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Abstract. Model-to-model (M2M) transformation consists in transform-
ing models from a source to a target language. Many transformation
languages exist, but few of them combine a declarative and relational
style with a formal underpinning able to show properties of the transfor-
mation. Pattern-based transformation is an algebraic, bidirectional, and
relational approach to M2M transformation. Specifications are made of
patterns stating the allowed or forbidden relations between source and
target models, and then compiled into low level operational mechanisms
to perform source-to-target or target-to-source transformations. In this
paper, we study the compilation into operational triple graph grammar
rules and show: (i) correctness of the compilation of a specification with-
out negative patterns; (ii) termination of the rules, and (iii) complete-
ness, in the sense that every model considered relevant can be built by
the rules.

1 Introduction

Model-to-model (M2M) transformation is an enabling technology for recent soft-
ware development paradigms, like Model-Driven Development. It consists in
transforming models from a source to a target language and is useful, e.g. to
migrate between language versions, to transform a model into an analysis do-
main, and to refine a model. In some cases, after performing the transformation,
the source and target models can be modified separately. Therefore, it is useful to
be able to execute transformations both in the forward and backward directions
to recover consistency. Thus, an interesting property of M2M transformation
languages is to allow specifying transformations in a direction-neutral way, from
which forward and backwards transformations can be automatically derived.

In recent years, many M2M specification approaches have been proposed [1,
2, 13–15, 17, 18] with either operational or declarative style. The former languages
explicitly describe the operations needed to create elements in the target model
from elements in the source, i.e they are unidirectional. Instead, in declarative
approaches, a description of the mappings between source and target models is
provided, from which operational mechanisms are generated to transform in the
forward and backward directions.



In this paper, we are interested in declarative, bidirectional M2M transforma-
tion languages. Even though many language proposals exist, few have a formal
basis enabling the analysis of specifications or the generated operational mech-
anisms [19]. In previous work [3], we proposed a new graphical, declarative,
bidirectional and formal approach to M2M transformation based on triple pat-
terns. Patterns specify the allowed or forbidden relations between two models
and are similar to graph constraints [6], but for triple graphs. The latter are
structures made of three graphs representing the source and target models, as
well as the correspondence relations between their elements. Thus, in pattern-
based transformation we define the set of valid pairs of source and target models
by constraints, and not by rules. Then, patterns are compiled into operational
rules working on triple graphs to perform forward and backward transformations.

In the present work, we prove certain properties of the compilation of pattern-
based specifications into rules. First, we show that our compilation mechanism
generates graph grammars that are terminating. This result is interesting as it
means that we do not need to use external control mechanisms for rule applica-
tion [11]. Second, we prove that the transformation rules are sound with respect
to the positive fragment of the specification. This means that a triple graph satis-
fies all positive patterns in a specification if and only if it is terminal with respect
to the generated rules. In other words, the operational mechanisms actually do
their job, and this corresponds to the notion of correctness in [19]. Finally, we
also prove completeness of the rules, i.e. that the rules are able to produce any
model generated by the original M2M specification. These generated graphs are
a meaningful subset of all the models satisfying the specification.

We think that this work paves the way to using formal methods in a key ac-
tivities of Model-Driven Development: the specification and execution of M2M
transformations. The paper is organized as follows. Section 2 provides an in-
troduction to triple graphs and to the transformation rules used in this paper.
Section 3 introduces M2M pattern specifications, their syntax and semantics.
Section 4 is the core of the paper: we introduce the transformation rules asso-
ciated to a pattern specification and we prove their termination, soundness and
completeness. In Section 5 we compare our approach with some other approaches
to M2M transformation. Finally, in Section 6 we draw some conclusions and we
sketch some future work. In addition, along the paper we use a small running
example describing the transformation of class diagrams into relational schemas
[17]. The report [16] includes the full proofs for all the results.

2 Preliminaries

This section introduces the basic concepts that we use throughout the paper
about triple graphs and triple graph transformation. Triple graphs [18] model
the relation between two graphs called source and target through a correspon-
dence graph and a span of graph morphisms. In this sense, if we consider that
models are represented by graphs, triple graphs may be used to represent trans-
formations, as well as transformation information through the connection graph.
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Definition 1 (Triple Graph and Morphism). A triple graph G = (GS
cS←

GC
cT→ GT ) (or just G = 〈GS , GC , GT 〉 if cS and cT may be considered implicit)

consists of three graphs GS, GC , and GT , and two morphisms cS and cT . A
triple graph morphism m = (mS , mC , mT ) : G1 → G2 is made of three graph
morphisms mS, mC , and mT such that mS◦c

1
S = c2

S◦mC and mT ◦c
1
T = c2

T ◦mC.

Given a triple graph G, we write G|X for X ∈ {S, T } to refer to a triple graph
whose X-component coincides with GX and the other two components are the
empty graph, e.g. G|S = 〈GS , ∅, ∅〉. Similarly, given a triple graph morphism
h : G1 → G2 we also write h|X : G1|X → G2|X to denote the morphism whose
X-component coincides with hX and whose other two components are the empty
morphism between empty graphs. Finally, given G, we write iXG to denote the
inclusion iXG : G|X → G, where the X-component is the identity and where the
other two components are the (unique) morphism from the empty graph into
the corresponding graph component.

Triple graphs form the category TrG, which can be formed as the functor
category Graph·←·→·. In principle, we may consider that Graph is the standard
category of graphs. However, the results in this paper still apply when Graph is
a different category, as long as it is an adhesive-HLR category [12, 6] and satisfies
the additional property of n-factorization (see below). For instance, Graph could
also be the category of typed graphs or the category of attributed (typed) graphs.

Definition 2 (Jointly surjective morphisms). A family of graph morphisms

{H1
f1
→ G, . . . , Hn

fn
→ G} is jointly surjective if for every element e (a node or

an edge) in G there is an e′ in Hk, with 1 ≤ k ≤ n such that fk(e′) = e.

A property satisfied by graphs and by triple graphs, is n-factorization, a
generalization (and also a consequence) of the property of pair factorization [6]:

Proposition 1 (n-factorization). Given a family of graph morphisms {H1
f1
→

G, . . . , Hn
fn
→ G} with the same codomain G, there exists a graph H, a monomor-

phism m and a jointly surjective family of morphisms {H1
g1
→ H, . . . , Hn

gn
→ H}

such that the diagram below commutes:

H1

g1

��?
??

??
??

?

f1

''NNNNNNNNNNNNNNN

... H
m // G

Hn

gn

??��������
fn

77ppppppppppppppp

It may be noticed that if a category satisfies the n-factorization property and
{f1, . . . , fn} in the above diagram are monomorphisms then so are {g1, . . . , gn}.

In this paper, a graph transformation rule is a monomorphism (L
r
→ R),

possibly equipped with some Negative Application Conditions (NACs) in its
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left-hand side for limiting its application. The reason is that in our approach
we just need to use non-deleting rules. Hence, rule application is defined by a
pushout. Moreover, in our case, when applying a rule to a given graph G, it is
enough to consider the case where the morphism that matches L to G is a mono:

Definition 3 (Non-Deleting Triple Rule, Rule Application, Terminal

Graph). A (non-deleting) triple rule p = 〈N, L
r
→ R〉, consists of a triple

monomorphism r and a finite set of negative application conditions N = {L
ni→

Ni}i∈I , where each ni is a triple monomorphism.

A monomorphism m : L → G is a match for the rule p = 〈N, L
r
→ R〉 if m

satisfies all the NACs in N , i.e. for each NAC L
ni→ Ni there is no monomor-

phism h : Ni → G such that m = h ◦ ni. Given a match m : L → G for p, the
application of p to G via m, denoted G⇒p,m H, is defined by the pushout below:

Ni

h
/

AA
A

  A
AA

A

L

po

r //nioo

m

��

R

m′

��
G

r′

// H

where m′ is called the comatch of this rule application.
Given a set TR of transformation rules, a triple graph G is terminal for TR

if no rule in TR can be applied to G.

3 Pattern-Based Model-to-Model Transformation

Triple patterns are similar to graph constraints [6, 9]. We use them to describe
the allowed and forbidden relationships between the source and target models in
a M2M transformation. In particular, we consider two kinds of patterns. Negative
patterns, which are denoted by just a triple graph, describe relationships that
should not occur between the source and target models. This means that, from a
formal point of view, negative patterns are just like negative graph constraints,
i.e. a (triple) graph G satisfies the negative pattern N if N is not a subgraph
of G (up to isomorphism). Positive patterns specify possible relationships be-
tween source and target models. Positive patterns consist of a set of negative
premises and a conclusion. As we can see below, satisfaction of P-patterns does
not coincide exactly with satisfaction of graph constraints.

Definition 4 (Patterns, M2M Specification). An N-pattern, denoted N(Q)

consists of a triple graph Q. A P-pattern S = {N(Q
nj

→ Cj)}j∈J ⇒ Q consists of

– The conclusion, given by the triple graph Q.

– The negative premises N(Q
nj

→ Cj), given by the inclusions Q
nj

→ Cj.

An M2M specification SP is a finite set of P and N-patterns. Given a specifi-
cation SP , we denote by SP+ (respectively, SP−) the positive fragment of SP ,
i.e. the set of all P-patterns in SP (respectively, the set of all N-patterns in SP ).
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A P-pattern is intended to describe a class of transformations denoted by
triple graphs. P-patterns describe, simultaneously, source-to-target and target-
to-source transformations. In this sense, there are two notions of satisfaction as-
sociated to P-patterns: forward satisfaction, associated to source-to-target trans-
formations and backward satisfaction, associated to target-to-source transforma-

tions. Then, a triple graph G forward satisfies a pattern {N(Q
nj

→ Cj)}j∈J ⇒ Q

if whenever QS is embedded in the source of G (and the premises are forward
satisfied by the embedding), Q is embedded in G. And an embedding m of QS in

GS forward satisfies a premise N(Q
nj

→ Cj) if there is no embedding m′ of (Cj)S

in GS such that m′ extends m. Backward satisfaction is the converse notion.

Definition 5 (Pattern Satisfaction).

– A monomorphism m : Q|S → G forward satisfies a negative premise N(Q
nj

→

Cj), denoted m |=F N(Q
nj

→ Cj) if there does not exist a monomorphism
g : (Cj)|S → G such that m = g ◦ (nj)|S . Similarly, m : Q|T → G backward

satisfies a negative premise N(Q
nj

→ Cj), denoted m |=B N(Q
nj

→ Cj) if there
does not exist a monomorphism g : (Cj)|T → G such that m = g ◦ (nj)|T .

– A triple graph G forward satisfies a P-pattern S = {N(Q
nj

→ Cj)}j∈J ⇒ Q,
denoted G |=F S, if for every monomorphism m : Q|S → G, such that, for

every j in J , m |=F N(Q
nj

→ Cj), there exists a monomorphism m′ : Q→ G

such that m = m′ ◦ iSQ:

(Cj)|S

g
/

GG
GG

##G
GG

GG

Q|S
iS
Q

//
(nj)|S
oo

m

��

Q

m′

~~||
||

||
||

G

– A triple graph G backward satisfies a P-pattern S = {N(Q
nj

→ Cj)}j∈J ⇒ Q,
denoted G |=B S, if for every monomorphism m : Q|T → G, such that, for

every j in J , m |=B N(Q
nj

→ Cj), there exists a monomorphism m′ : Q→ G

such that m = m′ ◦ iTQ.
– G satisfies S, denoted G |= S, if G |=F S and G |=B S.
– A triple graph G satisfies an N-pattern N(Q), denoted G |= N(Q) if there is

no monomorphism h : Q→ G.

Though the abuse of notation, given a monomorphism m : Q → G, we may
also say that m forward satisfies a negative premise if the monomorphism iSG ◦
m|S : Q|S → G forward satisfies it.

Example 1. The left of Fig. 1 shows a specification describing a transformation
between class diagrams and relational schemas [17]. When considered in the
forward direction, the transformation creates a database schema to store in tables
the attributes of the classes, where classes of the same inheritance hierarchy are
mapped to the same table. The first pattern C-T states that top-level classes
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(i.e., those without parents in the inheritance hierarchy) are mapped to tables.
Note that we use a notation similar to UML object diagrams (i.e. c:C represents
a node c of type Class). N(NoDup) is an N-pattern that forbids associating two
tables to the same class. A-Co and ChC-T are P-patterns with an empty set
of premises. A-Co says that attributes of a class are stored in columns of the
associated table. Finally, ChC-T specifies that children and parent classes are
mapped to the same table. The right of the same figure shows an example of
satisfaction. Graph G satisfies all patterns in the specification and, in particular,
the diagram shows how an occurrence of ChC-T|S is extended to ChC-T.

:T:C

:A :Co

A-Co
N(NoDup)

:T:C

:T

c:C t:T

C-T

t:T

:C

c:C

N(NoParent)

:T:C

:C

ChC-T

:C

:C

:T:C

:C

:T:C

=

:A :Co

G

ChC-TChC-T|S

:C

Fig. 1. Example patterns (left). Triple graph satisfying the specification (right).

4 Correctness, Completeness, and Termination of

Transformations

An M2M specification S can be used in different scenarios [11]. We can build a
target model from a source model (or vice-versa), check whether two models can
be mapped according to S, or synchronize two models that previously satisfied S

but that were modified separately. Each scenario needs a specialized operational
mechanism. Here we cover the first scenario. Starting from a specification S, we
generate a triple graph grammar to perform forward transformations. Obviously,
the same techniques could be applied for implementing backward transforma-
tions. The basic idea is to see the given P-patterns as tiles that have to “cover” a
given source model, perhaps with some overlapping. The target model obtained
by gluing the target parts of these patterns is the result of the transformation.
In addition, the N-patterns allow us to discard some possible models.

Given a source model, a pattern specification will normally have many mod-
els. In particular, there may be several non-isomorphic triple graphs sharing the
same source graph. This means that there may be several correct transforma-
tions for that source graph. Our technique will non-deterministically allow us to
obtain all the transformations satisfying the specification. We think that this is
the only reasonable approach, if a priori we cannot select any preferred model. It
should be obvious that following this kind of approach it is impossible to build
some models of the given specification. In particular, it would be impossible to
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generate models whose target and connection part cannot be generated using
the given patterns as described above. For instance, models whose target part
includes some nodes of a given type not mentioned in the patterns. We think that
restricting our attention to this kind of generated models is reasonable in this
context. This is similar to the “No Junk” condition in algebraic specification.

Our approach is based on associating to a given specification SP a set of
forward transformation rules TR(SP). These rules have, in the left-hand side, a
graph including the source part of the conclusion of a positive pattern and part
of the target and the connection part. In the right-hand side they have the whole
conclusion of the pattern. The idea is that these rules may be used to build “a
piece” of the target and the connection graphs, when we discover an occurrence
of the source part of a pattern on the given source graph. Rules may include part
of the target and connection part of the pattern because this part of the pattern
may have been already built by another pattern (rule) application. In addition,
the negative premises in the given positive patterns are transformed into NACs
of the given rules. Moreover, if we want these rules to be terminating, then we
may include some additional NACs that ensure the termination of the set of
transformation rules associated to all the P-patterns of a given specification. It
should be clear that we can define a set of backward rules in a similar way.

Definition 6 (Forward Transformation Rules for Patterns). To every

P-pattern S = {N(Q
nj

→ Cj)}j∈J ⇒ Q, we associate the set of forward transfor-

mation rules TR(S) consisting of all the rules r = 〈NAC (r), Lr
i
→ Q〉, where:

– Lr is a triple graph such that Q|S ⊆ Lr ⊂ Q and i is the monomorphism
associated to the inclusion Lr ⊂ Q.

– NAC (r) is the set that includes a NAC n′j : Lr → C′j for each premise
N(nj : Q → Cj) in S, where n′j and C′j are defined up to isomorphism by
the pushout depicted on the left below.

The set of terminating transformation rules associated to S, TTR(S) is the

set of all rules 〈NAC (r) ∪ TNAC (r), Lr
i
→ Q〉 such that 〈NAC (r), Lr

i
→ Q〉 ∈

TR(S) and TNAC (r) is the set of all the termination NACs for r, i.e. all the
monomorphisms n : Lr → T where there is a monomorphism f2 : Q → T such
that n and f2 are jointly surjective and the diagram on the right below commutes:

Q|S
(nj)|S

//

poiS
Lr

��

(Cj)|S

��

Q|S
iS
Q

//

iS
Lr

��

Q

f2

��
Lr

n′

j

// C′j Lr n
// T

Example 2. Fig. 2 shows the two forward rules generated from pattern C-T pre-
sented in Example 1. The first one uses L = Q|S, while the LHS of the second
reuses an existing table. Both rules include a NAC (named NAC1), generated
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c:C

L

c:C :T

R

:C

c:C

NAC1

c:C :T

TNAC1

rC-T.1:

:C

c:C

NAC1

c:C t:T

TNAC1

c:C t:T

L

c:C t:T

C-T

t:T c:C t:T

TNAC2

:T

rC-T.2:

Fig. 2. Forward rules generated from pattern C-T.

from the negative pre-condition NoParent of the pattern. The termination NACs
ensure that each class is connected to at most one table.

In some related work (e.g., [6, 4]) termination is ensured by just the termina-
tion NAC Lr → Q. This NAC is enough to ensure finite termination if the set of
possible matches of the given rule does not change after applying the transfor-
mation rules, i.e. if the possible matches of the rule are always essential matches,
according to the terminology in [6, 4]. However, this is not the case in our context.
Our rules may have triple graphs in the left-hand side with non-empty target or
connection part. As a consequence, at some point, there may exist non-essential
matches, and this may cause, if we would only use that NAC, that the resulting
transformation system is not terminating, as the example below shows.

Example 3. Suppose we have the rule shown to the left of Fig. 3, which is one
of the backward rules that we would derive from pattern ChC-T if we want to
apply our technique to implement backward model transformations. And sup-
pose that we only add a termination NAC (labelled TNAC) equal to its RHS. The
rule creates a new child of a class connected to a table. Then, the sequence of
transformations that starts as shown to the right of the same figure does not
terminate. This is so, because the rule adds a new match for the LHS in each
derivation, thus being able to produce an inheritance hierarchy of any depth.

t:Tc:C

:C

t:Tc:C
:T:C

:C

:T:C

:C

:T:C

...

:C

L R = TNAC
M0

M1
M2

Fig. 3. Backward rule (left). Non-terminating sequence (right).

According to Definition 6, the set of termination NACs for the rule includes
the three graphs depicted in Fig. 4. TNAC2 is isomorphic to TNAC, but it identifies
the class in L with the child class. Then it is clear that TNAC2 avoids applying
the rule to M1, thus ensuring termination.
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t:Tc:C

:C

t:Tc:C

L R = TNACTNAC1

:C

t:T:C

c:C

TNAC2

c:C

t:T:C

Fig. 4. Rule with termination NACs.

Definition 7 (Forward Transformation Rules for Specifications). Given
a pattern specification SP , we define the set of forward transformation rules
associated to SP :

TR(SP) =
⋃

S∈SP+

TR(S)

Similarly, TTR(SP) is the set of terminating transformation rules associated
to the patterns in SP+.

Our first result shows that TTR(SP) is terminating. To show this result, we
first need to notice that the transformation rules never modify the source part of
the given triple graphs. Then, the key to show this theorem is a specific property
of our termination NACs ensuring that, if we have transformed the graph G1

into the graph G2 using a rule r with match m1 : Lr → G1, then we cannot apply
the same rule with match m2 : Lr → G2 if the source parts of the domains of m1

and m2 coincide. The reason is that, if we have already applied r with match m1

then the graph G2 will already embed Lr and Q (via m2 and m1, respectively).
Moreover if the source parts of the domains of m1 and m2 coincide, then we can
ensure the existence of embeddings n : Lr → T and h : T → G2, where n is a
termination NAC and h ◦ n = m2. Implicitly, this means that the termination
NACs impose finite bounds on the number of times that an element of the given
source graph can be part of a match.

Theorem 1 (Termination). For any finite pattern specification SP , TTR(SP)
is terminating.

Our second main result shows that a triple graph is terminal for TTR(SP) if
and only if it forward satisfies the positive patterns in SP . Obviously, we cannot
ensure that if G is terminal then G will also satisfy the negative patterns in SP ,
since they play no role in the construction of TTR(SP).

Theorem 2 (Correctness). For any finite pattern specification SP , G |=F

SP+ if and only if G is terminal with respect to TTR(SP).

To prove this theorem, first, we show that a morphism forward satisfies a
premise of a pattern if and only if it satisfies the corresponding NACs in the
associated rules. Then, we can see that if G is a forward model of SP+ and h

is a match for a rule r associated to a pattern S that forward satisfies all the
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negative premises in S, then h will not satisfy a termination NAC in the rule.
Conversely, we can prove that if h : Q|S → G is a monomorphism that satisfies
all the premises in S and h does not satisfy the termination NAC of the rule
Q|S → Q then there exists an h′ : Q→ G that extends h.

With respect to completeness, as discussed above, we are only interested in
the models whose elements in the target and connection part can be considered
to be there because some pattern prescribes that they must be there. We call
these graphs SP -generated.

Definition 8 (SP-Generated Graphs). Given a pattern specification SP , a
triple graph G is SP -generated if there is a finite family of P-patterns {Sk}k∈K,

with Sk = {N(Qk
nj

→ Cjk)}j∈J ⇒ Qk in SP , and a family of monomorphisms

{Qk
fk→ G}k∈K such that every fk forward satisfies all the premises in Sk, and

f1, . . . , fn, iSG are jointly surjective. In this case, we also say that G is generated
by the patterns S1, . . .Sn and the morphisms f1, . . . fn.

Example 4. Fig. 5 presents three SP-generated graphs from the example spec-
ification of Fig. 1, together with the family of patterns that generates them.
It must be noted that the same pattern may occur several times in the given
family generating the graph. For instance, the pattern A-Co is used twice for
generating G3. Graph G1 is generated by pattern C-T, but is not a model of the
specification as the child class and its attribute need to be translated. On the
contrary, graphs G2 and G3 are models of the specification.

{C-T}

:T:C

:C

:A

G1:

{C-T, ChC-T, A-Co}

:T:C

:C

:A

G2:

:Co

{C-T, ChC-T, A-Co, A-Co}

:T:C

:C

:A

G3:

:Co :Co

Fig. 5. SP-generated graphs.

Our next result shows that, given a source graph GS using the rules from
TR(SP), and starting from the graph 〈GS , ∅, ∅〉, we can generate exactly all
SP -generated graphs H such that HS = GS . Obviously not all SP -generated
graphs need to be models of the specification (for instance 〈GS , ∅, ∅〉 is generated
by the empty family of patterns), but this result ensures that if H describes a
valid model transformation of GS and H only contains nodes and edges that
the patterns prescribe that must be present, then H can be obtained by graph
transformation.
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Theorem 3 (Characterization of SP-Generated Graphs). Given a pat-
tern specification SP , G is an SP -generated graph if and only if G|S ⇒∗ G using
rules from TR(SP).

The proof of this theorem goes as follows. First, we prove that if G is gener-
ated by S1, . . .Sn and f1, . . . fn then there is a series of transformations:

L1
i1 //

m1

��

Q1

c1

  A
AA

AA
AA

A
L2

i2 //

m2

��

Q2

c2

��

. . . Ln

mn

��

in // Qn

cn

��
G|S

h1

// G1
h2

// G2
h3

// . . .
hn−1

// Gn−1
hn

// Gn

such that G = Gn up to isomorphism, where the rules involved in these trans-
formations are obtained by the pullback:

Lk
mk //

ik

��

Qk

fk

��
Gk−1

hn◦···◦hk

// G

Conversely, we can prove that if G can be obtained by a series of transformations
as the one above then G is generated by the patterns associated to these rules,
together with the morphisms f1, . . . fn, where fk = hn ◦ · · · ◦ hk+1 ◦ ck.

As a direct consequence of this theorem we immediately get our first com-
pleteness result:

Corollary 1 (Completeness). Given a pattern specification SP , if G is SP -
generated and G |=F SP then G|S ⇒

∗ G using rules from TR(SP).

There are two aspects in the previous completeness result which may be
considered not fully satisfactory. On one hand, we have proved completeness of
TR(SP), i.e. a non-terminating transformation system. On the other hand, the
notion of generated model may not completely follow our intuition. In particular,
according to Def. 8, a given pattern may be used several times with the same
match to generate several different parts of the target and connection graphs.
Next, we provide a more restrictive notion of SP -generated graphs, namely
strictly SP -generated graphs, and then we show that strictly SP -generated for-
ward models are the terminal graphs of our terminating transformation systems.

Definition 9 (Strictly SP-Generated Graphs). Given a pattern specifica-
tion SP , a triple graph G is strictly SP -generated if G is an SP -generated

graph and for every P-pattern S = {N(Q
nj

→ Cj)}j∈J ⇒ Q, if f1 : Q → G and
f2 : Q → G are two monomorphisms such that (f1)S = (f2)S and both forward
satisfy all the premises nj : Q→ Cj, then f1 = f2.

11



Notice that in the above definition it is enough to ask that either f1 or f2

forward satisfy all the premises of the pattern since this depends only on the
source component of the morphisms. Therefore, since both morphisms coincide
in their source component, if one of them forward satisfies a premise so will do
the other morphism.

Example 5. In Fig. 5, graphs G1 and G2 are strictly generated, while G3 is not,
because both occurrences of A-Co share the same source.

Theorem 4 (Completeness for strictly SP-Generated Graphs). Given
a pattern specification SP , if G is strictly SP -generated and G |=F SP then
G|S ⇒∗ G using rules from TTR(SP) and, moreover, G is a terminal graph.

The key to prove the above theorem is to show that if G is a strictly SP -
generated graph and we assume that G is generated by a minimal family of pat-
terns S1, . . .Sn and monomorphisms f1, . . . fn, then the minimality of the family
ensures that all the matches in the above derivation satisfy the corresponding
termination NACs, which means that the rules may be applied.

Finally, by Theorem 2 and Theorem 4, we have:

Corollary 2 (Soundness and Completeness). Given a pattern specification
SP consisting of positive patterns, and a strictly SP -generated graph G then
G |=F SP if and only if G|S ⇒∗ G using rules from TTR(SP) and G is a
terminal graph.

Remark 1. Corollary 2 tells us that, given a set of positive patterns SP and a
source graph GS , the set of all strictly SP -generated forward models of SP ,
whose S-component coincides with GS , is included in the set of terminal graphs
obtained from 〈GS , ∅, ∅〉. However, if SP includes some negative patterns, then
some (or perhaps all) of these terminal graphs may fail to satisfy these additional
patterns. As said above, this is completely reasonable since negative patterns
have not played any role in the construction of TR(SP) or TTR(SP). However,
the negative patterns can be added as NACs into the transformation rules as
described, for instance, in [6]. In this case, it will be impossible to transform a
graph G1 into G2 if G2 would violate some negative pattern. Then, the trans-
formation system could be considered more efficient since the derivation tree
associated to a given start graph would be pruned from all the graphs violating
the negative patterns. However, in this case, our soundness and completeness
results would slightly change. In particular, a terminal graph would not nec-
essarily be a model of the given positive patterns anymore. More precisely, a
graph would be terminal if it is a model of the given positive patterns or if all
its possible transformations violate a negative pattern.

Example 6. Fig. 6 shows some derivations starting from a given graph G0 using
the generated terminating forward rules. All graphs in the derivations are strictly
SP-generated. Hence all graphs in Fig. 5 are reachable. Notice that G3 in Fig. 5
is not reachable using the terminating rules, as the rule generated from A-Co

is not applicable to G2. Graphs G2 and G5 are terminal w.r.t. TTR(SP): the
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former is a forward model of SP , and the latter is only a forward model of
SP+ because the N-pattern N(NoDup) is not satisfied. As stated in the remark,
we could add additional NACs to the generated rules to forbid applying a rule
creating an occurrence of N-patterns. In that case, rule rA−Co.1 would not be
applied to G4 and therefore graph G5 would not be reached.

:T:C

:C

:A :Co

:T:C

:C

:A

:C

:C

:A :T:C

:C

:A

:T:C

:C

:A :Co

:T
rC-T.1

rChC-T.1

rC-T.2

G0:

G1:

G2:G4:

G5:

rA-Co.2

rA-Co.1

Fig. 6. Some derivations using the generated terminating forward rules.

5 Related Work

Some declarative approaches to M2M transformation are unidirectional, e.g.
PMT [20] or Tefkat [13], while we generate both forward and backward transfor-
mations. Among the visual, declarative and bidirectional approaches, a promi-
nent example is the OMG’s standard language QVT-relational [17]. Relations
in QVT contain when and where clauses to guide the execution of the opera-
tional mechanisms. In our case, it is not necessary because the generated rules
are terminating, correct and complete. Moreover, QVT lacks a formal semantics,
complicating the analysis. On the contrary, our patterns have a formal semantics,
which makes them amenable to verification.

TGGs [18] formalize the synchronized evolution of two graphs through declar-
ative rules. From this specification, low level operational TGG rules are derived
to perform forward and backward transformations, similar to our case. However,
whereas in declarative TGG rules dependencies must be made explicit (i.e. TGG
rules must declare which elements should exist and which ones are created), in
our patterns this information is derived when generating the rules.

Completeness and correctness of forward and backward transformations was
proved for TGGs in [7]. Termination was not studied because TGGs need a
control mechanism to guide the execution of the operational rules, such as pri-
orities [10] or their coupling to editing rules [5]. This is not necessary with our
patterns, but we need to ensure finite termination of the operational mechanisms.
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The conditions for information preservation of forward and backward transfor-
mations was studied in [5]. Moreover, in [8] the results in [5] are extended to
the case of triple graph grammars with NACs. A similar result can be adapted
for pattern-based specifications.

In our initial presentation of pattern-based transformation [3], we introduced
some deduction operations able to generate new patterns from existing ones.
In the present paper, we have simplified the framework by eliminating such
deduction operations, but enriching the process of generating operational rules.
The new generation process ensures completeness as it generates each possible
LHS for the rules, which however could not be guaranteed with the deduction
operations. However, such operations can be used as heuristics to generate less
rules, or to reduce the non-confluent behaviour of the transformations.

6 Conclusions and Future Work

In this paper we have demonstrated three properties of the compilation mech-
anisms of pattern-based M2M specifications into graph grammar rules: finite
termination, correctness with respect to the positive fragment of the specifica-
tion and completeness. The first result allows using the generated rules without
any external control mechanism for rule execution, as a difference from current
approaches [11, 17, 18]. The correctness result ensures soundness of the opera-
tional mechanisms, and as remarked in the article, it can be easily extended to
correctness of specifications including negative patterns. Finally, completeness
guarantees that if the M2M specification has a model, then it can be found by
the operational mechanism.

Our results provide a formal foundation for our approach to pattern-based
M2M transformations. However, from a practical point of view, we believe that
the techniques presented in this paper have to be complemented with other tech-
niques that ensure some good performance. More precisely, our results guarantee
that using our approach we can obtain all the (generated) models of given speci-
fication, which means all the possible transformations that are correct according
to the given specification. However, on one hand, this is in general an exponen-
tial number of models, which implies that computing all these models would be
not feasible. On the other hand, typically, there may be some preferred kind of
model (for instance, models that are minimal in some sense) and, as a conse-
quence, we would not be interested in computing all the models, but only the
preferred ones. In addition, in order to make pattern-based transformation useful
for Model-Driven Development, we are currently addressing further challenges:
handling attributes in M2M specifications, supporting advanced meta-modelling
concepts like inheritance and integrity constraints, and tool support. Moreover,
we believe that pattern-based transformation can be used as a formal basis for
other transformation languages, like QVT.
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