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Abstract. In this paper we propose the use of Support Vector Machine Regres-
sion (SVR) for robust speaker verification in two scenarios: i) strong mismatch
in speech conditions and ii) forensic environment. The proposed approach seeks
robustness to situations where a proper background database is reduced or not
present, a situation typical in forensic cases which has been called database
mismatch. For the mismatching condition scenario, we use the NIST SRE 2008
core task as a highly variable environment, but with a mostly representative
background set coming from past NIST evaluations. For the forensic scenario,
we use the Ahumada III database, a public corpus in Spanish coming from real
authored forensic cases collected by Spanish Guardia Civil. We show experi-
ments illustrating the robustness of a SVR scheme using a GLDS kernel under
strong session variability, even when no session variability is applied, and espe-
cially in the forensic scenario, under database mismatch.

Keywords: Speaker verification, forensic, GLDS, SVM classification, SVM
regression, session variability compensation, robustness.

1 Introduction

Speaker verification is currently a mature technology which aims at determine
whether a given speech segment of unknown source belongs to the identity of a
claimed individual or not. Among the most important challenges of a speaker verifica-
tion system is the robustness to the mismatch in conditions between training and test-
ing utterances, being its compensation a main factor for the improvement of system
performance. Recently, this task has been carried out by the use of data-driven session
variability compensation techniques based on factor analysis, which have become the
state of the art in these technologies as can be seen in the periodic NIST Speaker
Recognition Evaluations (SRE) [1]. Such techniques can be applied to the best-
performing systems working at the spectral level, mainly based on Gaussian Mixture
Models (GMM) [2] and Support Vector Machines (SVM) [3], increasing their
robustness and accuracy. Among all the different compensation variants, the Nuisance
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Attribute Projection (NAP) [4] has been used for SVM modelling techniques, present-
ing the advantages of simplicity and efficiency with respect to other more sophisti-
cated approaches [5]. In particular, NAP has demonstrated its usefulness in systems
based on SVM Classification (SVC) using Generalized Linear Discriminant Sequence
(GLDS) kernel [3]. Although SVC-GLDS performance is slightly worse than other
modelling approaches such as GMM or GMM-SVM [6], it constitutes an additional
source of information about speaker identity, and can be combined with other systems
by means of fusion [7].

Despite of their unquestionable success, factor analysis techniques still present im-
portant challenges to face. The use of such compensation techniques is strongly con-
ditioned to the availability of databases for training the algorithms involved. In real
applications the availability of development data in desirable conditions is unfortu-
nately unfrequent. In many situations the technology developers tune their systems
with databases coming from a different environment from the conditions of the opera-
tional data. This is very typical in forensics, where in each case the conditions of the
recordings to analyze are extremely variable in terms of acoustic environment, chan-
nel, speaking style, emotional state, language, etc. It is almost impossible to think in
the availability of a background database for all the combination of conditions in a
possible case. This mismatch in the conditions between background data for system
tuning and operational data has been coined database mismatch in a recent work [8],
and constitutes an important challenge to face in the current state of the art.

In this paper we propose the use of Support Vector Machine Regression (SVR) us-
ing a GLDS kernel for robust speaker verification under strong mismatch and forensic
conditions. In order to show the adequacy of our approach, we use two different
speech databases: i) NIST SRE 2008, presenting strong mismatching conditions; and
ii) Ahumada III, a public database in Spanish coming from authored real forensic
cases and collected by Spanish Guardia Civil, which also presents different conditions
than NIST databases typically used for background modelling and session variability
compensation. This paper is organized as follows. First, the new approach SVM
regression is introduced in Section 2. Section 3 presents the proposed SVR-GLDS
system for speaker verification. In Section 4, experiments are presented in the two
proposed scenarios. Results show the adequacy of SVR-GLDS for robust speaker
verification, even when no session variability compensation is performed. Finally,
conclusions are drawn in Section 5.

2 Support Vector Machine (SVM) Regression

SVR approach for GLDS speaker verification has been recently proposed by the au-
thors in [9]. In the SVR case the goal is more general than in the widely extended
SVC approach. Regression aims at learning a n-dimensional function from the data
and classification aims at obtaining a classification boundary. In regression, the vector
labels, y,, are seen as a function of x;, g, (x;)=y,. In a binary classification prob-

i

lem, such as speaker verification, g, (-) is a discrete function with just two values:
8, (X ) =+1 and g, (x =-1. SVR will try to find the discrete function

nnn[arget) -
fO=g,0).
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The main difference between SVC and SVR is the loss function. SVC penalizes the
situation where f(-)< g, (), but as SVR aims at estimating a function, it also penal-

izes f(-)> g,(-). The loss function should consider such effect, and there are differ-
ent options in the literature. A popular choice is the e-insensitive loss function [10],
where vectors are penalized when | fGO-g, (-)| > ¢ . The objective hyperplane in the
SVR case will then be:

(1 7 1 :
w=min| —w -w+C— P T
(3w ety v, ]

OSf(xl.)—yl. <. +e

subject to: ,
! {Osyi_f(xi)géc,i—i_g

If we compare these criteria with SVC in Equation (2), we observe some differ-
ences. We have the SVC penalty variable, & ,, for those vectors for which

f(x)>g (x,)+€e, and a new variable fu for those ones for which

f(xi) < gn(x,')_g .

(1 5 1
w=min|—w -w+C— I
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@

The loss functions, f, (x,) (SVR) centered at f(x)=g,(x) and f, (x)
(SVC) at f(x,)=y,, are defined in (3) and shown in Fig. 1.
-fl(‘).\xv (xi ) = max{o’ |y1 ! f (xi )| _g} *

(3
Fross (%)= max{O, 1=y, - f(x )} )

Loss function

- - -Classification
—Regression

Fig. 1. SVR vs. SVC: boundaries and loss functions
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3 SVR-GLDS for Speaker Verification

We propose to use SVR with a e-insensitive loss function for the speaker verification
task. Recently, the authors showed the performance of this novel approach over the
core task of NIST SRE 2006 [9], a telephone scenario, obtaining good results in com-
parison with SVC.

One of the main advantages of using the SVR approach in the GLDS space relates
to the use of support vectors for SVM training. On the one hand, SVC uses support
vectors which are near the boundary between classes, where the vectors use to be
scarce. Moreover, variability in the conditions of speech may significantly change the
final hyperplane, introducing undesired variability and therefore performance degra-
dation. On the other hand, SVR selects support vectors from areas where there is a
higher concentration of vectors. Thus, the SVC hyperplane may be more sensitive
than SVR to outliers, noisy vectors, etc. In this sense, SVR can present a more robust
performance than SVC against outlier support vectors due to extreme conditions in
some speech utterances.

Another advantage of the SVR approach relies on the use of the ¢ parameter.
There are some works in the literature [10] that relate the € parameter to the noise or
variability of the function estimate. Following such assumptions, we proved in a pre-
vious work [9] that tuning € allows us to adapt the SVR training process to the vari-
ability in the expanded feature space.

4 Experiments

4.1 SVM-GLDS Systems

Both ATVS SVC-GLDS and SVR-GLDS systems are based on a GLDS kernel as
described in [3]. Feature extraction is performed based on audio files processed with
Wiener filtering'. The front-end consists on the extraction of 19 MFCC plus deltas.
As a first stage to avoid session variability compensation, CMN (Cepstral Mean
Normalization), RASTA filtering and feature warping are performed. A third degree
polynomial expansion GLDS kernel is performed on the whole observation sequence,
and a separating hyperplane is computed between the training speaker features and
the background model. NAP is applied for session variability compensation according
to [4]. Finally, the T-Norm score normalization technique is applied. We have used
the LibSVM library? for training both SVM algorithms.

The background set for system tuning is a subset of databases from previous NIST
SRE evaluations, including telephone and microphone channels. The T-Norm cohorts
were extracted from the NIST SRE 2005 target models, 100 telephone models and
240 microphone models. NAP channel compensation was trained using recordings
belonging to NIST SRE 2005 speakers which are present in both telephone and
microphone data.

! A Wiener filtering implementation is available at Berkeley Webpage: http://www.icsi.berkeley.
edu/ftp/global/pub/speech/papers/qio
% Software available at LibSVM webpage: http://www.csie.ntu.edu.tw/~cjlin/libsvm
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4.2 Databases and Experimental Protocol

Experiments have been performed using two different databases. First, the NIST SRE
2008 [1] constitutes a highly mismatching environment. Second, Ahumada III repre-
sents real forensic casework speech in conditions different to those of the background
data [8].

NIST SRE 2008 database and protocol represents a real challenge in terms on ses-
sion variability. The training and test conditions for the core task include not only
conversational telephone speech data but also conversational speech data recorded
over microphone channels involving an interview scenario, and additionally, for the
test condition, conversational telephone speech recorded over a microphone channel.
The evaluation protocol defines the following training conditions: 10 seconds, 1
(short2), 3 and 8 conversation sides and long conversation; and the following test
condition: 10 seconds, 1 (short3) conversation side and long conversation. Each
“short” conversation, either recorded over a telephone or a microphone, has an aver-
age duration of 5 minutes, with 2.5 minutes of speech on average after silence re-
moval. Interview segments contain about 3 minutes of conversational speech recorded
by a microphone, most of the speech generally spoken by the target speaker. In our
case the experiments followed the core task, namely short2 training conditions, and
short3 test condition (short2-short3).

Taking into account the test and train channel types, the evaluation protocol can be
divided in 4 conditions: #f-tlf (37050 trials), tlf-mic (15771 trials), mic-mic (34046
trials) and mic-tlf (11741 trials).

Ahumada III consists of authorized conversational speech acquired by the Acoustic
and Image Processing Department of Spanish Guardia Civil from real forensic cases.
The acquisition procedure uses two of the systems and procedures followed by
Guardia Civil. As its present release, the recording procedure considered consists of
digitalized analog magnetic recordings from GSM mobile calls, from those recordings
of this type received in the last ten years, those authorized (case by case) by the corre-
sponding judge after a trial and added to a database registered in the Spanish Ministe-
rio del Interior, known as Base de Datos de Registros Acusticos (BDRA)3. In future
releases of the database, speech will be included from digital wiretaps recorded di-
rectly from Spanish mobile telephone operators, the system known as SITEL (na-
tionwide digital interception system).

Ahumada III Release 1 (Ah3R1)* consists of 61 speakers from a number of real
cases with GSM BDRA calls across Spain, with a variety of country of origin of
speakers, emotional and acoustic conditions, and dialects in the case of Spanish
speech. There is no variability dimension is gender, as all of them are male speakers.
All 61 speakers in Ah3R1 have two minutes of speech available from a single phone
call to be used as unquestioned (control) recording, with the purpose of model en-
rollment or voice characterization. Additionally, ten speech segments for 31 speakers
and five segments for speakers are included for testing issues, each one from a differ-
ent call. Such fragments present between 7 and 25 seconds of speech, with an average

3 With reference public scientific file number 1981420003 from Spanish Guardia Civil, Orden
Ministerial INT/3764/2004 de 11 de noviembre.

* Ahumada III is publicly available for research purposes under license agreement and condi-
tions (contact: http://atvs.ii.uam.es).
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duration of 13 seconds. An evaluation protocol has been generated consisting in com-
puting all possible scores from models trained with the enrollment utterances and test
segments in the database (27084 trials).

4.3 Results

Strong Mismatching Conditions in NIST SRE 2008. The performance of SVC-
GLDS over NIST SRE 2008 is first evaluated with two different configurations: i)
without including any compensation technique, and ii) including a NAP compensation
scheme. This shows the effect of compensating variability using NAP with a suitable
background database. Table 1 shows the performance of the system detailed per con-
dition. Results are presented both as EER (Equal Error Rate) and DCF,;, as defined
in NIST SRE [1]. It is observed that the performance of the system significantly im-
proves when NAP is added, both for EER and DCF,;, values. The improvement is
bigger when strong channel mismatch occurs (¢lf-mic or mic-tlf conditions).

Table 1. EER and DCF,,;, in NIST SRE 2008 short2-short3, for SVC-GLDS and SVR-GLDS
with and without NAP session variability compensation

tIf-tlf tlf-mic mic-mic mic-tlf
SVC EER 13.8 24.1 17.4 23.5
DCF,i, 0.054 0.075 0.075 0.078
EER 10.2 13.9 13.0 15.3
SVC + NAP DCF,, 0.047 0.053 0.057 0.059
SVR EER 10.0 15.1 154 16.4
DCF,i, 0.045 0.055 0.065 0.064
SVR + NAP EER 9.6 14.3 13.8 15.0

DCFin 0.045 0.053 0.060 0.062

In order to use the proposed SVR-GLDS system, tuning the ¢ parameter is firstly
required, and the variation of its performance with respect to such parameter is pre-
sented in Table 2. As we saw in [9] the system performance significantly changes as a
function of this parameter.

Table 2. EER and DCF,,;, in NIST SRE 2008 short2-short3, for different values of & in SVR-
GLDS without NAP session variability compensation

¢=0.05 0.1 0.2 0.4 0.8

Af-tlf EER 9.9 10.0 10.9 13.5 13.9

DCFin 0.046 0.045 0.047 0.052 0.054

{f-mic EER 16.9 15.1 16.6 23.8 24.0

DCFin 0.059 0.055 0.063 0.074 0.075

mic-mic EER 15.7 154 15.9 16.8 174

DCF,, 0.064 0.065 0.067 0.074 0.075

. EER 17.0 164 18.8 22.8 23.6
mic-tlf

DCFip 0.063 0.064 0.066 0.078 0.078
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In most cases £=0.1 significantly improves the system performance, which is
very similar to the optimum value in cases where it is seen at € =0.05 . The optimal
value of the parameter is coherent with the experiments presented in [9] using tele-
phone speech in NIST SRE 2006 database and protocol. Thus, without NAP compen-
sation, system tuning of the & parameter seems robust over different databases, and
should be performed one time and not for each one of the four conditions.

Next approach shows the performance of applying the same NAP compensation
scheme to SVC-GLDS and SVR-GLDS systems. As the NAP transformation changes
the properties of the expanded space a ¢ tuning is required before using the proposed
system, the compensated parameters vectors will be significantly different to the pre-
vious ones. Table 3 shows the performance for different values of ¢.

In this case the optimal value for the ¢ parameter varies depending on the condi-
tion. The optimal value observed for the non-compensated feature space was € =0.1,
we will use this value in the rest of experiments. Fig. 2 a) presents a comparison be-
tween the performance of SVR-GLDS + NAP with £ =0.1 and the optimal selection
of ¢ for each one of four the conditions. The performance is similar.

Table 3. EER and DCF,;, in NIST SRE 2008 short2-short3, for different values of £ in SVR-
GLDS with NAP session variability compensation

e=0.05 0.1 0.2 0.4 0.8

df-tlf EER 9.7 9.6 10.1 10.2 10.2

DCFin 0.046 0.045 0.046 0.047 0.047

f-mic EER 17.0 14.3 13.3 13.9 13.9

DCFin 0.059 0.053 0.052 0.053 0.053

mic-mic EER 15.5 13.8 134 13.0 13.0

DCFin 0.062 0.060 0.057 0.057 0.057

. EER 17.1 15.0 15.7 15.3 15.3
mic-tlf

DCFin 0.062 0.062 0.061 0.059 0.059

Finally, we compare the performance of the two approaches, SVC-GLDS and
SVR-GLDS, with and without NAP compensation scheme. Table 1 shows the com-
parison in EER and DCF,;, values for each condition and Fig. 2 b) shows the global
DET curves of the systems. The system with the best performance in most part of the
cases is SVC-GLDS + NAP, obtaining a relative improvement in EER of 31% and
19% in DCF,;;, value. However, the proposed system, SVR-GLDS, presents a similar
performance before and after channel compensation. This has the advantage that there
is no need of using NAP to obtain similar performance as SVC-GLDS + NAP. It is
worth noting that if no channel compensation could be applied because the non-
availability of a background database, the SVC-GLDS performance worsens signifi-
cantly, especially when strong session mismatch occurs (tlf-mic and mic-tlf). If a suit-
able database is available, NAP may significantly improve the performance, but if
such database is not available or the representative data is scarce, SVR-GLDS seems
a convenient option for obtaining robustness. The latter may be the case in many real
applications, such as the forensic environment. Moreover, if a suitable database is
available SVR-GLDS + NAP provides just a reduced improvement, in both EER and
DCF,,;, values (5% and 3% respectively), with respect to SVR-GLDS.
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Fig. 2. DET curves in NIST SRE 2008 short2-short3 task: @) SVR + NAP (£ =0.1) and SVR +
NAP (¢ optimum); b) SVC, SVC + NAP, SVR and SVR + NAP

Real Forensic Conditions in Ahumada III. In order to show the performance of the
proposed system in similar conditions to those found in real forensic cases, Fig. 3 b)
shows the SVC-GLDS performance with and without including NAP compensation
over Ahumada III. As we observed in NIST SRE 2008, the performance of the system
improves when NAP is added, but in this case the relative improvement is signifi-
cantly lower (13% versus 31% in EER). Moreover, it is observed a degradation in
DCF,,;, performance after NAP compensation. The loss in NAP compensation effec-
tiveness can be attributed to the lack of background data in operational conditions.
Thus, when a high database mismatch is observed among the background and the
operational databases, session variability compensation techniques are not only less
efficient, but can also even degrade performance [8].

In order to be robust to such lack of background data, the proposed SVR-GLDS
approach is used. First, we perform an experiment to show the variability of perform-
ance with respect to the & value. Table 4 presents such results.

Table 4. EER and DCF,;, in Ahumada III, for different values of ¢ in SVR-GLDS with and
without NAP session variability compensation

=005 0.1 0.2 0.4 0.8
EER (%) 14.6 14.8 15.5 17.4 17.6
DCF.in 0.055  0.055 0.058 0.058 0.059
EER (%) 15.1 14.8 15.6 15.3 15.3
DCF 0.054  0.056 0.059 0.062 0.062

SVR

SVR + NAP

The system performance with and without NAP is similar, as we saw in NIST SRE
2008 (Table 2 and Table 3). The optimal ¢ value lays between 0.05 and 0.1, Fig. 3 a)
shows a comparison between the performance of SVR-GLDS + NAP with these ¢
values, the technique is not very sensitive. The system performance is similar. Finally,
the DET curves of the two approaches with and without session variability compensa-
tion are showed in Fig. 3 b).
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Fig. 3. DET curves in Ahumada III: @) SVR + NAP (£=0.1) and SVR + NAP (¢ optimum); b)
SVC, SVC + NAP, SVR and SVR + NAP

We observe that using a forensic corpus under database mismatch conditions with-
out any compensation scheme the SVR performance is better than SVC (relative im-
provement of 16% in EER and 8% in DCF,;, value), a similar situation can be seen in
Fig. 2 b) over NIST SRE 2008. Once we have included NAP the performance of SVR
and SVC is similar, but slightly better for SVR. These results are different than those
presented for NIST SRE 2008, where in general SVC-GLDS + NAP outperformed
SVR-GLDS + NAP. In forensic case, where suitable databases are difficult to obtain
SVR seems a more convenient option for obtaining robustness.

5 Conclusions

In this paper we propose a robust approach for speaker verification by means of Sup-
port Vector Machine Regression (SVR). The presented work shows that SVR using a
GLDS kernel is robust to the lack of a proper background set for NAP session vari-
ability compensation, clearly outperforming Support Vector Machine Classification
(SVO) in such a situation. This is in accordance with previous work of the authors,
where telephone-only speech was used [9]. In this work, two much harder scenarios
are proposed. First, NIST SRE 2008 core task is used as a highly mismatching data-
base with multichannel data. Results in this scenario show similar performance
among SVC and SVR when NAP is trained with a proper background dataset. How-
ever, we simulate the lack of such a database by eliminating the compensation step,
and SVR clearly outperforms SVC, showing a much higher robustness. Second,
Ahumada III database is used, which consists of speech from real forensic cases. In
this scenario, where a background database is not available (i.e., under database mis-
match), results show a much lesser effectivity of the NAP compensation technique.
Moreover, SVR performs better than SVC, confirming the robustness simulated in
NIST SRE 2008.

This work shows that, if a suitable background database for NAP is not available,
SVR outperforms SVC, being also a better option in order to obtain robustness to
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unseen conditions. Moreover, NAP may significantly improve the performance of the
system, but under database mismatch its effectiveness is significantly reduced. This is
especially important in forensic scenarios, where the availability of a proper database
adapted to the case at hand may be almost impossible in many situations.

Future work includes the exploration of different SVR approaches for the GLDS
space, such non-linear loss functions and different kernels. We will also explore the
complementarity and correlation of SVR with respect to other approaches in the state
of the art in speaker verification such as GMM and GMM-SVM.
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Education under project TEC2006-13170-C02-01. We also thank Lt. Cln. Jose Juan
Lucena and people from the Acoustics and Image Processing Department from
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