

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Kybernetes 9.1 (1980): 37 – 44

DOI: http://dx.doi.org/10.1108/eb005540

Copyright: © 1980 MCB UP Ltd

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1108/eb005540

AUTOMATIC SOLUTION OF SORITES

M. ALFONSECA

IBM Madrid Scientific Center, Paseo de la Castellana 4, Madrid (Spain)

A classical theory of syllogisms is shown that reduces to three-set theoretical inference rules, which have
been used as the basis to produce a sorites (chain argument) solving programl.

1 INTRODUCTION

Western medieval philosophy devoted a
considerable effort to the development of a
coherent body of knowledge which has come to
be denoted as "classical logic", a prominent part
of which is the theory of syllogisms. Modern
symbolic logic on the other hand, has followed
quite a different path, as a consequence of
which classical logic has come to be an almost
forgotten discipline, often restricted to high
school curricula. While ample efforts are being
exerted to produce a mathematical
formalization of modern logic, we are still short
of a comparable approach to classical logic.

2 CLASSICAL LOGIC

The elements of classical logic are the
concepts, judgements and reasonings.

A concept can be considered as the mental
representation of a set of objects. A term is the
word expressing a concept; it is the name of the
set represented by the concept.

A judgement is .an assertion or negation
linking two concepts. Its verbal representation
is called a proposition.

Let A and B be two terms. They may be
combined to generate the following 4 classes of
judgements (and their corresponding
propositions):

1. Universal affirmative, expressible
by means of a proposition of the form:
"Every A is B".

2. Universal negative, "No A is B".
3. Particular affirmative, "Some A

are B".
4. Particular negative, "Some A are

not B".

Two propositions are called equivalent if
they express the same logical assertion or
negation on the same pair of terms. Two
different types of conversions generate
equivalent propositions, namely:

(a) Contradictory conversion.

* "Every A is B" is equivalent to "No not
B is A".

* "Some A are not B" is equivalent to
"Some not B are A".

This conversion is called contradictory
because the structure of the phrase changes. In
the first case, a universal affirmative
proposition becomes a universal negative one.
In the second case, a particular negative
proposition is transformed into a particular
positive one. In both cases, besides, one of the
terms becomes negated by the process of
conversion.

(b) Perfect conversion.

* "No A is B" is equivalent to "No B is A".
* "Some A are B" is equivalent to "Some

B are A"
This conversion is called perfect, because

the structure of the phrase in both equivalent
propositions remains the same, the only
difference being a transposition of their two
terms.

Two propositions are called contradictory
if they cannot be concurrently true or false. Two
different cases occur:

* "Every A is B" versus "Some A are

not B".

* "No A is B" versus "Some A are B".

Two propositions are called contrary if they
can be false at the same time, but they cannot be
concurrently true.

* "Every A is B" versus "Every A is not
B".

Two propositions are called subcontrary if
they cannot be concurrently false. (They can be
true at the same time).

"Some A are B" versus "Some A are
not B".

Two propositions P and Q are called
subaltern if the following holds:

 P is true → Q is true

 Q is false → P is false
* "Every A is B" versus "Some A are B".

A syllogism is the process of derivation of a
new proposition out of two given propositions
involving three different terms. As every proposi-
tion involves precisely two terms, one and only
one of the three terms in the syllogism must
appear twice, precisely once in each proposition.
The solution of the syllogism, if any, is a new
proposition involving the remaining two terms.

The two propositions of a syllogism are
called its premises, while its solution is called the
conclusion of the syllogism.

According to whether the premises of a given
syllogism are affirmative or negative, universal or
particular, and to the relative positions of the
common term, different types of syllogisms can
be considered. Classical logic has made a
thorough study of all those combinations, with
the following result: only nineteen different types
of syllogism give rise to a correct conclusion, that
is to say only 19 out of all possible combinations
of premises, generate a correct proposition logi-
cally following from them. These nineteen types
of syllogisms have received the following
mnemonic latin names:

barbara, celarent, darii, ferio, cesare,
camestres, festino, baroco, darapti, felapton,
disamis, datisi, bocardo, ferison, bamalip, calemes,
dimatis, fesapo, fresison.

A sorites, or chain argument, is a string of n
propositions (n > 2), involving n + 1 different
terms. Every term must appear exactly twice, in
two different propositions, with the exception of
two terms which must be mentioned only once,
which are called the extreme terms. No two
different terms may appear twice in the same
pair of propositions. The solution of the sorites,
if any, should involve the extreme terms.

Obviously, a syllogism is the particular case
of a sorites when n = 2.

3 CLASSICAL LOGIC AND SET THEORY

If a concept can be considered as the mental
representation of a set of objects, while a judge-
ment is the assertion or negation of a relation
between two objects. that is to say between two
sets, it seems reasonable to assume that set
theory should provide a good tool to the
mathematical formalization of the theory of
syllogisms.

In the following. we shall make use of the
following symbols of set theory:

⊂ set inclusion
= set equality
≠ set inequality
A’ the complementary set of set A with respect

to a given universe of discourse
Φ the empty set

We shall also make use of the following sym-

bols of the logic metalanguage:

∧ Logical "and"
∨ Logical “or”
∼ Logical “not”
→ Implication
↔ Logical equivalence

3.1 Mathematical representation of judgements

Let us now try and express the judgement
propositions of classical logic in terms of the pre-
ceding symbology. If we consider terms A and B
as sets of objects, an assertion such as "Every A
is B" can undoubtedly be rewritten as "Every
member of set A is a member of set B", and thus,
would be equivalent to the expression

A ⊂ B

Classical logic usually assumes that an
assertion of the form "Every A is B" implies the
existence of A and B. For instance, if "Every
man is mortal" were true, the existence of at
least a man would be implied. In the set
theoretical notation, this would be expressed as
the assertion that the set of all men is not
empty. Thus, in order to fully represent all the
implications of the given proposition, we must
expand the set theoretical expression in the
following way:

(A ⊂ B) ∧ (A≠Φ)

Obviously, the preceding expression
includes the assertion B≠Φ as a corollary.

The proposition "No A is B" can be
restated as "No member of set A is a member
of set B", or as "The set intersection of sets A
and B is the empty set". This can be expressed
in the following way:

A ⊂ B’

In this case, no assumption is made on the
existence of either A or B. Thus, the proposition
"No dragons are lazy" is considered to be true
even when no dragons exist (the set of all
dragons is empty). Thus, the preceding formula
completely expresses the negation "No A is B".

The proposition "Some A are B" can
likewise be restated as "Some elements of A are

elements of B or "The set intersection of A and
B is not empty", or "It is not true that no A is
B". The latter being better fitted to our purpose,
we shall express it with the following notation:

∼A ⊂ B’

In a like manner, the proposition "Some A
are not B" becomes:

∼A ⊂ B

which can be phrased as "Not every A is B", an
obviously equivalent proposition.

In the last two cases, A is also supposed
to be non-empty. However there is no need to
include an explicit term in the mathematical
expression, due to the fact that the proposition
∼A⊂B logically implies A≠Φ.

Summarizing the preceding discussion, we
have come to the following results:

"Every A is B" ↔ (A ⊂ B) ∧ (A≠Φ)

"No A i s B" ↔ A⊂B’

"Some A are B" ↔ ∼A⊂B’

"Some A are not B" ↔ ∼A⊂ B

Thus, universal and particular propositions
respectively become assertions and negations on
set inclusions.

3.2 Equivalent propositions

Two propositions should be called
equivalent if they express the same relation of
inclusion between the same sets. We shall now
study the different types of equivalence
recognized by classical logic, and the
corresponding set theory equivalences they give
rise to.

(a) Contradictory conversion.

* “Every A is B” is equivalent to “No not
B is A” becomes:

(A ⊂ B) ↔ (B’ ⊂ A’)

* “Some A are not B” is equivalent to
“Some not B are A” becomes:

(∼A ⊂ B) ↔ (∼B’ ⊂. A’)

(b) Perfect conversion.
* “No A is B” is equivalent to “No B is

A” becomes:

(A ⊂ B’)↔ (B ⊂ A’)

* “Some A are B” is equivalent to “Some
B are A” becomes:

(∼A ⊂ B’) ↔ (∼B ⊂ A’)

Having in mind that

(P↔Q] ↔ ([∼P]↔[∼Q]),

where P and Q are any two propositions, is a
tautology, and calling (if needed) B to B’ (and
thus B’ to B), all four expressions above can be
shown to reduce to the single well-known set

theoretical formula

 (A ⊂ B) ↔ (B’ ⊂ A’)

3.3 Opposed propositions

Let us now look at the different opposed
propositions recognized by classical logic,
according to the proposed set theoretical
notation.

(a) Contradictory propositions.

*"Every A is B" versus "Some A are not B"
becomes:

 A ⊂ B versus ∼A ⊂ B
* “No A is B” versus “Some A are B”

becomes:

 A ⊂ B’ versus ∼A ⊂ B’

Thus, contradiction becomes logical
negation in both cases.

(b) Contrary propositions.

* “Every A is B” versus “Every A is not B”
becomes:

 ∼A ⊂ B’ versus ∼A ⊂ B
(c) Subcontrary propositions.

* “Some A are B” versus “Some A are not
B” becomes:

 ∼A ⊂ B’ versus ∼A ⊂ B

Both contrariness and subcontrariness
change the second term by its complement with
respect to the universe of discourse.

(d) Subaltern propositions.

* “Every A is B” versus “Some A are B”
becomes:

 A ⊂ B versus ∼A ⊂ B’

Thus, subalternness becomes logical
negation, plus set complementarization.

3.4 Syllogisms

)f
d

e

Let P(A, B) be a proposition defining a
relation between terms A and B. A syllogism
would be expressed thus:

Pl(A, B) ∧ P2(A, C) → P3(B, C)

P1 and P2 are the premises; P3 is the
conclusion of the syllogism. If we consider all
the possible combinations of the forms taken by
P1 and P2, we would find the following cases:

(a) P1 and P2, are both universal propositions.
There are only eight possible combinations,
namely:

(1a) A⊂B ∧ A⊂C (lb) A⊂B ∧ A’ ⊂C

(2a) B⊂A ∧ A⊂C (2b) B⊂A ∧ A’ ⊂C

(3a) A⊂B ∧ C⊂A (3b) A⊂B ∧ C⊂A’

(4a) B⊂A ∧ C⊂A (4b) B⊂A ∧ C⊂A’

All four cases labelled (b) become
equivalent to those labelled (a) by means of the
following conversion steps:

1. Convert the second premise into the one
equivalent to it under a perfect conversion.

2. Replace C’ for C and C for C’.

Example: case (lb) becomes:

1. A⊂B ∧ C’⊂A

2. A⊂B ∧ C⊂A (case 3a).

Besides, case (3a) becomes the same as
case (2a), according to the following conversion
steps:

1. Change the order of both premises:

C⊂A ∧ A⊂B

2. Replace C for B and B for C:

B⊂A ∧ A⊂C

In conclusion: there are only three possible
combinations of universal premises, namely
those labelled (la) (2a) and (4a) above.

(b) P1 is universal and P2 is particular. There
are also eight possible combinations, namely:

(1c) A⊂B ∧ ∼A⊂C (ld) A⊂B ∧ ∼A’ ⊂C

(2c) B⊂A ∧ ∼A⊂C (2d) B⊂A ∧ ∼A’ ⊂C

(3c) A⊂B ∧ ∼C⊂A (3d) A⊂B ∧ ∼C⊂A’

(4c) B⊂A ∧ ∼C⊂A (4d) B⊂A ∧ ∼C⊂A’

All four cases labelled (d) become equivalent
to those labelled (c) by means of the same
conversion steps as those converting cases (b) into
cases (a).

In conclusion: there are only four possible
combinations of one universal and one particular
premise, namely those labelled (lc), (2c), (3c) and
(4c) above.

(c) P1 is particular and P2 is universal. This case
becomes the preceding one by a permutation of the
premises.

(d) Both P1 and P2 are particular propositions. In
this case no conclusion is possible.

We shall now try to find the respective
conclusions in the remaining seven cases, aided by
the rules of set theory.

* Case (la) A⊂B ∧ A⊂C

If A= Φ, nothing follows.

If A ≠Φ, B∩C≠Φ follows. This is equivalent to
∼B⊂C’

Ergo:

A⊂B ∧ A⊂C → ∼B⊂C’ (RULE III)

* Case (2a)

B⊂A ∧ A⊂C → B⊂C (obviously) (RULE I)

* Case (4a) B⊂A ∧ C⊂A

Nothing follows.

* Case (lc)

A⊂B ∧ ∼A⊂C → ∼B⊂C (obviously)
 (RULE II)

* Case (2c) B⊂A ∧ ∼A⊂C

Nothing follows.

* Case (3c) A⊂B ∧ ∼C⊂A

Nothing follows.

* Case (4c)

B⊂A ∧ ∼C⊂A → ∼C⊂B (obviously)

If we apply contradictory conversion to the three
propositions in the preceding relation, we get:

A’ ⊂B’ ∧ ∼A’ ⊂C’ → ∼B’ ⊂C’

Replacing now A for A’, B for B’, C for C’, we
get:

A⊂B ∧ ∼A⊂C → ∼B⊂C (again RULE II)
and we have reduced case (4c) into case (lc).

The conclusion of the preceding discussion
can be stated as follows:

All possible cases have been shown to reduce
to only three rules of inference, namely:

(RULE I) B⊂A ∧ A⊂C → B⊂C

 (RULE II) A⊂B ∧ ∼A⊂C → ∼B⊂C

 (RULE III) A≠Φ ∧ A⊂B ∧ A⊂C → ∼B⊂C’

Example:

Every P is M

Some S are not M

Ergo: Some S are not P (Syllogism BAROCO)

P⊂M ∧ ∼S⊂M ↔ M’ ⊂P’ ∧ ∼M’ ⊂S’ →
(RULE II) ∼P’⊂S’ ↔ ∼S⊂P

4 IMPLEMENTATION

The preceding considerations have been used
to implement an interactive sorites solving
program. From the user's point of view, the
program is invoked by typing SORITES at the
terminal. A set of propositions are subsequently
typed. They must be written in the English
language, and together make up the sorites, the
solution of which is desired.

The system may request further information to
clarify the meaning of some of those propositions.
Finally, when the user signals completion of the
list of premises, the system types either the correct
solution of the sorites, or a message stating its
inability to find any conclusion.

The program accepts propositions built
according to the following scheme:

Quantifier Subject Verb Predicate

The following terms are acceptable
quantifiers: EVERY, NO, SOME, respectively
corresponding to universal affirmative, universal
negative, and particular propositions.

If the quantifier is omitted, EVERY is
assumed.

The verb is limited to one of the two forms:
IS, ARE. It may be followed by NOT, in which
case, the proposition is taken to be negative. The
verb is considered as a keyword separating the
subject from the predicate.

The subject is that part of the proposition
limited by the quantifier on the left, and the verb
on the right. The predicate is that part of the
proposition to the right of the verb. Both, are
analyzed for negative particles, and denuded of
those, final S’s and articles.

A table is maintained by the program, the
entries of which are all the subjects and predicates
(subsequently called terms for briefness) in the
propositions making up a given sorites. Once a
term has been preprocessed, a table search is done
to ascertain whether it has already appeared in
previous propositions. The comparison algorithm
may come to one of the following conclusions:

a) Either an identical term is contained in the
table.

b) Or no similar term has been typed before.

c) Or a similar term is found, in which case
the user is requested to take a decision as to their
equivalence.

In this way, typing errors and slight wording
differences in the two appearances of the linking
terms can be accounted for, and a valid conclusion
may be generated by the program in those cases.

A proposition is finally converted by the ana-
lyzer into a vector of four numerical quantities,
namely:

a) The subject, represented by its index to the
term table. If a negative particle was found by
the analyzer within the subject, the sign of the
index is negated.

b) The predicate, similarly represented.

c) A switch indicating whether the
proposition is universal or particular.

d) A switch indicating whether the
proposition is affirmative or negative.

Examples:

* Every human being is mortal becomes:

1 2 1 1

meaning that a universal affirmative proposition
links entries numbers 1 and 2 of the term table.

* Some people who can not read are blind
becomes:

-3 4 0 1

meaning that a particular affirmative proposition
links entries numbers 3 and 4 of the term table.
Entry 3 should be negated.

The term table would contain the following
entries, once the analysis of the preceding propo-
sitions are complete:

Entry 1: Human being

Entry 2: Mortal

Entry 3: People who can read

Entry 4: Blind

The user may include comments (lines begin-
ning by an asterisk) anywhere during the process
of definition of the premises. These lines are
ignored by the program.

Once the user has indicated the completion of
the list of premises, the analysis program is exit-
ted, and control is transferred to the inference
program, the data of which is the set of internal
representations of all the premises, plus the term
table. The program then tries to select successive
pairs of propositions with a common term. A given
pair may give rise to the following conditions:

a) One of the three inference rules is directly
applicable. The program computes the conclusion
of the pair, replaces both propositions by their
solution in the list, and tries to select another pair.

b) One of the three inference rules is
applicable if one or both premises are replaced by
equivalent ones under a contradictory or perfect
conversion. The program executes the replacement
and goes back to step (a).

Let a proposition be internally represented by
the quadruple

a b c d

The result of a contradictory conversion,
according to the rules of set theory, can be shown
to be:

-b -a c ∼d

while the result of a perfect conversion is:

-b -a c d

c) No inference rule is applicable in any case.
The program types the "no conclusion" message

d) The list of propositions gets reduced to a
single quadruple.

A reconversion is then done, using the term
table, into an English phrase, which is typed at the
terminal as the conclusion of the sorites.

Once the program has found the solution (or
the absence of a solution) of a sorites or syllogism,
the user may decide either to type in a new chain
argument, or finish the execution of the program.

The system is written in APL, and consists of
157 APL statements. A second version of the pro-
gram accepts and analyzes Spanish phrases.

5 EXAMPLE

The following is an example of a session at
the terminal. In the first place, the nineteen
classical syllogism types are input to the system.
In all cases, the conclusion exactly corresponds to
the one expected, or to the result of applying a
perfect conversion to it. The remaining examples
have been taken from Carroll2.

SORITES

* Examples taken from classical logic
* SYLLOGISM BARBARA *FELAPTON

Every M is P No M is P
Every S is M Every M is S

Ergo: Every S is P Ergo: Some S are not P

*CELARENT *DISAMIS

No M is P Some M are P
Every S is M Every M is S

Ergo: No S is P Ergo: Some S are P

*DARII *DATISI

Every M is P Every M is P
Some S are M Some M are S

Ergo: Some P are S Ergo: Some P are S

*FERIO *BOCARDO

No M is P Some M are not P
Some S are M Every M is S

Ergo: Some S are not P Ergo: Some S are mot P

*CESARE *FERISON

No P is M No M is P
Every S is M Some M are S

Ergo: No P is S Ergo: Some S are not P

*CAMESTRES *BAMALIP

Every P is M Every P is M
No S is M Every M is S

Ergo: No P is S Ergo: Every P is S

*FESTINO *CALEMES

No P is M Every P is M
Some S are M No M is S

Ergo: Some S are not P Ergo: No P is S

*BAROCO *DIMATIS

Every P is M Some P are M
Some S are not M Every M is S

Ergo: Some S are not P Ergo: Some S are P

*DARAPTI *FESAPO

Every M is P No P is M
Every M is S Every M is S

Ergo: Some P are S Ergo: Some S are not P

*FRESISON

No P is M
Some M are S

Ergo: Some S are not P

* EXAMPLES TAKEN FROM 'SYMBOLIC LOGIC', BY
LEWIS CARROLL

Every soldier is able to walk
Some children are not soldiers

No conclusion

Every soldier is a strong man
Every soldier is brave

Ergo: Some strong man are brave

Every well-fed lark is a powerful singer
No powerful singer is gloomy

Ergo: No well-fed lark is gloomy

Some dreams are terrible
No lamb is terrible

Ergo: Some dream are not lamb

Children are illogical people
No man who knows how to handle a crocodile is despised
Illogical people are despised

Ergo: No children is man who know how to handle crocodile

A buffalo is an animal able to push you through a wall
A donkey is unhorned
No unhorned animal is able to push you through a wall

With able to push you through wall, do you mean
Animal able to push you through wall?
Yes
With unhorned animal, do you mean
Unhomed?
Yes
Every not buffalo is a kicking animal

No phlegmatic animal is easy to swallow

With phlegmatic animal, do you mean
Kicking animal?
No

A kicking animal is a phlegmatic animal

Ergo: No donkey is easy to swallow

REFERENCES

1. M. Alfonseca, "Automatic solution of syllogisms and
sorites" Current Topics in Cybernetics and Systems ed. J.
Rose (WOGSC, and Springer-Verlag, Berlin, 1978) p. 36.

2. L. Carroll, El Juego de la Lgica (Alianza Editorial,
Madrid, 1972).

