However, this mechanism can be extended for increasing productivity in user
interaction by means of providing non-expert user with continuous assistance in her
daily solving activities with computer applications as well as generating programming
code without the necessity of learning programming or specification languages. This
challenge can be carried through by exploiting the monitoring and semantic detection
strategies. The main goal is to assist the user in a great deal of different scenarios,
such as classical interface builders and toolkits, authoring tools for generating model-
based user interfaces and, in general terms, programming environments. To this
purpose, the abstract mechanism of pattern detection can be extended and new IP
Algorithms can be created, in order for other kind of user intents to be detected by the
system regardless of the domain and the interface used.

In general terms, DESK works according to EUD paradigm. The authoring tool
helps end-user modify a web page generated by a previous application. This way the
system generates a programmatic model of user actions as a high-level knowledge
representation in order to finally modify the generation procedure of the web page.
The end-user is continuously assisted while s/he interacts with the authoring tool.
DESK ensures the Gentle Slope of Complexity [8] where expressiveness and
complexity of use are balanced by the means of the WYSIWYG environment; low
abstract representation imply low rate of expressiveness but also easy of use.

As DESK-A is based on an ontology-driven domain model [4], it works
regardless of the domain applied. Several scenarios such as educational, travel and e-
shopping have been used in order to evaluate the efficiency of the system. In [13]
there is an experience carried out with end-users in order to evaluate the usability of
DESK as an authoring tool. Although the comments of the results are out of the scope
of this paper, the main outcomes of the experience pointed out the high satisfaction
rate of the user with respect to the tool. This is due to the similarity that the users
perceive with respect to ordinary web editing and browsing tools, but by contrasts
with some add-on mechanisms that allow for editing dynamic web pages and assisting
the user in accomplishing cumbersome tasks.

14 José A. Macías and Pablo Castells

Acknowledgements

The work reported in this paper is being supported by the Spanish Ministry of Science
and Technology (MCyT), project number TIC2002-1948.

References

1. Bauer, M., Dengler, D. and Paul, G. Instructible Information Agents for Web Mining. In
Proceedings of the International Conference on Intelligent User Interfaces (January 9-12,
pp. 21-28, New Orleans, USA, 2000).

2. Bergman, L., Lau, T., Castelli, V. and Oblinger, D.: Personal Wizards: collaborative end-
user programming. In Proceedings of the End User Development Workshop at CHI’2003
Conference (Ft. Lauderdale, Florida, USA. April 5-10).

3. Castells, P. and Szekely, P. Presentation Models by Example. En: Duke, D.J., Puerta A.
(eds.). Design, Specification and Verification of Interactive Systems. Springer-Verlag, pp.
100-116, 1999.

4. Castells, P. and Macías, J.A.: Context-Sensitive User Interface Support for Ontology-
Based Web Applications. Poster Session of the 1st. International Semantic Web
Conference (ISWC’02), Sardinia, Italia; June 9-12th, 2002.

5. Cypher A. (ed.).: Watch What I Do: Programming by Demonstration. The MIT Press,
1993.

6. Darragh, J. J. and Written, I.H.: Adaptive predictive text generation and the reactive
keyboard. Interacting with Computers 3, no. 1:27-50, 1991.

7. Hurst, Matthew Francis: The Interpretation of Tables in Texts. PhD. Thesis. University of
Edinburgh, 2000.

8. Klann, M.: End-User Development Roadmap. In Proceedings of the End User
Development Workshop at CHI’2003 Conference (Ft. Lauderdale, Florida, USA. April 5-
10).

9. Lieberman, H. (ed): Your Wish is my Command. Programming By Example. Morgan
Kaufmann Publishers. Academic Press, USA. 2001.

10. Macías, J.A. and Castells, P. Dynamic Web Page Authoring by Example Using Ontology-
Based Domain Knowledge. In Proceedings of the International Conference on Intelligent
User Interfaces (IUI'03) (Miami, Florida, USA. January 12-15).

11. Macias, J.A. and Castells, P. Using Domain Models for Data Characterization in PBE. In
Proceedings of the End User Development Workshop at CHI’2003 Conference (Ft.
Lauderdale, Florida, USA. April 5-10).

12. Macías, J.A.; Castells, P.: DESK-H: building meaningful histories in an editor of dynamic
web pages. In Proceedings of the 11th Internacional Conference on Human-Computer
Interaction (HCII). Creta, Grece, June 23-27, 2003.

13. Macías, J.A.: Authoring Dynamic Web Pages by Ontologies and Programming by
Demonstration Techniques. PhD. Thesis. Departamento de Ingeniería
Informática. Escuela Politécnica Superior. Universidad Autónoma de Madrid.
September, 2003. http://www.ii.uam.es/~jamacias/tesis/thesis.html.

14. Miller, Rober C.: End User Programming for Web Users. In Proceedings of the End User
Development Workshop at CHI’2003 Conference (Ft. Lauderdale, Florida, USA. April 5-
10).

15. Mori, G., Paternò, F. and Santoro, C.: CTTE: Support for Developing and Analysing Task
Models for Interactive System Design. IEEE Transactions in Sotware Engineering. IEEE
Press. Vol. 28, No.8, pp. 797-813, August 2002.

Finding Iteration Patterns in Dynamic Web Page Authoring 15

16. Myers, B. A. Creating User Interfaces by Demonstration. Academic Press, San Diego,
1988.

17. Mo, D.H.; Witten, I.H.: Learning text editing tasks from examples: A Procedural
approach. Behaviour & Information Technology, Vol. 11, No. 1, pp. 32-45, 1992.

18. Muslea, I. Extraction Patterns for Information Extraction Tasks: A Survey. In Proceedings
of AAAI Workshop on Machine Learning for Information Extraction (Orlando, Florida,
July, 1999).

19. Network of Excellence on End-User Development. http://giove.cnuce.cnr.it/EUD-NET.
20. Paganelli, L., Paternò, F.: Automatic Reconstruction of the Underlying Interaction Design

of Web Applications. Proceedings of the SEKE Conference, pp. 439-445. ACM Press,
Ischia, 2002.

21. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications.
Springer Verlag, 2001.

22. Paynter, G.W.; Witten, I.H.: Automating Iteration with Programming by Demonstration:
Learning the User’s Task. Proccedings of the IJCAIWorkshop on Learning about Users,
16th International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 1999.

23. Sahuguet, A.; Azavant, F.: building Intelligent Web Applications Using
Lightweight Wrappers. Data and Knowledge Engineering, 2000.

24. Shneiderman, B.: Leonardo’s Laptop. The MIT Press, 2003.

