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Abstract
A recently reopened debate about the infallibility of some clas-
sical forensic disciplines is leading to new requirements in
forensic science. Standardization of procedures, proficiency
testing, transparency in the scientific evaluation of the evidence
and testability of the system and protocols are emphasized in
order to guarantee the scientific objectivity of the procedures.
Those ideas will be exploited in this paper in order to walk to-
wards an appropriate framework for the use of forensic spea-
ker recognition in courts. Evidence is interpreted using the
Bayesian approach for the analysis of the evidence, as a scien-
tific and logical methodology, in a two-stage approach based in
the similarity-typicality pair, which facilitates the transparency
in the process. The concept of calibration as a way of reporting
reliable and accurate opinions is also deeply addressed, present-
ing experimental results which illustrate its effects. The testa-
bility of the system is then accomplished by the use of the NIST
SRE 2005 evaluation protocol. Recently proposed application-
independent evaluation techniques (Cllr and APE curves) are
finally addressed as a proper way for presenting results of profi-
ciency testing in courts, as these evaluation metrics clearly show
the influence of calibration errors in the accuracy of the infer-
ential decision process.

1. Introduction
The debate about the presentation of forensic evidences in a
court of law, including forensic speaker recognition, is currently
a hot topic in many scientific and legal forums [1, 2, 3]. One of
the main reasons of this discussion arises from the American
Daubert rules for the admissibility of the scientific evidence in
trials [4]. According to these rules, the U.S. Supreme Court sug-
gests that scientifically sounding techniques presenting standard
procedures and demonstrating their testability, accuracy and ac-
ceptance in the scientific community are likely to be admitted
in a U.S. federal court of law. On the other hand, non-scientific
statements, such as expert testimonies lacking of scientific foun-
dations, are likely to be rejected. The implications of these rules
are in accordance to many opinions of forensic experts world-
wide [1, 5, 6, 7, 8], demanding more transparent procedures and
a scientific framework for a logical and testable interpretation
of the forensic evidence. The debate also considers that exist-
ing techniques which have been assumed by the court as error-
free are starting to be questioned (see, for example, [9] for a
complete study regarding latent fingerprint identification). This
has been partly due to some critical errors in positive identifica-
tion reports, highlighted by the mass media (like the Mayfield
case in Madrid terrorist attacks in 11 March 2004 [10]). Also,

forensic case data is not sufficiently integrated into the police
investigative processes as it should be, and the use of standard
models for crime analysis making use of evidence interpretation
are being more and more demanded [11]. All these ideas should
be considered in order to use automatic speaker recognition sys-
tems for forensic purposes.

In order to cope with this emerging requirements, the spea-
ker recognition community should investigate ways of converg-
ing to this new paradigm in forensic science. Standard proce-
dures and protocols for testing and assessing forensic speaker
recognition systems may be helpful for their admissibility in
courts. Also, proficiency testing using clear protocols in con-
trolled situations should be used in order to clearly determine
the capabilities of the system [1, 12, 13]. The procedures in
use should be easily tested in order to clarify the accuracy of
the systems used and to be conscious of the error rates present
in the methodology at hand. In this sense, state of the art au-
tomatic speaker recognition is not as accurate as other classi-
cal techniques such as fingerprints or DNA. Therefore, caution
should be taken in order to use it in courts [14]. Thus, the im-
provement of the performance of score-based automatic speaker
recognition systems constitutes a main challenge and is a task
in constant progress, successfully impelled by the yearly NIST
Speaker Recognition Evaluations (SRE) [15]. Due to this pe-
riodic evaluation process, the methodologies and protocols for
the assessment of speaker recognition systems are converging
to a common framework. However, it is still needed to stim-
ulate this convergence regarding forensic interpretation of the
evidence using speaker recognition systems. In this sense, the
Bayesian approach for evidence analysis [6, 7] has been pro-
posed as a common framework for forensic interpretation of
the evidence, and recent works demonstrates the adequacy of
this technique for forensic speaker recognition [16], both using
automatic [12, 13], phonetic-acoustic [17] or semi-automatic
approaches [17]. Under such a framework, the fact finder is
able to infer posterior probabilities (also known asconfidences
[12]) about the considered hypotheses in a logical and transpar-
ent way [16]. However, several problems in automatic forensic
speaker recognition still need to be addressed, namely session
variability and data scarcity [3, 18, 13]. This two problems may
not only affect performance of automatic speaker recognition
technology, but also introduce errors in the estimations needed
for accurate Bayesian interpretation [13].

One of the main advantages of Bayesian methods is their
testability. As opinions about the hypotheses are expressed in
the form of posterior probabilities, there is a need of measuring
not only the discrimination capabilities of the system, but the
reliability of such confidences. Highly discriminant (orrefined



[19]) systems may lead to wrong posterior probabilities if they
do not elicit reliable (orcalibrated) confidences [19, 20]. A
significant work has been developed in the past in order to mea-
sure the calibration and refinement of elicited confidences (see
[20, 21] and references therein). In this paper, we explore the
concept of calibration in forensic speaker recognition systems,
emphasizing its effects. The problem is addressed in an ex-
perimental way, presenting results ofLR-based systems using
different interpretation and assessment techniques recently pro-
posed in the literature. A methodology for the interpretation of
the evidence according to the new requirements in forensic sci-
ence has been used for the presentation and evaluation of such
results. This work is organized as follows. Section 2 proposes
some guidelines as steps towards the “coming paradigm shift”
[1] in forensic speaker recognition. In order to obtain accuracy
in the systems following the suggested Bayesian framework,
Section 3 describes the problem of calibration in Bayesian
forensic speaker recognition, addressing a methodology for the
assessment of its effects and presenting some examples which
clarify its importance. Experimental results are reported in Sec-
tion 4, where the effect of calibration is highlighted by testing
and comparing several robust approaches proposed in the liter-
ature for Bayesian forensic speaker recognition. In Section 5 a
brief discussion is included for clarity. Finally, conclusions are
drawn in Section 6.

2. Towards a new paradigm in forensic
speaker recognition

The Daubert rules [4] define a set of requirements for scientific
evidence to be accepted in a U.S. federal court of law. Briefly,
in order to be admitted in court, any technique must satisfy
the following conditions: i) it has been or can be tested.ii)
it has been subjected to peer review or publication,iii) there
exist standards controlling its use,iv) it is generally accepted
in the scientific community, andv) it has a known or potential
(and acceptable) error rate. These rules, added to the evidence
of errors in some well-established forensic areas, have lead to
reconsider the procedures used for forensic interpretation and
reporting [1, 5]. A need of transparency and testability in the
techniques used is demanded in order to submit proficiency test
results to the court for the assessment of the methodology in use.
This is in accordance to the ideas expressed by several forensic
experts worldwide [6, 7, 8]. Moreover, it has been demonstrated
that no forensic discipline is really error-free, even considering
some well established disciplines which were viewed as error-
free in the past (e. g., fingerprints [9]). These demonstrations
have come either from the scientific community [8, 14] or from
mistakes in real trials [9, 10]. In this sense, the idea of “dis-
cernible uniqueness” [1] of a given sample should not have va-
lidity anymore, as positive identification as a result of forensic
analysis constitutes a “leap of faith” [22] adopted by the experts
in a subjective way, usually justified by their experience in the
field [5, 23]. This obscurity and arbitrariness in positive iden-
tification statements leads not only to usurp the judge’s role in
the decision making process [16], but also to a hardly testable
framework.

In [1], DNA analysis is proposed as a model in order to
avoid these difficulties. The main characteristics of forensic
DNA analysis, highlighted in [1, 5] may be summarized in:i)
it is scientifically based, avoiding expert opinions based on ex-
perience [5];ii) it is clear and standard in their procedures, al-
lowing scrutinizing and inspection by fact finders and forensic

scientists [1]; andiii) it is probabilistic, avoiding hardmatchor
non-matchstatements [1, 8, 22]. This forensic discipline, much
newer than fingerprint analysis, has been characterized by the
use of a two-stage approach in order to assess the weight of the
evidence [24, 6, 5] based on:i) a similarity factor which sup-
ports that the questioned sample was left by a given suspect, and
ii) a typicality factor which supports that the questioned sam-
ple was left by anyone else in a relevant population. In order
to implement this procedure in a scientific way, in DNA anal-
ysis the Bayesian methodology for evidence analysis has been
used as a model of a clear, standard and probabilistic framework
[6, 7] suited to any forensic discipline. In this sense, during
the last years recent work in the speaker recognition area has
demonstrated that any score-based speaker recognition system
can be adapted to work following the Bayesian methodology
[25, 12, 13].

2.1. The Bayesian methodology: a two-stage approach

The Bayesian framework for interpretation of the evidence rep-
resents a mathematical an logical tool in order to implement
the two-stage approach in the evidence analysis process. This
Bayesian framework presents many advantages in the forensic
context. First, it allows the forensic scientists to estimate and
report a meaningful value to the court [16]. Second, the role
of the scientist is clearly defined, leaving to the court the task
of using prior judgements or costs in the decision process [26].
Third, probabilities can be interpreted as degrees of belief [27],
allowing the incorporation of subjective opinions as probabili-
ties in the inference process in a clear and scientific way.

Classically, Bayesian interpretation of the forensic evidence
using automatic systems has been performed by generative sta-
tistical models [28, 6, 25, 13], whereas discriminative tech-
niques have been also recently applied to this task [12]. In both
cases, the objective is to compute the likelihood ratio (LR) as
a degree of support of one hypothesis versus its opposite. This
LR can be estimated from similarity scores computed by an
automatic system [12, 13]. We assume that the evidenceE is
the information extracted from the questioned mark (e. g., a
wire-tapping) and the suspect material (e. g., a recording from
the suspect in controlled situations). Typically, using automatic
systems thisE will be a similarity score between the mark and
the suspect material. However, other kind of meta-information
(such as signal to noise ratio, transmission channels, subjective
quality of the speech signal, etc.) may be also used in order to
compute thisLR value [12]. Therefore:

LR =
f (E|Hp, I)

f (E|Hd, I)
(1)

whereHp (a given suspect is the author of the questioned re-
cording involved in the crime) andHd (another individual is the
author of the questioned recording involved in the crime) are the
relevant hypothesis andI is the background information avail-
able in the case. The hypothesis are defined in the court from
I, the prosecutor and defense propositions and often because of
the adversarial nature of the criminal system.

Equation 1 represents the two-stage approach inLR com-
putation. The likelihoodf (e|Hp, I) in the numerator in Equa-
tion 1 is known as the within-source distribution, and models the
variability of the speaker between sessions evaluated ine = E.
The evaluation of this function ine = E gives a measure of the
similarity between the questioned material and the suspect. On
the other hand, the likelihoodf (e|Hd, I) in the denominator
is known as the between-source distribution, and its evaluation



in e = E can be seen as a measure of the typicality or rarity of
the suspect in a relevant population of individuals. Both values,
similarity and typicality, are computed in a transparent way by
the speaker recognition system or expert, and it is the duty of
the forensic scientist, following the background information of
the case (I), to select the population of individuals which will
be proper for the case at hand. This two-stage approach can be
easily documented by the forensic scientist and understood by
fact finders [6, 5].

2.2. Testability

Proficiency testing is being seen as a key issue for the admissi-
bility of forensic systems in courts [1]. According to Daubert,
the knowledge about the error rates of the technique in use de-
mands unified protocols for system evaluation in an scientific
way. We identify two main factors as critical for the achieve-
ment of this goal in forensic speaker recognition. First, an effort
for generating common protocols and databases for proficiency
testing should be done. In this sense, the work by NIST and
NFI/TNO in their respective SREs has been fundamental in the
last years [15]. Second, the use of a common methodology for
presenting results in court will measure and clarify the reliabil-
ity of the system to be used for forensic analysis. In this paper
we use the NIST 2005 SRE protocol for testing system perfor-
mance, and we also use several evaluation methods for a clear
presentation of results in a Bayesian framework, which are de-
scribed in Section 3.1.

3. Calibration in Bayesian forensic speaker
recognition

The concept of calibration was introduced in [19] in the context
of weather forecasting. There, posterior probabilities (or confi-
dences) were used as degrees of belief about a given hypothesis
(tomorrow it will rain) against its opposite (tomorrow it will
not rain). The accuracy of the forecaster was then assessed by
means ofstrictly proper scoring rules, which may be viewed as
cost functions which assign a penalty to a given confidence de-
pending on:i) the probabilistic value of the forecast, andii) the
true hypothesis which actually occurred (see [21] for details).

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

LR greater than

P
ro

po
rt

io
n 

of
 c

as
es

 (
%

)

H
p
 trueH

d
 true

H
p
 Misleading

 Evidence     

H
d
 Misleading

 Evidence     

Figure 1: Example of Tippett plots showing the actualLR dis-
tributions (with its meaningful values) and the rates of mislead-
ing evidence whenHp andHd are respectively true.

For example, if a probabilistic forecast gives a high probabil-
ity of rain for tomorrow (value of the forecast) and tomorrow it
does not rain (true hypothesis), a proper scoring rule will assign
a high penalty to the forecast, and vice-versa. Strictly proper
scoring rules have interesting properties. First, theonly confi-
dence value which optimize a strictly proper scoring rule is the
actual probability of occurrence of the hypothesis [19]. Thus,
any opinion expressed by the forecaster which deviates from
the actual probability of occurrence of the hypothesis will lead
to a higher penalty. Second, in [19] it is demonstrated that any
proper scoring rule can be split into arefinementcomponent,
measuring the discrimination capabilities of the confidence val-
ues elicited, and acalibration component, which measures the
deviation of such confidence values from the actual probabili-
ties of occurrence of the hypothesis.

The use of proper scoring rules in order to assess speaker re-
cognition systems deliveringLR values has been recently pro-
posed in the literature [21, 12]. In a speaker recognition context,
eachforecastis represented with the confidence on the hypoth-
esis “the speaker is the author of the test utterance” or its op-
posite, which may be inferred from theLR computed by the
speaker recognition system and the prior probabilities (not nec-
essarily estimated by the system). This assessment framework
is perfectly suited for the methodology proposed in Section 2.1
for forensic speaker recognition considering:i) the hypothe-
ses used areHp andHd as defined in Section 2.1,ii) the prior
judgements are province of the court, andiii) theLR is com-
puted by the forensic speaker recognition system.

3.1. Assessing calibration in forensic speaker recognition

In NIST SREs, DET plots have been used to measure the
discrimination performance of speaker detection technology.
However,LR values are not only used as a discrimination score,
but as a measure of the degree of support to a hypothesis against
its opposite. Using theLR and the prior odds (province of the
court [16]) we obtain a posterior probability orconfidencefor
each hypothesis. Thus, the accuracy of theLR values does not
only depend on their discrimination power for trials whereHp
or Hd is true (measured by the refinement of theLR values),
but in their actual values (calibratedLR values will lead to re-
liable confidences). Therefore, in Bayesian analysis of forensic
evidences, Tippett plots have been classically used for perfor-
mance evaluation [24, 13], as in NFI/TNO forensic SRE [29].
In this representation, the distribution of theLR values being
Hp orHd respectively true are plotted together. Important val-
ues shown by these curves (and not by DET plots) are the ac-
tual distributions of theLR values and the rates of misleading
evidence. The rate of misleading evidence is defined as the pro-
portion ofLR values giving support to the wrong hypotheses
(LR > 1 whenHd is true andLR < 1 whenHp is true).
In Figure 1 an example of Tippett plots is shown, highlighting
the rate of misleading evidence values (theHp andHd rates of
misleading evidence are different in general).

Recent approaches for speaker recognition evaluation have
proposed the use of application-independent metrics such as
Cllr [21], whereapplication, as defined in [21], is the set of
prior probabilities and decision costs involved in the inferential
process [26].Cllr is a single scalar value defined as:
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Figure 2: DET curves (a), Tippett plots (b) and APE curves (c) for three simulated systems (System 1, System 2 and System 3).LR
values have been randomly generated in order to plot these curves.
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whereNHp andNHd are respectively the number ofLR val-
ues in the evaluation set forHp or Hd true. As it can be seen
in Equation 2, hypothesis-dependent logarithmic cost functions
are applied to theLR values being evaluated, and thus they are
assessed depending on their numerical value: highly misleading
LR values will have a strong penalty (highCllr) and viceversa.

Cllr presents several interesting properties. First, theLR
values are evaluated in an application-independent way, which
in forensics meanscase-independent, where different costs and
priors may be involved in the decision process of each different
case [26]. Second, as a single scalar value,Cllr is very useful in
order to easyly compare and rank systems. Third,Cllr has also
an information-theoretical interpretation: given a system deliv-
eringLR values,1− Cllr measures the amount of information
that is delivered from the system to the user (in our case, the
fact finder) assuming a maximum entropy prior (in our binary
case,P (Hp) = P (Hd) = 1/2). So, the lower theCllr value,

the higher the information delivered from the system to the fact
finder. Finally,Cllr is a strictly proper scoring rule [21], and it
can be split into discrimination loss (Cminllr ) and calibration loss
(Cllr−Cminllr ). TheCminllr value is obtained by optimal calibra-
tion via a monotonic transformation of theLR values, knowing
the actual hypothesis occurred for eachLR value. Details may
be found in [21].

Based on thisCllr value, the APE-curve (Applied Proba-
bility of Error) [21] has been also proposed as a way of mea-
suring the probability of error of theLR values computed by
the forensic system in a wide range of applications (different
costs and priors). This probability of error is represented for the
actualLR values computed by the speaker recognition system
and also for optimally calibratedLR values obtained as cited
above forCllr. Therefore, this representation clearly illustrates
the effects of a lack of calibration: highly discriminantLR val-
ues may lead to a high probability of erroneous decisions if they
are not properly calibrated. Because of their interesting proper-
ties, APE curves andCllr will be used as an evaluation metric
in coming NIST 2006 SRE [30]. In this paper, we have used the
evaluation tools forCllr and APE curve computation included
in the toolkit FoCal [31].



3.2. Effects of calibration

The effects of calibration in forensic speaker recognition are il-
lustrated in this section with an example using synthetic data.
Here, three sets ofLR values have been synthetically generated
for each of theHp andHd hypotheses simulating three differ-
ent forensic speaker recognition systems, two of them with the
same discrimination ability. Figure 2 shows the performance of
thesesynthetic systems(namelySystem 1, System 2andSystem
3) in terms of DET curves, Tippett plots,Cllr values and APE
curves. DET curves in Figure 2(a) show that the discrimination
power ofSystem 1andSystem 2are the same in all operating
points, outperformingSystem 3. However, Tippett plots in Fig-
ure 2(b) show that, although the separation betweenHp andHd
curves is similar inSystem 1andSystem 2, the latter presents a
significantly higher rate of misleading evidence forHd. Also,
confidences inferred fromLR values computed bySystem 2and
System 3will lead to important errors because of the high pro-
portion of misleadingLR values.

These results are clearly observed in Figure 2(c), which
presents the same results in the form ofCllr values and APE
curves. Overall performance is given byCllr, split into dis-
crimination loss (Cminllr ) and calibration loss (Cllr − Cminllr ).
It is observed thatSystem 1and System 2present the same
discrimination performance (same discrimination loss), clearly
outperforming System 3. However,Cllr values forSystem 2
and System 3 are quite simillar, because of the high calibration
loss presented bySystem 2. On the other hand, the calibration
performance ofSystem 1is the best for all systems.

In order to complete the analysis, APE curves in Figure
2(c) show the probability of error for all possible values of prior
probabilities and decision costs (horizontal axis)1. The dashed
line shows the performance of optimally calibratedLR values
obtained by monotonic transformation fromLR values given
by the system [21]. The solid line shows the actual probabil-
ity of error of theLR values computed. It is observed that the
probability of error dramatically increases when the system is
not properly calibrated. Due to this lack of calibration, poste-
riors inferred usingSystem 2andSystem 3will have a similar
probability of error, even whenSystem 2has a much higher dis-
crimination performance.

4. Experiments
In order to confirm the effects presented in Section 3 using ac-
tual speaker recognition systems, we present some experimen-
tal results using the techniques described below in the field of
forensic speaker recognition.

4.1. System description

We carry out our experiments using the ATVS GMM-MAP-
UBM system submitted to NIST 2005 SRE, which includes KL-
Tnorm, an efficient and adaptive speaker- and test-dependent
score normalization technique [32]. The comparative re-
sults presented here consider three techniques for the evalu-
ation of the forensic evidence recenly proposed in the litera-
ture, namely: i) suspect-independent within-source computa-
tion [33], ii) suspect-adapted Maximum A Posteriori (MAP)

1APE curves assess the probability of error forall values of the prior
probabilities (expressed in prior log-odds using a logit function [21])
and costs involved in the decision process. Thus, we can represent both
values in a single axis, because the priors and costs are related by a
product in a Bayesian framework. See [21] for details.

estimation of within-source distributions [34] andiii) Within-
source Degradation Prediction (WDP) [13]. We briefly describe
each interpretation technique below.

In suspect-independent within-source estimation a frame-
work is proposed assuming that an accurate model of the within-
source distribution for a given suspect can be obtained using
target scores from different individuals in the same conditions.
Thus, we defineXG = {xG1, . . . , xGN} as a set ofglobal
target scores computed using speech from speakers other than
the suspect. In this paper, we assume single Gaussian distribu-
tions for all estimations involved in within-source computation,
and therefore we estimate theglobal within-source distribution
f (e|Hp, I) ≡ fG (e) = N (µG, σG) via Maximum Likeli-
hood estimation from theXG set.

On the other hand, suspect-adapted MAP estimation of
within-source distributions is based on the fact that, even in the
same conditions, the target scores coming from different spea-
kers may present different distributions [35]. Therefore, accu-
racy in within-source estimation may be improved by exploiting
suspect-specific scores, because theHp condition claims that
the suspectand no other individualis the author of the ques-
tioned recording. This is done via MAP adaptation [36] of the
global distributionfG (e) = N (µG, σG) to thesuspectditribu-
tion fS (e) = N (µS , σS), estimated from a set ofM suspect
target scoresXS = {xS1, . . . , xSM} obtained from the sus-
pect speech involved in the trial. Therefore, anadaptedwithin-
source pdff (e|Hp, I) ≡ fA (e) = N (µA, σA) is obtained.
See [34] for details.

Finally, WDP combines suspect target scoresXS with
between-source distribution information to predict score vari-
ability not present in the suspect data. This is achieved by
varying the within-source distribution variance to a value based
on the between-source distribution. Formally, letfS (e) =
N (µS , σS) be the suspect distribution estimated fromXS tar-
get scores. f (e|Hd, I) has been defined as the between-
source distribution for a given forensic trial (see Equation
1). The objective within-source pdf after WDP is defined as
f (e|Hp, I) ≡ fWDP (e) = N (µWDP , σWDP ). Our goal is
to compute the desired parameterσWDP , asµWDP = µS will
remain unchanged. First of all, we computeslow , which will
be the score which satisfies
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slow

f (e|Hd, I) de = α (3)

whereα = 0.05 in this contribution. Then, a gradient-descent
algorithm for unconstrained optimization is used to compute
σWDP , given that it is claimed to satisfy

slowZ

−∞

fWDP (e) de = α (4)

Thus,f (e|Hp, I) is predicted based on the information about
the between-source distribution. Details may be found in [13].

4.2. Database and experimental protocol

The database and experimental protocol is fully described in
[34] and briefly summarized here. Experiments have been per-
formed using the evaluation protocol proposed in NIST 2005
SRE for the 8 conversation side training and 1 conversation side
testing task (8c-1c, see [37] for details). Suspect target scores
setXS consists of all the target scores for each speaker from
the whole score set in the evaluation, except the score used as
evidence in eachLR computation. We have only selected sus-
pect vs. questioned speech comparisons having more than four
suspect target scores, i. e.,M ≥ 5. A total number of 10.618
trials have been performed in this sub-condition. Background
data, including global target score setXG, has been extracted
form NIST 2004 SRE database and protocol [15].

4.3. Results

First of all, we evaluate the effect of a lack of target suspect
scores maintaining the rest of conditions by randomly selecting
subsets ofM scores from the total number of suspect target sco-
res in eachLR computation. Figure 3 shows theCllr (calibra-
tion and refinement) andCminllr (refinement) values for all the
techniques evaluated. It is shown that the overall performance
(Cllr) of suspect-adapted within-source estimation clearly out-
performs the rest of techniques for any value ofM . On the other
hand, WDP outperforms suspect-independent within-source es-
timation in discrimination power (Cminllr ) for M ≤ 4. How-
ever, there is a calibration loss in theLR values computed using
WDP, since the overall performance of the technique (Cllr) is
the worst of all. This is mainly due to the fact that WDP is not
considering calibration as an optimization objective (details in
[13]), as will be noted bellow.

In Figure 4 we compare the perfromance of the different
evaluated techniques under suspect data scarcity (M = 2). Re-
sults are presented in DET curves, Tippett plots,Cllr values and
APE curves. DET curves in Figure 4(a) show that the discrimi-
nation capabilities of suspect-adapted within-source estimation
are better for all operating points. However, this improvement is
not so significant for low False Alarm rates (and DCF as defined
by NIST [37], almost identical for the three systems). We also
see that WDP slightly outperforms suspect-independent within-
source estimation. In Figure 4(b) we also observe that suspect-
adapted within-source computation performs better than the rest
of approaches in terms of rates of misleading evidence. On the
other hand, the numericalLR values computed by WDP under
Hd are slightly higher than the rest, i. e., the support to theHd
hypotheses by theLR values computed using WDP is weaker.
As it is noted below, this effect will lead to a calibration loss for
the WDP technique.

Finally, Cllr values and APE curves are shown in Figure
4(c). It is observed that, although the discrimination capa-
bilities (refinement) are better in WDP compared to suspect-
independent within-source estimation, the calibration loss in-
troduced by WDP leads to a poorer performance in terms of
probability of error of the posterior decisions. This is because
WDP aims at fixing the within-source distribution without con-
sidering the actual (and unknown) suspect data it claims to rep-
resent. Therefore, the predicted within-source pdf will not rep-
resent the actual distributions, and thus the technique will in-
cur in a calibration loss. On the other hand, suspect-adapted
within-source estimation, which is based on experimental data,
clearly outperforms both techniques, also presenting a good cal-
ibration. These facts about the superiority of suspect-adapted
within-source estimation over both suspect-independent within-
source estimation and WDP are much clearer than in the DET
plots of Figure 4(a).

5. Discussion
Experiments shown in this paper have illustrated the importance
of the calibration of theLR values computed by a forensic sys-
tem. Highly discriminant likelihood ratiosmightachieve a high
performance in terms of probability of error of the posterior
probabilities. However, a high calibration loss in the computed
LR values may lead to arbitrarily high errors. Therefore, cal-
ibration is highly important in forensic reporting, because, in
a Bayesian context, the fact finder will take decisions from the
posterior odds inferred using prior odds and theLR values com-
puted by the system.

This idea of calibration is strongly related to the rates of
misleading evidence and the actual value of these misleading
LR values showed in Tippett plots (see Figure 1). AsCllr is
a logarithmic cost function, it penalizes the erroneous posteri-
ors whatever they come from target of non-target trials. Thus,
the optimization ofCllr implicitly leads to an optimization of
bothHp andHd rates of misleading evidences, but also of the
numericalLR values being evaluated. Therefore, an optimiza-
tion process focused on the rate of misleading evidence under
Hd will lead to a calibration loss. While the reduction of the
rate of misleading evidence and the limitation in such numeri-
calLR values are important points in forensic systems, an op-
timal process for accomplishing this objective would imply the
calibration of the systemLR values and then the use of costs
or utilities in the decision process by the fact finder, as has been
recently proposed in forensic science [26].

6. Conclusions
In this paper we have emphasized the importance of calibration
of LR values in Bayesian forensic speaker recognition follow-
ing the rising needs being debated in the forensic science com-
munity. Questioning the infallibility of any forensic technique
and demanding scientifically-sound methods for the admissibil-
ity of forensic evidence in the court are the main reasons for
these new requirements. Some main guidelines for the use of
forensic speaker recognition in courts may be drawn from this
debate, such as the need of transparency, accuracy and testa-
bility for any technique to be admissible. This work has pre-
sented a methodology which copes with these interrelated re-
quirements and therefore fulfills these needs. The transparency
of the reasoning process under uncertainty is guaranteed by the
use of the scientific and logical Bayesian framework for evi-
dence analysis, as it happens in forensic DNA profiling. The
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Figure 4: DET curves (a), Tippett plots (b) and APE curves (c) comparing suspect-independent, WDP and suspect-adapted within-
source computation with scarce suspect data (M=2) in the selected subset from 8c-1c in NIST 2005 SRE.

discussion about the effects of a lack of calibration in auto-
matic forensic speaker recognition systems has been supported
by heuristic examples and experimental results. The conclu-
sions from such discussion can be extended to any other foren-
sic speaker recognition approach (semi-automatic, phonetic-
acoustic, etc.) based on the Bayesian framework and report-
ing LR values. Several methods for the evaluation of forensic
systems have been addressed, from classical techniques based
on DET curves and Tippett plots to more recent application-
independent approaches based onCllr and APE curves. These
two last metrics have been emphasized as a proper way of pre-
senting results, as they show and highlight the calibration per-
formance as a measure of reliability of theLR values com-
puted by the forensic system. All these evaluation techniques,
added to a clear and standard protocol such as those developed
by NIST in their yearly SREs, give a method to perform pro-
ficiency tests in a controlled and transparent way. Therefore,
the proposed methodology looks forward to fulfilling the needs
of testability and standarization stated by the Daubert rules and
demanded from forensic experts worldwide.
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