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This work reports on the phase behavior of hard spherical caps in the interval of particle shapes
delimited by the hard platelet and hemispherical cap models. These very simple model colloidal
particles display a remarkably complex phase behavior featuring a competition between isotropic-
nematic phase separation and clustering as well as a sequence of structures, from roundish to lacy
aggregates to no ordinary hexagonal columnar mesophases, all characterized by groups of particles
tending to arrange on the same spherical surface. This behavior parallels that one of many molec-
ular systems forming micelles but here it is purely entropy-driven. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4822038]

The self-assembly of molecular and colloidal systems has
always, and nowadays especially, attracted much attention.1

Recently, in the case of colloids, there has been significant
progress in the synthesis of particles of different shape and
size as well as in the techniques to visualize the structures they
form.2 These experimental advances offer concrete chances to
observe those phase behaviors predicted by theory and numer-
ical simulation; new results from these can in turn stimulate
further experimental research.3 One current example is pro-
vided by hard polyhedral particles, to which much numerical
and experimental effort is being dedicated.4–6

In theory and simulation, colloidal particles are indeed
often assumed to interact through hard-body interactions as
these are predominant in directing their packing and shown
over the years to be sufficient for the stabilization of a va-
riety of entropy-driven complex fluid phases: nematic (N),7

smectic,8 columnar (C),9 and even cubic gyroid10 phases can
all be obtained in systems of hard-body particles of suitable
shape and size.

This work considers a special class of hard-body model
colloidal particles and examines by numerical simulation their
phase behavior featuring both phase separation and aggrega-
tion phenomena.

The particles are hard spherical caps (HSCs); a prelimi-
nary account of their intriguing phase behavior has been given
in Ref. 11. Each of these particles is the portion of the surface
of a sphere of radius R subtended by an angle θ . The area
of this portion is set equal to σ 2, with σ the unit of length;
any particle of this type is thus identified by R* = R/σ (or θ ).
By varying R*, hard, generally concave and infinitely thin,
particles can be obtained going from the hard platelet, (R*
→ ∞), through the hard hemispherical cap (R∗ = 1/

√
2π ),

to the hard sphere (R∗ = 1/2
√

π) models. It is actually those
lens-, bowl-, and vase-like particles that lay in between these
limits that are most interesting.

HSCs fit current interest for a variety of reasons. These
are primarily fundamental but also related to the issues of
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practical relevance, given, e.g., the wide range of possibili-
ties that nano-sized hollowed particles may offer in catalysis
and drug delivery.12 Several are the viewpoints HSCs can be
regarded from.

(i) They are a generalization of the hard infinitely thin
platelet model,13 the basic model to study discotic liquid
crystals. This model is the counterpart of the hard long
and thin rod model. While the latter is exactly described
by the Onsager second-virial density functional theory,7

higher order virial terms are, however, not negligible for
hard platelets7, 13 and one has to attempt other theoretical
approaches (e.g., Refs. 14 and 15).

(ii) They are concave, either lens- or bowl- or vase-like, par-
ticles. Theoretical and simulational studies on the phase
behavior and properties of systems of convex anisotropic
particles, hard and soft, are many.16, 17 One study, very
recent and quite related to the present work, investigates
the phase behavior under confinement of hard particles
consisting of a sphere cut off by a plane at a certain
height.18 Hard or soft concave particles have been far
less studied. To date, the most studied concave parti-
cles have an arched shape. The interest in them, stirred
by the discovery of particular ferroelectric phases that
molecules with a bent core give rise to,19 has been more
recently reinvigorated by claims that certain of these
molecules have a biaxial nematic phase,20 though the ef-
fects observed look more likely due to the presence of
cybotactic clusters.21 Very fewer studies have been per-
formed on systems of concave particles having a lens-
or bowl-like shape. Beside Ref. 11, two more simula-
tion studies22, 23 have been published recently. Both of
these studies consider bowl-like particles and focus on
the columnar phases that they can form. HSCs provide a
simpler model for molecular24, 25 and colloidal26 bowlic
liquid crystals as well as being a first, minimal repre-
sentation of metallic (half-)shells27 and of the very in-
teresting buckybowlic molecules, concave fragments of
fullerene, whose curvature and rigidity may be chemi-
cally controlled.28
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(iii) They form an entropy-driven cluster phase, the colloidal
analogue of the micellar phase in surfactant solutions,
and may constitute a very simple model for the study of
arrested states of matter. The possibility to regulate the
shape of a HSC particle from plate- to lens- and bowl-
like, together with its zero volume are at the heart of the
phase behavior reported in Ref. 11. In that Letter, it was
shown that HSCs with such a curvature that resemble
contact lenses (R* = 1) do not form, on increasing den-
sity, a N phase, as flatter HSCs (R* ≥ 2) do. Rather, for
contact lens-like particles, the ordinary isotropic phase
spontaneously evolves towards a phase organization with
a locally favored structure29 characterized by lens-like
particles tending to arrange on the same spherical sur-
face, that is the centers of their parent spheres tend to
aggregate. The fact that a cluster phase is observed in a
pure system of hard particles is remarkable as in this case
this sort of phase, usually the result of competing attrac-
tive and repulsive interactions30–34 or made possible by
letting spherically symmetric particles overlap,35 is in-
stead stabilized by the sole entropy. What is occurring
in contact lens-like particle systems is a kind of geomet-
ric frustration; mechanisms of this type have long been
thought at the origin of the arrested states of matter.36

With these premises, it would be of interest to sketch
the whole phase diagram of HSCs as a function of R*. To
achieve this, one can start from previous results on lens-like
particles11 and then interpret the formation of the worm-like
structures reported in the high-density region of the fluid
phase of hard hemispherical caps, which subsequently co-
existed with an ordinary columnar phase,23(b) as an echo of the
aggregation behavior previously observed for lens-like par-
ticles. One can thus hypothesize that the aggregates formed
by HSCs of sufficiently small curvature will form, on fur-
ther compression, filamentous structures and then, from these,
columnar phases whose basic unit is, however, not a single
particle, as in the ordinary cases, included the hard hemispher-
ical cap model, but a group of particles tending to arrange
on the same spherical surface. This behavior may be thought
of as paralleling that one of many molecular micellizing sys-
tems where the surfactants first form globular aggregates, the
micelles, and then, on increasing their concentration, orga-
nize further into rod-like micelles and eventually columnar
phases.37, 38 The object of this work is to provide an evidence
for this scenario.

The technique used is isobaric–isothermal Monte Carlo
computer simulation, MC-NPT,39, 40 with N the number of
particles, P the pressure, and T the temperature. The basic el-
ement of these calculations was the overlap criterion between
two HSCs: the one employed is consistent with that clearly
described in Ref. 41 and able to recover the overlap criteria
for hard platelets and hard spheres in their respective lim-
its. Usually, cuboidal periodic boundary conditions were used
but, on occasion, truncated-octahedral and variable-shape tri-
clinical computational boxes were also implemented. Every
simulation run was organized in cycles, each of them on av-
erage consisting of: 2N attempts to translate or rotate a ran-
domly selected particle; one attempt to invert the orientation

of a randomly selected particle while keeping the position of
its pole; and one attempt to vary the volume of the computa-
tional box by varying one, randomly selected, edge. The se-
quence of the attempted moves was random to preserve the
microscopic detailed balance condition. Maximal displace-
ment, angle of rotation and box edge variation were monitored
to check that their respective acceptance ratios were around
20%–30%42 and then accordingly adjusted, if needed, once a
run had completed. Two (pseudo)random number generators
were used: either ran2,43 mostly employed in those simula-
tion runs with a relatively small (≤1000) N, or mt19937,44

otherwise, finding the desired independence of the results on
the pseudo-random number generator used.

HSCs belonging to the interval R∗ ∈ [1/
√

2π ; ∞) were
considered. Their equation of state was calculated and the
phases formed identified mostly by direct visualization us-
ing the program QMGA.45 Full quantitative analysis of their
features along the lines presented in the previous work11 is
deferred to a subsequent paper. Specifically, the values of R*
investigated were: 1/

√
2π , 0.45, 0.55, 0.7, 1, 1.5, 1.6, 2, 5,

10, 100. The samples considered had a number of particles
ranging from O(102) to O(104). Every state point investigated
was identified by a fixed value of pressure measured in re-
duced units: P* = Pσ 3/(kBT), kB being the Boltzmann con-
stant. The configurations used to initiate an equilibration run
can be grouped in two broad categories: (i) either a low den-
sity simple cubic lattice configuration, that rapidly melted, or
a configuration generated during a run performed at a nearby
state point or a configuration obtained by replicating twice in
each direction a configuration obtained at the end of a prior
run conducted with a smaller size sample; (ii) a hexagonal
columnar configuration, either ordinary, in which particles are
stacked on top of one another in a column and the columns are
arranged in a hexagonal lattice or, as shown in Fig. 1, a config-
uration formed by hexagonally arranged columns whose basic
units are however flocks of particles tending to share the same
spherical surface. Typical runs were of the order of O(106)
up to runs of O(108) MC cycles. The density, ρ, was mea-
sured in reduced units: ρ* = ρσ 3. The nematic order param-
eter, 〈P2〉, was also calculated and this was done in the usual
way.46

FIG. 1. Example of a hexagonal cluster columnar phase.
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FIG. 2. (Upper panel) The evolution of a sample of 8000 particles with
R* = 1 starting from different configurations: hexagonal single-particle
columnar configuration with all particles pointing to the same direction
(green or light gray curves); hexagonal single-particle columnar configura-
tion with columns pointing up and down (red or dark gray curves); hexag-
onal cluster columnar configuration (black curves). Density refers to the
left ordinate axis and its evolution corresponds to the top curves; nematic
order parameter refers to the right ordinate axis and its evolution corre-
sponds to the bottom curves. (Central and lower panels) Images of the system
that started from the hexagonal single-particle columnar configuration with
columns pointing up and down taken after 4.5 × 106 of MC cycles.

One element in support of the above-mentioned hypoth-
esis that aggregates of HSCs will further organize, upon
densification, into filaments and columns, is the spontaneous
evolution, at P* = 30, of ordinary hexagonal single-particle
columnar configurations, having either all columns pointing

to the same or to opposite directions, of 8000 particles with
R* = 1 towards a cluster phase. Figure 2 shows the evolution
of ρ* and 〈P2〉 along with snapshots47 obtained after several
millions of MC cycles. This figure also shows the evolution
of these properties starting from a moderate density hexag-
onal cluster columnar (CCh) configuration like the one in
Fig. 1. Irrespective of the starting configuration, equilibrium
values of ρ* and 〈P2〉 are consistent. From the two images
it is apparent how particles clump; remnants of a columnar
structure are retained though columns are irregular, rather tor-
tuous and broken at certain points. One may look at this phase
as a defected cluster columnar phase and imagine that a less
defected phase of this type can form at higher pressure. With
this piece of evidence, other values of particle curvature R*
were investigated, starting simulation runs with configura-
tions belonging to the above-mentioned two categories. Fig-
ure 3 shows the equations of state (EoS) obtained.

For the case with R* = 2 in Fig. 3(a) three branches can
be distinguished: the low-density isotropic (I) branch, sepa-
rated from the N branch by a weak first-order phase transition,
and a higher density CCh branch. The N phase is stable in the
interval P* ∈ [14 − 19]; its branch can be continued to higher
pressure values though the corresponding equilibrium density
value becomes progressively smaller than the one reached by
the CCh phase. These two phases should be separated by a
first-order phase transition. By starting a run from a well equi-
librated N configuration at high density, there was no indi-
cation of a direct formation of a CCh phase. Systems with
2000 particles prepared in a CCh configuration with ρ* = 5
rapidly melted to a N phase at P* = 19 but evolved towards
a denser CCh phase at P* = 22 and larger values of pres-
sure. It was necessary to start with a CCh configuration with
a sufficiently high density, ρ* = 5, in order to see the sys-
tem compress while keeping a CCh structure. Otherwise, the
system evolved towards a N phase even at high pressure. On
one occasion, however, starting a run at P* = 30 from a CCh

configuration of 6000 particles with ρ* = 4.6, it was observed
that the system initially acquired a N structure, with a density
ρ* � 6 and instantaneous 〈P2〉 � 0.7, but then spontaneously
evolved to a complex bunchy structure in which particles ag-
gregate and seemingly form tortuous thick filaments, and hav-
ing ρ* � 9.3 and 〈P2〉 ∼ 0.06, although being then unable to
fully develop in to a CCh phase (Figs. 4(a) and 4(b)). Though
small, there is a difference between the density reached by
this irregular bunchy structure and the value reached by start-
ing a run from a pre-built CCh configuration, with the former
being ∼7% larger. This difference could be due to the differ-
ent system size but a simulation run with N = 12 000 particles
that started from a CCh configuration also ended up to a den-
sity of 8.65, consistent with that of the system with N = 2000
and thus smaller than that reached by the irregular bunchy
structure of Figs. 4(a) and 4(b). Similar results are obtained
at smaller pressure, P* = 21 and 25, and for systems with N
= 4096, for which the same type of bunchy structures is ob-
served having essentially the same density of the CCh phase,
with an overall very small nematic order parameter. This is
comprehensible as the CCh phase and the complex bunchy
structures have both the same local structure and the latter
dictates the EoS in a hard-body particle system. It cannot be
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FIG. 3. Equation of state and nematic order parameter. In any panel, the equation of state refers to the left ordinate axis, while the nematic order parameter is on
the right ordinate axis. Symbols for the equations of state are full and in darker colors while the corresponding symbols for the nematic order parameter are empty
and in lighter colors. Dotted lines crossing equation of state points are polynomial fits as described in the text while dotted lines crossing nematic order parameter
points are just a guide to the eye. In general, if not specified, initial configuration belonged to category (i), while it is explicitly written where initial configuration
belonged to category (ii). Vertical dashed lines are estimates for the phase transition densities. (a) R* = 2. N = 125, black circles; N = 2000, red squares;
N = 4096, green diamonds or triangles; N = 2000 and from a CCh configuration, blue asterisks; N = 6000 or 12 000, indigo crosses. (b) R* = 1.6. N = 5000,
green squares or triangles; N = 4000 and from a CCh configuration, blue asterisks. (c) R* = 1.5. N = 512, black circles; N = 2000, red squares; N = 4096,
green diamonds; N = 120 00 or 16 000, black triangles; N = 2000 and from a CCh configuration, blue asterisks; N = 4096 and from a CCh configuration,
indigo crosses. (d) R* = 1. N = 125, black circles; N = 1000, red squares; N = 8000, green diamonds; N = 2000 and from a CCh configuration, blue asterisks;
N = 8000 and from a CCh configuration, indigo crosses. (e) R* = 0.7. N = 512, black circles; N = 4096, red squares; N = 12 000, green diamonds; N = 4096
and from a CCh configuration, blue asterisks. (f) R* = 1/

√
2π . N = 125, black circles; N = 1000, red squares; N = 8000 and from a replica of a N = 1000

particle system, green diamonds; N = 1000 and from the spontaneously formed Ch configuration at P* = 60, blue asterisks.
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(a) (b)

(c) (d)

FIG. 4. Images for systems with R* = 2 at P* = 30 [(a) and (b)] and
P* = 19 [(c) and (d)].

said at present whether, at a longer range, an overall disor-
dered phase organization such as that in Figs. 4(a) and 4(b)
is indeed the one actually favored in place of a more ordered
CCh structure or instead structures of that type are transient
and the system remains locked in to them in its way towards
a CCh phase organization. Taking a configuration similar to
that of Figs. 4(a) and 4(b) and beginning a run with it at
P* = 19 led to the formation of a structure with two rela-
tively rather well defined cluster columns whose interstices
are populated by particles that appear as behaving as in a N
phase (Figs. 4(c) and 4(d)). The density of this phase is ∼2%
higher than that of a N phase at the same pressure. The gath-
ering of all these results suggests that, for HSCs, there may
exist, at the same value of P*, different structures yet sharing
very similar values of density. On the basis of these facts, it
appears proven that, for R* = 2, the N phase becomes un-
stable at high density owing to the tendency of the particles to
aggregate in such a way that they preferentially arrange on the
same spherical surface. If one assumes that these aggregates
do in turn at last organize to form a CCh phase, the transi-
tion is a N − CCh phase transition, which may be tentatively
located at P* ∼ 21.

The cases with R* = 1.6 and 1.5, were particularly dif-
ficult to deal with. For R* = 1.6 (Fig. 3(b)) and for a system
of up to 5000 particles, the N phase is mechanically stable for
P* ∈ [16 − 20], but its equilibrium density differs more and
more from that of the CCh phase as P* increases. By start-
ing a run with a pre-built N configuration with ρ* = 3.5 and
〈P2〉 � 0.3, an I phase was obtained for P ∗ = 13–15, while
for P* = 16, 18, 19, 20, a N phase was retained. However, at
P* = 17, the system surprisingly took a completely different
pathway and ended up to a complex bunchy structure featur-
ing particles forming round and whirling aggregates, though
in the interstices of these particles seem as behaving as in a
N phase. By starting from a configuration of this type, an or-
dinary N phase was obtained again at P* = 16, while start-
ing from a well-equilibrated nematic configuration obtained

(a)

(b)

(c)

FIG. 5. Images for a system with R* = 1.6 taken at P* = 17: (a) the nematic
phase; (b) the phase organisation showing roundish and whirling aggregates,
(c) the same configuration as in (b) but from a different perspective, showing
a nematic-like stripe in the middle.

at P* = 16, a N phase is retained at P* = 17 (Fig. 5), and for
larger values of P* up to 20. However, by starting with a well-
equilibrated nematic configuration obtained at this pressure
one run at P* = 22.5 and another at P* = 27.5, the systems
did not remain nematic. After an initial nematic transient, dur-
ing which both systems compress and reached a higher ori-
entational order parameter, both then kept compressing but
their orientational order parameter begun to decrease. Both
systems ended up to a complex bunchy structure of low ori-
entational order parameter, similar to the one obtained for
R* = 2 at P* = 30 (Figs. 4(a) and 4(b)). All these data
suggest that a transition is being approached between the N
phase and a phase showing particle aggregation. This latter
should be a CCh phase. Starting from a configuration of this
type, this phase is preserved for P* ≥ 18. However, the run at
P* = 17 ended up to a phase exhibiting globular aggregates
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FIG. 6. Typical image of the cluster isotropic phase for R* = 1.5 at P* = 16.

with nematic-like interstices, as in the above-mentioned case
(Figs. 5(b) and 5(c)). By collecting these results, one can ten-
tatively located the phase transition between the N and CCh

phases at P* ∼ 17.
For R* = 1.5 (Fig. 3(c)), the N phase is observed only if

small systems, of the order of 500 particles, are handled, while
is mechanically unstable for systems of 4000 or more par-
ticles. For an intermediate number of particles (2000), there
are visible nematic fluctuations close to the density value at
which small systems would have an IN phase transition, but
a proper N phase never developed. In the neighborhood of
this density value, for larger systems, the EoS shows a kink
not accompanied by an upswing in 〈P2〉. This is analogous to
what observed in Ref. 11 where this feature was ascribed to
the development of a cluster isotropic (CI) phase. In the in-
terval P ∗ ∈ [16–18] this phase is the only mechanically sta-
ble phase. Figure 6 shows a typical image taken at P* = 16.
In runs starting from a CCh configuration, this latter type of
phase is retained for P* ≥ 19. One may tentatively locate
the CI − CCh phase transition at this value of P*. One can
observe though that this phase transition appears character-
ized by a very small difference in the equilibrium densities of
the two branches and distinguishing between them is compli-
cated.

The CI phase was first observed in Ref. 11 for a system
with R* = 1. Figure 3(d) confirms those results using a larger
number of particles. In addition, a lower bound for the stabil-
ity of CI phase with respect to a CCh phase is provided. It

(b)

(a)

FIG. 7. Top (a) and side (b) views of the hexagonal cluster columnar phase
of the system with R* = 0.7 and at P* = 30.

was in fact observed that at P* = 22, a CCh phase eventually
melted to a CI phase after 3 × 106 of MC cycles in a system
of 8000 particles. This is the highest value of P* for which
such a melting occurs within a MC run of comparable dura-
tion. It may well be possible that the stability of the CI phase
pushes at larger values of P*: one can observe that also in this
case the difference in the equilibrium density between CI and
CCh phases is very small for the range of pressure values ex-
amined and this together with the results of Fig. 2 hints that
possibility is grounded. None the less, one for now tentatively
sets the phase transition pressure at P* ∼ 23.

The cases with R* = 0.7, 0.55, 0.45, and 1/
√

2π were
progressively easier to be handled. There are two intertwined
reasons for this. Clusters naturally become of a smaller size
and host a smaller number of particles: thus a lesser number of
particles is required in the numerical simulations to deal with
them. The CI EoS branch progressively departs more from
the CCh EoS branch: this helps distinguish between them.
Figures 3(e) and 3(f) show the EoS for R* = 0.7 and 1/

√
2π ,

respectively.
In the case of R* = 0.7, the CCh remains at least mechan-

ically stable down to P* = 30, while at P* = 27.5 it melted
to a CI phase after 6 × 106 of MC cycles. The CI phase is
rapidly obtained starting from a CCh configuration at P* =
25. This process took 1.2 × 106 of MC cycles. One may ten-
tatively assume that the CI − CCh phase transition occurs at
P* ∼ 30. Figure 7 provides two views of a CCh configuration
at this pressure.
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FIG. 8. Spontaneous growth of a columnar order from melt for a system of hard hemispherical cap at P* = 60. Shown are the density and nematic order
parameter along with views of the initial (top) and final (bottom) configurations.

In the case of hard hemispherical caps, the CCh reduces
to an ordinary Ch phase. It remains mechanically stable down
to P* = 45 after a run of 50 × 106 of MC cycles but it melted
after 1.5 × 106 of MC cycles at P* = 40. In Ref. 23(b) the
pressure at which a worm-like phase and a columnar phase
co-exist was estimated at P* � 52 by free-energy calculations.
The comparison of this result with the above-mentioned limit
of mechanical stability may hint to the latter criterion over-
estimating the actual CCh stability.

The greater simplicity of the hemispherical cap colum-
nar phase made it possible to observe the spontaneous growth
of it from an isotropic melt at P* = 60. This process lasted
100 × 106 of MC cycles for a system of 1000 particles.
Figure 8 shows the evolution of both density and nematic or-
der parameter. These numbers indicate how difficult can be
the spontaneous growth of columnar order in a spherical cap
system. It is plausible that a larger number of MC cycles is
needed for systems with a larger value of R*, as in these sys-
tems the columnar phase is no ordinary, and this, coupled with
the larger number of particles required, makes an attempt of
spontaneously growing a CCh phase from a melt for lens-like
particles rather hard at present.

Decreasing particle curvature and compressing the sys-
tem both contribute to making clusters change from being
roundish to filamentous. Figure 9 illustrate this by provid-
ing, as an example, two images taken at P* = 17.5 and 27.5
for the system with R* = 0.7. This phenomenon may per-
haps be more quantitatively appreciated by looking at the be-
havior of the radial correlation function, G(X), of the parent
sphere centers. Figure 10 shows these functions in a fluid
system of hemispherical caps. The main peak at small dis-
tances indicates the tendency of the centers to clump and its
height increases with pressure. The area under this peak is re-
lated to the average number of nearest neighbors; this number
(plus one) can in turn be interpreted as the average number of

particles participating in a cluster nc. It is interesting to ob-
serve that, at low pressure, the height of the second peak at
X = √

2/π and the shape of the function afterwards match
nicely with the curve predicted by Percus-Yevick (PY) inte-
gral equation theory for a monodisperse hard sphere system
of radius equal to 1/

√
2π and density ρc=ρ*/nc. This latter

value of density may be interpreted as the density of roundish
clusters, effectively behaving as hard sphere at lower pressure.
The value of ρ* at P* = 20 is 3.36 and the average number
of nearest neighbor, as obtained from the integral of G(X), is
4.47; thus nc = 5.47 and π

6 ρc
(

2
π

)3/2 � 0.16. On increasing
P*, the correspondence between G(X) and PY result ceases to
hold; G(X) is much smoother at X ∼ √

2/π . This is concomi-
tant to the clusters being no longer roundish but filamentous
(or worm-like).

Figure 11 shows a sketch of two possible phase diagram
topologies that HSCs may exhibit. They have been deduced
by gathering together the results obtained so far, with the
proviso that the difficulties in drawing conclusions from nu-
merical simulations using a small number of particles are,
in the case of the deceptively simple HSC particles, char-
acterized as they are by multiple length scales, particularly
exacerbated.

In both parts (a) and (b), it was opted for a representa-
tion of the phases in the 1/R*; 1/ρ* plane. Data published in
Ref. 13 were used for the IN phase transition in hard infinitely
thin platelets, while evidence was also acquired on the ex-
istence of a first-order transition between a N and an ordi-
nary Ch phase in this model system at infinite P* and ρ*.48

The data acquired for the fluid-to-Ch phase transition for hard
hemispherical caps were also used.23(b) For sufficiently large
value of R*, for which a N phase is present, the density values
of the always weak IN phase transition were estimated from
the behavior of 〈P2〉. The pressure and consequently the den-
sity value(s) of N − CCh or CI − CCh phase transitions were
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(a)

(b)

FIG. 9. Images taken for particle systems with R* = 0.7 at P* = 17.5 (a) and
27.5 (b).
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FIG. 10. The function G(X) for a system of hemispherical cap in the fluid
phase at P* = 20 (thick green line) and P* = 50 (thin black line). For the
latter the area under the curve in the interval [0;

√
2/π] is shaded. Shown is

also the Percus-Yevick result (dashed red line) for the g(r) of a system of hard
spheres at packing fraction 0.16.
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FIG. 11. (a, b) Two tentative phase diagrams of hard spherical caps.

estimated from the mechanical stability of the CCh phase.
Note that the N branch of the EoS cannot be linearly fitted
for finite values of R*, while a linear fit is possible for both
CI and CCh branches within a wide range of pressure values.
The density value marking the onset of clustering was arbi-
trarily set as that density value along the EoS curve having
the same pressure value of the intercept of the parabola fitting
the low density I phase EoS data with the straight line fitting
EoS data corresponding to the CI phase, as shown in Fig. 3.

In both parts (a) and (b), four regions are distinguished,
corresponding to the I, N, CI, and CCh phases, being the Ch

a particular case of the latter. While the phase diagram topol-
ogy for small values of R* appears clear, current simulation
data are unable to unambiguously disentangle whether, for
larger values of R* and on increasing pressure, the N phase
transforms direct to a CCh phase, as in Fig. 11(a), or instead
it undergoes a transition to a filamentous CI phase and then
it is the latter that transforms to a CCh at higher pressure,
as in Fig. 11(b). The ambiguity derives from the inability at
present to ascertain whether the complex bunchy and over-
all disordered structures observed to spontaneously form for
R* = 2 and 1.6 at high pressure are equilibrium or transient
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structures. The phase diagram presented in Fig. 11(a) shares
similarities with the generic phase diagram exhibited by flat
hard discs as a function of thickness-to-diameter ratio.9 In that
phase diagram, the N phase becomes progressively less stable
as the particles become thicker and the transition to it from
the I phase at a certain point is pre-emptied by a transition di-
rect to a Ch phase. The phase diagram presented in Fig. 11(b)
corresponds to a more unconventional scenario that present
simulation data do not completely rule out.

Whatever is the case, for HSCs the progressive instabil-
ity of the N phase is rather caused by their tendency to clump.
This is the most basic feature of HSCs together with the fact
that this tendency is markedly reflected in the shape of the
fluid EoS curve: clusters are equilibrium clusters. This par-
allels what is occurring in micellizing systems but here is
purely entropy driven. This parallelism is further reinforced
by the fact that particles having a lens- or bowl–like shape
(1/

√
2π < R∗ � 1.5) appear to form first roundish aggre-

gates then bunchy filaments and finally hexagonal cluster
columnar mesophases.

Further studies are planned with emphasis on the detailed
structural characterization of the CI phase, as well of interest
will be investigating the latter’s single-particle and collective
dynamics.

The region of the phase diagram corresponding to larger
value of R* certainly deserves further dedicated studies. To
distinguish between scenario (a) and (b) of Fig. 11 will require
systems of very large sizes, much larger than those the author
can handle at present (and possibly more advanced MC tech-
niques). In particular, it is the region that would correspond
to those two cuspids in the phase diagram of Fig. 11(a) or to
the single cuspid in the phase diagram of Fig. 11(b) to be in-
triguing. Irrespective of which is the actual scenario, it will be
of interest to investigate the nature of the IN phase transition
in the neighborhood of those values of R* for which the N
is ceasing to be stable and the tendency of particles to clump
manifests, as well as the properties of that “fading away” N
phase.

In addition, it would be of importance to consider HSC-
like particles with a finite thickness and check up to what ex-
tent cluster phases survive in those cases. One may envisage
that, as the particles become thicker, their tendency to clump
diminishes at the expense of ordinary phase organizations,
whose basic structural unit is a single particle: it should be the
(infinitesimal) thinness of HSCs that lets disclose a fluid phase
behavior that otherwise would have remained concealed by
(partial) crystallization.

One complementary line of research would consist in ex-
ploring the phase behavior and properties of those vase-like
particles corresponding to values of R∗ < 1/

√
2π and focus-

ing on how, structurally and dynamically, they approach the
hard sphere (R∗ = 1/2

√
π ) limit.

It is hoped that present results stimulate the synthesis of
HSC-like thin colloidal particles and the experimental investi-
gation of their phase behavior, structure, and dynamics. Given
today’s developments in particle preparation and visualiza-
tion, this hope appears grounded. The very recent work of
Sacanna et al.49 provides indeed a very important step in this
direction.
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