
Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired

Approach: First International Work-Conference on the Interplay Between

Natural and Artificial Computation, IWINAC 2005, Las Palmas, Canary Islands,

Spain, June 15-18, 2005, Proceedings, Part II. Proceedings. Lecture Notes in

Computer Science, Volumen 3562. Springer 2005. 586-593.

DOI: http://dx.doi.org/10.1007/11499305_60

Copyright: © 2005 Springer-Verlag

El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/11499305_60

Boosting Parallel Perceptrons for Label Noise
Reduction in Classification Problems

Iván Cantador and José R. Dorronsoro ?

Dpto. de Ingenieŕıa Informática and Instituto de Ingenieŕıa del Conocimiento
Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. Boosting combines an ensemble of weak learners to construct
a new weighted classifier that is often more accurate than any of its com-
ponents. The construction of such learners, whose training sets depend
on the performance of the previous members of the ensemble, is carried
out by successively focusing on those patterns harder to classify. This
fact deteriorates boosting’s results when dealing with malicious noise
as, for instance, mislabeled training examples. In order to detect and
avoid those noisy examples during the learning process, we propose the
use of Parallel Perceptrons. Among other things, these novel machines
allow to naturally define margins for hidden unit activations. We shall
use these margins to detect which patterns may have an incorrect label
and also which are safe, in the sense of being well represented in the
training sample by many other similar patterns. As candidates for being
noisy examples we shall reduce the weights of the former ones, and as a
support for the overall detection procedure we shall augment the weights
of the latter ones.

1 Introduction

The key idea of boosting methods is to iteratively construct a set {ht} of weak
learners that are progressively focused on the “most difficult” patterns of a
training sample in order to finally combine them in a final averaged hypothe-
sis H(X) =

∑
t αtht(X). More precisely [7], a starting uniform distribution

D0 = {d0(X)} is progressively updated (see section 3 for more details) to

dt+1(X) =
1
Zt

dt(X)e−αtyXht(X), (1)

where Zt is a probability normalization constant, yX = ±1 is the class label asso-
ciated to X and the averaging constant αt > 0 is related to the training error εt of
ht. If a pattern X is incorrectly classified after iteration t, we have yXht(X) < 0
and, therefore, boosting iteratively focuses on the incorrectly classified patterns.

When label noisy dataset classification problems (i.e., problems where some
pattern labels are incorrect) are considered, this property has two consequences.
On the one hand, while boosting has been used with great success in several

? With partial support of Spain’s CICyT, TIC 01–572, TIN 2004–07676.

applications and over various data sets [2], it has also been shown [3, 4] that it
may not yield such good results when applied to noisy datasets. In fact, assume
that a given pattern has label noise, that is, although clearly being a member of
one class, its label corresponds to the alternate class. Such a label noisy pattern is
likely to be repeatedly misclassified by the successive hypotheses which, in turn,
will increase its sampling probability, causing boosting to hopelessly concentrate
on it and progressively deteriorate the final hypothesis.

Furthermore, mislabeled training examples will tend to have high probabi-
lities as the boosting process advances, which implies that after few iterations,
most of the training examples with high weights should correspond to mislabeled
patterns, and gives a good motivation to use boosting as a noise filter, as done
for instance in [8], where it is proposed that after a number N of rounds, the
examples with the highest weights are removed from the training sample. This
should allow a more efficient subsequent learning, but also has problems of its
own as, for instance, the definition of the exact percentage of presumably noisy
examples to be filtered (or, more generally, how to choose a “high enough”
weight), or the appropriate choosing of the number N of boosting rounds.

On the other hand, a second issue to be considered on any boosting strategy
is the fact that the probabilities of correctly classified examples are progressively
diminished. Intuitively, this is a good idea, because the examples that are inco-
rrectly predicted by previous classifiers are chosen more often than examples that
were correctly predicted, and boosting will attempt to produce a new classifier
more able to handle correctly those patterns for which the current ensemble
performance is poor. However, in the presence of medium to high levels of noisy
examples, the weak learners may have many difficulties to obtain good separation
frontiers, as there may be not enough correctly classified examples in the training
samples to do so. In particular, they may be not be able to distinguish between
the true mislabeled examples and the incorrectly classified (but well labeled)
ones. In other words, it may be sensible to keep an adequate representation
of correctly classified patterns in boosting’s training sets, as they should make
noisy examples to be more easily found. Thus, a “reverse boosting” strategy
of keeping well classified patterns, i.e., the “safe” ones, while diminishing label
noisy ones may allow a reasonable learning procedure in the label noisy setting.
The problem, of course, is how to detect good patterns (even if they may be
somewhat redundant) and, more importantly, how to detect noisy patterns. If
done properly, an adequate weighting of boosting’s exponent should dismiss the
latter patterns while keeping the former.

We shall follow this general approach in this work, using Parallel Perceptrons
(PPs; [1]) or, more precisely, their activation margins, to detect simultaneously
good and noisy patterns. As we shall see in section 2, PPs, a variant of the cla-
ssical committee machines, not only learn “best” perceptrons but also stabilize
their outputs by also learning optimal hidden unit activation margins. These
margins shall be used in section 3 to classify training patterns in the just men-
tioned safe and noisy categories and a third one, borderline patterns, somehow
in between of the other ones. This, in turn, can be used to adjust boosting’s

probability updates. We will do so here by changing the exponent in (1) to
αtR(X)yXht(X), where the R(X) factor will be −1 for safe patterns (increasing
their probability) and noisy ones (decreasing now it), and 0 for the bordeline
ones (leaving their probability essentially unchanged). The resulting approach
will be favorably compared in section 4 with other options such as boosting and
bagging of PP and also of standard multilayer perceptrons (MLPs). Finally, the
paper will close with a brief summary section and a discussion of further work.

2 Parallel Perceptron Training

Parallel Perceptrons (PP) have the same structure of the well-known committee
machines [6]. They are made up of an odd number of standard perceptrons
Pi with ±1 outputs and they have a single one–dimensional output that is
simply the sign of the sum of these perceptrons’ outputs (that is, the sign of
the overall perceptron vote count). They are thus well suited for 2–class dis-
crimination problems, but it is shown in [1] that they can also be used in re-
gression problems. In more detail, assume we are working with D–dimensional
patterns X = (x1, . . . , xD)t, where the D–th entry has a fixed 1 value to in-
clude bias effects. If the committee machine (CM) has H perceptrons, each with
a weight vector Wi, for a given input X, the output of perceptron i is then
Pi(X) = s(Wh · X) = s(acti(X)), where s(·) denotes the sign function and
acti(X) = Wi ·X is the activation of perceptron i due to X. We then have

H∑

i=1

Pi(X) = N+(X)−N−(X) = N (X),

with N±(X) denoting the number of positive/negative perceptron outputs. The
final output h(X) of the CM is h(X) = s (N (X)) where we take H to be odd to
avoid ties.

We will assume that each input X has an associated ±1 label yX and take
the output h(X) as correct if yXh(X) > 0. If this is not the case, i.e. when-
ever yXh(X) = −1, classical CM training ([6], ch. 6) tries to change the smallest
number of perceptron outputs so that X could then be correctly classified, choos-
ing those wrong perceptrons for which |acti(X)| is smallest, and changes their
weights by the well-known Rosenblatt’s rule:

Wi := Wi + ηyXX (2)

In parallel perceptron training, however, the update (2) is applied to all wrong
perceptrons, i.e. those Pi verifying yXPi(X) = −1.

On the other hand, when a pattern X is correctly classified (yXh(X) = 1),
PP training also applies a margin–based output stabilization procedure to those
perceptrons for which 0 < yXacti(X) < γ. Notice that for them a small pertur-
bation could cause a wrong class assignment and it is convenient to keep their
activations acti(X) away from zero, trying to preserve a margin γ around zero
clear from any activation:

Wi := Wi + η

{
+X, if 0 < acti(X) < γ
−X, if − γ < acti(X) < 0 (3)

The value of the margin γ is dynamically adjusted from a starting value. More
precisely, as proposed in [1], after a pattern X is processed correctly, γ is in-
creased to γ + 0.25η if for all correct perceptrons we have yXacti(X) > γ, while
we decrease γ to γ − 0.75η if 0 < yXacti(X) < γ for at least one correct percep-
tron.

The training process can be performed either on line or in batch mode. Since
we will use PPs in a boosting framework, we shall use the second procedure.
Moreover, notice that for the margin to be meaningful, weights have to be nor-
malized somehow; we will make its euclidean norm to be 1 after each batch
pass.

In spite of their very simple structure, PPs do have a universal approximation
property. As shown in [1], PPs provide results in classification and regression
problems quite close to those offered by C4.5 decision trees and only slightly
weaker that those of standard multilayer perceptrons (MLPs). Another advan-
tage of using PPs is their very fast training, something quite useful in boosting,
where repeated batch trainings will have to be performed.

3 Label Noise Reduction through Parallel Perceptron
Boosting

We first discuss how PP’s activation margins can be used to detect safe, label
noisy and borderline patterns. More precisely, as just described, PPs adaptively
adjust these margins, making them to converge to a final value γ that ensures
stable PP outputs. Thus, if for a pattern X its i–th perceptron activation verifies
|acti(X)| > γ, s(acti(X)) is likely to remain unchanged after small perturbations
of X. Given the voting outputs of PP, we will accordingly take a pattern as safe
if for bH/2c perceptrons Pi (i.e., their majority) we have yXacti(X) > γ, as
such an X is likely to be also correctly classified later on. Similarly, if for bH/2c
perceptrons we have yXacti(X) < −γ, X is likely to remain wrongly classified,
and we will take it to be label noisy. As borderline patterns we will simply take
the remaining X. We shall use the notations St, Nt and Bt for the safe, noisy
and borderline training sets at iteration t. As an example, in figure 1 we show
how the safe (squared points) and label noisy (crossed points) patterns of a 2–
dimensional XOR problem with 10% of noise level have been detected using a
3–perceptron PP. It shows that almost all label noisy and safe patterns that are
quite likely to remain stable in further trainings have been selected.

Let us see how to use this categorization in a boosting–like setting. Recall that
boosting’s probability updates are given by the rule (1), where Zt =

∑
X dt(X),

αt =
1
2

ln
(

1− εt

εt

)
,

Fig. 1. Safe and mislabeled patterns detection using a PP of 3 standard perceptrons
on a 2–dimension XOR problem with 10% of noise level.

and εt is the iteration error with respect to dt, i.e.,

εt =
∑

{X : yXht(X)=−1}
dt(X).

We introduce safe, noisy and borderline into the boosting process through a
pattern dependent factor R(X) in the boosting probability actualization proce-
dure as follows

dt+1(X) =
1
Z ′t

dt(X)e−αtR(X)yXht(X), (4)

with Z ′t again a normalization constant. Notice that we recover standard boosting
by setting R(X) = 1. Now, we want to diminish the influence of label noisy pat-
terns X ∈ Nt, so we put R(X) = −1, which should make dt+1(X) < dt(X), di-
minishing therefore their importance at the t+1 iteration. Moreover, setting also
R(X) = −1 for safe patterns, we now have αtR(X)yXht(X) < 0, as yXht(X) > 0
for them; hence, dt+1(X) > dt(X), as desired. Finally, for borderline patterns
X ∈ Bt we shall take R(X) = 0, that except for changes on the normalization
constant, should give dt+1(X) ' dt(X). Notice that except for borderline pat-
terns, the proposed procedure, which we call NR boosting, comes to essentially

Dataset Noise PP PP PP MLP MLP
level bagging boosting NR

boosting
bagging boosting

twonorm 0 % 96.597 96.267 96.800 96.733 97.100
5 % 93.600 89.400 95.933 95.700 93.000

10 % 90.900 84.600 95.733 94.033 90.733
20 % 83.800 75.233 93.367 90.900 81.967
30 % 73.800 68.467 90.167 85.200 72.833

threenorm 0 % 79.367 75.933 78.233 82.933 83.533
5 % 77.033 73.700 78.233 81.367 80.100

10 % 74.867 71.367 77.700 79.067 77.300
20 % 70.100 65.467 75.000 74.733 71.133
30 % 66.467 60.967 71.233 69.600 63.033

ringnorm 0 % 63.900 60.800 64.067 75.900 78.233
5 % 61.533 59.100 63.400 75.400 75.300

10 % 61.133 59.033 62.100 72.200 71.433
20 % 57.967 56.367 60.600 67.967 64.433
30 % 56.667 54.000 59.233 61.700 57.300

Table 1. Accuracies for the PP, MLP bagging and boosting procedures over 3 synthetic
datasets with 0%, 5%, 10%, 20% and 30% of noise level in the training samples (best
in bold face, second best in italics).

being a “reversed” boosting, as it gives bigger emphasis to correct patterns and
smaller to the wrong ones, just the other way around to what boosting does.
We shall numerically compare next NR boosting against standard boosting and
bagging of PPs and of the much stronger learners given by MLPs.

4 Experiments

In order to have a better control of the noise added, we have used in our ex-
periments three well known synthetically generated datasets of size 300, the
twonorm, threenorm and ringnorm datasets, also used in other boosting ex-
periments [2]. We briefly recall their description. They are all 20–dimensional,
2–class problems. In twonorm each class is drawn from a multivariate normal
distribution with unit covariance matrix. Class #1 has mean (a, a, . . . , a) and
class #2 has mean (−a,−a, . . . ,−a) where a = 2/

√
20. In threenorm, class #1

is now drawn from two unit covariance normals, one with mean (a, a, . . . , a) and
the other with mean (−a,−a, . . . ,−a). Class #2 is drawn from a unit covari-
ance normal with mean (a,−a, a,−a, . . . ,−a). Here a = 2/

√
20 too. Finally, in

ringnorm, class #1 follows a normal distribution with mean 0 and covariance
matrix 4 times the identity and class #2 is a unit covariance normal and mean
(a, a, . . . , a) where now a = 1/

√
20. The twonorm and threenorm problems are

clearly the easier ones, as they are essentially linearly separable, although there
is a greater normal overlapping in threenorm, that gives it a much higher op-

Fig. 2. Graphical comparative results of the accuracies given in table 1. NR boosting
accuracies decrease quite slowly; it is thus the more noise robust method.

timal Bayes error probability. Ringnorm is more difficult than the inner; the
more concentrated second normal is quite close to the average of the wider first
normal. In particular, the Bayes boundary is basically a circle, quite difficult to
learn with an hyperplane based method such as PPs (and other simple methods,
such as nearest neighbors, linear discriminants or learning vector quantization
[5]).

We will compare the results of the PP procedure described in section 3 with
those of standard bagging and boosting. These two will also be applied to MLPs.
PP training has been carried out as a batch procedure. In all examples we have
used 3 perceptrons and parameters γ = 0.05 and η = 10−3. As proposed in [1],
the η rate does not change if the training error diminishes, but is decreased to
0.9η if it augments. Training epochs have been 250 in all cases; thus the training
error evolution has not been taken into account to stop the training procedure.
Anyway, this error has an overall decreasing behavior. The MLPs, each with a
single hidden layer of 3 units and a learning rate value of η = 10−3, were trained
during 2000 epochs.

In all cases the number of boosting rounds was 10 and we have used 10–times
10–fold cross validation. That is, the overall data set has been randomly split
in 10 subsets, 9 of which have been combined to obtain the initial training set,
the size of which has. To ensure an appropriate representation of both classes
in all the samples, stratified sampling has been used. The final PPs and MLPs’
behaviors have been computed on the remaining, unchanged subset, that we
keep for testing purposes.

All training samples were artificially corrupted with different levels of cla-
ssification noise: 5%, 10%, 20% and 30%. Table 1 gives the overall accuracies
for the five construction procedures (best values are in bold face, second best in
italics). They are also graphically represented in figure 2. In all cases MLPs give
best results in absence of noise, with PPs being close seconds for twonorm and
threenorm, but not so for the more difficult ringnorm. When noise increases, NR

boosting gives best results in twonorm for all noise levels and for the 20% and
30% levels in threenorm; it is second best in the 10% level. It cannot overcome
the large head start of MLPs in ringnorm, although is second best for the 30%
noise level. On the other hand, NR boosting is clearly the most robust method.
For instance, their 30% noise accuracies are just 6.63 points below the noise
free ones in twonorm, 7.00 points in threenorm and 4.83 in ringnorm. For MLP
bagging (the more robust MLP procedure), its drops are 11.53, 13.39 and 14.20
respectively. This behavior is clearly seen in figure 2.

5 Conclusions and Further Work

We have shown how the concept of activation margin that arises very naturally
on PP training can be used to provide a robust approach to label noise reduction.
This is done adding an extra factor R(X) to boosting’s exponential probability
update, with values R(X) = −1 for safe and label noisy patterns and R(X) = 0
for the borderline ones. The assignment of a patter to each category is done
through its activation margins. The resulting procedure has been successfully
tested on three well-known synthetic datasets, artificially corrupted with diffe-
rent levels of classification noise. NR boosting has been shown to have a very good
overall performance and it is the most robust method, as its accuracies decrease
very slowly and it gives the smallest overall drop. Further work will concentrate
on the pursuit of a more general approach to malicious noise detection using the
ideas of redundant and label noisy patterns categorizations.

References

1. P. Auer, H. Burgsteiner, W. Maass, Reducing Communication for Distributed
Learning in Neural Networks, Proceedings of ICANN’2002, Lecture Notes in Com-
puter Science 2415 (2002), 123–128.

2. L. Breiman, Bias, variance and arcing classifiers, Tech. Report 460, Department
of Statistics, University of California, Berkeley, 1996.

3. T. Dietterich, An experimental comparison of three methods for constructing en-
sembles of decision trees: Bagging, boosting, and randomization, Machine Learning,
40 (2000) 139–158.

4. Y. Freund, R.E. Schapire, Experiments with a New Boosting Algorithm, Proceed-
imgs of the 13th International Conference on Machine Learning (1996), 148–156.

5. D. Meyer, F. Leisch, K. Hornik, The support vector machine under test, Neuro-
computing, 55 (2003), 169–186.

6. N. Nilsson, The Mathematical Foundations of Learning Machines, Morgan
Kaufmann, 1990.

7. R.E. Schapire, Y. Freund, P. Bartlett, W.S. Lee, Boosting the margin: a new ex-
planation for the effectiveness of voting methods, Annals of Statistics, 26 (1998),
1651–1686.

8. S. Verbaeten, A.V. Assche. Ensemble methods for noise elimination in classification
problems. In Fourth International Workshop on Multiple Classifier Systems (2003),
317-325.

