

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

1998 Australasian Computer Human Interaction
Conference, Proceedings. IEEE, 1998. 306-313

DOI: http://dx.doi.org/10.1109/OZCHI.1998.732229

Copyright: © 1998 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
https://repositorio.uam.es/
http://dx.doi.org/10.1109/OZCHI.1998.732229

KIISS: a System for Visual

Specification of Model-based User Interfaces

Francisco Saiz


Javier Contreras
†

Roberto Moriyón


Departamento de Ingeniería Informática

Universidad Autónoma de Madrid

Cantoblanco 28049, Madrid, SPAIN

{francisco.saiz, javier.contreras,

roberto.moriyon}ii.uam.es

Fax: + 34- 1- 397- 5277

† LIAP-5

Université René-Descartes

7505 Paris, FRANCE

conj@descartes.math-info.univ-paris5.fr

Abstract
The appearance of model-based techniques for

interface development has simplified the design of

complex interactive applications. But this approach still

requires from the designer a high knowledge level about

the textual specification required. This paper presents a

system, KIISS, which allows the designer of an

application to interactively define the model of its

interface through visual specifications on an application

example. Thus, the system enhances the model by

allowing its use by designers who are not quite familiar

with the textual specifications required for a user

interface development. Moreover, reusability is

preserved, since parts of existing applications can be

interactively both exchanged and modified.

Keywords

Interactive User Interface Design, Model-based

Specification, User Interface Technique

1: Introduction

The aim of this paper is to show how the model-

based paradigm for the construction of user interfaces

(UIs) allows the interface development not only through

textual definitions, but also by means of visual,

interactive, and more intuitive specifications on an

application example. We shall do this through a

description of some of the most relevant aspects of KIISS1,

an editor for the interactive development of UIs that can

include context sensitive presentations.

When compared with the most advanced model-

based tools for the design of UIs, one of the main and

novel features of KIISS, is that the developer of the

interface does not need to rely on all the details about the

textual and formal model that represents it. Instead,

relations among parts are expressed graphically, and

every operation enabled in the textual model can be

performed interactively as well.

KIISS allows the interactive specification of the main

aspects of the interface, including presentation and user

interaction. Since different parts of the window where the

work is going on can correspond to the same part of the

model under modification, it is necessary to specify

which of these parts should be modified. KIISS gives the

designer all the information and mechanisms necessary to

1
 KIISS stands for Knowledge-based Interactive Interface Surgery

System.

decide where the actions are to take effect. KIISS gets rid

of ambiguities through dialogues that specify

presentation patterns. These patterns determine sets of

widgets by specifying properties that they must satisfy.

The need to explore the possibilities of interactive

UI building is clear, since the tools that are used

nowadays for this task have very limited capacity. The

most common tools, interface builders like [10], [9], can

only build part of the static components of the interface.

More advanced development tools, like DRUID, [3],

incorporate also the ability to specify some constraints

between parts of the display, but the kind of constraints

that can be specified in this way is very limited. As a

matter of fact, the interactive specification of the

possibilities of interaction for an application under

development is a field that is still a matter of research.

Tools developed as the result of research efforts

have achieved some success in this direction; the set of

tools built on top of GARNET, [4], are especially

remarkable: both LAPIDARY, [6], an advanced editor of

widgets that allows the definition of geometric

constraints, and C32, [5], an editor for generic constraints,

simplify considerably the development of complex

interfaces with this kind of constraints. KIISS applies

techniques similar to those developed in C32, and extends

them to cover most aspects of the development of model-

based interactive applications. MARQUISE, [7], represents

an interesting attempt to incorporate sophisticated

specification by example of constraints in this context,

but the field covered by these techniques is relatively

small.

Finally, the model-based approach has made

remarkable contributions in this direction, which can be

best exemplified by HUMANOID, [12], and UIDE, [2],

developed at ISI/USC and Georgia Tech respectively.

More recently, a more powerful model-based tool for the

design of interactive applications, MASTERMIND, [14], is

being developed as a join effort between the institutions

cited above. KIISS is built on top of HUMANOID.

But, as Brad Myers has pointed out in [8], one of

the biggest problems of model-based systems is that they

are not easy to use. In fact, the model-based approach has

succeeded incorporating complex frameworks that cover

more and more aspects of the overall application. But it

has failed when trying to allow the interactive

specification of complex interfaces by non-programmers.

On the other hand, the dual approach (textual and visual)

for building UIs has been already considered in systems

like XXL, [15], but not within the model-based approach.

For example, HUMANOID incorporates editors for

templates (presentation models), application and

command models, [13], that are useful in the application

development, but still require a lot of knowledge from the

user about the structure of the model. More specifically,

editing of the interface is done in HUMANOID through a

mechanism that gives the designer a view of the model of

the interface and a view of an example of the interface

itself, but the editing is done all the time on the model.

KIISS allows the designer to edit the interface

directly on an example, simplifying very much the editing

process, and the amount of knowledge required about the

model. This also enhances reusability of UIs components,

since the editing of existing applications is done in a

simple way, and it does not require a deep knowledge of

the underlying model. This is achieved by an extension of

the HUMANOID model that includes Virtual Slots [11],

which allows the use of graphical objects that act on other

objects to which they can be attached, like rulers for

defining lengths. Some techniques to control the

sequencing of the application have been also developed,

which are described elsewhere, [1].

Although KIISS can be considered from an abstract

point of view as a modeling system completely

independent of other models like the one underlying

HUMANOID, in practice it uses extensively a feature of

HUMANOID’s model that is not present in others, except

for MASTERMIND, namely the consideration of

presentations with conditional appearance and behavior.

As a consequence of this, it could be implemented on top

of MASTERMIND with an effort similar to the one spent to

do it on top of HUMANOID, but it could hardly be

implemented on top of other model-based systems

without major additions to them. Finally, let us mention

that, while MASTERMIND addresses hard design issues

such as adding power to the interactive design of

constraints, and many others, it has essentially the same

capacities and limitations as HUMANOID in the main

aspects of user interface design that are addressed by

KIISS.

The rest of the paper is organized as follows: we

begin with an example of an application to be built

interactively using the KIISS editor, followed by an

explanation along subsequent sections of how KIISS works

based on this example. This will illustrate our claims

about the simplification of the design process achieved by

the use of KIISS. The last section is devoted to

Presentation Patterns, one of the main features of the

editor, and a description of its architecture.

2: An example

The goal of this section is to show in some detail the

kind of interfaces that KIISS is able to produce. We shall

show two different stages of the construction of a simple

but still representative interface. As we present both

stages, we shall introduce the model that lies behind them

when they are built using a model-based system like

HUMANOID. This information will be used in next section,

where the most relevant aspects of the editing process

that allows to construct the last interface from the simpler

one will be described.

Our starting point will be a simple folder browser,

shown in Figure 1, which just displays the names of the

files in a folder that can be specified by the user. The

only functionality we shall assume it has corresponds to

clicking on the buttons quit and refresh, and typing on the

folder field after clicking on it with the mouse. The effect

of these three actions is in each case the obvious one.

Fig. 1: In this figure a simple

folder browser application is

displayed. The folder is the

input of the application, and

quit and refresh its

corresponding commands.

The final application to be built is the semantic

folder browser shown in Figure 2, that displays the

relevant information about the files in a folder, the kind

of information depending on the type of file. For

example, we might want to be able to see for each bitmap

file in the folder an icon that is a reduced copy of the

bitmap it represents. This might be useful when looking

for specific bitmaps in a folder with many files of this

type. In the example we give, the user can decide whether

these files should be seen by name or by icon by using the

subitems of the menu appearance, while other fields will

always be shown by name. Another possible application

of a semantic browser like this would be to show files of

type agenda by inserting a list with the names, phone

numbers, etc., according to the criteria specified by

means of the subitems of the sort menu, and a small icon

showing a picture of each person in the agenda.

Moreover, the user can filter the types of files to be

shown. Finally, we shall assume that the user can sort the

list of files by size, date, etc., and that it is also possible

to drag a file into the Folder editing field and, if it is a

folder, it will be browsed. What we want to stress here is

that the semantic file browser, which is clearly a more

powerful application than the initial file browser, can be

developed interactively with KIISS.

Let us examine in some detail some of the features

in the underlying model of these two applications. The

following explanations are “textual” specifications

required for the definition of the interfaces in HUMANOID.

We must stress that, as we shall see, the complexity of

these definitions is eased when they are specified in KIISS.

As for the interface represented in Figure 1, the

presentation model consists of a window template that

has three parts: an input panel template (modeling the

upper part of the window), a column template (modeling

the window body), and a command panel template

(containing the buttons). The second part has a subpart, a

label template, which is replicated, i.e. there are as many

widgets in this part as files in the folder being browsed.

Here, the list of files constitutes a data associated with the

body of the window. The folder browser application

consists of a description of the inputs (parameters) and

the commands (in this case there is just one input, the

folder mentioned above, and the commands quit and

refresh).

Finally, the interaction model for Figure 1 specifies

essentially the possibilities to click with the mouse on the

lower buttons, and also to type in the upper editing field,

and the corresponding effects. Each interaction

possibility is modeled through an object called

interaction template, which includes several events, like

the start event, and the stop event, several wheres, like a

start where and a stop where, and an action.

The application depicted in Figure 2 has some major

differences with the original one (apart from other

simpler ones such as a new menu bar, and a new type

editing field in the input panel template). For instance,

the body of the window has now two parts, a row

template that includes the headings for the columns, and a

column template as before. But now the replicated part is

not a label template any more, but another row template.

This means that there are new data corresponding to the

different new labels that appear. These new data compute

their values from the corresponding files in the

surrounding row templates.

Fig.2: This figure displays the

semantic folder browser

application. It includes

additional attributes (size, date,

etc.) of files, as well as new

commands in the application

(sort by size, sort by date and

graphics) and the input type.

The last four parts in the row template that shows

the files are made up of label templates. But its first part

can be either a label template or a bitmap template on

different instantiations or even at different moments. This

is a new kind of presentation template, a substitution

template that models this kind of situation. Actually, the

row template, mentioned in the previous paragraph is

another substitution template that is shown only in case

its corresponding file is of one of the desired types.

Finally, in the application semantics model, there is one

more input, the list of types of the files to be shown.

There are also new interaction templates associated

to the menus, the new editor in the input panel, and the

dragging action. The last one is a dragging interaction

template, associated to the first part in the replicated row

template. Its corresponding action is a set input value

action, the start where function returns the widget that

contains it generated by the substitution template

mentioned above (in case there is one and it corresponds

to a folder), and the stop where function returns the folder

editing field.

2: Editable dimensions in KIISS

There are four aspects of an application that KIISS

can visualize and modify. All of them are attached to a

part of the window selected before any visualization or

editing takes place. Editing in general can modify, create

or destroy specific features. Modification and creation

can be done by direct specification of the new properties

or by importing them from another object, or even from

another application. Presentation patterns (described in

section 4) will serve as a means of interactive non-

ambiguous specification for properties on imported

objects. Let us examine these aspects:

 Visual aspects considered by KIISS can be either

the presentation template to be used, or parameters that

determine the geometric properties of the widgets to be

generated and their appearance, like the top, height,

vertical interspacing (if appropriate), color, etc. Since

they correspond to generic descriptions of these attributes

in a model of presentation, very often their values are not

just constants, but formulae that will be evaluated for

each instance of the template that is created.

 Data are generic parameters of the generation of

widgets like bitmaps, text (such as the name of the file

where the bitmap is stored), etc. Application inputs and

commands are also included in this design dimension.

 Sensitivity refers to the different amounts and

kinds of graphical objects that are generated from a

template when it is instantiated. For example, some

templates are replicated at instantiation, while some

others give rise to different types of graphical objects

depending on specific conditions. Others can appear or

not depending also on some conditions. In the example

from the previous subsection, we can have a bitmap or a

label depending on the type of file associated to the row.

 Interaction. Finally, KIISS allows the user to edit

interactively the events, where places and actions

associated to a given template. The mechanism of

presentation patterns, which will be described below,

reduces the task of specifying a where value to the

definition of links between some components. Similarly,

specifying an action can also be reduced to the

specification of the type of action, and the specification

of the information associated to it. Both tasks can be done

in a way similar to the editing of visualization aspects or

data described above.

3: Information Visualization

KIISS allows the visualization of the information

related to the four aspects just mentioned, in the same

window of the interface, highlighting graphically the

references to other parts of the interface. Information

about the application inputs and commands can be

displayed similarly. This information is given usually by

complex constraints, which are enforced for each instance

of the application. The designer can hide part of the

information shown about each object to avoid

cumbering the screen.

Fig. 3: The Semantic Object Browser is displayed, where a replicated

row is selected. An information sheet describing its attributes appears

next to it, where the height slot is being edited.

Figure 3 shows a visualization of geometric aspects

of the highlighted part in the semantic folder browser.

Data in the formula that appear on the right referring to

information contained in the sheet on the left side are

highlighted in the same color. In general, the designer can

visualize information about several dimensions and

objects at the same time.

It is crucial for the understanding of editing in KIISS,

to notice that the designer selects on the window some

information related to specific widgets appearing on it,

but the modifications he indicates are performed on

templates, abstract objects that represent families of

widgets to be generated by instantiation. The designer

also specifies or modifies formulae that link together

several widgets, but again what KIISS does is annotating

those links in their corresponding abstract templates.

Figure 4 shows a step of the editing and

visualization of the final action of the drag and drop

interaction template. After having entered a set input

value action into the part marked final action, the

designer must drop over there the data filename

corresponding to the label of the left, and the input folder

of the application. This instantiates the input and value

that appear in the editing field on the right. The

specification of the event that activates the drag and drop

interaction template is done by demonstration, while the

specification of the start and stop wheres is achieved by

means of presentation patterns, as explained in the next

section.

4: Presentation patterns

Whenever the designer specifies a modification

associated to a template, KIISS asks whether that

modification should take effect on all graphical instances

of the template or only on some of them. In case the user

wants to reduce the extent of the modification being

specified, this is done through the mechanism of

presentation patterns. This mechanism can also be used

to define sensitive presentations, as it happens in the case

of the first column in the rows representing files in the

example from the previous section. In this case, the

designer will specify the condition for the substitution to

take place by indicating interactively that the type of the

file associated to the row must be bitmap. Finally, it also

allows the interactive definition of the start where, and

stop where slots associated to interaction templates.

Fig.4: The Semantic Folder Browser is

displayed, together with the interaction

information sheet for a directory row.

Presentation patterns are objects that represent patterns

of widgets defined by properties they must satisfy. The

following parameters define presentation patterns: a)

properties of the location where the widget is displayed,

like being contained in some given part of the window; b)

properties of its associated presentation template, like

being an instance of a given one; c) properties of some

data associated to the widget.

 An example of a presentation pattern related to the

interface described in the previous sections is the one that

matches all the icons that represent image files. This

presentation pattern is defined by requiring the

corresponding template to be an instance of the image file

template from the file presentation template library.

A presentation pattern contains a predicate on

widgets, and hence it also represents a set of such

widgets. Actually, presentation patterns can also be built

from simpler ones by their conjugation (in which case

they represent the conjugation of the corresponding

predicates), disjunction, or negation.

Presentation patterns also allow the definition of

conditions in substitution templates, which are defined by

means of a list of pairs, each formed by a condition for

the substitution to hold and a template that substitutes the

one under construction in case the corresponding

condition is satisfied. For example, the template used to

present a file that was mentioned in the previous

paragraph is a substitution template that becomes an

image file template in case its corresponding presentation

pattern matches the widget under consideration. This

matching holds whenever the name of the file associated

to the widget has the right termination, like “.bitmap”.

5: Architecture and implementation

KIISS is a model-based application built on top of

HUMANOID. The model it uses is an extension of that of

HUMANOID. Hence, it models the application being

designed according to its presentation, interaction, and

navigation aspects. It has a specific model for the

interaction with the user that allows the evolution of the

design; the main ingredients of this model have been

described in the previous section through an example, i.e.

the presentation patterns and the information sheets.

These components of the system use extensively the

possibilities of HUMANOID’s model to specify

presentations whose visibility and appearance depend on

specific conditions.

The main input of the KIISS editor is the model of

the application being edited, such as the simple folder

browser in our example. KIISS first generates a copy of

the application it is editing, and adds interactive

functionality to it that is useful for its editing. Then the

application model is changed successively according to

the user's actions. Finally, when the designer of the

application saves the design, the application is first

deprived of the functionality added by the editor at

startup.

Application

KIISS

Event Queue

Tail uses data from Head

Head modifies Tail’s data

Fig. 5: Architecture of KIISS.

HUMANOID provides the

enabling Runtime System, and

from the editing request as

input, modifications are

performed in the application

model, which are updated in the

example application window.

Figure 5 shows the data flow during an interactive

session with KIISS. The input to the system is an editing

request, which is accomplished either on a region of the

application display, in case of parts editing, or on the

sheet that represents a specific kind of information

associated to such a region, in case of the editing of other

types of information. Most inputs affect the model of the

edited application, either directly or indirectly, and the

KIISS windows where the main attributes appear.

The runtime system of HUMANOID interprets the

editing request from the user and creates and modifies the

corresponding window. KIISS application model serves as

the starting point for the generation of all the KIISS

information sheets appearing along the editing session.

In the figure, we can see that KIISS uses data from

the application, and modifies them. On the other hand,

the arrows on the left-hand side of the figure show how

the application receives events and reacts to them as if it

was working in a standalone regime. This is an important

fact that allows the user not only to specify interactively

the reaction of the application to events, as we have

explained in previous sections, but also to experiment

with them and correct errors on the fly.

6: Conclusions

This paper has shown the main features of KIISS,

which accomplishes interactive modifications on the

different components of a given model-based interface.

We have proven that the model-based paradigm for the

construction of user interfaces can be enhanced allowing

the development of more dimensions of complex

interfaces in an interactive way. The dimensions covered

by KIISS include the presentation, interaction and

application models. Getting rid of ambiguities is achieved

by using presentation patterns that define a set of widgets

by certain properties. The above facts have been

introduced through an example where we have seen how

KIISS allows the designer of the user interface to specify

the extents of changes in presentation and interaction with

the user that previous systems like HUMANOID did not

allow.

We have developed a prototype that includes

essential aspects of the functionality described in the

example through this paper, but it still has important

limitations, especially about the location of the

information sheets when the application has

superimposed windows, like scrolling windows. In spite

of these limitations, the most remarkable advance

obtained from the use of the system is the proved fact that

visual specifications on an application example turn out

to be much more flexible and easy to use than textual

definitions, which are the classical starting point in

model-based interfaces.

Acknowledgements

KIISS is partially supported by the Plan Nacional de

Investigación, Programa Nacional de Tecnología de

Información y de las Comunicaciones, Spain, project

number TIC93-0268, and a special grant from

Comunidad de Madrid (Acción Especial KIISS).

References

1. Contreras, J., and Saiz, F.. A Framework for the Automatic
Generation of Software Tutoring. In Proceedings of CADUI’96,
EUROGRAPHICS, Presses Universitaires de Namur, 1996, pp.
171-182.

2. Foley, J., Kim W., Kovacevic S., and Murray, K. Uide: An
Intelligent User Interface Design Environment,Addison-
Wesley, Reading MA, 1991, pp. 339-384

3. Gurminder S., Hong C., and Ye T.: Druid: A System for
Demonstrational Rapid User Interface Development. In
Proceedings of UIST'90, ACM, 1990, pp. 167-177.

4. Myers, B.A., et. al.. GARNET: Comprehensive Support for
Graphical, Highly-Interactive User Interfaces. IEEE Computer
23(11), 1990, pp. 71-85.

5. Myers, B.A.. Graphical Techniques in a Spreadsheet for
Specifying User Interfaces. In Proceedings of CHI'91, ACM,
1991, pp. 243-256.

6. Myers, B. A.. Lapidary. Watch What I do: Programming by
Demonstration. Allen Cypher (ed.), The MIT Press, Cambridge,
1993.

7. Myers, B.A., McDaniel, R.G, and Kosbie, D.S.. Marquise:
Creating Complete User Interfaces by Demonstration.
INTERCHI'93, 1993, pp. 293-300.

8. Myers, B.A.. User Interface Software Tools. ACM
Transactions on Computer-Human Interaction, Vol. 2, No. 1,
pp. 64-103, March 1995.

9. Neuron Data, Inc.. Open Interface Toolkit. Palo Alto, CA,
1991.

10. NeXT, Inc.. Interface Builder. Palo Alto, CA, 1990.

11. Saiz, F., Contreras, J., and Moriyon, R.. Virtual Slots:
Increasing Power and Reusability for User Interface
Development Languages. In Proceedings of CHI'95, ACM,
1995, pp. 236-237.

12. Szekely, P., Luo, P., and Neches, R.. The HUMANOID
Model of Interface Design. In Proceedings of CHI'92, ACM,
1992, pp. 507-514.

13. Szekely, P., Luo, P., and Neches, R.. Beyond Interface
Builders: Model-Based Interface Tools. In Proceedings of
INTERCHI'93, 1993, pp. 383-390.

14. Szekely, P., Sukaviriya, P., Castells, P., Muthukuma-
rasany, J. and Salcher, E.: Declarative Interface Models for
User Interface Construction Tools: The Mastermind Approach.
In Engineering for Human- Computer Interaction, L. Bass and
C. Unger, Eds. Chapman & Hall, 1996.

15. Lecolinet E.: XXL: A Dual Approach for Building User
Interfaces. In Proceedings of UIST'96, ACM, 1996, pp. 99-108.

