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Abstract. Meta-modelling is a key technique in Model Driven Engi-
neering, where it is used for language engineering and domain modelling.
However, mainstream approaches like the OMG’s Meta-Object Facility
provide little support for abstraction, modularity, reusability and ex-
tendibility of (meta-)models, behaviours and transformations.
In order to alleviate this weakness, we bring three elements of generic
programming into meta-modelling: concepts, templates and mixin layers.
Concepts permit an additional typing for models, enabling the defini-
tion of behaviours and transformations independently of meta-models,
making specifications reusable. Templates use concepts to express re-
quirements on their generic parameters, and are applicable to models
and meta-models. Finally, we define functional layers by means of meta-
model mixins which can extend other meta-models.
As a proof of concept we also report on MetaDepth, a multi-level meta-
modelling framework that implements these ideas.

1 Introduction

Meta-modelling is a core technique in Model-Driven Engineering (MDE), where
it is used for language engineering and domain modelling. The main approach
to meta-modelling is the OMG’s Meta-Object Facility (MOF) [11], which pro-
poses a linear, strict meta-modelling architecture enabling the definition and
instantiation of meta-models. MOF has a widespread use, and has been par-
tially implemented in the Eclipse Modeling Framework (EMF) [13]. However,
even though meta-modelling is becoming increasingly used on an industrial scale,
current approaches and tools are scarcely ever concerned with scalability issues
like reusability, abstraction, extendibility, modularity and compatibility (i.e. ease
of composition) of models, meta-models and transformations.

Generic programming [5, 14] is a style of programming in which types (typ-
ically classes) and functions are written in terms of parametric types that can
be instantiated for specific types provided as parameters. This promotes the ab-
straction of algorithms and types by lifting their details from concrete examples
to their most abstract form [14]. The advantage is that such a generic algorithm
can be reused by any type that fulfils the algorithm’s requirements. Hence,
generic programming shifts the emphasis from type-centric to requirements-
centric programming [9], enhancing generality and reusability.
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In this paper we bring into meta-modelling and language engineering some
of the successful, proven principles of generic programming. The goal is to solve
some of the weaknesses of current approaches to meta-modelling, transformation
and behaviour specification concerning reusability, modularity, genericity and ex-
tendibility. For example, current approaches to behaviour specification tend to
define behaviour using types of one particular meta-model. However, as generic
programming often does, one should be able to define generic behaviours appli-
cable to several meta-models sharing some characteristics and without resorting
to intrusive mechanisms. In this respect, we show that the use of generic con-
cepts specifying requirements from parametric types permits defining behaviours
in an abstract, non-intrusive way, being applicable to families of meta-models.

Furthermore, models often suffer from an early concretization of details which
hinders their reusability. The use of model templates allows delaying some details
on the model structure by defining model parameters. In this way, a model tem-
plate could be instantiated with different parameters, allowing its reusability in
different situations, and enhancing its compatibility and modularity. Model tem-
plates are also a mechanism to implement patterns for domain-specific languages
and model component libraries.

Finally, mixin layers [12] allow defining meta-models with generic functional
capabilities to be plugged into different meta-models. We found especially use-
ful the definition of semantic mixin layers containing the necessary run-time
infrastructure for the definition of semantics of meta-model families.

As a proof of concept, we have implemented these elements in a multi-level
meta-modelling framework called MetaDepth [3]. However, our aim is not to
describe an extension of MetaDepth’s capabilities. We believe that genericity
has a wide potential in meta-modelling, and hence what we describe here has
immediate applicability to other frameworks, like the MOF. A prototype of the
tool can be downloaded from http://astreo.ii.uam.es/∼jlara/metaDepth/.

The paper is organized as follows. §2 reviews generic programming. §3 intro-
duces MetaDepth so that its syntax is used in the rest of the paper. §4 presents
generic concepts for meta-modelling, §5 presents model templates and §6 intro-
duces semantic mixin layers. §7 discusses related research and §8 concludes.

2 Generic Programming

Genericity [5] is a programming paradigm found in many languages like C++,
Haskell, Eiffel or Java. Its goal is to express algorithms and data structures in
a broadly adaptable, interoperable form that allows their direct use in software
construction. It involves expressing algorithms with minimal assumptions about
data abstractions, as well as generalizing concrete algorithms without losing effi-
ciency [5]. It promotes a paradigm shift from types to algorithms’ requirements,
so that even unrelated types may fulfil those requirements, hence making algo-
rithms more general and reusable.

In its basic form, generic programming involves passing type parameters to
functions or data types which are then called templates. In this way, template



3

functions or classes require the parameter types to fulfil a number of requirements
for a correct instantiation of the template. This set of requirements is usually
expressed using a concept [9]. Typical requirements include, e.g., a type which
must define a “<” binary relation, or a list of data objects with a first element,
an iterator and a test to identify the end. Rudimentary concepts exist e.g. in
Java, limited to express the requirements of a single type by demanding it to
inherit from a specified class or to implement a set of interfaces.

As an example, Listing 1 shows a C++ template function min that returns
the minimum of two elements of a parametric type T . The requirement for the
type T is to define the “<” operator, specified by concept LessThanComp3.

1 template <typename T> requires LessThanComp<T>

2 T min(T x, T y) { return y < x ? y : x; }
3 concept LessThanComp <typename T> { bool operator<(T, T); }

Listing 1: A template and a concept example in C++.

Mixins are classes designed to provide functionality to other classes, typically
through parameterized inheritance, promoting code reuse and modularity. Mixin
layers [12] extend mixins by encapsulating fragments of multiple classes to define
a layer of functionality, which can be added to other sets of classes. They were
proposed as a technique for implementing collaboration-based designs, where
objects play different roles in different collaborations. In this context, mixin
layers provide the needed functionality for each collaboration, so that the final
system is obtained by composing layers.

3 MetaDepth

MetaDepth [3] is a new multi-level meta-modelling framework with support
for multiple meta-levels at the same time using potency [1]. This approach is
very useful to describe what we call deep languages, which are languages that
involve two or more meta-levels at the user level. An example of a deep language
is the combination of UML class and object diagrams, if one thinks of object
diagrams as instances of class diagrams [3]. The framework uses a textual syntax
and is integrated with the Epsilon family of languages4, so that EOL [7] can be
used to express constraints and behaviours. EOL extends OCL with imperative
constructs to manipulate models.

Listing 2 shows a meta-model for Petri nets using MetaDepth’s syntax to
the left and a UML representation to the right. Petri nets are a kind of automaton
with two kinds of vertices: Places and Transitions. Places contain tokens, and
can be connected with transitions through arcs (and the other way round).

3 Concepts have been post-poned from C++0x, the last revision of C++.
4
http://www.eclipse.org/gmt/epsilon/
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1 Model PetriNet {
2 abstract Node NamedElement {
3 name : String {id};
4 }
5 Node Place : NamedElement {
6 outTr : Transition[*] {ordered,unique};
7 inTr : Transition[*] {ordered,unique};
8 tokens: Token[*] {unique};
9 }

10 Node Token {}
11 Node Transition : NamedElement {
12 inPl : Place[*] {ordered,unique};
13 outPl: Place[*] {ordered,unique};
14 }
15 Edge ArcPT(Place.outTr,Transition.inPl) {}
16 Edge ArcTP(Transition.outPl,Place.inTr) {}
17 minPlaces : $Place.allInstances()->size()>0$
18 }

NamedElement

name: String {id}

Place Transition

Token
* tokens

1

ArcPT

ArcTP

outTr

inTr
*
*

*
*
inPl

outPl

Listing 2: Meta-model for Petri nets, in metaDepth’s syntax and UML.

The listing declares an abstract node NamedElement owning a field name. The
field’s id modifier states that no two instances of NamedElement can have the
same value for the field. Both Place and Transition inherit from NamedElement.
The former declares three association ends (outTr, inTr and tokens) with
cardinality 0..*. The modifier ordered keeps the collection elements in the
order of assignment, while unique forbids duplicated elements. The opposite
ends of outTr and inTr are declared by the edges ArcPT and ArcTP. Thus, in
MetaDepth’s syntax, Model is similar to a meta-model, Node to a meta-class,
and Edge to a meta-association (in fact to an associative class).

MetaDepth supports the definition of constraints and derived attributes
either in Java or in EOL. Constraints can be declared in the context of Models,
Nodes or Edges. Line 17 in the listing declares an EOL constraint named minPla-
ces, which demands PetriNet models to have at least one Place. As MetaDepth
allows specifying multiplicities in the definition of Nodes, the same effect can be
obtained by replacing line 5 by “Node Place[1..*]:NamedElement{”.

The defined meta-model can be instantiated as Listing 3 shows. This Petri
net model represents a system with two processes (producer and consumer)
communicating through a buffer of infinite capacity. The right of Listing 3 shows
the system using the usual Petri nets visual notation, with places represented
as circles, transitions as black rectangles, and tokens as black dots inside places.
The dotted rectangles delimit the different conceptual components of the system.

Listing 3 makes use of the normal instantiation capabilities found in most
meta-modelling frameworks (like EMF [13]). However, one soon notices that the
definition of our model could be improved concerning abstraction, modularity
and reusability. First, the user could have been offered higher-level modelling
elements than places and transitions, like Buffers and Processes. Moreover, in-
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1 PetriNet ProducerConsumer {
2 Place WP { name="waitProduce"; }
3 Place RP { name="ReadyProduce"; }
5 Transition ReadyP { name="readyP"; }
4 Transition Produce { name="in"; }
6 ArcPT (RP, Produce);

7 ...

8 Place Buffer { name="Buffer"; }
9 ...

10 Place C { name="Consume"; }
11 Place WC { name="waitConsume"; }
12 Transition Consume { name="out"; }
13 Transition ReadyC { name="waitC"; }
14 ...

15 }

ReadyProduce

waitProduce

readyP

Consume

waitConsume

waitC

Bufferin out

Listing 3: A Petri net with the Producer-Consumer example.

specting the model, one realizes that the two processes have exactly the same
structure (two places connected by transitions). Therefore, it would have been
useful to have a meta-modelling facility to define model components – similar
to modelling patterns – that the user can instantiate and interconnect. §5 will
demonstrate how the use of templates allows performing this at the model level,
without any need to modify the meta-model.

Finally, MetaDepth allows defining behaviour for models using either Java
or EOL. EOL is however very well suited for this purpose, as it permits defining
methods on the meta-classes of the meta-models. Listing 4 shows an example
simulator written in EOL to execute Petri net models. The entry point for its ex-
ecution is the operation main, which is annotated with the required meta-models
(PetriNet in our case). The listing declares the auxiliary operations enabled
and fire on the context of the Transition meta-class. These are invoked in the
loop of the main() operation, firing the enabled transitions.

This simulator works well for instances of the Petri net meta-model. However,
there are many languages whose behaviour can be defined in terms of Petri nets.
Therefore, couldn’t we abstract the essential elements of Petri net-like languages
and define such behaviour in a generic way? Next section will show that concepts
are a solution to this issue.

4 Concepts for Language Engineering

Now we are in the position to discuss how to bring elements of generic program-
ming into meta-modelling. This section shows how to define concepts, and how
to use them to define generic behaviours applicable to language families. The
following two sections will discuss model and meta-model templates.

A concept in meta-modelling is a pattern specification that expresses require-
ments on models or meta-models. Concepts provide a dual typing in the context
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1 @metamodel(name=PetriNet,file=PetriNet.mdepth)

2 operation main() {
3 while (Transition.allInstances()->exists(t | t.enabled() and
3 t.fire())) {}
4 }
5 operation Transition enabled() : Boolean {
6 return self.inPl->forAll(p | p.tokens.size()>0);

7 }
8 operation Transition fire() : Boolean {
9 for (p in self.outPl)

10 p.tokens.add(new Token);

11 for (p in self.inPl) {
12 var t : Token := p.tokens.random();

13 p.tokens.remove(t); delete t;

14 }
15 return true;
16 }

Listing 4: A simulator for Petri nets.

where they are used, which we use to define behaviour independently of specific
meta-models. This is useful for reusability and composition of behaviours.

Let’s start discussing an illustrative scenario. Assume one needs to describe
the behaviour of two languages, one in the domain of Production Systems (where
pieces are produced and consumed by machines) and the other for Communica-
tion Networks (where packets are produced and consumed by computers). Thus,
one would define one program to simulate the first kind of models, and another
different one to simulate the second kind of models. This situation is illustrated
to the left of Fig. 1. In the figure we assume that behaviours are realized using
EOL programs, but our approach is applicable to other means of specification
of in-place model transformations, like e.g. graph transformation.

Meta-Model

1

Meta-Model

2

Model 1 Model 2

«instance of» «instance of»

Behaviour 1

(EOL)

«
re

q
u
ir
e
s
»

executes on executes on

Behaviour 2

(EOL)

«
re

q
u
ir
e
s
»

Meta-Model

1

Meta-Model

2

Model 1 Model 2

«instance of» «instance of»

Behaviour 1

(EOL)

«requires»executes on

Meta-Model

3

Model 1’ Model 2’

M2M trafo.

1to3

M2M trafo.

2to3

«requires» «requires»

«requires»
«requires»

executes on

«instance of» «instance of»src

tgt

src

tgt

Fig. 1. Direct implementation of behaviours (left). Transformational approach (right).
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Analysing the semantics of these two languages reveals similarities between
the two programs implementing them. Actually, this is due to the fact that both
behaviours can be mapped into the standard semantics of Petri nets. Hence,
instead of defining such similar behaviours twice, we can transform the models
into a common language and define the behaviour for the common language
only once. This situation is depicted to the right of Fig. 1, where Model 1 is
transformed into Model 1’ and Model 2 is transformed into Model 2’, being
both transformed models conformant to the same meta-model for which the
behaviour is specified. However, this situation is not ideal either, as one has to
define specific model-to-model transformations between each language and the
common language. Moreover, after modifying the transformed model according
to the behaviour, this has to be translated back to the original language.

An improvement which avoids transforming models is to use extension or
inheritance mechanisms for meta-models (see the left of Fig. 2). In this case, the
meta-models 1 and 2 extend a third meta-model for which the behaviour is de-
fined. In particular, their classes extend (or subclass) the classes that participate
in the defined behaviour for meta-model 3, so that this behaviour also applies
to the classes in 1 and 2. However, this solution is intrusive as it requires that
all defined meta-models for which we want to define the semantics to inherit
or extend the same meta-model. This may become unfeasible if more than one
semantics (e.g. timed and untimed) is to be defined for the same language.

Meta-Model

1

Meta-Model

2

Model 1 Model 2

«instance of» «instance of»

Behaviour

(EOL)

executes on executes on

Meta-Model

3
«extends» «extends»

«requires»

Meta-Model

1

Meta-Model

2

Model 1 Model 2

«instance of» «instance of»

Concept

A
«binds» «binds»

Behaviour

(EOL)

«requires»

executes on executes on

Fig. 2. Inheritance of behaviour (left). Approach based on concepts (right).

In this scenario, concepts can simplify the situation as they can express re-
quirements on meta-models or models that some other elements (in this case
the behaviour) needs. In our example, we can define a concept expressing the
requirements that a simulator for Petri-net-like languages needs. Such simulator
abstracts from the specific details of the languages, and uses only the elements
defined in the concept, hence being independent of any meta-model and there-
fore non-intrusive. Thus, if our two original languages satisfy the requirements
of the concept, then the behaviour can be applied to their instances as shown to
the right of Fig. 2. This scheme is the simplest and cleanest of the four, and its
benefits increase as we find new meta-models in which the concept is applicable
as we can reuse the defined behaviour for them. Moreover, the mechanism is



8

non-intrusive: the meta-models for which we are defining the behaviour are not
modified and are oblivious of the concepts.

In our approach a concept has a name and a number of parameters that rep-
resent generic types of models, nodes, edges or fields. Concepts can be bound
against models and meta-models by a pattern-matching mechanism. In this way,
a concept C defines a language L(C) of all (meta-)models that satisfy the re-
quirements imposed by the concept C. If C is defined at the meta-model level,
L(C) contains a family of meta-models sharing similar characteristics. We use
concepts to define generic behaviours using their parameters as generic types, as
well as to describe conditions to be fulfilled by template parameters. In contrast
to generic programming, where concepts are used to restrict the allowed types
to only those defining a certain set of operations, concepts in meta-modelling
refer to structural features of (meta-)models, and thus they can impose a certain
structure for their nodes, edges and fields, as well as define arbitrary constraints
to restrict their applicability.

Listing 5 shows a concept, using MetaDepth’s syntax. The concept charac-
terises languages with similar structural features, enabling their simulation using
the same semantics, which we call Token-Holder. The concept declares seven
parameters, which are treated as variables and start by “&”. The body of the
concept requires &M to be a model with three nodes. Node &T plays the role of
token. Node &H plays the role of a holder of tokens, as it is demanded to define
an attribute of type &T. Node &P plays the role of a process or transition, and
it must define two fields modelling the connection to input and output holders.
The body of a concept may include extra conditions expressed in EOL, as well
as constant elements as opposed to variables. For example, we could demand
node &H to have an attribute name:String.

1 concept TokenHolder(&M, &H, &P,

1 &T, &tokens, &inHolders,

1 &outHolders) {
2 Model &M {
3 Node &H {
4 &tokens : &T[*];

5 }

6 Node &P {
7 &inHolders : &H[*];

8 &outHolders: &H[*];

9 }
10 Node &T {}
11 }
12 }

Listing 5: A concept expressing the requirements for Token-Holder semantics.

We use this concept to characterize the family of meta-models sharing the
Token-Holder semantics. For example, it can be bound to the PetriNet meta-
model of Listing 2, where &H is bound to Place, &P to Transition, and so on.
Nonetheless, it can be bound to other meta-models as well. Listing 6 defines a
meta-model for Production Systems and its binding over the TokenHolder con-
cept. The meta-model declares machines and conveyors, which can be connected
to each other. Conveyors hold parts, which are fed into machines. Machines pro-
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cess parts, which are produced into conveyors. In this way, this working scheme
is adequate for its simulation using Token-Holder semantics. Hence, we use the
TokenHolder concept and bind it to the meta-model in line 21: conveyors act like
places, machines as transitions, and parts as tokens. We explicitly pass concrete
model elements to the pattern matcher in the bind command. The binding pro-
cess matches association ends with a more general cardinality (e.g. inHolders
with cardinality “*”) to association ends with more restricted cardinality (e.g.
inP with cardinality “1..*”). This is so as all instances of the meta-model fulfil
the cardinalities of the concept. The contrary is not allowed, as in that case some
instances of the meta-model would not fulfil the cardinalities of the concept.

1 Model ProdSys {
2 Node Machine {
3 ref : String;

4 type: String;

5 inP : Conveyor[1..*];

6 outP: Conveyor[1..*];

7 }
8 Node Conveyor {
9 outT : Machine[*];

10 inT : Machine[*];

11 parts: Part[*];

12 }
13 Node Part {
14 creationTime: int;

15 owner : Conveyor[0..1];

16 }
17 Edge PH(Machine.outP,Conveyor.inT);

18 Edge HP(Conveyor.outT,Machine.inP);

19 Edge iP(Part.owner,Conveyor.parts);

20 }
21 bind TokenHolder(ProdSys

21 ,ProdSys::Conveyor

21 ,ProdSys::Machine

21 ,ProdSys::Part

21 ,ProdSys::Conveyor::parts

21 ,ProdSys::Machine::inP

21 ,ProdSys::Machine::outP)

Listing 6: Binding the Token-Holder concept.

We can define generic behavioural specifications for the concepts, applicable
to instances of any meta-model that satisfies the concept’s requirements. List-
ing 7 shows an excerpt of the EOL simulator for the Token-Holder concept.
The program first states that it needs concept TokenHolder (line 1), and that it
will be executed on instances of meta-models satisfying the concept. Then, the
program uses the generic types and features defined by the concept, but noth-
ing else. This program is actually an abstraction of that of Listing 4, because
this one does not require concrete types. The working scheme is the same, but
the operations enabled and fire are added to the class &P gets bound to. The
simulator can be used to execute any instance of the ProdSys and PetriNet
meta-models, hence being more reusable than the one in Listing 4.

5 Model Templates

Concepts express requirements of models and meta-models. By using such ab-
straction mechanism, behaviours and transformations can be expressed in a type
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1 @concept(name=TokenHolder,file=TokenHolder.mdepth)

2 operation main() {
3 while (&P.allInstances()->exists(t | t.enabled() and t.fire())) {}
4 }
5 operation &P enabled() : Boolean {
6 return self.&inHolders->forAll(h | h.&tokens.size()>0);

7 }
8 operation &P fire() : Boolean {...}

Listing 7: Token-Holder behaviour expressed over concept TokenHolder.

independent way, becoming more reusable. In this section we show how model
templates can be used to define models in a generic way.

Templates use concepts to express requirements on the type parameters they
receive. They declare a number of variables which can be checked against con-
cepts. In this way, when the templates are instantiated, an implicit binding
process checks whether the actual parameters satisfy the concepts. A template
T requiring concept C defines a language L(T ) of all its possible instantiations
using as parameters any element of L(C), the language defined by the concept.
In this way, a template can actually be seen as a function L(C) T→ L(T ).

The possibility of instantiating templates is very interesting for modelling,
because we can express patterns and generic model components using tem-
plates, which we can later instantiate and combine. Consider again the Producer-
Consumer Petri net model presented in Section 3. The model would benefit from
a higher-level representation enabling the definition of processes (for the pro-
ducer and the consumer) as well as of buffers. For this purpose we can define
two model templates, acting like model components or modelling patterns that
the modellers can use to construct their models.

Listing 8 shows how to specify the templates with MetaDepth. The first
template Buff2 (lines 7-13) defines a generic buffer with one input and one out-
put transitions. These two transitions (&Tri, &Tro), together with their owning
models (&PNi, &PNo), are passed as parameters to the template. Then, the tem-
plate simply imports both received models (line 9), declares one place (line 10)
and connect it to the received transitions (lines 11-12). In addition, the template
requires in line 8 that the input parameters satisfy the concept SimpleTrans.
The concept, defined in lines 1-5, requires the transition to have one input and
one output place, checked by the EOL constraint in line 5.

The second template, TwoStateProc (lines 15-22), defines a two-state pro-
cess. In this case, the template has no parameters and acts like a pattern which
can be instantiated by the modeller. In a realistic scenario, we may like to pass
as parameters the names of the places, but currently MetaDepth does not
support template parameters of basic data types, which is left for future work.

Lines 24-26 instantiate the templates. The resulting model ProducerConsumer
is equivalent to the one in Listing 3. However, the use of templates has risen the
abstraction level of the model which is now more concise, and we have reused
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1 concept SimpleTrans(&M, &T) {
2 PetriNet &M {
3 Transition &T {}
4 }
5 } where $&T.inPl.size()=1 and
5 &T.outPl.size()=1$

6 // ---------------------------

7 template<&PNi,&Tri,&PNo,&Tro>
8 requires SimpleTrans(&PNi,&Tri),

8 SimpleTrans(&PNo,&Tro)

9 PetriNet Buff2 imports &PNi,&PNo{
10 Place Buffer {}
11 ArcPT (Buffer, &Tro);

12 ArcTP (&Tri, Buffer);

13 }

14 // ---------------------------

15 template<>
16 PetriNet TwoStateProc {
17 Place p1 {}
18 Place p2 {}
19 Transition t12 {}
20 Transition t21 {}
21 ...

22 }
23 // ---------------------------

24 TwoStateProc<> Producer;

25 TwoStateProc<> Consumer;

26 Buff2<Producer,Producer::t12,

26 Consumer,Consumer::t12>

26 ProducerConsumer;

Listing 8: Defining and using model templates.

the definition of the template TwoStateProc. Altogether, model templates help
in defining component and pattern libraries for domain specific languages.

6 Meta-Model Templates and Semantic Mixin Layers

Templates are not only useful to define generic models, but can be applied to
meta-models to provide an extensible way of defining languages, similar to mixin
layers [12]. In our context, a mixin layer is a set of functionalities added to a
meta-model by extending the elements passed as parameters in the template
that implements the functionalities. Here we explore semantic mixin layers,
which are meta-model templates declaring functionality needed to express the
behaviour of meta-models. These templates are complemented with behavioural
specifications, defined over the generic types of the mixin.

In order to define the semantics of a language, it is often the case that its
meta-model has to be extended with auxiliary classes and elements needed for the
simulation. For example, when simulating an automaton, we need a pointer to
the current state and the sequence of symbols to be parsed. When simulating an
event system, we need a list of the scheduled events ordered by their simulation
time. These extra elements are not part of the language, but of the simulation
infrastructure. If the language for specifying the semantics is powerful enough,
we can use it to create the required simulation infrastructure. For instance,
EOL provides data structures like Collections or Maps that can be used for
that purpose. However, some specification languages lack this expressivity (e.g.
graph transformation), so that in general, a simulation infrastructure needs to
be modelled and rendered.

The working scheme of semantic mixins is shown to the right of Fig. 3. It
shows a mixin layer template T that is used to extend the meta-model members
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of a semantic family, characterized by concept C. L(T) contains the meta-models
in L(C) once they are extended with the execution infrastructure. Hence T can
be seen as a function with domain L(C) which adds such infrastructure. Then,
we define a simulator for the mixin layer T, which will be applicable to instances
of any meta-model in L(T).

Assume we want to define a simulator for timed token-holder languages.
These languages follow a token-holder semantics, but transitions fire after a
given delay. The simulator would necessitate storing a list of the firings that are
currently scheduled, together with the transition and tokens involved in each
firing. These extra elements are not part of the timed token-holder language,
but devices needed only for the simulation. Hence, a separate mixin layer incor-
porates these elements into the language definition in a non-intrusive way.

Fig. 3 shows to the left the template implementing the mixin layer. It declares
the necessary infrastructure to simulate instances of meta-models that satisfy
the concept TTokHold, so that the template definition requires such a concept.
This concept is similar to the concept TokenHolder in Listing 5, but in addition
transitions (variable &P) are required to define a distinguished time field storing
the firing delay. The template defines a family of meta-models which extend any
meta-model &M satisfying concept TTokHold with the machinery needed for their
simulation. For instance, assume we add an attribute delay to the Machine class
in Listing 6. Then, the meta-model ProdSys is a valid binding for the concept
TTokHold, and hence we can instantiate the mixin layer for the meta-model in
order to incorporate it the simulation infrastructure. This is done by declaring
TimedSched<ProdSys, ProdSys::Conveyor, ...> SimProdSys.

In particular, the template in Fig. 3 extends the received meta-model &M with
a class Event to store the events, and a singleton class FEvtList to handle the
event list. Moreover, the class with role &P (transition) is added a collection evts
storing the scheduled events associated to the transition, and the class with role
&T (token) is extended with the event in which the token is engaged, if any.

Behaviours associated to semantic mixin layers use the generic types of
the template. Listing 9 shows an excerpt of the simulator associated to the
TimedSched mixin layer. The simulator uses a FEvtList object (line 3) to keep
the current simulation time and the list of scheduled events. The list of events
is initialized with the set of active transitions (lines 5-6). The main simulation
loop (lines 8-13) advances the simulation time to the time of the first event in
the list, fires the transition associated to the event, and schedules new events
(this latter is not shown in the listing).

Associating the simulator to the mixin layer has the advantage that the
simulator can be reused with any meta-model to which this mixin layer has been
applied (i.e. any meta-model fulfilling the TTokHold concept), like SimProdSys,
hence obtaining highly reusable specifications.
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1 template <&M,&H,&P,&T,&tok,&inH,&outH,&time>

2 requires TTokHold(&M,&H,&P,&T,&tok,&inH,&outH,&time)

3 Model TimedSched extends &M {
4 Node &P { evts: Event[*]; }
5 Node &T { evts: Event[0..1]; }
6 Node FEvtList[1] {
7 first: Event[0..1];

8 time : double;
9 }

10 Node Event {
11 time: double;
12 next: Event[0..1];

13 proc: &P;

14 toks: &T[*];

15 }
16 Edge ProcTm(&P.evts, Event.proc)

17 { t:double; }
18 Edge TokTm(&T.evts, Event.toks)

19 { t:double; }
20 }

Meta-Model

&M

Meta-Model

TimeSched

Template T
Semantic

Mixin layer

Concept C
semantic

family

«defines» «defines»

Meta-Model Meta-Model

«requires»

«extends»

A

Meta-Model

«belongs to»

Simulator

for T

«requires»

«executes on»

Model

«instance of»

L(C)L(T)

MetaModel family

sharing semantics

MetaModel family

extended with execution 

infrastructure

Fig. 3. Semantic mixin layer adding infrastructure to simulate TTokHold concepts
(left). Working scheme of semantic mixin layers (right).

1 @template(name=TimedSched)

2 operation main() {
3 var FEL := new FEvtList;

4 FEL.time := 0;

5 var enab: Set(&P):= getEnabled();

6 FEL.schedule(enab);

7 var finish: Boolean := false;

8 while (not finish) {
9 FEL.time:= FEL.first.time;

10 var t: &P := FEL.first.proc;

11 t.fire();

12 ...

13 }
14 }

Listing 9: Excerpt of the simulator for the TimedSched mixin layer.

7 Related Work

The use of templates in modelling is not new, as they are already present in
the UML 2.0 specification [10], as well as in previous approaches like Catalysis’
model frameworks [4] and package templates, and the aspect-oriented meta-
modelling approach of [2]. Interestingly, while all of them consider templates for
meta-models (or class diagrams), none consider concepts or model templates.

Catalysis’ model frameworks [4] are parameterized packages that can be in-
stantiated by name substitution. Hence, they are similar to our meta-model
templates. The package templates of [2] are based on those of Catalysis, and are
used to define languages in a modular way. They are based on string substitu-
tion, as the parameters of the templates are strings that are substituted in the
template definition. This approach is realized in the XMF tool [15]. Although
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package templates were incorporated into the UML 2.0 specification, the MOF
does not consider genericity at the meta-model or model level.

Kermeta (kermeta.org) includes facilities for model typing [8], allowing to es-
tablish a subtyping relationship between meta-models. Hence, generic behaviours
can be defined in a generic meta-model and applied to any subtype meta-model.
This approach has been applied to generic refactorings [8].

Our work extends the mentioned approaches in several ways. First, we can
apply templates not only to meta-models, but also to models, as seen in §5 (cf.
Listing 8). Moreover, as our framework supports an arbitrary number of meta-
models through potency [3], we can apply templates at any meta-level. Second,
our approach is based on concepts, which helps in expressing requirements on
template parameters. In addition, we can define behaviour for concepts and
templates (in particular with semantic mixin layers), independently of meta-
models. Third, our approach provides a stronger support for templates, as our
template parameters are model elements whose requirements can be expressed
by concepts. This permits type checking at the template level. Finally, whereas
we consider the definition of behaviours, this is missing in other works [2, 4, 10].

Generic (meta-)modelling has fundamental differences with generic program-
ming. The first refers to the level of granularity, as generic programming deals
with generic classes or functions, whereas we consider generic (meta-)models
which include several modelling elements, more similar to mixin layers. Second,
while the purpose of programming concepts is to identify whether a class defines
certain operations, modelling concepts check structural properties of models.

Another set of related research are the (meta-)model modularization ap-
proaches, like Reuseware [6]. In that approach, the authors develop a language-
independent composition language, which can be used to define composition
interfaces for models, in an intrusive way. While Reuseware solves the modular-
ization of models, our templates provide in addition an instantiation mechanism,
suitable to construct patterns and component libraries. In addition [6] does not
consider behaviours and lacks abstraction mechanisms like concepts.

8 Conclusions and Future Work

In this paper we have shown the benefits of bringing concepts, templates and
mixin layers into language engineering. Concepts allow expressing requirements
of template parameters, and by themselves permit defining behaviours indepen-
dently of meta-models, hence becoming more reusable. Templates can be applied
to models or meta-models and promote extendibility, modularity and reusabil-
ity. At the model level, they are useful to define patterns and model component
libraries. We have seen that mixin layers, a kind of template meta-models, are
especially useful to provide the necessary infrastructure to execute models. These
elements have been realized in the metaDepth tool (the examples and the tool
are at http://astreo.ii.uam.es/∼jlara/metaDepth/Genericity.html). However,
the discussions are general and applicable to other contexts as well.
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We are currently exploring the potential opened by genericity. We believe
the semantics of modelling languages can be classified using concepts. Hence,
we will define concepts for transition-based semantics, communication seman-
tics, discrete-event semantics, and so on. The combination of concepts and se-
mantic mixin layers will provide support for the rapid prototyping of language
semantics. We are also exploring the construction of pattern libraries for domain-
specific languages through model templates. We are working in improving the
MetaDepth support for genericity, adding extension relations between con-
cepts, to allow the incremental construction of concepts and concept libraries.
Genericity is also applicable to the definition of generic model-to-model trans-
formations. Finally, we are also working on an algebraic formalization, and a
proof of type safety of specifications using concepts.
Acknowledgements. Work sponsored by the Spanish Ministry of Science, project
TIN2008-02081, and mobility grants JC2009-00015 and PR2009-0019, and by the
R&D programme of the Community of Madrid, project S2009/TIC-1650.
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