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Abstract

A novel adapted strategy for combining general and user-dependent knowledge

at the decision-level in multimodal biometric authentication is presented. User-

independent, user-dependent, and adapted fusion and decision schemes are com-

pared by using a bimodal system based on fingerprint and written signature. The

adapted approach is shown to outperform the other strategies considered in this pa-

per. Exploiting available information for training the fusion function is also shown

to be better than using existing information for post-fusion trained decisions.
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1 Introduction

The basic aim of biometrics (Bolle et al., 2004a) is to discriminate among

subjects –in a reliable way and according to some target application– based

on one or more signals derived from physical or behavioral traits, such as fin-

gerprint, face, iris, voice, hand, or written signature. Authentication systems

built upon only one of the above modalities may not fulfill the requirements of

demanding applications in terms of universality, uniqueness, permanence, col-

lectability, performance, acceptability, and circumvention. This has motivated

the current interest in multimodal biometrics, in which several biometric traits

are simultaneously used in order to make an identification decision (Maltoni

et al., 2003; Jain et al., 2004).

A common practice in most of the reported works on multimodal biometrics is

to combine the matching scores obtained from the unimodal systems by using

simple rules (e.g., sum, product), statistical methods, or machine learning pro-

cedures (Brunelli and Falavigna, 1995; Bigun et al., 1997; Kittler et al., 1998;

Hong and Jain, 1998; Ben-Yacoub et al., 1999; Chatzis et al., 1999; Verlinde

et al., 2000). A remarkable characteristic of this approach, as compared to the

feature-level combination techniques, is the possibility of designing structured

multimodal systems by using existing unimodal recognition strategies (Mal-

toni et al., 2003). This multiple matcher approach is interesting not only for

biometrics, but also for other pattern recognition areas (Jain et al., 2000; Roli

et al., 2004).

In all the works referenced above, the fusion algorithms worked independently

(Joaquin Gonzalez-Rodriguez).
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of the claimed identity (also referred to as general or global approaches here-

after). Recently, new research efforts have focused on user-dependent (also

referred to as specific or local hereafter) score fusion schemes (Jain and Ross,

2002; Fierrez-Aguilar et al., 2003; Kumar and Zhang, 2003; Indovina et al.,

2003; Fierrez-Aguilar et al., 2004; Wang et al., 2004; Toh et al., 2004). The

basic aim of this approach is to cope with the fact that some traits do not

work properly with some subjects for recognition purposes even though these

traits can be highly discriminant among other subjects. This asseveration has

been corroborated experimentally in a number of works. As an example, about

4% of the population have poor quality fingerprints that cannot be easily im-

aged by some of the existing sensors (Jain and Ross, 2004). Also, a number

of speakers, the so-called lambs (Doddington et al., 1998), tend to have high

individual speaker recognition error rate. This fact has also been pointed out

regarding signature verification (Fierrez-Aguilar et al., 2005a).

In the present work, operational procedures exploiting user dependencies for

multimodal biometrics are presented and evaluated on data from the MCYT

bimodal corpus (Ortega-Garcia et al., 2003) using a non-biased experimental

setup based on bootstrap sampling (Bolle et al., 2004b). Moreover, a novel

adapted user-dependent strategy is introduced. The proposed technique is

shown to overcome the severe training data scarcity problem commonly en-

countered in user-specific learning scenarios.

This paper is organized as follows. A detailed look at related work and the

motivation for the proposed adapted user-specific fusion scheme is described

in Section 2. The proposed approach is presented in Section 3. The baseline

biometric systems based on fingerprint and on-line signature traits used in the

bimodal experiments are introduced in Section 4. Experimental protocol and
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results demonstrating the benefits of the proposed approach are reported in

Section 5. Conclusions are finally drawn in Section 6.

2 Related work and motivation

The idea of exploiting user-specific parameters at the decision-level in multi-

modal biometrics has been studied by Jain and Ross (2002). In this preceding

work, user-independent weighted linear combination of similarity scores was

demonstrated to be improved by using either user-dependent weights or user-

dependent decision thresholds, both of them computed by exhaustive search

on testing data. Subsequently, a trained user-dependent scheme using Sup-

port Vector Machines (SVM) was presented by Fierrez-Aguilar et al. (2003)

and evaluated using leave-one-out error estimates. The idea of Jain and Ross

(2002) was also explored by Wang et al. (2004) using non-biased error estima-

tion procedures. Other attempts to localized multimodal biometrics include

the use of the claimed identity index as a feature for a global trained fusion

scheme based on Neural Networks (Kumar and Zhang, 2003), computing user-

dependent weights using lambness metrics (Indovina et al., 2003), and using

personalized Fisher ratios (Poh and Bengio, 2005).

Toh et al. (2004) have recently proposed a taxonomy of decision-level ap-

proaches for multibiometrics. Existing multimodal fusion approaches are clas-

sified as global or local depending firstly on the fusion function (i.e., user-

independent or user-dependent fusion strategies) and secondly on the decision

making process (i.e., user-independent or user-dependent decision thresholds).

Examples are global-learning-global-decision (GG) (Brunelli and Falavigna,

1995; Bigun et al., 1997; Kittler et al., 1998; Hong and Jain, 1998; Ben-Yacoub
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et al., 1999; Chatzis et al., 1999; Verlinde et al., 2000), local-learning-global-

decision (LG) (Jain and Ross, 2002; Fierrez-Aguilar et al., 2003; Kumar and

Zhang, 2003; Indovina et al., 2003; Fierrez-Aguilar et al., 2004; Wang et al.,

2004; Toh et al., 2004; Poh and Bengio, 2005), and similarly global-learning-

local-decision (GL) (Jain and Ross, 2002; Toh et al., 2004), and local-learning-

local-decision (LL) (Toh et al., 2004). In the present work we adhere to this

taxonomy and extend it by incorporating new items: adapted-learning and

adapted-decisions.

The use of general information in user-dependent fusion schemes has recently

been introduced by Fierrez-Aguilar et al. (2004). In this case a computation-

ally demanding batch SVM learning procedure was used. The focus of the

present paper is to extend this preceding work by simplifying the batch train-

ing procedure and to compare the proposed method with existing approaches.

The idea of adapted learning is based on the fact that the amount of available

training data in localized learning is usually not sufficient and representative

enough to guarantee good parameter estimation/learning and generalization

capabilities. To cope with this lack of robustness derived from partial knowl-

edge of the problem structure, the use of robust adaptive learning/decision

strategies based on “all” the available information has been proposed in re-

lated research areas (Lee and Huo, 2000). As an example of the underlying

philosophy, we exploit the fact that general information of the problem (such

as user-independent data) can constitute a rich source of information for user-

specific recognition problems. In general, the relative balance between the prior

knowledge (global) and the empirical data (local) is performed as a trade-off

between both kinds of information.
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Based on the related work and the above mentioned ideas, the aim of this

paper is to develop an adapted-learning-global-decision (AG) fusion method

incorporating the general knowledge available from pooling user-independent

data. A counterpart global-learning-adapted-decision (GA) method is also in-

troduced, using the same learning paradigm and amount of training data. The

proposed methods are compared with existing procedures using a non-biased

experimental setup on real multimodal biometric data.

3 Exploiting user specificities at the decision-level in multimodal

biometrics

The proposed adapted local fusion scheme is derived from user-independent

and user-dependent fusion strategies (Fierrez-Aguilar et al., 2003) based on

SVM classifiers (Theodoridis and Koutroumbas, 2003). Firstly, the notation

is established and a summary of SVM-based score fusion is provided. Global,

local, and adapted fusion schemes are also described. Finally, global, local,

and adapted decision making approaches are introduced for their use with

the combined scores. The system model of multimodal biometric verification

including global/local/adapted learning/decisions is depicted in Fig. 1.

3.1 Score-level multimodal fusion based on SVMs

Given a multimodal biometric verification system consisting of R different

unimodal systems r = 1, . . . , R, each one computes a similarity score xr ∈ R
between an input biometric pattern and the enrolled pattern of the given

claimant. Let the similarity scores, provided by the different unimodal systems,
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be combined into a multimodal score x = [x1, . . . , xR]T . The design of a trained

fusion scheme consists in the estimation of a function f : RR → R, based on

empirical data, so as to maximize the separability of client {f(x)|client attempt}
and impostor {f(x)|impostor attempt} fused score distributions.

Formally, let the training set be X = (xi, yi)
N
i=1 where N is the number of

multimodal scores in the training set, and yi ∈ {−1, 1} = {Impostor, Client}.
The principle of SVM relies on a linear separation in a high dimension feature

space H where the data have previously been mapped via Φ : RR → H; X →
Φ(X), so as to take into account the eventual non-linearities of the problem

(Vapnik, 2000). In order to achieve a good level of generalization capability,

the margin between the separator hyperplane

{h ∈ H| 〈w,h〉H + w0 = 0} (1)

and the mapped data Φ(X) is maximized (where 〈· , ·〉H denotes inner product

in space H, and (w ∈ H, w0 ∈ R) are the parameters of the hyperplane). The

optimal hyperplane can be obtained as the solution of the following quadratic

programming problem (Vapnik, 2000):

min
w,w0,ξ1,...,ξN

(
1
2
‖w‖2 + C

N∑
i=1

ξi

)
(2)

subject to

yi(〈w, Φ(xi)〉H + w0) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

(3)

where slack variables ξi are introduced to take into account the eventual non-
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separability of Φ(X) and parameter C is a positive constant that controls the

relative influence of the two competing terms.

The optimization problem in (2), (3) is typically solved using the Wolfe dual

representation using the kernel trick (Theodoridis and Koutroumbas, 2003),

i.e., the kernel function K(xi,xj) = 〈Φ(xi), Φ(xj)〉H is introduced avoiding di-

rect manipulation of the elements of H. In particular, a Radial Basis Function

(RBF) kernel

K(xi,xj) = exp(−‖xi − xj‖2/2σ2) (4)

is used in this work. Other kernel choices used for multimodal biometrics

include polynomial (Ben-Yacoub et al., 1999) and linear (Fierrez-Aguilar et al.,

2005b) kernels.

The fused score sT of a multimodal test pattern xT is defined as follows

(Fierrez-Aguilar et al., 2003)

sT = f(xT ) = 〈w, Φ(xT )〉H + w0 (5)

which is a signed distance measure form xT to the separating surface given by

the solution of the SVM problem.

As a result, the training procedure in (2), (3) and the fusion strategy in (5)

are obtained for the problem of multimodal fusion.
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3.2 Global, local and adapted fusion schemes

Global learning The training set XG = (xi, yi)
NG
i=1 includes multimodal scores

from a number of different clients and the resulting fusion rule fG(x) is ap-

plied globally at the operational stage regardless of the claimed identity.

Local learning A different fusion rule fj,L(x) is obtained for each client en-

rolled in the system j = 1, . . . , M by using development scores Xj of the

specific client j. At the operational stage, the fusion rule fj,L(x) of the

claimed identity j is applied.

Adapted learning An adapted user-dependent fusion scheme is proposed

trading off the general knowledge provided by the user-independent training

set XG, and the user specificities provided by the user-dependent training

set Xj. To obtain the adapted fusion rule, fj,A(x), for user j, we propose to

train both the global fusion rule, fG(x), and the local fusion rule, fj,L(x),

as described above, and finally combine them as follows:

fj,A(x) = αfj,L(x) + (1− α)fG(x) (6)

where α is a trade-off parameter. This can be seen as a user-dependent fusion

scheme adapted from user-independent information. The idea can also be

extended easily to trained fusion schemes based on other classifiers. Worth

noting, sequential algorithms to solve the SVM optimization problem in (2),

(3) have already been proposed (Navia-Vazquez et al., 2001), and can be

used to extend the proposed idea, first constructing the user-independent

solution and then refining it by incorporating the local data.
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3.3 Global, local and adapted decisions

Once a combined similarity score has been obtained using either a local or

a global fusion function, it is compared to a decision threshold in order to

accept/reject the identity claim being made. This decision making process

can also be made locally or globally.

Global decision. Let the training set be SG = (si, yi)
NG
i=1 be a set of labelled

fused scores from a pool of known users. The decision rule

dG(s)





> 0 → accepted

≤ 0 → rejected

(7)

is trained by using a 1 dimensional SVM as described in Section 3.1.

Local decision. A different decision function is used for each client enrolled

in the system j = 1, . . . , M . Each function is trained by using a development

set of fused scores of the specific client. At the operational stage, the decision

function dj,L(s) of the client j being claimed is applied.

Adapted decision. An adapted decision criterion dj,A(s) is built similarly

to Eq. 6 as follows

dj,A(s) = αdj,L(s) + (1− α)dG(s) (8)

4 Baseline monomodal systems

Individual verification systems with standard performance have intentionally

been used to make the comparison of subsequent fusion strategies easier. In
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particular, the experiments have been carried out on our bimodal biometric

verification system including the minutiae-based fingerprint verification sub-

system described by Simon-Zorita et al. (2003) and the on-line signature ver-

ification subsystem based on temporal functions and Hidden Markov Models

reported by Fierrez-Aguilar et al. (2005a). A brief description of both systems

is given below.

4.1 Fingerprint recognition system

Image enhancement. The fingerprint ridge structure is reconstructed by

using: i) grayscale level normalization, ii) orientation field calculation iii)

interest region extraction, iv) spatial-variant filtering according to the esti-

mated orientation field, v) binarization, and vi) ridge profiling.

Feature extraction. The minutiae pattern is obtained from the binarized

profiled image as follows: i) thinning, ii) removal of structure imperfections

from the thinned image, and iii) minutiae extraction. For each detected

minutia, the following parameters are stored: a) the x and y coordinates of

the minutia, b) the orientation angle of the ridge containing the minutia,

and c) the x and y coordinates of 10 samples of the ridge segment containing

the minutia. An example fingerprint image is shown in Fig. 2 together with

the feature extraction steps.

Pattern comparison. Given a test and a reference minutiae pattern, a match-

ing score x′finger is computed. First, both patterns are aligned based on the

minutia whose associated sampled ridge is most similar. The matching score

is computed then by using a variant of the edit distance on polar coordinates

and based on a size-adaptive tolerance box. When more than one reference
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minutiae pattern per client model are considered, the maximum matching

score obtained by comparing the test and each reference pattern is used.

Score normalization. In order to generate a similarity score xfinger between

0 and 1, the matching score x′finger (greater than or equal to zero) is further

normalized according to

xfinger = tanh
(
cfinger · x′finger

)
(9)

The parameter cfinger has been chosen heuristically on fingerprint data not

used for the experiments reported here.

4.2 Signature recognition system

Feature extraction. Coordinate trajectories (x[n], y[n]), n = 1, . . . , Ns and

pressure signal p[n], n = 1, . . . , Ns, are considered in the feature extraction

process, where Ns is the duration of the signature in time samples (sam-

pling frequency = 100 Hz.). Signature trajectories are first preprocessed

by subtracting the center of mass followed by a rotation alignment based

on the average path tangent angle. An extended set of discrete-time func-

tions are derived from the preprocessed trajectories. As a result, the sig-

nature is parameterized as the following set of 7 discrete-time functions

{x[n], y[n], p[n], θ[n], v[n], ρ[n], a[n]}, n = 1, . . . , Ns, and first order time

derivatives of all of them (θ, v, ρ and a stand respectively for path tangent

angle, path velocity magnitude, log curvature radius and total acceleration

magnitude). A linear transformation is finally applied to each discrete-time

function so as to obtain zero mean and unit standard deviation function

values.

Similarity computation. Given the parameterized enrollment set of signa-
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tures of a client j, a left-to-right Hidden Markov Model λj is estimated.

No transition skips between states are allowed and multivariate Gaussian

Mixture density observations are used. On the other hand, given a test sig-

nature P (with a duration of Ns time samples) and a claimed identity j

modelled as λj, the similarity matching score

x′sign =
1

Ns

log p (P |λj) (10)

is obtained through Viterbi alignment of the test signature with the HMM

(Theodoridis and Koutroumbas, 2003).

Score normalization. In order to generate a similarity score xsign between

0 and 1, the matching score x′sign (less than or equal to zero) is further

normalized according to

xsign = exp
(
csign · x′sign

)
(11)

The parameter csign has been chosen heuristically on signature data not used

for the experiments reported here.

The processing stages are shown graphically for an example signature in Fig. 3.

5 Experiments

The problem in (2), (3) is solved in its dual representation by using the de-

composition algorithm proposed by Osuna et al. (1997), and the interior point

optimization solver proposed by Vandervei (1999). Main SVM parameters are

as follows: C = 100 for client scores, C = 50 for impostor scores, and σ = 0.05.
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5.1 Database description

In our experiments we use 10 samples of one finger and 17 signatures of each

of the first 75 subjects from the MCYT biometric database (Ortega-Garcia

et al., 2003).

In order to highlight the benefits of the proposed approaches in an scenario

showing user-dependencies, lowest quality finger was used for 10% of the users

and highest quality finger was used for the remaining users. The quality la-

beling was done manually by a human expert (Simon-Zorita et al., 2003).

For each user, 3 fingerprints are used for fingerprint enrollment and the other

7 are used for testing. A near worst-case scenario has been considered by

using as impostor data, for each user, the best 10 impostor fingerprints from

a pool of 750 different fingers. For each user, 10 user signatures are used for

signature enrollment, the other 7 user signatures are used for testing, and 10

skilled forgeries from 5 different impostors are used as impostor testing data.

As a result, data for evaluating the proposed fusion strategies consist of 75×7

user and 75× 10 impostor bimodal attempts in a near worst-case scenario.

5.2 Multimodal experimental procedure

Several methods have been described in the literature in order to maximize

the use of the information embedded in the training samples during a test

(Jain et al., 2000; Theodoridis and Koutroumbas, 2003). Regarding localized

multimodal fusion, some of the methods used include resubstitution (Jain and

Ross, 2002), holdout (Kumar and Zhang, 2003; Wang et al., 2004; Toh et al.,
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2004), and variants of jackknife sampling using the leave-one-out principle

(Fierrez-Aguilar et al., 2003).

In particular, when dealing with localized learning we are confronted with se-

vere data scarcity. This has been overcome by Toh et al. (2004) by augmenting

the training set with noisy samples and by Fierrez-Aguilar et al. (2004) by us-

ing a robust error estimation method based on bootstrap sampling (Duda

et al., 2001; Bolle et al., 2004b). In this work we follow either one of these two

experimental approaches:

Global learning/decision: Bootstrap data sets have been created by ran-

domly selecting M users from the training set with replacement. This se-

lection process has been independently repeated 300 times to yield 300

different bootstrap data sets. Each data set is used then to generate either

a user-independent fusion rule or a user-independent decision function. In

the latter case, a non-trained sum rule fusion function is assumed and the

selected training data is used for training the decision function on combined

scores. Testing is finally performed on the remaining users not included in

each bootstrap data set.

Local learning/decision: For each user, 75 bootstrap data sets have been

created randomly selecting N samples with replacement forcing each class

client/impostor to have at least one sample. For each user and bootstrap

data set, a different fusion rule (or a decision function on summed scores)

is constructed. Testing is performed on the remaining samples not included

in the bootstrap data set.

Adapted learning/decision: Bootstrap sampling of users is performed as

in the global case yielding 300 global bootstrap data sets (GBD). Multi-

modal scores of the remaining users not included in each GBD are then
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sampled as in the local case. This yields 75 local bootstrap data sets (LBD)

per GBD and per client not included in the GBD. Training of the fusion

function (or the decision function on summed scores) is performed using

the LBD and associated GBD from which the user was left out. Testing is

performed on the remaining samples not included in each LBD.

5.3 Results

Comparative results of global, local, and adapted fusion/decision functions are

given in Fig. 4.

In Fig. 4 (a) we plot the verification performance of the bimodal authentication

system using the proposed trained SVM-based global fusion approach (GG) for

an increasing number of clients in the fusion function training set. Individual

performances of the signature and fingerprint subsystems, and the non-trained

sum rule fusion approach are also shown for reference. In this case, baseline

equal error rate of the simple fusion approach based on sum rule, 2.28% EER,

is improved to 1.39% by using the global SVM-based trained fusion scheme

(M = 74 users for training the fusion function).

In Fig. 4 (c) we compare local approaches for training either the fusion function

or the decision function. It is shown that using training data for learning

local fusion functions (1.23% EER for N = 16 training samples per user)

is significantly better than using a simple common fusion rule and exploiting

existing development data for training localized decisions (2.17% EER). Worth

noting, the local fusion approach (1.23% EER) also outperforms the global

fusion strategy in Fig. 4 (a) (1.39% EER) when enough training samples for
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building the user-specific fusion functions are available (approximately more

than 10 in this experiment).

In Fig. 4 (b) we show the verification results of the proposed adapted ap-

proaches. In this case, M = 74 clients (global) and N = 16 samples per client

(local) are used for training and α is varied, hence trading off the influence of

the global and local information for training the fusion/decision functions. As

a result, a minimum of 1.85% EER is found for α = 0.75 in the case of sum

rule fusion and adapted decisions, outperforming the local decision scheme in

Fig. 4 (c) (2.17%). Adapted fusion outperforms all other strategies lowering

the error rate down to 0.80% EER also for α = 0.75.

Trade-off verification performances for the above mentioned experiments are

depicted in Fig. 5 as DET curves (Martin et al., 1997). In particular, a highly

remarkable relative improvement of 42% in the EER with respect to the user-

independent fusion approach is achieved by using the proposed adapted fusion

method. The severe and very common problem of training data scarcity in

the user-dependent fusion strategy is also relaxed by the proposed scheme,

resulting in a relative improvement of 35% in the EER compared to the raw

user-dependent fusion strategy.

In order to visualize the discriminative capability of SVM classifiers in the

above described fusion approaches, client and impostor scatter plots of signa-

ture and fingerprint scores before fusing are plotted in Fig. 6 (a). A data set

of the bootstrap error estimation process is considered and global, local and

adapted fusion function boundaries (i.e., f(x) = 0) are depicted. For the same

data set of the bootstrap sampling process, global, local, an adapted decision

boundaries on summed scores (i.e., f(s) = 0) are shown in Fig. 6 (b).
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It can be seen in both cases how the proposed adapted scheme helps in classify-

ing correctly a client test sample in which the fingerprint score is significantly

lower than the local client training scores. In this case, training data scarcity

in the local approach leads to a wrong decision, i.e., it is not likely that this at-

tempt comes from a client based on the training data with the local approach.

Considering the general knowledge with the adapted scheme leads to a cor-

rect decision, i.e., based on the general knowledge provided by other users, we

can expect client attempts with low fingerprint score and very high signature

score.

6 Conclusions and future work

User-dependent approaches to multimodal biometric verification have been re-

viewed, and the taxonomy proposed by Toh et al. (2004) based on global/local

learning/decision has been extended by incorporating adapted strategies. Op-

erational methods for learning the fusion/decision functions based on Sup-

port Vector Machines have been described. Most remarkably, a novel adapted

scheme for learning/decision has been introduced based on both the general

knowledge provided by pooling user-independent data, and the local charac-

teristics of the user at hand. The proposed approach has been experimentally

shown to overcome the training data scarcity problem encountered very often

in user-dependent learning scenarios.

A set of comparative experiments have been conducted using: i) a bimodal

biometric verification system based on fingerprint (Simon-Zorita et al., 2003)

and on-line signature (Fierrez-Aguilar et al., 2005a) traits, ii) real bimodal

biometric data from the MCYT database (Ortega-Garcia et al., 2003), and iii)
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a novel experimental protocol based on a worst-case scenario and bootstrap

error estimates (Bolle et al., 2004b).

For the scenario described in this work, and when enough training data is

available for the trained approaches, the following set of experimental findings

have been obtained: i) trained fusion/decision outperforms non-trained simple

approaches such as sum rule, ii) for the same amount of training data, local

learning of the fusion functions outperforms localized trained decisions on

summed scores, iii) local learning outperforms global learning, iv) adapted

learning by using both global information from a pool of users and user-specific

training data outperforms all other approaches. Most remarkably, we report

some indications of the critical “enough training data” issue when comparing

the trained to the not trained, and the global to the local approaches.

Future work will involve exploring other sources of errors and dependencies in

multimodal biometrics, for example biometric signal quality (Fierrez-Aguilar

et al., 2005b), and developing adapted schemes to compensate for them. Fi-

nally, even though we have focused on multimodal biometrics, the proposed

techniques can be applied to other pattern recognition problems using multiple

matcher approaches.
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Figure captions:

Fig. 1. System model of multimodal biometric verification. Global, local, and

adapted approaches for score fusion and decision making are also depicted.

Fig. 2. Fingerprint feature extraction process.

Fig. 3. Graphical sketch of the processing stages of the on-line signature verification

system.

Fig. 4. Equal error rates of global (a), adapted (b), and local (c) approaches for

multimodal fusion based on SVMs.

Fig. 5. Verification performance of global, local, and adapted approaches for multi-

modal fusion based on SVMs.

Fig. 6. Training/testing scatter plot and decision boundaries of global, local, and

adapted approaches for multimodal fusion based on SVMs (one iteration of the

bootstrap-based error estimation process).
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Figure 5:
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Figure 6:
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