

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:

This is an author produced version of a paper published in:

Fundamental Approaches to Software Engineering: 11th International

Conference, FASE 2008, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,

March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,

Volumen 4961. Springer 2008. 77-92

DOI: http://dx.doi.org/10.1007/978-3-540-78743-3_6

Copyright: © 2008 Springer-Verlag

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
https://repositorio.uam.es/
https://repositorio.uam.es/
http://dx.doi.org/10.1007/978-3-540-78743-3_6

Translating Model Simulators

to Analysis Models

Juan de Lara1 and Hans Vangheluwe2

1 Polytechnic School, Universidad Autónoma (Madrid, Spain)
jdelara@uam.es

2 School of Computer Science, McGill University (Montréal, Canada)
hv@cs.mcgill.ca

Abstract. We present a novel approach for the automatic generation of
model-to-model transformations given a description of the operational
semantics of the source language by means of graph transformation
rules. The approach is geared to the generation of transformations from
Domain-Specific Visual Languages (DSVLs) into semantic domains with
an explicit notion of transition, like for example Petri nets. The gener-
ated transformation is expressed in the form of operational triple graph
grammar rules that transform the static information (initial model) and
the dynamics (source rules and their execution control structure). We
illustrate these techniques with a DSVL in the domain of production
systems, for which we generate a transformation into Petri nets.

1 Introduction

Domain-Specific Visual Languages (DSVLs) are becoming increasingly popular
in order to facilitate modelling in specialized application areas. Their use in soft-
ware engineering is promoted by recent development paradigms such as Model
Driven Development (MDD). Using DSVLs, designers are provided with high-
level intuitive notations which allow building models with concepts of the domain
and not of the solution space or target platform (often a low-level programming
language). This makes the construction process easier, having the potential to
increase quality and productivity.

Usually, the DSVL is specified by means of a meta-model with the abstract
syntax concepts. Additionally, the concrete syntax can be given by assigning
visual representations to the different elements in the meta-model. For the se-
mantics, several possibilities are available. For example, it is possible to specify
semantics by using visual rules [4, 8], which describe the pre-conditions for a
certain action to be triggered, as well as the effects of such action. The pre- and
post- conditions are given visually as models that use the concrete syntax of
the DSVL. This technique has the advantage of being intuitive, as it uses con-
cepts of the domain for describing the rules, thus facilitating the specification of
simulators for the given DSVL.

Graph transformation [3] is one such rule-based technique. One of the most
commonly used formalizations of graph transformation is based on category
theory [4] and supports a number of interesting analysis techniques, such as de-
tecting rule dependencies [1, 4, 7]. However, graph transformation lacks advanced

2

analysis capabilities that have been developed for other formalisms for express-
ing semantics, such as Place/Transition Petri nets (P/T nets) [14]. In this case,
the high-power analysis is thanks to the fact that P/T nets are less expressive
than graph transformation.

To address the lack of analysis capabilities, another common technique for
expressing the semantics of a DSVL is to specify a mapping from the source
DSVL into a semantic domain [7, 8] and then back-annotate the analysis results
to the source notation. This possibility allows one to use the techniques specific
to the semantic domain for analysing the source models. However, this approach
is sometimes complicated and requires from the DSVL designer deep knowledge
of the target language in order to specify the transformation.

To reap the benefits of both approaches, we have developed a technique for
deriving a transformation from the source DSVL into a semantic domain, start-
ing from a rule-based specification of the DSVL semantics using graph trans-
formation [3]. Such a specification uses domain-specific concepts only and is
hence domain specific in its own right. In addition, such behavioural specifi-
cation may include control structures for rule execution (such as layers [1] or
priorities [8]). The main idea is to automatically generate triple graph grammar
(TGG) rules [15] to first transform the static information (i.e., the initial model)
and then the dynamics (i.e., the rules expressing the behaviour and the rule
control structure). We exemplify this technique by using P/T nets as the target
language, but other formalisms with an explicit representation of a “simulation
step” or transition (such as Constraint Multiset Grammars [12] and process al-
gebras) could also be used. This explicit representation of a transition allows
encoding the rule dynamics in the target model by creating a transition for each
possible execution (i.e., match) of the original rule.

Paper organization. Section 2 presents the rule-based approach for spec-
ification of behaviour by means of a DSVL for production systems. Section 3
shows how the initial model (i.e., the static information) is transformed. Sec-
tion 4 presents the approach for translating the rules and the control structure.
Section 5 gives an overview of the algorithms for the generation of the TGG
rules. Section 6 presents related research and finally, Section 7 ends with the
conclusions. Due to space limitation we keep the discussion at an informal level,
omitting a theoretical presentation of the concepts when possible. A short, pre-
liminary version of some parts of this work appeared as a technical report [16].

2 Rule-Based Specification of Operational Semantics

In this section we provide a description of a DSVL for production systems us-
ing meta-modelling, and its operational semantics using graph transformation.
The top of Fig. 1 shows a meta-model for the example language. It contains
different kinds of machines (all concrete subclasses of Machine), which can be
connected through conveyors. Human operators are needed to operate the ma-
chines, which consume and produce different types of pieces from/to conveyors.
These machines can be connected.

3

Fig. 1. Meta-Model for the Example Language (up). Example Model (down)

The bottom of Fig. 1 shows a production model example using a visual
concrete syntax. It contains six machines (one of each type), two operators, six
conveyors and four pieces. Machines are represented as boxes, except generators,
which are depicted as semi-circles with the kind of piece they generate inside.
Operators are shown as circles, conveyors as lattice boxes, and each kind of
piece has its own shape. In the model, the two operators are currently operating
a generator of cylindrical pieces and a packaging machine respectively.

Fig. 2 shows some of the graph transformation rules that describe the DSVL’s
operational semantics. Rule “assemble” specifies the behaviour of an assembler
machine, which converts one cylinder and a bar into an assembled piece. The
rule can be applied if every specified element (except those marked as “{new}”)
can be found in the model. When such an occurrence is found, then the elements
marked as “{del}” are deleted, and the elements marked as “{new}” are created.
Note that even if we depict rules using this compact notation, we use the Double
Pushout (DPO) formalization [4] in our graph transformation rules. In practice,
this means that a rule cannot be applied if it deletes a node but not all its
adjacent edges. In addition, we consider only injective matches.

Rule “move” describes the movement of pieces through conveyors. The rule
has a negative application condition (NAC) that forbids the movement of the
piece if the source conveyor is also connected to any kind of machine having an
operator. In this case we use abstract objects in rules (i.e., piece and machine are
abstract classes). Of course, no object with an abstract typing can be found in
the models, but the abstract object in the rule can get instantiated to objects
of any concrete subclass [9]. In this way, rules become much more compact.
The rule in the example is equivalent to 24 concrete rules, resulting from the
substitution of piece and machine by their children concrete classes.

Finally, rule “change” models the fact that an operator may move from one
machine (of any kind) to another one when the target machine is unattended and
it has at least one incoming piece (of any kind). The NAC forbids its application
if the target machine is already being controlled by an operator. This rule is also

4

abstract and equivalent to 144 concrete rules. Additional rules, not shown in the
paper, model the behaviour of the other machine types.

Fig. 2. Some Rules for the Production Systems DSVL.

By default, graph grammars use a non-deterministic execution model. In this
way, in order to perform a direct derivation (i.e., a simulation step), a rule is
chosen at random, and is applied if its pre-condition holds in some area of the
model. This is a second source of non-determinism, as a rule may be applica-
ble in different parts of the model, and then one match is chosen at random.
The grammar execution ends when no more rules are applicable. Different rule
control structures can be imposed on grammars to reduce the first source of
non-determinism, and to make them more usable for practical applications. We
present two of them (layers and priorities) later in Section 4.1.

As the example has shown, graph transformation is an intuitive means to
describe the operational semantics of a DSVL. Its analysis techniques are limited
however, as is for example difficult to determine termination and confluence
(which for the general case are non-decidable), state reachability, reversibility,
conservation and invariants. For these purposes, the next sections show how to
automatically obtain a transformation into P/T nets starting from the previous
rule-based specification (with rules using the DSVL syntax).

3 Transforming the Static Information

In this and the next sections, we explain how, starting from the previous defi-
nition of the DSVL syntax and semantics, a transformation into P/T nets can
be automatically derived. We illustrate the techniques by example, the details
of the constructions are left to Section 5.

In a first step, the static information of the source model is transformed.
For this purpose, the designer has to select the roles that the elements of the
source DSVL will play in the target language. This is specified with a meta-model

triple [6], a structure declaring the allowed relations between two meta-models.
A meta-model triple for the example is shown in Fig. 3. The Petri nets meta-
model is in the lower component, the meta-model of the source DSVL is placed
in the upper component, while the correspondence meta-model in the middle
is used to relate elements of both meta-models. The references (dotted arrows)
depict the allowed relations for the elements in the other two meta-models. These
references are inherited, thus, for example a “Repair” object can be related to a
“Place” object through a mapping object of type “MachPl”.

5

Fig. 3. Meta-Model Triple for the Transformation.

This process of identifying roles for source elements is a kind of model mark-

ing [13], i.e., annotating the model before the transformation actually takes place.
In the example, we state that machines and conveyors play the roles of places

in Petri nets (i.e., they are holder-like or place-like elements), whereas operators
and pieces are token-like entities (i.e., they can “move around”, being associated
with machines and conveyors respectively). For this particular transformation
into P/T nets, the meta-model triple provides two standard mappings: ToPlace

and ToToken, which allow relating source elements to places and tokens respec-
tively, by subclassing both classes. As we are translating the static information,
no element can play the role of a Petri net transition. As the next section will
show, the role of Petri net transition is reserved for the dynamic elements in the
source specification: the rules modelling the operational semantics.

From this meta-model triple, a number of operational TGG rules [15] are
generated. These rules manipulate structures (triple models) made of source and
target models, and their interrelations. They specify how the target model (a
Petri net in our case) should be modified taking into consideration the structure
of the source model. Thus, TGG rules manipulate triple models conforming to
a meta-model triple (such as the one in Fig. 3).

The TGG rules we automatically generate associate with each place-like en-
tity (in the source language) as many places as different types of token-like
entities are connected to it in the meta-model. In the example, class Machine

(place-like) is connected to class Operator, a token-like entity. Thus, we have to
create one place for each machine in the model. Conveyors are also place-like,
and are connected to pieces (token-like). Thus, we have to create four different
places for each conveyor (to store each different kind of piece). This is neces-
sary as tokens are indistinguishable in P/T nets. Distinguishing them is done by
placing them in distinct places. We give additional details of this construction
in Section 5. Here we only give some insight through examples.

6

Fig. 4 shows some of the resulting TGG rules. Rule “add 1-Op-Machine”
associates a place to each machine in the source model (because operators can
be connected to machines). The place in the target model, together with the
mapping to the source element is marked as new (so it is created), and also as
NAC, so that it is created only once for each source machine. Attribute “type” of
the mapping object stores the type (and all supertypes) of the token-like entity
associated with the place. Rule “init 1-Op-Machine” creates the initial marking
of the places associated to machines. It adds one token in the place associated
to each machine for every operator connected to it. We represent tokens as
black dots connected to places. Rule “add 1-Cyl-Conv” associates one place (of
type “cylinder”) to every conveyor in the source model. Similar rules associate
additional places for each concrete type of piece in the source meta-model.

Fig. 4. Some TGG Rules for Transforming the Model.

In addition, as the number of operators in each machine is bounded (there is
a “0..1” cardinality in the source meta-model), an additional place (which we call
zero-testing place) is associated to machines to denote the absence of operators in
the given machine. This is performed by the automatically generated rule “add
0-Op-Machine”. Distinguishing between normal places and zero-testing ones is
done through the modifier attribute of the mapping object. The initialization of
the zero-testing place for operators is done by rule “init 0-Op-Machine”, which
adds a token in the place if no operator is connected to the machine. We use
this kind of places to test negative conditions on token-like entities (e.g., NACs
as well as non-applicability of rules). We cannot generate such kinds of places
for conveyors, as the number of pieces that can be stored in a conveyor is not
bounded. This restricts the kind of negative tests that can be done for conveyors.
The zero-testing places are not needed if the target language has built-in primi-
tives for this kind of testing, like Petri nets with inhibitor arcs [14]. These kinds
of nets, though more expressive, have fewer analysis capabilities. Reachability
for example is not decidable in a net with at least two inhibitor arcs.

Applying the generated rules to the source model in Fig. 1, the Petri net
in Fig. 5 is obtained (we do not show the mappings to the source model for
simplicity, but tag each group of places with the type of the source holder-
like element). The next section shows how the translation of the dynamics is
performed.

7

Fig. 5. First Step in the Transformation.

4 Transforming the Dynamic Behaviour

In order to translate the rules implementing the operational semantics (shown in
Fig. 2) into the target language, a number of additional TGG rules are needed.
These rules “embed” each operational rule in the target language, in each pos-
sible way (i.e., for each possible match of the original rules in the initial model).
Thus, in our case, we make explicit in the Petri net (by means of transitions) all
allowed movement of token-like entities: pieces and operators. This reflects the
fact that rules for the movement of pieces and operators in the source language
can be applied non-deterministically at each possible occurrence.

Fig. 6 shows some of the generated rules. Rule “create assemble” is generated
from rule “assemble” in Fig. 2. It creates a Petri net transition that takes two
pieces (a cylinder and a bar), checks that an operator is present, and then gen-
erates an assembled piece. The triple rule uses the source model to identify all
relevant place-like elements in the pre- and post- conditions of the operational
rule. This TGG rule will be applied at each possible occurrence of two conveyors
connected by an assembler machine, producing a corresponding Petri net tran-
sition in the target model. Thus, we are identifying a priori (by adding Petri net
transitions) all possible instantiations of the rules implementing the operational
semantics. This can be done because the TGG rules contain as pre-conditions
the place-like entities present in the pre-conditions of the original rules.

Rule “create change” is generated from rule “change” in Fig. 2, and adds
a Petri net transition to model the movement of operators between any two
machines. The NAC in rule “change” has been translated by using the zero-
testing place associated with the target machine (to ensure that it is currently
unattended). Note, however, that the original rule “change” cannot have NACs
involving pieces, as we may have an unbounded number of them in conveyors.
Moreover, we allow an arbitrary number of NACs in the original rules, but each
one of them is restricted to have at most one token-like element, as otherwise
we cannot test such condition in the Petri net in one step.

8

Fig. 6. Some TGG Rules for Translating the Operational Rules.

Fig. 7 shows the rules generated from rule “move” in Fig. 2. Note that the
original rule has a NAC involving both token-like and place-like entities. TGG
rule “create move-1” assumes that the place-like entities exist, and therefore
the token-like entities must not exist. The latter condition is tested by means
of the zero-testing place. TGG rule “create move-2” assumes that the place-like
entities do not exist. As can be seen in the rules, the handling of abstract objects
in the original rule depends on their role. On the one hand, the abstract place-
like entites are copied in the TGG rule (e.g., machine in the rule). On the other
hand, abstract token-like elements (e.g., piece element in the rule) are handled
by the attribute “type” of the mapping object (this also ocurred in rule change).

Fig. 7. Additional TGG Rules for Translating the Operational Rules.

Fig. 8 shows the result of applying the generated triple rules to the model
in Fig. 5. It is only partially shown for clarity, as many other transitions are
generated. In particular, we show only two applications of rule “change” to
move an operator to another machine: from the assembler machine to quality
checking the availability of an assembled piece (transition labelled a2q-ass) and
from quality to package seeking an assembled piece (transition labelled q2p-ass).
The full transformation generates transitions to move the operators between
all combinations of machines and types of pieces. Transitions “c2b” and “b2c”
are generated by a specialized rule “change generator” (not shown) applicable
to generator machines (which do not need an incoming conveyor). Again, the
mappings from the Petri net places to the original model are omitted.

9

Fig. 8. Second Step in the Transformation (Some Transitions Omitted for Clarity).

4.1 Transforming the Rules Execution Control

Up to now, we have not assumed any control structure for rule execution. That
is, rules are tried at random, and the execution finishes when no more rule are
applicable. With this control scheme, no further transformations are needed,
and in the example, the resulting Petri net is the one in Fig. 8. However, it is
also possible to translate rule control structures. For example, one can assign
priorities to rules [8], such that rules with higher priorities are executed first. If
more than one rule has the same priority, one is executed at random. Each time
a rule is executed, the control goes back to the highest priority. When no rule in
a given priority can be executed, the control goes to the next lower priority. The
execution ends when none of the rules with the lowest priority can be executed.

This execution policy can be embedded in the resulting Petri net as well,
and we illustrate the translation with the scheme shown in Fig. 9. The figure
assumes two rules (r1 and r2) with the highest priority (priority one). These
transitions, in addition, would be connected to the pre- and post- condition
places, resulting from the previous step in the transformation. The idea is that
in priority 1, modelled by the prio−1 place, rules r1 and r2 are tried. Both cannot
be executed, because place p1+ makes them mutually exclusive. Transitions ¬r1
and ¬r2 are constructed from the operational rule specifications in such a way
that they can be fired whenever r1 and r2 cannot be fired, respectively (details
are shown later). Thus, if both ¬r1 and ¬r2 are fired, the control goes to the next
priority (as this means that r1 nor r2 can be executed). If either r1 or r2 can
be fired, then the control remains in priority one. The transitions that move the
priority take care of removing the intermediate tokens from r1, r2, ¬r1ex and
¬r2ex. Of course, a rule for the original DSVL can be transformed into many
Petri net transitions, one for each possible match. The resulting transitions are
given the same priority as the original rule.

Thus, an important issue in this transformation is that we need to check
when rules are not applicable (as transitions ¬r1 and ¬r2 did in the previous
figure). This in general is possible only if the places associated with the rule are
bounded. Thus, in the case of the example of previous sections, we cannot test

10

Fig. 9. Scheme for Transforming a Control Structure Based on Priorities.

whether rules “assemble”, “move” or “change” cannot be fired, since the number
of pieces in conveyors is not bounded.

Fig. 10 shows examples of the construction of the transitions for testing
non-executability of a rule. Rule “rest” deletes an operator, while rule “work”
models the creation of a new operator in an unattended machine. Triple rule
“create ¬rest” generates a Petri net transition that tests if the machine is not
attended. If this is the case, transition “¬rest” can fire, which means that “rest”
cannot (i.e., the rule cannot be applied at that match). Note that the “¬rest”
transition makes use of the zero-testing place. TGG rule “create ¬work” creates
a transition that can fire when the machine has an operator, and therefore rule
“work” cannot be fired. The generated transitions can only by fired if the original
rule cannot, and the firing does not produce any other effect.

Fig. 10. Generation of Rules for
Testing Non-Applicability.

Note that these kinds of TGG rules cannot
be generated if the original rule has more than
one NAC involving token-like elements, or a
NAC and a pre-condition, both containing
token-like elements, or a pre-condition with
more than one token-like element. The reason
is that in these cases we cannot test the non-
executability of the rules in just one step, we
need more than one transition. This is feasi-
ble using several transition firings, but a more
sophisticated scheme than the one in Fig. 9 is
needed, which we leave for future work.

Typical control structures in graph trans-
formation, such as layers, can be transformed
in a similar way as priorities. For layers, the
only difference is that when a rule in a layer
is executed, the control remains in the current layer and does not go back to
the first layer. Note that the transformation of the control structure can be

11

kept independent of the two previous transformation steps. We are thus in effect
weaving two transformations.

5 Algorithms for the Construction of the TGG Rules

This section gives the details for the construction of the TGG rules.
TGG Rules for the Static Information. In order to construct the TGG
rules to transform the static information (like those in Fig. 4), we first explicitly
copy the reference edges through the inheritance hierarchies in the meta-model
triple. Thus, in the meta-model triple of Fig. 3, we add references from “MachPl”
to each subclass of “Machine”, from “PTok” to each subclass of “Piece”, from
“Place” to each subclass of “ToPlace” and from “Token” to each subclass of “To-
Token”. A similar closure is performed for the normal associations in the upper
part of the meta-model triple (the meta-model corresponding to the DSVL).

Fig. 11 shows the approach for the generation of two of the TGG rules. We
seek all possible instantiations (injective matches) of the pattern to the left in
the meta-model triple (where node Z depicts a concrete class), and we generate
the two rules to the right for each occurrence. The first rule adds one place
for each instance of each place-like entity in the meta-model. Function supers

returns all the superclasses of a given class. The second rule sets the initial
marking of the place related to each place-like instance connected with a token-
like instance. The condition checks that the name of the type of the token-like
entity is included in attribute “type”. For simplicity, we do not use the abstract
syntax of class diagrams in the meta-model triple.

Fig. 11. Constructing the Rules for Translating the Static Information.

Additional rules (similar to “add 0-op-machine” and “init 0-op-machine” in
Fig. 4) are constructed for creating a zero-testing place for the bounded token-
like entities. The pattern is similar to the one in the figure, but looks for a “0..1”
multiplicity in the association connecting the token-like entity to the place-like
entity (to the side of the latter).
TGG Rules for the Dynamic Behaviour. In addition, a TGG rule is con-
structed for each rule of the source DSVL. As stated before, we consider rules
with an arbitrary number of NACs, but each with at most one token-like element.
The construction algorithm proceeds as follows:

1. Initialize the upper part (i.e., corresponding to the source DSVL) of the TGG
rule with all the place-like elements (and the connections between them) of

12

the source DSVL rule that are tagged NAC, del or untagged. Fig. 12 shows
this first step for rule “work” (shown in Fig. 10).

Fig. 12. Steps for Deriving the TGG rule from Rule “work”.

2. For each element in the upper part of the TGG rule which was associated
with a token-like element in the original rule (with tags new, del or un-
tagged), add a mapping and a place in the middle and lower sections. Add an
attribute condition stating that the type of the token-like entity is included
in attribute “type” of the corresponding mapping object. If the token-like
entity is bounded, or was marked as “NAC”, then add an additional mapping
identifying the associated zero-testing place. Do not add a mapping twice
to the same place. In Fig. 12 we do not add place “1-op-machine” or the
mapping twice, even when the operator appears twice in the original rule
(tagged new and NAC).

3. Add a Petri net transition in the lower part of the TGG rule. Connect it to
each place added due to a token-like entity marked as new in the original rule.
Conversely, connect each place added due to a token-like element marked as
del in the original rule to the transition. Connect the transition with a loop
to each zero-testing place coming from a token-like element tagged NAC in
the original rule. Moreover, for each connection starting or departing from
the place associated with a bounded element, add the reverse connection to
the associated zero-testing place. Add a loop to the transition for each place
added due to an untagged token-like entity in the original rule.

Tag the Petri net transition and the created connections in the TGG rule as
new and NAC. In Fig. 12, we create a connection to place “1-op-machine”
as the operator is tagged new. We create a loop to the zero-testing place, as
the operator is marked NAC. Finally, we add the connection from the zero-
testing place because the operator is bounded, and we added the reverse
edge to the other place.

4. Simplify connections to/from the Petri net transition to zero-testing places.
An incoming edge can be cancelled with an outgoing one. If a loop remains,
it can be eliminated only if the place is related to a token-like element which
was not marked NAC in the original rule (this is to allow rewriting of token-
like entities by a single rule, but to retain the semantics of NACs). In the
example we can cancel one outgoing and one incoming edge.

5. NACs of the original rule involving only place-like elements are copied into
the TGG rule.

13

6. If the original rule has NACs involving both place-like and token-like el-
ements, create an additional TGG rule following the previous steps, but
ignoring the token-like elements connected to the place-like elements in the
NACs (see rule “create move-2” in Fig. 7).

TGG Rules for Testing Non-Executability. These rules generate transi-
tions that can be fired if the original rule cannot be executed at a certain match.
The procedure for their construction is similar to the previous one. The first two
steps are the same. In step 3, we neglect each elements tagged new. Then, for
each element tagged del or not marked, we create a self-loop from its associated
zero-testing place to the Petri net transition. For each element marked NAC, we
create a self-loop from its related place to the transition. See the rule in Fig. 10.

6 Discussion and Comparison with Related Work

Many contributions in the field of model-to-model transformation have concen-
trated on devising high-level means to express them. On the more formal side,
we can find the seminal work on TGGs [15], which proposed an algorithm to gen-
erate operational rules (deriving for example source-to-target or target-to-source
translations) from declarative ones. Recent work tries to provide even higher-
level means to express the transformations, for example using triple patterns [10]
from which operational TGG rules are generated. This is closely related to the
notion of “model transformation by example” [17] (where transformation rules
are derived starting from a mapping between two meta-models) and transforma-
tion models [2] (which express transformations as a MOF model relating source
and target elements, and OCL constraints).

However, our work is very different from these, as we express the semantics of
the graph grammar rules (which express the operational semantics of the source
model) with Petri nets. Petri nets can be seen as a restricted kind of graph
grammar, as the token game can be considered as a graph transformation step
on discrete graphs. Some work has tried to encode graph transformation rules
in Petri nets, and then use the analysis techniques of the latter to investigate
the former. For example, in [18] a graph transformation system is abstracted
into a Petri net to study termination. However, there are several fundamental
differences with our work. First, they only consider rules, while we consider rules
and an initial graph. Therefore we are able to consider all possible instantiations
(occurrences) of the source rules. Second, they end up with an abstraction of
the original semantics, as, when the transformation is done, the topology of the
source model is lost (i.e., tokens represent instances of the original types, but
their connections are lost). However, the fact that we consider an initial model
and that we use TGGs that create mappings to the Petri net model allows
us to retain the source model topology, thus the transformation does not lose
information (the obtained Petri net perfectly reflects the semantics of the original
language). This is thanks to the fact that a Petri net transition is constructed
for each possible application of the original rule. Finally, we consider control
structures for the rules and abstract rules.

14

In [5], graph grammars are defined for transforming DSVL models into Petri
nets, without explicitly considering the original DSVL rules. Then, the transfor-
mations are applied to the DSVL rules themselves, resulting in grammar rules
simulating the Petri net. Our approach is different as we translate the DSVL
rules into transitions, accurately reflecting the source DSVL semantics.

Note that we cannot translate arbitrary behavioural specifications. The source
DSVL and its semantics are constrained by the following:

– The DSVL has to include elements that can be mapped to places and tokens.
– For the case of P/T nets as the target language, rules cannot create or delete

place-like entities, as this would change the topology of the target model.
We would need reconfigurable Petri nets [11], for example.

– Moving token-like entities (i.e., deleting and creating the edge connecting the
token-like entity to the place-like entity instead of deleting and creating the
edge and the entity) is possible if the target notation is place/transtion Petri
nets (as we have shown when moving the operator). However care should be
taken if tokens have distinct identities such as in Coloured Petri nets.

– Token-like entities are usually required to be bounded. If rules have NACs,
then all token-like elements in the NAC should be bounded. Boundedness is
also necessary if we are translating control structures like layers or priorities.

– NACs may have at most one token-like element. Restrictions w.r.t. the num-
ber of NACs (involving token-like elements) a rule may have, and the number
of token-like elements in the pre-conditions also apply for generating negative
tests. However, rules may have arbitrary NACs involving place-like elements
only, as they are translated into NACs for the TGG rules and do not involve
checking for tokens at run-time.

7 Conclusions

We have presented a new technique for the automatic generation of transforma-
tions into a semantic domain given a rule-based specification of the operational
semantics of the source DSVL. The presented technique has the advantage that
the language designer has to work mainly with the concepts of the source DSVL,
and does not have to provide directly the model-to-model transformation (which
can become a complex task) or have deep knowledge of the target notation.

We have illustrated this technique by transforming a production system into
a Petri net. The designer has to specify the simulation rules for the source lan-
guage, and the roles of the source language elements. From this information,
TGG rules are generated that perform the transformation. Once the transfor-
mation is executed, the Petri net can be simulated or analyzed, for example to
check for deadlocks or state reachability. Thus, by using Petri net techniques,
we can answer difficult questions about the original operational rules, such as
termination or confluence (which for the case of general graph grammars are
undecidable).

We are working on tool support for this transformation generation, as well as
studying other source and target languages. Moreover, we believe that for P/T
nets the roles played by the source DSVL elements can be inferred by analysing

15

the source rules (checking the static and the dynamic elements). It will also
be interesting to study how graph grammar analysis techniques are translated
into P/T nets and viceversa (e.g., rule conflicts can be analysed by studying
transition persistence).

Acknowledgements. Work sponsored by the Spanish Ministry of Science
and Education, project MOSAIC (TSI2005-08225-C07-06). We thank the refer-
ees for their useful comments.

References

1. AGG home page at: http://tfs.cs.tu-berlin.de/agg/.
2. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A. 2006.

Model Transformations? Transformation Models!. Proc. MoDELS’06, LNCS 4199,
pp.: 440-453, Springer.

3. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. 1999. Handbook of Graph

Grammars and Computing by Graph Transformation. Vol 1. World Scientific.
4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. 2006. Fundamentals of Algebraic

Graph Transformation. Springer.
5. Ermel, C., Ehrig, K. 2007. Simulation and Analysis of Reconfigurable Systems.

Proc. AGTIVE’07, pp.: 261-276.
6. Guerra, E., de Lara, J. 2007. Event-Driven Grammars: Relating Abstract and Con-

crete Levels of Visual Languages. SoSyM (Springer), Vol 6(3), pp.: 317-347.
7. Heckel, R., Küster, J. M., Taentzer, G. 2002. Confluence of Typed Attributed Graph

Transformation Systems. Proc. ICGT’02, LNCS 2505, pp.: 161-176, Springer.
8. de Lara, J., Vangheluwe, H. 2004. Defining Visual Notations and Their Manipula-

tion Through Meta-Modelling and Graph Transformation. JVLC, Vol 15(3-4), pp.:
309-330. Elsevier.

9. de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer G. 2007.
Attributed graph transformation with node type inheritance. Theor. Comput. Sci.
376(3), pp.: 139-163.

10. de Lara, J., Guerra, E., Bottoni, P. 2007. Triple Patterns: Compact Specifications

for the Generation of Operational Triple Graph Grammar Rules. Proc. GT-VMT’
2007. Electronic Communications of the EASST, Vol 6.

11. Llorens, M., Oliver, J. 2004. Structural and Dynamic Changes in Concurrent Sys-

tems: Reconfigurable Petri Nets. IEEE Trans. Computers 53(9), pp.: 1147 - 1158.
12. Marriott, K., Meyer, B., Wittenburg, K. 1998. A survey of visual language specifi-

cation and recognition. Theory of Visual Languages. Pages 5-85. Springer-Verlag.
13. Mellor, S., Scott, K., Uhl, A., Weise, D. 2004. MDA Distilled: Principles of Model-

Driven Architecture. Addison Wesley.
14. Peterson, J. L. 1981. Petri Net Theory and the Modelling of Systems. Prentice-Hall.
15. Schürr, A. 1994. Specification of Graph Translators with Triple Graph Grammars.

Proc. WG’94. LNCS 903, pp.: 151 - 163. Springer.
16. Vangheluwe, H., de Lara, J. 2007. Automatic Generation of Model-to-Model Trans-

formations from Rule-Based Specifications of Operational Semantics. DSM’07
workshop, Tech.Rep Univ. Jyväskilä.

17. Varro, D. 2006. Model Transformation by Example. Proc. MoDELS’06, LNCS 4199,
pp.: 410-424, Springer.

18. Varro, D., Varro - Gyapay, S., Ehrig, H., Prange, U., Taentzer, G. 2006. Termi-

nation Analysis of Model Transformations by Petri Nets. Proc. ICGT’06, LNCS
4178, pp.: 260-274, Springer.

