
A Design Model Applied to

Development of AmI Systems

R.F. Arroyo1, J.L. Garrido1, M. Gea1, and P.A. Haya2

1 Universidad de Granada
{robfram,mgea,jgarrido}@ugr.es

2 Universidad Autónoma de Madrid
Pablo.Haya@uam.es

Abstract. Ambient intelligence (AmI) represents a promising paradigm
for group-centred collaborative interaction with the surrounding envi-
ronment. The complexity for AmI designs is closely connected with the
mechanism for describing their inherent features. What would be inter-
esting is a method which is capable of describing these properties in a
straightforward way. Task modelling techniques are a suitable method
for AmI systems. This paper describes a new design and implementation
proposal for developing AmI systems, starting from the conceptual and
methodological frameworks proposed by AMENITIES, a methodology
based on task and behaviour models for the study and development of
cooperative systems, extending it with inherent AmI features. With re-
spect to the implementation of AmI systems, an intermediate software
layer supporting common functional requirements is supplied in order to
simplify their development. The overall scheme therefore simplifies the
analysis and development of such systems. These features are shown in
a case study of a collaborative e-learning AmI system.

1 Introduction

Ambient intelligence (AmI) has become the next step in the approach of user-
centred applications which integrate technology into an omnipresent and trans-
parent infrastructure intended to implement intelligent environments. AmI sys-
tems attach special importance to friendliness, performance and support for
human interaction [3]. High quality information must therefore be available (ir-
respective of the specific user, their physical location, the time and the device
used) in order to enable people and devices to interact with each other and with
the environment. Task modelling [14] is a useful technique for describing inter-
active/collaborative systems, and it transforms user activities and their required
data into structured knowledge fragments which are based on tasks. In general,
a task is described on the basis of a set of actions to be performed, information
that is required for these actions, and the actors (playing roles) who perform
them. Normally, however, no context information is taken into account in task
modelling, or at least, it is not represented in a appropiate way. . The benefits
arising from the use of methodological frameworks that include and integrate

(as one more part) task analysis and modelling can be even greater. In [10], a
context layer is proposed which is implemented by using a blackboard model-
based middleware and maintains a global data structure for relevant information
about the world model.

Section 2 of this paper discusses the AmI system features. Section 3 briefly
introduces the conceptual and methodological framework (called AMENITIES)
that is the basis for our proposal. Section 4 describes the proposed design for
developing AmI systems. Section 5 shows how this design model is implemented.
Section 6 describes the application of the proposal to a specific e-learning system.
The final section summarises the main contributions and outlines our future lines
of research.

2 AmI Systems Features

In this section, we shall review the AmI system features in order to provide a
better understanding of this kind of system. These systems are context-aware,
which means that “any information can be used to characterise the situation of
an entity” [2].

Most AmI scenarios are oriented towards groupwork and this results in col-
laborative spaces. These active spaces mean that people work on a constantly
changing context [1], and this has led us to speak about dynamic spaces. One
requirement is proactiveness and this is defined as the system’s ability to make
its own decisions and to start the actions which it considers appropriate without
the user’s attention having to focus on the interaction dialog; new user behaviour
models have been proposed [12] for this. Shared knowledge is a very important
issue since user context is distributed throughout the environment [18]. The
development of applications to solve everyday tasks is also important and one
example is the Stick-e Notes [13]. Usefulness is therefore also an important factor
for these systems. A complementary theory comes from situated social interac-
tion [17] which analyses both human interaction with other participants and
computational devices and also the influence between them. Although theories
and ontological methods are suitable for a better understanding of AmI spaces,
it is also necessary to take into account these concepts in design models, and so
conceptual and methodological frameworks should be adopted. Scenario-based
design [5] is a well-known technique for problem domain understanding and re-
quirement elicitation, and this has sometimes been proposed as an alternative
method for task-based design. Non-expert users, however, may find it difficult
to manage its natural language.

3 Conceptual and Methodological Framework

AMENITIES methodology framework has been adopted as a conceptual and
methodological framework. This methodology is based on task models and user
behaviour and has been specially devised for the study and development of

cooperative systems [6]. In practice, it has been successfully applied to several
collaborative systems [8,7].

AMENITIES shows similarities to other methodologies (e.g. COMMONKADS
[16]), they start from a conceptual structure and build behavioural models in
the different phases of its life cycle. But unlike COMMONKADS, AMENITIES
is a less wide methodology in which the most relevant information related to
concepts such as task, role, organization, ..., is included in a unique hierarchi-
cal behaviour model (UML statechart). It makes easy the information access,
and even provides a better understanding of the complete system. Thereby, this
methodology proposes the building of a system model as starting point for the
software development [6,7]. Abstract concepts present in AmI systems are part
of those present in AMENITIES. Due to space limitations, this paper treats only
with the following concepts:

Law (which is defined as a restriction imposed by the system enabling the
set of possible behaviours to be dynamically adjusted, allowing or denying for
example the execution of user tasks), precondition (defined as a set of restrictions
to be checked, subactivity (as a combination of the actions carried out by active or
passive entities), event (which is defined as a significant occurrence or happening
to a task or program), role (which is a set of related tasks to be carried out),
and actor (which is a user, program, or entity with certain acquired capabilities
like skills, category, etc. that can play a role in the execution of, or responsibility
for, actions).

4 Design Model

4.1 Basis of the Proposal

The abstract concept of object is the mainstay of the design model proposed
in this paper. We can define an object as the most elemental abstraction of
any entity, and this can be physical or not. Every entity is considered as an
object, regardless of its nature or condition; it therefore establishes the basis for
a homogeneous representation. As the aim is to design dynamic environments,
we must establish a way to associate behaviours and properties to objects. We
are interested in specifying what characterise the behaviour of an object, and
in order to achieve this objective, we use the interface concept. We define an
interface as a specification of a set of properties and/or methods that an object
exports.

Physical objects are abstracted into logical objects which shall be represented
in the system. We then proceed to separate the object properties from the part
representing its behaviour. This distinction allows us to divide the model into two
classes of components: the implementation of an object (simply called object),
separated from its specification (interfaces). Figure 1 shows a diagram where the
abstraction stratification has been performed. Interfaces can be associated with
any object but not with each other. Since the objects can be related with any
number of objects and interfaces, an object can be related with various objects
in order to compose new objects, and an object can be related with multiple

interfaces to complete its behaviour. We can express the connectivity of objects
and interfaces with Figure 1. This illustrates an example consisting of a device
(computer001), comprising a physical computer placed somewhere in the real
system, encapsulated into a logical object (terminal), which we will add as
information to the system; this terminal is used as a mail client and instant
messaging client, so it will implement at least two different interfaces which are
related to these functions (emailClient and IMClient interfaces).

INTERFACEOBJECT

0..*

0..* 0..*DEVICE 0..* 0..*

computer001 : terminal1 :

emailClient :

IMClient :

Fig. 1. Composition of devices, objects and interfaces. Example of relationship between
them.

4.2 Model Entities

In the following section, we shall describe some of the main entities that shall
be dealt with in Section 6.

Law This has the following properties: self-information for identifying the law
itself; preconditions, comprising a set of conditions that must be satisfied in
order for the law to be fulfilled; actions that are performed once the law has
been fulfilled; and finally, a logical expression connecting previously defined pre-
conditions by means of logical operators and possible events (with or without
parameters) producing changes in system activity. If this logical expression has
not been specified, then the AND operator between preconditions is assumed by
default.

Precondition This comprises self-information, a set of restrictions specifying
a list of particular attributes that candidate objects to be chosen must have in
order to carry out system activities. These restrictions consist of elements with
the attribute to be evaluated, a condition to be satisfied for this attribute, and
a field indicating the obligatory nature of the restriction; a logical expression on
the defined restrictions or an implicit logic AND (if the logical expression has
been omitted). The obligatory nature can be used as a preference criterion for
the candidate object choice.

Event The information about the specific use of the event is specified in the link
connecting this event with the object that uses it. This specification consists of
the type of relation with the event, i.e. whether the event is being sent or received;
a roles expression including at least one role or a composition of some of these
using an exclusive OR operator, or the reserved word any followed by a list of

roles to be excluded; and a list of parameters that might be necessary for certain
events.

5 Implementation of the Model

The previously proposed design is mainly oriented to AmI systems in particular
and has been used in the U-CAT (ubiquitous collaborative adaptive training)
project to build intelligent active e-learning spaces. It has been implemented us-
ing a blackboard-based architectural design. This architecture (as a middleware
between the physical world and the context-aware applications) is based on a
paradigm called the blackboard.

The blackboard stores the prominent information that is available about the
environment at any time. There are two different kinds of clients that inter-
act with the blackboard: producers and consumers. The producers modify the
information stored on the blackboard. The Consumers can either consult the
blackboard to see if there are any new changes or they can subscribe to black-
board modifications whereby they are notified of any modification. One of the
consumers included by default is called the solver When all the restrictions and
events of a law have been fulfilled, new changes are generated on the blackboard.
These changes can fire new laws, and can become actions that affect the physical
environment or context-aware applications subscribed on the blackboard.

The flexibility and simplicity of the blackboard architecture make it a very
suitable solution for environments where the configuration changes frequently.
This is the case of AmI scenarios. One of the advantages of the proposed paradigm
stems from the fact that it is not necessary for each client to be aware of the
existence of the remaining components; each client only knows the location of
the blackboard and the part of the model that they are interested in. This ap-
proach loosely connects the different components on two levels: a temporal level
and a spatial level. On one hand, clients do not need to be synchronized, which
means that a producer can make changes to the model and finish its execution.
A consumer can then make a request to the blackboard and retrieve the change
since it has been stored. On the other, when a client makes a modification on the
blackboard, he/she will not be aware of the users affected by that change. Each
client interacts with the blackboard as if they were the only one so development
is easier. The following operations are provided by the blackboard: obtain infor-
mation (either a whole entity or the value of a property), change information
(enabling the value of a property to be modified), add new information (allowing
new entities to be added), remove information (whereby entities can be deleted
from the model), subscribe (which allows a client to be notified of any changes
on the blackboard), and unsubscribe (to remove an existing subscription).

The information stored on the blackboard is represented by means of a data
structure which includes metamodel entities such as laws, preconditions, roles,
subactivities, etc., in addition to physical and logical environmental elements
such as devices, persons, rooms, interfaces, etc. The information is then accessed
in a transparent way independently of its nature. A client wanting to know the

precondition of a certain activity or to consult the state of the slide projector
installed in a classroom can therefore use the blackboard to access both types
of information.

6 Case of Study

Applying the proposal to an e-learning AmI system, one fragment of a complex
scenario related to the task of teaching a class might be described in the fol-
lowing way: “When a teacher called Mairi wants to teach her class, she asks the
system for a suitable classroom. About fifty students are expected to attend, so a
classroom with a capacity for more than fifty would be the best choice”. Amongst
other entities, this scenario includes actors (Mairi), roles (Teacher), laws, etc. For
example, the law will comprise a precondition on the classroom, the one which
will generate an event for initiating Mairi’s class in a suitable classroom. The
precondition itself comprises an optional restriction on the classroom capacity,
with a capacity of over fifty being preferable. As we mentioned before, infor-
mation must be specified in XML for it to be capable of interacting with the
blackboard according to our software implementation. The XML specification
stores all the necessary information into the blackboard, as it was modelled. The
solver functionality itself must be implemented in the blackboard, as a producer-
consumer client subscribed to it. Thus, the goal of the XML specification is to
provide a textual, standard representation for the system model. Figure 2 shows
the specification of certain entities in XML.

It can be observed that an XML fragment defines an object (using entity)
of law type (determined by type="10"), comprising a precondition (PreRoom)
and an action to be performed (ActionClassMairi). We then define the pre-
condition (specified as type="11") that contains a restriction on the capacity
attribute (name="Capacity") to be greater than fifty (attribute value >50). As it
is not mandatory, the obligatory attribute is set to false (i.e. name="mandatory"
is set to no). The action is defined as another entity with another specific type
(type="17"), and it consists of a set of instructions specified on a language that
the solver can process, in this case, it generates the event StartClassMairiwith
the class chosen by the precondition PreRoom (SendEvent (StartClassMairi

, PreRoom)). This event is specified in the figure below, where information about
the action entity ActionClassMairi is responsible for generating this event (us-
ing >> in relation name=">>:any:class", and the specification of entity in
destination="ActionClassMairi"). When all this XML information has been
stored on the blackboard, clients processing information stored on the black-
board can operate with the data dynamically. This enables the solver to select
required objects for subsequent activities and state preferences between possible
candidates according to our model’s preconditions and laws.

7 Conclusions and Future Work

In this paper, we have focused on the design of a specific type of AmI system and
its application to e-learning. We presented a proposal for a task-driven design

<entity name="Law" id="1001" type="10">
<property name="[Info]">

<paramSet name="Self-Information" id="001">
<param name="Name"> Mairi Class </param>

</paramSet>

</property>
<relation name="precondition"

destination="PreRoom" id="201">
</relation>
<relation name="action"

destination="ActionClassMairi" id="202">
</relation>

</entity>
<entity name="PreRoom" id="2001" type="11">

<property name="[Info]">
<paramSet name="Self-Information" id="001">
<param name="Name"> Room prec. </param>

</paramSet>
</property>

<property name="[Restrictions]">

<paramSet name="Restriction1" id="101">
<param name="Capacity"> >50 </param>

<param name="mandatory"> no </param>
</paramSet>

</property>

</entity>
<entity name="ActionClassMairi" id="3001" type="17">

<property name="Actions">
<paramSet name="Action block" id="301">

<param name="Instructions">

SendEvent (StartClassMairi, PreRoom)
</param>

</paramSet>
</property>

</entity>
<entity name="StartClassMairi" id="4001" type="15">

<relation name=">>:any:class"

destination="ActionClassMairi" id="401">
</relation>

</entity>

Fig. 2. Specification in XML language.

which is able to capture the special features of AmI systems with an exist-
ing solver engine. It is implemented using a client-server architecture that uses a
solver engine to provide the required functionality for this kind of system. Clients
perform operations by means of remote procedure calls on the blackboard using
HTTP transport protocol and XML language for the message format. Active
spaces have a wide range of technologies available for communicating with the
physical world [10], which can lead to the use of components with limited pro-
cessing capacities, such as sensors and actuators available in domotic networks.
For these cases, the blackboard has specific controllers that enable communica-
tion with several kinds of devices, thereby avoiding additional complexity for the
other clients.

Our future research shall be directed towards making more general environ-
ments, which describe context-sensitive information in greater detail, and adding
solving capacities to improve proactiveness, dynamic and collaborative spaces.
To date, the AMENITIES methodology has also been extended with new con-
cepts and the corresponding attributes.

8 Acknowledgements

This research is partially supported by a Spanish R&D Project TIN2004-03140,
Ubiquitous Collaborative Adaptive Training (U-CAT).

References

1. R. Aldunate, M. Nussbaum, R. González, An Agent-Based Middleware for
Supporting Spontaneous Collaboration among Co-Located, Mobile, and not
necessarily Known People. Workshop on ”Ad-hoc Communications and Col-
laboration in Ubiquitous Computing Environments” ACM CSCW 2002.

2. A.K. Dey, G.D. Abowd, P.J. Brown, N. Davies, M. Smith, P. Steegels: To-
wards a better understanding of context and context-awareness. Workshop of
Context-Awareness (CHI-2000).

3. C.K. Hess, R.H. Campbell: An application of a context-aware file system. Pers
Ubiquit Comput (2003) 7: 339-352

4. S. Card, T. Moran, A. Newell. The Psychology of Human-Computer Interac-
tion. Hillsdale, NJ: Erlbaum, 1983

5. J.M. Carroll. Five reasons for scenario-based design. Interacting with Comput-
ers 13 (2000) pp 43-60.

6. Garrido J.L., Gea M. & Rodŕıguez M.L.: Requirements Engineering in Cooper-
ative Systems. Requirements Engineering for Socio-Technical Systems. Chapter
XIV. IDEA GROUP INC. (USA), 226-244, (2005).

7. Garrido, J.L., Paderewski, P., Rodŕıguez, M.L., Hornos, M.J. & Noguera,
M.: A Software Architecture Intended to Design High Quality Groupware
Applications. 4th International Workshop on System/Software Architectures
(IWSSA’05) - Proceedings of the 2005 International Conference on Software
Engineering Research and Practice (SERP’05) , LAS VEGAS (USA), 59-65,
(2005).

8. M. Gea, J.L. Garrido, F.L. Gutiérrez, R. Cobos, X. Alamán: Representación
del comportamiento dinámico en modelos colaborativos: aplicación a la gestión
del conocimiento compartido. Revista Iberoamericana de Inteligencia Artificial,
Vol 24, 2004

9. P.A. Haya, X. Alamán, G. Montoro: A Comparative Study of Communication
Infrastructures for the Implementation of Ubiquitous Computing. UPGRADE,
The European Journal for the Informatics Professional, Vol 2, 5, 2001

10. P. A. Haya, G. Montoro, X. Alamán. A prototype of a context-based architec-
ture for intelligent home environments. International Conference on Coopera-
tive Information Systems (CoopIS 2004), Lecture Notes in Computer Science
(LNCS 3290), 2004.

11. G. Montoro, P.A. Haya, X. Alamán. Context adaptive interaction with an au-
tomatically created spoken interface for intelligent environments. IFIP Confer-
ence on Intelligence in Communication Systems (INTELLCOMM 04). Lecture
Notes in Computer Science (LNCS-3283). 2004

12. N. Oliver. Towards Perceptual Intelligence: Statistical Modeling of Human In-
dividual and Interactive Behaviors. PHD Thesis. MIT Media Lab, 2000

13. J. Pascoe, Nick Ryan, and David Morse: Issues in Developing Context-Aware
Computing. HUC’99, LNCS 1707, pp. 208-221, 1999.

14. F. Paternò: Model-Based Design and Evaluation of Interactive Applications.
Springer-Verlag, Nov, 1999

15. G. Riva, F. Vatalaro, F. Davide, M. Alcañiz.: Ambient Intelligence. IOS Press,
2005

16. Schreiber, A. et al: Engineering of Knowledge and Management - The Com-
monKADS Methodology. MIT Press, USA (2000)

17. A. Takeuchi, T. Naito: Situated Facial Displays: Towards Social Interaction.
SIGCHI Conference on Human factors in computing systems, 1995

18. M.R. Tazari, M. Grimm, M. Finke. Modeling user context. 10th International
Conference on Human-Computer Interaction (HCII), June 2003.

