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AUTOMATIC SOLUTION OF SORITES 

M. ALFONSECA 

IBM Madrid Scientific Center, Paseo de la Castellana 4, Madrid (Spain) 

A classical theory of syllogisms is shown that reduces to three-set theoretical inference rules, which have 
been used as the basis to produce a sorites (chain argument) solving programl. 

1 INTRODUCTION 

Western medieval philosophy devoted a 
considerable effort to the development of a 
coherent body of knowledge which has come to 
be denoted as "classical logic", a prominent part 
of which is the theory of syllogisms. Modern 
symbolic logic on the other hand, has followed 
quite a different path, as a consequence of 
which classical logic has come to be an almost 
forgotten discipline, often restricted to high 
school curricula. While ample efforts are being 
exerted to produce a mathematical 
formalization of modern logic, we are still short 
of a comparable approach to classical logic. 

2 CLASSICAL LOGIC 

The elements of classical logic are the 
concepts, judgements and reasonings. 

A concept can be considered as the mental 
representation of a set of objects. A term is the 
word expressing a concept; it is the name of the 
set represented by the concept. 

A judgement is .an assertion or negation 
linking two concepts. Its verbal representation 
is called a proposition. 

Let A and B be two terms. They may be 
combined to generate the following 4 classes of 
judgements (and their corresponding 
propositions): 

1. Universal affirmative, expressible 
by means of a proposition of the form: 
"Every A is B". 

2. Universal negative, "No A is B". 
3. Particular affirmative, "Some A 

are B". 
4. Particular negative, "Some A are 

not B". 

Two propositions are called equivalent if 
they express the same logical assertion or 
negation on the same pair of terms. Two 
different types of conversions generate 
equivalent propositions, namely: 

(a) Contradictory conversion. 

* "Every A is B" is equivalent to "No not 
B is A". 

* "Some A are not B" is equivalent to 
"Some not B are A". 

This conversion is called contradictory 
because the structure of the phrase changes. In 
the first case, a universal affirmative 
proposition becomes a universal negative one. 
In the second case, a particular negative 
proposition is transformed into a particular 
positive one. In both cases, besides, one of the 
terms becomes negated by the process of 
conversion. 

(b) Perfect conversion. 

* "No A is B" is equivalent to "No B is A". 
* "Some A are B" is equivalent to "Some 

B are A" 
This conversion is called perfect, because 

the structure of the phrase in both equivalent 
propositions remains the same, the only 
difference being a transposition of their two 
terms. 

Two propositions are called contradictory 
if they cannot be concurrently true or false. Two 
different cases occur: 

* "Every A is B" versus "Some A are 

not B".  

* "No A is B" versus "Some A are B". 

Two propositions are called contrary if they 
can be false at the same time, but they cannot be 
concurrently true. 

* "Every A is B" versus "Every A is not 
B". 

Two propositions are called subcontrary if 
they cannot be concurrently false. (They can be 
true at the same time). 

"Some A are B" versus "Some A are 
not B". 

Two propositions P and Q are called 
subaltern if the following holds: 

 P is true → Q is true 



 Q is false → P is false 
* "Every A is B" versus "Some A are B". 

A syllogism is the process of derivation of a 
new proposition out of two given propositions 
involving three different terms. As every proposi-
tion involves precisely two terms, one and only 
one of the three terms in the syllogism must 
appear twice, precisely once in each proposition. 
The solution of the syllogism, if any, is a new 
proposition involving the remaining two terms. 

The two propositions of a syllogism are 
called its premises, while its solution is called the 
conclusion of the syllogism. 

According to whether the premises of a given 
syllogism are affirmative or negative, universal or 
particular, and to the relative positions of the 
common term, different types of syllogisms can 
be considered. Classical logic has made a 
thorough study of all those combinations, with 
the following result: only nineteen different types 
of syllogism give rise to a correct conclusion, that 
is to say only 19 out of all possible combinations 
of premises, generate a correct proposition logi-
cally following from them. These nineteen types 
of syllogisms have received the following 
mnemonic latin names:  

barbara, celarent, darii, ferio, cesare, 
camestres, festino, baroco, darapti, felapton, 
disamis, datisi, bocardo, ferison, bamalip, calemes, 
dimatis, fesapo, fresison. 

A sorites, or chain argument, is a string of n 
propositions (n > 2), involving n + 1 different 
terms. Every term must appear exactly twice, in 
two different propositions, with the exception of 
two terms which must be mentioned only once, 
which are called the extreme terms. No two 
different terms may appear twice in the same 
pair of propositions. The solution of the sorites, 
if any, should involve the extreme terms. 

Obviously, a syllogism is the particular case 
of a sorites when n = 2. 

3 CLASSICAL LOGIC AND SET THEORY 

If a concept can be considered as the mental 
representation of a set of objects, while a judge-
ment is the assertion or negation of a relation 
between two objects. that is to say between two 
sets, it seems reasonable to assume that set 
theory should provide a good tool to the 
mathematical formalization of the theory of 
syllogisms. 

In the following. we shall make use of the 
following symbols of set theory: 

 

⊂ set inclusion 
= set equality 
≠ set inequality 
A’  the complementary set of set A with respect 

to a given universe of discourse 
Φ the empty set 
 
We shall also make use of the following sym-

bols of the logic metalanguage: 
 

∧ Logical "and" 
∨ Logical “or” 
∼ Logical “not” 
→ Implication 
↔ Logical equivalence 

3.1 Mathematical representation of judgements 

Let us now try and express the judgement 
propositions of classical logic in terms of the pre- 
ceding symbology. If we consider terms A and B 
as sets of objects, an assertion such as "Every A 
is B" can undoubtedly be rewritten as "Every 
member of set A is a member of set B", and thus, 
would be equivalent to the expression 

A ⊂ B 

Classical logic usually assumes that an 
assertion of the form "Every A is B" implies the 
existence of A and B. For instance, if "Every 
man is mortal" were true, the existence of at 
least a man would be implied. In the set 
theoretical notation, this would be expressed as 
the assertion that the set of all men is not 
empty. Thus, in order to fully represent all the 
implications of the given proposition, we must 
expand the set theoretical expression in the 
following way: 

(A ⊂ B) ∧ (A≠Φ) 

Obviously, the preceding expression 
includes the assertion B≠Φ as a corollary. 

The proposition "No A is B" can be 
restated as "No member of set A is a member 
of set B", or as "The set intersection of sets A 
and B is the empty set". This can be expressed 
in the following way: 

A ⊂ B’ 

In this case, no assumption is made on the 
existence of either A or B. Thus, the proposition 
"No dragons are lazy" is considered to be true 
even when no dragons exist (the set of all 
dragons is empty). Thus, the preceding formula 
completely expresses the negation "No A is B". 

The proposition "Some A are B" can 
likewise be restated as "Some elements of A are 



elements of B or "The set intersection of A and 
B is not empty", or "It is not true that no A is 
B". The latter being better fitted to our purpose, 
we shall express it with the following notation: 

∼A ⊂ B’ 

In a like manner, the proposition "Some A 
are not B" becomes: 

∼A ⊂ B 

which can be phrased as "Not every A is B", an 
obviously equivalent proposition. 

In the last two cases, A is also supposed 
to be non-empty. However there is no need to 
include an explicit term in the mathematical 
expression, due to the fact that the proposition 
∼A⊂B logically implies A≠Φ. 

Summarizing the preceding discussion, we 
have come to the following results: 

  

"Every A is B"          ↔   (A ⊂ B) ∧ (A≠Φ) 

"No A i s  B"            ↔   A⊂B’ 

"Some A are B"  ↔   ∼A⊂B’ 

"Some A are not B"   ↔   ∼A⊂ B 

Thus, universal and particular propositions 
respectively become assertions and negations on 
set inclusions. 

3.2 Equivalent propositions 

Two propositions should be called 
equivalent if they express the same relation of 
inclusion between the same sets. We shall now 
study the different types of equivalence 
recognized by classical logic, and the 
corresponding set theory equivalences they give 
rise to. 

(a) Contradictory conversion. 

* “Every A is B” is equivalent to “No not 
B is A” becomes: 

(A ⊂ B) ↔  (B’ ⊂ A’) 

* “Some A are not B” is equivalent to 
“Some not B are A” becomes: 

(∼A ⊂ B) ↔  (∼B’ ⊂. A’) 

(b) Perfect conversion. 
* “No A is B” is equivalent to “No B is 

A” becomes: 

(A ⊂ B’)↔ (B ⊂ A’) 

* “Some A are B” is equivalent to “Some 
B are A”  becomes: 

(∼A ⊂ B’) ↔ (∼B ⊂ A’) 

Having in mind that  

(P↔Q] ↔ ([∼P]↔[ ∼Q]),  

where P and Q are any two propositions, is a 
tautology, and calling (if needed) B to B’ (and 
thus B’ to B), all four expressions above can be 
shown to reduce to the single well-known set 

theoretical formula  

 (A ⊂ B) ↔ (B’ ⊂ A’)  

3.3 Opposed propositions  

Let us now look at the different opposed 
propositions recognized by classical logic, 
according to the proposed set theoretical 
notation.  

(a) Contradictory propositions.  

*"Every A is B" versus "Some A are not B" 
becomes:  

 A ⊂ B versus ∼A ⊂ B  
* “No A is B” versus “Some A are B” 

becomes:  

 A ⊂ B’ versus ∼A ⊂ B’  

Thus, contradiction becomes logical 
negation in both cases.  

(b) Contrary propositions.  

* “Every A is B” versus “Every A is not B” 
becomes:  

 ∼A ⊂ B’ versus ∼A ⊂ B  
(c) Subcontrary propositions.  

* “Some A are B” versus “Some A are not 
B” becomes:  

 ∼A ⊂ B’ versus ∼A ⊂ B  

Both contrariness and subcontrariness 
change the second term by its complement with 
respect to the universe of discourse.  

(d) Subaltern propositions.  

* “Every A is B” versus “Some A are B” 
becomes:  

 A ⊂ B versus ∼A ⊂ B’  

Thus, subalternness becomes logical 
negation, plus set complementarization.  

3.4 Syllogisms  



)f 
d 

e

Let P(A, B) be a proposition defining a 
relation between terms A and B. A syllogism 
would be expressed thus:  

Pl(A, B) ∧ P2(A, C) → P3(B, C)  

P1 and P2 are the premises; P3 is the 
conclusion of the syllogism. If we consider all 
the possible combinations of the forms taken by 
P1 and P2, we would find the following cases: 

(a) P1 and P2, are both universal propositions. 
There are only eight possible combinations, 
namely:  

(1a) A⊂B ∧ A⊂C  (lb) A⊂B ∧ A’ ⊂C 

(2a) B⊂A ∧ A⊂C  (2b) B⊂A ∧ A’ ⊂C 

(3a) A⊂B ∧ C⊂A (3b) A⊂B ∧ C⊂A’ 

(4a) B⊂A ∧ C⊂A  (4b) B⊂A ∧ C⊂A’ 

All four cases labelled (b) become 
equivalent to those labelled (a) by means of the 
following conversion steps:  

1. Convert the second premise into the one 
equivalent to it under a perfect conversion.  

2. Replace C’ for C and C for C’.  

Example: case (lb) becomes:  

1. A⊂B ∧ C’⊂A  

2. A⊂B ∧ C⊂A (case 3a).  

Besides, case (3a) becomes the same as 
case (2a), according to the following conversion 
steps:  

1. Change the order of both premises:  

C⊂A ∧ A⊂B  

2. Replace C for B and B for C: 

B⊂A ∧ A⊂C  

In conclusion: there are only three possible 
combinations of universal premises, namely 
those labelled (la) (2a) and (4a) above.  

(b) P1 is universal and P2 is particular. There 
are also eight possible combinations, namely: 

(1c) A⊂B ∧ ∼A⊂C  (ld) A⊂B ∧ ∼A’ ⊂C 

(2c) B⊂A ∧ ∼A⊂C  (2d) B⊂A ∧ ∼A’ ⊂C 

(3c) A⊂B ∧ ∼C⊂A (3d) A⊂B ∧ ∼C⊂A’ 

(4c) B⊂A ∧ ∼C⊂A  (4d) B⊂A ∧ ∼C⊂A’ 

All four cases labelled (d) become equivalent 
to those labelled (c) by means of the same 
conversion steps as those converting cases (b) into 
cases (a). 

In conclusion: there are only four possible 
combinations of one universal and one particular 
premise, namely those labelled (lc), (2c), (3c) and 
(4c) above. 

(c) P1 is particular and P2 is universal. This case 
becomes the preceding one by a permutation of the 
premises. 

(d) Both P1 and P2 are particular propositions. In 
this case no conclusion is possible. 

We shall now try to find the respective 
conclusions in the remaining seven cases, aided by 
the rules of set theory. 

* Case (la) A⊂B ∧ A⊂C 

If A= Φ, nothing follows. 

If A ≠Φ, B∩C≠Φ follows. This is equivalent to 
∼B⊂C’ 

Ergo: 

A⊂B ∧ A⊂C → ∼B⊂C’  (RULE III) 

* Case (2a) 

B⊂A ∧ A⊂C → B⊂C (obviously) (RULE I)  

* Case (4a) B⊂A ∧ C⊂A 

Nothing follows. 

* Case (lc) 

A⊂B ∧ ∼A⊂C → ∼B⊂C (obviously) 
   (RULE II) 

* Case (2c) B⊂A ∧ ∼A⊂C 

Nothing follows. 

* Case (3c) A⊂B ∧ ∼C⊂A 

Nothing follows. 



* Case (4c) 

B⊂A ∧ ∼C⊂A → ∼C⊂B (obviously) 

If we apply contradictory conversion to the three 
propositions in the preceding relation, we get: 

A’ ⊂B’ ∧ ∼A’ ⊂C’ → ∼B’ ⊂C’ 

Replacing now A for A’, B for B’, C for C’, we 
get:  

A⊂B ∧ ∼A⊂C → ∼B⊂C (again RULE II)  
and we have reduced case (4c) into case (lc). 

The conclusion of the preceding discussion 
can be stated as follows: 

All possible cases have been shown to reduce 
to only three rules of inference, namely: 

(RULE I) B⊂A ∧ A⊂C → B⊂C 

 (RULE II) A⊂B ∧ ∼A⊂C → ∼B⊂C 

 (RULE III) A≠Φ ∧ A⊂B ∧ A⊂C → ∼B⊂C’ 

Example: 

Every P is M  

Some S are not M 

Ergo: Some S are not P (Syllogism BAROCO) 

P⊂M ∧ ∼S⊂M ↔ M’ ⊂P’ ∧ ∼M’ ⊂S’ → 
(RULE II) ∼P’⊂S’ ↔ ∼S⊂P 

4 IMPLEMENTATION 

The preceding considerations have been used 
to implement an interactive sorites solving 
program. From the user's point of view, the 
program is invoked by typing SORITES at the 
terminal. A set of propositions are subsequently 
typed. They must be written in the English 
language, and together make up the sorites, the 
solution of which is desired. 

The system may request further information to 
clarify the meaning of some of those propositions. 
Finally, when the user signals completion of the 
list of premises, the system types either the correct 
solution of the sorites, or a message stating its 
inability to find any conclusion. 

The program accepts propositions built 
according to the following scheme: 

Quantifier Subject Verb Predicate 

The following terms are acceptable 
quantifiers: EVERY, NO, SOME, respectively 
corresponding to universal affirmative, universal 
negative, and particular propositions. 

If the quantifier is omitted, EVERY is 
assumed. 

The verb is limited to one of the two forms: 
IS, ARE. It may be followed by NOT, in which 
case, the proposition is taken to be negative. The 
verb is considered as a keyword separating the 
subject from the predicate. 

The subject is that part of the proposition 
limited by the quantifier on the left, and the verb 
on the right. The predicate is that part of the 
proposition to the right of the verb. Both, are 
analyzed for negative particles, and denuded of 
those, final S’s and articles. 

A table is maintained by the program, the 
entries of which are all the subjects and predicates 
(subsequently called terms for briefness) in the 
propositions making up a given sorites. Once a 
term has been preprocessed, a table search is done 
to ascertain whether it has already appeared in 
previous propositions. The comparison algorithm 
may come to one of the following conclusions: 

a) Either an identical term is contained in the 
table. 

b) Or no similar term has been typed before. 

c) Or a similar term is found, in which case 
the user is requested to take a decision as to their 
equivalence. 

In this way, typing errors and slight wording 
differences in the two appearances of the linking 
terms can be accounted for, and a valid conclusion 
may be generated by the program in those cases. 

A proposition is finally converted by the ana-
lyzer into a vector of four numerical quantities, 
namely: 

a) The subject, represented by its index to the 
term table. If a negative particle was found by 
the analyzer within the subject, the sign of the 
index is negated. 

b) The predicate, similarly represented. 

c) A switch indicating whether the 
proposition is universal or particular. 



d) A switch indicating whether the 
proposition is affirmative or negative. 

Examples: 

* Every human being is mortal becomes: 

1  2  1  1 

meaning that a universal affirmative proposition 
links entries numbers 1 and 2 of the term table. 

* Some people who can not read are blind 
becomes: 

-3  4  0  1 

meaning that a particular affirmative proposition 
links entries numbers 3 and 4 of the term table. 
Entry 3 should be negated. 

The term table would contain the following 
entries, once the analysis of the preceding propo-
sitions are complete: 

Entry 1: Human being 

Entry 2: Mortal 

Entry 3: People who can read  

Entry 4: Blind 

The user may include comments (lines begin-
ning by an asterisk) anywhere during the process 
of definition of the premises. These lines are 
ignored by the program. 

Once the user has indicated the completion of 
the list of premises, the analysis program is exit-
ted, and control is transferred to the inference 
program, the data of which is the set of internal 
representations of all the premises, plus the term 
table. The program then tries to select successive 
pairs of propositions with a common term. A given 
pair may give rise to the following conditions: 

a) One of the three inference rules is directly 
applicable. The program computes the conclusion 
of the pair, replaces both propositions by their 
solution in the list, and tries to select another pair.
  

b) One of the three inference rules is 
applicable if one or both premises are replaced by 
equivalent ones under a contradictory or perfect 
conversion. The program executes the replacement 
and goes back to step (a). 

Let a proposition be internally represented by 
the quadruple 

a  b  c  d 

The result of a contradictory conversion, 
according to the rules of set theory, can be shown 
to be: 

-b  -a  c  ∼d 

while the result of a perfect conversion is:  

-b  -a  c  d 

c) No inference rule is applicable in any case. 
The program types the "no conclusion" message 

d) The list of propositions gets reduced to a 
single quadruple. 

A reconversion is then done, using the term 
table, into an English phrase, which is typed at the 
terminal as the conclusion of the sorites. 

Once the program has found the solution (or 
the absence of a solution) of a sorites or syllogism, 
the user may decide either to type in a new chain 
argument, or finish the execution of the program.  

The system is written in APL, and consists of 
157 APL statements. A second version of the pro-
gram accepts and analyzes Spanish phrases.  

5 EXAMPLE 

The following is an example of a session at 
the terminal. In the first place, the nineteen 
classical syllogism types are input to the system. 
In all cases, the conclusion exactly corresponds to 
the one expected, or to the result of applying a 
perfect conversion to it. The remaining examples 
have been taken from Carroll2. 

SORITES 

* Examples taken from classical logic 
* SYLLOGISM BARBARA  *FELAPTON 

Every M is P No M is P 
Every S is M Every M is S 

Ergo: Every S is P Ergo: Some S are not P 

*CELARENT *DISAMIS 

No M is P Some M are P 
Every S is M Every M is S 

Ergo: No S is P Ergo: Some S are P 



*DARII *DATISI 

Every M is P Every M is P 
Some S are M Some M are S 

Ergo: Some P are S Ergo: Some P are S 

*FERIO *BOCARDO 

No M is P Some M are not P 
Some S are M Every M is S 

Ergo: Some S are not P Ergo: Some S are mot P  

*CESARE  *FERISON 

No P is M  No M is P 
Every S is M Some M are S 

Ergo: No P is S Ergo: Some S are not P  

*CAMESTRES  *BAMALIP 

Every P is M  Every P is M  
No S is M Every M is S 

Ergo: No P is S Ergo: Every P is S 

*FESTINO *CALEMES 

No P is M Every P is M  
Some S are M No M is S 

Ergo: Some S are not P Ergo: No P is S 

*BAROCO *DIMATIS 

Every P is M Some P are M 
Some S are not M  Every M is S 

Ergo: Some S are not P Ergo: Some S are P 

*DARAPTI  *FESAPO 

Every M is P  No P is M  
Every M is S Every M is S 

Ergo: Some P are S Ergo: Some S are not P 

*FRESISON  

No P is M 
Some M are S  

Ergo: Some S are not P 

* EXAMPLES TAKEN FROM 'SYMBOLIC LOGIC', BY 
LEWIS CARROLL 

Every soldier is able to walk  
Some children are not soldiers 

No conclusion 

Every soldier is a strong man  
Every soldier is brave 

Ergo: Some strong man are brave 

Every well-fed lark is a powerful singer  
No powerful singer is gloomy 

Ergo: No well-fed lark is gloomy 

Some dreams are terrible  
No lamb is terrible 

Ergo: Some dream are not lamb 

Children are illogical people 
No man who knows how to handle a crocodile is despised 
Illogical people are despised 

Ergo: No children is man who know how to handle crocodile 

A buffalo is an animal able to push you through a wall 
A donkey is unhorned 
No unhorned animal is able to push you through a wall  

With able to push you through wall, do you mean 
Animal able to push you through wall? 
Yes 
With unhorned animal, do you mean 
Unhomed? 
Yes 
Every not buffalo is a kicking animal  

No phlegmatic animal is easy to swallow  

With phlegmatic animal, do you mean  
Kicking animal?  
No  

A kicking animal is a phlegmatic animal  

Ergo: No donkey is easy to swallow  
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