

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Proceedings of the 2004 Winter Simulation Conference, 2004, Volume 1. IEEE,

2004.

DOI: http://dx.doi.org/10.1109/WSC.2004.1371323

Copyright: © 2004 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/WSC.2004.1371323

Proceedings of the 2004 Winter Simulation Conference
R. Ingalls, M. Rossetti, J. Smith, B. Peters, eds.

COMPUTER AUTOMATED MULTI-PARADIGM MODELLING
FOR ANALYSIS AND DESIGN OF TRAFFIC NETWORKS

Hans Vangheluwe

School of Computer Science
McGill University

Montréal, Québec H3A 2A7, CANADA

Juan de Lara

ETS Informática
Universidad Autonóma de Madrid

Madrid, SPAIN

ABSTRACT

Computer Automated Multi-Paradigm Modelling (CAM-
PaM) is an enabler for domain-specific analysis and design.
Traffic, a new untimed visual formalism for vehicle traffic
networks, is introduced. The syntax of Traffic models is
meta-modelled in the Entity-Relationship Diagrams formal-
ism. From this, augmented with concrete syntax informa-
tion, a visual modelling environment is synthesized using
our CAMPaM tool AToM3, A Tool for Multi-formalism and
Meta-Modelling. The semantics of the Traffic formalism is
subsequently modelled by mapping Traffic models onto Petri
Net models. As models’ abstract syntax is graph-like, graph
rewriting can be used to transform models. The advantages
of a domain-specific formalism such as Traffic as opposed to
a generic formalism such as Petri Nets are presented. We
demonstrate how mapping onto Petri Nets allows one to em-
ploy the vast array of Petri Net analysis techniques. A Cover-
ability Graph is generated and conservation analysis is au-
tomated by transforming this graph into an Integer Linear
Programming specification.

1 INTRODUCTION

Computer Automated Multi-Paradigm Modelling (CAM-
PaM) (Mosterman and Vangheluwe 2002) aims to simplify
the modelling of complex systems by combining three or-
thogonal directions of research:

� Meta-Modelling, which models (the syntax of) mod-
elling formalisms;

� Model Abstraction, concerned with the relationship be-
tween models at different levels of abstraction;

� Multi-Formalism modelling, concerned with the cou-
pling of and transformation between models described
in different formalisms.

In the sequel, we focus on meta-modelling and on multi-
formalism modelling to build a domain-specific modelling
environment for the Traffic formalism.

Meta-modelling can help in defining high abstraction
level notations. With meta-modelling, we can describe, us-
ing a high-level, graphical notation, the (possibly graphical)
syntax of languages for particular needs: domain-specific vi-
sual languages. Such languages have the potential to greatly
increase system quality and reduce development costs, as
they are notations tailored to specific needs.

Some languages such as the UML are rigourously de-
fined through meta-modelling. But meta-modelling the syn-
tax of a language is only one side of the coin. One needs
to formally specify the semantics of a language. We may
be interested in defining a language’s operational semantics
(i.e., how models described in the language are simulated
or executed), or its denotational or transformational seman-
tics (i.e., defining a mapping onto another well-defined lan-
guage; this may include code generation when mapping onto
a virtual machine). We may also wish to optimize the mod-
els (i.e., reduce the complexity without removing salient
features). As models, meta-models and meta-metamodels
can all be described as attributed, typed graphs, we present
Graph Grammars (Ehrig, Engels, Kreowski, and Rozenberg
1999), a formal, graphical and high-level notation to specify
the model transformations.

We have implemented these meta-modelling and graph
transformation concepts in a tool called AToM3, A Tool for
Multi-formalism and Meta-Modelling. AToM3’s design has
been described in (de Lara and Vangheluwe 2004, de Lara
and Vangheluwe 2002, de Lara Jaramillo, Vangheluwe, and
Alfonseca Moreno 2003). In AToM3, we follow the maxim
everything is a model. That is, not only formalisms and
transformations are modelled explicitly, but also composite
types and the user interfaces of the generated tools. In fact,
the entire AToM3 tool was bootstrapped from a small kernel
with code-generating capabilities.

Section 2 introduces the Traffic formalism for modelling
vehicle traffic networks. Section 3 demonstrates, by means
of the Traffic meta-model, the meta-modelling concepts and
how they are implemented in AToM3. Section 4 discusses
graph rewriting. Section 4.1 gives the semantics of the Traf-
fic formalism by mapping it onto the Petri Net formalism.

Vangheluwe and de Lara

0 0

00

0

1

vehicle_source

0

exit_to_South

0

exit_to_North

1
intersection_capacity

2

1
2

Figure 1: A Traffic Model

Subsequently, the Petri Net resulting from such a transfor-
mation is transformed into a Coverability Graph. Further
transformation into an Integer Linear Programming prob-
lem allows for conservation analysis. Finally, section 4.2
shows an alternate semantics for the Traffic formalism. Sec-
tion 5 draws some conclusions on CAMPaM in general and
domain-specific modelling in particular.

2 THE TRAFFIC FORMALISM

Domain- and formalism-specific modelling have the poten-
tial to greatly improve productivity (Kelly and Tolvanen
2000). They are able to exploit features inherent to a specific
domain or formalism. This will for example enable specific
analysis techniques or the synthesis of efficient code.

To illustrate domain-specific modelling, we introduce the
Traffic formalism, a new visual notation specific to the ve-
hicle traffic domain (Papacostas and Prevedouros 1992). It
is of course possible to model traffic systems using a vari-
ety of modelling and simulation languages such as GPSS,
DEVS, and Petri Nets. We choose not to do this, but rather
build a Traffic-specific modelling environment. This maxi-
mally constrains users, allowing them, by construction, to
only build syntactically and (for as far as this can be stat-
ically checked) semantically correct models. Furthermore,
the Traffic-specific, visual syntax used matches the users’
mental model of the problem domain. Note how all advan-
tages of the aforementioned formalisms are not lost as we
will map Traffic models onto them. In this article, the Traffic
semantics is expressed by mapping onto Petri Nets.

Figure 1 shows a small traffic system in which vehicles
arrive into the system via a vehicle source, go straight
across an intersection (when no other vehicles are present),
turn left on a short road section which can only hold two ve-

hicles, and either leave the system through exit to North,
or turn left. Turning left brings them across another short
road section which can only hold two vehicles, back to the
first intersection. After succesfully crossing this intersec-
tion, they leave via exit to South.

Vehicle arrival is denoted by a filled circle. Vehicle depar-
ture is denoted by a filled rectangle. A cross denotes a road
section which can have a time-varying number of vehicles
in it. Road sections are connected by arrows. Multiple ar-
rows departing from a single road section indicates a choice.
A capacity constraint circle may be connected to a number
of road sections. The total number of vehicles in all those
sections may not exceed the capacity. It is clear that this
notation is specific to the vehicle traffic domain and that it
allows for the description of a plethora of traffic configura-
tions. Note how we have chosen to make Traffic an un-timed
formalism to allow for high abstraction level, conservative
analysis.

3 META-MODELLING

When modelling complex physical or logical systems it is
desirable to use the most appropriate formalism to optimally
describe their different aspects or components. In this case,
one has to solve the problem of building and interconnecting
a plethora of different tools, especially built for each formal-
ism. Meta-Modelling alleviates these problems.

Meta-modelling (Engstrom and Krueger 2000, Karsai,
Nordstrom, Ledeczi, and Sztipanovits 2000) is the explicit
modelling of a class of models, i.e., of a modelling lan-
guage. A meta-model ML of a modelling language L is a
model (with textual or visual syntax) in its own right which
specifies precisely which models m are elements of L .

Modelling environments based on meta-modelling will ei-
ther check, by means of a meta-model ML whether a given
model m is in L , or they will constrain the modeller during
the incremental model construction process such that only
elements of L can be constructed. Note how the latter ap-
proach, though possibly more efficient, due to its incremen-
tal nature –of construction and consequently of checking–
may render certain valid models in L unreachable through
incremental construction.

The advantages of meta-modelling are numerous. Firstly,
an explicit model of a modelling language can serve as doc-
umentation and as specification. Such a specification can be
the basis for the analysis of properties of models in the lan-
guage. From the meta-model, a modelling environment may
be automatically generated. The flexibility of the approach
is tremendous: new languages can be designed by simply
modifying parts of a meta-model. As this modification is
explicitly applied to models, the relationship between dif-
ferent variants of a modelling language is apparent. Above
all, with an appropriate meta-modelling tool, modifying a
meta-model and subsequently generating a possibly visual

Vangheluwe and de Lara

modelling tool is orders of magnitude faster than develop-
ing such a tool by hand. The tool synthesis is repeatable and
less error-prone than hand-crafting.

As meta-models are models in their own right, they must
be elements of a modelling language (or put differently,
expressed in a particular formalism). This modelling lan-
guage can be specified in a so-called meta-meta-model. Note
how the “meta” qualifier is obviously relative to the original
model.

Though an arbitrary number of meta-levels are pos-
sible in principle; in practice, some modelling lan-
guages/formalisms such as Entity-Relationship Diagrams
(ERD) and UML Class Diagrams are expressive enough to
be expressed in themselves. That is, the meta-model of such
a language L is a model in language L . From the implemen-
tation point of view, this allows one to bootstrap a meta-
modelling environment. This is often referred to as meta-
circular interpretation.

3.1 A Traffic Meta-Model

As an example, we briefly describe how to build a meta-
model for the Traffic formalism with AToM3. In AToM3, the
default meta-formalism is Entity-Relationship Diagrams. To
define the meta-model, one has to provide an abstract syntax
(denoting entities of the formalism, their attributes, relation-
ships and constraints) as well as a concrete graphical syn-
tax (how the entities and relationships should be rendered
in a visual interactive tool, as well as the possible graphical
constraints). The Traffic meta-model shown in Figure 2 pre-
scribes which entities are allowed in the formalism with their
attributes and how they may be connected. Not shown is the
definition of the graphical appearance (seen in Figure 1) of
these entities, global attributes (such as the model name, and
author) nor are constraints.

Once the formalism is modelled, AToM3 generates
Python (www.python.org) code which can be loaded by
the AToM3 kernel. Once this compiled Traffic meta-model
is loaded, the tool only accepts valid Traffic models. Us-
ing AToM3, the effort to produce a customized visual mod-
elling tool can be reduced to just a few hours for typical
formalisms.

4 MODEL TRANSFORMATION

The transformation of models is a crucial element in
all model-based endeavours. As models, meta-models,
and meta-meta-models are all in essence attributed, typed
graphs, we can transform them by means of graph rewrit-
ing. The rewriting is specified in the form of Graph Gram-
mar (Ehrig, Engels, Kreowski, and Rozenberg 1999) mod-
els. These are a generalization, for graphs, of Chomsky
grammars. They are composed of rules. Each rule con-
sists of Left Hand Side (LHS) and Right Hand Side (RHS)

graphs. Rules are evaluated against an input graph, called
the host graph. If a matching is found between the LHS
of a rule and a sub-graph of the host graph, then the rule
can be applied. When a rule is applied, the matching sub-
graph of the host graph is replaced by the RHS of the rule.
Rules can have applicability conditions, as well as actions to
be performed when the rule is applied. Some graph rewrit-
ing systems have control mechanisms to determine the or-
der in which rules are checked. After a rule matching and
subsequent application, the graph rewriting system starts the
search again. The graph grammar execution ends when no
more matching rules are found.

On the one hand, graph grammars have some advantages
over specifying the transformation to be done on the graph
using a traditional programming language. Graph grammars
are a natural, formal, visual, declarative and high-level rep-
resentation of the transformation. The theoretical founda-
tions of graph rewriting systems may assist in proving cor-
rectness and convergence properties of the transformation
tool. On the other hand, the use of graph grammars is con-
strained by efficiency. In the most general case, subgraph
isomorphism testing is NP-complete. However, the use of
small subgraphs on the LHS of graph grammar rules, as well
as using node and edge types and attributes can greatly re-
duce the search space. This is the case with the majority of
formalisms we are interested in. It is noted that a possible
performance penalty is a small price to pay for explicit, re-
usable, easy to maintain models of transformation. In cases
where performance is a real bottleneck, graph grammars can
still be used as an executable specification to be used as the
starting point for an efficient manual implementation.

Graph grammars for formalism transformation are partic-
ularly useful for the modelling and analysis of complex sys-
tems. Models of such systems consist of many components
or views, possibly at different levels of abstraction. Due to
the diversity of these models, we use different formalisms
to describe each one of them. To analyse the entire sys-
tem, one cannot look at properties of components or views
in isolation, but the system should be understood as a whole.
Therefore, in Computer Automated Multi-Paradigm Mod-
elling we have proposed to transform each component or
view into a single common formalism for subsequent analy-
sis and simulation (Vangheluwe 2000).

4.1 Traffic Semantics

In addition to the syntax of the Traffic formalism modelled in
section 3.1, we still need to model its semantics. One option
would be to describe the operational semantics of the for-
malism (i.e., how vehicles move through the model) by con-
structing a simulator by hand or by building a Graph Gram-
mar model of the dynamics. We have chosen to map Traffic
models onto Petri Net (Murata 1989) models instead. Not
only does this define the meaning of the the Traffic formal-

Vangheluwe and de Lara

name type=String init.val
num_vehicles type=Integer

RoadSection

name type=String init.val
num_vehicles type=Integer
infinite_supply type=Enum

Source

name type=String init.val
num_vehicles type=Integer

Sink

capacity type=Integer ini
name type=String init.val

Capacity

CapacityOf

FlowTo

Source2Section Section2Sink

Figure 2: Entity Relationship Diagram Meta-Model of Traffic

ism, but it allows for the use of existing Petri Net analysis,
optimization and simulation techniques and tools.

Figures 3 and 4 depict our Graph Grammar model of the
mapping. The model starts with an initial action followed by
nine rules. Each rule has a LHS and a RHS as well as an op-
tional pre-condition and post-action. Nodes and connections
in LHSs and RHSs are identified by means of labels (num-
bers). If a number appears on both the LHS and the RHS
of a rule, the node or connection is retained when the rule is
applied. If the number appears only on the LHS, the node
or connection is deleted when the rule is applied. Finally,
if the number appears only on the RHS, the node or con-
nection is created when the rule is applied. Node and con-
nection attributes in LHSs must be provided with attribute
values which will be compared with the node and connec-
tion attributes of the host graph during the matching process.
These attributes can be set to

�
ANY � , or may have specific

values. In the RHS, we can specify changed attribute values
for those nodes which also appear in the LHS. In AToM3, we
can either copy the value of the attributes of the LHS (this
appears as

�
COPIED � in the figure), specify a new value,

or associate arbitrary Python code to compute the attribute
value, possibly based on other nodes’ attributes. Obviously,
we must specify the attribute values of the newly created
nodes or connections.

In the inital action of our model, all RoadSection nodes
are marked as unvisited (to avoid infinite application of
rule 1). Rule 1 transforms Traffic RoadSection nodes into
Petri Net Places, with a link to the original RoadSection

node. Rule 2 transforms Traffic FlowTo connections between
RoadSection nodes into Petri Net Transitions with ap-
propriate Petri Net arcs. Rule 3 creates a Petri Net Place
for each Traffic Capacity node, copying the capacity and
name attributes and keeping a link between both nodes. Rule
4 creates a direct link between a Petri Net Capacity node
and a Traffic RoadSection node it pertains to. The no longer
needed link between the Traffic Capacity node and the Traf-
fic RoadSection node is removed. Rule 5 removes the no
longer needed Traffic Capacity nodes. Rules 6, 7 and 8 im-
plement Petri Net capacity constraints as described by Mu-
rata (1989). Rules 6 and 7 add appropriate input and out-
put arcs. Rule 8 adjusts the number of tokens in Petri Net
Capacity nodes to reflect the initial number of vehicles in
capacity constrained RoadSection nodes. Finally, rule 9 re-
moves the no longer needed Traffic RoadSection nodes as
well as dangling edges.

Note how for simplicity, the rules pertaining to vehicle
Sources and Sinks have not been included.

Note also how a GenericGraph formalism are used as a
“helper” during graph transformations, in particular from
one formalism to another. GenericGraph edges are used
to keep links between Traffic and Petri Net nodes. This is
cleaner than adding “helper” relationships to either of those
two formalisms or than using some of the relationships of
those two formalisms out-of-context (this “hack” is possible
as some checking is disabled when specifying Graph Gram-
mar rules).

Figure 5 illustrates the application of the rules. It starts

Vangheluwe and de Lara

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

1 2
7

3 4

5 6

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

0

1 2

10
3 4

9

5 6

8

RHS

rule 2: Flow2PNTransition

CONDITION:
node = getMatched(LHS.nodeWithLabel(1))
return node.in_connections_ == []

ACTION:
node = RHS.nodeWithLabel(1)
node.capacityPNPlaceGenerated = True

<ANY>
<ANY>

1

LHS

rule1: RoadSection2PNPlace

CONDITION:
node = LHS.nodeWithLabel(1)
return not node.vehiclesPNPlaceGenerated

ACTION:
node = RHS.nodeWithLabel(1)
node.vehiclesPNPlaceGenerated = True

<COPIED>
<COPIED>

<SPECIFIED>
<SPECIFIED>

1

2

3

RHS

LHS.nodeWithLabel(1)).name

LHS.nodeWithLabel(1)).num_vehicles

<ANY>
<ANY>

<ANY>
<ANY> <ANY>

<ANY>

4

1

5

2
3

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED> <COPIED>

<COPIED>

4

1

6

2
3

RHS

rule 4: Capacity2PNPlaceLinks

<ANY>
<ANY> <ANY>

<ANY>
1 2

3

LHS <COPIED>
<COPIED>

2

RHS

rule 5: Capacity2PNPlaceCleanup

INITIAL ACTION:
for node in graph.listNodes["RoadSection"]:
 node.vehiclesPNPlaceGenerated=False

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>

<ANY>

1
7

2

6

5

3

4

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>

<COPIED>

1

8

7

2

6

5

3

4

RHS

rule 6: CapacityConstraintOnPl2Tr

CONDITION:
cap_place = LHS.nodeWithLabel(6)
out_trans = LHS.nodeWithLabel(4)
capacity_transition_absent = True
for in_link in cap_place.in_connections_:
 for out_link in out_trans.out_connections_:
 if (in_link == out_link) and
 isinstance(in_link,tran2pl):
 capacity_transition_absent = False
 break
return capacity_transition_absent

rule 3: Capacity2PNPlace
<ANY>

<ANY>

1

LHS

<COPIED>
<COPIED> <SPECIFIED>

<SPECIFIED>
1 2

3

RHS LHS.nodeWithLabel(1)).name

LHS.nodeWithLabel(1)).capacity

Figure 3: Traffic to Petri Net Transformation Rules (part 1)

Vangheluwe and de Lara

<ANY>
<ANY>

1

2LHS RHS

rule 9: RemoveRoadSection

rule 8: InitialCapacity

<COPIED>
<COPIED> <COPIED>

<SPECIFIED>
1

2

RHS

initial_num_vehicles = LHS.nodeWithLabel(1).num_vehicles
capacity_tokens = LHS.nodeWithLabel(2).tokens
return capacity_tokens-initial_num_vehicles

<ANY>
<ANY> <ANY>

<ANY>
1

3
2

LHS

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>

<ANY>
<ANY>

<ANY>

1

5

7

2

6

4

3

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>

1

5

7

2

6

4

8

3

RHS

rule 7: CapacityConstraintOnTr2Pl

CONDITION:
cap_place = LHS.nodeWithLabel(6)
in_trans = LHS.nodeWithLabel(4)
capacity_transition_absent = True
for out_link in cap_place.out_connections_:
 for in_link in in_trans.in_connections_:
 if (in_link == out_link) and
 isinstance(in_link, pl2tran):
 capacity_transition_absent = False
 break
return capacity_transition_absent

Figure 4: Traffic to Petri Net Transformation Rules (Part 2)

from an extremely simple Traffic model with two connected
road segments. The first segment is initially populated by
two vehicles, the second by one. In total, no more than four
vehicles may be present in both segments. The transforma-
tion ends with a Petri Net representing the behaviour of the
Traffic model.

A Closed Traffic System

For a less trivial example, Figure 6 adds more feedback
to the Traffic model in Figure 1, making the system au-
tonomous. Applying our transformation yields the Petri Net
model depicted in Figure 7.

This model may now be used to analyze and simulate the
system. For analysis, we generate the Coverabilty Graph (a
Reachability Graph dealing with possibly infinite markings)
shown in Figure 8. The Coverability Graph allows for live-
ness analysis of the Traffic system. In particular, as there are
no nodes with outgoing edges in this graph, we conclude
that deadlock cannot occur.

Murata (1989) defines a Petri net with initial state x0
conservative with respect to a vector of integer weights
γ ��� γ1 � γ2 ���	���
� γn � if

n

∑
i � 1

γix
 pi � � constant

for all states in all possible sample paths from x0, with x
 p �
the marking (number of tokens) of place p.

We traverse the Coverability Tree and generate a matrix
representation of the above conservation equations. After
Gauss elimination, we produce an Integer Linear Program-
ming specification which we solve with the lp solve code
(http://www.geocities.com/lpsolve). This leads to the
following set of conservation equations:

1.0 x(turn1_CAP) + 1.0 x(turn1) = 1.0
1.0 x(turn2_CAP) + 1.0 x(turn2) = 1.0
1.0 x(top_CAP) + 1.0 x(to_N_or_W) = 1.0
1.0 x(bot_CAP) + 1.0 x(bot_W2E) + 1.0 x(bot_N2S) = 1.0
1.0 x(cars) + 1.0 x(bot_W2E) + 1.0 x(turn1) +
1.0 x(to_N_or_W) + 1.0 x(turn2) + 1.0 x(bot_N2S) = 2.0

These equations can easily be verified on the original Traf-
fic model. The first three equations correspond to capacity
constraints on turn1, turn2, and to N or W respectively.
The fourth equation corresponds to the capacity constraint
on the bottom intersection. The last equation expresses that
the total number of vehicles in the system is conserved and is
2. The above is a “basic” set of conservation equations: any
linear combination of the above is also valid. As we solved
an Integer Linear Programming problem, there is no guaran-
tee that this solution set is complete nor minimal (though it
is in this case).

4.2 Alternate Semantics

When one of the exit routes of the to N or W road section
is full, the other one will be used in the current semantics.

Vangheluwe and de Lara

2
segment1

1
segment2

segment1
2

segment2
1

capacity
1

After adjusting Capacity Petri Net Place for
corresponding RoadSection initial num_vehicles (rule 8):

2
segment1

1
segment2

segment1
2

segment2
1

capacity
2

After adjusting Capacity Petri Net Place for
corresponding RoadSection initial num_vehicles (rule 8):

2
segment1

1
segment2

segment1
2

segment2
1

capacity
4

After Petri Net modelling of Capacity constraint
on in-arcs (rule 7):

2
segment1

1
segment2

segment1
2

segment2
1

capacity
4

After Petri Net modelling of Capacity constraint
on out-arcs (rule 6):

After transforming RoadSections to Petri Net Places (rule 1):

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1

After transforming Traffic Flow to Petri Net Transitions (rule 2):

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1

capacity
4

After Transforming Traffic Capacity to Petri Net Place (rule 3):

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1

capacity
4

After linking linking the Capacity Petri Net Place
to the appropriate Traffic RoadSection (rule 4):

2
segment1

1
segment2

segment1
2

segment2
1

capacity
4

After cleaning up the link between Traffic Capacity and
the corresponding Capacity Petri Net Place (rule 5):

T
ra

ffic
 to

 P
e
tri N

e
t

segment1
2

segment2
1

capacity
1

The final Petri Net model after removing RoadSections
and dangling edges (rule 9):

The initial simple Traffic model:

2
segment1

1
segment2

4
capacity

Figure 5: Steps in the Transformation from Traffic to Petri Net

Vangheluwe and de Lara

0
bot_W2E

0
turn1

0
to_N_or_W

0
turn2

0
bot_N2S

2
cars

1
bot_CAP 1

turn1_CAP

1
top_CAP

1
turn2_CAP

Figure 6: A Closed Traffic System

Modifying the Graph Grammar model of Traffic semantics
allows us to generate Figure 9 instead in which a vehicle
decides on which of the exits of a road section to take before
entering it.

5 CONCLUSIONS

In this paper, we have presented the Computer Automated
Multi-Paradigm (CAMPaM) framework for model-based
development founded on a combination of meta-modelling
and graph transformation. By means of meta-modelling we
graphically specify the syntax of models we want to deal
with. By means of graph transformation we graphically de-
fine the kinds of manipulations that we can apply to these
models. These manipulations typically include defining
operational or denotational semantics, transformations into
other formalisms, code generation and optimization. Using
graph rewriting has the advantage that transformations are
explicitely modelled. We have implemented these concepts
in our AToM3 CAMPaM tool following the everything is a
model philosophy.

To illustrate our approach, we have modelled the Traffic
formalism dedicated to vehicle traffic network modelling.
The syntax of Traffic was meta-modelled and the semantics
was given by mapping Traffic models onto Petri Net models.
The mapping was modelled using a Graph Grammar. The
resulting Petri Net model was transformed to a Coverability
Graph which was the basis for further analysis. In particular,
an Integer Linear Programming problem was generated from
the Coverability Graph to determine conserved quantities.

We plan to extend our work by modelling a TimedTraffic
formalism whose semantics will be given by mapping it onto
Timed Transition Petri Nets, DEVS, and GPSS. The different
target formalisms each have their own analysis and simula-
tion tools. We will also move across abstraction levels by

bot_W2E
0

turn1
0

to_N_or_W
0

turn2
0

bot_N2S
0

cars
2

bot_W2E_dep

top_S2W_dep

bot_N2S_dep

top_arr
bot_N2S_arr

bot_W2E_arr

top_S2N_dep

bot_CAP
1

turn1_CAP
1

top_CAP
1

turn2_CAP
1

Figure 7: The Generated Petri Net Model

mapping TimedTraffic onto Traffic for the conservative, un-
timed analysis described here.

ACKNOWLEDGMENTS

Juan de Lara’s work has been partially sponsored by
the Spanish Interdepartmental Commission of Science
and Technology (CICYT), project number TIC2002-01948.
Hans Vangheluwe gratefully acknowledges partial support
for this work by a National Sciences and Engineering Re-
search Council of Canada (NSERC) Individual Research
Grant. The authors wish to thank Ms. Sokhom Pheng for
her work on the Petri Net conservation analysis during her
“Modelling and Simulation Based Design” project at McGill
University.

REFERENCES

de Lara, J., and H. Vangheluwe. 2002, April. AToM3: A
tool for multi-formalism and meta-modelling. In Euro-
pean Joint Conference on Theory And Practice of Soft-
ware (ETAPS), Fundamental Approaches to Software En-
gineering (FASE), LNCS 2306, 174 – 188: Springer-
Verlag. Grenoble, France.

de Lara, J., and H. Vangheluwe. 2004, June - August. Defin-
ing visual notations and their manipulation through meta-
modelling and graph transformation. Journal of Visual
Languages and Computing 15 (3 - 4): 309–330. Spe-
cial Issue on Domain-Specific Modeling with Visual Lan-
guages.

de Lara Jaramillo, J., H. Vangheluwe, and M. Alfon-
seca Moreno. 2003, February. Using meta-modelling and
graph grammars to create modelling environments. In
Electronic Notes in Theoretical Computer Science, ed.
P. Bottoni and M. Minas, Volume 72: Elsevier. 15 pages.
www.elsevier.nl/locate/entcs/volume72.html.

Vangheluwe and de Lara

[turn1_CAP, cars(2), bot_CAP, top_CAP, turn2_CAP]

[turn1_CAP, cars, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

[cars, turn1, bot_CAP, top_CAP, turn2_CAP]

bot_W2E_dep

[turn1_CAP, cars, bot_CAP, turn2_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2, cars, bot_CAP, top_CAP]

top_S2W_dep

[turn1_CAP, cars, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

[turn1_CAP, turn2, bot_W2E, top_CAP]

bot_W2E_arr

[turn2, turn1, bot_CAP, top_CAP]

bot_W2E_dep

[turn1_CAP, turn2, bot_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2_CAP, bot_N2S, to_N_or_W]

bot_N2S_arr

[turn1_CAP, turn2, top_CAP, bot_N2S]

top_S2W_dep

bot_N2S_dep

bot_N2S_dep

top_S2N_dep

top_S2N_dep

[turn1, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

top_arr

[turn1_CAP, bot_W2E, turn2_CAP, to_N_or_W]

bot_W2E_arr

[turn1, bot_CAP, turn2_CAP, to_N_or_W]

bot_W2E_dep

top_S2W_dep

top_S2N_dep

top_S2W_dep

top_S2N_dep

top_S2N_dep

[turn1, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

top_arr

Figure 8: The Generated Coverability Graph

Ehrig, H., G. Engels, H.-J. Kreowski, and G. Rozenberg.
1999. Handbook of graph grammars and computing by
graph transformation. vol. 2: Applications, languages,
and tools. World Scientific.

Engstrom, E., and J. Krueger. 2000, September. A Meta-
Modeler’s Job is Never Done: Building and Evolving
Domain-Specific Tools With DOME. In Proceedings of
the IEEE International Symposium on Computer Aided
Control System Design, 83–88. Anchorage, Alaska.

Karsai, G., G. Nordstrom, A. Ledeczi, and J. Sztipanovits.
2000, September. Specifying Graphical Modeling Sys-
tems Using Constraint-based Metamodels. In Proceed-
ings of the IEEE International Symposium on Computer
Aided Control System Design, 89–94. Anchorage, Alaska.

Kelly, S., and J.-P. Tolvanen. 2000. Visual domain-specific
modeling: Benefits and experiences of using metacase
tools. In Proceedings of the International workshop on
Model Engineering, ECOOP 2000, ed. J. Bezivin and
J. Ernst, 9 pp. http://www.metamodel.com/IWME00/.

Mosterman, P. J., and H. Vangheluwe. 2002. Computer Au-
tomated Multi-Paradigm Modeling. ACM Transactions on
Modeling and Computer Simulation 12 (4): 1–7. Special
Issue Guest Editorial.

Murata, T. 1989, April. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE 77 (4): 541–580.

Papacostas, C., and P. Prevedouros. 1992, October. Trans-
portation engineering and planning. Second ed. Prentice
Hall.

Vangheluwe, H. 2000, September. DEVS as a common de-
nominator for multi-formalism hybrid systems modelling.
In IEEE International Symposium on Computer-Aided
Control System Design, ed. A. Varga, 129–134: IEEE
Computer Society Press. Anchorage, Alaska.

top_S2W
0

top_CAP
1

turn1
0

turn1_CAP
1

bot_W2E
0

cars
2

bot_N2S
0

bot_CAP
1

top_S2N
0

top_S2N_dep

top_S2W_arr

bot_W2E_dep

bot_N2S_dep

bot_W2E_arr

bot_N2S_arr

top_S2N_arr

turn2
0

turn2_CAP
1

top_S2W_dep

to_N_or_W "direction chosen is final"

Figure 9: “Direction Chosen Is Final” Semantics

AUTHOR BIOGRAPHIES

HANS VANGHELUWE is an Assistant Professor in
the School of Computer Science at McGill University,
Montréal, Canada where he teaches Modelling and Simu-
lation, as well as Software Design. He heads the Mod-
elling, Simulation and Design Lab (MSDL). He has been
the Principal Investigator of a number of research projects
on the development of a multi-formalism theory for Mod-
elling and Simulation. Some of this work has led to the
WEST++ tool, which was commercialised for use in the de-
sign and optimization of Waste Water Treatment Plants. He
was the co-founder and coordinator of the European Union’s
ESPRIT Basic Research Working Group 8467 “Simulation
in Europe”, and a founding member of the Modelica Design
Team. His current research is focused on the development of
the AToM3 tool for Computer Aided Multi-Paradigm Mod-
elling (CAMPaM), on domain-specific visual modelling and
on modular formalism for discrete-event simulation and
code synthesis. His e-mail address is <hv@cs.mcgill.ca>,
and his web page is <www.cs.mcgill.ca/˜hv>.

JUAN DE LARA is an Associate Professor at the Uni-
versidad Autonóma (UAM) de Madrid in Spain, where he
teaches software engineering, automata theory as well as
modelling and simulation. His research interests include
Web Based Simulation, Meta-Modelling, Grah Transforma-
tion, Distance Learning, and Social Agents. He recieved his
PhD in June 2000 at UAM in Computer Science. During
2001, as a post-doctoral researcher in the MSDL, he created
the AToM3 prototype. Later, he also spent several periods
at TU Berlin working on graph transformation. His e-mail
address is <Juan.Lara@ii.uam.es>, and his web page is
<www.ii.uam.es/˜jlara>.

