

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

IEEE Global Engineering Education Conference (EDUCON), IEEE, 2013. 1147-

1156

DOI: http://dx.doi.org/10.1109/EduCon.2013.6530253

Copyright: © 2013 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/EduCon.2013.6530253

Integrating Open Services for Building Educational
Environments

Iván Claros, Ruth Cobos, Esther Guerra, Juan de Lara, Ana Pescador, Jesús Sánchez-Cuadrado
Department of Computer Science

Universidad Autónoma de Madrid (Spain)

Abstract— The increasing popularity of Massive Open Online
Courses (MOOCs) has raised the need for highly scalable,
customizable, open learning environments. At the same time,
there is a growing trend to open the services that the companies
offer on the web with open APIs and in the form of REST
services, facilitating their integration in customized applications.
The goal of this work is to show how such open services can be
used for the support of on-line educational systems. These
services were not created for an education context, so it is
necessary to complement it with functionalities for supporting
aspects such as evaluations, monitoring or collaboration. This
article discusses on the strategies for integrating services for
education and presents two cases studies: first, SMLearning, a
collaborative learning environment supported by social media
platforms Facebook and YouTube, and second, an application for
project-based programming courses, customized through a
generative architecture, making heavy use of Google services.

Keywords- Open Services; Integration; Educational
environments; MOOCs, Learning Analytics.

I. INTRODUCTION

Massive Open Online Courses (MOOCs) are educational
online web courses designed for large-scale participation and
open access [20]. Examples of such initiatives include
Coursera (https://www.coursera.org/), Udacity
(http://www.udacity.com/) and edX (https://www.edx.org/).
Typically, MOOC courses do not belong to official programs
of Universities, but learning is normally assessed, and may lead
to some kind of certification. While there is an ongoing
controversy on the appropriateness of the MOOC approach
from a pedagogical point of view (see e.g. [22]), this paper
approaches the challenges raised by MOOCs from a purely
technical point of view.

The construction and use of MOOCs involves several
challenges due to the large number of participants (perhaps in
the order of several thousands) and their heterogeneous
backgrounds. These challenges include the development and
integration of open materials, the design of a highly scalable
infrastructure, and the support for high levels of task
automation. In this respect, learning analytics techniques are
useful to complement traditional knowledge assessment, to
track the activity of the users, and to help in improving course
organization and content. However, with an increasing number
of students able to do complex tasks, the complexity of the
analysis of the interaction increases as well. This fact raises the
need for the design and support of services simplifying the
capture, visualization and processing of students interaction.
These services should support processes for monitoring,

evaluation and analysis, as a mechanism to measure and
characterize a successful learning experience and enabling its
replication in other contexts.

Recently, we have witnessed an exponential growth in the
availability of services and APIs that different companies make
available through the web. Many of them are accessible as
REST services, or using languages like JavaScript or Java.
Examples of such services include those offered by YouTube,
Facebook or Google. For instance, the latter include an API
(Google Drive) for file management and sharing, in the cloud,
or for analyzing user interaction with a web system (Google
Analytics).

While constructing and deploying dedicated learning
environments to host MOOCs requires extensive resources, the
use of open services can lower the infrastructure required for
them. Moreover, the vast amount of available services permits
a rich customization of the resulting learning environments. In
this paper, we discuss some alternatives to construct learning
environments integrating open services, and present two
particular applications: one relying on the services offered by
Facebook and YouTube, and another one heavily relying on
services offered by Google. We also discuss how different
learning analysis mechanisms are integrated in them.

The rest of this paper is organized as follows. Section II
discusses some strategies to integrate open services for
education and reviews some useful ones. Section III presents
an approach to build a learning environment embedded in
Facebook using open services. Section IV presents another
approach based on open services from Google. Section V
compares and discusses the benefits of each approach. Secion
VI discusses related work and Section VII concludes the paper.

II. OPEN SERVICES FOR EDUCATIONAL ENVIRONMENTS

Educational environments demand support for formal and
informal learning on a variety of scenarios. These scenarios
involve a complex interaction with the educational
environment and rich media resources. Therefore, if such
environments are built by combining open services, different
strategies are needed to support all interaction modalities.

In our view, an effective service integration process should:
1) encourage the use of existing services, keeping a familiar
environment for the users, reducing the cognitive overload that
involves a new environment; 2) be based on modular and
flexible development paradigm, enabling the easy evolution
and extension of its functionality; and 3) abstract away the
heterogeneities of the services and technologies used,
facilitating their integration.

From these conditions, several integration strategies can be
followed:

1) Through embedded objects that display information
or services over existing platforms, in formal
environments such as a Learning Management
Systems (e.g. Moodle [10]) or informal environments
such as social network platforms (e.g. Facebook).
This strategy involves the creation of extension
artefacts that the environment uses to include the new
functionality. Some examples of these artefacts
formats are the Google OpenSocial Gadgets, W3C
Widgets or SCORM. Usually, this approach just
creates a visual relationship among services, with a
limited parameterization of behaviours.

2) Extending the functionality of an existing platform.
This requires an understanding of the inputs and
outputs of the services involved, and handling
communication protocols among entities. Hence, the
integrated services have to interact with the hosting
platform, while in the embedding approach services
are isolated objects with no interaction with the
hosting platform. A detailed description of these kinds
of relationships among services is presented Section
III.

3) Creating new learning environments based on a
mashup approach, where different services are
combined to solve the specific needs of learners. This
approach is not based on a hosting platform, but the
environment is entirely built by interconnecting
services. This approach benefits from tools for rapid
development, enabling the expression of the learning
requirements and orchestrating different technologies
for supporting it. Section IV presents these concepts
in more depth.

Next, some of the open services that could be used to
develop these strategies are briefly presented. Afterwards a
classification of integration processes that we have found in our
experiences and a typical interaction among applications and
Open Services are described.

A. Some open services useful for educational applications

Creating, extending or customizing a learning environment
requires a large amount of resources, so that their development
and deployment is expensive. The use of open services can
help to reduce the cost, by providing mechanisms for the
storage and management of resources, as well as mechanisms
for composing such services. This ultimately would allow us to
build customized learning environments, adapted to the needs
of the target learners, easily and without spending much
resources.

Collaboration is a key aspect if we want to emulate
classroom dynamics in virtual learning environments.
Collaborative learning environments allow users to work
together, both synchronously and asynchronously, building
work spaces where communication (teacher-student, student-
teacher and student-student) is fluent. In this context, there are
many open services for collaborative work and resource

management available. Next, we list some of them. This list is
not intended to be exhaustive, but it gathers only the open
services that we have used to build our low-cost, tailored,
learning environments (see Sections III and IV):

OAuth 2.0 is an authorization protocol that allows a third-
party website or application to access a user’s data without the
user needing to share login credentials. This is the basic
building block for integrating different services.

Services from Google that we have used include: Google
UserInfo, which provides profile information about the
authenticated user (name, email, profile picture, etc.). The
Google Calendar API allows, among other functionalities,
creating and sharing calendars, as well as their management
(i.e. creation of new events in the calendars, and editing and
deletion of existing events). The Google Drive API provides
storage and distributed access for files. It also promotes
collaborative work as it supports files to be shared and edited
synchronously by several users. The Google Picker API
provides File Open dialogs in a Web context using modal
windows, which in some cases allow showing previews or
thumbnails. The Google Mail API allows sending emails from
a Gmail account. The Google Analytics API allows measuring
user interactions with services across various devices and
environments.

Skype, allows users to communicate with peers by voice
using a microphone, video by using a webcam, and instant
messaging over the Internet. While the previous functionalities
require to have installed a desktop application, Skype also
provides services useful for awareness, which allow querying
the state of connected users.

Facebook, makes available a set of services that allows: to
access user’s data through OAuth 2.0; to get information about
profile user (such as email, name, location, gender, and other);
to manage groups; to send messages; to publish in the bulletin
board; to receive notifications; to manage user resources, such
as photos and videos, and others. This API is enabled on
several platforms and program languages, both based on the
web and in mobile environments.

Youtube provides a Data API, allowing searching for
videos, retrieve standard feeds, and get the content's metadata.
A program can also authenticate as a user to upload videos,
modify user playlists, and more. This API works using XML
(or JSON) and HTTP, but also there are libraries for easier
abstraction. Google Data Protocol and the Atom Publishing
Protocol are the standards upon which the responses are built.
Youtube also provides a Player API, to control the YouTube
player using JavaScript or ActionScript, i.e. to access play,
seek, stop, and pause and other methods, which allows creating
personalized controls. That could be useful in the
implementation of interactivity mechanisms over video objects
referenced from Youtube.

B. Integrating and Interacting with Open Services

In our experiences, we have found four types of
relationships among the different participants in an interaction:
Server, Client and (Open Service) Provider. Client refers to the
user browser, and the Server hosts the learning environment.

Figure 1. Interactions found when integrating Open Services (left). A typical interaction in an application integrating open services (right)

The left of Figure 1 presents a diagram of these
relationships, which are: Server-Provider (Type A), Server-
Provider-Client (Type B), Client-Provider (Type C), and
Server-Provider-Provider-Client (Type D). More complex
integrating processes could be described as a combination of
the ones we propose.

 Type A: Server-Provider
In this relationship, the Server sends requests to the

Provider transparently to the Client entity, i.e. without
influencing the user interface. Those requests could be thrown
by synchronized user actions or asynchronous server threads.
An example is a search service in which the Server creates a
remote session with the Provider and transforms both the
request and response from a particular provider protocol to its
own format.

 Type B: Server-Provider-Client
In this relationship, both Server and Provider are in contact

with the Client, i.e. a communication process among all entities
is required for supporting the service. For example, in an
access control process supported by Facebook API, there are
validation methods both in the Server as in the Client, so the
login request could be initiated by either one of them. In the
case of a personalized multimedia reproduction service
supported by the API of the Youtube Player, the management
of streaming with Youtube is done by the API, but the log of
events and handling of sources is responsibility of the Server.

 Type C: Client-Provider
This kind of relationship arises when the service that is

displayed in the Client is supported just by the Provider
without any control by the Server. It is usually presented as an
embedded object that deploys an information view supported
by the Provider, helping the user with some task. Facebook or
Gmail Chat services could be deployed following this pattern.

 Type D: Server-Provider-Provider-Client
This interaction arises when a service has no graphical

interface (Type Da) but affects other services that have (Type
Db). In our experience, this is the case of the Publish Service
implemented with Facebook API, which is deployed as a
Server-to-Provider request, but produces an update event over
the Bulletin Board Service (the users’ Wall).

Additionally, there is the usual client-server interaction,
where no open service is involved.

The right of Figure 1 shows a concrete example of
interaction of an application that integrates several open
services. It is illustrated using Google services, but the working
scheme is similar in other cases. When the user accesses the
application for the first time, the application redirects to the
Google page for authorization request (Google OAuth in the
figure). Next, the user must login and explicitly grant access to
his data. Then, the application gets an authorized request token
from the authorization server, which can be exchanged by an
access token. In this way, when the user needs to access
services which require his authorization (e.g. Google Calendar
in the figure), the application can do it by using the obtained
access token. Hence, while the authentication process is a Type
B interaction, viewing a calendar is of type C, as the browser
directly shows the Calendar interface in the web page.

Once we have seen some useful open services, the different
strategies for their integration and the typical interactions
arising, we next present our case studies.

III. INTEGRATING LEARNING MATERIALS WITHIN OPEN

SERVICES: EXTENSION APPROACH

Social media platforms are characterized by allowing a high
social interaction among users and for supporting constructive
and evaluative mechanisms from content [8]. These conditions
allow the development of educational proposals where the
students can be actively involved, while fostering high order
intellectual skills such as: critical thinking, analysis,
conclusion, social skills, and information management [4; 12;
23]. Also, Social interaction among students promotes each
other’s understanding through support, help and participation
in the learning activities [13]. These conditions have promoted
the development of a collaborative environment called Social
Media Learning (or SMLearning) [7]. Figure 2 presents an
architectural view of this System.

Each user group of this environment is called Community,
and it is responsible of generating interactive material, while
they learn and work in a collaborative way. The proposed roles
for this process are the following ones: Author, Evaluator,
Scriptwriters, Supervisor and Viewer/Learner. This

architecture has been implemented with Web technologies with
a thick client.

SMLearning has been designed to support the construction
of Multimedia-Interactive material from a collaborative process
perspective. The three fundamental design premises for this
System were: reuse of multimedia material, social interaction
mechanism for a successful collaboration and interactivity with
the content. Figure 3 shows the implementation of SMLearning
System like a Facebook application. Hence, this is an example
of the extension approach discussed in Section II, as the open
services used need to interact richly within the Facebook
platform.

Figure 2. Conceptual model for SMLearning System [7].

Figure 3. A view of the SMLearning System.

For its development several services were supported, such
as: managing resources and community; communications
services (e.g. comments, forums, chat); evaluation mechanisms
(e.g. like/unlike, set a quality level); a tagging system;
managing hierarchical lists; a multimedia authoring tool and a
multi-platform multimedia player. This implementation

includes some services developed using Open Services of
Facebook and YouTube that they are described below.

A. Integrating Open Services

The figure 4 presents a deployment view of the System
related with integrating Open Services, which includes services
and entities, i.e. Server (SMLearning Server), Client (Browser /
SMLearning Client), and Providers (Facebook and Youtube
Servers). The users require a Facebook account; while the
access to Youtube Services is without credentials.

Figure 4. Open service model Integrated on SMLearning System.

From the types of integrating proposed above, the services
implemented with Open Services on the SMLearning System
were:

 Type A: Search is supported by YouTube Data API.
This service allows looking for videos and then saves
some its metadata.

 Type B: Play, Group, Profile and Access are examples
of this type. Play is a personalized multimedia player
supported by Youtube Player API. For the Group
service, Facebook provides both a user interface as
methods that allow managing privacy aspects and
membership. Additionally, it enables deploying
auxiliary modules for sharing files and creating events,
and others. A view of User Profile requires the
combinations of data extracted both Facebook (e.g.
profile picture) as SMLearning (e.g. the user role as
teacher or learner). Similarly, the access control is
validated on Facebook and SMLearning.

 Type C: SMLearning delegates the Chat service to
Facebook. Students can use this, and other services as
creating events, without intervention of Server.

 Type D: Publish is a service that affects two delegated
services: Notify and Bulletin Board (the “Wall”, in
Facebook context). After an invocation of the Publish
method, Facebook updates the notification view, and
creates a log over the group’ wall, allowing the
dissemination of information. By default, notification
service additionally sends an email to users.

B. Supporting Learning Analysis

SMLearning implements three types of approaches related
with supporting Learning Analysis: Summary, Exportation and

Analysis. Each of these approaches presents different levels of
abstraction and could be useful at different stages of the
learning process. For instance, a Summary View enables
monitoring the learners’ activities; while an Analysis View,
could simplify performance evaluation; however, the detailed
analysis of a learning activity requires advanced tools and
therefore facilities to extract and format the users’ interaction,
i.e. Exportation Views. A description of these Views is
presented at following:

1) Summary Views present compendiums of actions
performed by users during their learning tasks.
Indicators of progress and effectiveness of a task
could be inferred from the amount of user actions,
for instance, the number of resources contributed,
comments, votes, and so on. This information is
presented as data tables or graphics. Some indicators
are presented in a temporal way, while others are
compared among users.

2) The Exportation Views are functions that allow
generating detailed reports about user interaction
over standard formats. In particular, SMLearning
creates a detailed report in CSV format with user
actions. Also, it enables the event log dump to ARFF
format (Attribute-Relation File Format), which it is
used by tools like WEKA, for information processing
based on Data mining techniques. Additionally, some
indicators related with social interaction, such as
relationships among students based on comments,
are exported in VNA format which is used by Social
Network Analysis tools like NetDraw or Gephi [3].

3) Analysis Views. The views presented above address
the problems of capturing and displaying the user
interaction, however do not define an approach for
the analysis of learning. In the particular context of
SMLearning, we have created some rules that create
relationships among indicators and performance
evaluation of learning tasks. For instance, the
relevance of the resources contributed is separated in
quantity, quality (measured as average ranking
proposed by the community in its votes) and social
acceptance (measured as amount of interactivity
generated around the resource, i.e. comments, votes,
tags, and so on). These rules and indicators have
been modelled as mathematical expressions that
allow automatic generation of assessment reports that
the teacher can query.

Figure 5 presents an Analysis View of social
interaction elaborated from annotations made among
students. The size of each node is proportional to the
amount of comments made by the student and its
saturation by the amount of comments received. This
approach has been validated with two experiments in
which the teachers' opinion about the performance of
each student in the activity was compared with the
results of automatic assessment. This process has
allowed improving the definition of indicators and
relationships.

Each of the presented views complements each other in a
real context. The teacher can combine these views according to
his own approach to the activity and define his own
assessment, for example, if social interaction is more relevant
that resources contributed.

Figure 5. Analysis view of social interaction among students

IV. BUILDING LEARNING ENVIRONMENTS WITH OPEN

SERVICES: MASHUP APPROACH

A. Architecture

In this case, we follow the mashup approach explained in
Section II. In order to cope with the heterogeneity of services
and technologies needed to build a collaborative web
application, we propose the Model-Driven approach shown in
Figure 6.

Figure 6. Proposed architecture

In this architecture, the designer of an application does not
deal directly with web programming languages like JavaScript,
JSP, Java or HTML. Instead, we provide a modeling language
so that he can describe the application using concepts of the

domain and not of the technological space. Our goal is to make
available a repository of components that implement
functionalities given by open services while hiding their
complexity, and that the designer can use to build applications
easily.

The approach is currently under construction, but a
prototype already exists based on the METADEPTH modeling
tool [14, 15]. In particular, we have designed a simple family
of languages enabling the description of the navigation,
content, users, roles, and functionalities of the application as
separate concerns. The functionality is described by selecting
and instantiating the components of the repository. A code
generator produces the final application, integrating and
orchestrating the services encapsulated by the chosen
components, and using technologies such as JavaScript, Java,
JSP, HTML and CSS. Nonetheless, this complexity is hidden
to the designer of the application by the use of a modeling
language.

The generated application needs from a thin server to
perform some coordination, e.g. concerning the awareness of
which user is connected, and the different user states. However,
most of the functionality is implemented by using open
services. Next section provides an example application of the
architecture in the e-learning domain.

B. Example Application

We have used the previous architecture for the construction
of an environment for collaborative web learning for a project
course on object oriented design. In this course, the students
work in groups to build an application in Java, covering all
phases of the development, from requirements gathering, to
implementation and testing. The environment for this course
will be accessible by all stakeholders in the subject: the teacher,
an administrator and the students, each with different access
roles.

For the collaborative work, the students are organized in
groups from 2 to 4 people. The application provides the groups
with a work place that supports communication between the
members of the group, offering the following services:

 Visualization of the state of the other members of the
group within the application, including the date of their
last connection.

 Methods for synchronous (voice call, chat) and
asynchronous (e-mails, calendar events) communication.

 A file management system, which allows accessing and
sharing working documents, and permits the teacher a
personalized monitoring of the students activity (updates,
comments, etc).

 Management of the grades for each group on each
deliverable (analysis, design, coding, testing). This
includes grading, as well as sending and receiving
notifications if desired.

 Shared calendars for organizing group events. By default,
a calendar is created and shared between the members of
the group (to agree on project meetings), and between the

teachers and all the groups (to set dates for delivering the
different artifacts, tutorial sessions or exams).

 The project course is divided in four phases: Analysis,
Design, Coding and Testing, so that the application follows this
structure for the organization of documents and grades.

On the other hand, the application allows the teacher to
monitor the work done by students, either by groups or
individually (visualizing their accesses, shared documents,
comments and planned events). Additionally, the teacher can
maintain contact with the students in a passive (publishing the
different educational materials of the course), or active (making
use of the chat, adding comments to documents, sending or
receiving e-mails and notifications with the grades) way.

Instead of using a closed solution, e.g. based on Moodle
[10], we have implemented the above mentioned environment
using open services, mainly from Google. The advantage is
that we obtain a highly scalable, customized environment,
requiring very few resources, as all materials and services are
hosted by Google.

The functionality and components used are summarized in
Table 1. Each function is classified according to one of the
following general aspects: awareness, communication,
coordination, document sharing and evaluation. Sometimes, the
same component provides functionality crosscutting several
aspects. For instance, we use Skype for both user awareness
and communication between the members of a group. We also
provide a classification according to the interaction styles for
services presented in Section II.B (where “-“ denotes a server-
client interaction with no use of open services). Finally, we
have developed a few components for which we did not found
an open service providing the required functionality. One
example is the visualization of online users.

Users of the environment can be assigned different roles, by
means of which they acquire permissions to perform certain
functionalities. We distinguish three roles: teacher, student and
administrator. The last three columns in Table 1 summarize the
functions each role can perform. In addition, all roles can
access the environment after their authentication. Teachers can
perform most functions, except creating folder structures and
calendars, tasks which are performed by the administrator.
Frequently, both roles teacher and administrator are played by
the same user (the teacher of the course). Finally, note that
teachers can perform most functions over all groups (e.g. view
any user who is online), whereas functionality for students is
restricted to the members of the groups he belongs to, as well
as the teacher in some cases.

Figure 7 shows the login page (label 1). This page performs
login to the Google OAuth server (see the right of Figure 1 for
a working scheme). In this way, the Google server asks for user
and password if the user is not already logged in with Google
(label 2), and then request for permissions to access the
different services required by the application (label 3), like
managing calendars, view information about the account, view
and manage documents with Google Drive, view the e-mail

Kind Interac.
Type

Function Component Role
Teacher

Role Student Role
Admin.

 B Authentication Google OAuth Yes Yes Yes

A
w

ar
en

es
s

B Obtain Profile Google User Info Yes Yes Yes

 - Skype name Skype Yes Yes Yes

 - Change Status Self-made Yes Yes Yes

B View Online users Self-made, Skype Yes (groups) Yes (teacher and group) Yes (teacher and groups)

B View Users Info Self-made Yes (groups) Yes (teacher and group) Yes (teacher and groups)

C
om

m
un

ic
at

. C Voice Call Skype Yes (groups) Yes (teacher and group) Yes (teacher and groups)

C Chat Skype Yes (groups) Yes (teacher and group) Yes (teacher and groups)

B e-mail Gmail Yes (groups) Yes (teacher and group) Yes (teacher and groups)

C
oo

rd
in

at
io

n

B Create/Share Calendars Google Calendar No No Yes

C View Calendars Google Calendar Yes (own and groups) Yes (teacher and group) No

B Create Events Google Calendar Yes (own) Yes (group) No

B View Events Google Calendar Yes (own) Yes (teacher and group) No

D
oc

um
en

t
Sh

ar
in

g
an

d
M

an
ag

em
en

t

B Create Folder Structure Google Drive No No Yes

B View Folder Structure Google Drive Yes (own and groups) Yes (teacher and group) No

C View documents Google Drive Yes (own and groups) Yes (teacher and group) No

C Edit documents Google Drive/ Picker Yes (own) Yes (group) No

C Comment documents Google Drive Yes (own and groups) Yes (group) No

C Upload documents Google Drive/ Picker Yes (own) Yes (group) No

E
va

l.

- Provide Mark Self-made Yes (groups) No No

B Send Mark Self-made / Gmail Yes (groups) No No

- View Mark Self-made Yes (groups) Yes (group) No

Table 1: Application functionality, components used, and permissions assigned to roles.

address and manage the e-mail. The requested authorizations
depend on the functionality of the particular application and
user role. Once the login is performed, the user enters in the
start page (label 4), where he can see the active online users
(lower left panel) and their state. Two kinds of states are
provided: the application state (which can be configured in the
METADEPTH model, and associated to each page of the
application), and the Skype state, which is taken from a Skype
service. This page also shows the navigation structure and the
events (right panel). The events are classified according to
whether they concern the teacher or the students group. In the
case of the figure, it only shows the teacher events, because the
logged user is a teacher. The center of the page shows some
account information retrieved from Google (using the UserInfo
API), including a photo, and allows changing the application
state (which is also updated automatically depending on the
page the user is located).

Figure 8 shows the management of documents by the
teacher. In this view, he can add course materials in his
different folders (upper part), which are automatically shared
among all groups. This is done using the Drive API. In the
lower side, he can see the folders of the different student
groups.

Figure 9 shows how the teacher can grade the work of the
students. The items that can be graded are initially defined in
the METADEPTH model (Analysis, Design, Implementation and
Testing in our case). There is also a customized notification
service that enables selecting the grades to be sent to the users,
and adding a general message. The notification is sent through
Gmail, as the system can access the e-mail address of every
student using the Google UserInfo service.

Figure 10 shows a moment in the interaction of a student
with the application. It is part of a process where the student is
looking at the comments added by the teacher on one of the
deliverables. This functionality is taken from Google Drive.

Figure 7. Login process (teacher role)

Figure 8. Handling documents (teacher role)

Figure 9. Grading (teacher role)

Figure 10. Collaborative work with documents (student role)

Finally, Figure 11 shows the management of calendar
events by a student. In this view, the student can check the
events set by the teacher (as the teacher calendar is shared
among all participants), and set new events for his group.

Figure 11. Managing events in the group’s calendar (student role)

C. Supporting Learning Analysis

The use of Google services enables the analysis of the
interaction by using Google Analytics. This service permits
monitoring and measuring the accesses to each Google service
included in the application. A screenshot of a typical report is
shown in Figure 12.

Figure 12. Using Google analytics to analyse service access.

The report shows an aggregation of the use of the Drive and
Calendar APIs. This information could be used to analyze the
student activity, and to perform optimizations of the
environment. However, we are working in providing an
improved support for analytics, including a detailed view of
student actions, and automated suggestions for optimization of
the environment organization. Please note that this would also
require from queries not only to the Analytics API but also to
e.g., the Drive API, to get the history of the documents
uploaded by the students.

V. COMPARISON AND DISCUSSION

The use of open services, especially the related with social
aspects, requires a well-management of information privacy.
Both teachers and students prefer maintaining separate
personal and academic roles [16]. There are some mechanisms
to manage this separation, for instance, the Facebook Groups
allow putting together people who don't have a friendly
relationship, or the Google Plus Circles allow easily grouping
contacts. But we believe that these mechanisms are not enough,

so, we recommend defining a separating layer among
registered accounts and the services, which ensuring a settable
privacy space and taking advantage of social interaction
benefits [6].

There is also the issue of security when using information
stored in Google Drive accounts. For this purpose, a careful
handling of permission is needed, and the Drive API provides
rich permission handling capabilities.

An advantage of the extension approach for popular
platforms, like Facebook or Moodle, is that the users are not
confronted with a new tool, and the learning curve of new
functionality is generally lower. On the other hand, a hosting
platform may restrict the kind of functionality that can be
added or types of interaction of the user, hence being more
restrictive than the pure mashup approach. An extension
approach can also use services (like the Facebook chat) that are
provided by the hosting platform, and which otherwise could
not be used in a purely mashup approach. The other way round,
for some platforms, it may become impossible to integrate
arbitrary open services due to its special requirements.

The use of a pure mashup approach drastically reduces the
resources needed to host a learning environment. In the case
study of section IV, all material was hosted externally in the
Goggle Drive accounts of the participants. This requires fewer
resources than hosting an installation of dedicated e-learning
platforms, like Moodle.

VI. RELATED WORK

Mashups can be seen as the result of applying software
composition techniques to the development of web applications
[1]. Much effort is being spent nowadays to propose models
enabling rich integration of the different component
functionalities. There is a growing need for the integration of
educational services [5], and the idea of mashups have also
been proposed in the educational domain [18, 19], however a
much richer integration of the different services is needed in
order to obtain integrated learning environemnts. The work we
have presented in Section IV, is an step in that direction.

About social media in educational context, several
researchers report using these platforms as a tool for
disseminating content. For instance, Laru et. al. analyzed
multiple social software tools and face-to-face activities for
supporting activities in small groups of learners, where they
found that the collective interaction probably increased
individual knowledge acquisition during the course [17].
Furthermore, Eggers have analyzed the use of Youtube for
sharing resources in the arts fields [11]. Dabner et. al. presents
an experience where the University of Canterbury used
Facebook for supporting communication activities in times of
crisis, particularly a earthquake [9]. Meanwhile, Selami
presents a review of Facebook in educational context from
some aspects such as: users, uses, harmful effects; effects on
culture, language, and education; and they have saw a serious
lack of research on Facebook's use as an educational resource
[2].

Some works have presented an experience of integrating
Google Plus functionalities in higher education context.

Particularly, the use of Circles function, which allow
supporting a relationships-based approach that seems to
improve privacy aspects in the learning environments [21].
But, we believe that there are still few experiences about
integrating open services with learning environment.

VII. CONCLUSIONS

In this work we have described our approach to use open
services for the construction of educational environments. The
use of open services enables scalable solutions, appropriate for
their use in MOOCs. We have discusses different strategies for
the construction, extension and customization of learning
environments using open services, and the typical interactions
that arise. We have illustrated the approach with two case
studies, one using an extension approach, where the learning
environment is embedded into Facebook and uses open
services from YouTube and the hosting platform. The other
one uses a mashup approach, making heavy use of Google
services. In both cases, we have discusses the use of learning
analytics to improve the learning experience.

We are currently working on improving the tool support,
and the generative architecture presented in Figure 6, as well as
analyzing new useful services, like those of reference
management systems (like Mendeley,
http://www.mendeley.com/), Wikipedia
(http://www.wikipedia.org/), or diagrammatic web
environments like Cacoo (https://cacoo.com). In the future, we
will also pursue an integration of the two presented
applications.

ACKNOWLEDGMENTS

This research was partly funded by the Spanish National
Plan of R+D, project number TIN2011-24139; and by the
Autonomous Community of Madrid, e-Madrid project, number
S2009/TIC-1650.

REFERENCES

[1] S. Aghaee, C. Pautasso, “The mashup component description language”.

Proc. iiWAS 2011, pp. 311-316

[2] S. Aydin, “A review of research on Facebook as an educational
environment”, Educational Technology Research and Development,
2012, 60 (6), pp. 1093-1106

[3] M. Bastian, S. Heymann, M. Jacomy, “Gephi: an open source software
for exploring and manipulating networks”, Proc. International AAAI
Conference on Weblogs and Social Media. From AAAI. 2009.

[4] E. Bogdanov, F. Limpens, Na Li, S. El Helou, C. Salzmann, D. Gillet,
“A social media platform in higher education”, IEEE Global
Engineering Education Conference (EDUCON), 2012, pp. 1-8.

[5] M. Caeiro-Rodríguez, M. Manso-Vázquez, L. Anido-Rifón, “Design of
Flexible and Open Learning Management Systems using IMS
Specifications”. Journal of Research and Practice in Information
Technology, 2012, 44(2), pp. 151-165.

[6] MKC. Cheung, P. Chiu, M. Lee, “Online social networks: Why do
students use Facebook?”, Computers in Human Behavior, 2011, 27(4),
pp. 1337-1343.

[7] I. Claros, R. Cobos, “An approach for T-Learning Content Generation
based on a Social Media Environment”, Proceedings of the 10th
European conference on Interactive tv and video, ACM, New York, NY,
USA, 2012, pp. 157-160.

[8] N. Dabbagh, A. Kitsantas, “Personal Learning Environments, social
media, and self-regulated learning: A natural formula for connecting
formal and informal learning”, The Internet and Higher Education,
2012, 15 (1), pp. 3-8.

[9] N. Dabner, “‘Breaking Ground’ in the use of social media: A case study
of a university earthquake response to inform educational design with
Facebook”, The Internet and Higher Education, 2012, 15(1), pp. 69-78.

[10] M. Dougiamas, P. Taylor, “Moodle: Using learning communities to
create an open source course management system”, World Conference
on Educational Multimedia, Hypermedia and Telecommunications 2003.

[11] L. Eggers, “What's on the tube? : art educators on YouTube”. Master's
thesis, University of Texas at Austin. 2012. Available electronically
from http : / /hdl .handle .net /2152 /ETD -UT -2012 -05 -5279

[12] RM. Gagné, “The conditions of learning”, Nueva York, Holt, Rinehart
& Winston, 1977.

[13] DW. Johnson, RT. Johnson, “Social skills for successful group work”,
Educational Leadership, 1990.

[14] J. de Lara, E. Guerra, “Deep Meta-modelling with MetaDepth”. Proc.
TOOLS (48) 2010, pp. 1-20

[15] J. de Lara, E. Guerra, R. Cobos, J. Moreno-Llorena. “Extending deep
meta-modelling for practical model-driven engineering”. 2012. The
Computer Journal (in press).

[16] NS. Lau, L. Lam, “An Investigation of the Determinants Influencing
Student Learning Motivation via Facebook Private Group in Teaching

and Learning, Hybrid Learning”, Lecture Notes in Computer Science
Volume 7411, 2012, pp. 35-44

[17] J. Laru, P. Näykki, S. Järvelä, “Supporting small-group learning using
multiple Web 2.0 tools: A case study in the higher education context”,
The Internet and Higher Education, Volume 15, Issue 1, January 2012,
Pages 29-38, ISSN 1096-7516, 10.1016/j.iheduc.2011.08.004.

[18] M. Llamas-Nistal, M. Caeiro-Rodríguez, J. González-Tato, J. Álvarez-
Osuna, “Integrating Web Services with Gadgets to Support an i-Google
PLE”. Proc. ICALT 2012, pp. 381-382.

[19] F. Moedritscher, G. Neumann, V.M. Garcia-Barrios and F. Wild, “A web
application mashup approach for eLearning”, OpenACS and LRN
Conference 2008: international Conference and Workshops on
Community-Based EnVironments, pp. 105-110. 12-16 Feb 2008.

[20] MOOC wikipedia entry: en.wikipedia.org/wiki/Massive_open_online_course

[21] B. Oberer, A. Erkollar, “Social Media Integration in Higher Education.
Cross-Course Google Plus Integration Shown in the Example of a
Master's Degree Course in Management”, Procedia — Social and
Behavioral Sciences, 2012, 47, pp. 1888-1893.

[22] M. Vardi, “Will MOOCs destroy academia?”, Communications of the
ACM, 2012, 55(11), pp. 5.

[23] RT. White, RE. Mayer, "Understanding intellectual skills". Instructional
Science, 1980, 9 (2), pp. 101-127.

