Biblos :e Archiv—o_‘l‘

Repositorio Institucional de la Universidad Autonoma de Madrid

https://repositorio.uam.es

Esta es la version de autor de la comunicacion de congreso publicada en:
This is an author produced version of a paper published in:

IEEE Symposium on Visual Languages and Human-Centric Computing, 2007
(VL/HCC 2007). IEEE, 2007. 163 — 170

DOI: http://dx.doi.org/10.1109/VLHCC.2007.16

Copyright: © 2007 IEEE

El acceso a la version del editor puede requerir la suscripcion del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/VLHCC.2007.16

Action Patterns for the Incremental Specification of the Execution Semantics of
Visual Languages

Paolo Bottoni
Dip. Informatica
Universita La Sapienza
Rome, Italy
bottoni @di.uniromal..it

Abstract

We present a new approach — based on graph transfor-
mation — to incremental specification of the operational (ex-
ecution) semantics of visual languages. The approach com-
bines editing rules with two meta-models: one to define the
concrete syntax and one for the static semantics. We intro-
duce the notion of action patterns, defining basic actions
(e.g. consuming or producing a token in transition-based
semantics), in a way similar to graph transformation rules.
The application of action patterns to a static semantics edit-
ing rule produces a meta-rule, to be paired with the firing of
the corresponding syntactic rule to incrementally build an
execution rule. An execution rule is thus tailored to any ac-
tive element (e.g. a transition in a Petri net model) in the
model. Examples from Petri nets, state automata and work-
flow languages illustrate these ideas .

Keywords: Meta-Modelling, Visual Languages, Graph
Transformation, Operational Semantics.

1. Introduction

The design of Domain Specific Visual Languages
(DSVLs) implies the definition of their syntax, usually de-
rived from the notations in use in the domain community,
as well as of their static and dynamic semantics [9]. Dif-
ferent approaches can be used, with varying levels of
integration and incrementality between construction of syn-
tactic sentences and interpretation in terms of abstract
syntax, or static semantics.

Two main approaches are currently employed to this
aim, the grammatical and the meta-modelling one. The for-
mer exploits rewriting rules either to parse sentences and
construct their interpretation [6, 16] or to define creation
grammars, giving rise to syntax-directed editors. These al-
low some incrementality in the construction of abstract syn-
taxes, on which to build the semantic interpretation [16]. In

Juan de Lara
Escuela Politécnica Superior
Universidad Auténoma
Madrid, Spain
jdelara@uam.es

Esther Guerra
Dep. Ingenieria Informética
Universidad Carlos III
Madrid, Spain
eguerra@inf.uc3m.es

some cases, different grammars are used for the incremen-
tal construction of a sentence and its subsequent parsing [1].
Triple Graph Grammars were proposed as a way to main-
tain forms of coordination between concrete and abstract
syntax, favoring their incremental construction [20].

Using meta-models, elements of concrete and abstract
syntaxes are defined as instances of abstract concepts and
constraints on their possible relations are given. The same
mechanisms are used to define the semantic roles that ele-
ments can play. Designers of new languages can thus map
different concrete syntaxes to a common abstract one, given
as a meta-model, and reuse significant parts of a language
definition, in particular through inheritance [7, 4, 9, 14].

The definition of the dynamic semantics to be associ-
ated with a sentence — i.e. the type of domain-related pro-
cess to be simulated with it — has in many cases to be carried
out by hand and from scratch, as one has typically to con-
sider different aspects, which may be arbitrarily complex. In
particular, a designer has to define pre-conditions and trig-
gers for a process transformation to take place, the types of
resources it produces and consumes, and the functions for
updating the associated values. Moreover, the dynamics to
be modelled may refer not only to transformations of indi-
vidual elements, but also to forms of coordination between
them, to message exchange, diffusion of substances into a
common environment, or to balances of forces [18].

In previous works, we introduced the notion of seman-
tic variety, as expressed through a meta-model where the
roles are identified that syntactic elements can play in a pro-
cess [3], and followed in the line of the use of triple graph
grammars as a way to couple syntactic and semantic roles
[5]. In particular, we have proposed the use of triple pat-
terns which allow the language designer to generate oper-
ational triple rules, simply starting from the definition of
syntactic rules, once the correspondence between syntax el-
ements and (static) semantic roles is established [8].

In this paper, we introduce the new notion of action pat-
tern in order to generate execution semantics graph rewrit-

ing rules, whose application models some domain trans-
formation. In particular, we show some basic patterns for
the token-holder transition semantic variety, underlying the
specification of several types of dynamics. In this variety,
discrete transformations occur by removing tokens decorat-
ing holders, in a way which represents the holding of the
transition preconditions, and decorating holders with tokens
in a way which represents its post-conditions. Typical ex-
amples of languages with this type of (discrete) semantics
are Finite State Automata, the different types of Petri nets,
or workflow languages, but also languages based on posi-
tioning of elements in a grid, such as Agentsheets [18], or
those describing chessboard games.

Paper organization. Section 2 discusses related work. Sec-
tion 3 presents the meta-model for token-holder semantics
and its specialization to transition-based languages. Sec-
tion 4 presents a brief overview of graph transformation
and introduces our approach for meta-rules. Section 5 in-
troduces action patterns and Section 6 shows their appli-
cation to rules defining the incremental construction of the
static semantics. Finally, Section 7 discusses some applica-
tions, and conclusions are given in Section 8.

2. Related Work

Gottler describes a programming language as a triple
formed of a syntax, a semantics, and a function specify-
ing how the semantic model is built from the syntactic one
[13]. He proposes meta-rules to modify either syntactic or
semantic rules. In our case, meta-rules are associated with
and triggered by syntactic rules, and are automatically gen-
erated from action patterns.

The use of action patterns to generate meta-rules is a
form of meta-level manipulation of rules through rules. This
has been exploited to define rule refinement through rule
[19] and subrule [17] morphisms. In [19], a whole algebra
of rules is defined based on rule morphisms, including oper-
ators for rule composition. Multiple matches for a rule into
another would there give rise to different versions of the
transformed rule, whereas in our case, the application of ac-
tion patterns generates a single rule derived from the com-
position of the different matches.

Ermel and Bardohl [11] define an approach to animation
in which the execution semantics is given in terms of trans-
formations of configurations of the graph defining the pro-
cess state, and analogous rules are defined for transforming
an associated visualization. Rule morphisms then synchro-
nize the application of rules in the process and visualization
domains. The approach presented in this paper could be ap-
plied to visualization by considering the relation between
static semantics and syntactic sentences (see [8]).

In Baresi and Pezzé’s approach, static semantics is incre-
mentally built via meta-rules defining the correspondence

between the elements of the diagram notation and those
of the semantic domain, represented by High-Level Timed
Petri Nets [2]. They also introduce a notion of notation fam-
ily, to model commonalities in notations with slight dif-
ferences in their interpretation. We remark that action pat-
terns support the definition of different interpretations on
the same notation and the same static semantics. Moreover,
our notion of semantic variety also encompasses different
notations, sharing a similar structure for their interpretation.

Taentzer uses amalgamation [21] to generate a special-
ized global execution transformation by considering all pos-
sible simultaneous matches for a set of rules, once the com-
plete host graph has been produced. While the resulting ex-
ecution semantics may not differ from our approach, the ap-
plication of a parallel rule is not incremental (rules are gen-
erated on the whole graph) and requires the identification of
the effects on the interfaces between rules. For action pat-
terns, instead, different matches independently contribute to
the generation of a meta-rule. We overcome some limita-
tions of [21] e.g., checking in a Petri net whether all precon-
ditions for firing a transition are satisfied is solved there by
specific Double Pushout idioms, such as rewriting the tran-
sition itself. This exploits the dangling edge condition (not
present in other rewriting approaches) if some place does
not have enough tokens (hence, not producing a match for
the sub-rule). On the contrary, we produce specific execu-
tion rules for each transition, the action patterns for the case
of Petri nets are more concise, and the framework is not tied
in principle to any specific rewriting approach.

Multiset, rather than graph, rewriting is used in CIDER, a
toolkit for the construction of smart diagram environments,
supporting diagram editing, incremental construction of in-
terpretations, execution of animations and diagram transfor-
mation [15]. CIDER supports different forms of behaviour,
such as parallel or sequential transformations, and com-
positions of behaviours, as defined by control expressions.
Transformations in CIDER can also be associated with con-
straints concerning the concrete graphical syntax, but need
to be expressed through textual rewriting rules.

The notion of pattern is increasingly exploited in soft-
ware and process engineering. In particular, Design Patterns
[12] are defined as collaborations among different classes
playing well defined roles. Patterns of execution have been
studied in the modelling of workflow processes and a se-
mantics for them has been given in the form of Coloured
Petri Nets [22]. As these may be expressed in terms of ac-
tion patterns, the definition of a pattern language for work-
flows could benefit from the approach presented here.

3. Meta-Modelling for Syntax and Semantics

The definition of the syntax and static semantics of di-
agrammatic languages is based on the classes of Figure 1,

which shows two meta-models related through a correspon-
dence meta-model. Such a meta-model triple [14] describes
two related languages in a modular way (in this case, one
for expressing concrete syntax, the other for static seman-
tics). The correspondence meta-model is used to relate con-
cepts in both languages, therefore its nodes have morphisms
to nodes or edges in the other two meta-models. In the
meta-model for concrete syntax in the lower part of Fig-
ure 1, semantic relations are expressed via spatial relations
between identifiable elements. Different specialisations of
these abstract classes define different families of visual lan-
guages [4], such as the connection- and containment-based
ones. Identified elements are put in correspondence with se-
mantic roles, as defined by the semantic variety to which the
modelling language belongs.

Semantics

d N . p i R
Token || Holder | ___ | Transitio |
P : I
v
SemanticRole

Correspondence

. SpatialRelation

1

v |

O
+| GraphicElement <<final>>
1 Hybrid

|
‘ A 0.1 target
iEnmy
Container | | C
AttachZone —‘ 1

Figure 1. Meta-model Triple for Syntax and
Semantics of Visual Languages.

0.1 source *

Comg/ex
I GraphicElement

| Touches H Do(TouchesH Contains ‘

1

Syntax

The upper part of Figure 1 presents the basic classes
for the transition semantic variety. In general, the notion
of transition depends on that of configuration of a sys-
tem, which is significantly changed by the firing of the
transition. Hence, the transition variety collects uses of
visual languages to describe transformation processes in
which a diagram depicts a system instantaneous config-
uration, evolving under some well defined law. The pos-
sible evolutions at each step can be statically derived by
the form of the diagram, or described externally. Inter-
nal descriptions of the admissible transformations rely on
the presence of identifiable elements directly representing
TransitionElements, with which Holder elements
are associated as either pre- or post-conditions. Ex-
amples are arrows (and nodes) in finite state machines, or
boxes (and circles) in Petri nets. Associations between hold-
ers and transitions allow the specification of the static se-
mantics associated with a diagram, while its execution se-
mantics is defined by some external interpreter, and results
in the specification of the deletion or creation of associa-
tions between Token and Holder elements. In particular,
this execution semantics can be given through rules of type
before-after, based on the differences in the way Token el-

ements decorate Holder elements. For example, in grid-
based languages such as Agentsheets, holders are grid cells
and tokens are symbolic representations of the domain ele-
ments. An execution semantics in terms of before-after rules
can also be imparted on transition-based languages by spec-
ifying, for each transition, the moving of tokens from pre-
condition holders to post-condition ones.

Figure 2 shows the definition of the concrete syntax and
semantic roles for Petri nets. The significant spatial rela-
tions are refined (by means of a creation graph grammar)
to be the Touches relation between instances of ArcPT
(ArcTP) and a source Place (Transition) or a target
Transition (Place), and the Contains relation be-
tween Places and Tokens. Note that a Place can play
both the role of an Entity, w.r.t the arcs referring to it,
and that of a Container, w.r.t. the Tokens it holds.

post-conditions /N
‘TokSem‘ ‘PIaceSem ‘
| | |
| A |
‘Tokln‘ ‘Plavce | [aTP] [ArcPT] ‘T:ansition‘
’Z?g:;gsle ‘Container‘ ‘Conneoﬁon ‘ ’—D‘ Entity ‘

Figure 2. Meta-model Triple for Petri Nets.

According to the adopted syntax, the representation of
the system dynamics can be directly supported by some
form of canonical animation, in which instances of the
Token abstract class may appear or disappear, or move
from one instance of a Holder to another. It is to be noted
that the meta-model definition of the static and execution se-
mantics allows the adoption of different syntactic represen-
tations for the same semantics, provided that some equiv-
alence can be established between the two syntactic repre-
sentations. For example, a Petri net can be represented by
replacing transition boxes with hyperedges.

In [8], we used triple patterns to derive triple rules from
rules acting only in the syntactic part. These modify syn-
chronously the semantic model when the syntactic one is
changed. Thus, in the rest of the paper, we concentrate
on the semantic model (and no longer work with triple
graphs) as, equivalently, we can apply our triple patterns to
rules for the semantic model, and produce triple rules that
synchronously modify the syntactic one. More precisely,
they modify the corresponding abstract representation of the
syntax, according to its meta-model, leaving to specific al-
gorithms the management of the concrete layout.

4. Rules and Meta-Rules

In this section we give an informal, brief overview of the
Double Pushout approach (DPO) to graph transformation.
See [10] for a more extensive presentation.

Graph grammars are made of rules with a left and right
hand side (LHS and RHS). When a rule is applied to a graph
G (the host graph), an occurrence of the LHS (a matching
morphism) has to be found in G, which can be then sub-
stituted by the rule’s RHS. DPO uses category theory to
model rules and derivations, and its theory has been lifted
from graphs to (weak) adhesive HLR categories [10] (short
(W)AHLR categories), based on a distinguished class M
of monomorphisms. Examples of (w)AHLR categories are
graphs, typed graphs, P/T nets and attributed typed graphs.
Thus, not only graphs, but also objects in any (w)AHLR cat-
egory (C, M) can be rewritten using DPO rules.

A DPO rule L L K - R has three components (L,
K and R), which are objects of a given (w)AHLR category.
L contains the required elements to be found in the object to
which the rule is applied. K (the gluing object) contains the
elements to be preserved and R those that should replace
the identified part in the object being rewritten. Roughly,
L— K are the elements deleted by the rule application, while
R — K are the elements to be added. Figure 3 shows a di-
rect derivation diagram, where a production is applied to
graph G yielding graph H, and (1) and (2) are pushouts in
the given category. In particular, the category in the exam-
ple is Graphrg of typed graphs: an editing rule called ad-
dPlaces is applied to a host graph G, already containing a
transition and a post-condition place for it. The rule adds
one incoming and one outgoing place to the transition.

addPlaces

'L 1 'K : 'R !
| ‘t:TransSem‘ ;; ‘t:TransSem‘ L ‘o: PlaceSem | Post— t :TransSem ||
' | ! : ' conditions i
| ! | ! T - pre— 1
" conditions

i ‘ 'H ;
Lt ansSem‘ | ‘ t :TransSem‘ Ul < . i
! ‘ L % ! ol t:TransSem [congitions | ©: PlaceSem :

P L
! :postfco/Ldmons‘ ! :post—coﬁdmonsl 1 ;post—conditions |

i ! | I ! :pre— :
! ‘h: PlaceSem ‘ . ! ‘ h: PlaceSem ‘ 1 ! ‘h: PlaceSem ‘ conditions | i: PlaceSem ‘1

Figure 3. Editing Rule Derivation Example.

In our approach, one execution rule is created and asso-
ciated with every transition or “active” element, to model
its semantics. Editing rules are used to build the model, and
they may be paired with one or more meta-rules to update
the associated execution rule for each transition element in
the editing rule. Such meta-rules are invoked each time a
syntactic rule involving the corresponding transition ele-
ment is triggered. These meta-rules modify the execution

rule for the involved transition element, in order to obtain
a customized rule reflecting the exact context (exact num-
ber and identities of pre- and post- conditions) in which the
transition can perform a transformation step. Hence, meta-
rules are DPO rules modifying rules (i.e. each of the L, K
and R components of a meta-rule is in turn a DPO rule).
This is possible, as DPO rules can be shown to form an
AHLR category. Briefly, if C is an AHLR category, then so
is the functor category DPO(C) = [- — - — -, C].

Figure 4 shows how the execution rule, named Fire_t as-
sociated with transition ¢ in the context of the graph G in
Figure 3 is transformed into Fire_t” to reflect the insertion
of the two places in the transformed graph H. This is per-
formed by the metarule shown in the upper part of Figure 4,
to be associated with the editing rule addPlaces shown in
Figure 3. The new execution rule specifies the removal of
one token from the input holder and the insertion of one to-
ken into each output holder, as observable from the differ-
ences between the L and R components of rule Fire_t”.

meta-rule

[etansser] [etanssen] [evanssen]

ost- pre- il:post- pre- il:post— tpre- i
ondition: conditions: ! condition: conditions!; condition: conditions:;

PIaceSemH\PlaceSem ‘:}‘oPlaeeSemePlaeeSem MnH‘-p\aceSem ‘:3

L

| :post-
! conditiofs

i | o:PlaceSem|

EL t:TransSem [« : pre~ EK t:TransSem [« : pre~ 3

i S5 cohditions ! == cohditions ! S——
i post i post :

! condifions _ | | PlaceSem |1 condifions | | PlaceSem |11 " conifions

i:PlaceSem

t:TokSem

1| o':Placesem| 1| o':Placesem| 1| o':Placesem|

H t-
cpnbitons

‘ o:PlaceSem ‘ ‘ o:PlaceSem ‘

conffon conffdn |
[t1:TokSem

Figure 4. Meta-rule Rule Derivation Example.

5. Action Patterns

Each meta-rule, associated with an editing rule, is used
to incrementally construct an execution rule describing the
semantics of a particular active element of the model (e.g.
a transition). However, to avoid writing each meta-rule by
hand, we propose to exploit a set of action patterns, sim-
ilar to graph transformation rules [10], to describe seman-
tics. We present a procedure to generate a meta-rule, start-
ing from a set of patterns and an editing rule. This Section
describes the notion of action pattern, and the next one the
algorithm to obtain the meta-rule.

Let TG = (Np, Er,s” t7) be a type graph where Ny
and Er are sets of node and edge types, respectively and
sT: Ep — Ny and tT: Ep — Ny define the source and
target node types for each edge type. As in [7], we pro-
vide the type graph with node inheritance. A type graph
with inheritance is a pair TGI = (TG,I), where I =

o:PlaceSem

(N1, Ep,s',t!) is a node inheritance graph, with N; =
Nr. That is, graph I has the same nodes as T'G, but the
edges of [are the inheritance relations.

Given a type graph with inheritance, the clan of a node
n is the set of all its children nodes (including itself). For-
mally Ny D clan(n) = {n’ € Ny|3pathn’ —=* ninI}.

A type system for patterns over TGI is a construct
TSP = (TGI = (TG,I),tr,0), where tr € Ny is a des-
ignated node type, for which the action patterns describe its
semantics (e.g. a transition in the case of a Petri net). In ad-
dition 0 C T'GI is a subgraph of types (with inheritance)
relative to the execution mechanism with ¢r € oy,.. Ele-
ments in o are needed for the expression of the operational
semantics of the language (e.g. places, tokens and arcs).

a

An action pattern over TSP is a rule ap : L L
K 2 R such that U, ¢ s type(n) C on,, for X =
{L, K, R}, where Xy is the set of nodes of graph X. That
is, an action pattern is a rule made of elements with type
in 0. As in [7] for the case of rules, an action pattern may
contain elements with abstract typing. In this case the pat-
tern is called abstract. Elements with abstract type can get
matched with elements of more concrete type (as in [7],
similar to subtyping polymorphism). An abstract pattern ap
is equivalent to a set conc(ap) of concrete patterns, result-
ing from all valid substitutions of the abstract types by con-
crete types in the corresponding inheritance clan.

Figure 5 shows two abstract patterns describing a general
transition semantics. The pattern ger deletes a token from
a pre-condition holder, i.e. it removes both the token and
its association with the holder. In a similar way, the pattern
put adds a token and an association with a post-condition
holder. In both patterns a compact notation is used, show-
ing elements L, K and R together in a single graph. The el-
ements of L — K (i.e. those that the pattern should delete)
are marked as “{del}”. Elements of R — K (i.e. those that
the pattern should add) are marked as “{new}”. This nota-
tion will be used in the rest of the paper.

get put

: decorates

:Transition
Element

:Transition
Element

:pre—conditions :post—conditions

: decorates

- Token {del} : Token {new}

Figure 5. Action Patterns for Transition Based
Semantics

The get and put patterns are abstract and there-
fore highly reusable, as they are applicable to any lan-
guage with transition-based semantics, for example to
place/transition Petri nets (see meta-model triple in Fig-
ure 2). The type system for the patterns is given by the se-

mantic meta-model (the upper one) in Figure 1, and the
added subclasses by each particular language. In all cases,
the distinguished element ¢r is Transition Element. For
the example of Petri nets, o contains the classes in the se-
mantic model of Figure 2. For some classes of Petri
nets, where tokens with identities are used, one can in-
troduce a move pattern, which does not remove or insert
tokens, but only transfers the decorates association con-
necting the token from one holder to another.

6. Generation of Meta-Rules

In this section we present an algorithm that, given a set
of action patterns and an editing rule, generates a meta-rule
that updates an execution rule associated with a transition
element. To provide intuition, we illustrate how the action
patterns in Figure 5 can be applied to the editing rule of Fig-
ure 3 to obtain the meta-rule described in the upper part of
Figure 4. As the editing rule adds a pre- and post- holder
to an existing transition element, the associated meta-rule
must update the execution rule by adding the semantics
of an additional pre-holder and an additional post-holder.
Hence, the meta-rule should identify the transition element
in the execution rule and modify it by enlarging the LHS
with the pre- and post- holders, together with a token in
the pre-holder. Then, the RHS is enlarged with the pre- and
post- holders, the deletion of the token in the pre-holder and
the addition of the token in the post-holder. It is to be noted
that the components of meta-rules are rules. The meta-rule’s
L component in Figure 4 is a rule with L = K = R.

In a situation as depicted on the left of Figure 6, the edit-
ing rule (and therefore the associated meta-rule) would have
been fired twice for transition ¢. This would produce the ex-
ecution rule shown to the right of Figure 6.

:post—cgnditions

ic Model e. tion Rule
:pre—conditi
t: TransSem re-concitions :post-conditions | t: TransSem | :pre—conditions
— { I

. diti :post—conditions -
‘pref-conditions :pretconditions

a:PlaceSem ‘ ‘ b:PlaceSem ‘ ‘ c:PlaceSem ‘ ‘ d: PIaceSem‘

c:PlaceSem ‘ ‘ d: PIaceSem‘ ‘
9 deco ab ecérates deco ate
ﬂ.TokSem‘ TokSer’nT TokSem ‘ TokSem

b:PlaceSem
— {new,

‘ a:PlaceSem ‘

suoulpuoo—;sod:

Figure 6. Semantic Model and Resulting Rule.

Let TG = (Nt, Er,sT tT) be a type graph, TSP =

(TG, tr,o) be a type system for patterns over TG, AP =
iy re .

{ap; : L} «— K — R{};c1 aset of action patterns over
TSPandp: L «— K - R an editing rule with nodes
and edges typed over T'G. The application of AP to p pro-
duces a meta-rule for each transition element of the type
system in p, according to the following algorithm.

Apply (AP:Set of ActionPattern, p:Semantic
Rule, tsp:TypeSystemPattern): Set of
Meta-rule

Initialize the set of meta-rules, M RS = ().

vt € R|clan(t7‘)\nN (R|clan(t7')\UN is the RHS of b, re-
T T
stricted to subtypes in o, of the designated node type tr):

e Initialize the meta-rule mr as follows L = L'® =
K*® = K'* = R®* = R'* = K|, where K|, is the ker-
nel of the editing rule restricted to node ¢. Thus, the
meta-rule becomes: mr = (L® «— Lo R =

(L's — s 2 R’®) (we omit the meta-rule kernel

K, as we work with non-deleting rules with K = L).

e Set AP® =J,,cap conc(ap)

T

o Vap; : L* &~ Ko " Re ¢ APe:

1. Find all injective matches N = {n’: K — R} from
the kernel K of ap; to the RHS R of the editing rule.

2. Fori=0to |N|:

(a) Calculate M; as the pullback object of
kr: K'* — Rand n’: K — R as the left part
of Figure 7 shows. Note that in the first itera-
tion, My = K'* = KJ,.

(b) Glue K’¢ and n’(K®) through M;. This can be
described using the categorical pushout construc-
tion as the right part of Figure 7 shows.

M—2m s i (@)

EANE

B. K/s————KF"°

RN

Figure 7. (Left) Obtaining //;. (Right) Glueing
K’¢ and n'(K®) through M.

]!

(c) Obtain the LHS (resp. RHS) of the execution rule
(which is part of the meta-rule’s RHS), by glue-
ing L'® (resp. R'*) and L® (resp. R®) through M;.
These two processes can be described again as
pushouts, as shown in the outer square of Fig-
ure 8§ for the LHS (the RHS is built similarly).

(d) Morphisms I’: K'* — L'* and r'*: K'* — R'®
are uniquely obtained from the pushout univer-
sal property: K® is calculated to the right of Fig-
ure 7 as pushout object, and from Figure 8 we

3 P.O
Usoms| K's b—>K{S d
le ““‘lls‘
A /s
Lls c Ll

Figure 8. Obtaining the LHS of the Execution
Rule (outer square is P.O.)

have (co I’*) om$ = (d o 1%) o n' o m¢. Hence,
' K — LF, constructed as follows: for
the elements in K}° coming from n’(K?) (i.e.
for those belonging to a(n’(K%))), we define
I'*(z) = dol®*oa (x) . For the elements in
b(K'$), we define I*(y) = col’*ob™1(y). A sim-
ilar reasoning applies to the construction of 7%,

(e) Set K'* = Ki*, L'* = L and R'* = R}®.
e Update MRS = MRS ¥ mr
Return M RS.

Figures 9 and 10 show some steps in the execution of
the algorithm for patterns ger and put and the rule of Fig-
ure 3 (the figures use abbreviated type names). The rule
contains a single transition, thus one meta-rule is generated.
First, we obtain all the concrete patterns for the Petri net
language. The concretized get pattern is applied once. This
pattern is like the one in Figure 5, but with elements of type
PlaceSem, TransSem and TokSem instead of Holder,
TransitionElement and Token. Figure 9 shows the
construction of My, K{* and L (i.e. the RHS of the meta-
rule except R). Similarly, Figure 10 shows the calculations
for the application of concretized pattern put.

Figure 9. Applying Pattern get.

1 Note that ¢ and b are monomorphisms, and therefore we can invert a
in those elements belonging to a(n®(K®))

d meta-rule

:post—condition:
:pre—conditions
{new}

: post— §
cgnditions : pre-conditions|
x: StateSem | | y: StateSem

Figure 10. Applying Pattern put.

7. Applications

State Automata. Figure 11 shows the meta-model triple for
state automata. At the syntactic level, states are both enti-
ties — as they can be connected to transitions — and contain-
ers, as the current state contains a decoration inside (class
current). At the semantic level, states are holders (i.e. one of
them can receive a token, becoming the current state), while
transitions are transition elements. For simplicity, we do not
consider events in transitions.

decorates

pre—conditions

post-conditions

TransitionElement
JAN N\

‘CurrSem‘ ‘StateSem ‘ TransSem
1
A :
‘CurrZSe‘m‘ ‘StZSe‘m ‘

L Y Y Vi
‘Container‘ ‘Enﬁty ‘ ‘Connection ‘

Figure 11. Meta-model for State Automata.

The action patterns get and put, shown in Figure 5 are
valid for automata, as a transition element has exactly one
pre- and one post-condition. Hence, get removes the token
from the current state (a pre-condition) and put inserts it
into the post-condition holder. The type system in this case
is given by the semantic model in the upper part of Fig-
ure 11. Figure 12 shows an example editing rule and the
generated meta-rule. In this case, as the transition element
is created when connecting the two holders (i.e. states), the
meta-rule creates the transition element in its RHS.
WorkFlow. Figure 13 shows an excerpt of a meta-model for
a simple workflow language, in the style of [22]. Two kinds
of blocks - parallel and sequential - exist, playing the roles
of both transition elements and holders. Parallel blocks are
amenable to incremental semantics, as they require a token
in each incoming block for firing, and add a token in each
outgoing block. An example editing rule is shown to the

: decorates : decorates
{new) {del}
Figure 12. Editing Rule (left). Generated Meta-
rule (right)

upper-right corner of Figure 13. This rule adds a choice as
a post-condition for the parallel block, while the latter be-
comes a pre-condition for the choice. On the other hand,
choice blocks have a sequential semantics: they take one to-
ken from one of the incoming blocks (randomly chosen),
and put the token in one of the outgoing ones (also ran-
domly chosen). No incremental construction is needed for
choice blocks, and the global execution rule in the lower-
right corner of Figure 13 is enough. This rule is abstract
(equivalent to four normal rules), as we do not care about
the explicit type of the incoming or outgoing blocks. Thus,
in this case, we need the type system to include “Choice”
in the determination of the context of the execution rules
for “Parallel”, but to avoid the generation of a meta-rule for
the class “Choice” which does not need incremental seman-
tics. Therefore, the type system 7'S P for this case includes
in T'G all types in the upper part of the meta-model triple of
Figure 13, but excludes “Choice” from oy..

addChoice

TransitionElement

t: Parallel

:post—Londitions

x: Choice|

: degorates

meta-rule fo
addChoice

o

‘ Ser;ﬁctrl ‘

¥ ¥ ’
‘Current H ConcurrH Sequent Block ‘
Idefable v N/ {de
Entity Execution rule for

"Choice"
Figure 13. Meta-model for Workflow Lan-
guage (left). Editing Rule and Generated
Meta-rule; Exec. Rule for “Choice” (right).

‘ Conc2Sem ‘ ‘ Seq2Sem ‘

8. Conclusions and Future Work

We have presented a new approach for the incremental
specification of operational semantics for DSVLs, relying

on action patterns to describe the semantics of the active el-
ements of a model. Patterns are applied to each editing rule
manipulating active elements. Application of patterns pro-
duces meta-rules to be paired with the corresponding edit-
ing rules to incrementally build execution rules for the ac-
tive elements (i.e. each time the editing rule is applied, the
meta-rule is also applied, updating the execution rule). The
key point is that meta-rules generate a tailored execution
rule for each given active element, taking its context into
precise account. The goal of this work is to reduce the infor-
mation needed in order to define the operational semantics
of a DSVL. This way, the DSVL designer only has to pro-
vide the action patterns, besides rules for the concrete syn-
tax. Moreover, patterns can be reused for other editing en-
vironments with a different set of editing rules.

Many possible lines of development are open. For ex-
ample, we have to consider attributes in graphs. Negative
conditions (NACs) can be introduced at three different lev-
els: to forbid the application of the action pattern; at the
meta-rule level for creating or modifying NACs in the gen-
erated meta-rule; and at the execution rule level (i.e. the
meta-rule would construct NACs in the execution rule). In
addition, we are working to extending the algorithm in or-
der to produce variations of the semantics, e.g. in case that
not all tokens should be removed from every pre-condition
holder. We are aware that, as currently defined, the patterns
should be “smaller” than the editing rule to which they are
applied. This is usually the case in editing environments;
however the study of the opposite case is still an open prob-
lem. In principle, by considering partial matches from pat-
terns to rules, one could devise ways to generate additional
meta-rules with extended context. Finally, we are working
in other semantic varieties, like the communication one [3].

Acknowledgements. Work sponsored by the EC with
contract HPRN-CT-2002-00275, SegraVis, and the Span-
ish Ministry of Science and Education, projects MD2
(TIC200303654) and MOSAIC (TSI12005-08225-C07-06).

References

[1] R. Bardohl. A visual environment for visual languages. Sci.
Comput. Program., 44(2):181-203, 2002.

[2] L. Baresi and M. Pezzé. Formal interpreters for diagram no-
tations. ACM TOSEM, 14(1):42-84, 2005.

[3] P. Bottoni, D. Frediani, P. Quattrocchi, L. Rende, G. Sara-
jlic, and D. Ventriglia. A transformation-based metamodel
approach to the definition of syntax and semantics of dia-
grammatic languages. In Visual Languages for Interactive
Computing: Definitions and Formalization. IGP Press, to ap-
pear.

[4] P. Bottoni and A. Grau. A suite of metamodels as a basis for
a classification of visual languages. In P. Bottoni, C. Hund-
hausen, S. Levialdi, and G. Tortora, editors, VL/HCC 2004,
pages 83-90. IEEE CS Press, 2004.

(3]

(6]

(7]

8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

S. Burmester, H. Giese, J. Niere, M. Tichy, J. Wadsack,
R. Wagner, L. Wendehals, and A. Ziindorf. Tool integration
at the meta-model level: the FUJABA approach. J. Softw.
Tools Technol. Transfer, 6(3):203-218, 2004.

G. Costagliola, V. Deufemia, and G. Polese. A framework
for modeling and implementing visual notations with appli-
cations to software engineering. ACM TOSEM, 13(4):431-
487, 2004.

J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and
G. Taentzer. Attributed graph transformation with node type
inheritance. Theor. Comput. Sci., 376(3):139-163, 2007.

J. de Lara, E. Guerra, and P. Bottoni. Triple patterns: Com-
pact specifications for the generation of operational triple
graph grammar rules. In Proc. GT-VMT’07, 2007.

J. de Lara and H. Vangheluwe. Defining visual notations and
their manipulation through meta-modelling and graph trans-
formation. J. Vis. Lang. Comput., 15(3-4):309-330, 2004.
H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamen-
tals of Algebraic Graph Transformation. Springer, 2006.

C. Ermel and R. Bardohl. Scenario animation for visual be-
havior models: A generic approach. Software and System
Modeling, 3(2):164-177, 2004.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns.Elements of Reusable Object-Oriented Soft-
ware. Addison Wesley, 1994.

H. Gottler. Semantical description by two-level graph-
grammars for quasihierarchical graphs. In WG’79, Applied
Computer Science 13. Carl Hansen Verlag, 1979.

E. Guerra and J. de Lara. Event-driven grammars: Relat-
ing abstract and concrete levels of visual languages. Soft-
ware and System Modeling, to appear.

A. R. Jansen, K. Marriott, and B. Meyer. CIDER: A
component-based toolkit for creating smart diagram envi-
ronments. In Diagrams’04, LNCS 2980, pages 415-419.
Springer, 2004.

M. Minas. VisualDiaGen - a tool for visually specifying and
generating visual editors. In AGTIVE’ 03, pages 398-412,
2003.

F. Parisi Presicce. Transformation of graph grammars. In
TAGT, LNCS 1073, pages 428—442. Springer, 1996.

A. Repenning and T. Sumner. Agentsheets: A medium for
creating domain-oriented visual languages. IEEE Computer,
28(3):17-25, 1995.

M. G. Rhode, F. Parisi Presicce, and M. Simeoni. For-
mal software specification with refinements and modules of
typed graph transformation systems. Journal of Computer
and System Sciences, 64:171-218, 2002.

A. Schirr. Specification of graph translators with triple graph
grammars. In Proc. WG94, pages 151-163, 1994.

G. Taentzer. Parallel and Distributed Graph Transformation.
Formal Description and Application to Communication-
Based Systems (PhD. Thesis). Shaker Verlag, 1996.

W. van der Aalst, A. ter Hoefstede, B. Kiepuszewski, and
A. Barros. Workflow patterns. Distributed and Parallel Data
Bases, 14(3):5-51, 2003.

