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Factorization of natural 4 × 4 patch distributions

Kostadin Koroutchev and José R. Dorronsoro ?

Depto. de Ingenieŕıa Informática and Instituto de Ingenieŕıa del Conocimiento
Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. The lack of sufficient machine readable images makes im-
possible the direct computation of natural 4 × 4 image block statis-
tics and one has to resort to indirect approximated methods to reduce
their domain space. A natural approach to this is to collect statistics
over compressed images; if the reconstruction quality is good enough,
these statistics will be sufficiently representative. However, a require-
ment for easier statistics collection is that the method used provides a
uniform representation of the compression information across all patches,
something for which codebook techniques are well suited. We shall fol-
low this approach here, using a fractal compression–inspired quantiza-
tion scheme to approximate a given patch B by a triplet (DB , µB , σB)
with σB the patch’s contrast, µB its brightness and DB a codebook ap-
proximation to the mean–variance normalization (B − µ)/σ of B. The
resulting reduction of the domain space makes feasible the computa-
tion of entropy and mutual information estimates that, in turn, sug-
gest a factorization of the approximation of p(B) ' p(DB , µB , σB) as
p(DB , µB , σB) ' p(DB)p(µ)p(σ)Φ(||∇B||), with Φ being a high contrast
correction.

1 Introduction

The importance of understanding the statistical behavior of natural images is
plainly obvious for a wide range of topics, going from standard visual informa-
tion processing tasks to the study of basic human visual behavior. However,
direct statistics computation is not possible even for 4 × 4 natural image blocks:
current lossles image compression techniques do not allow to go below 2.5 bits
per pixel rates [12], which implies that the representation of 4 × 4 blocks will
require in average about 16× 2.5 = 40 bits. In other words, direct natural block
statistics would require about 240−16 ' 16×106 natural 1024×1024 images and,
simply, there are not so many machine readable raw images. This has led many
researchers to collect and analyze statistics not directly on blocks B but rather
on appropriate, low dimensional transformations T (B)). Typically, the block
transformation computed prior to statistics collection either reduces a block’s
dimension by selecting a few points, projecting the block pixels on some direc-
tions or computing a certain integral transform [7, 10] or, on the other hand,
T (B) allows a certain reconstruction of B [4, 9]. An example of this are those
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wavelet transform methods that compute statistics over the first few wavelet
components. This is approximately equivalent to compute statistics over lower
resolutions of the original patches. A good recent review of the literature on
the statistics of natural images is given by in [11]. In our context, desirable
characteristics of the T (B) transformation are

1. The information loss due to T (B) should be as small as possible, so that it is
meaningful to deduce statistical properties of B from those of T (B). Clearly
this does not hold for the methods in the first class above.

2. The data structure of T (B) should be obviously the same for all B so that
statistics are collected over a uniform data set.

3. Finally, the computation of T (B) should be quite fast, if only to alleviate
the computationally very demanding task of statistics collection.

The first requirement shows that methods of the second type are clearly the
most appropriate ones, as they connect statistics collection with image compres-
sion, while the second requirement may penalize optimal compression schemes
such as DCT JPEG or wavelets, as the resulting T (B) could be highly non
uniform. The natural alternative, that we shall use here, are codebook image
compression methods that compress a given block B by choosing another DB

from a certain codebook D = {D} of mean and variance normalized domains
such that

DB = arg minDdist(B,D) = arg minD{||B − (σBD + µB)||∞}. (1)

Here || · ||∞ denotes the pixel–wise supremum norm and σBD + µB is a gray
level transformation of D, with the block’s standard deviation σB and mean
µB being respectively taken as a contrast factor and a luminance shifting. B
is then compressed by the triplet (DB , σB , µB). We shall see this triplet as the
transformation of B, that is, T (B) = (DB , σB , µB). Although clearly inspired
by fractal image compression, we shall look at the (DB , σB , µB) coding and its
associated reconstruction

B ' σBDB + µB (2)

from a codebook point view. In any case, the coding T (B) certainly meets our
second requirement and, as we shall see, also the first one, as the approximation
it provides is close enough. Turning our attention to the third requirement, a
fast computation of σB and µB can be easily achieved. Finding DB , however,
can very time consuming as it will involve full block comparisons. To minimize
their number, we shall use here a hash based block precomparison, inspired in
hash–based fractal image compression (FIC), a novel image compression method
proposed by the authors [3], whose performance is comparable to other state of
the art FIC methods (or even better in some instances). More precisely, we shall
compute first a certain hash–like function h(D) for all codebook domains, and
distribute in the same linked list those D with the same h value. To code a
given block B, a set H(B) of small perturbations of the hash value h(B) will



Fig. 1. Lena´s image is a well known source of fractal codebooks, but statistics com-
puted from other codebooks are similar, provided the source image is “rich” enough, as
the one from the Van Hateren’s database exemplified here. Its decimated square center
has been used as an alternative domain source.

be computed and the full block comparisons in (1) will be done only between B
and those D such that h(D) ∈ H(B).

More details on this hash based block–domain matching are given in section
2, where we shall also discuss the basic statistics collection procedure for the
T (B) = (DB , σB , µB) approximations. In section 3 we shall compute the mutual
information between the joint probability p(DB , σB , µB) and the P (DB), p(σB)
and p(µB) marginal probabilities and see that, in a first approximation, we have
for 4× 4 natural image patches B that

p(DB , σB , µB) ' p(DB)p(µB)p(σB), (3)

while a second order approximation is

p(B) ' p(DB)p(µB)(p(σB)Φ(||∇B||), (4)

with Φ(||∇B|| a high contrast correction. For this we shall approximate about 280
million natural 4×4 patches extracted from the well known van Hateren database
[2] using two different FIC codebooks, derived from the well known Lena image
and from a typical van Hateren image depicted in figure 1. In section 4 we shall
also analyze the structure of the p(D) and p(σ) probabilities (p(µ) can be easily
manipulated and does not carry significant information). We shall show that p(σ)
(that is independent from the codebook used) has an exponential structure and
that p(DB) follows for both codebooks a nearly uniform behavior with respect to
volume in image space. The paper ends with some other comments and pointers
to further work.



Quantity Value(Lena) Value(VH) Limit estimates

N 231511046 231441592 –

log2 N 27.7865 27.7861 –

H(i, j, s, σ, µ) 26.7141 26.6517 29.84

H(i, j, s) 17.8156 17.6565 17.73

I(i, j, s||σ, µ) 1.5642 1.4674 0.427

I/H(i, j, s, σ, µ) 5.86% 5.51% 1.43%

H(σ, µ) 10.4627 10.4626 10.46

I(σ||µ) 0.1698 0.1697 0.115

I(σ, µ)/H(σ, µ) 1.62% 1.62% 1.10%

Table 1. Different entropy measures (in bits) of image statistics using the Lena (sec-
ond column) and van Hateren (third column) codebooks and limit estimates (fourth
column) for them.

2 Methods

The approximation B = (B̃, σB , µB) ' (DB , σB , µB) = T (B) implies that B̃ =
(B − µB)/σB ' DB . This approximation must hold for all block pixels which,
as we shall argue below, suggests to define a hash–like function

h(D) =
H∑

h=1

(⌊
Dihjh

λ

⌋
%C +

C

2

)
Ch−1 =

H∑

h=1

bhCh−1. (5)

to speed up domain searches. Here we shall take H = 5 and the points Dihjh
,

1 ≤ h ≤ H used are the four corner pixels and an extra middle pixel. C will be
16 and the modulus operator %C gives integer values between −C/2 and C/2.
Finally λ is chosen so that (5) defines an approximately uniform base C expansion
thatspeeds up hash searches. Therefore, we want the bh to be approximately
distributed between 0 and 16, which can be achieved if λ is chosen so that
the Dihjh

are uniformly distributed in [−λC
2 , λC

2 ]. An optimal λ would then be
about 0.2, although we shall take λ = 2 in what follows. Codebook domains will
be derived from a 256 × 256 versions of the Lena and van Hateren images by
extracting all its 4 × 4 (overlapping) blocks. This gives (256 − 4 + 1)2 ' 216

codebook domains, that become 220 after adding for each block its 8 isometries
and its negative (notice that the dilations in (2) are positive). Flat domains, i.e.,
those such that σ(D) ≤ 4, may give distorted values in (5) and we will exclude
them (about 25% of both codebook domains).

Full block comparisons for a natural block B, that is, the computation of
dist(B,D) = sup |Bij − σBDij − µB | in (1), over all block pixels are performed
only over domains D such that h(D) ∈ H(B), with H(B) = {hδ(B)}, where

hδ(B) =
H∑

h=1

(⌊
Bihjh

− µB

λσB
+ δh

⌋
%C +

C

2

)
Ch−1 =

H∑

h=1

rδ
hCh−1, (6)
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Fig. 2. Large sample behavior of the total entropy H(i, j, s, σ, µ) estimates. computed
over Lena and van Hateren codebooks. Both values are close, but do not reach a
saturation limit.

with the displacement vector δ = (δ1, . . . , δH)t verifying |δh| ≤ 1. Notice that
the equality hδ(B) = h(D) implies pixel closeness of the H points used to define
h and, hence, a starting similarity between the D and B blocks. As a further
acceleration factor, we shall content ourselves with approximate domain searches,
in the sense that we will fix a tolerance value d and stop looking for domains
matching a patch B as soon as a D is found such that d(B, D) ≤ d. We shall
take d = 8, that guarantees a reasonable reconstruction PSNR of about 30 Dbs.
Finally, the coding of B will then be

T (B) = (i, j, s, σ, µ)

where (i, j) indicates the position in the codebook image of the left upper corner
of the matching domain, and s is an index for the isometry and negative used.
As the natural patch source, we shall work with 4300 8 bit gray level images of
size 1540 × 1024 from the van Hateren database. We shall restrict ourselves to
their 1024×1024 squared centers. As done for domains, we will also exclude flat
blocks, that is, those B with σ ≤ 4 (about 20% of all database patches). This
leaves us with a sample of about 232× 106 natural 4× 4 patches.

3 Distribution factorization

Denoting by N the number of sample patches and by M the number of do-
mains, we should have N À M in order to achieve accurate entropy estimates
[8]. However, table 1 shows this not to be the case when estimating the full
sample entropy HN (i, j, s, σ, µ) of the p(i, j, s, σ, µ) distribution, something that
can also be appreciated in figure 2, that shows that although close, the Lena and
van Hateren full entropy values do not reach a saturation point. On the other
hand, we have indeed N À M when estimating the marginal entropies HN (i, j),
HN (σ) and HN (µ). As it can be seen in table 1, the Lena and van Hateren
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Fig. 3. Left: deviations from the first order factorization (7) arise over the edges of the
codebook source image. Right: values of E||∇B|| in logarithmic scale and second order
epitaxy inspired approximation.

HN (i, j) entropy values are again very close (HN (σ) and HN (µ) are codebook–
independent). From the table one can deduce that σ and µ are independent, as
their mutual information is less than 2% of their joint entropy. When looking
at the dependence between the (i, j, s) and (σ, µ) distributions, the table shows
that the mutual information I(i, j, s||σ, µ) is for both codebooks about 1.5 bits,
that is, about 5.5% of the joint entropy. Although not totally independent, this
points out to a first order factorization of the joint (i, j, s, σ, µ) density as the
product

p(i, j, s, σ, µ) ' p(i, j, s)p(σ)p(µ). (7)

In order to visualize where the remaining 1.5 bit dependence may arise, we
have looked at the average d(i, j) over (s, σ, µ) of the quotient

p(i, j, s, σ, µ)
p(i, j, s)p(σ)p(µ)

.

The values of d(i, j) can be projected over the codebook source image, where we
should look for those different from one. When this is done (see figure 3, left,
where log d(i, j) is depicted), it is clear that image edges are where to look in
order to correct (7). This also suggests to correct (7) as

p(B) ' p(DB)p(µB)p(σB)Φ(||∇B||).
This second approximation clearly implies that we should have

Φ(||∇B||) ' E||∇B||

[
p(i, j, s, σ, µ)

(p(i, j, s)p(σ)p(µ)

]
(8)
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Fig. 4. Left: projection over Lena of the − log p(σ(i, j)) distribution. Right: relative fre-
quencies of σ in a logarithmic scale. The linear central behavior suggests an exponential
distribution.

with E||∇B|| denoting the conditional expectation with respect to ||∇B||. This
expectation is depicted in figure 3, right, which also shows that a good approxi-
mation for Φ(x) is given by

Φ(x) ' a + bφ
(x

c

)
= a + b

(
x

c
− π2

6
− 2

∞∑
1

(−1)n

n2
e−

x
c n2

)
,

where a ' 2, c ' 31 and b/c ' 0.068. The motivation for the φ(t) function
comes from epitaxy studies in crystal growth, [5] where it models the time evo-
lution of the number of nuclei in non steady state crystal nucleation. Once the
Φ–dependence is taken into account, the mutual information between the experi-
mentally obtained distribution and the above second order corrected distribution
is now 0.621 bits, that is, about 1 bit less than the previous estimate. Therefore,
just 2.3% of the total information is not covered now by the second approxima-
tion.

4 Structure of the codebook and contrast distributions

The histogram of the σ distribution is depicted in figure 4. It has a drop around
100, due to the limited range of brightness levels, and also a cusp–like peak at
0, mostly due to many near flat blocks that arise from the layered structure
of natural images. In fact, the 0 peak should be more marked if we were not
discarding those patches B such that σB ≤ 4. In any case, its structure is
carried by the central linear zone, that suggests an exponential distribution.
In fact, and as it could be expected, p(σ) is quite correlated with the codebook
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Fig. 5. Volume–corrected values of log N(m), with N(m) the relative number of do-
mains getting m natural blocks for the Lena (left) and van Hateren (right) codebooks.
The distributions are fairly similar and suggest a volume–uniform distribution of all
normalized natural patches among codebook domains. The left image also shows the
average patch σ as a growing function of m. The scale of σ goes for a low value of
about 5 at left, to a high value of at the right high count area.

source’s edges, as depicted in figure 4, left, that shows for the Lena image the
values of − log p(σ(i, j)) with σ(i, j) the value for the domain with i, j as its right
left corner coordinates.

To get a hold on the p(i, j) distribution, we may count for each m′ the num-
ber N ′(m′) of domains that match exactly m′ patches. In other words, we look
at the (i, j) as a bins where matching patches fall. The resulting distribution has
a clear parabolic structure, that suggests that domains “fall” more or less uni-
formly on bins or, more precisely, that in block space, patches are more or less
distributed uniformly among domains. However, this uniform distribution hy-
pothesis requires also to take into account the volume surrounding each domain
when counting N ′(m′), for then the probability of a codebook region R receiving
a patch is proportional to its volume v(R). This would lead to the rather difficult
problem of estimating this surrounding volume v(D) for each domain. To avoid
it, we have made the simplifying assumption that all hash linked lists correspond
to domain space regions of the same volume and, therefore, to estimate v(D)
as a multiple of ν(h), the number of domains in the list indexed by h = h(D).
The a priori probability of a domain D is thus proportional to ν(h(D)), and we
should therefore correct the basic count m′ of patches matched by a domain D
to m = m′ × ν(h(D)). The corrected N(m) values are depicted in figure 5 in
logarithmic scale, for the Lena (left) and van Hateren (right) codebooks. Both
show a very similar parabolic structure, in which the left side divergence is due
to low σ patches, with small denominators in (6) and, hence, more sensible to
noise variations that may alter the matching domain they are assigned to. Notice
that this effect should be more marked in domains getting fewer blocks. This
is supported in figure 5, left, that shows for m the average σ value among the
N(m) patches: it is much smaller for small m.
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Fig. 6. Left: domains with a higher count of high contrast patches. They clearly cor-
respond to edges. Right: the proportion of high contrast patches is markedly higher
among high count domains.

It is clear that figure 5 is best explained as a large sample gaussian aproxi-
mation of a binomial distribution or, in other words, that the codebook indices
(i, j) do follow a volume–uniform distribution. Apparently this may contradict
recent results in [4], that show a marked structure of high contrast natural 3× 3
blocks. However, notice that figure 6, right, depicting the proportion of the high-
contrast codebook domains getting a (normalized) number m of patches, has a
very sharp rise at the high patch count area. Moreover, when the domains with
the largest count of high contrast patches are depicted, as in figure 6, left, it is
clear that they correspond to edges.

Finally, we just mention that the µ distribution is highly dependent on factors
such as the camera’s calibration and can be easily manipulated through, say,
histogram equalization. Thus, it does not carry significant information.

5 Summary and future directions

To alleviate the large dimension of the state space of 4× 4 natural patches, we
have proposed in this work to estimate their distributions in terms of an image
compression inspired codebook approximation of the form B ' (DB , σ, µ), with
σ, µ the block’s variance and mean and DB a codebook domain close to the nor-
malization of B. Identifying a domain DB in terms of its (i, j) location on the
source image and the symmetry s applied, we have also shown how to factorize
the distribution p(i, j, s, σ, µ) as p(i, j, s, σ, µ) ' p(i, j, s)p(σ)p(µ)Φ(||∇B||). Of
these factors, the most relevant in terms of information seem to be p(σ)Φ(||∇B||)
combination, which allows us to conclude that, at least in the scale investigated
(about one minute of angle), the information is essentially carried by the block’s
edges. This is certainly not surprising, as it agrees with the well known Marr



hypothesis [6]. However, this conclusion is achieved here through direct infor-
mation theoretical considerations; in particular, they are independent of any
consideration regarding the receiving system. In turn, this could suggest that
biological systems have adapted themselves to extract those natural image parts
most relevant in terms of information theory.

Moreover, the structure of the marginal distributions p(i, j) and p(σ) may
have practical applications in areas such as image database searching. In fact,
the absence of long tails in these distributions shows that the patches’ represen-
tation proposed here has a very compact range. Thus, using the (i, j, σ) repre-
sentation as a key for database searching, the worst distributed key is actually
the exponentially distributed image contrast, while the search time for the other
distributions should be nearly constant. Moreover, the very fast drop of the ex-
ponential distribution makes it reasonable to expect that the codebook coding
scheme proposed here should allow for fast image database search strategies.
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